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Abstract

In this thesis, we investigate the connection between the properties and the

generalization performance of representations learned by deep reinforcement

learning algorithms. Much of the earlier work on representation learning for

reinforcement learning focused on designing fixed-basis architectures to achieve

properties thought to be desirable, such as orthogonality and sparsity. In con-

trast, the idea behind deep reinforcement learning methods is that the agent

designer should not encode representational properties, but rather that the

data stream should determine the properties of the representation—good rep-

resentations emerge under appropriate training schemes. We bring these two

perspectives together, empirically investigating the properties of representa-

tions that are good at generalization in reinforcement learning. This analysis

allows us to provide novel hypotheses regarding the impact of auxiliary tasks

in end-to-end training of deep reinforcement learning methods. We intro-

duce and measure six representational properties over more than 28 thousand

agent-task settings. We consider DQN agents with convolutional networks in

a pixel-based navigation environment. We develop a method to better under-

stand why some representations improve generalization, through a systematic

approach varying task similarity and measuring and correlating representa-

tion properties with generalization performance. Using this insight, we design

two novel auxiliary losses and show that they generalize as well as our best

baselines.
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Preface

This thesis is based on an under-review paper titled Investigating the Prop-

erties of Neural Network Representations in Reinforcement Learning [82]. It

is a joint work with Han Wang, Martha White, Marlos C. Machado, Zaheer

Abbas, Raksha Kumaraswamy, Vincent Liu, and Adam White. Han and I

are responsible for the experiments and implementations. Martha, Adam, and

Marlos wrote and edited the main part of the paper. Han and I wrote the

appendix.

When I joined this project, Han had already written her master’s thesis on

this topic [81]. However, since I joined, this project has gone through many

changes that make it sufficiently different from Han’s thesis. To be specific,

we significantly changed the generalization (transfer) setting, resulting in a

huge increase in the number of experiments (agent-task combinations). Some

of the properties in Han’s thesis are removed, and some are changed, even

though we refer to them by the same name in this thesis. We started recording

and reporting properties during training rather than waiting until training is

complete. We added a new auxiliary loss to our experiments. We started using

new activation functions. We have run several new experiments.

The new contributions compared to our paper, for which I am solely re-

sponsible, are the study of the Laplacian loss function, introduced in chapter

2, as an auxiliary loss and the design of two new auxiliary losses discussed in

Chapter 6. We plan to extend the techniques proposed in this new chapter to

more complex environments and write a new paper on it.

During my masters, I was also doing research on developing a new soft-

greedy operator for exploration in reinforcement learning. This pending publi-

cation is called "Resmax: An Alternative Soft-Greedy Operator for Reinforce-
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ment Learning". The results of this research were omitted from this document

because it could not produce a coherent story.
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The meaning of my existence is that life has addressed a question to me. Or,

conversely, I myself am a question which is addressed to the world, and I

must communicate my answer, for otherwise I am dependent upon the

world’s answer.

– C.G. Jung, Memories, Dreams, Reflections
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Chapter 1

Introduction

In the reinforcement learning problem an agent interacts with its environment,

receiving observations and taking actions based on those observations, with the

goal of maximizing the sum of a special numerical signal, the reward. In this

context, the first problem an agent faces is the problem of agent state con-

struction: to determine how to process observations to summarize the state

they are in. The function that converts these observations is known as rep-

resentation, its elements are known as features, and the process of learning

such function is known as representation learning. Ultimately, many other

subproblems depend on the successful construction of agent states. Bad rep-

resentations hinder predictions and diminish the effectiveness of planning and

learning algorithms [13, 27, 76, 80]. Good representations can lead to bet-

ter sample efficiency [40, 64]. Therefore, the key question is: what are good

representations and how can the agent find them?

The goodness of a representation is often defined by its ability to generalize

properly over the state space [74]. The act of generalization itself can be either

good or bad. Bad generalization can entirely disrupt the learning process.

Good generalization ultimately should serve faster learning (See Figure 1.1 as

an example). We consider the view toward generalization that draws a clear

line between training and evaluation procedures [cf. 32].1 It considers training

the agent on a distribution (set) of tasks, called training environments, and
1Of course, generalizing over the state space in a single environment is equally important,

especially when training in a continual setting. However, here we focus on the multiple-
environment definition of the generalization.
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Good Generalization Bad Generalization

Figure 1.1: Good versus bad generalization in a simple T-maze environment.
In this environment, the agent is a dog with the goal of reaching the bone. The
agent can take four actions given the representation of a cell: moving up, down,
left, and right. Taking actions toward walls has no effect. The representation
generalizes over the cells (i.e., states) with the same colors. This means that
cells with the same color look the same to the dog. Consequently, the dog
chooses the same action in these cells. In the left maze, the dog can learn to
reach the bone pretty quickly by just learning to go right in the green states
and to go up in the blue states. The generalization in the right maze, on the
other hand, is rather poor, making it difficult for the dog to approach the
bone.

then evaluating the trained agent on another distribution of tasks called testing

environments. In this setting, we consider good generalization to facilitate

learning on the testing environments.

Fixed transformations of the agent’s observations, which lead to fixed-

basis architectures, have been extensively explored in reinforcement learning.

They allow us to enforce specific properties that are thought to be benefi-

cial. For example, many approaches either use or search for orthogonal or

decorrelated features, such as orthogonal matching pursuit [54], Bellman-error

basis functions [57], Fourier basis [34], tile coding [73], and proto-value func-

tions [33, 49]. Prototypical input matching methods have been explored, as

in kernel methods, radial basis functions [74], cascade correlation networks

[14], and Kanerva coding [30]. Most of the above representations project the

input to a low-dimensional space to encourage the representation to encode
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only the most important information, saving memory and computational re-

sources. High-dimensional, sparse representations have also been proposed, as

they are more likely to be orthogonal. Moreover, by activating only a small

subset of features, a sparse representation reduces computation and increases

scalability, such as in tile coding [73], and in sparse distributed memories [61].

However, fixed-basis architectures are not adaptive and they are difficult to

scale to high-dimensional input spaces.

Recent developments in representation learning for reinforcement learning

explore a different perspective: we should avoid optimizing specific properties2

and instead use gradient descent to let the training data dictate the properties

of the representation. This view is widely held, and is reflected in the focus

on specifying training regimes, including using multi-task (parallel) training

[7, 19, 77], auxiliary losses [5, 28], and training on a distribution of problems

(à la meta-learning) [16, 29, 52, 65, 67]. The basic idea underlying all these

approaches is that good representations will emerge if the problem setting is

complex enough. This view gave birth to a new branch of algorithms called

deep reinforcement learning [50].

In this thesis, we study the problem of generalization in deep reinforcement

learning, which aims to improve sample efficiency of an agent in a predeter-

mined set of tasks. Although, many deep reinforcement learning algorithms

have been developed to address this problem, little work has been done to un-

derstand and evaluate the generalization capability of the representations that

emerge through these algorithms. The most common approach is to visualize

the learned representations [5, 11, 17, 18, 24, 25, 35, 50, 63, 69, 72, 84, 92],

which is mainly adopted from the supervised learning literature. However,

in reinforcement learning, the impact of delayed consequences and temporally

correlated data makes it difficult to import analysis techniques from other

fields, and recent work highlighted how popular approaches like saliency maps

may not be totally appropriate [3]. This work takes a different approach for
2There is, of course, work in reinforcement learning exploring how to encode specific

properties on the network, such as sparse activations [44, 55], disentangled features [26],
and orthogonality constraints [18, 88].
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evaluating generalization. Specifically, we explore the properties of represen-

tations learned by modern deep reinforcement learning systems in a setting

where representations are re-used in similar but unseen tasks, and we study

how these properties correlate with the generalization performance of these

representations.

1.1 Thesis Statement

The central claim of this work is that throughout the training phase,

several properties that can explain generalization performance will

emerge in the representations learned by deep reinforcement learn-

ing algorithms.

Deep reinforcement learning algorithms enable the agent to learn represen-

tations by using neural networks to extract useful features from the inputs.

Each layer of a neural network produces its output often using a non-linear

function known as the activation function.

As mentioned above, representation is a vector resulting from the transfor-

mation of the input states. Its main purpose is to capture useful information

that can facilitate learning. In this work, we consider the representation to

be the output of a representation function, which is a trainable model that

transforms the input states. This definition makes it easy to design properties

that can be measured from the representation.

Properties summarize the representation. We investigate properties grouped

into three categories: capacity (complexity reduction, dynamics awareness,

and diversity), redundancy (orthogonality and sparsity), and update robust-

ness (non-interference).

1.2 Approach

We support the thesis statement by empirically studying the properties of rep-

resentations learned by deep reinforcement learning algorithms. Specifically,

we consider Q-learning with neural network function approximation [50] cou-

pled with auxiliary tasks (i.e., additional prediction tasks that are thought to
4
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Figure 1.2: Maze problem. The position of the walls (dark grey), the goal
(green) in the training, and two testing tasks (purple) are shown.

improve the representation). We focus on a specific generalization setting: one

with a training phase to learn a representation, followed by a testing phase in

a variety of tasks with similar dynamics but different rewards.

We carefully design this generalization setting to help us address the main

thesis of this work. To do so, we consider a simple pixel-based navigation envi-

ronment (shown in Figure 1.2), where successful generalization is challenging

but possible. This environment can be readily used to generate numerous re-

lated tasks. We propose a technique to generate testing environments based

on their similarity to the training environment, resulting in 173 testing envi-

ronments. This approach helps us to analyze how representations generalize

as the testing tasks become more dissimilar.

This setting has two phases: a training phase and a testing phase. During

the training phase, we train our representations with different activation func-

tions and auxiliary tasks. We ensure that the agent is capable of solving the

training tasks. As a result, we end up with representations that vary in their

properties and generalization performance, which is crucial for further analy-

sis in this thesis. Then, we fix (freeze) the parameters of the representation

function and evaluate its performance on the testing environments. Fixing

these parameters is critical to our study because it results in having fixed rep-
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resentation properties during the testing procedure, allowing us to carefully

evaluate our thesis statement.

Our experiments generate a mountain of data that require further analysis.

We introduce a variety of data visualization techniques to understand the con-

nection between the representation properties and generalization performance.

Specifically, we use these techniques to analyze the non-linear correlation, fur-

ther helping us recognize which representation properties correlate to good

generalization performance.

In the final step of this study, we explicitly maximize the properties that

are shown to improve the performance in the representation to further eval-

uate the thesis of this work. To do so, we introduce a set of auxiliary losses

that maximize these representation properties. We first investigate how in-

corporating these auxiliary losses affects representation properties. Then, we

show that using them indeed improves the generalization performance of the

representations to the point that they can compete with our best baselines.

1.3 Contributions

The key contributions of this dissertation are:

Methodology. We introduce new methodologies to evaluate representa-

tions in deep reinforcement learning. These methodologies consist of three

components: representation properties, task similarity metric, and several ap-

proaches to analyze the data. We study six properties consisting of both a

subset of properties discussed in the literature and properties newly intro-

duced in this work (Chapter 3). We measure these properties in more than

28, 000 agent-task settings and show that they correlate with generalization

performance (Chapter 5). We further advocate for the importance of these

properties by showing that optimizing them leads to good representations

(Chapter 6). We design a technique to measure the similarity between any

set of environments and use it to analyze generalization performance across

the 173 tasks that are ranked based on their similarity (Chapter 4). We provide

several mechanisms to aggregate and visualize the mountain of data produced

6



across representations. We use them in this thesis to study and understand

the relevance of representation properties to generalization performance. This

set of techniques can be used as a general framework for others to analyze

representations (Chapter 5).

Auxiliary losses. The role and significance of auxiliary losses in rein-

forcement learning remain poorly understood. We explore the representations

learned using different variations of eight auxiliary losses.We particularly ana-

lyze this family of losses by performing an ablation study to determine which

components of these losses are critical for improvement in generalization per-

formance (Chapter 5). We further design new auxiliary losses based on the

insights that we gained from our analysis, and show that these losses can match

the generalization performance of our best baselines (Chapter 6).

1.4 Dissertation layout

This document is divided into seven chapters. Chapter 2 introduces the re-

inforcement learning problem, as well as an overview of generalization and

representation learning in reinforcement learning. Chapter 3 discusses the

representation properties and approaches to measure them. The setting for

evaluating generalization is introduced in Chapter 4. Chapter 5 presents the

experimental study carried out in this work and makes a connection between

the representation properties and the generalization performance. In Chap-

ter 6, we propose and evaluate a set of auxiliary losses to maximize promising

properties. Finally, we summarize the contributions of this work and discuss

potential future research directions in Chapter 7.
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Chapter 2

Background & Problem
Formulation

In this chapter, we introduce the reinforcement learning problem, deep rein-

forcement learning solution methods, as well as the concept of generalization

in reinforcement learning. We provide a precise definition of representation

in deep reinforcement learning and discuss different approaches for learning

a good representation. Building on this, we review relevant work on general-

ization in deep reinforcement learning and explain how this work fits within

it.

Throughout this dissertation, as a convention, we will indicate matrices

by bold capital letters (e.g., S), random variables by capital letters (e.g., St,

Rt), vectors by bold lowercase letters (e.g., θ, ϕ), functions and scalars by

non-bold lowercase letters (e.g., ϕ, q), and sets with a calligraphic font (e.g.,

S, A). Subscripts are only used for naming purposes and do not provide any

information about the letter’s type.

2.1 Problem Formulation and Notation

We formalize the agent’s interaction with the environment as a finite Markov

Decision Process (MDP) with a finite state space S, finite action space A,

transition function p : S × A × S → [0, 1], and bounded reward function

r : S × A → R. On each time step, t = 1, 2, ..., the agent takes action At in

state St and the environment transitions to state St+1 ∼ p(·|St, At) and emits

8



a reward Rt+1. The agent’s objective is to find a policy, π : S × A → [0, 1]

that maximizes the expected discounted sum of future rewards, the return,

Gt
.
= Rt+1 + γt+1Gt+1, where γt+1 ∈ [0, 1] denotes a discount that depends on

the transition (St, At, St+1) [85].

We focus on value-based techniques, in which the agent attempts to learn

the optimal action-value function and uses it to shape its policy. The action-

value function for each state-action pair under policy π is

qπ(s, a) = E
π

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
. (2.1)

We can use tabular techniques to iteratively learn these action-values through

agent-environment interactions. These approaches use a table to approximate

action-values, with each table cell representing the estimated value of a distinct

pair of states and actions. Q-learning is one such technique that iteratively

updates this table using:

q(s, a)← q(s, a) + α (r + γmaxa′q(s
′, a′)− q(s, a)) ,

where s′ is the next state.

To learn these action-values, the agent needs to explore. One simple strat-

egy to promote exploratory behavior is ε-greedy. Using this technique, the

agent selects the greedy action with respect to its action-value with probabil-

ity ε and a random action with probability 1−ε. We use this simple exploration

strategy in this thesis.

2.2 Function Approximation

The state space is often too large to be represented in a table. To overcome

this issue, we need to generalize across states. We can achieve this by trans-

forming the state space to the representation space using a representation

function ϕ : S → Rd. A good representation function should help the agent

perform well with less memory, computation, and with fewer interaction with

the environment.
9



We can use, for example, Q-learning with linear function approximation

to train the agent with a given handcrafted representation. This algorithm

approximates the action-value function by linearly mapping the representation

to action-values, with a value function q̂θ (parameterized by θ). This algorithm

updates its parameters, using the update:

θt+1 ← θt + α (r + γmaxa′ q̂θ(ϕ(s
′), a′)− q̂θ(ϕ(s), a))∇q̂θ(ϕ(s), a). (2.2)

Designing a good representation function requires a great deal of expert

knowledge and, in some cases, it is impractical due to the complexity of the

environment. We can learn a good representation function instead. Deep

reinforcement learning algorithms are the most successful approach for that.

The word deep, in deep reinforcement learning, stems from the use of neural

networks to approximate qπ and ϕ. Neural networks are made up of a series

of layers. Each layer of a neural network typically performs a linear transfor-

mation on its input before passing it to a non-linear function known as the

activation function.

A successful extension of Q-learning to deep reinforcement learning setting

is DQN [50]. In DQN, the approximate value function is learned by a neural

network that is parameterized by a set of weights θ: q̂θ(s, a) ≈ qπ(s, a). In

the original paper, this neural network consists of three convolutional layers

followed by a single fully connected layer, as shown in Figure 2.1. During

training, DQN iteratively updates its action-value estimates by training the

parameters of a neural network, θ, with stochastic gradient descent: ∆θ ∝(
Rt+1+γt+1 max q̂θ̄(St+1, a)− q̂θ(St, At)

)
∇θq̂θ(St, At). The target network, q̂θ̄,

is not updated on every step, but only periodically set equal to the current q̂θ.

Actions are selected according to an ϵ-greedy policy. DQN samples a single

mini-batch from an experience replay buffer, D, to update the value function.

In this work, we focus on the representations learned by this algorithm.

We use a unified architecture to explore representations induced by a vari-

ety of auxiliary tasks, as shown in Figure 2.2. The first layers, parameterized

by θR, produce the representation ϕt = ϕθR(st). The value network uses this
10
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Figure 2.1: The original architecture of DQN network.
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Figure 2.2: The unified architecture used in this work. The representation
network ϕθR learns a mapping from input-state st to the agent-state (represen-
tation of st). The representation network is learned to improve two objectives:
performance on a main task, and on an auxiliary task. Our agents only use
one auxiliary task at a time.

representation to compute the action-values. The auxiliary tasks are encoded

with additional layers and separate heads (fθA with parameters θA), further

impacting the updates to θR via gradient descent. Given this architecture,

ϕθR(s) must be adjusted to be useful both for estimating action values and for

reducing the auxiliary losses.

2.3 Representation Learning

There are three common approaches to improve the representations learned by

deep reinforcement learning algorithms. First, we can make specific transfor-

mations to the input states before feeding them to the neural network [e.g., 1,

38, 39, 71, 91]. These transformations help the agent to be robust to certain

changes in the input states. They are known as data augmentation techniques

and often applied to pixel-based input states. The second approach involves

modifying the neural network architecture, such as adjusting its activation

function [e.g., 37, 55, 68, 83]. The third approach is to encourage the agent to

11



learn additional prediction tasks that incentivize the network to learn about

properties of the environment which are, in principle, not directly related to

reward maximization. These tasks are called auxiliary tasks [e.g., 5, 28, 51,

71]. The remainder of this section discusses the key approaches employed in

our study.

2.3.1 Data Augmentation Techniques

Deep reinforcement learning research has just recently started to investigate

the efficacy of data augmentation techniques, such as rotating the input image

and flipping it horizontally or vertically. One important study investigates the

effectiveness of different data augmentation techniques and concludes that ran-

dom shift (randomly shift the input image) is the most effective technique [91].

2.3.2 Activation Functions

In this work, we explore two different activation functions: ReLU and Fuzzy

Tiling Activation (FTA) [55]. ReLU is a standard activation function, defined

as max(z, 0) for input z, where z is a linear weighting on the previous layer.

FTA is a newly introduced activation, designed to generate sparse outputs.

Essentially, it bins the scalar input into k bins, with some smoothing to ensure

non-zero gradients through the activation. The smoothness and bin width are

controlled by a parameter η > 0. The interval is from [−η
2
k, η

2
k], with k equally

sized bins of size η. Assume the input z is in bin i, namely −η
2
k + (i− 1)η ≤

z ≤ −η
2
k + iη where i ∈ {1, 2, . . . , k}. The k-dimensional output vector h(z)

given by FTA on z has entries hj(z) ∈ [0, 1] defined as

hj(z) =


1 if j = i,

1 + η(j − k
2
)− z if j < i and z < η(1 + j − k

2
),

1 + z−η(j−1− k
2
) if j > i, z > η(j−1− k

2
),

0 else.

Larger values of η activate more entries in h(z), and smaller values of η result

in more sparsity. We use the suggested default choice of η = δ, where δ

determines the bin size [cf. 55].

12



2.3.3 Auxiliary Tasks

Here, we present the auxiliary tasks that are used in this work. Auxiliary losses

of these tasks are computed using the transitions stored in the replay buffer,

D. However, each loss function samples from the replay buffer in a different

way. We go through the specifics of the auxiliary network and implementation

of auxiliary tasks in Chapter 5. The explanation and motivation of these loss

functions are outlined below.

Input Reconstruction (IR): This auxiliary task tries to reconstruct

the network’s input, as in an autoencoder. This extraction is achieved by

using a bottleneck layer: a low-dimensional layer that forces only the most

important information to be retained and the remainder, including the noise,

to be discarded. We include this auxiliary task as a classic and simple choice:

LIR (D) = E
s∼D

[
∥fθA(ϕθR(s))− s∥22

]
. (2.3)

Next Agent State Prediction (NAS): Another common choice is to

predict the next agent state (i.e., next state’s representation) [8, 18, 28, 48, 52,

59, 65, 69, 89]. This loss encourages the representation to capture the tran-

sition dynamics. The agent predicts ϕt+1 using ϕt and action at. Predicting

the next agent state might give vacuous solutions when it is the only training

signal; however, jointly training with the main task prevents this from happen-

ing. The combination of this auxiliary loss with the main task encourages the

representation to both be useful for action-value estimation, as well as capa-

ble of anticipating features on the next step. Several papers have highlighted

that the ability to predict the next state is related to the ability to predict

action-values [5, 56, 75]. We consider the following loss to represent NAS:

LNAS (D) = E
(st,at,st+1)∼D
(sk ̸=t,ak ̸=t)∼D

[
∥fθA(ϕθR(st), at)− (ϕθR(st+1)− ϕθR(st))∥22

+max
(
0, 1− ∥fθA(ϕθR(sk), sk)− (ϕθR(st+1)− ϕθR(st))∥22

) ]
.

(2.4)

Successor Feature Prediction (SF): NAS can be taken one step fur-

ther, with the target including not just the next agent-state but many future
13



agent states [47]. Successor features (SFs) provide just such a target. SFs are

defined with respect to a particular policy π as ψπ
t = Eπ

[∑∞
i=0 γ

iϕt+i

]
. They

have been used in the transfer setting because they can be used to quickly

infer value estimates for new reward functions that are a linear function of ϕt

[4]. In the tabular case, SFs correspond to the successor representation [12],

which is equivalent to proto-value functions [48]. We opt to use the greedy

policy according to the action values for the training task, which means the

SFs are tracking a changing policy. This loss is

LSF (D) = E
(st,at,st+1,at+1)∼D

[
∥fθA(ϕθR(st), at)−

(ϕθR(st) + γSFfθ̄A(ϕθ̄R(st+1), at+1))∥22
]
,

(2.5)

where γSF ∈ [0, 1].

Reward Prediction (Reward): Another auxiliary task we consider is

predicting the one-step reward in the future based on the current state and

action [28]. The prediction requires the agent to encode the reward information

that it can obtain in the short term in the representation function. This can

be simply captured by the following loss:

LReward (D) = E
(st,at,rt+1)∼D

[
∥fθA(ϕθR(st), at)− rt+1∥22

]
. (2.6)

Expert Target Prediction (XY): Another auxiliary task is the pre-

diction of expert-designed targets. It is based on the idea that a good rep-

resentation should be able to predict key artifacts of an environment. This

requires domain knowledge and is not always possible. Here we consider the

coordinates of the agent in our navigation task as the target predictions. We

consider the following loss

LXY (D) = E
(st,xt,yt)∼D

[
∥fθA(ϕθR(st))− [xt, yt]∥22

]
, (2.7)

where xt is the row number and yt is the column number of the agent’s location

in the maze.

Virtual Value Function Learning (VirtualVF): This auxiliary task

is based on the tasks the agent will face in the testing phase. We consider one

14



auxiliary loss that uses a goal location at the center of the maze (VirtualVF-

1), and another that uses five goals at the four corners and the center of the

maze (VirtualVF-5). These are virtual tasks because the agent imagines

achieving these goals, even though they are not the training goal. We use

VirtualVF-1 and VirtualVF-5 to assess the utility of having a larger set

of virtual goals. We learn these auxiliary value functions with DQN. We define

this loss as

LVirtualVF (D) =
∑
g∈G

E
(st,at,rt+1,st+1,at+1)∼D

[
∥f g

θA
(ϕθR(st), at)−

(rgt + γVFf
g

θ̄A
(ϕθ̄R(st+1), at+1)∥22

]
,

(2.8)

where ϕθ̄R(st+1) is the representation function of the target network, γVF ∈

[0, 1], and G is a set of goal locations. The reward rg, value function,f g
θA

, and

target value function, f g

θ̄A
, are associated with the goal g.

Augmented Temporal Contrast (ATC): This contrastive loss encour-

ages the network to learn similar representations for input-states that are

temporally close to each other. This auxiliary task led to the first successful

pre-training of a deep reinforcement learning agent, meaning it led to repre-

sentations that could be generally reused for other tasks. ATC also includes

other augmentations. Specifically, this loss uses a data augmentation func-

tion, Aug, an additional target representation and target auxiliary network

(ϕθ̆R
and fθ̆A), as well as an additional auxiliary network fθC [cf. 71]. We

test it with these additions, to report performance of the originally proposed

approach, even though it goes beyond strictly only adding an auxiliary loss.

This loss is presented below

LATC(D) = −ED

[
log

exp(piW ci+k)∑
sj∈S exp(pjW cj+k)

]
, (2.9)

where W is a matrix of trainable weights, pt = fθC (fθA(ϕθR(Aug(st)))) +

fθA(ϕθR(Aug(st))), and ct+k = fθ̆A(ϕθ̆R
(Aug(st+k))).

Laplacian: Lastly, we employ a recently introduced Laplacian loss func-

tion that captures the geometry of the underlying state space (i.e., the envi-

ronment’s dynamics) [88]. This loss is the first efficient and successful approx-

imation of the eigenvectors of the Laplacian in the reinforcement learning.
15



Similar to ATC, it encourages the representation of the states that are dy-

namically close to each other to be similar, and those that are widely apart

to be distinct. However, whereas ATC encourages the representations of state

that are k timestep apart from each other to be similar, this loss encourages

each state’s representation to be similar to the representation of all its future

states. It also uses a completely different auxiliary network architecture and

loss to achieve this. We compute this loss using

LLaplacian (D) = E
(st,st+k̄)∼D

[
∥ϕθR(st)− ϕθR(st+k̂)∥

2
2

]
+β E

(si,sj)∼D

[(
ϕθR(si)

⊤ϕθR(sj)
)2 − ∥ϕθR(si)∥22 − ∥ϕθR(sj)∥22

]
,

(2.10)

where T ≥ k̄ ≥ 1 is sampled from the distribution p(X = k̄) =
γk̄−1
L∑T

t=1 γ
t−1
L

and

γL ∈ [0, 1].

2.4 Generalization in Deep Reinforcement Learn-
ing

The problem of generalization in deep reinforcement learning is concerned with

learning features that help us learn faster when facing new situations, that is,

unseen observations [cf. 32]. These new situations have been instantiated in

the field in a multitude of ways; ranging from simply knowing how to behave

when visiting a novel state of the underlying MDP, to non-stationary settings

in which the underlying dynamics of the problem change (e.g., transitions,

rewards). In this latter case, it is often assumed that regularities or invari-

ances are preserved, making generalization possible. One controlled way to

assess generalization capabilities is to explicitly design training and testing

tasks where training tasks are used for training the agent and testing tasks are

used for assessing its generalization performance, allowing us evaluate whether

the learned representations facilitate future learning [cf. 32]. This approach for

assessing generalization performance is similar to the transfer learning prob-

lem, where training tasks are referred to as source tasks and the testing tasks

are referred to as target tasks [cf. 96]. In this work we investigate such set-

ting, which we call feature generalization, or simply generalization from here
16



onwards. Our goal is to assess when deep reinforcement learning algorithms

are able to learn features that facilitate future learning.

Successful generalization in deep reinforcement learning is extremely chal-

lenging [e.g., 15, 94], especially when we do not train our agents on the testing

tasks, i.e., we do zero-shot transfer. Even in a simple navigation maze setting

without any obstacles, small changes in the initial state can have a detrimen-

tal impact on the generalization performance of standard deep reinforcement

learning algorithms [93]. Generalization is also a major problem when we

continue learning on the testing tasks. Agents pre-trained on training tasks

cannot often outperform agents trained from scratch when the testing tasks

are the same as the training tasks with only minor changes to the visuals of

the input states or the transition function [15, 20, 87].

Many studies have shown that as we increase the number and variety of

training tasks, the generalization performance tends to improve as well [e.g., 9,

93, 94]. However, the variety of training tasks plays a key role. Once the agent

has experienced a sufficient number of different environments, adding more

training tasks has no noticeable impact on the generalization performance [93].

The remaining issue is to reduce the number and variety of training tasks

required for deep reinforcement learning algorithms to generalize well, i.e.,

improve their task-efficiency. To overcome this issue, many deep reinforcement

learning algorithms induce specific inductive biases (i.e., a priori algorithmic

preferences) that are shared between training and testing tasks [e.g., 94]. These

inductive biases can be in form of architectural changes, data augmentation

techniques, or auxiliary losses. For instance, if we know that the variations in

color in the environment do not have any effect on the optimal policy, we can

use data augmentation techniques to randomize the color of the input images.

Preferably, we should look for inductive biases that are shared across many

environments. We can design auxiliary losses, for example, to encourage the

representation of states to be similar to each other when they are dynamically

close to each other [71], or to encourage the optimal policy starting from those

states to be similar [1]. We are particularly interested in the impact of auxiliary

losses and of activation functions on generalization performance.
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Little to no research has been conducted on the representation properties

of deep reinforcement learning agents that generalize effectively. To the best

of our knowledge, there is only one work that introduces a property, called

effective dimension, that is able to characterize when and how the representa-

tions generalize well [36]. This work, however, focuses on generalization during

training over the state space of a single task, whereas our work studies gener-

alization over multiple tasks. This is the first work to provide a generalization

framework that allows us to collect and analyze the representation properties

discussed throughout the literature, further enabling us to obtain a deeper un-

derstanding of the generalization capabilities of deep reinforcement learning

approaches.
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Chapter 3

Representation Properties

It is generally believed that specific properties are desirable for representa-

tions. Initially, these properties inspired researchers to come up with fixed

bases representations that are beneficial for a variety of purposes, like im-

proving generalization [e.g., 73]. After the emergence of deep reinforcement

learning, several studies followed the same direction and started to encourage

the learning process to induce specific properties into the representation [e.g.,

86]. Many works, for example, encourage the agent to learn a sparse represen-

tation to improve its performance [23, 41, 44, 55, 79, 95]. In this chapter, we

take inspiration from these works and introduce a collection of properties to

analyze representations and to explain their generalization performance.

We characterize representations into three main axes: capacity, efficiency,

and update robustness. Capacity reflects whether a representation can rep-

resent a given function. Efficiency captures the lack of redundancy of the

features and the computational cost of using them. Update robustness cap-

tures the idea that interference is undesirable and that representations should

avoid it. We define six properties that capture these three axes, and we use

them to evaluate the representations learned by our agents. We design these

properties so that measuring them always yields values between 0 and 1. Our

goal is to develop a systematic methodology for assessing learned representa-

tions based on a diverse set of properties. This evaluation list does not suggest

that a property is necessary; rather, it provides some quantitative measures

to supplement more qualitative evaluations like visualization. Such a list is
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necessarily incomplete; we attempt only to start with a reasonably broad set

of properties.

Before diving into the specifics of these properties, we need to present

notation that is used to define them throughout this chapter. Building on

top of the notation we presented in the previous chapter, the symbol ϕi refers

to the representation of si; q̂θV (ϕi, ·) is the value network learned given that

representation. We compute distances both according to the representation

and according to action-values:

dv,i,j
def
= |max

a
q̂θV (ϕj, a)−max

a
q̂θV (ϕj, a)|, (3.1)

dq,i,j
def
= max

a
|q̂θV (ϕi, a)− q̂θV (ϕj, a)|, (3.2)

ds,i,j
def
= ∥ϕi − ϕj∥2. (3.3)

The first formula reflects differences in the values the agent uses to select the

greedy action; the second looks at the difference in values across all actions;

and the last measures the distance between two representations.

3.1 Capacity: Retaining Relevant Information

The first axis to consider for a representation is its capacity: can it represent

the functions we want to learn? The value function should be a simple function

of these features, such as a simple neural network. To measure capacity, we

use one direct measure, complexity reduction, and two indirect measures (i.e.,

without considering the value function), dynamics-awareness and diversity.

3.1.1 Complexity Reduction

Complexity reduction reflects how much the representation facilitates the

simplicity of the learned value function. If the complexity is small, the fea-

tures encode much of the non-linearity needed to learn a value function. We

measure this using the Lipschitz constant of the value network given the rep-

resentation. The Lipschitz constant measures how fast action values change

given the representation. In other words, a higher Lipschitz constant indicates
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the value function is more complex to learn. Lipschitz value functions have

been motivated for value transfer [42] and learning models [2].

The definition of complexity reduction is shown in Equation 3.4. The

Lipschitz constant L is one where dq,i,j
ds,i,j

< L for all different pairs of states

(si, sj). If the state space is too large or infinite, we can approximate the

Lipschitz constant by considering only a subset of states. When this ratio is

computed on a given time step t, we use the current action-values. We take a

slightly less conservative measure, by averaging across these ratios rather than

taking the max. The Lipschitz constant L itself is an imprecise measure of

the regularity in the surface: one poorly behaved region could result in a high

Lipschitz constant, even if the rest have low local Lipschitz constants. We call

these averaged ratios Lrep, giving

Complexity Reduction def
= −Lrep, (3.4)

where Lrep
def
= 2

N(N−1)

∑N
i,j,i<j

dq,i,j
ds,i,j

.

We normalize the values of this property between −1 and 0 using Lmax, com-

puted as the maximum Lrep over all representations across all time steps. We,

then, subtract the results from 1 to ensure the values reside in the range of

[0, 1]. We majorly use this normalized version of complexity reduction through-

out this thesis as presented below:

(Normalized) Complexity Reduction def
= 1− Lrep

Lmax
. (3.5)

3.1.2 Dynamics Awareness

We can also indirectly measure capacity by testing whether the representation

is dynamics-aware: can it retain relevant information to the dynamics of the

environment? This means that pairs of states, where one is a successor to the

other, should have similar representations, and states further apart in terms

of reachability should have dissimilar representations. This measure is in fact

related to the Laplacian used for successor features and proto-value functions

[48, 70]. Interestingly, a few recent contrastive losses, such as ATC, also strive

to induce this property in the representation of deep reinforcement learning

agents [66, 71]. We further discuss such methods in Chapter 5.
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We measure this property as follows. For every state si, we take its suc-

cessor state s′i and a random state sj. If the distance, in representation space,

between the successor state is smaller than the distance to a random state,

then the representation has high dynamics awareness.

Dynamics Awareness def
=

∑N
i ||ϕi−ϕj∼U(1,N)||−

∑N
i ||ϕi−ϕ′

i||∑N
i ||ϕi−ϕj∼U(1,N)||

(3.6)

3.1.3 Diversity

In addition, we can measure the diversity of a representation, which is the

opposite of specialization. If a representation is specialized to one value func-

tion, then it likely uses a small subspace of the larger Euclidean space and

likely does not produce diverse feature vectors. This specialization may be

problematic, as it means the representation is unlikely to perform well when

it is transferred to learn another value function. This property is original to

this work and has not been discussed in the literature.

To define diversity, we use a ratio between state and value differences.

Given two states, si and sj, we compare the distance between their represen-

tations (ds,i,j) and the distance between their action values (dv,i,j). If the value

distance is high (i.e., the two state values are very different), then the repre-

sentation distance is also likely to be high to allow this. The interesting case

is when the value distance is low. The representation distance can be high

or low, and still allow two states to have similar values, because we project

from a higher-dimensional feature vector to a scalar value. A representation

with high diversity would have high representation distance when possible,

allowing two states to be distinguished even when they have similar values.

A representation with low diversity would simply map these two states with

similar values to similar representations, specializing to this value function.

The diversity metric is defined as

Diversity def
=1− 1

N2

N∑
i,j

min

(
dv,i,j/maxi,j dv,i,j

ds,i,j/maxi,j ds,i,j+10−2
, 1

)
. (3.7)

We normalize it by the maximum distances, to be invariant to value and
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representation scales. Diversity can be seen as 1 − specialization. The spe-

cialization is lower when dv,i,j is small and ds,i,j is large, causing this ratio to

be closer to zero. The specialization is higher when the ratio between dv,i,j

and ds,i,j is nearly one. Diversity allows us to indirectly measure capacity, as

we can check the level of specialization for a given function without needing

to have access to the larger set of possible functions.

3.2 Efficiency: Feature Redundancy

We also study the efficiency of representations showing how easy they make

it to learn an arbitrary function. Efficiency can be achieved by reducing re-

dundancy in the representation, i.e., finding linearly independent features. We

consider two properties for this axis: orthogonality and sparsity.

3.2.1 Orthogonality

High orthogonality results in linearly independent features, and additionally

provides distributed features as well as minimal interference. For example,

a technique called factor analysis discovers a dense set of orthogonal (latent)

factors to explain the data [62]. This representation is highly distributed, as

each feature is used to describe many different inputs. At the same time,

interference is reduced: the interference for two states with orthogonal feature

vectors is zero under linear updating. As before, we normalize magnitudes and

ensure higher orthogonality means that more feature vectors, ϕi and ϕj, are

orthogonal to each other.

Orthogonality def
= 1− 2

N(N−1)

N∑
i,j,i<j

|⟨ϕi,ϕj⟩|
∥ϕi∥2∥ϕj∥2

(3.8)

It is worth noting that there is an equivalence between orthogonal feature

vectors (i.e., orthogonal representations) and orthogonal features: the sum

over all states i, j of ⟨ϕi,ϕj⟩2 is equal to the sum over all pairs of features of

the dot product between the vector of those feature values across states [cf.

81].
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3.2.2 Sparsity

Another property that is connected to efficiency is sparsity. If only a small

number of features are active (i.e., have non-zero values) for an input, then

the features are sparse—with typically the additional condition that each fea-

ture is active for some inputs (no dead features). Sparsity is tightly related to

orthogonality. For non-negative features, maximizing sparsity corresponds to

finding orthogonal features: dot products can only be zero when features are

non-overlapping for two inputs. Sparsity has the additional benefit of improv-

ing efficiency for querying and updating the function, because only a small

number of features are active. For the same reason, sparse representations

also reduce interference [44, 55]. To measure sparsity, we calculate the per-

centage of inactive features on average across a set of states sampled from the

environment.

Sparsity def
=

1

dN

N∑
i=1

d∑
j=1

1(ϕi,j = 0), (3.9)

where the representation ϕi for state si is d dimensional.

3.3 Update Robustness: Interference Reduction

More recent work in neural networks has also focused on robustness, both

to interference and noise. Interference reflects how much updates in one

state increase error in other states. Given this definition, interference is not

desirable because it hurts generalization performance of the agents, especially

in the same task [6]. We use a recent measure developed for reinforcement

learning [45], which uses the difference in temporal difference errors before

and after an update. We do the comparison each time the target network is

synchronized, which occurs every k steps, for a total of T times during learning.

For every t = 1, . . . , T , we compare the error between θt and the parameters

after k updates, θt+1; note t here references the synchronization iterator rather

than time, i.e., +1 represents k updates. The result of this comparison for each

t is called Update Interferencet. We record update interferences up to T and

use their average 90th percentile to evaluate interference, which is further used
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to compute non-interference.

Non-interference def
= 1− Interference

Interferencemax
(3.10)

Interference def
= Average

(
{Update Interferencet≥Percentile0.9}

T
t=1

)
Update Interferencet

def
=

1

N

N∑
i=1

errt,i(θt+1)− errt,i(θt)

errt,i(θ)
def
=

(
ri+1 + γt max

a
q̂θt(s

′
i, a)− q̂θ(si, ai)

)2

Similar to Lmax in Equation 3.4, Interferencemax is the maximum interfer-

ence across all representations.
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Chapter 4

Experimental Design

We aim to understand the properties of representations that emerge in deep

reinforcement learning in the context of generalization across tasks. To do so,

it is critical to study representations that are both good and bad at general-

ization. More precisely, if representations learned from a collection of training

environments allow faster learning on the testing environments, then such rep-

resentations are considered good at generalization, i.e., they successfully gen-

eralize. Keeping this in mind, we carefully design our experiments to ensure

that we have a diverse set of representations.

The overall experimental design is shown in Figure 4.1. We conduct all our

experiments in a simple maze, where training and testing environments only

differ in their goal location. Our experiments consist of two stages: a training

stage for learning the representation, and a testing stage for measuring the

generalization performance of the learned representation.

The first stage of our experimental design consists of training the represen-

tation network. All representations are trained with a DQN agent for 300, 000

steps in the training task. To prevent overfitting, we employ an early-saving

strategy to save the representation function as soon as the agent is able to

successfully finish 100 consecutive episodes in 100 steps or less. Each repre-

sentation is induced by a choice of activation function and of auxiliary task,

including the option of not using an auxiliary task.

In the second stage, we learn with the representation from the first stage, in

each testing task. Specifically, we 1) load and freeze the learned representation,
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Figure 4.1: Experimental design. In the first stage, all network components
participate in the training process. In the second stage, we re-initialize the
value network weights, while the representation network is frozen and the
auxiliary network is removed. Green denotes the goal location in the environ-
ment.

2) re-initialize the value function, and 3) learn the value function for the testing

task with DQN, with the fixed representation. No auxiliary tasks are used in

this stage, and only the value network is learned with DQN. The agent learns

in this new task for 100, 000 steps.

The choices of fixing the representation network and re-initializing the value

function are crucial to our experimental design. Freezing the representation

function results in representations with fixed properties, allowing us to care-

fully study the connection between the generalization performance and repre-

sentation properties. Learning with a re-initialized value function rather than
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fine-tuning prevents negative effects from the old value function during testing,

especially to less similar testing tasks. Further, re-initializing the value func-

tion ensures that the difference between using the pre-trained representations

and learning from scratch is due to the learned representation.

We consider 173 testing tasks: all possible goal locations, including the

training goal state. To sort performance amongst these tasks, we provide a

novel method to measure their similarity to the training task. In this way, we

can ask questions about generalization over more or less similar testing tasks.

In the remainder of this chapter, we go over all sub-components of our

experimental design as well as our approach for reporting generalization per-

formance and hyperparameters. More specifically, we begin with a detailed

description of the maze environment. Then we discuss our agents and their

network architecture. Following that, we introduce our approach for measur-

ing the similarity between tasks. After this, we discuss how we report the

generalization performance and how we fairly sweep over our agents’ hyperpa-

rameters. At last, we discuss how we measure representation properties and

evaluate the efficacy of different auxiliary tasks.

4.1 Environment

We seek to empirically relate representation properties and generalization per-

formance, which requires an environment where successful generalization is

possible. In light of this, we choose a simple pixel-based navigation environ-

ment with obstacles, as depicted in Figure 4.1. This environment can be readily

used to generate numerous related tasks. The agent must learn to navigate to

a given goal state in as few steps as possible. The problem is episodic, with

γ = 0.99, a reward of +1 when reaching the goal, and 0 otherwise. The input

state consists of an RGB image of a 15×15 grid (size 15×15×3), encoding the

agent’s current location (but not the goal). The actions correspond to the four

cardinal directions, and transition the agent deterministically by one pixel, or

not at all if the action is into a wall. To simplify exploration, the agent starts

in a uniform random state and episodes are cut-off at 100 steps; the agent is
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Figure 4.2: The detailed network architecture used in this work. We exper-
iment with agents using this network architecture, with different auxiliary
losses. The representation network, ϕθR , learns a mapping from input-state st
to the agent-state (representation of st). The representation network is learned
to improve two objectives: performance on a main task and on an auxiliary
task. Our agents only use one auxiliary task at a time.

then teleported to a new random state and this transition is discarded.

4.2 Agent Specification

We use a unified agent architecture based on convolutional neural networks

to explore representations induced by a variety of auxiliary tasks and activa-

tion functions. Figure 4.2 depicts this architecture in greater detail. The

representation function consists of two convolutional layers, one linear trans-

formation, and a choice of activation function. The linear layer projects the

output of the convolutional layer to a 32-dimensional space.

We use two types of activation functions: ReLU and FTA. When using

ReLU, the representation layer has d = 32 features. If FTA is used, it has

640 features, since FTA projects each scalar to a short, sparse vector with

20 bins. Note that FTA still uses the same number of learned parameters to

produce these 640 features as ReLU does to produce the 32 features. This

is because binning occurs after the linear weighting in FTA. However, the

number of features is higher, and so the value function and auxiliary tasks all
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have more parameters, at least in their first layer. We therefore also evaluate

ReLU(L)—L for large—which uses 640 features. ReLU(L) uses significantly

more parameters than FTA to produce these 640 features.

We use two hidden layers with 64 nodes each for the value function, while

the choice of the auxiliary network depends on the complexity of the aux-

iliary task. We use the auxiliary tasks described in Section 2.3.3. Among

these auxiliary tasks, six of them are adopted from the literature and can

be applied to any environment with next to no expert knowledge: ATC, IR,

NAS, SF, Reward, Laplacian. The remaining three are prediction tasks

that are environment-specific and require expert knowledge: VirtualVF-1,

VirtualVF-5, XY

We use standard choices for DQN, including the use of ϵ-greedy explo-

ration, an experience replay buffer, target networks, and the Adam optimizer

[31]. In total, there are 10 choices for auxiliary tasks (including the choice of

not having an auxiliary task) and three activations. When using FTA with

auxiliary tasks, we set the number of bins k = 20 and η = 0.2. This implicitly

specifies the range for binning to [−2, 2]. For the No-aux task agents (i.e.,

agents without any auxiliary tasks), we test η = 0.2, 0.4, 0.6, and 0.8, and we

report performance for each, not the best one. This gives a total of 33 agent

specifications.

We consider three baseline agents, which we call Random, Input, and

Scratch. They allow us to falsify different hypotheses about the role of the

learned representation. Random uses a randomly initialized network as the

representation, without any learning. The agents start with a random network,

so this baselines checks whether learning actually improved the representation.

Input omits the representation network, and directly inputs the agent’s ob-

servation to the value function component. It is meant to check if the learned

representations play any (useful) role, and if learning from scratch in testing

tasks might just have been faster with smaller networks. Finally, Scratch

is a DQN agent that starts learning from randomly initialized weights in the

testing tasks. The purpose of learning the representation is to learn faster than

learning from scratch in the testing tasks. This is the most important baseline,
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as it defines whether a learned representation was successful in generalization

(i.e., facilitated learning faster than Scratch) or not (i.e., was comparable to

or worse than Scratch).

4.3 Task Similarity

We analyse the similarity between each testing task and the training task to

determine how difficult it is to generalize to each testing task. We measure

the similarity between two tasks by comparing their successor representations.

Formally, the successor representation indicates the expected future state oc-

cupancy of state, s′, starting from any given state, s, by following the policy

π:

ψπ,taskx (s, s
′) = Eπ,taskx

[
∞∑
t=0

γtI{St=s′} | S0 = s

]
, (4.1)

where γ ∈ [0, 1), I denotes the indicator function, and taskx represents a task

specified by a particular reward and transition function.

We consider the successor representations that emerge under the optimal

policy of each task. In this way, successor representations capture both the

environment dynamics and the optimal policy of the task in hand. To compute

a highly accurate estimate of the optimal policy, π∗, we solve the maze by using

a simple tabular algorithm called value iteration that assumes both the reward

function, r, and the transition function, p, are given. We consider the state to

be the cell number of the agent. This results in a total of |S| = 173 states. The

optimal policy, along with the transition function, is further used to compute

the successor representation of the task [cf. 46].

To compute the similarity measure, we consider successor representations

of all state pairs. This is represented by a set of vectors ψi,taskx , where

ψi,taskx =
[
ψπ∗,taskx (si, s1) ψπ∗,taskx (si, s2) . . . ψπ∗,taskx

(
si, s|S|

)]
,

and i ∈ [1, 2, . . . , |S|]. Each vector ψi,taskx represents how frequently other

states are visited starting from state si, i.e., successor representations of state

si. We define the similarity as the dot product between successor representa-

tions of testing and training tasks. We choose the dot product to keep both
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angle and magnitude information between concatenated successor representa-

tions. The equation for computing this similarity metric is

Similarity(taskx, tasky) =
|S|∑
i=1

〈
ψi,taskx ,ψi,tasky

〉
(4.2)

Using this similarity metric, we rank the representations based on their

similarity to the training task. This ranking is depicted in Figure 4.3. As clear

from this figure, the similarity decreases as the distance between the location

of the goal for the testing task and the training task increases. We expect

this to happen since the optimal policy of tasks with far-away goal locations

has significantly less overlap than tasks with close goal locations (i.e., reward

function and terminating state).

4.4 Reporting Performance and Hyperparame-
ters

To report performance, we have to consider how to measure the generalization

performance and how to set hyperparameters. In both training and testing

tasks, we record, every 10, 000 steps, the average return of the last 100 episodes.

We take the sum of these recorded values, also called the Area Under Curve

(AUC), to summarize the performance across the 300,000 steps. The AUC is

used to select hyperparameters.

The only hyperparameter common across all agents is the step-size; we

only sweep this hyperparameter. We pick the step-size independently in the

training and testing stage. We use the average performance over 5 runs to

select the step-sizes. Specifically, in the training stage, we run each of the 33

agent specifications with different step-sizes for 5 runs. We select the best step-

size according to training AUC and use the representations produced under

these step-sizes. Then in the testing stage, we evaluate each step-size only for

these representations, and pick the best step-size for an agent specification for

each testing task by using the average performance across the 5 runs. We sweep

the step-size to ensure we are evaluating reasonably well-optimized agents.
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172 170 168 166 164 162 160 158 159 161 163 165 167 169 171

155 153 152 150 148 146 144 143 145 147 149 151 154 156 157

142 140

139 94 97 101 106 141 129 131 132 134 135 136 137 138

133 84 87 93 99 128 90 118 121 122 123 124 125 126

130 82 79 110

127 80 77 76 74 73 72 70 88 92 98 103 108 111 114

86 69 68 64 54 52 51 49 53 55 56 58 61 62 63

89 71 65 57 50 42

95 75 66 59 48 41 0 1 2 5 9 10

102 78 67 60 47 40 3 4 6 7 11 12

112 81 44 39 8 13 14

117 83 85 96 104 43 36 21 20 19 18 15 16 17

119 91 100 107 113 45 37 34 32 30 25 22 23 24

120 105 109 115 116 46 38 35 33 31 29 26 27 28

O

Figure 4.3: Testing tasks raked by their similarity to the training task. This
figure shows the similarity ranking of different tasks compared to the training
task, where the training task is marked by O. Each number in the cell indicates
the similarity rank of the task when the goal is moved to that specific position.

Auxiliary tasks also have their own set of hyperparameters that require

tuning. However, the only hyperparameter that is shared between auxiliary

tasks is the weight of the auxiliary loss, waux, which specifies how much it

contributes to learning the representation. If this weight is not properly set,

the agent will fail to solve the training task. To avoid this, we start our

experiments with a weight of waux = 1 for each auxiliary task. If the agent

fails to solve the task in any of the 5 runs, we decrease the weight to w × 0.1

and repeat the experiments. We repeat this procedure until the agent solves

the primary task.

We consider the generalization performance of each agent as its AUC on
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each testing task. When we report the generalization performance across

agents, we do not average across these 5 runs. Instead, each run produces

a different representation and we report performance for each one as an in-

dependent data point. When showing aggregate performance, we aggregate

from this larger pool of 5 runs for each 33 agents specifications, namely over

165 representations. We do so because each representation has different prop-

erties; when correlating agent properties and performance, we may not care

which auxiliary task was used, but rather only care about its emergent prop-

erties. Averaging across runs compares methods (agent specification), rather

than representations.

Finally, we obtain generalization performance in 173 testing tasks. This

means we get 173 generalization performance samples for each of the 165 rep-

resentations. In total, when aggregating across testing tasks or agent specifi-

cations, we obtain a significant number of samples to estimate aggregate per-

formance, even though each agent specification only has 5 runs in the training

task. In total, we generate 173× 165 = 28, 545 agent-task combinations.

4.5 Evaluating the Learned Representations

We use the data generated by these agent-task combinations to evaluate the

efficacy of the properties as well as auxiliary tasks and activation functions.

We evaluate (measure) the properties using a test set of 1000 transitions,

Dtest = {(s1, a1, s′1, r1), (s2, a2, s′2, r2), . . . , (sN , aN , s′N , rN)}. This dataset is

obtained by running the random policy for N = 1000 episodes, and then ran-

domly subsampling N transitions, to ensure we cover the state space. This

sampling approach can be easily used for other choice of environments through

adjusting the value of N by the complexity of environment. It is worth noting

that in many real-world scenarios, the agent has access to a large quantity

of offline data [cf. 43], which may be employed instead of this approach to

generate the test set. In Chapter 5, we visualize these properties and their

respective generalization performance and study which value and combination

of these properties result in better generalization performance. We also visual-
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ize the generalization performance of the auxiliary tasks and activations across

testing tasks that are ranked by their similarity to the training task. Doing

so enables us to identify which auxiliary tasks help the agent in performing

consistently across both similar and dissimilar tasks. These agent-task com-

binations further enables us to investigate which components of the auxiliary

tasks are most essential for improving the agent’s generalization performance

across tasks.

It would be difficult to guarantee that the conclusions of our study gen-

eralize beyond the specific generalization setting investigated here. But these

properties and our methodology can be used to understand representations in

other generalization settings in a systematic and reproducible way toward the

ultimate goal of understanding good representations for reinforcement learn-

ing.
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Chapter 5

Empirical Investigation of
Representation Properties and
Generalization Performance

We start this chapter by presenting two results that are crucial to our empir-

ical study. First, successful generalization is possible in our navigation envi-

ronment and auxiliary tasks improve generalization.. Figure 5.1 summarizes

these results. Representations pre-trained on the training task outperformed

representations learned from scratch on the testing tasks. In addition, we

found auxiliary tasks were important for generalization, at least for ReLU.

Pre-trained representations using ReLU did not generalize well, whereas ReLU-

based representations combined with well-designed auxiliary tasks successfully

generalized. To the best of our knowledge, no prior work has demonstrated

that auxiliary tasks improve representation transfer in reinforcement learning

(i.e., generalization in a setting where only the representation function trans-

ferred to the testing task); instead most works with auxiliary tasks use them

during learning [8, 21, 28] or on an offline dataset [26, 90].

Second, we were unable to obtain successful generalization using ReLU ac-

tivation function with linear value functions. This outcome was not for a lack

of effort. Figure 5.1 strongly suggests that, in our navigation environment,

non-linear value functions significantly improve transfer, even in a relatively

simple environment. We see that when the value function was linear in the

features and ReLU activation function was used, neither a pre-trained repre-
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Figure 5.1: Generalization performance of our best representations when using
non-linear and linear function approximation. Generalization is possible in the
Maze navigation task and auxiliary tasks improve generalization performance
when using non-linear function approximation. The performance relative to
the baseline (Scratch) agent: above 1 represents successful generalization
and below 1 denotes failed generalization. Error bars show a 95% confidence
interval. Performance is reported for the best auxiliary task for each activation:
VirtualVF5 for ReLU-based representations, and SF for FTA. The values
shown on the bars indicate the relative performance to FTA-based or ReLU-
based Scratch. However, the location of the dotted line and the length of
the bars represent overall generalization performance. In the linear case, the
overall generalization performance of ReLU is 8.29 and FTA is 5.92, and in
the non-linear case, this performance for ReLU is 7.63 and for FTA is 8.49.
This performance is calculated over 5 runs of 173 testings tasks: 173×5 = 865
samples. In non-linear, FTA baseline is better; in linear, ReLU baseline is
better.

sentation (labelled ReLU) nor any other representations trained with auxiliary

tasks improved over training a fresh representation from scratch. This sug-

gests representations may emerge in earlier layers of the network, and that it

may be more feasible to learn re-usable features when they can be nonlinearly

combined, even if only with a simple shallow network. We highlight this im-

portant point here; for the remainder of this thesis, we restrict our scope to

non-linear value functions.

In the following sections, we first investigate how the generalization perfor-

mance of the representation is affected by combination of different activation

functions and auxiliary tasks. At last, we investigate the properties of these
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representations and shed light on the main thesis of this work. The hyperpa-

rameters used for all of our experiments are detailed in Appendix A.

5.1 Generalization Performance of Good, Bad,
and Ugly Representations

We expect some agent specifications to result in representations that aid gen-

eralization performance and others to impede it. Unreal [28], the first large-

scale deep reinforcement learning system to highlight the utility of auxiliary

tasks, showed that although auxiliary tasks like pixel prediction improved per-

formance substantially, other tasks such as feature control had a much smaller

impact. Other work has highlighted that it can be difficult to achieve good

generalization in reinforcement learning [e.g., 15, 78]. It seems the design and

deployment of auxiliary tasks remains largely an art.

In this section, we provide some clarity on these discrepancies by showing

that 1) there is large variability in performance across auxiliary tasks, and 2)

generalization performance can degrade significantly as tasks become more dis-

similar. Though these results are intuitive, they constitute the first approach

to systematically vary these two axes to understand when methods may be

succeeding or failing.

5.1.1 Generalization Performance on Similar and Dis-
similar Tasks

Figure 5.2 summarizes the generalization performance of many different repre-

sentations corresponding to different auxiliary tasks and activation functions.

The plot has task similarity on the x-axis, and each point on the plot sum-

marizes the performance of one representation on one particular testing task.

The lines show how much generalization performance degrades as tasks become

more dissimilar.

The bold black line shows performance in the testing tasks if the represen-

tation and value function were trained from scratch. Any point above the bold

black line indicates a representation that achieved better generalization per-
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Total reward during testing, averaged over 5 runs

Figure 5.2: Generalization performance of 115 different representations (ReLU
and FTA) on 173 testing tasks. The tasks on the x-axis are arranged by similar-
ity to the training task: on the left (small x-values) being most similar and on
the right (large x-values) being most dissimilar. The black line shows the per-
formance when learning in each transfer task from scratch. Lines completely
above the black line indicate a representation yielded successful generalization
in all tasks. Lines that start above the black line but fall below as we move
left to right indicate a representation that generalize well to similar tasks but
not dissimilar tasks. The Input and Random baselines are not competi-
tive; for completeness, we still report their performance, but with lighter lines.
Overall, many representations successfully generalize and generally FTA-based
representation are better on this problem. Details on how task similarity was
computed and how this plot was generated can be found in Section 4.3. The
generalization performance of ReLU(L) is compared with ReLU in Figure B.2
in Appendix; it exhibits the same pattern as ReLU, generalizing well to similar
tasks and not as well in less similar tasks.

formance than training from scratch on that task. Any line completely above

its corresponding black line indicates a representation that achieved successful

generalization for all goal states.

The most important conclusions from Figure 5.2 are that (1) several repre-

sentations achieve successful generalization across all tasks, and (2) a great va-

39



riety of representations emerge with generalization performance ranging from

good to significantly worse than Scratch. Looking more closely, some repre-

sentation achieve successful generalization in dozens of tasks which are most

similar to the training tasks, but for tasks very dissimilar to the training task,

performance is poor, as seen by the step down in many of the lines.

Generally, we found that FTA-based representations yield better repre-

sentations (in terms of generalization performance) compared to ReLU. Al-

most all FTA representations outperformed Scratch (FTA), and generaliz-

ing to less similar tasks was effectively the same as generalizing to similar

tasks, as evidenced by the nearly flat lines in Figure 5.2. Interestingly, many

ReLU-based representations did extremely well in similar tasks but signifi-

cantly worse than Scratch (ReLU) (nearly as bad as the input baseline) in

less similar tasks. ReLU(L) performed similarly to ReLU, with ReLU(L) per-

forming slightly worse on similar tasks and slightly better on dissimilar ones

(this result is in Appendix B.1.1). Another point of interest is that Scratch

(FTA) performs better than Scratch (ReLU), and yet FTA representations

generalize better than ReLU-based ones: using FTA improved on using ReLU

and then training the FTA representation first in a training task improved

performance in the testing task even more.

5.1.2 Generalization Performance of Individual Auxil-
iary Tasks

Digging a little deeper, Figure 5.3 depicts the generalization performance of

each auxiliary task. We again see that FTA-based representations achieve

higher performance overall and higher performance across auxiliary tasks (the

worst performing representation never used FTA, always ReLU). Inspecting

each auxiliary task, the FTA-based representations exhibited lower variance

across runs. Larger ReLU representations, ReLU(L), did improve performance

over the smaller ReLU representations, but not uniformly. The IR auxiliary

task representation, for example, improves with large ReLU networks, but

ATC performs worse (though not significantly in either case).

At the auxiliary task level, there are no obvious trends (except for the
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Figure 5.3: Generalization performance based on the activation function,
representation size, and auxiliary task. Overall, FTA-based representations
achieved the best performance and exhibited the least variation in perfor-
mance across auxiliary tasks. The orange lines depict the median, the upper
and lower edges of the box show the 25th and the 75th percentiles, while the
whiskers show 1.5 times the inter-quartile range. These results are computed
over 173×5 = 865 samples, and so the standard errors are quite small (as you
can see in Figure B.4 in Appendix B.1.3).

fact IR, Reward, and NAS are generally not useful). For example, SF is

among the best performing FTA and ReLU(L) representations and among

the worst performing ReLU representations. The subgoal-navigation auxiliary

tasks (VirtualVF) result in the best performance with ReLU representa-

tions. These subgoals can be thought of as way-points placed at strategic

locations in the environment; perhaps these tasks force the network to rep-

resent how to navigate to these waypoints which then speeds learning when

navigating to other nearby goals in the testing stage. Perplexingly, these are

not the best performing representations when combined with FTA activation

functions. Perhaps FTA networks already extract a general and transferable

representation (as evidenced by the performance of No-Aux), and thus the

subgoal auxiliary tasks simply do not help much. It is difficult to know looking

at performance only; in the following sections we look at different properties

of the learned representations as a lens to understand such mysteries.

In the case of ReLU, ATC, along with VirtualVF-5, is the only loss that

achieves high generalization performance in all testing tasks. These results are
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presented in Figure B.3 in Appendix B. ATC is also the only loss that achieves

better or similar performance to No-Aux representations across all activation

functions. Despite these compelling results, we realized that omitting data

augmentation from ATC loss significantly degrades its performance with ReLU

representations. At the same time, we found that the ReLU network combined

with data augmentation (random shifting of input images) and no contrastive

setup achieved similar performance to ReLU ATC. This is shown in Figure B.5

in Appendix B.

The capacity of the neural network (i.e., number of nodes in the represen-

tation layer) plays an important role in determining the generalization per-

formance of auxiliary tasks. SF is one of the worst ReLU-based representa-

tions. However, when we increase the size of the representation layer (using

ReLU(L)), it achieves similar performance to the representation without aux-

iliary task (No-Aux representation). Reward task experiences the opposite.

We speculate that this is because predicting the next state reward is a simple

task and small networks are able to capture it. In this case, increasing the size

of the representation layer leads to overfitting to the task at hand. However,

predicting the successor features is a complex task that cannot be captured

using a small representation layer. In this instance, SF’s updates will mostly

function as noise rather than as an instructive signal that might improve the

representation.

We included Laplacian to see what will happen if we directly encour-

age the representation to be dynamics-aware. Laplacian worked extremely

poorly, by being the worst ReLU and ReLU(L) representation. Interestingly,

we found that decreasing the value of γL to values such as 0.25 and 0 greatly

increases its performance. However, low values of γL do not help the represen-

tation in capturing the eigenvalues of the Laplacian matrix. We discuss this

in more detail in Chapter 6.
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5.2 The Properties of Good Representations

We can now return to the main question of this work: do good representations

that generalize well exhibit particular properties? In this section, we first

investigate how the properties defined in Chapter 3 relate to generalization

performance. Then, we investigate how representation properties change over

the training process and whether they converge. Lastly, we study the prop-

erties of certain representations to explain why they do or do not generalize

well.

Figure 5.4 contains the main result; for now let us focus only on the FTA

representations in the top row to better understand this figure. Each subplot

shows the generalization performance of every single FTA-representation av-

eraged over all testing tasks. The representations in each subplot are ordered

based on a single measured property. For example, the first subplot in the

first row plots the generalization performance of FTA representations, and the

dots are ordered by complexity reduction on the x-axis. Representations with

high complexity reduction and good generalization performance would appear

as a dot in the top right of the subplot. Representations with low complexity

reduction and good generalization performance would appear as a dot in the

top left of the subplot, and so on.

At the highest level we see FTA (first and third row) and ReLU (second

and third row) exhibit different properties across representations. FTA-based

representations, by large, exhibit high complexity reduction and high diversity,

whereas ReLU representations range widely from low to medium on the same

two measures. In fact, the lowest observed complexity reduction and high

diversity of any FTA representation was greater than the highest observed

complexity reduction and high diversity for ReLU. ReLU representations could

be sparse and have low or high orthogonality, whereas FTA representations

are mostly sparse. Interestingly, the top representations in terms of sparsity

were ReLU. ReLU representations with similar property values can achieve

very different generalization performance (visible as points stacked vertically).

There appears to be no clear relationship between sparsity and performance
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ReLU

FTA

ReLU

Figure 5.4: Performance averaged over testing tasks versus representation
property values. Each dot in a plot corresponds to one representation, at
the (x,y) point corresponding to its property value and average generalization
performance. The histograms under the plots visualize the density of points at
each property value. The green stars correspond to the three best performing
representations. We separate out FTA-based and ReLU-based representations,
which exhibit notably different behavior.

for ReLU representations.
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Now consider the properties of the top performing representations. Again,

let us focus our attention on the FTA representations in the odd rows of Figure

5.4. The green stars in each subplot correspond to the top performing rep-

resentations (in terms of generalization performance). First notice the stars

are typically close together in x and y indicating all three achieve similar per-

formance with similar property values; this is true for ReLU representations

as well. In general, we see that the best performing representations are not

at the extremes of any property (high or low). Given that FTA representa-

tions by large exhibit high complexity reduction, diversity and sparsity, it is

notable that the best performing representations are the lowest of those three

properties.

In general, the best representations for both FTA and ReLU exhibit fairly

similar properties (relative to other representations with the same activation

function): high complexity reduction, high dynamics awareness, high diversity,

and low orthogonality. Of particular note is the clear pattern in complexity

reduction and diversity for ReLU: both needed to be higher, and performance

clearly drops for lower values. FTA seems to more naturally produce repre-

sentations that are higher on these measures; we hypothesize that this is the

main explanation for why FTA representations perform well across all testing

tasks.

It is true that our best representations have low orthogonality. However,

it is important to note that as orthogonality approaches 0 (looking at the

ReLU representations), performance suddenly degrades. In other words, the

representations in the first bin of the orthogonality histogram perform poorly.

In addition, a handful of representations with high values of orthogonality

are still able to achieve reasonable generalization performance. This might

indicate that representations benefit from some degree of orthogonality, but

the absence of it is detrimental.

The reverse is true for complexity reduction: we see a pattern of reduction

in performance as complexity reduction approaches its maximum value. To

clearly show this, we plot the unnormalized version of the complexity reduction

(presented in Equation 3.4) in Figure B.6 in Appendix B. The performance of
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the representations improves as the complexity reduction approaches the value

of −0.03. After this point, however, performance gradually decreases. This

makes sense because complexity reduction reflects how easy it is to learn the

value function for the training task. Therefore, if learning the value function

with the representation is overly simple, the representation is overfitted to the

value function of the training task.

Non-interference for all the representations is high. This makes it hard

to make any judgment about the connection between non-interference and

generalization performance. We think the reason for this is that the maze

environment has a low number of states (173 states) and the agent has a

huge replay buffer, making it easy for the agent to memorize the value of all

states. One way to overcome this issue is to extend this study to more complex

environments, where the number of states is much higher.

5.2.1 On the Convergence of Representation Properties

The property values depicted in Figure 5.4 were computed from the represen-

tations when frozen for testing, but one might wonder what are the dynamics

of the properties over time. Recall that we froze and transferred each repre-

sentation to the testing phase after 100 consecutive episodes were successfully

completed in the training phase. This choice balances the need for reason-

able performance without having to select somewhat arbitrary budgets on the

number of steps or performance criteria. However, our choice does mean that

each representation could receive different amounts of experience, and thus

begs the natural question: would the properties reported in Figure 5.4 be very

different with more or less training. Figure 5.5 provides the answers.

Generally, across all auxiliary tasks and activation functions, the represen-

tation property values remained similar after initial transients in early learning.

Each subplot in Figure 5.5 shows a particular property value for every single

representation tested over an extended training period. We intentionally do

not distinguish between activation functions and auxiliary tasks in this plot.

The change in color indicates when the representation was frozen for testing,

in terms of training time. Note that many representations were frozen af-
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Figure 5.5: Plotting the representation properties over time, with one sub-
plot per property. Each curve shows the property of one agent specification
(activation and auxiliary task pair), averaged over the 5 runs in the training
task. The curve changes color, to black, at the time point where we took the
representation and fixed it; this point was chosen based on when the return
for the agent stopped changing. Line colors vary from light gray to black
based on how much their value fluctuate from the property value after their
return converges, with darker lines denoting lower variation. In these plots, we
allowed the representation to keep learning to understand if properties signifi-
cantly change afterwards. Our primary focus is to show the general trend that
properties converge over time, and that they converge approximately when the
return does; therefore we use the same color for all agent specifications.

ter the same number of training steps. Orthogonality, dynamics awareness,

and sparsity of a small number of representations slowly increase with more

training, and complexity reduction of a few representations slowly decreases.

Overall, the properties for the most part converge, and do so just before the

representations were frozen for testing. Training the representations for longer

would not have resulted in significant changes in the property values.

5.2.2 Explaining Why Some Representations Generalize
Well and Some Do Not: An Example

In this section, we use the representation properties to investigate and explain

why some representations generalize well and some do not. We particularly

focus on VirtualVF5 and investigate why it was helpful for ReLU-based

representations and harmful for FTA-based representations. We plotted prop-

erties for just these representations in Figure 5.6, and found that the addition

of this auxiliary loss significantly decreased dynamics awareness for FTA—

to the detriment of performance—but increased it for ReLU. Additionally, it

caused the FTA-based representation to have much higher orthogonality, likely
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Figure 5.6: Properties of VirtualVF5 representations. The VirtualVF5
task produces FTA representations that do not generalize well, but ReLU
and ReLU(L) representations that do. Each subplot shows a property value
achieved by four different representations: ReLU, ReLU(L), and FTA with
VirtualVF5, and ReLU, ReLU(L), and FTA with no auxiliary tasks. It is
clear this auxiliary task changes the properties of the representations; par-
ticularly dynamics awareness and orthogonality. We did not include non-
interference as VirtualVF5 had no impact on it.

increasing it to one of the extremes that performed poorly. For ReLU, the in-

crease in orthogonality was to an interim level, from a very small value. It is

as yet unclear why this auxiliary loss caused these effects, but this clear and

systematic change in properties helps explain this outcome.

We also use this approach to explain why the Laplacian representation

performed so poorly and why removing data augmentation from the ATC task

damaged its performance. These results are presented in Figures B.8 and B.7

in Appendix B, discussing the importance of complexity reduction, diversity,

and dynamics awareness.
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Chapter 6

Property-based Auxiliary Tasks

So far, we have focused on using auxiliary losses and activation functions to

induce a diverse set of properties in the representations. Here, we take a differ-

ent approach by directly controlling the maximization of desirable properties

in the representation. Specifically, we focus on encouraging representations to

maximize two pairs of properties: complexity reduction and orthogonal-

ity (CR+O), and dynamics awareness and orthogonality (DA+O).

The finding that ReLU and ReLU(L) representations exhibit orthogonality

around 0 provides the motivation to maximize this property. In the previous

chapter, we also showed that high dynamics awareness and complexity reduc-

tion help to improve generalization performance. In this chapter, we introduce

these two losses and study their generalization performance and properties.

Throughout this chapter, we consider the ATC loss to be representative of

our best representations. This is because ATC is the only existing loss in the

literature that achieved high generalization performance in all testing tasks

with ReLU representations. The hyperparameters used for these property-

based auxiliary losses are given in Appendix A.

6.1 Dynamics Awareness & Orthogonality

We use the following auxiliary loss function to maximize dynamics awareness

and orthogonality:
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LDA+O (D) = E
(st,st+1)∼D

[
∥ϕθR(st)− ϕθR(st+1)∥22

]
+βDA+O E

(si,sj)∼D

[(
ϕθR(si)

⊤ϕθR(sj)
)2 − ∥ϕθR(si)∥22 − ∥ϕθR(sj)∥22

]
.

(6.1)

In this equation, both expectations participate in maximizing dynamics

awareness. Recall that for dynamics awareness, we want representations of

the states that reside in each other’s neighborhood to be similar. The first ex-

pectation exactly does this by minimizing the distance between representations

of subsequent states. We also want the representations of the remaining states

to be different, which is encouraged by the second expectation. The second

expectation encourages orthogonality as well. This is achieved by encouraging

the representations’ norms to be high and the representations to be orthogo-

nal to one another. Interestingly, this loss is similar to the Laplacian loss,

the only difference being the use of a fixed value of k̄ = 1 (referring to Equa-

tion 2.10). Interestingly, this loss is similar to the Laplacian loss, the only

difference being the use of a fixed value of k̄ = 1 (referring to Equation 2.10).

The generalization performance of DA+O representation is presented in

Figure 6.1. As shown, adding DA+O as an auxiliary loss for any kind of

activation improves the performance over Scratch, except for the case of

ReLU(L). This loss also improves generalization performance on all No-Aux

representations (i.e., ReLU, ReLU(L), FTA). This improvement is significant

in the case of ReLU in such a way that the performance becomes stable across

all testing tasks, reaching a similar performance to our best baseline (ATC).

These results show that encouraging representations to be dynamics-aware and

orthogonal is a promising approach to improve generalization performance.

We compare the properties of DA+O representations across three acti-

vation functions in Figure 6.2. The first thing we notice is that this loss

significantly increases dynamics awareness, orthogonality, and sparsity in all

cases. Surprisingly, diversity and complexity reduction are also improved in

all cases, except in the case of ReLU(L). This is sensible because DA+O com-

bined with ReLU(L) had a hard time surpassing Scratch baseline, showing

that it could not generalize successfully. These results confirm our previous
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Figure 6.1: Comparing generalization performance of (DA+O) representa-
tions with the relevant baselines. The tasks on the x-axis are arranged by
similarity to the training task: on the left (small x-values) being most similar
and on the right (large x-values) being most dissimilar. Dashed lines, dotted
lines, and solid lines represent ReLU, ReLU(L), and FTA representations re-
spectively. Adding (DA+O) to all three activations leads to improvement in
generalization performance.

claim that representations with high dynamics awareness, diversity, complex-

ity reduction, and an interim level of orthogonality achieve good performance.

Reduction in one of these properties can hinder performance, as we saw in the

case of ReLU(L).

6.2 Complexity Reduction & Orthogonality

We directly use the unnormalized complexity reduction property given in

Equation 3.4 to design this loss function. To encourage representations to

have high complexity reduction, we only need to maximize this value. This

can be easily achieved by using the negative value of this complexity reduction

measure as part of our loss. We also add an εCR+O = 1e − 8 to the denom-
51



Figure 6.2: Properties of DA+O representations. DA+O representations
generalize well across all activation functions. Each subplot shows five property
values achieved by six different representations: ReLU, ReLU(L), or FTA
with and without DA+O. This auxiliary task significantly changes sparsity,
dynamics awareness, and orthogonality. We did not include non-interference
as DA+O had no impact on it.

inator of this measure to make sure the denominator is always nonzero. To

maximize orthogonality, we use the same expectation as we used for dynamics

awareness. Taking this approach, CR+O loss is defined as

LCR+O (D) = E
(si,sj)∼D

[
dq,i,j

ds,i,j+εCR+O

]
+βCR+O E

(si,sj)∼D

[(
ϕθR(si)

⊤ϕθR(sj)
)2 − ∥ϕθR(si)∥22 − ∥ϕθR(sj)∥22

]
.

(6.2)

The generalization performance of CR+O representation is presented in

Figure 6.3. This loss improves performance over No-Aux only when com-

bined with ReLU. In other cases, performance degrades significantly. The

representation collapses in the case of ReLU(L), resulting in a performance

worse than Random representation. This is surprising because, while this

loss significantly improves the performance of ReLU, it destroys the general-

ization performance of ReLU(L) and FTA. This may indicate that this loss is

susceptible to overfitting when the number of features in the representation

layer is high.

The properties emerged from maximizing this loss are shown in the Fig-

ure 6.4. This loss successfully increases the orthogonality and complexity

reduction (complexity reduction is fully maximized in all cases). In the case

of FTA and ReLU(L), this loss pushed the value of orthogonality and sparsity
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Figure 6.3: Comparing generalization performance of CR+O representations
with the relevant baselines. The tasks on the x-axis are arranged by similarity
to the training task: on the left (small x-values) being most similar and on the
right (large x-values) being most dissimilar. Dashed lines, dotted lines, and
solid lines represent ReLU, ReLU(L), and FTA representations respectively.

to their extreme, and it greatly reduces dynamics awareness. These changes

in properties can clearly explain the reduction in generalization performance,

especially in the case of ReLU(L) where orthogonality and sparsity are almost

1. In the case of ReLU, on the other hand, this loss helped to increase the value

of orthogonality from 0 and all other properties are slightly increased. These

results confirm our previous claim that representations with high dynamics

awareness, diversity, complexity reduction, and interim level of orthogonality

generalize well. Interestingly, diversity is also increased in all cases, further

confirming the strong linear correlation between this property and complexity

reduction stated in Section B.2.4 in Appendix B.
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Figure 6.4: Properties of CR+O representations. The CR+O task produces
ReLU(L) and FTA representations that do not generalize well and ReLU rep-
resentations that do. Each subplot shows five property values achieved by six
different representations: ReLU, ReLU(L), or FTA with and without CR+O.
This auxiliary task significantly changes dynamics awareness and orthogonal-
ity. We did not include non-interference as CR+O had no impact on it.

6.3 Discussion

The findings in this chapter have two key implications. First, our results

provide additional evidences for the conclusions made in Chapter 5. These ev-

idences are stronger than those provided before because the question is asked

in a more directed way. We specifically addressed this question: whether ex-

plicit maximization of the desirable properties in representations improve their

generalization performance. We clearly saw that maximization of the desirable

properties results in better generalization performance, unless doing so harms

the value of other properties that are critical for achieving good generaliza-

tion performance. Second, we showed that the use of property-based auxiliary

losses, notably DA+O loss, significantly improves generalization performance.

This suggests that property-based auxiliary losses, including the losses intro-

duced in this chapter, are a promising future direction to improve the gener-

alization performance of the current deep reinforcement learning algorithms.
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Chapter 7

Conclusion

The goal of this work is to make progress towards an answer to a classic ques-

tion: how do the properties of representations, which emerge under standard

architectures used in deep reinforcement learning, relate to the generalization

performance? We introduced a method to measure the similarity between

training and testing tasks and designed experiments to evaluate learned rep-

resentations (Chapter 4). All tasks are similar in that they involve navigating

to locations in the same Maze. Intuitively, successful generalization should be

possible even to locations that are quite far from the goal in the training task.

We found that

1. Most ReLU-based representations generalized well only to very similar

tasks, potentially highlighting why successful generalization (specifically

representation transfer) has been so difficult in reinforcement learning

(the vast majority of SOTA agents use ReLU networks).

2. ATC and VirtualVF5 were the only ReLU-based representations that

generalized well across similar and dissimilar tasks.

3. ATC’s generalization performance suffers greatly if data augmentation

is eliminated, showing that it is an essential part of this contrastive loss.

4. Simple data augmentation techniques on top of No-Aux network can

greatly improve generalization performance, indicating it might be a

promising direction for future work.
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5. FTA activation significantly improved generalization performance, sug-

gesting it might be a promising activation to use going forward.

6. Successful generalization was not possible with linear value functions,

even in this seemingly simple environment (Chapter 5).

We extensively and systematically investigated the properties of all these

(good and bad) representations attempting to better understand what causes

the improvement in generalization performance (Chapter 5). We defined diver-

sity, complexity reduction, and dynamics awareness, as well as used measures

of orthogonality, sparsity, and non-interference from the literature (Chapter 3).

In general, interim values for properties were better: representations at the

very extremes were never the best. Further, we found that the best repre-

sentations maintained high capacity (complexity reduction, dynamics aware-

ness, and diversity), and lower orthogonality. These conclusions do not mean

representations should have low orthogonality, for example, but rather repre-

sentations that emerge under training with auxiliary losses tend to do more

poorly if orthogonality is higher or if it is very small (at the extreme) in our

particular generalization setting. These findings allowed us to compare the

properties of individual representations and use them to explain the difference

between their generalization performance.

Taking inspiration from our findings, we designed two auxiliary losses to

encourage specific properties in the representation (Chapter 6). Specifically,

these property-based auxiliary losses maximize two pairs of properties: dynam-

ics awareness and orthogonality, and complexity reduction and orthogonality.

We demonstrated how such losses significantly improve small-sized ReLU rep-

resentations (i.e., representations with a low number of features), achieving

competitive generalization performance to our best baselines. Analyzing their

properties, we confirm that representations with high dynamics awareness, di-

versity, complexity reduction, and an interim level of orthogonality successfully

generalize.

This thesis investigated only one relatively simple environment (a Maze)

and one neural network architecture, albeit it is an environment with many
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different tasks/goals. This network architecture is one of the most widely used

in deep reinforcement learning. Even in just this setting, there was a mountain

of data to analyze. To gain insight into the complex representations learned

by our agents, it was necessary to start in a simple setting and develop a

clear and systematic methodology. A natural next step is to execute the same

procedure in other, possibly larger, environments; or to use different neural

network architectures. We would like to highlight, however, that the results

even in this one setting are already informative and change our perspective

on these representations. A priori, one might have thought that successful

generalization would be very easy in this environment; after all, we are not

learning small networks here! Yet, we have repeatedly hit roadblocks.

The results here highlight how difficult it can be to achieve successful gen-

eralization, specifically in a setting where we have a single task to train on.

The variety in agent performance obtained here, and the significant changes

in performance when moving from closer to further goal locations, already al-

lows us to tease apart differences in approaches and properties. The specific

conclusions about network architectures and activations, auxiliary losses, and

even properties, may be different in other environments, but the higher-level

conclusions about the relevance of these properties, the interactions between

components, and the need for a careful methodology to understand these nu-

ances will extend.

In this work, we saw that maximizing different sets of properties, using

property-based auxiliary losses, significantly improves generalization perfor-

mance. We explored only two different combinations of these properties; any

other combinations are left to be explored. We speculate that the main reason

for the failure of FTA and ReLU(L)-based CR+O representations was low

dynamics awareness. So, one promising direction would be to add dynamics

awareness as part of this loss. There are also many different ways to design

these auxiliary losses. For instance, we can maximize dynamics awareness us-

ing a contrastive framework [e.g., 71] instead of maximizing it directly in the

representation. Lastly, the efficacy of these losses is limited to this generaliza-

tion setting, so one natural next step would be to test them in more complex
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generalization settings such as ProcGen [9].

There are a variety of generalization settings for which we can use the

methodology proposed in this work. There has been substantial effort to char-

acterize generalization and overfitting in deep reinforcement learning, primar-

ily in terms of performance [10, 15, 53, 60]. Notably, prior work illustrated

it is possible to successfully generalize across Atari modes [15], but did not

yet quantify any properties of those representations. A natural next step is

to revisit these experiments with new tools to understand and improve the

representations in these benchmark environments. The computational effort

required to do this in a systematic and principled way will be a major chal-

lenge.
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Appendix A

Experimental Hyperparameters

In this chapter, we first discuss the hyperparameters that are shared across all

our experiments. Then, we describe how each of the properties is measured in

detail. At last, we go over the implementation and various hyperparameters

used to train each of the auxiliary networks.

A.1 General Hyperparameter Setting

We use the same neural network architecture for the representation and value

network in all of our experiments, except for the representation layer (i.e., the

final layer of the representation network). For the representation function, we

use a 2-layer convolutional network followed by the representation layer. The

first convolutional layer has kernel size of 4, stride of 1, padding of 1, and

32 channels, and the second one has kernel size of 4, stride of 2, padding of

2, and 16 channels on the second layer. The representation layer is a fully-

connected layer that differs across experiments based on the type of activation

function. Table A.1 shows how the number of nodes and features differs across

activations. All hidden layers are initialized using Xavier initialization [22].

For the target network, we use two fully-connected layers, each having 64

neurons and using ReLU.

Regarding the FTA setting, we use bins 20 with upper and lower bounds

equal to 2 and −2. We tested η of 0.2, 0.4, 0.6, and 0.8 for the no auxiliary

task agent, and we fixed η = 0.2 for agents trained with auxiliary task.

During the training stage, the input images (states) are normalized to be

67



Table A.1: Number of features and nodes of the representation for each acti-
vation.

Activation Last Hidden Layer Nodes Features

ReLU 32 32
ReLU(L) 640 640

FTA 32 640

in the range [−1, 1], using
2S

255
− 1, where S is the 15 × 15 input image. We

use the Adam optimizer to update the weights [31], and we used the mean-

squared error as the value network’s loss. The batch size is set to 32. The

buffer has length 10, 000. A target network was used with the synchronization

frequency set to 64. The buffer’s memory size was 100, 000 and there were

32 samples randomly chosen at each step. The agent learns for 300, 000 steps

with ϵ-greedy. We use the same hyperparameters for the testing stage, except

that all agents, including baselines, learned for 100, 000 steps only.

The learning rate was swept for every representation learning architecture

and control task. The best setting was picked according to the averaged per-

formance over 5 runs. Each run uses a different random seed. In the training

stage and for the baseline agents that learn from scratch in the testing stage,

we swept the learning rate over [0.001, 0.0003, 0.0001, 0.00003, 0.00001]. In the

testing phase, we swept over [0.01, 0.003, 0.001, 0.0003, 0.0001] for representa-

tions with 32 features and over [0.001, 0.0003, 0.0001, 0.00003, 0.00001] for the

representations with 640 features.

We use a fixed ϵ = 0.1 during all stages, except during the testing phase of

the linear value functions. In this case, it turned out to be harder for the agent

to converge when keeping other hyperparameters the same as in the non-linear

value function. Therefore, we use a scheduling technique (the same as the one

used in the DQN paper [50]) that reduces the value of ϵ over the first 100, 000

steps from 1 to 0.1.

All our experiments are conducted using Python and the PyTorch frame-

work [58].

68



A.2 Measuring Representation Properties

Overall, we have a dataset of 1, 000 transitions generated by a random walk

and use them to measure six representation properties, described in Chapter 3.

In practice, each of these properties is measured in a different way throughout

training to make sure that the measurement is computationally cheap and at

the same time accurate. These properties are measured every 10, 000 steps

during training. We explain how each of these properties are measured below.

Complexity Reduction and Diversity are measured in the same way.

To compute these properties, we randomly sample 100 transitions from the

dataset and compute this measure on these transitions. We repeat this pro-

cedure for 10 times and report the average over these values as a measure of

these properties. We take this approach because computing this measure over

1, 000 transitions is computationally expensive.

Measuring Dynamics Awareness requires two different ways of sampling:

one for measuring the distance between adjacent states and one for measuring

the distance between non-adjacent states. For the former, we consider the

whole dataset, measuring the distance between the representation of each state

and its next state. For the latter, we randomly pair 1, 000 states without

replacement and compute the distance between each pair of representations.

To compute Orthogonality, we first draw a sample of 100 transitions

from the dataset and compute the orthogonality measure between all unique

pairs of these transitions, excluding the pairs with the same transition (9, 900

pairs). We repeat this process 10 times and report the averaged value. Spar-

sity, on the other hand, is computed in a simple manner. We generate the

representations of each state in the dataset and compute the sparsity of all

these representations.

To compute non-interference, we need to compute Update Interfer-

ence every k = 64 timesteps, i.e., target network update frequency. We ran-

domly draw 32 samples (the same as batch size) from the dataset every k = 64

timesteps (i.e., target update frequency) and use them to compute Update In-

terference. Then, the non-interference is measured every 10, 000 iterations by
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considering 90th percentile of Update Interference calculated in the previous

steps.

A.3 Implementation Details of Auxiliary Tasks

In this section, we provide a more detailed explanation of each of the auxiliary

tasks used in this thesis. The loss functions for these tasks are described in

Chapter 2. All losses use the same samples from the replay buffer to update

the value function, except for ATC, Laplacian, DA+O, and CR+O. We use

a neural network with two fully-connected layers (each having 64 nodes) as an

auxiliary function, fθA , for all losses, except ATC, IR, Laplacian, DA+O,

and CR+O.

The ATC loss encourages the network to learn similar representations

for an input state, st, with one from a pre-determined, near-future time step

input state, st+k. We consider k = 3. In contrast to other losses used in this

work, this loss uses more than one auxiliary head to compute itself. To do

so, it first applies a data augmentation technique called random shift with

a probability of 0.1 and padding of 4 to both of these input states. Then,

it feeds the augmented version of st, Aug(st), through a set of networks to

compute pt, where fθA is a linear mapping of representation into an embedding

space with a size of 32, and fθC is a single layer neural network with a hidden

layer size of 64, and an output size of 32. Then, Aug(st+k) is fed into a

momentum encoder of ϕθR (ϕθ̆R
) and fθA (fθ̆A) to compute ct+k. The output

of these networks, pt and ct+k, are combined with each other through a 32×32

matrix called W to compute the ATC loss. In contrast to the original paper

that uses a complex learning-rate scheduling technique, we implement this

loss in its simplest form by using a fixed learning-rate. This learning-rate

is swept across the values [0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001]. We

update the momentum encoder in every step using a moving average step-

size of τ = 0.01 [cf. 71]. Interestingly, we swept over random shift values of

[0, 0.1, 0.01, 0.2, 0.3], the embedding space size of [8, 16, 32, 64, 128], and k of

[2, 3, 4, 5], and found that the hyperparameters used in the ATC paper worked
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Table A.2: Selected values of property-based auxiliary losses.

Activation βDA+O wDA+O βCR+O wCR+O

ReLU 5 1 0.1 0.001
ReLU(L) 20 0.1 5 1

FTA 32 0.0001 5 1

best. The batch size is the same as the batch size used to calculate the loss of

the value function, and the weight of this auxiliary loss is set to 1.

The Laplacian is applied directly to the output of the representation

layer. In other words, its auxiliary head is the identity function. We take

separate batches of size 32 from the replay buffer to compute each of the two

expectations used to compute this loss. We use different waux and β for each

of the activation functions. For ReLU, we use β = 1 and waux = 0.1. For

ReLU(L), we use β = 5 and waux = 0.1. For FTA, we use β = 1.0 and

waux = 0.00001. We report the main results using the same γL = 0.9 value as

in the original paper. We also look at γL of [0, 0.1, 0.25, 0.75, 0.99] to see how

much this auxiliary loss can help the ReLU-based representations when these

values are low and high.

IR task reconstructs the input image from the representation through a

deconvolutional network [cf. 31]. In the auxiliary head, the representation

is first projected into a hidden layer with 1024 nodes then sent to a 2-layer

deconvolutional neural network, with the first layer having 4 kernels, 32 chan-

nels, strides of 2, padding of 2 and the second one having kernel size of 32, 3

channels, strides of 1, pad size of 1. The output of the last layer has the same

size as the input image (that is, 15× 15× 3). The weight of this auxiliary loss

was set to 0.0001.

SF uses an extra head (a fully-connected layer with a single node) to

predict the reward linearly from the representation ϕt. This helps to satisfy

the property of the successor features: being able to predict the reward using

a linear mapping [cf. 4]. We set γSF to 0.99 and use the weight of 1. We use

the same weight for the Reward task, and the weight of 0.001 for NAS.

To compute the loss for XY, we store the agent’s coordinates in the envi-
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ronment in the replay buffer during the learning. We use a weight of 0.0001.

For VirtualVF-1, we use a single head to learn a value function for the

goal state on the grid [7, 7]. For VirtualVF-5, we use five auxiliary heads

to learn value functions for five goal states separately. The locations of the

goal states are [0, 0], [0, 14], [14, 0], [14, 14], and [7, 7]. The weight of both of

these auxiliary tasks remained 1 but the discount rate on the auxiliary head is

set to be lower than the training task (γVF = 0.9). In this way, the agent can

focus on the main task. All auxiliary heads use the same network structure as

XY.

CR+O and DA+O do not require an auxiliary head and are applied di-

rectly to the representation layer, like the Laplacian loss. These losses use

a special weight to adjust the contribution of orthogonality to the represen-

tation updates called β. During our experiments, we sweep over the values

[20, 10, 5, 1, 0.1, 0.01] of β and choose the highest value that results in successful

convergence in the training task.
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Appendix B

Additional Experimental Results
& Analysis

In this chapter, we present the additional results generated by our experi-

ments. We first present the generalization performance of the representations

discussed in Chapter 5 in more detail. Specifically, we show how ATC per-

forms without data augmentation technique. Then, we present representation

properties of individual representations, discussing why they perform as they

do. We also talk about the complexity reduction of all representations in more

detail.

B.1 Generalization Performance

During the training state, we make sure that the training task is fully solved,

i.e., agent is able to reach the goal state in 100 timesteps. After the agent

converges to the best solution in the training task, we save the representa-

tion. We show the learning curves of all representation learning architectures

in Figure B.1. This figure shows that the early saved representations have

converged to the highest possible return of 1. We use these saved representa-

tions to evaluate the generalization performance in the testing phase. In the

remainder of this section, we describe generalization performance of different

representations that emerged through this procedure.
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Figure B.1: Learning-curves of representations learned in the training stage.
Return converges in the representation training stage. The plot shows the av-
eraged return over the most recent 100 episodes at each checkpoint. The x-axis
is the number of time steps and the y-axis is the average return. Each curve
represents one agent specification (activation and auxiliary task pair). As our
main focus is not to compare the learning efficiency during the representation
learning step, and the difference between learning curves is not large, we only
show the general trend by plotting every curve with the same color. The curve
changes color to black, at the time point where we took the representation and
fixed it.

B.1.1 Generalization Performance of Larger ReLU

We show the generalization performance of ReLU(L) in Figure B.2. The

ReLU(L) setting stays between ReLU and FTA representations: ReLU(L)

keeps the same activation function as ReLU representation, but increases the

size of the representation layer to 640, which is the same as the size of FTA

representations. Therefore, it maintains the same value function capacity as

the FTA representations. The pattern in the generalization performance of

ReLU(L) is similar to ReLU. As the testing tasks become dissimilar, the gen-

eralization performance drops below the Scratch agent. In general, when con-

sidering the total reward obtained by the agent, the performance of ReLU(L)

is better than ReLU and worse than FTA.
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Total reward during testing, averaged over 5 runs

Figure B.2: Generalization performance of larger ReLU representations (50 in
total) compared to ReLU(L) representations (50 in total) on 173 testing tasks.
The tasks on the x-axis are arranged by similarity to training tasks: on the
left (small x-values) being most similar and on the right (large x-values) being
most dissimilar. The black line shows the performance when learning in each
transfer task from scratch, with the same representation size as ReLU(L). Lines
completely above the black line indicate a representation yielded successful
transfer in all tasks. Lines that start above the black line but fall below it as
we move left to right indicate a representation that transfers to similar tasks
but not dissimilar tasks.

B.1.2 Generalization Performance of Individual ReLU
Representations

Generalization performance of ReLU-based representations are presented in

Figure B.3. The only representations that consistently obtained good perfor-

mance in all testing tasks were ReLU+ATC and ReLU+VirtualVF5. Al-

though ReLU+XY and ReLU+VirtualVF1 obtained strong generalization

performance on dissimilar testing tasks, their generalization performance on

testing tasks was not as good. Interestingly, the Laplacian representation

achieves the worst performance among all the representations studied in this
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Figure B.3: Generalization performance of ReLU representations (50 in total)
in 173 testing tasks. The tasks on the x-axis are arranged by similarity to
training tasks: on the left (small x-values) being most similar and on the right
(large x-values) being most dissimilar. The black line shows the performance
when learning in each testing task from scratch, with the same representation
size as ReLU(L). Lines completely above the black line indicate a represen-
tation successfully generalizes in all tasks. Lines that start above the black
line but fall below it as we move left to right indicate a representation that
generalizes well to similar tasks but not to dissimilar tasks.

thesis, failing to generalize well both in similar and dissimilar tasks.

B.1.3 Generalization Performance of Different Auxiliary
Tasks and Activation Fuctions

Figure B.4 shows the 95% confidence interval of generalization performance

with different representation sizes, activation functions, and different auxiliary

tasks, with a non-linear value function. This plot shows trends similar to

Figure 5.3 presented in Chapter 5.
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Figure B.4: Generalization performance of different auxiliary tasks and activa-
tion functions. Generalization performance depends on the activation function,
representation size, and auxiliary tasks. This plot presents the same data as
Figure 5.3, but the error bar shows a 95% confidence interval. The bar shows
the mean value over 5 seeds × 173 testing tasks.

B.1.4 The Importance of Data Augmentation for ATC

The results for ATC with and without the usage of data augmentation tech-

nique is shown in Figure B.5. The generalization performance of ReLU de-

grades greatly as we remove data augmentation from ATC. This shows how

crucial data augmentation usage is for ATC. These results further show that

using the data augmentation technique on top of the ReLU-based represen-

tations without any auxiliary tasks results in performance similar to ATC.

These findings raise the question of whether the contrastive loss architecture

is responsible for the performance of ATC or only the data augmentation tech-

nique.

B.2 Representation Properties

In this section, we first study the representation properties of specific rep-

resentations, namely ATC and Laplacian. Then, we take a closer look at

the complexity reduction of different representations. Lastly, we discuss the

connection between the six properties that are discussed in this work.
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Figure B.5: Generalization performance of ATC-based losses and data aug-
mentation on 173 testing tasks. The tasks on the x-axis are arranged by simi-
larity to training tasks: on the left (small x-values) being most similar and on
the right (large x-values) being most dissimilar. Removing data augmentation
from ATC (ATC+Aug) decreases its performance compared to No-Aux rep-
resentation.

B.2.1 Complexity Reduction: A Closer Look

The unnormalized values of complexity reduction is shown in Figure B.6. At

first glance, we see that as complexity reduction increases, generalization per-

formance improves. However, if we look at the values of complexity reduction

that are highly close to 0, we see that performance start to degrade. This

demonstrates that while having a high level of complexity reduction is desir-

able, having excessively high levels of complexity reduction is not.
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Figure B.6: Generalization performance averaged over testing tasks versus
complexity reduction values. Each dot in a plot corresponds to one represen-
tation, at the (x,y) point corresponding to its complexity reduction value and
average generalization performance. The histograms under the plots visualize
the density of points at each property value. Except for extremely high com-
plexity reduction values, generalisation performance improves as complexity
reduction grows.

B.2.2 An Explanation for Poor Generalization Perfor-
mance of the Laplacian Representation

The representation properties of Laplacian are shown in Figure B.7. For

ReLU-based representations, the Laplacian task improves dynamics aware-

ness, orthogonality, and sparsity, but it significantly reduces diversity and com-

plexity reduction. This significant reduction in these two measures explains the

poor generalization performance of ReLU-based Laplacian representations.

For the case of FTA, the this task greatly increases orthogonality, sparsity, and

diversity, while it noticeably decreases dynamics awareness. The decrease in

dynamics awareness explains the reduction in the performance of FTA-based

Laplacian representations.

B.2.3 An Explanation for the Importance of Data Aug-
mentation for ATC

The representation properties of ATC with (labeled ATC) and without (la-

beled ATC-Aug) data augmentation are shown in Figure B.8. In the case

of ReLU activation, the removal of the data augmentation technique results
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Figure B.7: Properties of Laplacian representations. The Laplacian task
damages the generalization performance of ReLU-based representations and
slightly decreases the performance of FTA-based representations. Each sub-
plot shows a property value achieved by six different representations: ReLU,
ReLU(L), and FTA with Laplacian and ReLU, ReLU(L), and FTA with no
auxiliary tasks. It is clear this auxiliary task changes the properties of the
representations; particularly dynamics awareness and orthogonality. We did
not include non-interference as Laplacian had no impact on it.

Figure B.8: Comparing properties of ATC representations with and without
data augmentation. The ATC task produces FTA, ReLU, and ReLU(L) repre-
sentations that generalize well, but removing data augmentation (ATC-Aug)
results in ReLU representations that generalize poorly. Each subplot shows a
property value achieved by six different representations: ReLU, ReLU(L), and
FTA with ATC and ReLU, ReLU(L), and FTA with ATC-Aug. We did not
include non-interference as both these losses had no impact on it.

in a catastrophic reduction in orthogonality, pushing it to the value of 0. It

also reduces diversity and increases the dynamics awareness. The catastrophic

decrease in orthogonality, in the case of ReLU, explains why the generaliza-

tion performance is greatly reduced as we remove the data augmentation from

the ATC task. Interestingly, the representation properties are similar in the
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case of ReLU(L) and FTA, with a slight increase in dynamics awareness and

orthogonality, and a slight decrease in diversity after the removal of data aug-

mentation. This explains why the generalization performance in these two

cases has not been affected by the removal of the data augmentation tech-

nique.

B.2.4 Relationship between Representation Properties

The relationship between representation properties is shown in Figure B.9.

Here, we focus on two subplots that are highlighted with orange color. Di-

versity and complexity reduction show strong positive linear correlation. This

suggest that maximizing one of these measures using an auxiliary loss results

in the maximization of the other. This can be clearly seen in Figure 6.4 in

Chapter6. As we increase the value of orthogonality linearly, diversity tends

to rise logarithmically. However, several outliers imply that this connection

between diversity and orthogonality may not always hold.
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Figure B.9: The correlation between representation properties. There ex-
ists strong positive correlation between diversity and complexity reduction.
Meanwhile, when diversity is high, the increment of diversity comes with an
increment of orthogonality. The above two subplots are highlighted with or-
ange color. Each subplot shows the relationship between a pair of properties.
Each dot refers to one representation. The x and y coordinates are property
measures. The properties’ names are shown as labels on each axis. The corre-
lations (Cor) are reported above each subplot.
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