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ABSTRACT .
v y '\. . . . v . ; ¢ ) »
‘A state estiffator 'plays an important Tole 1in the

‘opegétioh of a power syétem.llh\th;s theis the:'dévelopment

) : U ; . ! . N .
and testing of a new power system static state estimator 1s
described. The new state estimator, which 1is based on a
~recently developed  least = absolute = value - estimation

Y * . . ) . . v K
techpique, produces accurate ‘estimates. The test ,results,
- ] . : . "‘s a . .
‘which . are 'presented indicate that the new estimator is a
viable alternative to 'leasté squares power system state

estimators, which are currestly being used. .
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CHAPTER 1
INTRODUCTION

Y
¢

" A power system state estimator produces an estimate of

the voltages and phase angles_at all of the buses in a power'

»

system. Once a pbwer‘éYstem'state‘estimate is obtained; it .

can be~used for various control and monitOring functions.

o}

‘A number of power system 'étatel estimators ‘have‘ been °

developed Most of these est1mat6§s are based on 'the concept b

,of,least%squares estimatlon.v Unfortunately least squares

" estimator-s produce‘llnaccurate estimates when the data that 3

]

they process contains one or more erroneous measurements.

A few authors have developed least absolute value based

estimators that use linear programming in the estimation

process. These estimators have not been widely accepted

because they use exceSsive'memory space‘and computing time.
In thisl thesis”a new least absolute ‘valuel state

estimator is presented. | |

1.1 Outline‘of'the Thesis

In chapter I1 the par~meter estimation problem is

introduced. Different types of estimates are then discussed
and compared. In chapter III ‘llnear.programming based least
absolute value state estimation is explained and its

disadvantages are presented. A"n W approach flgleast

. absolute value state estimation is then introducedjand]_g,r

‘discussed. In chapter IV the power system state estimation |

broblem is defined and a brief overview of previous research
’ ) i -
is.given. In the fifth chapter the new power system state

§

a

-

A



estimator is described.
In chapter VI test results are given. These results are
used'fgvevaluate the new power system_ state estimator and

r

supggrt the conclusions that are made in the final chapter

“

Q£~this theéis. o



CHAPTER 11

INTRGDUCTION TO LINEAR PARAMETER ESTIMATION
o :

In this chapter‘thev parameter ‘estimation problem is.

~stated. The different criteria;forijudging the quality of an

: / ‘ . - Lo . B
estimate are then presented and.compared. This 1is followed.

by a review of least squares estimation and the properties
. "v' o - }
of least squares estimates. Finally, least squares and least

absolute value estlmatlon‘ are compared ‘using a couple of
examples. This chapter deals exclus1vely with uncohstraiQed

estimation; - constrained estimation is dealt with.intchapter
A v ‘ : v . . . \ (“‘\
II1.

2.1 Statement of the Liuear Parameter Estimation Problem

:

The parameter estlmatlon prcblem 1nvolves estlmatlng n

S gystem parameters_ - from“fm “(m 2 n) measuremeots, and other

\a

system 1nformat10nd’1 e, system structure aﬁd Onsrralnts.‘w

X

. Equation (2.1) descrlbes tme "relationship between' the

measurements and the system parameters.

z = HE + y .- : . (2.1).

where: . - z is the mx1 (m 2 n) vector of measurements.
- 6 1is the nxi vector‘of.the-parameters that are
"to be estimated: | | |
-‘H is - the ,mxn> matrix which udescribes v‘the
7mathematiba¥;°'»‘re}atibnship between the
5 ; measuremeht‘vector z and the parameter vector 6,
in thE‘absenee.of measurement errors.

- v is the mx1 vector of unknown measurement

~



»

errors. BEach .element.of v represents the error

ih a measurement. . -~
AT .

\

- \‘_“ . . » . .
The ™ parameter) estlmatlon problem is to estimate the

elements of' the parametet vector 8, glven the H matrlx and‘

the measurement vector z, wlth the\elements of v uhknown;”

1f ‘the number of measurements (m) equals the number gof

parameters (n), then an estlmate of 8 can be obtained by

8 -1 . - .

using § = H\1g. For this type of calculaq;on the parameter
Vi T )

estimate exactly _.fits the _measuremeﬁt vector,._i.e.

-

z - Hf = v = g. Estimates obtalned in this manner are of

3 oo

poorm quality and not useful, 'Slnce this estimation process:“'

: o ] A o
assumes that the error vector v only contains 0‘s. Thus,w-

thlS type of_ estimate does not account for, or fllter out

measurement errors.'§ —

In most :oaSes the number of measurements exceeds the

e Lo A

o

“,

'.,nﬁmberbof system parameters, m > n.,W1th more ,measurements"

than unknowns, an’ exact f1t of the parameter vector 9 to the'57

4

measurement vvector z is 'not p0551b1e if »some of the

measurements are inaccurate and contain errors. However,.n

since the number of measurements exceeds:  the number of

‘unknown ., parameters, . measurement errors can be filtered out ”

in the estimation process and a good quality estimate can be

produced.



Given m > n, there are many different estimates of ‘Q
that can be caiculated. Define an mx1 vector r of resjiduals
. - <' . . " L . B .
ELST- :ﬁ ) . r ’ %
PR N . D‘ . . ‘.

£ =z - Hf . C(2.2)

There are three common procedures for determining  an

estimate of §.

Define three cost functions as fOlIbwﬁ [1].

*

m o
J,(8) = & |z - H, 9| Lz lri| (2.3)
' i=} i=1
m 2 Mo
Ja(8) = L (z{ - H,8)" = I r. (2.4)
T i=1 T i=1
3,(8) = lim ( E |z, - n,|P) /P
. poe. 1=1 s ‘
'% llm\( Z lr: ip\é/p ¢ mﬁx} Llr-’ (ZQS)i’
' p-)m» i=1 - RN ot ol
-~ where: R zi and H ~are-the. rows of r, z, and H, that

correspond to the 1th ‘measurement.

- mis the number of measurements.
.‘JV .

In eguation (2.3) the cost function is the sum ;of the
absolute values of the residuals. When an estimate of § is

calculated so as to minimiée Ji(8), the estimate 1is called

an L, or lggst absolutéﬂ value (LAV) estiﬁateﬂ The cost

function of equation (2. 4) represents the sum of the. squares

o>

- of the residuals. When the estlmate of 6 m1n1m1zes J,(8) the

estimate is called an L, or least squares (LS) estlmate. The



cost fhnction of'equetiqﬁ (2.5) is equal to kthe absolute'
value of the largest fesidual Mlﬁlmlzatlon of J (9) yields
an estimate of ¢ ‘that is .called the Lmv or Chebyshev
es;imategﬂ A - ‘.“ T R ¢ ‘
Given-aﬂsettof meesuremEnts; an L, estimate'frepresents
ghe ‘mediap ,of»'the ‘deta; :the ‘mean oe cbmmen.average is

repfesénted'by an L, estimate, and.the mldrange, which is"vs

’

calculated by taking ithew everage% of the largest and the.“uﬁ

smallest data point, is_%epresented by an L_ estimate [1].
*-_The following two examples ‘demehsfrate some of the

ptoperties of the three types of estimates.

Exampie 2.1 [1]

o

vaen the followtng flve measunements o? Y% calculate.'
the L., La and L, es trmates of y. iV | |
y,‘- 24.50, v = 26.25, Vs = 24.25, y. = 24.75, ys = 24.00 .
For thrs example the structure of the system can be

represented by equatlon (2. 6)

z=Hy +'v (2.6)

where: -y is'the parameter . that is to be estimated.
- z is the vector of measurements.
o V. | | 24.50 |
. e ‘
Va 26.25%
Z = Vi = 24.25 X :

SRR Y 24.75

Ys 2400




- H relates z to y.
o= 11,1 ,1,1,1]
- v represents the measurement errors in z.

~ -

Vi

V2

I<
it

Vi
Vi

| Vs L 

\

From the set of measurements and the systeni structure,'fhe

"following three estimates of y are calculafedﬁ

The L, estimate is y = 24.500.
' - The L, estimate is'y =24.750.
| The L_ estimate is y = 25.125.

Consider that 4_bethe 5 measurements lie in.the range.
24.00 < y < 24.75, and tﬁe othe:.measurement ‘(Yz = 26;25)v
‘falls well outside -thisx raﬁge (.Ih keeping with acéep£¢d 1
terminology,-this typéléff:meésuremeht ‘wili be cailed aﬁ‘
.outliert or , a bad daté  point )..Forjtbis'examolevthé &,
éstimate of y lies in the given rénge while Ehéle estimatgﬂ
lies ' on ‘the boundary of the range ahd'the.Lm‘estimate lies

outside of the range.

s

Example 2.2 ‘ _ '
If the second measurement in example 2.1 [Is changed

from y. =_26.25 to y: = 100.00, tﬁén‘the following est imates
are obtained. N

'Ege L, estimate is_y = 24.,500.

G

S



39.500.
62.000.

The L. ostimate is\y‘

The L_ estimate is y

Note* that the L, estimaté' Eémgins unchanged from
example 2.1 and is unaffectéd by the éﬁtli;r, whereas the
other two estimates are adyersél& affected by thé bad data
‘point. ’

__(Of ‘the ' three esti;atés the"Lm is the most affecteé by
bad. data, ana will not be considered further in this thesis.
'ﬁééstb squares estimation, in spite pf the factvthat “eaét
squares estamatesaare' biased ‘By" bad data, is the most
coﬁhonly used typé of estimation and will be investigated in

the next section.

2.2 Least Squares Estimation

The first application of least squares estiqétion

erd

appears to havg taken place in 1795, when KarlvGéuss used L, -
esf}matioﬁ to.prediét-vthe _motion fof‘ several'ycomets a: d
pi;ﬁets [2].

.Least: squares estimation has been applied Eb many
estimatibn problemm/-since then, and contindes to bejwidely_
used. ‘' Several authors ’[3;4]. have speculated tﬁat the
popularity’i of least squares estimation is not due to any
superiority of L, “estimates . oger L, or otﬁer types of
estimates, bdt‘ instead@ stems from the ease of computation-
and well gngyn/*ﬁathgmatical :prqpertiés of -least Squafes '

Fa

estimation. .Numerous 'auphors have compared L, "and ‘L

°

estimation; see for example [5,6,7]. However| a consensus on

. c-

"the superiority of either estimation technique doés not



‘appear‘ td; have been reached. . The question of the supremacy

of elther est1mat1on techn1que lies 1n the domain,_of the

mathemat1c1ans : and will _not, be speculated ‘upon :here.
: Nevertheless for many classes of problems given the‘-,hnatilrL
of ‘the measdpements common to the problem,'é cop?ineiné case
‘can often be hadeTin,favor”of one type ~of estimation * over
the other. The next three sectlons discuss .L, estlmatlon.

2.2.1 Derlvatlon of the Least Squares Estlmatlon Eguatlon

The follow1ng der1vat10n is made under the assumptlon

,

’that the matrlx H is of full rank. .

Recall the ‘least squares cost function givenﬂin section
'h.é}1. ' | L o . l. . h
__— m ) i '
J:(Q),=.i§1(zi o Higl ‘ C(2.4)

Equation (2}4)‘ean\be rewrltten in the following form:

v

N J2(8) = (z - HE) (z - HB) (2.7)
Expanding (2.7) yields:
L 3,(8) = 27z - 6TH'z - z'HO + 6 HTHE (2.8)

[

Since QTH?E = ETHQf (2.8) can be written_asﬁ

J2(8) = 2%z - 22THO + 6"H'HE . (2.9) -



7

r
!

. function J,(6). Setting the first derivative of J,(8) equal
to 0 yields values-of @ that either maximize or minimize the

cost function.

or - 9 =6=(dH) 'Hz : (2.11)

é represents the‘least squares estimate of §. For

(2.11) to be'valid (HTH) must be invertible. This is always

true when H is of full rank as assumed earlier. In order to

¢ )

determine - whether 6 is a minimum or a maximum, the second
’ ’ .

" derivative of the cost function must be’ calculated.

(8 § o
qgT " < '2HTH >0 _ _(2.'12)
Note  that 2H H is always positive definite hecause H

~

.'is of full rank. Consequently’ 6 minimizes J.(8)  and

represents the L, parameter estimate which can be calculated

by using the least'squates'estimafionjequation (2.11) [2,8].

The .least squares estimate bf( 6 - minimizes the cost

z + 2H'H§ = 0 . (2.10)

10
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2.2.2 Weighted Least Squares Estimation

1t is possible to assign weights to each measurement SO

that measurements which . are assigned larger weights

influence the least squares estimate more than measurements
. .

.assigned smaller weights. The cost funclion for weighted

least sguares estimation is:

1l
J.(6) - a?J wi(zi —.Hig? (2.13)

where w, is tﬁe'weight assigned to the ith measurement.

Equation (2.13) can be réwritten as:
7 . a ’ . \

S J2(8) = (z - Hg)Tw(g - HQ) (2.14)

-

',whereLw is a diagonal mxm matrix that contains the weights, .

13

.i.e. W 2 diag. { w, , i=Tym’}. It can Be shown that the

W
LA . . . ‘ _ ]
weighteﬁ least squares estimation ‘equation is given bys
P : L , o : ‘-

Note that equation (2.15) represents the weighted

least squares estimate é only.if W is positive'definite'mahd

H is of full rank.

The‘weighting_matfix, for least squares estimation, -is

often set equal to the inverse of the mxm covariance matrix.

¢

R. S B . . N

R = Expected V?lueof [/x XT 1

\ a

"The weighting matrix _ is diagonal,{gnleés"lthé

measurements are not sindependent, i,e..the covariahce matrix-

(2(16) _

11
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contains non-zero, off diagonal terms.

2.2.3. Properties of Least Squares Estimates

Least squarés.estimates ﬁossess a number.of interesting
pfopefties. It has been shown [2] that L, estimates are the
.be;t estimates (maximum likelihood) when the measurement
»errbré obey a Gaussian or normal disﬁributiéﬁ‘ﬂgnd the
weighting matrix is equal jo the inverse 6f the covariance
matrix.. It has also been stated [9] that in cases where the
measurement error diStribution is not Gaussian, but the

number of measurements greatly exceeds the number of unknown

- parameters, the method of least squares yields very good
b

-

espimates.

Another valuable feature of L, estimation'is ﬁhe ease
with which least squares estimates can. be calculatéd;
equations (2.11) and (2.15) canfeésily be implemented on a

?combuter; In contrast, no algorithm has yet been devised
 that makes- the calcﬁlation of L1 estimqtes as easy as the
calculation of L, eétimates.'

There aré many estimation broblems for which the error
distri%uti;hg;is not Gaussian’and the number of méésugements
does not greatly exceed the number of unknown paraméters. In

fthese~ cases, least squares estiﬁates are adversely affected
by bad data. This problem has been recognized and addreésed
by several “authors [3] who have-proposed differentvways of

refining the least squares method so that L, ‘estimates are

“less affected by bad data. S

12



Robustness term which describes the effect of bad
data on an estimation technigue. The more robust an

estimation algorithm, the less sensitive it is to outliers.

‘Although the authors mentioned in [3] have had some success

developing techniques that increase the robustness of L,
estimation, L, estimation, without any adjustments, reﬁé*ﬂs
one of'thevmost robust estimation procedures.

Despite some of the diffiéulties éncountered bt L,
estimation when bad data is present, least squares
estimation cannot be dismissed. The overwhelming majority of
research 1in power 'system qstate estimation has wused L,
estimation technfques. Only a handful of papers have
investigated L, state estimation. Also, L- estimateﬁ‘provide

information that can be used in L, estimation.

2.3 Comparison "of Least Squares and Least Absolute Value

Estimation / .

It was .mentioned earlier that the choicé of L, or L,
estimation depends on the nature of the measurements
encountered in the power system state estimation problem.
The two examples that are preesented in this section compare
L,-and L, estimates, that are calculated for data sets which
are'similér to those encountered in the power system étate
éstimation problem, i.e. the data set conéains many accurate
measurements and a few bad data points.

The actual bfocedure for determining L, estimates will

be given in chapte. III.

13
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Example 2.5 4]

Fit the following set of measurements with a straight
\ , - .

line of the formy = ax + o)

x 0 1 2

y- 2 3 7 5

The data points represent- the equation y = x + 2
exactly, except for the third dafa point Mhich contains a.
large énron. The L, estimate, which does not fit any of the
data points, isy = 0.914x + 2.714, a = 0.914 and b = 2.714.
The L, estimate, which fits all but the third data point, i
y=x+2,a=1.0and b = ".0. Figure 2.1 shows the least

absolute value and the least squares estimates.

Example 2.4

Fit the"folfowing ‘'set of measurements with a line of

the formy = ax + b.

x O 1 2 3 4 5
y -2 1 4 13 10 7

The data points represent. the equation y = 3x - 2,

exactly except fof data points 4 and 6 which, should be (3,7):

™

and (5,13), but have their y values exchanged. The L.
est imate, which does not Fit any of the data points is

y = 2.314x - 0.286, a = 2.314 and b = -0.286. The L.

est imate, which exactly fits all but the 4th and 6th data
points, isy = 3.0x - 2.0, a=3.0and b = —2.0.‘Figune 2.0

shows the least absolute value and least squares estimates.

~
)

14



Yy

’

v

Figure 2.1 Least Squares and Least Absolute Value

Estimates for Example 2.3

LEGEND

Least Squares Estimate y=0914x + 2.714
Least Absolute Value Estimate y=x+2 \
Data Points '




Figure 2.2 Least Squares and Least Absolute Value

Estimates for Example 2.4

v

/

LEGEND

Least Squares Estimate y=2314x - 0.286.
Least Absolute Value Estimate y=3x-2
Data Points ‘

16
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These two simple examples illustrate how least squares -

: : : - 1 :
estimates can be biased by bad data. Note that the least

absolute value estimates are unaffected by the bad data
points. Both exémples use data sets that are similar in
nature to the measurement sets encounteged in the powér
éystem;.state estimation problem. The behavior of L, and L,

estimates when given‘tHese types of ‘data sets, indicates

that L1'estimati9n may be better suited to the power system
1 ; . "

state estimation problem. In the following bchapter least

A

absolute value estimation will be examined in greater

¥detail, and it will be shown how L, estimates can be Used to

provide valuable. information for L, estimators.

\

P

£
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CHAPTER 111

"LEAST ABSOLUTE VALUE ESTIMATION

This chapter begins witn a xdiscussion of 1linear
programming based least absolute value (LAV) estimation.‘ A
new technique for L, estimation is then introduced and
explained in great detail. Several examples are used - to
illustrate thé simplicity and" efficiency of- the new
technique. This chapter concludes by showino how the -new
.estimation technique can be ‘applied to constrained
estimation’ problens.

Before discussing the linear programming approach to
LAV estimation, a distinction should be 'made between the’
type of estimate and the estimation procedure or algorithm
In chapter II, L, and L; estimation were discussed, while 1n,

r

this chapter the discussion centers around two different
procedures of obt;ining least absolute value estimates. The
~ two estimation procedures, although they usually produce the
same estimate, differ con51derably |

3.1 Linear Programming Based Least Absolute Value Estimatjon

The most common approach used to A calculate LAV
estimates, is to first formulate»the estimation probfem'as a
linear programming problem and then solve for the L;
estimate using: ¢he simplex method, the revised simplex
method or a related technique.

A linear programming problem contains a cost function,
which must be minimized or maximized, and a set of
constraints. The ,simplex method'minimiZes or maximizes the

M

% 18



cost function within the bounds imposéd by the.constraints.
When minimizing the cost -function, the simplex méghod begins
with an iniéial,feasible soiution that does not violate any
constréints and then decreéses the .cgst- function”:unt;i ~a
minimum, wﬁich‘ repregents thet,solution" of the linear

pro@ramming-problem, is reached. This approach is: iterative

in nature and is known as a successive. improvements

technique. In the following seciion, one of several methods

of formulating the L, estimation problem as a linear.

) .
programming problem is described.

3.1.1 Formulating L, Estimation as a Linear Programming

»

Problem 2

Given an mx1 vector of measurements "z, and an nx1

vector of parameters §, the-LAVv estimation problem 'is to

o

estimate 6§ so as to minimize the cost function given by

equation (3.1). o

m n . . .
4= j-—1 . .
where: - - z; is the "t* _lement of g. ' o
- Bj is the jth element of §.

- Hij is the element in the ith row and the ‘jth
column of the mxn matrix H. The H matrix defines

the relationship between z and §.

1N

. . n : :
Let ‘r. =2,'- L H..0. ) i=1,2,...,m (3.2)



T

The linear programming formulation ‘0f the LAV

estimation problem is as follows [11.

. m 9 ,
minimize Tz r: ) (3.3)
i=1
_ subject to: ’
‘. n- _
¢ r. + L H..0. 2 %, i=1,2,.0.,m (3.4)
1 o ij73 i i ‘
=1 :
B
n . _ . .
r. — L H..6. 2 -z. i=1,2,...,m (3.5)
i 5=1 1373 i ) :

All of the r.'s in the formulation _will be:

1

non-negative because the minimum value that any r, can
reach, without violating a constraint, 1is the larger of

‘ léxpressiegs'(3.6) and (3.7). ' :

i 150N .
r. >z, - L H,.0. ~.(3.6)
i 1 - 13773 o
J=1 ot
: n o ‘ ,
~ ry P ]-2:31 H‘\]e] <z (3.72_

\

1f one of the two expressions is negative, the other .

., -

is positive, “and ry must be posifive in order to obeyAboth
const;aiﬂt‘equétioné. If one of the two expreséioﬁs equals 0
the other expfession equéls 0 and therefo:e’ri gqualsvo;
. Consequently Xy }hen;subject tb‘ the Egnstxaint eqpations,
represenfs the absolute value of the ith residual.

~ Minimizing the sum of thelri‘s in the iineag programming

\groblem produces  the L, .estimate. The following example
. Id - ' .
demonstrates the formulation of a simple- L, estimation
problem as a linear pF6gdramming problem.

N . {
S N
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Example 3.1 [1]
- - : ) .
Formulate the given LAV estimation problem as a linear

. programming problem. . -

Fit the given set of measurements with a plane of the.

formy = aix, + azxaz. , ~
. ‘ /
. * (

3% X X2
. . 83, _ 1 1
125 - 3. -1
s ‘ 310 2 7
B ) -7 1 -2 ‘
' 215 3 2
1 -~ - - ) q. ~ . W
Vi ) 83 1 1
Y2 125 3 -1
. \ A
let z=\'ys | =310 ,H=12"71|,8-=
- aaz.
YVu -7 ‘ 1 -2 .
{
s L‘215 3 2
- N\ /
5 2 I R
J="L|z;,~ L H;.a, (3.8)
i=1 1 j=1 J7-J + -

The LAV estimation problem is to calculate § such that

J in (3.8) is a minimum. The 1inear pnggnammigg formulat fon

of the problem ig as follows. %
. / 2 - . . -
deflne rp=zZ- j§1 Hijaj : i=1,2,....5
5 ¢ : \
z r. \1

minimize:

subject to: r. +, «5}1 ,+V a; 2 83/
, ) i \



rd+ 3a, - a, 2 125

r, + 2a, + 7a, = 310

v
1
~

ry + a, .- Qaz

r< + 3a, + 2a, 2 215

rz - 3a, + a, 2z “125 ’
U ps - 2a, - 7a, 2 =310
! Py — aq >+ 232?2 7

rs - 3a, - 2a, 2 -215
. { 7"

In solving the’ problem for the L, estimate,

feasible values of: a,, a, and r,~rs will hefifound first.

Then these wvalues will be changed, in order to-iperatively‘

decrease the value of - the cost function. When the cost

function reaches*’ its minimum value, subject to the

constralﬁts, the estimation procedure is completed end the
(

values og a1 and azL represent the LAV estimate, The values

,of r1—e///epresent the absolute values of the re51duals.

Most linear progremmlng algorithms would not formulate
the LAV’estﬁuaeion Torobiem 4n  the manner giveu 'in  the
example. Instead, “an equiveient_ou dual problem‘with less
constraintsy but more Varlables per constraint eQuation

would be ssolved. Nevertheless,' example"3.1 is useful in

v« f

: : . ' : S .
showing how L, estimation problems can . be gonverted 1into

AN &~ .- - Ve
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linear programming problems.

3.1.2 Disadvan;ages of Linear Programming Based "L,

Eétimationp o Cor

Linear programming 1is the most popular. method of
calculating HL1' estimates. Severai different linear
programm - g formuigtions of the'LAVtesEimation,problem have”
been presented in the literature [10911,12,13]. Despite” {ts
pdpuiarify lipear programming baigd L, estimation has

certain disadvantages:

+

a) It requires excessive memory ‘storage;. a.

typical formulatic ~-equires the panipulation
of a matrix of size .2mnxm) [14], where m is
the number of measurements and n is the number

of unknown parameters.

b) It is an iterative technique and thus may use

considerable CPU time and be computationally

\

inefficient [6].

¢)- The solutions obtained may not be unique [15].

-

nge of the more‘recent algorithmé have attempted to
overcome these difficulties and research continues 1in this
area. B ’ A

\In the next séétion,a new non-iterative technique ~ for

LAV estimation is presented. =~ -
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- 3.2 A New Technlque ﬁor Least Absolute Value Estlmatlon

3 2.1 Hlstory of Comblned L, And L, Estlmatlon

It

1n least absolute value estlmatlon has involved attempts to

mentloned earl1er that a great deal of research

prove ffhe superlorlty of L, est1mates over Lz estlmates and

i“the development of more efficient linear programm

estimation

expended 1in finding and developlng relati onshlps between the
Q\ kS

algorlthms

two types of estimates.

In 1973

/

ing . based

Very little research effort has been

\

Schlossmacher [14]

" technique which uses

successive

estimates to find an LAV estimate.

following Stepsi‘

oo

f2)

3)

4)

Obtain

T

presented an

4

iterative

weighted - least s&uares

His algorithm

—

has the

a weighted least squares_e#fimate with

all of thefweighting'factors set equal to one

Ci.e.

Use the

" of measurements }.

generated

1,2,.0.,M ; m =

weighted least

the number

- squares

solutlon to calculate the re51duals { rlf, i =

T,2,...;m }.
1/|r

Set wi =

S W.
et w,

Repeat

—the rs:'

~

1

approaches 0.

0.

r

e

1,2,¢e.,M .'If a

nv_rifE 0,

steps (2) and (3) until the changes in

S,

-

between

A
S

successive

e
4

iterations



Although Schlossmacher's technique gives approximate
estimates it is an iterative tecRiique and has peen

criticized as being computationally inefficienf;{16].

In - 1976-77 Sposito, Hand and McCormick [17,18] -

suggested  that ;[ L, estimates be used as starting points for

linear programming based L, estimators. Their research

indiéates - that stérjing a lipear programming based- L,

estimator at the L, estimate saves many iterations. ‘They
. . g B

found that 1in general the total coﬂbutiné time ( time to

’ d

caléulate'the "L, estimate + time& to calculate . the L,

Y

estimate. ) of their technique, is less than the time needed
. g € ‘ €8s t L e T

to calculate an L, estimate from a flat start. The main

T < ) .
. drawback . of their: technique 1is that it still requires-a

!

linear programming algorithm to calculate the L, estimate.
. In’ 1987 Christenseﬁ and Soliman [5,19,ZOj developed a
new L, estimation procedure. Their procedure, which does nog

use linear pregramming, manipulates a simple relationship

‘between. L; and L, estimates.' Their new technique is

7 A}

non-iterative and uses- information provided by a least

/

squares estimate to calculate an LAV estimate.

3.2}2 The New Least Absolute Value Estimation Technigue

Inﬁthis section the new estimation technigue tha{ vas

~

developed by: Chfistensen ané Soliman is givén. The new

estimation technique utilizes the interpolation property

that is stated in theorem 3.1.

Y
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Theorem 3.1 [271]

If .the column ~ank of the mxn matrix H is k (k < n,
- then the L, ostimate . interpolates at Jeast -k of the m

measurements.

Since- LAV esfin“ 3 ‘ipterpolate measurements, the
estimation problem reduces to sélecting”the k points that
the estimate should interpolate; The new technique éésumes
" that H has Full column rank and therefore k = n. .

Given the meas@réheht equation (3.9), the first step,éf
the méthod is to calculate theiieast squares estimate of 6
which is given by 6% in (3.10). }

_ . . ,

z = H§ + v o (3.9)

\ o 6F = (W) H'z : (3.10) -

i b ’ ' : !
',‘;'The residuals of the L, estimate are then calculated

jﬂ%ﬁﬁﬁ'(3.115.
Lo ."\; t

r. = Z

% . ‘
. i Hig Ci -.1,2,. , M (3.11)

where: -y is the ith residuval. - - -
- 2y is the ith measurement.

- H, is the ith row of H.

The residuals are then ranked by their'absoluté values

and stored in the mx1 vector r, with the smallest}lresidual.

d@s r, and the largest as- r . . k



_ _ A 1 l 1
Lg} -}
r;
T nx1
- - ‘ .
. r = o] o= _ mx! (3.12)
r B -
n -~
: c’ (m-n)x1
. | .
L M L J -

The rows of the 2z vector and the H matrix are also
rearranged so that all the zi‘s and all the rows . of H,

corréspbnd to the ranking' of the absolute values of the

residuals.

H, W )
H2
H nxn
H= 1|+ | = S "~ mxn (3.13)
Hn <
3
! ) a
H* | (m-n)xn
. H . | J
L m . L o X}

A’
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r i [~ T i’
Z .,
: -
v Zz
z nx1
0 z.
T z = = mx 1 (3.14)
! - R -
~
z, 3
4 ;
' Z (m-n)x1
zm ;_ ] l 3 .

The sub-vectors ﬁ and 2 and the sub-matrix H correspond
to the n smallest residuals.
i ’ .
The final step of the algorithm is to calculate the LAV

estimate from equations (3.15) and (3.16).

A A

H6 . . (3.15)

[
I

| 6 =12 (3.16)

Once the final estimate is calculated the LAV

"measurement residuals can be. calculated using (3.17).

r =z - Hf . | (3.17)

From equations (3.12) to (3.16) it can easily be seen -
. v ) ‘ S
that the first n residuals of (3.17) will be equal t@-zero.

The other n-m residuals will be either .ero or non-zero.



The four :eps in the new algorithm can be summarized

,as follows:

1)

-
l L83
L

Calculate the least squares estimate of 6 using

. -1
o* = u™w) 'uTz .
2) Calculate the residuals  of the L, estimate
using (3.11).
‘ i 0
“ x .
ry = 2, 'HiQ i = 1,2,...,m (3.11)
3) Select ' the nf measurements that correspond to
the residuals with the smallest least absolute
values and form Z and H.
- 4) Solve for the LAV solution é using equa on
(3.16).
A useful property of L, estimates is.given by theorem
3.2.

Theorem 3.2 [17]

For a Jeast absolute value estimate of n szrameters, °f

n, is the number of positive residuals and n, i~ tre nurter

of negat ive residuals, then an oﬁtimal least absolute value

estimate é obeys the following equation.

lny - ni| < n ' AN

/ /
./Y'/

Theorem 3.2 gives  necessary, but,/ﬁotf sufficient

7

: - . c ot SR / :
conditions for optimality. Thus L, es€1mates that are

produced by the new technique, or by any othkr technique,

A
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s
can be checked if they obey theorem 3.2. If |n, - n.| £ n,
then the estimate may be optimal. If however, |n;, - n.| > n,

then the estimate is definitely not optimal.
. . ' v . .
The following two examples illustrate the application

of the new technique.

Exa@ple 3.2 _ .
Fit the data { (1,2),(2,4),43,6),(4,0),(5,15),(6,12) }

with a straight line of the formy = a;x + a.. ( THe data
nepnesents;the line y = 2x + 0, except for data points 4 and

5 which do not fall on the line. )

— : - -
2 1 1
4q 2 1
B 6 3 1 aq
zZ = H = _6_ =
. 0 4q 1 az
15 5 1
12 6 1
. - \\. L -

Step 1 Calculate the least squares estimate g*.

. » ) \‘ ]
: _ a : 2.20
o = (HH Wz =] "
a: -1.20 -

30



Step 2 Calculate the residuals of the least squares

est imate. .
r‘1 ‘ 1-OO 4 ’ fk] \
P : - 0.80 |
ey, P R « | 0.60
r= ='z - H8 = |
Ny - '7.60
rs - 5.20
Neg v 0.00

Step 3 . Select the two‘measuhementsvthat correspond to the

smal lest residuals and form 2 and H.

The smallest residuals are rs and rs.

12

{ -
Step 4 Solve for the LAV estimate.

b =Ffz
. 6 1 |71 12]
§ - 1
13 1 6
, 1 _
N aq 2.0
8 = - |
Laz 0.0 ] _ ] _ s ¢

{ ‘/’L

' . ' ' L . (
The same solution has been obtained® by -~ linear -

programming.
[ »
The LAV residuals, of the measurements that were not
selected for interpolation are: r, = 0.0, r, = 0.0,

-

e



r, = -<8.0 and rs = 5.0. Note that»the least absolute value
estimate fits all but the 4th and the 5th data points, i.e.
_the 3rd and the 6t£ data point are selected for
.interpolation and the first'two data points have residuals
equal .€2v0.4Thus the two bad data points, which Sp not fall
o the line y = 2x + 0, are rejected by the new .estimation
. technique. In contrast, the least squares estimate does not
interpolate ‘any of thezdaté points and is ‘affected by bad
data. Figure 3.1 shows the data points énd the L, and L.
eStimates.u ‘ | ’

Ty Aéxampls 3.3 the LAV estimation problem which.was

e .

formulated as a linear programming problem in, example 3.1,

is solved using the new technique.

i

~
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Figure' 3.1 Lesst Squares and Least Absolute Value
Estimates for Example 3.2

-

LEGEND

Least Squares Estimate y = 2.20Ax -120  -----

least Absolute Value Estimate y = 2x+0
Data Points . _ S




Example 3.3 [1] ;

~

Fit the given %@t of measurements with a plane of the

-

formy 2 aix, * azXz.

¥ X1 Xz
‘ 83 1 1
4
125 3 -1
310 " 2 7
“u -7 1 -2 )
215 3 2
Y 83 IR
Ya | 125 3 -1
| 5 . a,
let z=|vy, | =310 ,H=|2 7| +8¢=
-~ das
Y :7 1 -2
- Vs 215 |3 2 .
S
Step 1 Calculate the least squares estimate 0.
' £
- _ 1l a | 51.803
o = HWH) Wz = | | =
o = a 29.545

Step 2 Calculate the‘residuals,of the L. estimate.

] | 1.652 |
re| 1 -0.865
p=lry | =z-H" =] -0.420 | . -
| 0.286
rs : 0.500




v > - . ‘{
| . ‘ -~ ’ ‘ . )f
Step 3 .Setect the two measurements that correspond to the

smallest residualg+and form 2 and H.

Mﬁi .

The smallest residuals are r. and rs. <
‘i | Y - b N
S __7. o 1 _2
z = - H =
p ' 310 A 2 7
' e
Steg’4 Solve fon the LAV‘éstimate. ' “
| - ¢
© 8=z
. 1 -2 |71 -7
. b = , /
' 2/ 7 { | 310 Vo \
, ) 5 - N _
N a, 51.909 e,
A} Q = /: . —
. a: 29.455 _ . ,

k)
b e

The optimality of the LAV solution can be checked by

calcUlating the residuals of three-data points that agre not

-

'~intenpolat©dfv c 3 ‘ ' <
ryo= 2z, - Hi6 = 1,636
r, = 2z, - Hi8. =1.273 TRV

rs = zs - Hs6 = 0.364

Two  residuals are positiQe and one is negathé.
Therefore the 5iffenence between the numben\of positive. énd'
the number of negative residuals is one, which is less than
the number éf unknown parameters. dgnsequently, the eStl;ate

' obeys theéhem 3.2 aqq may be.optimal. N | |

2
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R,

The - same L, solutien can be obtalned by solving. the

linear d&ggrammlng problem that is f6fmulated in ‘example
3.1, However solution by the new technique appears to be
superior becauseﬁthe new technique is non-iterative and thus.
should require lea? computing time than lidear programming.
In -fact the LAV solution for examplé<3 J}/tould easily have
been obtained by hand calculations. ) | o

- . <

3.2.3 Bias of ‘the New Technique . - o ‘
< TN : -
For some problems the rnew technique will not produce

the optimal LAV estimate. In these cases the estimate
. v . 7

produced by the new method will be nearly optimal and the
cost function evaluated at the estimate will have a value

that 1is only, slightly greater than the " cost function

evaluated at the optimal LAV estimate. BN e

The following two examples 1llustrate cases 1in Whlch

P
rhnlque does nog produce an ogtlmal L1 estlmate

H 2 f
Rt

Example 3. 4 [11

This is the same as example 2.2 that was grven in
chapter II. — _ ' ' | T
Given.the followzng f ive measurements of vy, calculafe

the L1 est imaté of y. - .
yi = 24.50, y, = 100,00, ys = 24.25, y. = 24.75, ys = 24.00
The ‘'structure of the system can - be represented by

(3 18)

z = Hy ‘ (3.18)

36
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_ . - R o - Y
Y 24.50 1
Yo 100.00 |1
where: Z=| Y3 = 24.25 H= 1.1
Va 24.75 & 1 f,
. 24.00 1)
L7 L I [ ]

and y is to be estimated.

. -

Stég‘ﬁ Calculate the least équaPeS~estimate Al

*

y" = (W) W z = 39.50

Step 2 Calculate the residuals of the Jeast squares

est imate.
r | [ -15.00 |
ra | 60.50
r=1|rs|=z-H"=|-15.25
Py : ~14.75 Ca
rs , -15.50
Step 3 Select the measurements correspéﬁding to the-

smallest residual and form z and H.

The smallest residual  is ri.

i

w2 =124.75 , H = 1

¥

Step 4 - Solve for the LAV estimate. .
- s
. g =f1z = 24.75
7 \ )



\
- The LAV estimate produced "by the new method is
} = 24.75.  However in chapter II the optimal LAV estimate is
\ ! ' .
given as y = 24.50.  ° y

The LAV cost function is given by, equation (3.19).

n ™M

J = | z; - Hy | ‘ . (3.19)

i=1
For the new technique J = 76.75, while for the LAV
vestimate J = 76.50. |

For this example,'the hew technique did not produce the
optimal LAV- estimafé, howevg; since;tﬁe difference between
the two values of the cost function is so small the LAV
est imate pﬁoduced§<by the new technique is near optimél and

Fikely acceptable for many appl ications.

ye

I
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Example 3.5 [17]

Calculate the L, estimaté of a, and a.,* if the data o

represents a straight 1ine of the formy = a,x + a..

[.'x\ . . y.
“-8.5299 . -6.7934

-3.8751 -0.7804

-3.4707 -3.1098 ’
-3.2683 B —2.2848

2.4099 Y -4.7076
 0.3745 . 1.4024
1.1724 2.9106

. 1.8267 | 4.3988

5.8068 4.9851

7.7160 6.5859 ' 4)’

_The L. eStimate is:
R ). 86468 - |
- a, | - | ~.66741

7

The,Smallest residuals belong to the. 1st and 4th data
o”bqints; and therefore they are interpolafed. The LAV

_estimate obtained by applying the new technique is:.

a, 0.85689
a, 0.51577

8
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The optimal LAV estimate, calculated by 1inear programming

P
. a 0.80758
g = =
. a. 0.35461
The<connéspond7ng cost functions are J = 11.15603 for
tﬁé new technique and J = 11.01392 for the optimal LAV

estimate. The small difference in the values of the cost

function indicate that either estimate is acceptable for

" most appl ications.

3.2.4 Unique Solutions of the New Method

. difficulty that i= enqounterea by linear programming

based LAV estimation is that the solution obtained may not

always be unique. The following 2xample demonstrates a. case
in which the linear programming based estimate 1is not
unique.

o

. Example 3.6

. . 74
Fit the following set of data with

. y= ax + b.
X 1 3 4
y 1 2.9 0
1 1 ] | 1.0
2 1 2.0% a
H = y 2 = . _9_ =
3 1 2.9
L 4 1 0.0

a line-of the form

40



Six possible L. estimates of a and b can be obtained

’:by,intenpolating the six different combinations of two data
points. The residuals and the sum of the residuals fof the
six combinations are summarized in table 3.1.

‘ %he .only est imate bbtained by applying the new
'tecHnique_ is estimate #1. Linear  programming based

estimation could produce any .ohe of four est imates (#2'4

#5). Thus the 1inear programming estimate is not unique and

estimates of a range from -1 to +.95 while estimates of b

range from +0.05 to +4.0 . From Table 3.1 . it can be seen
that , thé cost function value for the unique LAV estimate,
" that is produced by fhe-new technique, is 4.1, whereas the
four linear programming based LAV estimates all have cosf
'function values of 3.9. Even though the 7ineaP  pnognammﬁng
eétimafes have sﬁa]len costltfuhction values, it appears
wiser to use the unique LAV'eStimate that is obtained by the
new teéhniqué, Pafhenvthan applying 1inear programming and

obtaining one of four possible estimates.

The new method ' will almgst always produce a unique
estimate. In césgs in which the absolute values of two
residuals are equal, but there is rooﬁ for_bngytone of the

, . 1
corresponding measurements in the interpolaﬁed meaSu:ement

set,A a tie-breaking procedure is implemented. Two LAV

nestimates,'which correspbnd to two different interpolated '

sets of measurements, are calculated. Each interpolated set
contains nearly the same set of measurements (corresponding

to the n smallest L, residuals), with the only difference

a1



.ESTIMATE POINTS ESTIMATE :
NUMBER |FITTED a b R1 R2

an. :; 1.00{ 0.00| 0.00
ancy >| 0.95| 095 0.00]
and 4{-0.33] 1.33™Q.00
and 3| 0.90| 0.20(-0.10
and 4|-1.00| 4.00[-2.00
and 4|-2.90{11.60{-7.70

OUTH WA —
oo —~0O0

'f"k

O—=-0ONOO

Table 3.1 Summary of Data for Example

.
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being that each set contains a different one of the two
measurements that was involved in the tie. The value of the
cdst functions of both  estimates are then calcuiateq and
compared. The estimate with the smaller valued cost fuqction
is the wunique LAV estimate, thatvis produced by the new
method and the tie-breaking brocedure.‘

The following example shows a case in which the
. e

tie-breaking procedure must be implemented.

Example 3.7

Fit the data { (1,4.5),(2,7.0),(3,5.0),(4,6.0) } with a

line of the formy = ax + b.

1 1 4.5
2 1 7.0 a ]
H = -2 = y Q =
- 3 1 5.0 e |
4.1 6.0
Step 1 Calculafe the least squares solut. . Q*
a 0.25

6 = (WH) W z = =
b SOOJ

Step 2 Calculate the residuals of the least squares

eStimate.
- ~ -‘ .\‘
r, -] . -0.75
r» * 1.50
r= =z - H8 = ' '
"Pa ~-0.75
L re .00
- N [N ’
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Sfeg 3 Select the two measurements that conrespond'to the

two smallest residuals and form Z and H.
The sma{l,sy residual is r.. The absolute values
of the 1st and 3rd residuals are equal. Thus the

t ie-breaking procedure must be implemented and two

o
est Imates must be calculated. The first estimate
corresponds to interpolation of the 4th and 1st
\
measurements.
) 6.0 . 4 1
//" ' Zq.= Hi =
el - 4.5 | 1 1
The other est imate corresponds to the
-
lntenpolatlon of the 4th and 3rd data po:nt
6.0 . 40
z; = He =
5.0 v 3 1
. ’ %5
Step 4 Solve for both LAV estimates.
. 4 ¥
6. =
1 5
.. ) a. O/5
Bes |
Ji =

44
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3 1 5.0
a 1.0
e | 2.0
J, = 4.5

$

. » .
The cost function .corresponding to 6, is less than the

cost function corresponding to éz. Therefore §1 is the

unique LAV est imate produced by the new technique.

If a case occurs in which the two cost functions are
equal then both estimate$ are equally wvalid. Under such
circumstances the estimate produced by the new technique

will not be unique. Extensive testing of the new technique
4

has demonstrated that this situation rarely occurs and that

o~ ~

the estimates are almost always unique. (. }
If more than two residuals are equal, a tie-breéaking
procedure that is similar to the one demonstrafgd in example ,

3.7 is used. =

/’1



.‘é’ 3.2.5 Features of the New Technigue

The new
P

3
techniqué possesses a number of features that

make it an attractive alternative to linear programming.

a)

<)

d)

It 1is non—iterative in nature and thus does
not have to go through many iterations to
reach an estimate.

It does not require an initial feasible
solution, whereas the linear programming
approach must first calculate an initial
feasible solution andithen solve for /zhe L,

estimate.

In most cases it produces a-unigue solution.

The estimates are easily calculated and can

often be calculated by hand for simple
examples; whereas linear programming

estimation almost always requires a computer.

3.3 Constrained Parameter Estimation with the New Technique

-2

The new estimation technique can easily be modified to

handle equality and 1nequa11ty constralnts. Furthermore, it

will be shown in chapter V that the new technlque is well

suited to
which zero

constraints.

the power system state estimation problem, in

injection buses can be treated as equality

Recall from sectlon 3.2 that- thé LAV solutlon of an n

<

parameter

[N

est1 ation problefi 1nterpolates n of the m

~measurements. Given < equallty constra1nts (¢ < n; if <«

46



A

. P
eqguals n then the LAV estimate is equal to the solution of
the system of eqguality constraints ), the LAV estimate must
interpolate the £ equality constraints and (n-4) of the

measurements. The wtotal number. of interpolated points-.is
& .

{
‘thus (n-4) + £ = n. The new;method selects the ¢ constraints

and the (n-4£) measuremen;s:whfch correspond to the smallest
L, residuals, for interpola;ion. |

In calculating the L, estimate the equality constraints
_are treated as measurements. In step ‘2 of constrai%ed
estimation the least squares residuals of the m measurements
are calculated, and in step 3 Z and H are formed from ?he
interpolated measurement:s and the constraints. In step 4 tgé
L, eétimate is computed. Alf”inequality constraints ar; then
checked. If any of.t?e inequality constraints are violated,
the L, estimate is recoﬁputéd with all wviolated- ineqﬁality

constraints treated as equality constraints.

)
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The following example demonstrates the method.

o~

Example 3.8 [22] | |
" Fit the data { (1,2),(2,2),(3,3),(4,4),(5,3)'} with a

ax + b,\subject.to the

straight 1line of the form y
constraints y(6) = 5 and y(0) < 1.2 . The estimator equat ion

can be written as: N

.z =He
[ 1 1] '

/

2 <| 2 1 |\

where: z=13 H=13 1 6 =

4 v 4 1

| ‘ 3 5 1|

/ | 3] e T

/
The edual ity constraint can be, written as:

where: = 'c=16,11,d=15]
The inequal ity constraint can be written as:
F6 < f - (3.20)

where: E=10,11,f=1121,




f

Sinceé the equality constraint is treated as a

-
-

measurement . the estimator equation and the equality ©

-

constraint can be combined into the form given in equation .
' Voo

(3.21).
- A8 =B "(3.21)

11 2]

2 1 2

™ 3 1 ’ Z 3

P ' A = = , B = }'Zt = .
4 1 d 4

5 1| » 3

6 1 5
i | [

~

Now A and B can be used to calculate the’L, estimate.

2
Step 1 + Calculate the least squares solution 6",

N

. N a 0.543

e = A A= 2| =
: «) b 1.267
r
Step 2" Calculate the residuals of the .Ieast. squares
* est imate.
'y ~ 0.1905 |
rs "O ’ 3524 . k!
- r=1prs | =z-H = | "0.1048
ra 0.5619 r
rs ~0.9810

~ “Note that re does not need to be calculated since

‘.

B ‘ RN
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the equality constraint is automatically part of

the interpolated set. o )
Step 3 Select the measurement corresponding to the

interpolation. Form Zz and H.

The smallest residual is rs.

) 3 R 3 1
P Z: H =
; 5 6 §1
Step 4 Solve for the LAV estimate.
8 =iz
) 7 |77
g:
1 5

Now check the inequality constraint that is given

by (3.20).

. 0.667
E§ = [ O, 1] =1.0 < 1.2
' 1.000

The inequalﬁ?@ constraint is nbt,violaged and .therefore é is

the L, estimate. | .

PP

If, however the lnequallty constnalnt were 9 < 0.8
then the problem wouﬁd be-solved again with the inequality

; constnalnt treated as an e@ual:ty constraint E§ = 0.8.

\\\

e

smal lest nesldual and the equalrty constralnt for

50
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! ‘ :'

n chapter V the new estimation technique will be

d to the p%nﬁr system state zélimation problem,

51



' CHAPTER IV
C\IPOWER SYSTEM .STATIC STATE ESTIMATION

This chapter begins with an introduction to the power
gystem' state gstipation problem. fhe ‘role of a state
estimator in the'monitoring and confrol of a power system is
then discussed. The chapter concludes with a . brief
Qescriptibn of "‘previous research in che application of least
squares ;hd least absoluté value techniques to power system

state es’' ‘mation.

4.1 The Power System Static State Estimation Problem

The state of an*e;ectric power system é%n“be comple}ely_
.descr}béd;by the set of voltage magnitudes and phase Aéngles
ét all of the buses in the system [23]. For this reason
voltage magnitudes and phase angles are often called the
state variables of a “power system. Given the state of"a
po;er system, all other quantities of interest such as line
curren§§ and power flows, can be calculated.

The power system state.estimation problem is to develop
a ‘static state estimator. A static state estimator can be
H}described as a data processing algorithm that “¥ransforms
metered measurements and information about system structure
into_an acturate estimate of the system state. Figure 4.1
illustrates the inputs and outputs of a state estimator.

In the next'section; the nature of .the measurement

sets, - that are processed by state estimators, 1is

investigated.
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; /)
4.1.,1 Measurement Set - . y

The measurement sets processed by power sYstem state

,estlmators usually contaln measurements of real and reactive

»

power flow along system transm1ssaon lines and measurements
of real”and reaetive power injections at the system buses.

| Tnere are many sources ot measurement errors -in any
power system monitoring scheme. Some of these sources are:

noise 1in 1nstrumentat10n and telemetry, errors in system

modelling, rand  malfunctianing of monitoring .and
. oo - . :
 communications eqguipment. Measurements which contain large

_errors are defined_as'badfdata.

It is possible to calculate a state estimate if the
number of measurements taken is equal to the numbery of state

variables, however, such an estimate would be ‘inaccte

because all of the” measurements contain noise and the’

‘'measurement set 1ikely'contains bad data. In order to reduce

the negative impact of bad data and noise on the atcuracy -f
the state estimate, the number of measurements taken (m)

always exceeds the number of state variables (n). Another

reason why m should be greater than n is so that the power

system will be observable and will remain observable even

when some measurements are unavallable. ™~
Observability“ can be deflned as the ability of "'the

measurements to represent the state of the entire system. If
N . ! Y A

encugh. measurements are not taken, it may not be possible to

estimate all of the state variables, and thus the power "

system will be unobservable to the estimator. Also if some

54
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measurements ‘become wunavailable, a previously‘observéble
power system may become unobservable.

The {%atio of m divided by n 1is defined as che
'redundané?‘fétio. For power syétem state estimation the
commonly accepted range‘of redundancy ratios is‘1.4 to 2.8
- Larger redundancy ratiés are too costly énd smaller .ratios
often render the System unobservable to the estimator.

4,1,2 The Role of.a State Estimator

State estimators provide a data base that can be used

for monitoring and control functions. The data - from state
estimates is made availabié to power system oqgrators in the
form of visual disﬁlays. The data can also be Eor automatic
~control, and té monitor system security without operator
intervention. Such a scheme “rould signal. the operator
whenever a ﬁondition that redquires his cention occurs. On

‘line load forecasting algorithms and uptim@l power flow

programs can also use the"data base that is provided by

state est:imates [25]. The -data could ‘also be useful in.

v

checking system topology, anomaly detection and fault
diagndgis [26]. The data is also‘useful for off 1line tasks
such asﬁ medium and long ‘range’ load -prediction, unit
commitment,  contingency éﬁélysis, data loggi%g ‘and

maintenance scheduling [27].-
{ 4

.

detecting faulty .instrumentation and thus facilitating its

repair [28].

When state estimators identify bad data they are

55



As pbwer systems become larger and more complex, even
more uses of the data base prdvided by state .estimators wjil
’ $

be found and the importance of state estimators will
undoubtedly increase.

4.2 Least Squares Est1mat1on Applied to Power: Systems

The . power system state estimation prqblem was

> formulated in 1970 by Schweppe et al [23], Larson et al [26]
. N !

J

and Stagg et al [29]. All three of the original approaches

‘to-thel'gpdwer system state estimationiprdblem used some form.s

of we1ghted lea¥t, squares estlmatlon.

The follow ng is a 51mple 1mplementatlon of weigﬂied

ﬂleast squares (WLS) timation theory.
The cost function that ‘must be minimized for WLS

estimation is given by'(g;i)f'

S

C 3 Pz - vz - HB) T (4D
/k.,« ~. Lo : ”q,
'whege: oo~z is.an mx1 (m » n) vector of mégsurements.

.~ H(8) is ’ah .mx1 vector “which represents the
non-linear relationship between z and 6.

—ﬂg is an nx}1 vector”’ of system parameters.
r‘“

- v is an mx1 vector that contains the measurement

< !

5 .
‘ noise.

&

P N * %sfan mxm wéighting matrix which 1is wusually

egual to. thglinverse of the covariance matrix,

v o
= R ™2 L where R = Expected Ya;ue-(z v ).

-1
V\./ .

~as in’ (4 Z)



3 = (8z - 35150007 W (Az -35].a8) (4.2)
where: - Az = z - H(é)

- A6 1s the change in the state estimate.

- Eﬁlé is mxn, and ‘Fépresents the = partial

derivative of H with respect to the state of the

system evaluated at é.
2.’*

* The 1least squares estimate 'is obtained in the

‘following manner:

1) Assume an initial starting point é. Usually a
flat start { i.e. all voltages = 1 per unit
and all phase angles = 0 ) is assumed.

"2) Calculate the valué of A6 which minimizes

(4.2). The value of A# can, be calculated. by

(4.3). -
_ dH, T, (0H .y 1-1¢f 8H, 4T
A = [.(5§|9) W(Eglg) 10 3E|gv] WAz (4.3)
3) Update the state égtimafé using (4.4). -

f>
)
>

+ 06 (4.40
.

~4) If A6 meets the convergence criteria 6 is the
weighted 1least squares estimate. If Af§ does

not meet the criteria, return to step 2.

All of the Weightéd least squares techniques that have.

been developed for power system state estimation, use some

variation of theé;echnique that has just been given.
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Least‘squéres éstimatOrs prdvide én optimal eétimate if
the componenté of the . error vector foilow a Gaussian
distribution [4). However 'it is well known %hat least
sduares estimators /éan"produce biased and inaccurate
‘estimates when the error vector doés not obey a true
. Gaussian distribution'ér if bad data is present in the
measurement set. Conséquently considerable research has been
cbnducted iqwdeQeLoping méthods 6f detecting the présence of
bad data iﬁ..the'measurementrset; Once the presence of bad
data has been détectéd and the bad data point has been

identified and deleted from the measurement set, the least

squares.estimaté’can be computed [30]. . :

Some Qf the techniques that have been developed for bgd -

data deféctibn and identification involve préfiltering of
the measurement set; while others involve inspectiqn'and
testing of the least squarés eéstimate and the error vector i
[31). Some researéh hés'.also-explored the possibility of
" adjusting the least squares cést function so that bad data
can be readily ideﬁtified. Other approaches to Fhe bad data
probiem involve geometric transformations. Although - many

Y

methods of dealing with bad data have béen developed, none

of the methods have been widely accepted. Research 1is’

continuing in this area.

LN

4.3 Least Absolute Value State Estimation Applied to Power

Systems | - .
Rather than develop methods of dealing with the -bad

data problem encountered by least sgquares estimation, a few

+
g

v
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reseachers have developed LAV state estimators. The cost
function that must be minimized .by a least absolute value

state estimator is given by equation (4.5).

As mentioned in chapter II LAV estimates are relatively
immune to bad data. 1In the context_gf poWer.system state
estimationAthis means that an LAV estimator does not require
any additional bad data detection software. Also, it will be
shown in chapter V thgkxghe residuals of an LAV estimate can
be used to identify bad data.

The first suggestion that LAV estimation could be used

as an alternative to least squafes power system sState

estimation was made in 1978 [32]. In a well written paper

Irving et al compared least squares and LAV estimates

Y

( which “were Aqbtained' 5& linear programming ). Their
research showed» that LAV estimates are superior to least
Squares estimates when the measurement set contains bad data
and the leaét sguares estimator does not wuse bad data
detection Softﬁare. _

In 1982_;Kotiuga and Vidyasagar [30] présented the

.

results of their research work in LAV power syéfem ~state

estimation. . Their results confirmed those that were

presented by Irving et al. The main difference between
Kotiuga and Vidyasagar's work and the work presented four
years earlier, is that Kotiuga and Vidyasagar claimed . that

d .
their linear programming based formulation of the estimation

2
/

- H (O] | (4,890




problem is more effi¢cient. 4

In 1985 Kotiuga ‘[33]’ and Falco [34] developed LAV
based, power system t}acking state estimators and in 1986 Lo
and Mahmoud [31] presented a decoupled LAV power system
state estimator. ‘ ..

All of the LAV state estimators that have been
developed have used linear programming to calcul%té their
estimates. Despipe the advantagés of LAV based estimation it
has not been widely accepted as a better approach or even a
regsonable alternative to least squares power sysﬁem sfate
estimation. | . '
| In the next chapter it will be shown how the new LAV

estimation-technique, that was presented in Chapter III, can

be applied to the power system state estimation problem.

[
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CHAPTER V

APPLICAT]ION OF THE NEW LAV METHOD TO POWER SYSTEMS

In this chapter the new least absolute value estimation
technique 1is applied to t%@vpayer system state estimation
TR R

problem. The chapter ‘begiﬂ%&“,' a ‘'discussion of the

relationship between power '§§§tem measurements and state
g B

variables. The g

rtant concept of observability 1is then

-explained. This 1is foll ed by a description of the new

N

algorithm. It will then hg? ownzthat the new algorithm can

be used to identify bad.éata. The possigility of using the
new algorithmvto correc£ errors in system topology 1is also
dealt with. The chapter concludes with a discussion of the
constrained power system stéte estimation problem.

5.1 Power System Modelling

Before applying the new LAV estimation technique, .5
power éystem model must be debeioped. 'Spgcifically the
relationship betweenE the meésurements, the state variables -
and the system parameters must be described by equations.
Obviousl& when bus voltages and phase ahgles are measured,

\ . wk -
the méasurement equals the true value of the state_variable
plus noise. However, when power }low5~ and injections are
measured the relationship - is not as simple. The
relationships between measurements of power flows = and
injections, and _tﬁe state variables are given by equations

(5.1 - (5.4).

1
™z

1VkVnYkn§os(6kn+6n-6k)‘ h (5.1)



Q) =~ng’1vkvnyk}fin(ekn+6n—8*k) ~(5.2) .
P. 7= VizYs%kcosxesik) - Vi2§£;cos(91k) +
VinYikc°5(91k+5k’5i) ) (5.3)
Qi = —VizYSikSin(esik)'+ VizYi£Sinkeik) oy
V'ikaiksin(eik+5k—6i) ‘ (5.4)
« N = the numb;r of busés in the power system.
Py, = rgal power injected into bus k.
Qx :mf réactive_power injeéted Qnto bus k:
P\ = real power flow from bus i to bus k.
Qi - reactive power flow from bus i to bus k.
Vi = the magnitude of the voltage ét bus k.
5k = the phase angle of the voltage at bus k.
Y = the magnitude of element (k,n) of the
'admittanée matrix. -
6,, = the phasé angle of element (k,n) of the
) _admittance‘matrix.'
Ys,\ = one-half of the magnitude of the shunt
admittance of line 1i-k.
6s;) = the phase angie.of the shunt admittance of

line 1i-k.
' /

Thus a power system can be modelled'by\state equation

z = H(B) +v ¥ (5.5)
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where: \
z is an mx1 vector that cont‘ins all of the m
(m>n) meas;rementé. a\
H(8) ds . an mx1 vector which ’ fepresents
f relationships (5.1) to‘(5.4). - |
6 1s an nx1 vector (.ﬁ‘= 2(N-17/= the number
| ;?/ of ‘'state variables ). ,
_y}i is an mx1 vector cf measuremént er%ors.

Note that bu§  1 is wusually the réfefénce bus. The

voltage at bus 1 is assumed to be known and the phase ‘angle

at bus 1 is the reference phase angle for ail of the other

buses, i.e. &, = 0 . Therefore the number of state

variables, and the number Qf‘blements in 6 is 2(N-1), where

N is the number of buses in the system. %

A simple 3 bus, systém is modelled in example 5.1

Example 5.1

.

Given: the 3 bus system as shown in figure 5.1, the

measuremants indicated on the diagram and the admlttance and

-shunt admrtrance matricies glven by (5.6) and .(5.7), mqqel 

the systeqm with an equatlon/of—the form z = H(8) + 2}3 N@te

that all voltages are.’ in pen unit andrall phase angles aﬁe;

in radians.

Y11|_911 Y12|_Q12' Y13|_913

Y aomrTTance = | Yarl-far Yaal 822 Yas|_f2s
| ’ | Y3_‘I___9_31 Y32|_632 Y33!_Q33
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Yzl 82! Ygisl 8

Y11|_9_S11 s st2

o s s™
Ysrun = Yozi| 8521 Ygaal 8522 Ygzsl 6.2 (5.7)
Y531|_ﬁs31 Ygaz| 8532 Ysasl_ﬁsaéi
: AN L i
In order to represent the system in the  form 2z =

"H(8) + v, the vectors: z, 6 and g,musf‘@e4defined
by (5.8) - (5.10). |

-
kR

P,
@2 1o

Pi-2 .
Z = ’ ’ (5.8)
. @1-2 s

. : P23
O?Z - ‘3 [
Pi-

‘01'2;11 . 3

9 = (5.9)




A

Vi W
V2 o
| v=| - ' . (5.10)

: o'.“?ftw@;\} ’

N [

Laln

f%“ &

v1 (o] : U .J’

The 3 bus power system is now model ted by z" H(e) + Vv,
where the vectors in the equatlons ane deflneJ’by (5.8) -
(5.10). Note that H(8) represents the«relatlonshrps between
the state variables and the state équatlons H(6) contains
equatlons ] ike (5 1) to (5.4). »

The cost function to be minimized’in'Oré;r to obtaiﬁ
the weighted LAV power system state estimate é, is given by

(5.11)s

m . - , ‘ :
J= I wilz; - H{(8)] ! (5.11)
i=1 k
*where: m -is the number of measurements. *\\\
z; is the ith elemgnt of z. N

H.. is the ith element of H.

w. is the weight attached tc the ith element.
1 . N

Equation (5.11) and the state egquation are non-linear,

~therefore (5.11) must be minimized by an iterative

procedure. When (5.11) is minimized _at least n of the m

terms in thg/equation will be equal to 0 because an LAV

estimate interpolates a number of measurements egual to the

f

number of state variables. In section 5.3 the procedure of

m1n1m121ng_ (5 to obtain the  least absolute value



estimate, will be given.

5.2 Observability

Before the new - algorithm 1is applidd to power
state estimation,vthe- important concept observability
will be discussed. If a set of power system measureménts can
be uséd to obtain an estimate of the power system state;
then the measurement set is said to be observable [35].

For least squares estimation the entire heasurement set
is wused \Ro determine Athev L, -estimate and thérefore*the
entire measﬁrement set isgtésted for opservability. In least
absolute wvalue eStimatioﬁi@nly n of m measurements are uséd
to calculate the fin?lzﬁ;}éstimate, ‘and vconsequently only
the subset  of the n measurementé> must- be tested for
observability. Recgll from section 4.2 that the non-linear
state equation z = H(Q5i + mx can be linearized, as in

equation (5.12)..

Az = %|éAg-_+ g | (5.12)
where: Az is z - H(B).
- a6 ié the change in the state estiTate.
p _ \ -
%%lé is mxn and reprg§émﬂ§ the pdrtiai'derivative‘
7 ofw with respeét. to the State evaluated at
8. :
, q is mx1 and represents noise'and errors due
ko '

linearization and bad data.

An L, estimate of Q can only be obtained if %%'é has a

column rank.of .n, at each value of § encountered during the

-

LA,
’




iterative process of obtaining tha L. estimate. Now consider

‘the nxn matrix %%_lé which contains the n of the m rows of

which correspond to the n interpolated measurements., If

55
H

the column rank of,ae Ié is equal to n at each §.encountered
= “ . v
in the 1terat1ve LAV estimation procedure, then the

interpolated- subset cf n measurements is observable. If the

column rank of “§_| not equal to n at any of the values

of 6 encountered dur1ng the estlmatlon procedure then the

‘subset of n medsurements: is not observableh however,. a

1

different subset of n measurements may be observable. -
Thus, the guestion of observability is related to the

column rank of the matrix 5_|9 for L est1mat10n and the

column rank of g? 8 for L, estlmatlon. Matricies of ’'this

form are called Jacobians.

~

In 1980 Krumpholz, Clements and Davis discovered and
proved an extremely useful relationship that exists between

the measurement set and the Jacobian matrix [35]. The

relationship that they discovered ,made,it unnecessary to:

. calculate the column rank of the Jacobian. Instead they'

s

'showed that a power system measurement set or subset can be

tested for observablllty by examining the measurement set
and the structure of the power system.
5.2}1,0bservability‘Terminology

]

. Before examining the observability conditions that were

established by Krumpholz et al, several key words must be

w

defined and explained.
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A power system contains a set of buses (nodes) and a
set of lines (branches). A 535' at which the real and
reactivn power injections ;re measured is called a measured
 bus, and a bus at which these quantities are not measured is

an unmeasured bus. A measured line is a line whose real and

reactlve power flows are measured.

A .tree: con51sts of any connected loop- free collectlon 

69

of measured lines and all the buses that the. 11nes. are"'

connected to. A critical tree is a tree which contaihs all
of the unmeasufed buses in a power system. If a po&er system
measurement set contains more than one tree, the collection
of trees 1is <called a forest. A boundary injection

Sy
Pt

" measurement is a real or reactive power injection

measurement at.a bus that is part of -a- tree and 1is also

L4

connected to one or more unmeasured lines. Figure 5.2a shows

a. measurement that is not a boundary injection measurement,

and figure 5.2b shows a measurement that is a boundary

injection measurement.
A‘line flow measurement is redundant if its addition to
_ the measurement set does not fnébeasq the number of' unknowns
B i .
that can be solved for. Consider‘the fdur,buses and four
line flow measureﬁents shown in figure 5.3 . ( Note that all
vn%}ages.in this theSis\are in per unit and all phase angles
are in radidhs ) ” |
I1f 'Pz_,, P;-, and P4-3; are meaéuredp 6,, &, aﬁd 6, can

be calculated. The addition of P-4 to the measurement set

does not add any- information in ‘the sense that no new
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injected ‘Pinje\cted
DUS . 4 DUS 4
measured measured measured unmeasured measured measured
line line line line line ~ line .
(a) (b)
Figure 5.2 injected in (8) is not & boundary injection measurement

because the bus 1s not connected to an unmeasured.line.
injected 1N (b) is a boundarg injection measurement

P
because the bus is conﬁec;sed by the measuted lines, to a
tree and the bus is also connected to an unmeasured line.

V3‘: 1.1?@% | ‘V4: 1.15
Bus #3 P< . 4O Bus *4 .
NP G
’ P32 P

P |
. Bus #2 2>1 Bus *1
V2: 1.05 V1 = 1.00°

52=? 81 =0

Figure 5.3 A Four Bus Power Sgstefn
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unknowns can beﬁ calculated. Therefore méasurement Py-s 18
redundant with respect the measurement 'set formed by the
other three measurements. Note that the three measurements
form a tree which contains four buses and three lines. The
~addition of the fourth measurement creates a loop. In
general a measurement that forms a loop from a tree, or par:
of a tree, is redundant.

5.2.2 Necessary Conditions For Observability

Krumpﬁolz‘ et al proved that a measurement set is
observable if all of the unmeasured buses are connected by a
tree, 1i.e. a critical tree exi&;s. They also demonstrated
that an unobservable measurement set can be madé observable
by the addition of boundary injections to the measurement
set. The folldéwing conditions must be met before a boundary

injection measurement can be added to the measurement ,set:

a) The :c-us at which the measurement is made must

se connected to at least one unmeasured line. .

b) 3 path of unmeg§af§a line(s) that lead from”

' N .
the .- jected bus to an unmeasured bus, must be

availeble. The unmeasured-bus may be part qaf
ay
anoth=r tree or may not belong to any tree.
c) The path of unmeasured lines must not pass

t--ough any other unmeasured buses.,
',‘ . s

If all three conditions are met the boundary injection

is added to t-:= measurement set and the lines, in the’ path

between the injected bus and the unméaégifd bus, are added
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"to the connection diagram. If enough boundary injections are
- added to the measurement set the. forest will eventually
. : " \ R
observable
The follow1ng foursexamples 1llustrate the application
of the observability conditions. The power system used for

all the examples is shown in figure 5.4.

Example 5.2
.. /

Given the power system shown in figure 5.4 and the

/ . . :
measurement set ( Py-2, P2-5 Ps, P&, Ps ), determine if the

measurement set .is observable.

The three buses (3,4,6) that heve injection

. measurements are measuned buses The three unmeasured buses

(1,2,5) are connected by the 1line flows P, and Pz—s

ey,

Therefore a cnltrcal tree that connects the thnee unmeasured
buses exits, and consequently the’ measunement set is

o g

observable.

Example 5.3

Given the power system shown in figure 5.4 ‘and the
measurement set ( P1_2, Pi—s, Ps_s, Ps-s, Py J determine if
the measurement set is observable.

S

. ‘ i RN L '
The only measured bus“is bus m#ﬁ- In order for'~ the

. measurement set " to be obsenvable the five unmeasured buses-

must be connected. Fno% the connectlon dlagnam shown in

figure_ 5.5 it can be seen that buses 1, 2, 4 and 5 are’

connected and buses 3 and 6 are connected.

K

beCome a critical tree, and the measurement set-will éhus be



g

us ¥ 1 Bus *2 Bus #3
N
O O —O
~ e
O QO O
Bus *4 Bus #5 Bus #6

| Figurés

~
us *1 P, Bus #2 Bus *3
Q —CO) Q
i

144 1 P25 Y ?3-6
> O O
‘ Bus *#5 Bus *6
P4

;

.S Connection Diagram for Example 5.3
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However, the two trees that connect the two sets of

buses, are not conhected to each other. Thus, a forest .

composed of two trees exists. Since a cnitical tree does not

exist the measurement set is unobservable.

Note that bus 4 is a measu%ed bus and also belongs to a
tree. §Since a measured bus does not neeq to be part of a
tree to eat;sfy fhe'obsenvability-conditions the-fine flow
measunemeht that connects buses 1 and 4 is Pedundant and
should be deleted from the measurement set. Altennatively,
the pOwer injection \measurement at . bus #4 can be deleted
from the measunement set thus making bus #4 an unmeasured

bus. The\A non- Fedundant measupement set will -‘not be

obsenvable but will contain one less measurement than thej'

redundant measurement set.

_ - , ‘\\
Example 5.4 ] ‘ ?
| N

.Add a boundary injection meaSUPement to the measurement set

\

that is given in example /5.3, so that ffﬁbeedmes observable.
It was. mentioned in the previous example that one of
two- measurements, P. and Pi-. should be deleted from the

rnterpolated .measurement set. Arbltnanllyydelete P-4y from

the measurement set. The connection dlagnam'For the Peducedh

measurement set is shown in flgune 5. 6 A boundané injection
measunement whlch makes the measurement set observable must

now be added to the measunement set. First consider adding a

power lnjectlop measunement at bus #1. Bus #1 is part of a’

tree and is connected to an unmeasuced line (line 1-4),

therefore the meesurement of power injected at bus #1 is a

)
P
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‘Bus*1 P\ Bus *2 Bus *3

O R ’ —O O

Bus *5 - Bus *6 -

Flgure 5.6 Connection Diagram.for Example 5.4, w1th the

Reduced Measurement Set 4
Bus #1 P1_é ‘Bus ¥2 - Bus *3 .
O g o O
rvpzjs . TP«:;—s
Bus *4 . " Bus *5 () ' O
) Bus *6
Py ' Ps

F1gure 5.7 Connectlon Dlagram for Example 5. 4 with the
New Measurement Set.

RS
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boundary injection measurement. However a path of unmeasured
lines that runsé from bus . #1 to an unmeasured bus that
bel®bngs to the other tree in the fonest ( containing buses
#3 and #6 ), does not exist. Theneforehaddf%g the power
injectioﬁ measurement at bus #1 ﬁwill not méké "~ the
measurement set observable. Now consider adding a power
fnjeption measurement at bus #5. Bus #5,i§ part of a tree
ahdu is connected to two unmeasured 7ine$, therefore a power
injection mes suremert at bus #5 is 'a’ boUndaPy injection

measurement. Jne ~° the two unmeasured ]ines connects bus #5

to bus #6, which belongs to another component of the forest.

Therefore adding the injection measurement at bus #5 will
add line 5-6 to the ‘connecfion diagram. The connection
diagram of the new measurement set is shown in figure 5.7.
“All of the unmeasured buses aée now ~connected by a cfitical
tree consequently the measurement set(.P,_z,‘Pz_s, Pi-s, Pu,
P. ) is observable. Note that adding Ps to the measurement
set does not add Iine 4-5 fb thevconnection.diagnam because

linéﬁh—5 does ndt connect two trees.

4

Example 5.5

List ‘all of the measurements which can be added to the

measurement = set ( Pi-z, P2-s, Ps-s, P. ) to make it

‘observable. Figure 5.8 contains the connection diagram ~for

“5

the four measuqements.

=

If a power injection measurement at bus #5 is added to .

ihe measUnement set, then bus #Srwillnbecome'a measured bus.”‘

All of the measured buses will then be connected and
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consequently the measurement set will be obsenvable If a

power flow measurement along either line 2- 5 or line 5-6 is |

added to the measurement set, all of the unmeasured buses
will be  connected and the measunemént set will be
observable If a power flow measurement along line 4—5 is
addea te the measuremeﬁt set, line 4-5 will be added to the
connect ion diagram. However, the measurement set will remain
unobservable since the unmeasured buses ( 1, 2, 3, 5, 6 )
will remafn unconnected. If a bouﬁéany injection measurement

at  bus #2 is added to the measurement set, line 2-5 will be

added to the connection diagram. The unmeasured buses will

then be connected by a critical tree and the measurement set

will be obsgnvable. Similarly a boundary injection
measurement\ at bus #6 will add 1ine 5-6 to the connection
diagram and é\cnftical tree will be formed. Thus adding a

bus ~injection measurement at bus #6 will make the

measugﬁment set obsegvable. So the  individual - measurements

that can be addéd to the measurement set to make it
observable a!"e{ Pg, Ps—s Or Pe~s , Pz_s O’"_'Ps—z. , P. and

Pes }.

' 5.2.3 A yéwJObservability Algorithm

) Krpmbholz et al developed‘an algorithm that can be used
to test a measurement set for observability [35]. If the
measurement set is obse;vable a state estihate can be
calculat%ﬁh 1f the measurement set is not observable their

algorithm returns the observable sub-networks of the

- measurement  set.
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.

wparticular subset of n measurements is not observable,

Although their algorithm 1is well suited to least

squares estimation, it is not feasible for LAV estimation. -

In L, estimation, every measurement is used to calculéte the
estimate. Thus when a measurement set 1is tested for
observability all m of the measurements are available to
fulfill the observability conditions. For LAV e§timation
only n of the m measurements are. used to calculate the
estimate. Consequently for L, estimation, the n measurement

subset must satisfy the same observability conditions that

the entire set of measurements had to fulfill for L,

estimation. Also, for L, estimation, if the set of m

measurements 1s not observable a least squares estimate’

cannot be obtained until additional measurements are added

“ to the measurement set. Whereas for L, estimation, if a,

1U%nother subset may be observable and the addition of more

7
measurements to the measurement set may not be reqﬁired.
) m . m! : . s 3
There are (n) ( i.e. ATTR=mT ) possible ubsets of n

meaéﬁrements, many of which "are not observable. If the
‘ Ry }

TR

algofé;hm that was developed by*Kﬁumpholz et al is applied

to obsé?vability testing for LAV'ésfﬁmation, many subsets of

L~

measuremenfs ma® have to be . tested before an observable

subset is.vicugd. If the first subset tested is not

‘observable another “*s@bset would have to be formed and then
tested for observability. If the second subset is not
observable . the process would continue unt%l an observable

subset is found or"allApossible subsets have Béen tested.
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Rather than use the observability' algérithm that was
,deye}oped by Krumpholé‘ et - al an observability algorithm
better suited to Ly estimation was devised. The new
obseryability algorithm constructs an observable subset of n
measurements.

\\{Egcall from chapter IV that for linear LAY estimation
the interpolated set ofrn measurements corresponds to the n
measurements whiéh have the Qh@llest L; residuals. In power
syst 'm state estimation the set of ‘h measurements that
corresponds to the n smallest residuals is rarely
.observable, so the procedure of choosing the intefpolated
meésurements must be modified.

Due to the weak coupling betweén real power
_measurements and bus ‘vgltagés andvbetween~reactiVe perr
measurements and the bus phase angles, the obserVébility
condif&ons, that wgre-presented in section 5.2.2 are applied
to two observability sub-problems, namely P-§ and Qv
obser;ability. This means that both the subset of :eal po;;r
measurements and the subset of'reac£ive power measurements
must be observable.

v

The observability algorithm processes one measurement

at a time. If a measurement is redundant it is rejected, but.

if a measurement contains non-redundant information it {is’

added to the 1interpolated measurement set. Once the
interp?i;;ed“meaéurément'set containg n measurgments the L,

§
estiT7€e can be calculated.

‘
3 o
, . {
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The order of processing the mea%ﬁiements is as follows.,
The measurements are ranked according to their/Lz residualé.
The measurements are then processed according to this
ranking starting from the measurement that correspdﬁdg to
the ‘smallest L, residual. Once n measurements have been

P4
accepted into the inte;polated‘set the processing stops and

an L; estimate isiéélculated. ’

‘The flow charts that are given in figures 5.9 and 5.10
demonstrate  how real power measurements are'prbcéésed. Note
that;-forf the new observability algorithm, a line is
considered to bé' unmeasured unless a measurement of power
flow along the line belongs to the interpolaﬁed_ measurement
set. Similarly a bus is an unmeasured bus unless a power
'injection measurement, at .the bus, | beiongs/f‘to the
vinterpolated ~measurement set. Consequently, before any
meaéuremEnts are processed all lines and all buses are
considered to be unmeasured.

If the entire set of real power measurements is
processed, as in figure 5.9, and an observable set of
measurements is not fauna; the Teal power boundary injection
A measurem;nts are proceésedjqn tﬁé manner described in figure
5.10. The .order of processing“of the feal péwer boundary

25
=44 .
injection measurements is determined by the L, residuals of
s ! .

each measurement, i.e, the boundary 1injection measurement
Vs

with the smallest residual is -processed first, followed by

the boundary injection measurement with the  next ‘srallest

-

residual if necessary, etc.

~
,

N
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Consider the flow /chart in figure 5. 9. An 1n]ect1on
measurement is accepted only Lf it is taken at a bus that is
not part of a tree. Thus/an unmeasured bus that belongs‘mo a
tree will -remain an un easured bus and cannot become a
measured bus. Line flow measurements. are accepted'only when
they connect twc unmeaéured buses that do not<belong to the

i -
same tree. A line Flow meaSurement that connects two
-unmeasured buses whlchlare already connected by a tree} is
redundant and forms a ﬂoop. C
. Reactive nower'measurements are handled in the same
manner as real power measuremengs.

The '.fbllcwing . two examples illustrate the
implementation of the new pbserVacility algorithm. The power
system in both exanplesfis similar to the power system shown
in figure 524; with the only différence being that the power

’

- system shown in figure 5.11 has unknown bus voltages.

Example 5.6

Given the power system shown in figure 5.11, apply the new
obsenvablllty algor ithm to the measurement set ( P,-., P,,
P&, Psy Puciy Pacs, Paey Py, Py, Psosy Qi-zr Qicu. Quos,
@1, Qz2-5, @s, Qs, 02_3, Qz, @3, @s-6 ) and)defenmlne‘an
observable subset of meaurementSJIF one exists. Process the
measurements ln the order given.

First consider the real power measurement subset
( Pila, Pay Pey Ps, Paci, Pacs, Pse, Ps, Py, Ps_s ). The
/,_ﬁipst meaSUPement, P,-., is accepted into the interpolated

set. The next measurement , P,, is nof accepted because bus

8¢
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#2 is already panf of a tree. The next two measurements P,
and Ps, are accepted because neither bus #5 nor bus #6
belongs to a tree. ~Thus, buse§(5 and 6 become measured buses
\and do not have to belong to a cnltlcal tree. The\ next
measunement P._, is accepted because bus“#4 is an unmeasuned
bus that does not belong to a tree. The set of unmeasured
buses now contalns buses 1 to 4. Three of the unmeasured
buses (1,2, and 4) are connected py, a tree. The only
'onmeaSUPed bus that is not pénf .of a tree Iis bus 3.
Consequently, bus 3 must either join the set of\.measuned
buses or be connected “to the tree by a line flow
measunemént. The next meaeynement, P._s does not involve bus

3 and is rejected. The next measurement to be processed ' is

Ps_s; since it connnects bus 3 to a measured bus instead of

. ' v
an unmeasured bus it :is- also rejected. The following

measurement, Ps, s accepted into the measurement set

because it transforms bus 3 into a measured . bus. The
acceptence oF 'Pa into the measurement set leaves the
‘nemainlng three unmeasured buses connected. The accepted
subset of neal.powen measurements l P152,4P5, Ps, Py—y, Py )

is thus observable and the ‘processing of real power

- ., - /‘—.
measurements need not continue.

Now consider the react’ive power. measurements ( Qi-.,
@i-as Qams, @1y Qams, Qs, Qo, @2-s, Qz, O3, Qsos ). The
first three measurements connect four unmeasured buses and
aFe accepted into the lntenpolated measurement set. The next

measunement, 01, is an anectlon measunement at an
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unmeasured bus that already belongs to a tree, and is‘

rejected. The Following measurement @.-s, connects buses 2
and 5 which are alneady connected by the tnee that IS formed
from the first three measurements. So the measurement is
rejected. T@e measurement of @s is rejected for the same
reason that @, was rejected for. The measurement of . Qs IS
aecepted since Q¢ is an unmeasured bus and is'net part of a
tree. The next measurement Q&-s"is-also accepted because it
connects bus #3 to all of the unmeasured buses. A critical
tnee'that connects all of the unmeasured buses now - exists
and thenefone the intenpelated set of reactive power
meaSUnements @12, Qi—u, Qu-s,. s, 02_3 ),'is observable.
The connectlon dlagnams Lfon -the real and reacthe

measunements that were accepted are given in flgune'5.12.

Example 5.7

| Given the power system shown in figqne=5.11,~apply‘\the new

obsenvabflityv algorithm to‘tne measurement set ( P;-., P2,

PB PSr PB-—‘!V P2—5' P3—Sv 01—21 O“-—Sr Oa' 02—57 01—.ﬂ1.061.

0,“ )  and detenmlne an observable subset of measurements lf
one exists. Pnocess the measunementsaJn the order given. |

First consider the« real power measurement subset

( Py—2y Pz, Ps , Ps, Pa—y, Pz-;, Ps_s). This measurement

subset is the samé as the first seven measurements of the
real power measurement setnin example 536.'The measurements

<10 ‘ ' . .
are thus, processed in the same manner as the finst seven

real powen measunements were processed in example 5.6. So

the measurements P‘,_z,' Pe, Ps,. Pacy ) constltute the =

2.
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P P,
(a) .
Bus *1 . Q ~ Bus*2 . Q Bus #3

Y -4
\~ Q4—5 . , .
Bus *4 o {) . Bus *6
" 4 Bus *5 '
AT : : Ps .

Figure 5.12 (a) Connection Diagram for Interpolated
- Real Power Measurements.
(b)- Connected Diagram for Interpolated
Reactive Power Measurements.
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\
lptebpofated measurement set. after all seven real péwen
measurements  have been proéessed; The inténpolated

measurement set is not observable because bus #3 is an

unmeasured -bus that does not beléng to a tree. The only

boundary injection measurement, P:, is then processed . in/

the manner described by the flowchart given in figure 5.10.
. Since there is aﬁ'unmeasured line from bus #2 to bus #3, P:
is‘accepted'into the 'measurement set and Iine 2-3 is édded
to the tree. AII’ unmeasured bises are now connected by a
tree and therefore the interpo?ated measunemént set (_ Pi-z,
Pse, Ps, Pu~1, P2 ) is observable. |

Now consider the'neactive power measpnements ( @Qi-2,
Qu-s, Qu Qz-5, Qi-u, Qs, @1 ). After all the measurements
~have beeh“pnoce$sed once, the interpolated measunehent ‘set
of reactive power measurements is ( Qi-z, Qu-s, Qz-5, Qs ).
The conneétion diagram is given in figure 5.13.

The boundary injection measunementsv (Qs and Q) are

then.bnoceséed in the manner illustrated in figure 5.10.

: Since a path of-unmeasured'lines between bus 3, and bus 1 or

bus 4, does not exist, neither boundary injection will make
the set of Peacffve power measurements observable. Since the
set of Féactive power measurements is unobservable, -the

., ent ire measurement set is unobservable. -

5.3 The New LAV Power System State Esj:imation Algorithm
Beforeﬂ the new algorithm is presented in detail several

items should be disetissed. First of‘all, the . power system

state ';asti,matién problem is 'noln-li'near, - i.e. the

{
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Bus *1 Q,_  Bus*2 : Bus *3

Bus *4 (- - O B Bus*6?

QG

Figure 5.13 Connection Diagram for the I lerpolated
Reactive Power Measurements of Example 5.7

>
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s
relationships between the measurements and -the state

variables are non-linear. The state equation must - be

linearized, so' that least absolute Valpe~aﬁd leasf squares -

estimation can be applied to the problem. Once the eguations

are - linearized the state estimate can be calculated

iteratively.
The new algorithm assumes that the only measurements
r. :

a%ailable to the estimator are measurements of real and

reactive power flows and injections. If. measurements of some

bus voltages and -phase angles are available they can be used

\,

to modify the starting point of the estimation procedure.
Usually a flat start is'assumed ( all bus‘voltages - 1.vper
unit and all phase angles = 0‘), however any measured bus
voltages and.phase' angles can replace the corresponding

\

state variables in the flat start [31]

Izd

The new algorlthm does not weigh the measurements. All
measurements have a weight of 1. This is~;n contrast to
weighted least squares estimation which wusually uses a
weighting matrix that is equal to the 1inverse of the
covariance matrix. Since the entire measurement set 1s . used
to calculate 5‘ least Squares estimate,:aKwéighting.metrix
which emphasizes the more accurate measurements - is

necessary. However, ‘in- LAV estimation only n of the m

measurements are used to calculate the estimate. Since all n

of the measurements are interpolated, a weightihg matrix

which pulls the estimate closer to ‘the more accurate

measurements is unnecessary.

——
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The steps in the new LAV power system state estimation

algoéithm are now given.

‘Steg,1 Collect all system data and all measurements.
-Step 2. Assume an initial estimate,' 8o, of the -state

vector. Usually a flat start is assumed, however

‘any measured bus Qoltéges and phasé angles may Be

used as part of the initial estimate. -2
' . 3

Step 3 Linearize. the state equation about the state-

L

estimate, 6.

Ve

Step 4 Calculate the least squares solution (Af) . of the
linearized equation.
Step 5 Update § = 6 + Af. If A9 is smaller than the

convergence criterion go to step 6, if it 1is not

go to step 3.

Step 6 Calculate the vector of residuals using:
~ ) . 3\

,_ —aHA AY

= |8z - 351508 |

£

Then rank the residuals from ;mallést to largest.
Step 7 Process the measurements to\\determinp which
e . ) . ‘ -
¢ measurements should be interpolated. Begin with

the measurement that corresppnds'to'the'smaliest
:esidﬁél and continue in order. When processing. a
‘measurement = the criterion used to determine
‘whether a measurement should be\ accepte?i or
rejecfed for 'intérpolation is the observébilty

conditions that have been presented. Once n

measurements have been selected for interpolation

) :
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stop procesSing

Step 8 Llnearlze the state estimate about 9

o
Step 9 051ng only the 'n 1nterpolated measnrements,

calculate the LAV solution (AG) of the linearized.

-equatlon{ p

Step 10 Update 6 = 6 + A§. If A6 is less than the

convgrgence crlterlon go ,to step 11, 1f not return

to step 6.

Step 11 The LAV state estimate is 8% ‘
’ (

€ ) -
- .

A flow chart of the procedure is given 1in flgure 5.14,

5.3.1 Using the New Algorlthm to Identify Bad Data and Check

\

System Topology ) '

_As. mentioned earlier, an LAV estimate interpolates n' of
o :

the m measurements. The remaining (m-n) measurements are not
_interpolated. The residual vector of. the final stafe

estimate'cah be calculated using equation (5.14){
r £ | z-- H(8) | (5.14F

where é is the final LAV estimate. -

Slnce n -measurements are 1nterpolated n of the m’

K3

components of the residual vector will be equal to zero. The

Ciii; (m-n) components will be non-zero. The unlnterpolated
> . ) :

measurements that correspond to the relatively small
" residuals are only contaminated by ‘noise. However, the

uninterpolated measurements that lie far from the state

estimate will have 1ar§ﬁ5§ésiduals'and can be identified as

4

bad data.
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— : COLLECT SYSTEM DATA|
s , : AND ME ASUREMENTS s
ASSUME -AN INITIAL GUESS _
OF THE STATE VECTOR -
R \
LINEARIZE THE _‘ '
A STATE EQUATION -
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CALCULATE THE CHANGES IN THE STATE
- , VARIABLES USING LEAST SQUARES ESTIMATION

™ . ¢
J UBDATE THE STATE
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CHANGE IN

STATE ESTIMATE
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CONYERGENCE
CRITERION
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h 4

- , CALCULATE THE
RESIDUALS -
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cAe "~ [RANK THE RESIDUALS AND FORM AN OBSERYABLE :
5 . SUBSET OF INTERPOLATED MEASUREMENTS

+

CALCULATE THE CHANGE IN THE STATE VARIABLES |
) USING LEAST ABSOLUTE VALUE ESTIMATION

x
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GHANGE IN
STATE ESTIMATE
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CONVERGENCE
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Figure 5.14 Flow Chart off'the Power System State
Estimation Algorithm



'So all that need$ to be done to identify“bad data is to
calc£¥£¢e.the“:esiduals.'Once a bad data measurement is

identified, steps can .be takén_to correct the cause of the

faulty measurement. Note that the residuals need not be.

calculated if ~only an LAV estimate without bad aata
detection 1is feouiped. . |

it should be mentioned that if a.bad data measuremeﬁt
is selected as a member of the interpolated’measuremeht set,
ﬁho‘ LAV state estimate will interpolate the bad data
measurement. In this case the staté eSﬁimate may be of poor

quality 1in the region of the power system that .contains the

'bad data  measurement, .and accurate ' measurements may be

erroneously 1identified as bad data. Testing of the LAV

estimation algorithm indicates that under most circumstances
bad data measurementgbwill not be interpolated.
The new LAV estimation algorithm can also be used to

determine if a line 1is in service or out of service.

Generally, when a state estimate is calculated it is assumed

that the topology of the system is correct. However, if it
is uncertain whether a line 1is 1in service, the state
estimation procedure can be modified so that the correct

system topology may be determined [38].

The measurements that are directly affected by the line

in question are the flow measurements along the line and the
injection measurements at the two buses that the line
. Clonnects. Since it is uncertain whether the line 1is in or

out of service, the flow measurements along the line should



L;ﬁ

be disregarded.

The measﬁrements of the real "'and reactive / power
injecﬁion at the two buses, that are connected by the line
in quéstion,lare pivotal in determining the actual status of

the 1line. Consider one of the two buses and assume that it

» .

‘iS'conneqted to three other lines and the line in question. -

1f the line is in service the power injected at the bus will

be equal to the power flows along the four 1lines. Howevef[

if the line is out of service the power injected at the bus
will be equal to the flow alohg only three 1lines. Both

possibilities can be simultaneously placed in the

"measurement set, so that the same measurement of power

injected will be repeated. Although the two measurements
will be equal, -~ the models that they represent will be

different, - i.e. one injection measurement will be modelled

‘as the sum of three flows, and the other will be modelled as

the sum of four flows.

\All four of the inject: nleasurements ét the two buses
é;e " repeated and modelled in the same manner..A state
estimate is then calculated. vathe injection measurements
that  'correspond to the line being in serviée -are
interpolated, tHen~the linevis in service. If the 1injection

measurements that correspond. to the line being out of

service are interpolated, then the line is out of “service.

\ : - o
I1f measurements corresponding . to both possibilites are

interpolated then the results; are inconclusive. If none Oof

the injection measurements are interpolated, but the LAV
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’residﬁals"that - correspond ‘to one of the two possibilites,
‘are muéh:smailgr than those thatz corresﬁond. to the other
possibility;, then  the line status is represéntedAby the
injection meaSugementé vtha% ‘cor:éspond- to the .smaller
residuals.”  . L. | |

1f all four }njection measurements are‘.hot available,
the same procedure may bé.used withthé availabl¢'injeCtion
measurements. waeQer‘the resultq;ﬁ;y\hpt be;§$gfgliabie;/

5.4 Constrained Power System State Estimation

Most power systems contain some bus- ‘ ‘ch there is
no generation or load. Since real and -e--. v. -ower is not
injected at these buses, these buses called =zero

injection buses.

The Zero values of Pihjected~and'QinjeCted(

measured, can be treated as measurements« This increases the
redundancy of the measurement set ( number. of measurements

divided by the number of state variables ) . withoutladdihg

-

any additional metering costs.

¢ Since the zero values of P. and Q. ( zero

‘ injected injected
injection measurements ) are known to be correct, they are
automatically made members of .the interpolated measurement
set. Thus the LAV ~estimator will be constrained to

‘interpolate all of the zero injection.meaghrements.

théugh ~not .
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as follows.

.a)J

b)

- a)

The handling of zero injection buses can be summarized’

The values of real and reactive power
2 . L .

injected at the zero injection buses ( Piy =

0, Q&N = 0) are treated as measurements and

added to the measurement set

" After the least squares_ estimate has® been
calculated n meaSnremeﬁtS’fmust' be seledted

for 1nterpolat10n. All of the zero 1n3ect10n'

measurements are placed 1n the 1nterpolated

measurement set f1rst Thevpther measurements

¢ze then processed 1n,the same manner as they

were  processed for unconstrained’ state -

estimation.

Asshming that‘ there are £ zero injection
méasurements, the interpolated measurement
set will conta1n all « of the zero 1nject10ns

s

and (n-+) actual measurements.

‘The LAV estimate can then be calculated.
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CHAPTER VI
RESULTQ AND D‘ISCUSSION
In this chapter, test results for the new power system
state estlmgtlon algorithm are presented and discussed. The
. new'algorlthm is evdluated on the ba51s ‘pf the following
four criteria:

v AL
Lo

1) The ability of the ,algorithm to reject bad data“and“

~

produ%§ quality estlmates.
*%e algorithm's. effectlveness sin, determining " correct

x"system topology

3) The qua11ty of the state estlmates when the algorlthm '

is used for constralned estlmatlon.
4) The algorlthms ab111ty to f1lter measurement n01se.

. '\7 .
;fThese cr1ter1a are. dealt w1th individually in sections

..\,‘,.

6.2 to 6}5. FIn‘ sectlon 6 6 a final assessment - of the

algorithm is presented.

6.1 Measurement Sets and Other Test Data

The algorithm was t,applied to_ three standard power

' systems namely: the 5 bus system used by Stagg and El- Ablad'/
[36], and the IEEE 14 “and 30 bus systems [37] L1ne .

parameters and generation and load data for all three’

systems, 1s glven in the appendix. -
-For each test both the least SQUares estlmate and the

-ﬂieaStv absolute' value est;mate, that is produced by the new

algorlthm, are civen. The-eonvergence criteria used'is'0'001;

"ﬂfplr unlt for tte voltage state varlables, and O 001 radlans“j

\

N
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for the phase angle state variables. The reéundaﬁcy ratio,

for‘“eachumeasufeméht set is defined as the numbe; of actual:
measurements divid%d by the number of state variables. ié;b

injection measurements, though used, are not measured and

.£hus QO not affect the redgndancy ratio. The following seven

measurement sets were used. |

Measurement Set b5a

T

‘Redundancy Ratio = 2.75 .

o -

Real Power Injections: P,, P;3, Py, Pg

Reactive Power>InjectiOns: Qz, Q3, Qu, Qs 7 A

~Real Power Flows: P1_2, P1_3, va—g, Pz_u, P\;\_'s, P3—q, ptu_;

_Reactive Power Flows: Qi-2, Qi-3, Qz~3, Qz-u, Qz-5, Qi-u,

- QQ—S ’

Measurement Set 5b
‘Redundancy RaﬁQS = 2.25

 “Real Power Injections: P;, P3; Pa,.Ps

.Reactive Power Injections? Qz,'ng‘Q}, Qs

Real Power Flows: P1-—2, Pz.—3, Pz—s, 3’P3-—u,'-3pu—5 B

Reactive Power Flows: Q:-3, Qz-3, Qz-5, Qa-u,, Qu-s

Measurement Set 14a
| .o .
Redundancy Ratio = 2.04

Real Power Injections: Pi, Pio, P1|}-sz,'PJ3/ P

-t

Reactive Power Injections: Qi, Qs, Qio, Qi1, Qiz, Qr3, Qru

Real Power Flows: Py-2, Py-s, Pa—s, P2y Poos, Pis—y, Pu-s,

Ps—7 Py-9, Ps-6, Ps-11, Pe-12, Ps-13, Py-8, Pr—9o, Poe-10,
» / R
v » -
"Pg—1a, Pio-11+s Pr2—13, Pra—ya
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Reactive Power Flows: Qi-2, Q1-5y Q2-3, Q2-4, Qz-5, Q3vu,

Qu-5, Qu-gy Qu-5, @s-6+ Qe~11, Qs-12, Qs=13, Q7~8,~.Q7-9,
. /-’\ N ) -

Qs—[g)/Qs—h(L’Q%o—i1, Qiz—13, Qra-14

Zerd Injections: P,;, Q;, P
< . .

—— -

‘Measuremert. Set 14b (Constrained)

~

- : . T
Redundancy Ratio = 1.81°

. 3
Real Power Injections: P,, P;, P4, Ps, Ps, Ps, Pio, P11,

[

Pi2, Py3, Pyg

/Reactive Power Injections: Q,, Qs, Qu» Qs, Qs, Qa, Qs, Q1o

Qi1, Qazerl;, Qi

Real Power F].OWS: Pz—y, P3_,, P3—q, Py-s5s, Ps—1, Pe—11,

Pe—-12, Pro-98, Pio-11, P12—13, Pia—14, Pru-s
oo -r*" « . <l B . o s

ReaCtive'Powe; Flows: Q;—1: Qi-2, Q3s-u, Qus-5, Qs—1, Qs—11.,
"Qe-12, Qio-8+ Qro-11, Qiz—13, Qi3-15, Qrs-59

Zero Injections: P;, Q;, Ps (Constraints)

Measurement Set 14c (Constrained)

Redundancy Ratio = 2.0431;a‘

s

Real Power “Injections: Py, Ps, Ps, Pa, Pios Pi1, Piz, Py,

C s

p1 " ,. y . FE

[y

Reactive Power Injections: Qs, Qs, Qs, Qs, Qs, Qio, Qi1

Qi2, Q13, Q1

Real Power Flows: Py-2, Pi—s, Pz2—3, Pa—4, P» ¢, Ps—u, Pu-s,
. - . ’ . .
pl—Br pS—SI P8—11I PB—!ZI P6—13 p9—10r'P9-'U T:“.0—‘I'Ir P:I2—‘l3

Pya-'ra

Reactive Power Flows: Qy-2, Qi-5, Qz-3, Qz-ua, Qz—sryoa—a;

Ql—Sr QR—DI QSTGI QS-*'I1I' Q5—121 Q6—13 QS—iOr Q9—1R Q10—11l

Qiz-13 Qia-1a ’ g ‘ '



Zero,Injections:5P7, Q7, Po (Constraints)

Measurement Set 30a

Redundancg Ratio = 1,98

.

Real Power Injections: P,, Pi, P4,  Ps, P;, Pg, Pyo, P,s,
_ — :
' 3 o ‘

' F g .
Pys, Piws, Prs, 165, P17, Pra, Pio, P20, P2y, P23, P24, P,

st; Pao o ' -

Reactive Power Injections: Qz, Qi, Qu, Qs, Q7, Qs, Qi10, Q17,

D12, Qi3s Qiur Q1s, Q1sr Q17, Qisr Qror Qz0, Q21, Qz3, Qzu,

QZSI ngl Q30

"Real Power Flows: P1—2, Pi{-- pz_h,>Pz;5, p3_g, Pg—d, P5~7;
A ‘ -

Pe-7, Pe-s, Ps-9, Pe-28, Pe-28, Poa-10, Po~11, Pro-17,
Pi1o-20, Pro-21, Pro-22, Pi2—=13, Prz—1a, Pi2-16, Pra-1s,
Pis—18, Pis~23, Pie~17, Pie=18, Pis-20, P2i-22, P22-24,

p23—2QI P2Q~25r PZS—ZGI P27—281 P27—29r P29—30

,_ReaCtiVQ'POwef Flows: Qi-2, Qi1-3, Qz2-4, Qz2-5, Qs-4, Qu—s,

Qs-7, Qs-7, Qe-8r Qe-9s Qe-28, Qe-28, Qe-10, Qo-11 Qro-17,

t

Qio-z20, Qio-z1s Qro~22s Qiz-13, Urz-3vy Qv2-1s, Qua~is,
Qis-18, Q1s-23, Qre-~17, Qre=18, Qis-20, Qz1-22, Qiz-24,

QZB:ZU! QZB—ZSI QZS—ZGI QZf—ZBI Q27—29;'Q29—30

Zero Injections: Ps, Pg, Py1, P22, P2s, P27, P28, Qs, Qo,
QZZI QZSI Q27I QZB &
Measurement Set 30b (Constrained)

Redundancy Ratio = 1.53

Real Power Injections: P,, P;, Py, Ps, P;, Ps, Pso, Py,

P13! P1ar P151 PIGI P17r P}ar piSr PZO'I P21l P23I PZRI pZBr

. I
Pzar P30 X . -5

Reactive Power Injections: Q,, Qi, Qus, Qs, Q7 Qs, Qio, Q11, ¢

N - “
]
¥ i

[
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Q?.Zr Q13l Q1ﬂl Q15’ Q'IG'I. Ql?l QIB_I Q191 QZOI QZ‘II Q23I QZRI
~QZGVIA QZDI QJO ..... o

Real Power Flows: Pz-4, Pa-u, Ps-s, P3-1, Picu, Py-12, Ps-7,

Pio-37 Pyo-20s Pro-21,"Pi2+134 Prza—1u, Pi2-15, Piz-1s,
Piu-15, Pis—18, Pis-23, Pie-v7, Pre-19, Pro-20, P2a-2a,

Poo-30, . "

Reactive Power Flows: Qz—1, Qz—uy Q2-5, Qs—1, Qa-u, Qua-12,

Qs-7, Qio-17 Qio-20, Qio-21, Qiz-133 Qiz-14, Qiz—15, Qrz-1s,

~

Pyu—15, Qis—18, Qis—23, Qie-17, Qre—19, Qie-z0r Q23-24,

Qzs-30; .
o v .
Zero Injections: Pg, Pg, Pyy, Pzz, P2s, P27, P2s, Qs, Qs,

Q22 Q2s5, Q27, Q28 (COﬂStraiDFS)’“

'6:2 The Effect of Bad Data .
- When the measurement set does not coﬁtain any bad data
or noise both the 1east.squargs:énd ﬁhéﬂiéaét absoiﬁté'vélue‘
estimageg;are ektrgmely accﬁraté; In this section the éffeét'
ncf ‘bad. data 6nlthé‘two types:of'estimafés is indestigated;
All'of the measurements, except the b;d data," are 'exact;
i.e. ndise is not added to the measufement set. The effect

of noise ‘is investigated in section 6.5.
A reéresentative sample of test resulté{afe shown in

tables 6.1 - 6.3. Voftagés are in per unit and phase angles

are in radians.
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TEST NUMBER 1
MEAS. SET | 5a
BAD DATA P(2,4) reversed in sign
4 EXACT VALUES |LEAST SQUARES LAV
BUS v ANGLE v ANGLE v ANGLE
1 1.0600| 0.0000[1.0600| 0.0000{1.0600| 0.0000
2 1.0474(-0.0490|1.0482|-0.0469|1.0474|-0.0430
3 1.0242{-0,0872|1.0275|-0.0777|1.0242{-0.0872
4 1.0236{-0.0930{1.0270{-0.0830}1.0236|-0.0930
5 1.0179]-0,1073|1.1091(-0.1037|1.0179|-0.1073
TEST NUMBER p) :
MEAS. SET 5a 5
BAD DATA ‘P(3) set equal to O
| LEAST SQUARES- LAV
. BUS v . ANGLE v ANGL Exr
1 1.0600| 0.0000|1.0600| 0.0000
2 1.0489|-0.0450]1.0474|-0.0490
3 1.0298(-0.0703{1.0242|-0.0872
4 1.0278{-0.0799}1.0236!-0.0930]
5 1.01911-0.1032{1.0179{-0. 1073
Jb
TEST NUMBER 3 7
MEAS. SET 5b
BAD DATA Q(5) reversed in sign
TEAST SQUARES | LAV ,
BUS oy ANGLE v ANGLE
1 1.0600| 0.0000|1.0600| 0.0000
2 1.0491|-0.0497|1.0474|-0.0490 y
3 1.0245(-0.0876|1.0242(~0.0872 »
4 1.0242|-0.0935|1.0236|-0.0930
5 1.0278|-0.1107|1.0179|-0.1073
Table é 1 State Estimates for the 5 Bus System
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TEST NUMBER 3
MEAS. SET 5a
BAD DATA Q(3,4) set equal to 0
CEAST SQUARES AV,
BUS v ANGLE .| v ANGLE
1 1.0600| 0.0000!1.0600| 0.0000
2 1.04721-0.0489(1.0469|-0.0488
3 1.0241|-0.0872[1.0242|-0.0872
4 1.0231[-0.0928[1.0220|-0.0925
5 1.0174-0.1072|1.0164|-0.1070
TEST NUMBER 5
MEAS. SET : 56
BAD DATA P(2,3), P(3) reversed in sign|
P(4.5) =0.085, Q(4,5) =0.024
. [EAST SQUARES LAV
BUS V. | ANGLE v ANGLE
\% | 1.06001 0.0000{1.0600| 0.0000
. 1.0519|-0.0364|1.0474|-0.0430
) 3 1.0417|-0.0372|1.0403|-0.0381
- 4 1.0383|-0.0504|1.0360|-0.0548
5 1.0220{-0.09201.0179|-0.1073
7 - 1= g
TEST NUMBER 6
MEAS. SET | 5a
BAD DATA P(2,3), P(3) reversed in sign
‘ P(4,5) =0.085, Q(4,5) =0.024
LEAST SQUARES TAV
BUS V . | ANGLE v ANGLE -
1 1.0600| 0.0000|1.0600| 0.0000
2 1.0507|-0.0394|1.0474|-0.0490
3 1.0386|-0.0452|1.0242|-0.0872
4 1.0351|-0.0587|1.0236/|-0.0930
5 1.0202(-0.0967(1.0179|-0.1073
. Table 6.1 Continued

o
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TEST NUMBER 7
MEAS. SET 14a
BAD DATA P(13) reversed in sign
' EXACT VALUES |LEAST SQUARES |, LAV
BUS v ANGLE Vv ANGLE V ANGLE
: R .
1 1.0600f 0.0000|1.0600{ 0.0000{1.0600{ 0.0000}:
2 1.04501-0.0869(1.0450(-0.0869|1.0450{-0.0869
3 1.01007-0.2220(1.0100(-0.2220(1.0100|-0.2220
4 1.0186(-0.1802{1.0186|-0.1802(1.0186|-0.1802
5 1.0203(-0.1533|1.0203{-0.1533}1.0203|-0.1533
6 1.0700}-0.2483(1.0706(-0.2469|1.0700|-0.2482
7 1.0620(-0.2333{1.0616|-0.2341(1.0619(-0.2333
8 1.0900({-0.2333(1.0896{-0.2341{1.0900|-0.2333
9 1.0563(-0.2609|1.0558(-0.2619|1.0563{-0.2609
10 1.05131-0.2636]1.0509{-0.2644{1.0513|-0.2636}
11 1.0571]-0.2582}1.0572|-0.2580|1.0571]-0,2582
12 1.0552(-0.2632(1.0553|-0.2583]1.0552|-0.2632
13 1.0504(-0.2646(1.0580|-0.2515{1.0504|-0.2646
14 1.0358(-0.2800}1.0366(-0.2786|1.0358(-0.2800
\ .
TEST NUMBER 8 N
MEAS. SET - 14a
BAD DATA P(12) reversed in sign
P(3,4), Q(13,14) =0
LEAST SQUARES LAV .
BUS v ANGLE Vv ANGLE
1 1.0600( 0.0000(1.0600{ 0.0000
2 1.0452|-0.086611.0450(-0.0869
3 1.0126{-0,2176|1.0100|-0.2220
-4 " 1.0166|-0.1858|1.0186{-0 1802
5 1.0183-0.1583]1.0202(-0.1533:
6 1.06761-0.253411.07001-0.2482
7 1.06001-0.2393]|1.0619(-0.2333
! 8 1.0882(-0.2393{1.0900(-0.2333
9 1.0545(-0.26701.0563|-0.2609
10 - 1.04941-0.2696(1.0513}-0.2636
¢ 11 1.0549(-0.2639|1.0571(-0.2582
12 1.0591}-0.2598211.0553-0.2632¢
13 1.0485|-0.2679(1.0504|-0.2646
14 1.0343}-0.2857(1.0358|-0.2799

o

Table 6.2 State Estimates for

the 14 Bus System
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TEST NUMBER

A 9 .
MEAS. SET 14a
BAD DABA P(3), Q(10), P(9,10), Q(6,12)
all reversed in sign
LEAST SQUARES LAV
BUS v ANGLE Vo ANGLE
1 1.0600| 0.0000(1.0600{ 0.0000
2 1.0452[-0.0871(1.0450(-0.0869
3 1.0448|-0.1110]1.0100|-0.2220
4 1.0156|-0.1781]1.0186|-0.1802
5 1.0176|-0.1512}1.3203|-0.1533
6 - 1.06711-0.2431}11.0700}-0.2483
7 1.0589|-0.2336{1.0619|-0.2333
8 1.0870{-0.2337{1.0900|-0.2333
9 1.0533{-0.2621|1.0563(-0.2609
10 1.653%}-0.2621|1.0513|-0.2636
11 1.0560(-0.2531(.1.0571|-0.2582
12 1.05501-0.2595|1.0552|-0.2632
13 1.0484{-0.2606(1.0504|-0.2646
14 1.0331]-0.2791}1.0358|-0.2800
{TEST NUMBER 10
MEAS. SET ' 14a
BAD DATA. | P(4,5) set equal to O
LEAST SQUARES LAV, -
BUS . Vv ANGLE ) ANGLE
1 1.0600| 0.0000}1.0600| 0.0000
2" 1.04541-0.086211.0450|-0.0869
3 +.1.0124|-0.2143|1.0130{-0.2084:
4 1.0230]-0.1670[1.0248|-0.1552
5 1.0168|-0.1635{1.0181|-0.1531
6 1.0691}1-0.25071.0676]-0.2485
7 ~1.0645|-0.2243(1.0682|-0.2077
8 1.0924|-0.2246]1.0861|-0.2077
S 1.0584|-0.233611.0627|-0.2349
. 10. 1.05301-0.2576]1.0564}-u.2423
11 1.05761-0.2562|1.0588}-0.2475
12 1.0543|-0.2652]1.06321-0.2615
T 13 1.0499|-0.266011.0496|-0.2612
14 1.0367(-0.2763]1.0381(-0.263¢

Table 6.2.Continued

S
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TEST NUMBER] ‘ y 71
MEAS. SET . . 30a
‘BAD DATA ; P{12) set to O
TEXACT VALUES |LEAST SQUARES LAV
BUS V| ANGLE -| Vv ANGLE | v ANGLE
1 1.0600| 0.0000',.Jf00| 0.0000|1.0600| 0.0000
2 1.0450|-0.069. 1.0¢51|-0.0690]|1.0450|-0.0632
i 3 1.0283(-0.0916). "285{-0.0910|+.0283|-0.0916
4 1.0206{-0.1099]1.0210|~0.3091|1.0207|-0.1099
5 1,0100[-0.2072|1.0100{-0.2070{1.0100{-0.2072
.6 1.0147|-0.1386|1.0149|~0.1380|1.0147|-0.1386
7 1.0050|-0.1759|1.0051|-0.1755|1.0050(-0.1759
8 1.0100}-0.1499|1.0101|-0.1494|1.0100|-0.1499
9 1.0505|-0.1660(1.0504|-0.1650|1.0505(-0.1660
10 1.0411/-0.1804{1.0408|-0.1792{1.0411|-0. 1804
11 11.0820]-0.1660|1.0818|-0.1650|1.0820(-0. 1660
12 1.0645|-0.1100|1.0658(~0:1031]1.0645[-0.1100
13 11.0716|-0.0234|1.0723|-0.0177|1.0710|-0.0234
14 11.0491/-0.1327|1.0492|-0.1287|1.04927-0. 1328
‘15 1.0410]-0.1415|1.0409|-0.1380(1.0411|-0. 1415
16 .. 11.0459(-0.1440|1:0461|-0.1403|1.0460{-0.1440|
17 . |1.0368|-0.1730|1.0365|-0.1712|1.0368|-0.1730
18 1.0285|-0.1672|1.0279|-0.1655|1.0285|-0. 1672
19 11.02441-0.1793|1.0238|-0.1779[1.0244{-06.1793} -
20 11.0276]-0.1806{1.0271|-0.1793]1.0277|-0.1806] -
21 11.0290|-0.1879(1.0286|-0.1858|1.0290|-0. 1870
22 1.0296|-0.1863|1.0293(-0.1851|1.0296|-0.1863]
23 1.0281|-0.1636|1.0276|-0.1617{1.0281|-0. 1636
214 1.0200|-0.1876(1.0196|-0.1864|1.0200(-D. 1876/
25 1.0144|-0.1971|1.014%:|-0.1965|1.0144[-0.1971]
26 0.9967|-0.2045/0.9963|-0.2039/0.9967|-0.2045
27 1.0199[-0,1985(1.0198|-0.1981}1.0199|-0. 1985
28 1.0101]-0.1469{1.0102|-0.1465|1.0101|=0. 1469
29 1.0000/-0.2201{0.9999|-0.2199|1.0000{-0.2201
30~ |0.9885[-0.2356/0.9884|-0.2355/0.9885(-0.2356

N " N V .
Table 6.3 -State Est‘mates for the 30 Bus System
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TEST NUMBER 12
MEAS. SET 30a
BAD DATA Q(24) reversed in sign
LEAST SQUARES , LAV .
BUS v ANGLE v | ANGLE
1 1.0600| 0.0000|1.0600{ 0.0000
2 1.0450(-0.0692|1.0450|-0.0692
3 1.0284|-0.0916]1.0283(-0.0916
4 1.02071-0.1099(1.0207|-0.1089
5 1.0100({-0.2072]1.0100{-0.2072
6 1.0148(-0.1386|1.0147}-0.1386
7 1.0050(-0.1759]1.0050(-0.1759
8 1.0100(-0.1500]1.0100(-0.1499
9 1.0513}{-0.1663|1.0505{-0.1660
10 1.04241-0.1808{1.0411{-0.1804
11 - 1.0827{-0.1664{1.0820|-0.1560
12 1.0649(-0.110211.0645(-0.1100
13 1.0713(-0.0236{1.0710{-0.0234
14 1.0496(-0.1329(1.0491|-0.1327
15 1.0418]-0.1419|1.0410|-0.1415
16 - 1.0466|-0.1442[1.0458{-0.1440
17 1.0378|-0.17341.0368(-0.1730
18 1.02911-0.1675]1.0285[-0.1672
, 18 1.0250(-0.1795}11.0244(-0.1793
20 1.0284|-0.1809]1.0276|-0.1806
o 21 1.0309{-0.1877(1.0290|-0.1870
22 1.0319(-0.187211.0296{-0.1863
23 1.0305(-0.16511.0281|-0.1636
24 1.0289}-0.192411.0200(-0.1876
25 1.0149|-0.197211.0144]-0.1972
26 0.9951(-0.2031(0.9967|-0.2045
27 1.0185}-0.1978|1.0199(-0.1986
28 1.0100}-0.146911.0101{-0.1470
29 0.9971]-0.2185{1.0000}|-0.2202
30 0.9853|-0.2340(0.9885|-0.2357

Table 6.3 Continued
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TEST NUMBER 13
MEAS. SET 30a
BAD DATA. P(19), Q(10), P(6,28) = 0
LEAST SQUARES LAV
BUS v ANGLE v ANGLE
1 1.0600| 0.0000|1.0600{ 0.0000
: 2 1.04511-0.0690{1.0450}-0.0692
. 3 1.0286(-0.0909|1.0283|-0.0916
4 1.0210{-0.1080(1.0207}-0.1099
5 .1.0100]-0.207011.0100(-0.2072
6 1.0153{-0.1371|1.0147|-0.1386
7 1.0052]-0.1752|1.0050;-0.1758
8 1.0106}-0.148111.0100(-0.1499
9 1.05151-0.1657[1.0505{-0.1660
10 1.04241-0.1799(1.0411[-0.1€04
11 1.0828-0.1663|1.0820|-0.1660
12 1.06501-0.1098|1.0645|-0.1100
13 1.07141-0.0235{1.0710{-0.0234
14 1.0494(-0.1326|1.0491|-0.1327
15 1.04171-0.1409(1.0410(-0.1415
16 1.0466|-0.1440]1.0459|-0. 1440
17 1.0378{-0.1727|1.0368|-0.1730
18 1.0299|-0.1650{1.0285{-0.1672
19 1.0273(-0.1742(1.0244{-0.1793
20 1.0297({-0.1773|1.0276|-0.1806
21 1.0300(-0.1863{1.0290(-0.1870
22 1.0306(-0.1856]1.0296]-0, 1863
23 1.0288|-0.1626(1.0281|-0.1636
24 1.0209{-0.1853}1.0200(-0.1876
25 ©1.0158|-0.1888|1.0144|-0.1971
26 0.9983|-0.1960|0.9967|-0.2045
27 1.0212}-0.1869}1.0199(-0.1985
28 1.0116]-0.142211.0101{-0. 1468
29 1.0021|-0.2041|1.0000{-0.2201
30 0.9908|-0.2187{0.9885(-0.2356

Table 6.3 Continued
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TEST NUMBER ¢ 14
MEAS. SET 30a
BAD DATA P(5), Q(5) reversed in sign
: , P(26) doubled and reversed
in sign ‘
P{30), Q(30) doubled
‘ | LEAST SQUARES - LAV ,
BUS . v ANGLE V- ANGLE
1 1.0600) 0.0000|1.0600| 0.0000
2 1.0471]1-0.0595|1.0450|-0.0692
3 1.0248(-0.0927[1.0284}-0.0916
4 1.0169(-0.1107{1.0207|-0.1099
5 1.02241-0.1065{1.0100(-0.2072
6 1.0105(-0.1373|1.0148{-0.1386
7 1.0027{-9.1481|1.0051|-0.1759
8 1.0054|-0.1506]1.0100|-0. 1499
9 - 1.0480|-0.179911.0506|-0.1660
10 1.0390(-0.1973|1.0411{-0.1804
11 1.0801(-0.1829|1.0820|-0.1660
12 1.0628|-0.1268(1:0645(-0.1100
13 1.0696|-0 "412(1.0710{-0.0234
14 1.0465]-0.1524{1.0492(-0.1328
15 1.0384|-0.1610(1.0411[-0.1415
16 1.0437(-0.1623{1.0460{-0.1440
17 1.0346}-0.1909|1.0368|-0.1730
18 1.0255|-0.1878(1.0285}-0.1672
19 1.0214(-0.1997{1.0244|-0.1793
20 1.0248{-0.2006|1.0277(-0.1806
21 1.0267(-0.2048|1.02901-0.1870
22 1.0273}-0.2042|1.0296(-0.1863
23 1.0254|-0. 1€34(1.0282)-0: 1636
24 1.0176|-0.2055{1.0200|-0.1876
25 *1,0131{-0.2100(1.0184{-0.1303
26 1.0086(-0.1994|1.0267-0.1593
27 1.0133}-0.2163|1.0192}|-0.2104
28 1.0050/-0.1491{1.0102]-0. 1469
29 0.9860(-0.2480(0.9839({-0.2487
(~3€ 0.9627|-0.2793|0.95691-0.2838

—

Table 6.3 Continued




6.2.1 Discussion of Bad Data Tests

In the last sectign results from .14 tests are

A

presented. In ten of these tests (1,2,3,6,7,8,9,11,12,13)
bad data is rejected and not interpolated. For all of these
cases the LAV state estimate is completely accurate while
the least équares estiméiﬁ/is affected by baq\ data. These
results indicate that when an LAV ‘estimate does not
iﬂterpolate bad data it Es superior to the least squares
estimate.

In ¢ of the tests (4,5,10,14) the ‘LAV estimate
interpolates bad -data. When this occurs, the LAV state
estimate is inaccurate in the region of the power system
that containé the interpolated bad data.

In two of these jcaseg' (4,10)  the measurement set

contains only one bad data. 1In both of thesé cases, the
least squares estimate is slightly more accurate than the
LAV estimate. This 1is so simply becausea least squares

estimator uses the entire measurement set to calculate __its

estimate while a least absolute value estimator uses only n

of the m measurements (m = the number of measurements and n

= the number of state variables). Even though both
estimators use the same bad data measurement the percentage
éf bad data in the interpolated measurement set (%x100%)} is
greater than the percentage of bad data 1in the entire
measurement  set (%x100%), consequentlye the bad data
measurement has a greater impact on the least absolute value

estimate.
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In the two other cases in which bad data, is

interpolated (5,14), the measurement set contains severa}

bad data points. In test #5, the measurement set contains

four bad data points. Of these four points, only one { Pj;

reversed ) is interpolated; the other three bad data points
are rejected; An éxémination of the results of test #5
indicates that the 1least absolute value estimate is more
accurate than the least squares eséimate. Even though the
LAQ estimator i;terpolétes a bad~data measufément, the»le;st
squarés estimator is less accurate because it uses all 4 bad
data points to calculate its estimate.

Test #6 contains éxactly the'same bad data as test #5,
but it has a larger‘Té%surement set. In-this case all 4 bad
data are rejected by the LAV estimator and the LAV estimate
is exact, whereas the least squares estimator continues to
produce an inaccurate estimate. It %&95 seems possible to
improve the bad data rejection properties of the new
algorithm by increaging the redundancy ratio. 

In case #14 there are 5 bad data %easurements. The LAV
estimator interpolate§ three of the bad data ( P;s, Pio,
Q3o ). In the region of the power system that éontains the

interpolated bad data, the least squares estimgte is more

accurate than the LAV £stimate. At bus #26 the least squares

‘estimate of”( V;s = 1.0086, 6,5 = -0.1994 ) is closer than

the least absolute value estimate of ( Vi, = 1.0267, 85

1

-0.1593 ) , to the actual values of ( V,g = 0.9967, 626 =

-0.2045 ). In regions of the powef system that are not near
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N

the intérpolated bad data measure%ents, the LAV estimate is
more accurate. At bus #3 the least squares estimaté of ( WV,
= 1.0248, 6, —0.09275 is not as accurate as the ﬁAv estimate
of‘(.Va = 1.0284, 63 = -0.0916 ). The actual values at bus
#3 are ( V, = 1.0283, 6 = ~0.0916 )'.)

The test results that have just been presented support

. ’
the following four statements:

i

a)/ When .'the new LAV estimator does not
interpolate bad data, it gives better nesulté
than a least squares estimator.

b) When the new LAV eétimator interpolates all of

 the bad data points it produces estimates that
afe' less accurate than = least squares
estimates.

c) When some, but nbt all, bad data points are
interpolated by the new LAV estimator, the LAV
state estimalz tends to be less acpurate‘,thén

the least squares estimate, in the region of

the interpolated bad data. In other regions
- T

the LAV estimate tends to be more accurate.

d) The ability of an LAV state estimator to

P
reject bad data increases as ‘the number of

-

measurements increases.
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6.3 Determining éystem Topology

Two sets of tests were conducted. In the first set of

"

tests the line is actually in service, and in the second set

of tests the line is not in service. The measurements, that

are given to the estimator, for both sets of tests are

obtained from a load flow program.

A total of seven lines were tested. The results are

N 3

presented in table 6.4.
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MEASUREMENT

SYSTEM SET ~{LINE a b

5 bus 5a 2-5 | LINE IN INCONCLUSIVE
5 bus Sa -{4-5 LINE IN ° LINE OUT
14 bus 14a 3-1 LINE IN INCONCLUSIVE
14 bus 14a 4-5 LINE IN INCONCLUSIVE
14 bus 14a < 12-3 LINE IN INCONCLUSIVE
30 bus 30a 6-7 LINE IN INCONCLUSIVE
30 bus 30a 8-28 LINE IN L INE OUT

Table 6.4 . Results for line status tests.
Column a represents test that were conducted
- when the line was actua]]y in service.
Column b represents test that were corducted
when thé/11ne was actually out of service.



.." ?

6.3.1 Discussion of Topology Test Results

rl

- The results that ‘are presented in table 6.4 indicate
L . =

.that the hew LAV state estimator dlways detects that a line
' %

is 1n service if itzéatually is in service. ﬁbwever, when a
line isvactually.out gf service the results were psually
inconclusive, although the estimator did twice’correétly
predict thgt a line was out of service. \

The technique of determiningJWhetheg/a line is actually
in service or out of service, was first presented by Kotiuga
' [4,33,38]. Although he. preseqted the technique, he never
presented any fest ddta to Suppofﬁ his ;echﬁiQue in either
ﬁis Ph.D. thesis [38] or in the two technical papers [4,33],
ih thch he presented the technique.

Although the LAV state estimator can reliably determine

‘£, . . .
that a line is in serv1ce,\ it does not appear able to

t

determine 1if a line is out of service. Further research in

this area is required. -

S,

'~
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6.4 Results of Constrained State Estimation N

In this sectioh, test results for constrained LAV state
estimation are presented{ Since a constraineq estiﬁate
interpolates all of the zero power injection measurements,
all of the bﬁses at\which the power injection | is zéro are
classified as meaered buses. Consequently the observagility
criteria established in\chapter V dictates that power flows
along lines thét are connected to measured buses, céhnotfbe
part.of the in%erpolated measuremen£ set. As.a result, ghg

three measurements sets used by the state estimator for

constrained state estimation, do not contain any

measurements of power flow along lines that are connected to

Y
zero injection buses. Test results are presented in table

6.5 . 7

—
2=
“

L2
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MEAS BAD DATA . NUMBER OF BAD DATA

SET | INTERPOLATED
. . ’
14b| P(13) REVERSED IN SIGN - 0
14b| Q(9) SET EQUAL TO 0 i
14b| P(4,5) SET EQUAL TO O 1
14b| Q(3,2) REVERSED IN SIGN 0
f4b| P(5) SET EQUAL TO 0 0
14b| Q(6) SET EQUAL TO 0 . 0
14b| P(13,14) REVERSED IN SIGN 0
14b| Q(10y9) SET EQUAL TO 0 0
14b| P(3,4), Q(13,14) SET EQUAL TO 0
' P(12) REVERSED IN SIGN _ 1
14b| Q(3,2) REVERSED IN SIGN, Q(10)=0
P(14,9) DOUBLED 1
14b| P(3), Q(10), P(10,9) AND Q(6,12) -
| ALL REVERSED IN SIGN - 1
14b| P(10), Q(3), Q(10,8) AND Q(6,12) ,
ALL DOUBLED $ !
‘t4c| P(13) REVERSED IN SIGN 0
14c| Q(9) SET, EQUAL TO 0 0
14c| P(4,5) SET EQUAL TO O 0
| 14c| Q(2,3) REVERSED IN SIGN 0
14c| P(5) SET EQUAL 70,0 -° 0
14c| Q(6) SET EQUAL T0O'0 0
i4c| P(13,14) REVERSED IN SIGN 1
T4c| Q(10,9) SET EQUAL TQ 0 2, 0
14c| P(3,4), Q(13,14) SET EQUAL TO 0 . ‘. A
P(12) REVERSED IN SIGN | o S
14c| Q(3,2) REVERSED TN SIGN, Q(10)=z0 _ '
P(14,9) DOUBLED ' : 1
t4c| -P(3), Q(10), P(10,9) AND Q(6,12)
| ALL REVERSED IN SIGN , | 1
14¢| P(10), Q(3), Q(10,9) "AND P(86, 12) |
~ ALL. DOUBLED » 1
30b| P(16,17) REVERSED IN SIGN 1
|.30b]/Q(2,1) 'SET EQUAL TO 0 1
3017 P(16) SET EQUAL TO 0 . A 0
b| Q(24) REVERSED IN SIGN 1
30b| P(5) AND Q(5) REVERSED IN SIGN - :
g«zs) REVERSED - ANDY DOUBLED : |
(30), Q(30) DOUBLED 2
30b| P(12), Q(26) SET EQUAL T0.0 1
30b| Q(10) REVERSED. IN SIGN S
- | P(3,1), Q(14,12) SET EQUAL TO 0 > 1

A - i . f,:} 3
Tgble 6.5 Results for Constrained State Estimation



interpolated. ' -

7

6.4.1 Discussion of Constrained State Estimation Test

‘Results

For the 14 bus system, a bad data measurement was

~. o

interpolated in only three of the sixféeq cases, in which a
single bad data contaminated the measurement ;et.~Howeyer
for»the 30 bus system in three o§ the four case in ?which
there was only Jevbad data measﬁrement, the meashrément was
S

The reason why the two 14 bus measurement sets produce

becter LAV estimates can be found by examining the

redundancy ratio of the three measurement sets. The two 14

bus constrained measurement sets have re ~ndancy ratios of

1.81 and 2.04, while&the'so bus constrai.ied measurement set
has a redundancy ratio of only 1.53. The larger redundancy
ratio makes the LAV estimator more effective in rejecting
bad data. ) )

Since . the 30 bus system has thirteen zero injection
measurements six of its buses are classified as measured
buses even before the estimation process begins ( thé
seventh bus, bus #11 is a zero injection bus for'rea{‘ power

flow measurements only ) . Consequently the constrained 30

bus measurement set does not contain any measurements .of

power flows along lines that are connected to zero injection

buses. Of the 41 lines in the 30 bus system, only 22 of the
° [}

.lines are not connected to zero injection buses. Even if all

of the power flows along tHese lines are measured the
N : '

redunda@gy ratic is only 1.53. Thus, the constrained 30 bus

r~
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measurement set does not produée estimafes that reject bad
data very well because of its low redundancy ratio.
The test results for the cases in thch a single bad
data congéminated the measurement set, indicates that
éonstrai;ed‘ estimat}on is effective when the number of

constraints does not reduce the redundancy ratio to a low

value.

In the casesof multiple bad data, the estimates that_

' [
are produced by the 14 bus and the 30 bus measurement sets-

\

generally reject the\majority of the bad data measurements.

6.5 The Effect of Noise ’ T 7

b i‘\

L

The feature that makes LAV state estimation attracti&é,
is the ability of LAV estimates to reject bad data. This
ability is a direct result of the interpolation property Qf

. /- _

LAV estimates. Obviously when the measurement set 1is

contaminated by noise LAV state estimates will interpolate'

noisy’ measurements. This will decrease:the accuracy of the
y“ .

'state estimate. Least squares -estimators .tend to filter
noise better since they do not interpolate any measuremeﬁts.
In'ordér ﬁo evaluatgugpe performqnce of 1least squares

- and LAV estimators in the presence of noise, a fanéom number
generator was used to add Gagssian noise, with a . 2%

'vériance, to the measurement set. Results for the 5 Bus

system are presented in table 6.6. >
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EXt@T VALUES
BUS ANGLE
1 1.0600| 0.0000
2 1.0474]-0.0490
3 1.0242]-0.0872|
A 1.0236|-0.0930
5 1.0179]-0.1073
TEST NO.| T
MEAS SET  5a
BAD ‘DATA| P(3) set-equal to 0
. . <
[EAST SQUARES CAV 3
BUS v ANGLE | v ANGLE
1. {1.0600| 0.0000|1.0600| 0.0000]|
v 2 |1.0472|-0.0496|1.0470]0 0502
3 (1.0239|-0.0881|1.0239(-0.0885
4 [1.0233|-0.0939|1.0232|-0.0942
5 |1.0174{-0.1030{1.0175|-0. 1086
ITESTNO.] 0
MEAS SET| . 5a .
BAD DATA| P(3) set equal to 0
T ERROR IN ERROR 1N
| LEasT jsquares LAV
BUS CANGLE |V ANGLE
1 - - - -
2 10.0002| 0.0006|0.0004| 0.0012
3 10.0003| 0.0009]0.0003| 0.0013
4 |6.0003| 0.0009{0.0004| 0.0012
5 [0.0005| 0.0013/0.0004] 0.0013
SUM OF
ERRORS |0.0013| 0.0037|0.0015| 0.0050
Table 6.6 State Estimates and Absolute Values of

Errors for Gaussian Noise Added to the
Measurement Set.

A
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TEST NO. 1
MEAS SET 5a
BAD DATA| P(2,4) r 'ERSED IN SIGN
— |TEAST SQUARES | LAV
BUS v ANGLE | v ANGLE
g 1.0600| 0.0000|1.0600| 0.0000
2 1.0479(-0.0476]1.0485|-0.0452
3 1.0272|-0.0787]1.0254|-0.0833
4 1.0267!-0.0840|1.0248|-0.0830
5 |1.0185{-0.1054|1.0182|-0.1054
TEST NO. 1
MEAS SET 5a .
BAD DATA| P(2,4) REVERSED IN SIGN
" ERROR IN ERROR IN
- LEAST SQUARES LAV
BUS Y ANGLE vV ANGLE
1 - -
2. 10.0005 0.0038
3 0.0030 - 0.0039
4 0.0031 0.0040
5 |0.0006 03| 0.001¢,
SUM OF ¢} .
ERRORS |0.0072| 0.0208(0.0038| 0.01:6

Table 6.6 Continued

.
&
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TEST NO. 4 2
MEAS SET ' . 5a
BAD DATA| P(3) SET EQUAL TO 0
[EAST SQUARES CAV
BUS v ANGLE |V ANGLE
1 |1.0600| 0.0000|1.0600| 0.0000
) 1.0486|-0.0455|1.0485|-0.0452
3 1.0296(-0.0709' “.0254|-0.0833
4 1.0276(-0.0807]|1.0248(-0.0891
5 1.0185|-0.1048|1.0197|-0.1018
TEST NO. 5
MEAS SET ‘Ba
BAD DATA{ P(3) SET EQUAL TO 0
' ERROR IN ERROR IN
~ |LEAST SQUARES LAV
BUS v ANGLE | - v ANGLE
1 - - - -
) 0.0012| 0.0035{0.0011| 0.0038
3 0.0054| 0.0163|0.0012| 0.0039
4 0.0030| 0.0127/0.0012| 0.0039
5 0.0006| 0.0025|0.0018| 0.0055
SUM OF ?
ERRORS |0.0102| 0.0350/0-0053| 0.0171
‘Tablé 6.6 Continued

o

-
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TEST NO. 3
MEAS SET | 5b
BAD DATA| 4(5) REVERSED IN SIGN
~|TEAST SQUARES TAV
BUS v ANGLE | V ANGLE
1 1.0600| 0.0000|1.0600| 0.0000
2 1.0487|-0.0507|1.0470{-0.0502
3 1.0240(-0.0891'1.0235|-0.0894
4 1.0237 i-0.0952]1.0228|-0.0954
5 1.0270(-0.1132|1.0167|-0. 1111
TEST NO. 3
MEAS SET 5b
BAD DATA| Q(5) REVERSED IN SIGN
ERROR IN ERROR IN
LEAST SQUARES | LAV
BUS v ANGLE | v ANGLE
1 - - |- -
-2 [0.0013| 0.0017[0.0004| 0.0012
3 [0.0002| 0.0019|0.0007| 0.0022
4 10.0001| 0.0022|0.0008| 0.0024
5 |0:Q081| 0:0059/0.0012| 0.0038
SUM OF : ) |
ERRORS {0.0107| 0.0117]0.0031| 0.0096

Table 6.6 Cont inued
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Cont inued

TEST NO. )
MEAS SET 5a
BAD DATA| Q(3,4) SET EQUAL TO 0
CEAST SQUARES LAV -
BUS v ANGLE V .| ANGLE
1 1.0600| 0.0000|1.0600| 0.0000
2 1.0470|-0.0495|1.0470|-0.0502
3 1.0239|-0.0880{1.0239|-0.0885
4 1.0228|-0.0938(1.0232|-0.0942
5 1.0168(-0.1088|1.0177{-0.1086.
TEST NO. )
MEAS SET 5a - -
BAD DATA| Q(3,4) SET EQUAL TO 0
ERROR IN | ERROR IN
LEAST SQUARES LAV |
BUS v ANGLE Y ANGLE
1 - - - -
2 0.0004] 0.0005|0.0004| 0.0012
3 0.0003| 0.0008|0.0003| 0.0013
‘4 |0.0008| 0.0008/0.0004| 0.0012
5 0.0011| 0.0015(0.0002| 0.0013
SUM OF |
ERRORS |0.0026| 0.0036[0.0013] 0.0050
N + - .
TabTe 6.6 \ !
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TEST NO. | 5
MEAS SET 5b
BAD DATA| P(2,3), P(3) REVERSED SIGN
P(4,5)=0.085, .Q(4,5)=0.024
[EAST SQUARES CAV
BUS V' ] ANGLE | Vv ANGLE
1 |1.0600| 0.0000{1.0600| 0.0000
2 |1.0516|-0.0373(1.0470|-0.0502
3 |1.0413[-0.03861.0400|-0:0390
4 |1.0378]-0.0520{1.0857|-0.0560
5 |1.0212|-0.0945|1.0177|-0.1086
TEST NO. 5
|MEAS SET 56
BAD DATA| P(Z 3), P(3) REVERSED SIGN
< P(4,5)20.085, Q(4,5)=0.024
N
ERROR IN_ ERROR IN
LEAST SQUARES LAV
BUS V' ] ANGLE | v ANGLE
1 - - - -
2~ 10.0042| 0.0117{0.0004| 0.0012
3 |0.0171| 0.0486(0.0158| 0.0482
2 |0.0142| 0.0410{0.0121| 0.0370
5 |0.0033| 0.0128{0.0002| 0.0013
SUM OF - \
ERRORS [0.0388| 0.1141/0.0285| 0.0877

Table 6.6 Continued
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TEST NO. 6"
MEAS SET ba
BAD DATA 5(2,3), P(3) REVERSED SIGN

P(4,5)=0.085, Q(4,5)=0.024

LEAST SQUARES LAV
BUS v ANGLE |+ V ANGLE

.0600f 0.0000
.0505(-0.0399
.0385(-0.0456
.0349|-0.05893
.0196(-0.0983

.0600| 0.0000
.0470(-0.0502
.0255]-0.0833
.0245(-0.0903
.01801-0.1069

OB WN —
RIS G G G Y
d ok ek —d —d

TEST NO. 6
MEAS SET 5a
[BAD DATA| P(2,3), P(3) REVERSED SIGN
A P(4,5)=0.085, Q(4,5)=0.024
E

RROR IN | .. ERROR IN
- LEAST SQUARES LAV i
BUS v ANGLE | V ANGLE | - N

0. 0.0091{0.0004] 0.0012
0.0143( 0.0416|0.0013| 0.00389
0 0.0337[0.0009| 0.0027
0 0.0080{0.0001} 0.0004

GTBHWN —

SUM OF . »
ERRORS {0.0304| 0.0934/0.0027| 0.0082 {

Table 6.6 Continued
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6.5/1 Discussion of Tést Results for Added Noise

For -all the tests presented in table 6.6, noise is
added to-;he measurement set. In test #0 the measurement set
is only contaminated by noise, bad data measurements are not
pre;;nt. For \tests #1 - #6, the measurement set is
contamlnated by Dboth bad daté and noise. Tests\#1 - #6 are
the ‘same tests that are g1ven in table 6.1, except that for

those tests, noise was not added to the measurement set.

For test #0 the sum of the.

’b.’

absolute values of the

—

errors for the 1least squares estimate 1is iess than the
coytespondlng sum for ths least absolute value estimate, and
therefore the least squares estimate .is slightly more
accurate. For tests #1 - #6, the sums of the errors forx the

LAV estimates, with one exception, are 1less than the

\

\

corresponding sums for the least sqguares estimates.

The results indicate that if only noise qpht&minates
the measurement set the leasf‘squares estimate,féﬁds to be
more asburats. However, when bothh bad data snd noise
‘contaminate the measurement set the LAV estimate 1is more
accurate. ‘ Q

In general the measurement set contains at. least one
bad data measurehent and noise. Under these éircumsténces

the new LAV estimator will produce superior estimates.

6.6 Algorlthm Assessment

On" the bas1s of the test results pfesented in this

chapter, several conclusions about the new LAV power system

state estimation algorithm can be made.

N

o
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- 2)

1)

3)

4)

5)

N
4
[

The new algorithm, in most cases, rejec%s bgﬁ/iT
data measurements. This is in contrast to
least .‘squares state estimators which are
always affected by badhdafq.

The algorithm can reliably determine that a

™ T

line 1s 1in service. However if a line is out

.of service the algorithm produces inconclusive

4

results. kN

The algorithm is‘ suitablé for constrained
state estimation, excebt when the number of
zero 1njection buses rédu;es the redundancy
ratio to a low leQel.

In the genefal case in whichy the measurement
set is contaminated, by ._both ‘bad\'daté\and
noise, the new LAV algorithm prodgces
estimates that are superior to least squares
estimafes.

The new LAV power system state estimator is\éﬁ

¢ . .

attractive and viable alternative to least

squafes and linear programming based state

w

"estimators.
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r CHAPTER VII

CONCLUDING REMARKS

s

7.1 Conclusion

In this thesis a‘new LAV power system state estimator

3

has been described and evaluated. In chéptef IIlbaEkgroﬁnd
material ?escribiné—;arameter estimation is presented. The
new estimator is baséd on a simple relationship between
least}squares and least absolﬁte value! estimates. This
relationship 1is described -in chapter III. In chapter IV the
power system state estimation Proglem is definéd and a brief
overview of previous research is given. In chapter V the new
power system state estimatorjis g;eSented and in chapter VI
its test results are given. The teét résultsfindicate that
the new state estimatér has very good- bad data ‘rejectién
properties and produces accurate estimates. O; the basis of
the test results it is‘concluded that the new estimator is a

viable alternative' to othér power system state eStimators

that'have'QFenfaeveloped.

1
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7.2 Suggestions for Further Research

SN

It may be worthwhide to investigate the following

areas. T .

1)

2)

3)

4)

| R
X | . -
Establishing an easier way to choose the interpolgted
measurements. Before the interpolated measurementga an
be selected, a least squafes' estimafe must  beé
calculated. H-It may be possible to select gtge
interpolated measurements withoutqhaving "to calculate
the least squares estimate. ‘
Developing 's tracking state estimator. %t may vbe
possible to adapt s;ﬁ algorithm so that it 'cén track
the state of a power system The static state estlmator
thg} has\ been develéped must recalculate a, sta}e
estimate when svsteﬁ changés occur. A tfacking state
estimator would be able to follow tﬁese changes.
Improving the - technique of determining ?he correct
sgetus of a “ine, so that the state estimator can
reliably detect that a line is out of service.
Deve1op1ng.e better: observablllty algorlthm. I£ may4 be
possible to/ develop an observablllty algor1thm “that

does not need to process the measurements'1nd1v;dually.
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"APPENDIX

1

THE 5 BUS TEST SYSTEM [36]

LINE RESISTANCE : REACTANCE LINE CHARGING
(p.u.) | (p.u.) , (p.u.)
1-2 0.020 0.060 0.030 -
1-3 0.080 0.240 0.025
2-3 0.060 0.180 0.020
2-4 0.060 0.180 0.020
- 2-5 0.040 0.120° 0.015
3-4 - 0.010 0.030 0.010
4-5 0.080 0.240 0.025

Table A.1 Impedance and Line Charging Data for
the 5 Bus Test System (Base = 100 MVA)

BUS NO. . NET GENERATION -
' . Mw MVAR
1* 2 - . . - -
2 - 0 20,0 20.0
3 - -45.0  "-15.0. . e
4 ' -40.0 ~5.0

5 -60.0 -10 0

* SlacV Bus

Tab]e A 2 Operat1ng Cond1t1ons for the 5 Bus
_ Test System
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THE 14.BUS TEST SYSTEM [37]

LINE RESISTANCE - REACTANCE LINE CHARGING
" (p.u.) (p.u.) (p.u.)
-/
1-2 ' 0.01938 " 0.05917 0.02640
2-3 0.04699 0.19797 0.02190
2-4 0.05811 0.17632 0.01870
1-5 0.05403 0.22304 0.02460
-2-5 0.05695 0.17388 0.01700
3-4 0.06701 0.17103 0.01730
4-5 0.01335 0.04211 0.00640
5-6 . .+ 0.00000 0.25202 0.00000
4-7 0.00000 ~ 0.20912 - 0.00000-
7-8 - ® 0.00000 0.17615 0.00000
4-9 0.00000 0.55618 0.00000
7-9 0.00000 0.11001 0.00000
'9-10 0.03181 0.08450 - 0.00000
6-11 0.09498 0.19890 0.00000
6-12 0.12291 0.25581 0.00000
6-13 0.06615 0.13027 0.00000
. 9-14 0.12711 0.27038 0.00000
10-11 0.08205 0.19207 0.00000
12-13 0.22092 0.19988 { 0.00000
13-14 0 0.34802 Y 0.00000

. 17083

Table A.3 Impedance and Line Charging Data for the
14 Bus Test System (Base = 100 MVA)

@ - .
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BUS NO. _ NET GENERATION

MW . MVAR
. /4[4
ik - - -
D . 18.3 -
3% -94.2 -
4 - -47.8 3.9
5 -7.6 -1.6
Bx* | | -11.2 -
7 - ~ 0.0 0.0 ‘
Bx* o 0.0 -
g ~-29.5 -16.6
10 S -9.0 -5.8
1 3.5 -1.8
12 -6. 1 -1.6
13 -13.5 -5.8
9 -5.0

14 | -14,

* Slack Bus
** Generator Bus

Table A.4 Operating Cor ditions for the 14 Bus Test System

TRANSFORMER DESIGNATION ) TAP SETTING

5-8 0.932
4-7 0.978
4-9

0.968

Table A.5 Transformer -Data for the 14 Bus Test System

—‘\\ ..
BUS NUMBER { SUSCEPTANCE (p.y7)
. . 7 l‘\”’ . - "V/ o
9 : | 0.19 e
: ' — L LA

7o

 Table A.6 Static Capacitor Data far the 14 Bus Test System

/

.\’,1
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THE 30 BUS TEST SYSTEM [37]

1

LINE RESISTANCE REACTANCE LINE CHARGING
(p.u.) (p.u.) (p.u.)
1-2 0.01920 0.05750 0.02640
1-3 0.04520 0.18520 0.02040
2-4 0.05750 0.17370 0.01840
3-4 0.01320 ~0,.03790 0.00420
2-5 0.04720 0.19830 “ 0.02090
2-6 '0.05810 0.17630 - 0.01870
4-6 0.01190 0.04140 0.00450
5-7 0.04600 0.11600 0.01020
6-7 0.02670 0.08200 0.00850
6-8 0.01200 0.04200 ™y 0.00450
6-9 0.00000 0.20800 & 0.00000
6-10 0.00000 0.55600 0.00000
9-11 0.00000 0.20800 0.00000
8-10 0.00000 0.11000 0.00000
4-12 0.00000 0.25600 0.00000
12-13 0.00000 0.14000 0.00000
12-14 0.12310 0.25590 0.00000
12-15 0.06620 0.13040 0.00000
12-16 0.09450" 0.19870 0.00000
14-15 - 0.22100 0.19970° (. 00000
16-17 0.08240 0.19230 0.00000
15-18 .0.10700 0.21850 0.0000C
18-19 0-063390 - 0.12920 0.000:0
19-20 0.03400 0.06800 0.00C0L
10-20 0.09360 0.02030 0.00 "
10-17 0.03240 0.08450 0.0C" JO
10-21 0.03480 0.07490 0.0C .
10-22 0.07270 0.14990 o.ooco\
21-22 0.01160 0.02360 o.oococ
15-23 0.10000 0.20200 0.00:
22-24 0.11500 0.17900 0.00" ~a
23-24 0.13200 0.27000 0.00.20
24-25 0.18850 0.32920 0.00000
25-26 0.25440 0.38000 0.00000
25-27 ~0.10930 0.20870 - 0.00000
28-27 0.00000. 0.39600 0.00000
27-29 0.21980 - 0.41530 0.00000
27-30 0.32020 0.60270 0.00000
29-30 0.23990 0.45330 0.00000 oo
8-28 0.06360 0.20000 0.02140 ,
6-28 0.01690 0.05990 0.00650
Tab]e A7 Impedance and Line Charg1ng Data for the - N

30 Bus Test System (Base = 100 MVA)
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. BUS NO. ' NET GENERATION
. ' MW MVAR
1% - boo-
2%* 18.3 -
3 -2.4 -1.2
4 -7.6 -1.6
S** -94.2 -
67 0.0 0.0
7 -22.8 -10.9
Bx** -30.0 - -
9 0.0 0.0
10 =5.8 -2.0
R 0.0 -
12 -11.2 -7.5 =
13 . - 70.45 -6.2 w
14 -6.2 1.6
15, -8.2 -2.5
16° -3.5 -1.8 . e
;17 -9.0 -5.8 ¢
‘18 -3.2 -0.9 ' ;
19 . -9.5 -3.4"
20 . -2.2 -0.7 i
21 -17.5 -11.2
22 0.0 0.0
23 =3.2 -1.6
24 e . -8.7 -6.7
2. RIS 0.0 0.0
26 -3.5 -2.3
27 0.0 0.0
28 0.0 0.0 ~
29 -2.4 -0.9 JF
30 -10.6 -1.8
* Slack Bus o »
ok “Generator Bus : v

Tab]e A 8 Operat1ng Cond1éyons for the 30 Bus Test System

© i
{es
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‘ J
TRANSFORMER DESIGNATION ~ TAP SETTING
‘ ‘ - I v
6-9 0.978
6-10 0.969
4-12 0.932
08-27 0:968

Table A.9 Transformer- Data for thé 30 Bus Test System

BUS NUMBER ;o SUSCEPTANCE (p.u.)

. ™,
10 ‘ OC%QO - J

24 | 0.043

Table A.10 Static .Capacitor Da%a for the 30 Bus Test System ° -

N\

A



