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Abstract

In this research, state and imbalance fault estimation of a simple rotor-bearing system

using Kalman filtering techniques has been investigated. The motion of a simple rotor-

bearing system can be described by a set of coupled partial differential equations (PDEs);

approximative equations of the motion PDEs are derived by variational formulation, where

the PDE system is spatially discretized into a high dimensional ordinary differential equa-

tion (ODE) form. Optimization-based sensor selection algorithm for Kalman filtering is

then applied to optimally choose among the large number of ODE model states to measure,

such that specific requirements for state estimation performance are satisfied with a small

number of sensors. For practical applications such as the rotor-bearing systems, fault es-

timation is usually one of the goals of system monitoring; augmented-state Kalman filter

(ASKF) is preferred for its simple formulation, but at the cost of more intensive computa-

tion and greater numeric errors due to higher system order. Alternatively, optimal two-stage

Kalman filter (OTSKF) provides an equivalent form of ASKF under certain algebraic con-

straint but with generally lower computation complexity and many practical advantages.

Adaptive two-stage Kalman filter (ATSKF) is thus applied in this research for simultane-

ous state and fault estimation of the rotor-bearing system, and the optimal adaptive fading

factor for OTSKF is designed using the innovation sequence which is equivalent to that

of ASKF. Simulation results have demonstrated the effectiveness of ATSKF handling sud-

den imbalance fault occurrence during the operation of the rotor-bearing system using the

optimally selected sensors.
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Chapter 1

Introduction

1.1 Motivation

Rotating machinery is widely used in all leading industries, and they can vary enor-
mously in size, complexity and general configuration. Unfortunately, there are many causes
of machine faults or failures, such as mass unbalance, bent or cracked shafts, and bearing
failures [5], which will pose potential damages or interrupt normal operation of the ma-
chineries. Moreover, many faults only demonstrate relatively subtle changes in observable
vibration signal characteristics until significant damage has occurred. An early detection
and diagnosis of these faults can prevent unnecessary interruption of operations and severe
damages to the machineries, which can generally lead to huge economic losses. Therefore,
modeling and analyzing rotating machines and their fault responses are of great importance
for both machine design and operation safety purposes [8].

Motivated by centrifugal separator nozzle plugging issues that commonly present in
process industries, this thesis is focused on developing a simple rotor-bearing system model
that can simulate the imbalance influence on the normal operation of the machinery, and
further designing filtering strategies for simultaneous state and fault estimation. Since re-
cent research on optimal sensor selection in control engineering also fits perfectly in state
estimation topics, a study on sensor selection, state and fault diagnosis of simple rotor-
bearing systems is of great practical value.
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1.2 Literature Review

In this section, a brief overview of existing literatures that are related to structural dy-
namics modeling and state estimation, sensor selection and Kalman filtering techniques are
presented.

1.2.1 State Estimation for Mechanical and Structural Systems

Generally, the equations of motion for mechanical and structural systems can be de-
veloped using the Lagrange method or direct Newton’s second law of motion [8], and
the resulting equations can be ordinary differential equations (ODEs) or partial differen-
tial equations (PDEs), coupled or non-coupled, linear or nonlinear. In the case of PDEs,
an analytic solution may not be possible to obtain; finite element (FE) discretization are
commonly adopted to derive an approximate ODE model that is suitable for simulation,
estimation and control design.

A dynamic modeling procedure of rotor-bearing systems, which consist of rigid disks,
distributed parameter rotor elements and discrete bearings is presented in [22], the accuracy
of the approximate equitations is achieved at the cost of high order system matrices, which
may require intensive computation and can lead to large numeric errors. A model reduction
technique is proposed in [7] that provides a low order model while retaining the effect of pa-
rameter changes and guaranteeing unchanged natural frequency of interest. In [27], modal
observer is designed for monitoring the vibration of cantilever model and demonstrates
satisfactory results. In a recent paper [19], a robust imbalance fault estimation algorithm
is proposed based on an unknown-input observer design method to handle model uncer-
tainty and errors, and satisfactory fault estimation result is obtained. In [9], a second-order
natural estimation algorithm is designed for state estimation of a partially instrumented
mass-string-damper structure subject to random loads, and the optimal model-based algo-
rithm can provide results close to Kalman filter. These literatures suggest that it is efficient
to adopt state estimator to monitor vibrations and supervise characteristic parameters of the
structure such as eigenfrequencies.

1.2.2 Sensor Selection for Kalman Filtering

The advancement in sensor technology brings industries with affordable sensors to
monitor process variables and structure health. Indeed, sensor network and data fusion
research offers promising benefits to control and structural engineering, while sensor se-
lection and placement still demonstrate significant advantage in easy computation, lower
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cost and suitability in mechanical and structural systems. Especially in monitoring of large
scale structures where thousands of sensor locations can be selected [21], optimal sensor
placement can significantly reduce the number of target locations to tens or fewer.

Unlike optimal sensor placement in structural engineering [21] and optimal design or
inverse problem [3], where Fisher Information Matrix (FIM) is highly relied on, the sensor
selection problem for control system engineering focuses on finding relatively small num-
ber of measurements to produce satisfactory state estimation solution, and this topic has
drawn significant attention in recent years. Minimal controllability problem in [23] outlines
an NP-hard algorithm to find the minimal number of states to control to ensure system con-
trollability; the dual problem, minimal observability, can utilize the same strategy to find
the minimal number of states to measure so that observability is guaranteed, and observers
can be safely designed to monitor system dynamics. Sensor selection for Kalman filtering
gains significant amount of attention not only because of the superior ability of Kalman
filtering to optimally handle dynamics disturbance and noise, but also the selection can be
conducted using state estimation error covariance dynamics that can be calculated offline.
[26] points out a few fundamental limitations of sensor selection for optimal Kalman filter-
ing, and that adding new sensors becomes ineffective for reduction of estimation error after
the first few, which is one of the most important motivations of performing sensor selection.
Most applications [10, 29] focus on improving covariance metrics of certain form, such as
trace and log determinate, while the submodularity (or supermodularity) of these metrics
may not hold in general. [14] provides a procedure to check sequence submodularity. Due
to the fact that optimal sensor selection problem is in general NP-hard, greedy algorithms
are commonly adopted with the proposed optimization problem.

1.2.3 Kalman Filtering for Fault Estimation

Kalman filter [15] produces optimal unbiased state estimate for linear Gaussian sys-
tems, and its recursive computation is easy to implement; an accurate model of system
dynamics and observations is required. Once these assumptions fail, such as occurrence of
fault dynamics, the filter will not be optimal and unacceptably large estimation errors may
be produced [12].

A natural solution to this issue is adding fault dynamics into the model, and the resulting
higher order system may still be optimally estimated, at the cost of more intensive compu-
tation and potential higher numeric errors. [6] introduced optimal two-stage Kalman filter

(OTSKF) to decouple the augmented-state Kalman filter (ASKF) into two parallel filters
of reduced order. Solutions of OTSKF for random bias are proposed later in [13, 2, 11],
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and weaker algebraic constraint imposed makes it easier for real applications. Another ap-
proach is Proportional-Integration Kalman filter [4]; however, due to the design complexity
of multiple gain matrices, it is not suitable for general systems.

Performance degradation of Kalman filtering occurs when sudden changes exist in sys-
tem dynamics or measurement model, whether they are modeled or unmodeled. In [28],
adaptive fading Kalman filter (AFKF) is proposed, where filter innovation covariance is
monitored to capture the occurrence of sudden changes, and the forgetting factor is adap-
tively updated so that the defined criterion function is minimized. OTSKF has the same
drawback due to its equivalence to ASKF, thus in [16, 17], adaptive two-stage Kalman fil-
ters are proposed for linear and nonlinear systems; while the optimality is not guaranteed
since the bias free filter fading factor is calculated based on non-zero mean innovation se-
quence, and in fact, only bias filter innovation sequence is suitable for designing the fading
factor.

1.3 Outline

This section briefly outlines the organization of the rest of this thesis.
In Chapter 2, an approximate ODE model representation of a simple rotor-bearing sys-

tem is derived given a set of coupled PDEs that describe the shaft motion. Imbalance force
model is approximated utilizing the ODE model. Both free and forced lateral responses are
simulated to exterminate whether the selected model parameters are appropriate. The ODE
model is then implemented in Simulink with a few assumptions, and simulated vibrations
are demonstrated.

In Chapter 3, model reduction technique is firstly applied to lower the order of the high
dimensional ODE model, and a simpler state-space model is assembled. State estimation
model of Kalman-Bucy filter is then built in Simulink to simulate both state filtering and
error covariance dynamics. Optimization-based sensor selection among the large number
of ODE model states are studied, and an approximation algorithm is outlined, aiming at
optimally selecting a small number of senors that are able to guarantee the performance of
Kalman filtering. Simulations of sensor selection under different practical constraints are
demonstrated to indicate a few fundamental limitations of sensor selection problems, and
some useful insights on rotor-bearing system monitoring are analyzed.

In Chapter 4, more practical aspects of using Kalman filtering for vibration estimation
are studied. Imbalance faults dynamics are considered in system representation, which re-
sults in a higher order system. OTSKF is introduced, as an optimal alternative of ASKF in
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lower dimension, to handle the intensive computation complexity. Adaptive fading factor
algorithm is utilized to deal with the well known degradation issue of conventional Kalman
filtering. Simulations on sensor selection of augmented-state system and ATSKF are per-
formed to test the effectiveness of these methods.

In Chapter 5, conclusion of this research is made and a few valuable future work topics
are outlined.
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Chapter 2

Modeling and Simulation of Simple

Rotor-Bearing Systems

2.1 Introduction

The equations of motion for simple rotor-bearing systems can be developed using the
Lagrange method or direct Newton’s second law of motion [8]. They are coupled partial
differential equations (PDEs), to which an analytic solution is in general impossible to ob-
tain. Finite element discretization provides an approximation scheme to spatially discretize
the PDEs into a high order ordinary differential equation (ODE) form, so that simulation,
estimation and control can be designed using either the continues-time ODEs or further
temporally discretized system representations.

This chapter intends to specify the model representation that is applied for analysis and
design throughout this thesis, and briefly address finite element discretization of simple
rotor-bearing systems when the equations of motion are available. A Simulink model is
then built according to the derived ODE representation to simulate the states and measure-
ments of an idealized simple rotor-bearing system. Limitations of the Simulink model are
specified. Simulations of free and forced lateral response and vibration measurements are
presented to demonstrate the behavior of the model. This chapter serves as the basis for the
rest of this thesis.
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2.2 Model Description and Preliminaries

2.2.1 Model Description

1 2 3 4 5 6 7 8 9

1
2 3 4 5 6 7

8

Figure 2.1: A simplified rotor-bearing system model.

The simple rotor-bearing system model of interest in this thesis is consisted of an evenly
distributed long-stretched homogeneous and isotropic flexible shaft, three rigid disks, and
two isotropic bearings at left and right ends of the shaft, as is demonstrated in Figure 2.1.
The partial differential equations describing the motion of such a shaft can be written in the
following form [25]:

EIa
∂ 4u(t,z)

∂ z4 +µ
∂ 2u(t,z)

∂ t2 − Ia
∂ 4u(t,z)
∂ t2∂ z2 −ωIp

∂ 3v(t,z)
∂ t∂ z2 + c

∂u(t,z)
∂ t

= 0, (2.1a)

EIa
∂ 4v(t,z)

∂ z4 +µ
∂ 2v(t,z)

∂ t2 − Ia
∂ 4v(t,z)
∂ t2∂ z2 +ωIp

∂ 3u(t,z)
∂ t∂ z2 + c

∂v(t,z)
∂ t

= 0, (2.1b)

where t and z are temporal and spatial variables; u(t,z) and v(t,z) are x− and y−direction
displacements, and the initial conditions of the system are given as u(0,z), u̇(0,z), v(0,z)
and v̇(0,z); E, ω and c are defined in Table 2.1, along with the rest of the rotor-bearing
system parameter specifications; mess per length µ , diametral and polar moment of inertia
of the shaft, Ia and Ip, are calculated as

µ = ρπ(
ds

2
)2, Ia =

1
4

π(
ds

2
)4, Ip =

1
2

π(
ds

2
)4.

In this thesis, shaft motion in Equation (2.1) is the focus of the study on simple rotor-
bearing systems since effects of disks and bearings can be modeled as point forces and
moments applied on the shaft, and further regarded as boundary or transmission conditions
to Equation (2.1), which are briefly demonstrated in the following subsection. Thus, all
states and measurements mentioned in the rest of this thesis are with regard to the shaft
motions. Note that gravity effects are ignored in this model for simplicity, and one practical
application of such a setup is centrifuge machine [19].
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Table 2.1: Model Parameter Specification

Parameter Symbol Value

System External viscous damping factor c 0 Ns/m

Spinning speed ω 1000 RPM

Shaft Length L 1.5 m

Diameter ds 50 mm

Young’s modulus E 2.11×1011N/m2

Mass per m3 ρ 7810 kg/m3

Disk Thickness( j = 1,2,3) ld
j 70 mm

Diameter dd
j 280 mm

Bearing Isotropic bearing damping cb
uu, cb

vv 0 Ns/m

cb
uv, cb

vu 0 Ns/m

Isotropic bearing stiffness kb
uu, kb

vv 1×106 N/m

kb
uv, kb

vu 0 N/m

2.2.2 Finite Element Discretization

Spatial Discretization

Assume the system model demonstrated in Figure 2.1 can be discretized into N fi-
nite elements with N + 1 nodes {zk}N+1

i=1 (z1 and zN+1 are bearing nodes). For an element
bounded by nodes zk and zk+1, apply standard 3rd order Hermite polynomials (also called
shape function)

{
Ψk

p(z)
}4

p=1 to derive the approximative displacement in z ∈ [zk,zk+1] as

u(t,z)|z∈[zk,zk+1] = Ψ
k
1(z)uk(t)+Ψ

k
2(z)γk(t)+Ψ

k
3(z)uk+1(t)+Ψ

k
4(z)γk+1(t),

v(t,z)|z∈[zk,zk+1] = Ψ
k
1(z)vk(t)−Ψ

k
2(z)βk(t)+Ψ

k
3(z)vk+1(t)−Ψ

k
4(z)βk+1(t),

where uk(t), vk(t), βk(t) and γk(t) are the x− and y−direction displacements and Ox− and
Oy−direction angles at zk. Denote qk(t)= [uk(t) vk(t) βk(t) γk(t)]>, q̃k(t)= [q>k (t) q>k+1(t)]

>

and U(t,z) = [u(t,z) v(t,z)]>, then

U(t,z)|z∈[zk,zk+1] =Wk(z)q̃k(t), (2.2)

8



where

Wk(z) =

 Ψk
1(z) 0 0 Ψk

2(z) Ψk
3(z) 0 0 Ψk

4(z)

0 Ψk
1(z) −Ψk

2(z) 0 0 Ψk
3(z) −Ψk

4(z) 0

 . (2.3)

Figure 2.2 demonstrates the values of Hermite polynomials and their derivatives for element
bounded by [z4,z5]. As is indicated, at z = zk, only Ψk

1(z) and Ψ̇k
2(z) have value 1, which

2 4 6 8
-0.5

0

0.5

1

1.5

2 4 6 8
-0.1

0

0.1

2 4 6 8
-0.5

0

0.5

1

1.5

2 4 6 8
FE Node

-0.1

0

0.1

2 4 6 8

-8
-6
-4
-2
0

2 4 6 8
-0.5

0

0.5

1

1.5

2 4 6 8
0
2
4
6
8

2 4 6 8
FE Node

-0.5

0

0.5

1

1.5

Figure 2.2: Shape function for element bounded by [z4,z5].

indicates

u(t,z)|z=zk = uk(t),
∂u(t,z)

∂ z
|z=zk = γk(t), v(t,z)|z=zk = vk(t),

∂v(t,z)
∂ z

|z=zk =−βk(t).

Similar observation can be obtained at z = zk+1 as

u(t,z)|z=zk+1 = uk+1(t),
∂u(t,z)

∂ z
|z=zk+1 = γk+1(t),

v(t,z)|z=zk+1 = vk+1(t),
∂v(t,z)

∂ z
|z=zk+1 =−βk+1(t).
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In order to assemble the complete system, the displacement and angle vector of the
entire shaft can be constructed as

q(t) = [q>1 (t) · · · q>N+1(t)]
>

= [u1(t) v1(t) β1(t) γ1(t) · · · uN+1(t) vN+1(t) βN+1(t) γN+1(t)]>,
(2.4)

and thus, q̃k(t) = Tkq(t), where element assembling matrix Tk is defined as

Tk = [ 0008×4(k−1) III8×8 0008×4(N−k) ] ∈ RRR8×4(N+1).

Therefore, Equation (2.2) is equivalent to

U(t,z)|z∈[zk,zk+1] =Wk(z)Tkq(t), (2.5)

and the approximative displacement of the entire shaft can be described as following:

U(t,z) =
N

∑
k=1

Wk(z)Tkq(t), (2.6)

where ∑
N
k=1Wk(z)Tk is a shape matrix that is only related to spatial variable z, and q(t) is

the time dependent coefficients.

Galerkin Formulation

The boundary and transmission conditions at zk ∈Ω = [0,L] are defined as[
Iaü′+ωIpv̇′−EIau′′′

]
zk
= fzk,1 (2.7a)[

Iav̈′+ωIpu̇′−EIav′′′
]

zk
= fzk,2 (2.7b)[

EIau′′
]

zk
= tzk,1 (2.7c)[

EIav′′
]

zk
= tzk,2, (2.7d)

where ′ is partial derivative with respect to z and ˙ with respect to t; [ f ]z = f (z+)− f (z−)

denotes the jump of f at z; fzk,· and tzk,· are point force and moment occurred at node zk.
When analyzing each element, fzk,· and tzk,· include both internal forces and moments and
those caused by bearings and disks. The weak solution to Equation 2.1 on Hilbert space
can be formulated using Galerkin’s method as:〈

EIau′′′′+µ ü− Iaü′′−ωIpv̇′′+ cu̇,η
〉
= 〈0,η〉 ,〈

EIav′′′′+µ v̈− Iav̈′′+ωIpu̇′′+ cv̇,ξ
〉
= 〈0,ξ 〉 ,

10



where η ,ξ ∈ H2(Ω) are test functions. Integrating by parts over Ω = [0,L] will lead to the
variational formulation as∫

Ω

EIau′′η ′′+µ üη + Iaü′η ′+ωIpv̇′η ′+ cu̇η dz

+
N

∑
k=1

[
EIau′′′η−EIau′′η ′− Iaü′η−ωIpv̇′η

]
|zk+1
zk = 0∫

Ω

EIav′′ξ ′′+µ v̈ξ + Iav̈′ξ ′−ωIpu̇′ξ ′+ cv̇ξ dz

+
N

∑
k=1

[
EIav′′′ξ −EIav′′ξ ′− Iav̈′ξ +ωIpu̇′ξ

]
|zk+1
zk = 0,

where [ f ]|zk+1
zk = f (zk+1)− f (zk). Note that the summation terms are closely related to

Equation (2.7); replacing the summation terms with corresponding boundary and transmis-
sion forces and moments, and denoting W = [η ξ ]>, then adding these two equations yields
the following equation:

∫
Ω

µW>Ü+Ia(W ′)>Ü ′+ cW>U̇ +(W ′)>

 ωIp

−ωIp

U̇ ′+EIa(W ′′)>U ′′ dz

+
N+1

∑
k=1

[W (zk)]
>

 fzk,1

fzk,2

+ [W ′(zk)
]> tzk,1

tzk,2

= 0.

(2.8)

According to [25], the shape matrix ∑
N
k=1Wk(z)Tk can be used as an approximation of W in

finite dimensional space V4N×V4N , where finite dimensional subspace V4N ⊂ H2(Ω) has a
basis {Ψk

p}p=1,...,4,k=1,...N . Thus, Equation (2.8) is approximated by

N

∑
k=1

T>k

∫
Ω

µW>k WkTkq̈(t)+IaW ′>k W ′kTkq̈(t)+ cW>k WkTkq̇(t)+EIaW ′′>k W ′′k Tkq(t)

+ωIpW ′>k

 1

−1

W ′kTkq̇(t) dz+Fd(t)+Fb(t) = 0,

where vector Fd(t) and Fb(t) describe the point forces and moments components exerted
by rigid disks and bearings; all internal forces and moments cancel each other. The above
formulation can be further simplified into

Msq̈(t)+ωGsq̇(t)+Csq̇(t)+Ksq(t)+Fd(t)+Fb(t) = 0, (2.9)
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where

Ms =
N

∑
k=1

T>k

[∫
Ω

µW>k Wk + IaW ′>k W ′k dz
]

Tk,

Gs =
N

∑
k=1

T>k

∫
Ω

IpW ′>k

 1

−1

W ′k dz

Tk,

Cs =
N

∑
k=1

T>k

[∫
Ω

cW>k Wk dz
]

Tk,

Ks =
N

∑
k=1

T>k

[∫
Ω

EIaW ′′>k W ′′k dz
]

Tk,

are mass, gyroscopic, damping and stiffness matrix, respectively.

Disk Components

Assume disks are rigid and can only be mounted at pre-defined nodes zk ∈ (0,L). The
partial differential equations describing the disk motion can be obtained using Lagrangian
method, and their ODE representation be formulated as following:

Fd
k (t) = Md

k q̈k(t)+ωGd
k q̇k(t)+Cd

k q̇k(t), (2.10)

where

Md
k =


md 0 0 0

0 md 0 0

0 0 Id
a 0

0 0 0 Id
a

 , Gd
k =


0 0 0 0

0 0 0 0

0 0 0 Id
p

0 0 −Id
p 0

 , Cd
k =


c 0 0 0

0 c 0 0

0 0 0 0

0 0 0 0

 ;

md , Id
a and Id

p are disk mass, diametral and polar moment of inertia of the disk calculated
as [8]:

md =
1
4

ρπld
[
(dd)2− (ds)2

]
, Id

p =
1
8

md

[
(dd)2 +(ds)2

]
, Id

a =
1
2

Id
p +

1
12

md(ld)2.

Define disk assembling matrix T d
k , k = 2,3, · · · ,N as following:

T d
k =

[ 0004×4(k−1) III4×4 0004×4(N−k+1) ] ∈ RRR4×4(N+1) if a disk is mounted at node k

0004×4(N+1) ∈ RRR4×4(N+1) if no disk is mounted at node k,
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and qk(t) = T d
k q(t). Thus,

Fd(t) = Md q̈(t)+ωGd q̇(t)+Cd q̇(t), (2.11)

where

Md =
N

∑
k=2

(T d
k )
>Md

k T d
k , Gd =

N

∑
k=2

(T d
k )
>Gd

k T d
k , Cd =

N

∑
k=2

(T d
k )
>CdT d

k .

Remark 2.2.1 It should be pointed out that this formation is identical with Equation (2.8),

because when W (zk) and W ′(zk) are approximated using Wk(zk) and W ′k(zk), only two en-

tries of each matrix are non-zero value according to Figure 2.2, and the combined influence

is equivalent to T d
k . Same conclusion can be made for bearing effects that are modeled as

boundary conditions.

Bearing Components

It is assumed that two bearings are mounted at the both ends of the shaft to support it.
Assume the bearings utilized obey the following governing equations:

Cb
k q̇k(t)+Kb

k qk(t) = Fb
k (t), (2.12)

where k = 1 or N +1, and

Cb
k =


cb

uu cb
uv 0 0

cb
vu cb

vv 0 0

0 0 0 0

0 0 0 0

 , Kb
k =


kb

uu kb
uv 0 0

kb
vu kb

vv 0 0

0 0 0 0

0 0 0 0

 .

Define assembly matrix

T b
k =

[III4×4 0004×4N ] ∈ RRR4×4(N+1) if k = 1;

[0004×4N III4×4] ∈ RRR4×4(N+1) if k = N +1;

and then,
Fb(t) =Cbq̇(t)+Kbq(t), (2.13)

where

Cb = (T b
1 )
>Cb

1T d
1 +(T b

N+1)
>Cb

N+1T d
N+1, Kb = (T b

1 )
>Kb

1 T d
1 +(T b

N+1)
>Kb

N+1T d
N+1.
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System Assembly

The overall system equation is obtained by substituting Equation (2.11) and (2.13) into
Equation (2.9), as the following form:

M f eq̈(t)+ωG f eq̇(t)+C f eq̇(t)+K f eq(t) = 0, (2.14)

where

M f e = Ms +Md, G f e = Gs +Gd, C f e =Cs +Cd +Cb, K f e = Ks +Kb,

and M f e, G f e, C f e, K f e ∈ RRR4(N+1)×4(N+1), q(t) ∈ RRR4(N+1).

Imbalance Fault Components

In this research, only imbalance forces are considered for the fault scenario. Let vector
qε(t) ∈ RRR4(N+1) be the difference between equilibrium position and rotor center of mass at
all modeled nodes along the shaft, and the new system equation with imbalance fault can
be formulated as [8]:

M f e[q̈(t)+ q̈ε(t)]+ωG f e[q̇(t)+ q̇ε(t)]+C f eq̇(t)+K f eq(t) = 0. (2.15)

Since excitation and response are harmonic, q̈ε(t) =−ω2qε(t). Therefore, imbalance fault
signal can be formulated as

fim(t) =−M f eq̈ε(t)−ωG f eq̇ε(t) = ω
2M f eqε −ωG f eq̇ε . (2.16)

Due to the fact that disk masses are significantly greater than shaft elements, it is reasonable
to assume imbalance forces can only appear on disks, namely,

fim(t) = F0 f (t), (2.17)

where F0 ∈ RRR4(N+1)×4Nd
represents the imbalance fault model, Nd is disk number; f (t) ∈

RRR4Nd
is assumed to share the same physical meaning with imbalance position qε(t) but only

at nodes where disks are mounted. For a specific disk node zk ∈ (0,L), let

qε,k = [εk cos(ωt +δk),εk sin(ωt +δk),0,0]
> , M f e

zk
= Md

k , G f e
zk

= Gd
k ,

where εk is the magnitude or imbalance position from the equilibrium, and δ j is the phase,
and then,

[F0 f (t)]k = ω
2
[
md

εk cos(ωt +δ j),md
εk sin(ωt +δ j),0,0

]>
. (2.18)
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To conclude, the ODE representation of the simple rotor-bearing system using finite
element discretization under imbalance forces can be written as:

M f eq̈(t)+ωG f eq̇(t)+C f eq̇(t)+K f eq(t) = F0 f (t)+D0w(t), (2.19)

where D0 and w(t) are to represent the modeling error or system disturbance. For simplicity
reason, damping factor is not considered (as is defined in Table 2.1, c = 0) in analysis and
simulation of this research, thus the damping C f e matrix term is ignored in the rest of this
thesis. It is worthwhile pointing out that doing this will lead to pure imaginary eigenvalues
of the system.

2.3 Simulation Results and Discussions

In this section, various simulation results using parameters described in Table 2.1 are
presented, which is based on 8 (value of N) evenly discretized elements, 3 disks and 2
bearings. The main goal of the simulation is to achieve comprehensive understanding of the
rotor-bearing system of interest before applying advanced algorithms for sensor selection
and state estimation.

2.3.1 Free Lateral Response

Recall the homogeneous form of the ODE model of shaft motion in Equation (2.14),
neglecting damping terms, as:

M f eq̈(t)+ωG f eq̇(t)+K f eq(t) = 0.

Table 2.2: Rotor-bearing system eigenvalues at spinning speed 1000 RPM

Backward Whirl Forward Whirl

5.8318×10−12±83.9083i −8.4590×10−12±84.5805i

4.3826×10−11±237.7725i −4.1020×10−11±244.1232i

1.9806×10−12±537.8319i −1.9877×10−12±563.7432i

−1.0026×10−12±1131.6896i 6.5512×10−12±1199.2507i
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The roots of the characteristic equation are in form of s1,s2 = −ζ ωn± jωn
√

1−ζ 2.
Since no damping has been considered, ζ = 0, and the roots are expected to be pure imag-
inary. At rotor spinning speed of 1000 RPM, the first four sets of eigenvalues of both
backward and forward whirls are listed in Table 2.2, and the extremely small non-zero
real parts are due to numeric errors. The corresponding first four natural frequencies and
mode shapes are demonstrated in Figure 2.3, where the natural frequencies are calculated
as 1/(2π) of the imaginary parts of corresponding backward whirl eigenvalues.

Natural Frequency = 13.3544Hz Natural Frequency = 37.8427Hz

Natural Frequency = 85.5986Hz Natural Frequency = 180.114Hz

Figure 2.3: Rotor-bearing system first four mode shapes.

Further, the natural frequency map is illustrated in Figure 2.4, where a larger range
of spinning speeds are taken into consideration. It presents computed values of natural
frequencies as a function of rotor rotation speed. The intersection of 1x natural frequency
function (blue dash line) with calculated natural frequency (black lines with red and greed
markers) around 800 RPM indicates a critical speed at the low speed range, around where
rotor imbalance produces unacceptable vibrations. In this thesis, the system spinning speed
is chosen to be 1000 RPM, which is above this critical speed and thus safe for operation.

To conclude, free lateral response is analyzed in the absence of any applied forces.
Thus, the vibration response indicates system properties, and can be used for design and
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model parameter validation.
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Figure 2.4: Rotor-bearing system Campbell diagram.

2.3.2 Forced Lateral Response

Assume that the steady-state forced response of system described by Equation (2.19)
(with no damping component or modeling error, namely, C f e = 0 and D0w(t)≡ 0) has the
form of q(t) = Re(q0(t)e jωt), where Re(·) represents the real part. Thus,

q0(t) = [(K f e−ω
2M f e)+ jω(ωG f e)]−1 ·F0 f (t). (2.20)

Figure 2.5 and 2.6 demonstrate the steady-state response of rotor-bearing system with an
imbalance mass eccentricity of 10mm at node 3. It is noticeable that when the synchronized
imbalance fault excitation approaches natural frequency of the system, the magnitude of
the response reaches a local maximal; the imbalance force also leads to a significant small
value in magnitude of node 3 around 1600 RPM, and the phase of the node changes by
180◦. This observation is more clearly demonstrated in Figure 2.6.

Thus, forced lateral response is very helpful for analyzing the behavior of system under
applied forces. Through various figures that can be produced using the forced steady-state
response, a preliminary understanding of system response can be established.
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Figure 2.5: Steady-state response of system with an imbalance placed in node 3.

ODS at 1000 RPM ODS at 1200 RPM

ODS at 1400 RPM ODS at 1600 RPM

Figure 2.6: Steady-state ODS of system with an imbalance placed in node 3.
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2.3.3 Simulation Model Limitations

Given the approximate ODE representation of the rotor-bearing system, the simulation
performed in this thesis is regarding the rotor-bearing system as an second-order ordi-
nary differential equation system, unlike simulations performed in mechanical or structural
dynamics analysis softwares, such as SimMechanics and Ansys [19], where the physical
characteristics are heavily emphasized. Therefore, a few limitations are associated with the
simulation model used in this thesis, mainly due to lack of constant control inputs. A few
clarifications are required to be presented.

• Initial conditions: Since control inputs are not designed for the model, the simu-
lations heavily rely on initial conditions (or equivalently, impulse input), while an
accurate initial condition is difficult to obtain in this case. In this thesis, the initial
condition is chosen by assuming a known small imbalance at the middle disk, and
then the steady-state response with respect to this known imbalance is calculated to
be used as initial condition to excite the system. Due to lack of constant excitation
and damping force, the system will oscillate at natural frequency.

• Imbalance Fault Excitation: Since the initial condition driven system operates at
natural frequency rather than the designed spinning speed, the imbalance fault exci-
tation modeled following Equation (2.16) is not synchronized with the system any-
more. However, simulation under this asynchronized fault signal is still performed,
but state and fault estimation falls into more general harmonic fault scenario. From
implementation perspective, applying the asynchronized fault can simulate dynamics
of the occurrence of the faults. To compensate for this limitation, a second simula-
tion study using forced steady-state response data under imbalance is also presented,
where the occurrence of imbalance fault is not captured in the collected data. The
combined simulation results shall provide more comprehensive insights of the re-
search topic in this thesis.

2.3.4 System Simulation

According to Equation (2.19), a second-order Simulink model is presented in Figure
2.7. While control input is imposed in the Simulink model, no actual signals are applied.

Figure 2.8 further demonstrates the rotor rotation shapes before and after a static im-
balance fault is triggered at Node 3. It can be observed that the imbalance will not only
increase the operating deflection shape (ODS) magnitude in general, but also alter the sym-
metric property of the original system. This observation coincides with Figure 2.6.
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Figure 2.7: Rotor-bearing system Simulink model.
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Figure 2.8: Shaft rotation shapes comparison: left: normal condition; right: imbalance

fault on node 3.

The rotation shapes under general harmonic fault influence is presented in Figure (2.9).
Due to the frequency difference between system oscillation and fault excitation, Figure
(2.9) exhibits the phenomenon of beats [24]. Measurement samples from both simulation
strategies are presented in Figure 2.10 and 2.11.
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Figure 2.9: Central node rotation shapes comparison: green: normal condition; red: general

harmonic fault on node 3

2.3.5 Conclusion

This chapter outlines the model that is studied in this thesis. A Simulink model is de-
signed based on the derived ODE model, and it is used to generate data, such as system
outputs, for state and fault estimation in later chapters. While there are limitations as-
sociated with the setup, a combinational simulation strategy is designed to provide more
comprehensive results.
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Figure 2.10: Measurement sample from center node x-direction displacement when imbal-

ance fault is applied.
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Figure 2.11: Measurement sample from center node x-direction displacement when general

harmonic imbalance fault is applied.
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Chapter 3

Sensor Selection for Kalman Filtering

3.1 Introduction

Chapter 2 outlines finite element discretization based on partial differential equation
representation of a simple rotor-bearing system. The derived ODE model is usually of
very high dimension to ensure the approximation accuracy. Generally, in order to perform
model-based state estimation for PDE systems, a state-space representation of the system
is formulated based on the ODE model matrices; measurements are collected directly (dis-
placement and velocity) or indirectly (acceleration) from this large set of states for estima-
tion, thus, with or without any kind of reduction techniques, the number of potential sensor
combinations are dramatically large.

Sensor selection research focuses on finding adequate amount of sensors or measure-
ments to generate satisfactory state estimation results. It is a very practical subject for real
world scenarios where high dimensional approximate ODE models are usually applied: too
few sensors will not guarantee system observability or state recovery ability, due to already
high system order; too many sensors will not only lead to high cost, but also high com-
putation complexity; even the same amount of sensors, different combinations can provide
different qualities of estimates.

In this chapter, optimization-based sensor selection for optimal Kalman filtering is stud-
ied. The advantage of Kalman filtering scheme is that the state estimation error covariance
dynamics can be calculated (steady-state case) or simulated (conventional case) before any
measurements are collected. Even though optimal sensor selection problem is NP-hard by
nature, approximation algorithms can be designed to ease the computation. The rest of this
chapter is organized as following: a state-space model is first formulated; model reduction
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technique is applied to derive a lower dimensional representation for the implementation of
Kalman-Bucy filter; optimization-based sensor selection problem and approximation algo-
rithm are presented based on Kalman filtering state estimation error covariance dynamics;
simulation with respect to various practical limitations are presented to demonstrate the
effectiveness of the algorithm; state estimation results are then presented with the selected
sensors.

3.2 State Estimation via Kalman Filtering

3.2.1 Model Reduction

Recall homogeneous system representation in Equation (2.14). Since K f e is symmetric
given the system assumptions, a pseudo-modal subspace can be formulated by solving
eigen-problem M f eq̈(t)+K f eq(t) = 0 [7]. Consider the first nr modes of the eigenvector,
and denote the basis as

Φ = [φ1 · · · φnr ] ∈ RRR4(N+1)×nr , (3.1)

the mode coordinates z(t) can be constructed as following

q(t) = Φz(t). (3.2)

z(t) shall be separated from spatial variable z or zk applied in Chapter 2 that z(t) is a time-
varying signal. The original system Equation (2.19) of order 2(N+1) can then be projected
into the pseudo-modal subspace spanned by Φ as a model of order nr as following:

z̈(t)+ωGnr ż(t)+Knrz(t) = Fnr f (t)+Dnrw(t) (3.3)

where

Mnr = Φ
>M f e

Φ, Gnr = M−1
nr

Φ
>G f e

Φ, Knr = M−1
nr

Φ
>K f e

Φ,

Fnr = M−1
nr

Φ
>F0, Dnr = M−1

nr
Φ
>D0.

3.2.2 State Space Model and Kalman Filtering

In this thesis, assume only direct measurements of the ODE model states are taken into
consideration, namely, given a general measurement model as

y(t) =C0q(t)+G f (t)+ v(t) =Cnrz(t)+G f (t)+ v(t), (3.4)
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where C0 ∈ RRRm×8(N+1) is a zero-one matrix, which contains one nonzero cell in each row
and at most one nonzero cell in each column, under which configuration, the states are
directly measured; Cnr = C0ΦΦΦ, and ΦΦΦ = III2⊗Φ, and ⊗ is Kronecker product; G models
fault effects on measurements; v(t) is measurement noise. A state-space model can be
formulated by letting x(t) = [z>(t) ż>(t)]> ∈ RRR2nr , and ẋ(t) = Ax(t)+F f (t)+Dw(t)

y(t) =Cx(t)+G f (t)+ v(t),
(3.5)

where

A =

 0 I

−Knr −ωGnr

 , F =

 0

Fnr

 , D =

 0

Dnr

 , C =Cnr ,

w(t)∼ (0,Qx), v(t)∼ (0,R).

When perfect information about f (t) is known, Kalman-Bucy filter based state estimation
can be constructed as [15]:

˙̂x(t) = Ax̂(t)+F f (t)+Kx(t) [ y(t)−Cx̂(t)−G f (t) ] (3.6a)

Kx(t) = Px(t)C>R−1 (3.6b)

Ṗx(t) = APx(t)+Px(t)A>+DQxD>−Px(t)C>R−1CPx(t), (3.6c)

where x̂(t) is the state estimator, Px(t) is state estimation error covariance and Kx(t) is
Kalman gain. Note that when f (t) ≡ 0, all terms related to f (t) will vanish; when f (t)

is a known signal, f (t) acts as a known external excitation for the system, and the role
of “fault” will turn into system input. Using either of the above two scenarios, the error
covariance dynamics will not be affected.

Depending on how Kx(t) is desired, either Kalman-Bucy filter or steady-state Kalman

filter (Kx(t) ≡ Kx(∞)) can be implemented. The state estimation error covariance dynam-
ics Px(t) of Kalman-Bucy filter can be simulated following the Simulink structure outlined
in [1]. Figure 3.1 presents the comparison between these two approaches when f (t) ≡ 0
and f (t) 6= 0 scenarios. For this simulation, the measurement model is adopted from [19],
where 12 measurements are collected. As presented, Kalman-Bucy filter provides faster
tracking results; when state estimation error covariance dynamics converges, both filters
provide similar estimation results. More clearly, Figure 3.2 demonstrates the compari-
son of state estimation error covariance matrix trace of both filters. With zero initial con-
dition guess on states and an initial guess of error covariance Px

0 = 0.05III, Kalman-Busy
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Kalman-Bucy filter simulation with known fault

Figure 3.1: Output tracking of the center node x-direction displacement using two continu-

ous Kalman filtering approaches for known fault cases.

filter firstly enhances correction on estimation to achieve faster tracking; eventually, both
Kalman-Bucy filter and steady-state Kalman filter achieve the same steady-state of the trace
value.

However, this simulation is performed based on reference measurement model applied
in [19], which is chosen based on experience. It is hard to measure how good the estimation
quality is given that 12 sensors are used. Questions such as whether fewer senors or dif-
ferent combinations of sensors will provide better results should be answered in a unified
sensor selection algorithm.
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3.3 Optimal Sensor Selection Problem Formulation

3.3.1 Optimization Criteria

Recall the state estimation error covariance dynamics of Kalman-Bucy filter:

Ṗx(t) = APx(t)+Px(t)A>+DQxD>−Px(t)C>R−1CPx(t). (3.7)

The covariance dynamics is fixed and can be simulated offline once the system matrices and
initial conditions are determined, namely, Px(t) is independent with actual measurements
under conventional structure. Thus, formulating measurement model C0, which is the only
design variable in Equation 3.7 (C =C0 ·ΦΦΦ), that can improve certain performance measure
of Px(t) is feasible. This is one of the major motivation of sensor selection topic [26].

The commonly used covariance metrics are as following [14]:

• F1,t(C0) = trace(Px(t)): mean squared error;

• F2,t(C0) = maxeig(Px(t)): worst-case error covariance;

• F3,t(C0) = logdet(Px(t)): volumn of confidence ellipsoid.

Even though it is analyzed in [14] that sensor selection problem is not, in general, sub-
modular, an approximate optimal sensor selection solution can still be achieved to provide
satisfactory performance. Analysis and simulation in Subsection 3.2.2 indicates that the
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covariance dynamics can converge to steady-state in a very short amount of time, and thus,
F1,∞(C0), F2,∞(C0) and F3,∞(C0) can be considered as the optimization criteria, and the easy
computation of Px(∞) is advantageous.

Remark 3.3.1 It is necessary to point out that the sensor selection problem discussed in

this context is different from sensor placement problem in mechanical and structural en-

gineering. While sensor placement problem explicitly analyze where to place the sensors,

sensor selection for optimal Kalman filtering emphasize the choices of system states to

measure to ensure Kalman filtering performance. Therefore, sensor selection in this chap-

ter aims at providing a guideline of preferred sensor location and type for practical instru-

mentation.

3.3.2 Problem Formulation and Practical Specifications

Fundamental Assumption

The most fundamental assumption about state estimation problem is system observ-
ability. Recall the general measurement model defined in Equation (3.4), the generalized
observability matrix for system in Equation (3.5) can be written as

WO,p =


C

CA
...

CAp−1

=


C0ΦΦΦ

C0ΦΦΦA
...

C0ΦΦΦAp−1

=


C0ΦΦΦ

. . .

C0ΦΦΦ




A0

A
...

Ap−1

 = Sp(C0ΦΦΦ)·Zp(A),

where S and Z are two matrix functions. More specifically, S(·) is related to sensor selection
and order reduction, and Z(·) is system property that insensitive to sensor selection. Since
rank(Zp(A)) = 2nr, the full rank of WO,p is guaranteed when Sp(C0ΦΦΦ) is full column rank,
namely, m ≥ 2nr. Thus, |C| = 2nr is the upper bound of sensor number for the optimal
sensor selection problem, where | · | is cardinality measure.

Problem Formulation

There are different approaches to formulate sensor selection problems, and they are
suitable for different estimation methods. Using system observability as a qualitative ob-
jective to optimally choose measurements is the dual problem of that proposed in [23], and
it is more suitable for Luenberger observer based state estimation problem; the optimally
selected minimum number of sensors ensure system observable, but estimation quality,
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such as convergence speed and estimation smoothness, is not considered. Fisher informa-
tion matrix (FIM) based sensor selection aims at minimizing the general inverse of FIM,
which is the lower bound of covariance matrix of any unbiased estimator; while, in order to
make FIM nonsingular, observability is required, and thus it is more suitable for trimming
measurement model from a higher dimension.

For optimal Kalman filtering, covariance metrics based sensor selection can take advan-
tage of the availability of state estimation error covariance dynamics, which quantifies esti-
mation performance and provides insights of the estimation quality on stochastic systems.
Thus, in general, the problem is formulated as finding the minimum number of sensors that
guarantee covariance metrics (F1,∞(C0), F2,∞(C0) and F3,∞(C0)) within certain threshold.
The challenging aspect of this formulation is that a corresponding criterion threshold is
required to be determined in advance, which can be very difficult to achieve in certain cir-
cumstances. It is worthwhile pointing out that even though there is no explicit requirement
for observability in this formulation, but better metric values are achieved subject to system
observability. In other word, when the metric value is optimized, system observability is
achieved when metric value reaches certain level.

In this thesis, measurement model in [19] is used as reference; proposed algorithm aims
at providing sensor selection solutions with better state estimation performance and fewer
sensors required. Thus, an intuitive optimization problem is formulated as

min Fi,∞(C0)

s.t. |C0| ≤ 2nr.
(3.8)

The optimization problem can be solved using the following approximation algorithm:

Approximation Algorithm - Optimal Sensor Selection

Input: Fi,∞, C0, V

Output: Approximate solution for C∗0

while |C0| ≤ 2nr

a′← argmaxa∈V−C0
{Fi,∞(C0)−Fi,∞(C0∪{a})}

C0←C0∪a′

end while

where V is the entire sensor or measurement set, amd a′ is the best selection under current
iteration. In order to ease the computation, Fi,∞(C) is used for the simulation. Moreover,
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the sensor number upper bound specification significantly reduces the number of iterations
of approximation algorithm, since 2nr� 4(N +1).

Remark 3.3.2 In practical applications, input C0 is a set of pre-selected measurements,

which are strongly preferred due to instrumentation reasons. In this case, the initial feasi-

ble sensor set should be defined as V̄ =V −C0. Meanwhile, based on real setup, locations

where sensors are not possible to be mounted can be excluded from V , such that the algo-

rithm will not output sensor sections from these locations.

3.4 Simulation Results and Conclusion

3.4.1 Comparison of Different Covariance Metrics

Simulation of selection through 1 to 2nr sensors are compared with both reference
measurement model and full information case, where all 2(N+1) states are measured, and
the results are shown in Figure 3.3. The following observations can be concluded:

• As the number of measurements increase, the covariance metric values decrease and
approach full information covariance metric.

• As the number of measurements increase, the metric value decrement becomes smaller.
This is the supermodularity property of the covariance metrics.

These two observations essentially indicate that adding more sensors will improve estima-
tion performance, but once the number of measurements is big enough, it is not economical
to adding more sensors due to the estimation improvement will not match the linearly in-
creasing cost of extra sensors.

Another observation that can be drawn from all three metrics simulation is that, in order
to achieve the same estimation quality as the reference measurement model, the sensor se-
lection algorithm outputs much smaller number. This observation proves the effectiveness
of applying the selection algorithm.

3.4.2 Sensor Selection Subject to Sensor Type Limitations

Simulation in Subsection 3.4.1 allows measurements to be collected from all state vari-
ables. Practically, this assumption is difficult to be achieved due to either hardware lim-
itation or system physical structures. Compared to vibration displacement and velocity
measurements, angular displacement and velocity measurements are more challenging to

30



collect. Therefore, certain limitations should be imposed in the measurement model before
performing the algorithm.
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Figure 3.3: Sensor selection among all state variables and comparison of metric values

between approximate algorithm, reference model and full information cases.
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Selection Among Vibration Displacement or Velocity Measurements Only

In order to compare the effectiveness of displacement and velocity measurement on
state estimation, Figure 3.4 illustrates some important observations: (i) the type of mea-
surements makes significant difference in optimal sensor selection, and (ii) especially in
the system model presented in this thesis, velocity measurements are far more effective in
lowering covariance metric values than displacement measurements. Comparing to Figure
3.3, the angular velocity measurements are the most effective among all the state variables.
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Figure 3.4: Sensor selection comparison between displacement and velocity measurements.

Selection Result Using Complex Sensors

Thanks to the development of sensor technology, large amount of vibration sensors
can manage to measure both displacement and velocity, or even acceleration at the same
time with one equipment. In this case, sensor selection problem can be further reduced to
node/location selection. Figure 3.5 demonstrates the simulation result using these complex
sensors.
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Figure 3.5: Sensor selection using complex vibration sensors.

3.4.3 State Estimation Performance

Figure 3.6 illustrates the comparison of error covariance trace between optimally se-
lected measurement model with 10 measurements and reference model with 12 measure-
ments . As expected, sensor selection provide a measurement model with smaller trace.
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Figure 3.6: Comparison of state estimation error covariance trace between reference model

and sensor selection result.

Assume f̂ (t) is the estimate of f (t), and output tracking error expectation can be writ-
ten as EEE [ey(t)] = EEE [y(t)− ŷ(t)] = EEE

[
C(x(t)− x̂(t))+G( f (t)− f̂ (t))

]
+ EEE [v(t)], and its

covariance as

EEE
[
ey(t)ey(t)>

]
= EEE

[
(y(t)− ŷ(t))(y(t)− ŷ(t))>

]
= EEE

[
C(x(t)− x̂(t))(x(t)− x̂(t))>C>+G( f (t)− f̂ (t))( f (t)− f̂ (t))>G>

]
+EEE

[
v(t)v>(t)

]
.

Although sensor selection has rendered state estimation error covariance trace smaller than
reference model, the output tracking error covariance trace is not as advantageous. Figure
3.7 demonstrates output tracking error covariance trace when f (t) is known, in which case,
f (t) is deterministic, namely, f̂ (t) ≡ f (t). This can be explained by the fact that optimal
sensor selection has chosen measurements close to bearings, which, according to the system
first mode shape, have very small magnitude and are closely affected by modeling error.
Thus, these measurements tend to be noisier than those from central part of the rotor. When
fault is known, both output tracking is satisfactory because the trace values are below or
close by the threshold, which is calculated as

threshold = Tr{EEE
[
C(x(t)− x̂(t))(x(t)− x̂(t))>C>

]
+EEE

[
v(t)v>(t)

]
}

= Tr{CP(t)C>+R}.
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Figure 3.7: Comparison of innovation covariance trace with corresponding threshold be-

tween reference model and sensor selection result when no fault exists.

While f (t) is stochastic or unknown, the output tracking error covariance trace is pre-
sented in Figure 3.8. As is shown, both model can sensitively detect the modeled fault
dynamics. The optimal sensor selection model is less sensitive comparing to the reference
model due to its signal-to-noise ratio is lower.

0 0.5 1 1.5 2 2.5 3
Time(s)

0

0.5

1

1.5

2

2.5

3
Threshold
Actural value

0 0.5 1 1.5 2 2.5 3
Time

0

0.5

1

1.5

2

2.5

3
Threshold
Actural value

Figure 3.8: Comparison of innovation covariance trace with corresponding threshold be-

tween reference model and sensor selection result when fault exists.
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3.4.4 Conclusion

The optimization-based sensor selection method studied in this chapter presents a frame-
work to design a measurement model to achieve designed state estimation performance. An
approximation algorithm is outlined for implementation and practical limitations or con-
straints can be added to calculate more appropriate sensor solution. Through various sim-
ulations, the byproduct of the sensor selection algorithm is more insightful observations of
the the model and measurements, which is very helpful for practice. However, the fact that
the false alarms have occurred when applying optimal sensor selection also indicates that
for real applications, more system property related constraints should be added to provide
more accurate filtering solution.

As mentioned in state estimation performance, when ummodeled fault occurs, conven-
tional Kalman filtering will not be able to provide accurate estimation results due to the
dramatic dynamics changes in output tracking errors. In order to maintain the estimation
performance, the potential faults should also be modeled.
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Chapter 4

Simultaneous State and Fault

Estimation via Kalman Filtering

4.1 Introduction

In Chapter 3, optimal Kalman filtering based state estimation and sensor selection prob-
lems have been investigated assuming fault dynamic f (t) is perfectly known, in which case,
fault signal acts as system external input. Generally, information of f (t) is incomplete or
unknown, and the original filtering structure may fail to provide accurate state estimation
due to the abnormal changes in system structure resulted from unmodeled fault dynamics
[12]. More specifically, the optimality of Kalman filtering designed based on fault-free
system model generally degrades when fault occurs. Therefore, modeling and estimation
of the fault dynamics are required for maintaining state estimation performance.

One of the most intuitive strategies for simultaneous state and fault estimation is aug-

mented state Kalman filter (ASKF), where fault states are augmented with the fault-free
system states such that a higher order Kalman filtering structure can be implemented, and
optimal estimation is achieved with more intensive computation load. Optimal two-stage

Kalman filter (OTSKF) proposed in [11] presents an equivalent form of ASKF with two
decoupled lower order filters. Even though the computation efficiency is not necessarily
superior compared to ASKF for all types of system matrices structures [20], the idea of
feeding innovation signal driven compensation to fault-free filtering structure is advanta-
geous for implementation of Kalman filtering based fault estimation.

This chapter studies simultaneous state and fault estimation for simple rotor-bearing
systems via Kalman filtering. Thanks to the innovation of OTSKF, the already established
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state estimation framework from previous chapters will be inherited; in addition, a fault
filter is then designed to generate compensation based on innovation sequence from the
fault-free filtering. Further, an adaptive algorithm is utilized to achieve automatic adjust-
ment to OTSKF in order to handle Kalman filtering performance degrading or diverging
issues caused by sudden dynamic changes.

4.2 Preliminary

4.2.1 Discretized System Representation

Thanks to the simple form of Kalman-Bucy filter described in Equation (3.6) for anal-
ysis, previous study on rotor-bearing system state estimation and sensor selection are con-
ducted in continuous time case. In reality, continuous measurements are either impossible
or too expensive to collect. Thus, a discretized system representation is necessary for im-
plementation purpose. Apply Euler’s approximation on system Equation (3.5), and the
following discrete state-space model can be obtained: xk+1 = Akxk +Fk fk +Dkwk

yk =Ckxk +Gk fk + vk,

(4.1)

where Ak, Ck and Dk are discretized system matrices under fixed sampling period T , and
T is assumed to be small enough to ensure numerical precision. Kalman filter can be then
formulated for the discretized system as:

x̂k|k−1 = Ak−1x̂k−1|k−1 +Fk−1 fk−1 (4.2a)

Px
k|k−1 = Ak−1Px

k−1|k−1A>k−1 +Qx
k−1 (4.2b)

Kx
k = Px

k|k−1C>k (CkPx
k|k−1C>k +Rk)

−1 (4.2c)

Px
k|k = (I−Kx

kCk)Px
k|k−1 (4.2d)

x̂k|k = x̂k|k−1 +Kx
k (yk−Ckx̂k|k−1−Gk fk), (4.2e)

where Qx
k = DkQkD>k . In this thesis, the spectral density matrices for disturbance, Qx, and

measurement noise, R, are considered constant, thus, Qx
k = T Qx and Rk = R/T [18]. It is

worth pointing out that, even though Kalman filter is not a simple sampling of Kalman-

Bucy filter, the following relations still hold:

x̂(kT ) = x̂k|k, Kx(kT ) =
1
T

Kx
k , Px(kT ) = Px

k|k−1.

38



Thus, sensor selection studied in Chapter 3, which is based on Kalman-Bucy filter state
estimation error covariance dynamics described in Equation (3.7), is equivalent to sensor
selection problem based on a priori error covariance matrix in Kalman filter. Therefore,
sensor selection algorithm studied in Chapter 3 can be directly applied in discrete-time case
when a priori error covariance matrix is applied to measure estimation performance.

4.2.2 Augmented State System Representation

According to Equation (2.16), imbalance fault can be modeled as an external imbalance
force input in terms of qε and q̇ε . Let fk = [q>ε (t) q̇>ε (t)]

>
t=kT , and the system of interest can

be then reformulated by introducing fault dynamics as:
xk+1 = Akxk +Fk fk +Dkwk

fk+1 = Hk fk +Ekdk

yk =Ckxk +Gk fk + vk,

(4.3)

where Hk is fault dynamic matrix and Ek is fault modeling error matrix. Correspondingly,
an augmented state space model can be formed as X̄k+1 = ĀkX̄k +W̄k

yk = C̄kXk + vk,

(4.4)

where

X̄k =

 xk

fk

 , Āk =

 Ak Fk

0 Hk

 , W̄k =

 Dkwk

Ekdk

 , C̄k =
[

Ck Gk

]
.

Assume fault modeling error dk is uncorrelated with wk, and thus,

EEE[W̄kW̄>k ] =

 Qx
k 0

0 Q f
k

 . (4.5)

Therefore, augmented state Kalman filter (ASKF) can be designed according to conven-
tional Kalman filter structure described in Equation (4.2), such that simultaneous estimation
of states and imbalance faults can be achieved.

Remark 4.2.1 In order to achieve optimal estimation, fault dynamic matrices Hk and Ek

are assumed to be accurate in this thesis. However, in real applications, identification

techniques may be required to improve accuracy of these matrices.
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Remark 4.2.2 The assumption described in Equation (4.4) is very ideal. In general, im-

balance fault modeling error dk will increase disturbance or uncertainty of dynamic of xk,

and the correlation of dk and wk is expected. While the idealized uncorrelation assumption

is often used in application of two-stage Kalman filter, in this thesis, it is used to simplify

analysis.

4.3 Adaptive Two-Stage Kalman Filter for Imbalance Es-

timation

4.3.1 Limitation of Using Augmented-State Kalman Filter for Imbal-

ance Fault Estimation

Given discrete state-space model described in Equation (4.4), ASKF is optimal in the
sense of minimum mean squared error (MSE):

ˆ̄Xk|k−1 = Āk−1
ˆ̄Xk−1|k−1 (4.6a)

P̄k|k−1 = Āk−1P̄k−1|k−1Ā>k−1 + Q̄k−1 (4.6b)

K̄k = P̄k|k−1C̄>k (C̄kP̄k|k−1C̄>k +Rk)
−1 (4.6c)

P̄k|k = (I− K̄kC̄k)P̄k|k−1 (4.6d)

ˆ̄Xk|k =
ˆ̄Xk|k−1 + K̄k(yk−C̄k

ˆ̄Xk|k−1), (4.6e)

where “ ·̄ ” indicates augmented vectors or matrices, and “ ·̂ ” represents estimated vectors,
and the combination “ ˆ̄· ” indicates the specific estimate is obtained based on the augmented
state system model. More specifically,

ˆ̄X(·) =

 ˆ̄x(·)
ˆ̄f(·)

 , P̄(·) =

 P̄x
(·) P̄x f

(·)

P̄ f x
(·) P̄ f

(·)

 , K̄(·) =

 K̄x
(·)

K̄ f
(·)

 ,
Besides the intensive computation complexity of higher dimensional matrix inverse asso-
ciated with ASKF, there are some other practical disadvantages:

• For imbalance faults commonly existed in rotor-bearing systems, they can be located
at multiple locations. Since the number of imbalance locations may not be known,
the fault model is subject to modification or switching for different scenarios. This
issue will result in a re-design of the entire ASKF due to the augmentation. However,
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it is more advantageous for implementation if the main structure of system state
estimation can be retained but only fault estimation structure needs to be re-designed
for different fault scenarios.

• On the other hand, for real structural systems that faults may not occur at the early
stage of operation, ASKF is not efficient since lower order Kalman filter designed
based on fault-free system representation can perform well enough for state estima-
tion. Additionally in this case, when fault eventually occurs after long period of time
of operation, the degradation of Kalman filtering may lead to inaccurate or diverging
estimate of both the states and fault [28].

4.3.2 Optimal Two-Stage Kalman Filter

The core idea behind optimal two-stage Kalman filter (OTSKF) is to construct two
lower order filters (x̂(·) and f̂(·) with Px

(·) and P f
(·)) that can be linearly combined to achieve

an equivalence of ASKF described in Equation (4.6), so that the optimality is automatically
guaranteed. According to [11], the OTSKF can be described as following forms:

ˆ̄xk|k−1 = x̂k|k−1 +Uk f̂k|k−1 (4.7a)

P̄x
k|k−1 = Px

k|k−1 +UkP f
k|k−1U>k (4.7b)

ˆ̄xk|k = x̂k|k +Vk f̂k|k (4.7c)

P̄x
k|k = Px

k|k +VkP f
k|kV

>
k , (4.7d)

where

Bias-Free Filter

x̂k|k−1 = Ak−1x̂k−1|k−1 +(Ūk−Uk)Hk−1 f̂k−1|k−1 (4.8a)

Px
k|k−1 = Ak−1Px

k−1|k−1A>k−1 +Qx
k−1 +Uk(ŪkQ f

k−1)
> (4.8b)

Kx
k = Px

k|k−1C>k (CkPx
k|k−1C>k +Rk)

−1 (4.8c)

Px
k|k = (I−Kx

kCk)Px
k|k−1 (4.8d)

x̂k|k = x̂k|k−1 +Kx
k (yk−Ckx̂k|k−1); (4.8e)
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Bias Filter

f̂k|k−1 = Hk−1 f̂k−1|k−1 (4.9a)

P f
k|k−1 = Hk−1P f

k−1|k−1H>k−1 +Q f
k−1 (4.9b)

K f
k = P f

k|k−1S>k (CkPx
k|k−1C>k +Rk +SkP f

k|k−1S>k )
−1 (4.9c)

P f
k|k = (I−K f

k Sk)P
f

k|k−1 (4.9d)

f̂k|k = f̂k|k−1 +K f
k (yk−Ckx̂k|k−1−Sk f̂k|k−1); (4.9e)

Coupling Equations

Ūk = (Ak−1Vk−1 +Fk−1)H−1
k−1 (4.10)

Uk = Ūk[I−Q f
k−1(P

f
k|k−1)

−1] (4.11)

Sk =CkUk +Gk (4.12)

Vk =Uk−Kx
k Sk. (4.13)

The fault estimates of ASKF have much simpler relations with those of OTSKF as

ˆ̄fk|k−1 = f̂k|k−1,
ˆ̄P f
k|k−1 = P̂ f

k|k−1,
ˆ̄fk|k = f̂k|k,

ˆ̄P f
k|k = P̂ f

k|k. (4.14)

The detailed derivation is provided in the appendix of [11].

Remark 4.3.1 Due to assumption imposed on fault modeling error and system disturbance

described in Equation (4.5), the algebraic constraint required to ensure the equivalence

between OTSKF and ASKF described in [11] is significantly simplified to

Qx
k +Uk+1(Ūk+1Q f

k )
> ≥ 0.

It is worth pointing out that this constrain is guaranteed under Equation (4.5), since Qx
k

and Q f
k are symmetric and positive definite, and

Qx
k +Uk+1(Ūk+1Q f

k )
> = Qx

k +Ūk+1[Q
f
k −Q f

k−1(P
f

k|k−1)
−1Q f

k ]Ū
>
k+1,

which indicates that Qx
k +Uk+1(Ūk+1Q f

k )
> is symmetric, and thus positive semidefinite.

Therefore, the constraint is guaranteed.
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Note that when fk is constant or perfectly known, Q f
k = 0, Uk = Ūk, f̂k|k = f̂k|k−1 =

Hk−1 f̂k−1|k−1 = Hk−1 fk−1 = fk, and thus,

ˆ̄xk|k−1 = Ak−1x̂k−1|k−1 +(Ak−1Vk−1 +Fk−1)H−1
k−1 ·Hk−1 fk−1

= Ak−1(x̂k−1|k−1 +Vk−1 fk−1)+Fk−1 fk−1

= Ak−1 ˆ̄xk−1|k−1 +Fk−1 fk−1

ˆ̄xk|k = x̂k|k−1 +Kx
k (yk−Ckx̂k|k−1)+ [(Ak−1Vk−1 +Fk−1)H−1

k−1−Kx
k (CkUk +Gk)] ·Hk−1 fk−1

= ˆ̄xk|k−1 +Kx
k (yk−Ck ˆ̄xk|k−1−Gk fk),

which is exactly the conventional Kalman filter described in Equation (4.2). In other word,
OTSKF is reduced to bias-free filter when fk is perfectly known; bias-free filter in this
case is exactly the same as Equation (4.2), filter designed based on fault-free model. The
practical interpretation of this observation is that when fault has not occurred, Kalman filter

designed for normal system is optimal; if fast fault detection can be established, bias filter
can then be triggered to start estimating the faults, in which case, optimal estimate is still
achieved. This strategy has great practical value in machineries that generally starts with
normal operation.

4.3.3 Adaptive Fading Factor Design

Kalman filtering provides optimal estimate for linear Gaussian systems, and one of the
important properties is that the innovation is a white noise when optimal gain is used. More
specifically, for ASKF in Equation (4.6), the innovation is defined as

η̄k = yk−C̄k
ˆ̄Xk|k−1, (4.15)

and its covariance and auto-covariance can be calculated as the following forms:

C̄CC0,k = EEE[η̄kη̄
>
k ] = C̄kP̄k|k−1C̄>k +Rk,

C̄CC j,k = EEE[η̄k+ jη̄
>
k ] = ΦΦΦk+ j,··· ,k+1 · (P̄k|k−1C̄>k − K̄kC̄CC0,k),

where ΦΦΦk+ j,··· ,k+1 is a matrix that relates to future system matrices [28]. Denote

SSSk = P̄k|k−1C̄>k − K̄kC̄CC0,k. (4.16)

When optimal gain K̄k is utilized for filtering, C̄CC j,k equals zero due to

SSSk = P̄k|k−1C̄>k − P̄k|k−1C̄>k (C̄kP̄k|k−1C̄>k +Rk)
−1(C̄kP̄k|k−1C̄>k +Rk) = 0.
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However, this equality may fail when abnormal dynamics occur in the system described
by Equation (4.4) whether the abnormal dynamics are modeled or unmodeled, and the real
innovation covariance is altered approximately to

˜̄CCC0,k =
1

nw−1

k

∑
i=k−nw+1

η̄ iη̄
>
i , (4.17)

where nw is the window size. One classical adaptive fading structure to maintain the equal-
ity in Equation (4.16) can be written as following:

λ̄ kP̄k|k−1C̄>k − K̄k
˜̄CCC0,k = 0, (4.18)

where λ̄ k is the adapting factor. Therefore, the optimality of Kalman filter with respect to
Equation (4.16) is always achieved. It should be clarified that the adaptive factor λ̄ k aims
at updating Kalman filter structure with innovation covariance information, which reflects
sudden changes rather than unmodeled error dynamics in system dynamics; those unmod-
eled errors may further introduce bias into innovation sequence, in which case, Equation
(4.18) is not sufficient enough to ensure state estimation performance.

Remark 4.3.2 One of the most important applications of ASKF is parameter identification,

where the value of those parameters are typically non-zero when measurements start to be

collected for estimation. Fault estimation falls into a different scenario where fk may not

occur as soon as operation starts. When fk occurs, since Kalman filter has already heavily

adapted to the non-fault data, it may fail to capture the sudden changes and estimation may

degrade or diverge, even when fk is perfectly modeled.

The following analysis aims at deriving the equivalent form of λ̄ k in Equation (4.18)
using two-stage Kalman filter structure. In order to achieve this goal, the equivalence of
ASKF innovation η̄k and criterion in Equation (4.18)in OTSKF should be derived.

Innovation for Adaptive Fading Factor Calculation

In OTSKF, there are two innovation sequences for bias-free filter and bias filter, respec-
tively, and are defined as

η
x
k =yk−Ckx̂k|k−1 (4.19)

η
f

k =yk−Ckx̂k|k−1−Sk f̂k|k−1 = η
x
k −Sk f̂k|k−1. (4.20)
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Unless f̂k|k−1≡ 0, at least one of these two innovation sequences are not zero-mean. Further
expending the Equation (4.19), we can obtain the following result:

η
x
k =yk−Ckx̂k|k−1

=Ck(Ak−1xk−1 +Fk−1 fk−1 +Dk−1wk−1)+Gk(Hk−1 fk−1 +Ek−1dk−1)+ vk

−Ck(Ak−1x̂k−1|k−1 +(Ūk−Uk)Hk−1 f̂k−1|k−1)

=CkAk−1(xk−1− x̂k−1|k−1−Vk−1 f̂k−1|k−1)+CkDk−1wk−1 + vk +GkEk−1dk−1

+(CkFk−1 +GkHk−1) fk−1−Ck(Ūk−Uk−Ak−1Vk−1H−1
k−1)Hk−1 f̂k−1|k−1

=CkAk−1(xk−1− ˆ̄xk−1|k−1)+CkDk−1wk−1 + vk +GkEk−1dk−1

+(CkFk−1 +GkHk−1) fk−1−Ck(Fk−1H−1
k−1−Uk)Hk−1 f̂k−1|k−1

=CkAk−1(xk−1− ˆ̄xk−1|k−1)+CkDk−1wk−1 + vk +GkEk−1dk−1

+(CkFk−1 +GkHk−1) fk−1−CkFk−1 f̂k−1|k−1 +(Sk−Gk)Hk−1 f̂k−1|k−1

=CkAk−1(xk−1− ˆ̄xk−1|k−1)+CkDk−1wk−1 + vk +GkEk−1dk−1

+(CkFk−1 +GkHk−1)( fk−1− ˆ̄fk−1|k−1)+SkHk−1 f̂k−1|k−1.

Due to ˆ̄xk−1|k−1 and ˆ̄fk−1|k−1 are the unbiased estimates of xk−1 and fk−1 from ASKF, thus
EEE(xk−1− ˆ̄xk−1|k−1) = 000 and EEE( fk−1− ˆ̄fk−1|k−1) = 000, and thus

EEE(ηx
k ) =SkHk−1EEE( ˆ̄fk−1|k−1) = SkEEE( f̂k|k−1) (4.21)

EEE(η f
k ) =EEE(ηx

k −Sk f̂k|k−1) = 0. (4.22)

Equation (4.21) confirms that when fk occurs, bias exist in innovation sequence, and thus,
the innovation of bias-free filter is not white noise anymore. Moreover, since

η
f

k =yk−Ckx̂k|k−1−Sk f̂k|k−1

=yk−Ck( ˆ̄xk|k−1−Uk f̂k|k−1)− (CkUk +Gk) f̂k|k−1

=yk−Ck ˆ̄xk|k−1−Gk
ˆ̄fk|k−1

=η̄k,
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and

CCC f
0,k = EEE[η f

k (η
f

k )
>]

=CkPx
k|k−1C>k +Rk +SkP f

k|k−1S>k

=CkPx
k|k−1C>k +Rk +(CkUk +Gk)P

f
k|k−1(CkUk +Gk)

>

=CkPx
k|k−1C>k +GkP f

k|k−1U>C>k +CkUkP f
k|k−1G>k +GkP f

k|k−1G>k +Rk

= C̄kP̄k|k−1C̄>k +Rk,

η
f

k is exactly the form of η̄k, and should be used to calculate adaptive fading factors,
namely,

C̃CC f
0,k =

1
nw−1

k

∑
i=k−nw+1

η
f

i (η
f

i )
> = ˜̄CCC f

0,k

Optimality Criterion for Adaptive TSKF

Recall Equation (4.18), (4.6), and the followings can be obtained:

λ̄ kP̄k|k−1C̄>k − K̄k
˜̄CCC0,k

= λ̄ kP̄k|k−1C̄>k − λ̄ kP̄k|k−1C̄>k (λ̄ kC̄kP̄k|k−1C̄>k +Rk)
−1C̃CC f

0,k

= λ̄ kP̄k|k−1C̄>k
[
III− (λ̄ kC̄kP̄k|k−1C̄>k +Rk)

−1C̃CC f
0,k

]
= 0.

Due to C̄>k is full column rank by default (measurement number is smaller than state num-
ber),

Equation (4.18) ⇔ III− (λ̄ kC̄kP̄k|k−1C̄>k +Rk)
−1C̃CC f

0,k = 0

⇔ λ̄ k(CCC
f
0,k−Rk) = C̃CC f

0,k−Rk

⇔ λ̄ k(CkPx
k|k−1C>k +SkP f

k|k−1S>k ) = C̃CC f
0,k−Rk.

One-step ATSKF Algorithm

Based on the One-step AFKF algorithm proposed in [28], adaptive fading factor for
adaptive two-stage Kalman filter (ATSKF) can be calculated as the following form:

λ̄ k = max
{

1,
trace[Nk]

trace[Mk]

}
, (4.23)
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where

Nk = C̃CC f
0,k−Rk,

Mk =CkPx
k|k−1C>k +SkP f

k|k−1S>k .

The adaption is implemented as

Px
k|k−1 = λ̄ k

(
Ak−1Px

k−1|k−1A>k−1 +Qx
k−1 +Uk(ŪkQ f

k−1)
>
)

(4.24)

P f
k|k−1 = λ̄ k

(
Hk−1P f

k−1|k−1H>k−1 +Q f
k−1

)
. (4.25)

4.4 Simulation Results and Conclusion

4.4.1 ASKF and Sensor Selection

In this simulation, augmented-state Kalman filter performance and its sensor selection
have been studied, in comparison with previous chapter, where fault-free model is used.
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Figure 4.1: Trace of ASKF state estimation error covariance

Figure 4.1 demonstrates the trace of state estimation error covariance of the augmented
system when reference measurement model is applied; compared to Figure 3.2, ASKF has
larger trace value of Px; this is because stochastic fault dynamic augmented into the system
will increase the mean squared error of original system state estimation. This indicates
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that more sensors will be required to achieve the same level of state estimation quality as
fault-free system. Sensor selection result of the augmented state system under complex
sensor type is presented in Figure 4.2. It can be observed that, in Figure 3.5, only two
sets of sensors are required to outperform reference model; while in Figure 4.2, five sets
are required. Therefore, it can be concluded that as system dimension increases, sensor
selection algorithm will be forced to select more sensors to maintain certain estimation
performance requirement.
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Figure 4.2: Sensor selection for augmented state system model using complex sensors.

4.4.2 OTSKF Estimation Performance
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Figure 4.3: OTSKF simulation structure diagram.
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The simulation structure for OTSKF is outlined in Figure 4.3. The model is designed
following Equations (4.7 - 4.14) and system model in Equation (4.3). In order to demon-
strate the equivalence between ASKF and OTSKF, Figure 4.4 has compared the trace value
of a priori error covariance between ASKF and OTSKF. The almost perfect overlapping of
the two functions indicates the equivalence between the two filters.
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Figure 4.4: Comparison of trace values of a priori error covariance matrices between ASKF

and OTSKF.

Estimation using Measurements under general Harmonic Imbalance Fault

Output tracking using measurement model described in Figure 4.2 is illustrated in Fig-
ure 4.5. Kalman filtering succeeded in tracking fault-free outputs; however, once fault
occurs, the filter tends to track the faulty data, and visible increment of vibration magni-
tude can be observed from Node 3 (y3 and y4) and Node 4 (y5). According to Equation
(4.23), λ̄ k value is expected to reflect occurrence of sudden abnormal dynamics. During
normal operation condition, λ̄ k value is 1, which indicates the conventional Kalman filter is
maintaining adequate tracking performance; once the value becomes larger than 1, it can be
concluded that the system is under dynamic changes, other modeled or unmodeled. Figure
4.6 presents the monitoring of λ̄ k changes in OTSKF, and the occurrence of fk dynamic
change is well captured after a short delay due to the windowing parameter nw applied
in actual innovation covariance. The fault estimation performance of OTSKF is shown in
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Figure 4.7, and no significant fault signal is estimated.
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Figure 4.5: OTSKF output tracking under general harmonic imbalance fault scenario.
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Figure 4.6: OTSKF output tracking performance indicator under general harmonic imbal-

ance fault scenario.
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Figure 4.7: General harmonic imbalance fault estimation result via OTSKF.

Estimation using Measurements from Steady-state Imbalance Fault Response

The simulation results using the steady-state response under imbalance fault are pre-
sented in Figure 4.8, 4.9 and 4.10. As is demonstrated, when the simulation starts, the
estimation algorithm intends to tract the output; however, due the the slow tracking per-
formance, which can be observed from the phase difference between estimate and actual
measurements, the output tracking eventually fails because of the filter degradation issue,
and the filter failed to provide estimate for the imbalance fault.

This observation indicates that, even when there is no fault occurrence dynamics, if
the simultaneous state and fault estimation algorithm fail to fast track the output, there is
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no guarantee that state and fault will be successfully estimated. In this case, fast output
tracking strategy is required.
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Figure 4.8: OTSKF output tracking under steady-state imbalance fault response.
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Figure 4.9: OTSKF output tracking performance indicator under steady-state imbalance

fault response.
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Figure 4.10: Imbalance fault estimation result via OTSKF.

4.4.3 Output Tracking using Adaptive TSKF

Estimation using Measurements under general Harmonic Imbalance Fault

Adaption is automatically added into estimation error covariance dynamics once abnor-
mality is detected through λ̄k following Equation (4.24) and (4.25). ATSKF output tracking
and fault estimation are presented in Figure 4.11 and 4.13. As is demonstrated, the adap-
tion applied is very effective, and satisfactory estimation result is achieved. Note that the
fault comparison is made based on Equation (2.16) and (2.18) as following: the estimated
f̂k is first recovered into f̂im according to Equation (2.16), and then scaled with ω2 ·md ,
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and eventually compared with same scaled real fault signal. This comparison is acceptable
since model accuracy assumption has been made.
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Figure 4.11: ATSKF output tracking under general harmonic imbalance fault scenario.
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Figure 4.12: ATSKF output tracking performance indicator under general harmonic imbal-

ance fault scenario.
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Figure 4.13: General harmonic imbalance fault estimation result via ATSKF.

Estimation using Measurements from Steady-state Imbalance Fault Response

The simulation results using the steady-state response under imbalance fault are pre-
sented in Figure 4.14, 4.15 and 4.16. As is demonstrated, the fast output tracking is
achieved using the adaptive algorithm, and thus, the fault signal is eventually estimated.
Simultaneous state and fault estimation is successfully achieved.
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Figure 4.14: ATSKF output tracking under steady-state imbalance fault response.
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Figure 4.15: ATSKF output tracking performance indicator under steady-state imbalance

fault response.
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Figure 4.16: Imbalance fault estimation result via ATSKF.

4.4.4 Conclusion

In this chapter, optimal two-stage Kalman filter is firstly studied for easing the compu-
tation complexity of its equivalence, augmented-state Kalman filter, where state and fault
can be simultaneously estimated; the equivalence has been presented by comparing the
state estimation error covariance dynamics of both filters. Sensor selection result from the
higher order augmented state system representation shows that more sensors are required
for this case to maintain same level of estimation performance on fault-free system. In or-
der to overcome the degradation of conventional Kalman filtering in real implementations,
optimal adaptive approach is then studied within two-stage Kalman filter structure, aiming
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at deriving the equivalent form of optimal adaptive fading Kalman filter for the augmented
state system. Simulation results have demonstrate the effectiveness of this approach when
handling occurrence of faults during operation.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, state and imbalance fault estimation of a simple rotor-bearing system is
studied using Kalman filtering techniques.

Firstly, finite element discretization is applied to spatially discretize a set of coupled par-
tial differential equations that describe the motion of a simple rotor-bearing system. Both
free and forced lateral responses demonstrate proper behavior of the selected model. A
second-order Simulink model is then designed to perform system simulation and generate
measurements.

In order to optimally and systematically choose among the large number of approxi-
mate ODE model states to measure for state estimation purpose, optimization-based sensor
selection problem for Kalman filtering is investigated and an approximation algorithm is
outlined for implementation. Simulation results using different covariance metrics and dif-
ferent sensor limitations are presented. A few fundamental limitations with respect to sen-
sor selection for optimal Kalman filtering is then concluded based on the simulation results.
Insights and guidance of sensor selection for the rotor-bearing system are analyzed.

Given the fact that a measurement model can be optimally chosen for Kalman filtering,
augmented-state Kalman filter is then studied for simultaneous state and fault estimation
of simple rotor-bearing system. Optimal two-stage Kalman filter is then introduced to
handle some practical limitations of ASKF. Adaptive fading algorithm for OTSKF is further
designed by deriving the equivalent form of adaptive fading Kalman filter for augmented
state system. Simulations on simple rotor-bearing system model have demonstrated the
effectiveness of the ATSKF on state and imbalance fault estimation.
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5.2 Future Work

This research topic was proposed for a physical rotor-bearing system setup [19] from
Control and Diagnosis Group, led by Dr. Qing Zhao. Unfortunately, due to some practical
limitations, this thesis has ended up in more idealized simulation fashion. However, the
methodologies reviewed in this thesis and some simulation results can be used in future
implementation in the physical structure.

Moreover, the following topics can be further explored:

• Practical implementation of sensor selection: As mentioned in this thesis, Fisher
Information Matrix based selection technique is perfect for sensor pre-filtering. More
specifically, among tens and hundreds of states of approximate ODE model, direct
exhaust search for sensors for optimal Kalman filtering is not practical. Incorporating
the FIM based approach to first trim the size of feasible sensor set is advantageous
for implementation.

• Dynamic imbalance fault estimation: Dynamic fault estimation has not been ad-
dressed in this thesis. However, since OTSKF is easily expandable, state estimation
algorithms for more complicated imbalance fault scenario should be studied within
this framework.

• Sensor selection under system uncertainties: Sensor selection for optimal Kalman
filtering highly relies on accurate system model representation. Quantitative or qual-
itative analysis on how model uncertainty, especially fault dynamics modeling error,
will affect state estimation error covariance based optimal sensor selection is of great
practical value.

• Sensor selection for optimal two-stage Kalman filter: Since the main motivation of
introducing OTSKF is to ease computation for implementation, sensor selection for
OTSKF should be preferably performed within the lower order normal system and
fault dynamics. Effective approaches for optimal sensor selection for simultaneous
state and fault estimation should be designed.
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