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Abstract 
 
 
Geostatistical techniques are used to estimate recoverable reserves at unsampled 

locations and to quantify uncertainty. Several variables are often measured and 

important for reserve evaluation. Using more variables improves the quality of 

modeling, but quantifying the relationships between the variables is difficult. The 

traditional linear model of coregionalization has been used to quantify the relationship 

between multiple variables, but ensuring the mathematical validity of the model is 

cumbersome. This research proposes an approximate method that improves the speed 

and practicality of the numerical modeling process by easily modeling multiple 

regionalized variables. The proposed algorithm is based on block LU simulation and 

takes local transformation into consideration.  Application to a nickel deposit 

demonstrates the proposed methodology.   
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Chapter 1 
 
Introduction 
1.1 Problem setting. 
Geostatistics is a relatively new branch of applied statistics, geology and computer 

science. It has been applied to many spatial problems including reservoir 

characterization and ore body modeling. Geostatistical techniques are used to estimate 

recoverable reserves at unsampled locations and also to quantify uncertainty. For the 

mining engineer, as well as the metallurgist and chemist, it is often essential to be able 

to predict the variations in the characteristics of the ore at various stages in the 

operation (Journel and Huijbregts, 1978). The ore is represented by several correlated 

variables.  Quantifying the relationship between many variables is difficult.  This 

thesis is focused on improving numerical modeling by simultaneous modeling of 

multiple regionalized variables.  

   Assessment of uncertainty is also important for numerical models of mineral 

deposits. Uncertainty and variability must be taken into consideration in decision 

making. Geostatistical simulation generates realizations that depict the fluctuations of 

the variable. The realizations honor the data and reproduce spatial correlation of the 

regionalized variables. The variability between realizations is a measure of spatial 

uncertainty.  

The geostatistical realizations are drawn from local conditional distributions that 

are determined by using kriging techniques. The kriging system accounts for data 

redundancy, closeness of the data to what is being predicted and spatial/multivariate 

correlations.  

 A model of coregionalization specifies the spatial relationship of each variable 

and the cross correlation between all pairs of variables. The traditional linear model of 

coregionalization is cumbersome and the practical application of this model is 

difficult. 
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 There are several geostatistical methods to estimate and model uncertainty. Most 

methods are based on the multivariate Gaussian distribution after transforming each 

variable to a Gaussian histogram. The common algorithm for generating realizations 

from a multivariate Gaussian distribution is Sequential Gaussian simulation.  

   Often, estimates are required at a practical mining scale and not the scale of the 

drill core data. The basic idea is to discretize each block into many points. Each point 

is simulated and the final value is given to that block by averaging the discretized 

points. This could be very CPU expensive if there are millions of blocks to be 

simulated. The cost for many variables becomes even greater. 

 The Lower and Upper (LU) decomposition technique was first proposed in 

geostatistical simulation by Davis (1987). When the total number of conditioning data 

plus the number of nodes to be simulated is small and a large number of realizations is 

requested, simulation through LU decomposition of the covariance matrix provides 

the fastest solution (Deutsch, 1998).  

All variables must be accounted for simultaneously. Multivariate geostatistics 

gives a tool to integrate multiple variable information, which will improve the quality 

of reservoir estimates. The collocated cosimulation builds on a Markov-type 

hypothesis (Almeida, 1994). Another variant of cokriging (Babak, 2008) considers 

only the single most correlated or most relevant secondary variable. 

The objective of this research is to improve the accounting for multiple variables. 

It is aimed at using all relevant variables at the same time. The development will 

extend cosimulation though the LU algorithm. An approximate model of 

coregionalization will be developed to infer the correlation between multiple variables. 

Another development is the transformation algorithm. A local search for relevant data 

will be considered. It takes local variations into consideration. The data used in 

transformation is different at each location. Theoretical and practical implementation 

details will be explored. 
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1.2 Dissertation Outline 

Chapter 2 discusses the background required in this thesis. Basic geostatistical 

concepts and methods are described. Chapter 3 focuses on improving the Block LU 

simulation methodology. Chapter 4 documents a case study with a real 2D nickel 

deposit using the proposed methodology. Chapter 5 gives conclusions and future 

work.  
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Chapter 2 
 
Background  
This chapter presents an overview of geostatistical background for mineral resources. 

Many geostatistical techniques have evolved over the last fifty years, but the basic 

statistical and mathematical theories remain the same and are essential to these 

techniques. Based on the random function concept and stationarity, geostatistics deals 

with predictions at unsampled locations. This requires a spatial correlation model 

based on the available information. Simulation techniques sample a specified random 

function model.  

 

2.1 Random Function. 

The sample data are viewed as outcomes of a random function. A random variable 

(RV) Z is a variable that can take a variety of outcome values according to some 

probability density function (pdf) or equivalently a cumulative distribution function 

(cdf). The location-dependence of a RV is denoted by Z(u), where u is a location 

within the domain of interest A. A specific outcome at u is denoted by z(u). The 

cumulative distribution function (cdf) of a RV Z(u) is: 

  ( ; ) {Z( ) }ZF z Prob z= ≤u u                             (2.1) 

If there are K dependent random variables, the random function is defined as 

follows (Deutsch 1988): 

          { }1 1 1 1( ,..., ; ,..., ) ( ) ,... ( )k K K KF z z Prob Z z Z z= ≤ ≤u u u u            (2.2) 

A decision of stationarity is made in order to substitute the need for repetitive 

realizations at all locations for scattered sampling at sample locations (Journel and 

Huijbregts 1978).  The assumption of stationarity is required to make predictions at 

unsampled locations. The first order of stationarity assumes that the mean of the 

variable is constant in the domain. The second order of stationarity assumes that the 
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variance and covariance of the data are constant in the domain.  

The spatial relationship is measured by the covariance: 

            { } { } { }( ) ( ) ( ) ( ) ( )C E Z Z E Z E Zh u h h u u h= + − +            (2.3) 

where h is a distance vector. The covariance is required for all practical h values 

within a search radius. If h is zero, the covariance becomes the variance under 

stationary assumption.  

{ } { }22 2(0) ( ) ( ) { }C E Z E Z Varu u Z σ= − = =                 (2.4) 

The variogram is a geostatistical tool to quantify spatial variability. It is defined 

as the expected squared difference between two sample values separated by a 

distance vector: 

[ ]{ }21( ) ( ) ( )
2

E Z Zh u u hγ = − +                         (2.5) 

Under the stationary assumptions, the relationship between variogram and covariance 

is ( ) (0) ( )C Ch hγ = − (Leuangthong, Khan and Deutsch, 2008). 

In multivariate geostatistics, under the same assumption, the spatial relationship 

between different variables is defined by the cross variogram: 

{ }1( ) [ ( ) ( )][ ( ) ( )]
2ZY E Z Z Y Yγ = − + − +h u u h u u h :             (2.6)     

If the variables are normalized, the above is equal to: 

1( ) (0) [ ( ) ( )]
2

           = (0) ( )

ZY ZY ZY YZ

ZY ZY

C C Cγ

ρ ρ

= − +

−

h h h

h
                        (2.7) 

Where ZYρ is the correlation coefficient for the pairs of variables, CZY is the cross 

covariance between Z and Y, CYZ is the cross covariance between Y and Z. 

 

2.2 Linear model of coregionalization (LMC) 

The linear model of coregionalization provides a method for modeling the auto- and 

cross-variograms (Isaaks and Srivastava, 1989). It is useful for the analysis and 

interpretation of multivariate spatial information. 

Consider P stationary random functions, 1{ ,..., }PZ Z=Z . The particularity of the 
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LMC is that all ( 1) / 2P P +  variograms are modeled as linear combinations of the 

set of L basic variogram functions. The LMC can be written as a multivariate nested 

covariance model: 

, ,
0

( ) ( )              , 1...  
L

l
i j i j l

l

C b c i j P
=

= =∑h h                    (2.8) 

Where bi,j is the contribution to each structure. The conditions sufficient for the matrix 

of functions , ( )i jC h  to be a permissible model of coregionalization are: (1) the 

functions ( )lc h  are permissible covariance models, and (2) the (L+1) 

coregionalization matrices Bl are all positive definite, which requires that 

, , ,l l l l
ii jj ij jib b b b i j l≥ ∀i i  

We can define the Linear model of coregionalization by direct and cross 

variogram model as follows:  

               , ,
0

( ) ( )        i,j=1,...,P
L

l
i j i j

l

b gγ
=

=∑h h                     (2.9) 

Where the g(h) is the same structure for all direct and cross variogram. Equation 2.9 

can be expressed in matrix notation as: 
0 0

11 1 11 1 11 1

0
0 0

1 1 1

( ) ( )
( ) ( )

( ) ( )

l l
p p p

l
l l

p pp p pp p pp

b b b b
g g

b b b b

h h
h h

h h

γ γ

γ γ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ = + +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

" " "
# % # # % # " # % #

" " "
     (2.10) 

 

The above procedure will be explained in greater detail for the two variable U 

and V case. The direct and cross-variogram models of U and V are constructed using 

the same variogram models (Isaaks and Srivastava, 1989). 

           
0 0 1 1

0 0 1 1

0 0 1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

U l l

V l l

UV l l

u u u
v v v
w w w

γ γ γ γ
γ γ γ γ
γ γ γ γ

= + + +

= + + +

= + + +

h h h h
h h h h
h h h h

"
"
"                   (2.11)

              

Where, ( )V hγ and ( )UV hγ are the auto- and cross-variogram models for U and V, 

respectively; the basic variogram models are given by 0 1( ),  ( ), ( );Lγ γ γh h h"   u, v, 
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and w are coefficients, possibly negative.  

Combinations of the first basic model, 0 ( )hγ   

,0 ,0 0 0 0

,0 ,0 0 0 0

( ) ( ) ( ) 0
( ) ( ) 0 ( )

U UV

VU V

u w
w v

h h h
h h h

γ γ γ
γ γ γ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

i                 (2.12) 

Combinations of the second basic model, 1( )hγ  

,1 ,1 1 1 1

,1 ,1 1 1 1

( ) ( ) ( ) 0
( ) ( ) 0 ( )

U UV

VU V

u w
w v

h h h
h h h

γ γ γ
γ γ γ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

i                  (2.13) 

Combinations of the thm  basic model, ( )m hγ   

, ,

, ,

( ) ( ) ( ) 0
( ) ( ) 0 ( )

U l UV l l l l

VU l V l l l l

u w
w v

γ γ γ
γ γ γ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

h h h
h h h

i                 (2.14) 

To ensure that linear model given above is positive semidefinite, the following 

conditions must be fulfilled. 

0 0

                  
j j

j j j j

u and v

u v w w

≥ ≥

≥
For all j=0,…, l                    (2.15) 

This model becomes very difficult to fit as the number of variables increase. 

  

2.3 Kriging  

Kriging is a linear regression algorithm to estimate at unsampled location values using 

the related nearby data. Kriging is often referred as the Best Linear Unbiased Estimate 

(BLUE). It is based on the minimization of the estimation variance. Each nearby data 

is assigned a weight in a linear combination of these data. Block kriging amounts to 

kriging all the unsampled location in the block and then averaging the block values to 

block kriging estimate. The cokriging algorithm provides the ability to use secondary 

variables to make a better estimate. 

 The most common form is Simple Kriging (SK). Other variations are made on 

SK with constraints. The following is an overview of SK.  

Assume the mean is constant and stationary (m). Consider n data values 

( ), =1Z α αu ，... n and mean m . The SK estimate is written: 
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n

*
SK

=1

[Z ( )-m]= [Z( )-m]                 α α
α

λ∑u u                 (2.16) 

If define a new variable as the residual of the data Y=Z-m . The estimate is:  

 

n
*

=1
Y ( )= ( )Yu uα α

α

λ∑                              (2.17) 

The Kriging variance is defined as. 

         

2 * 2
SK

* * *

n n

=1 =1 =1

{[ ( ) ( )] }

       = {[ ( ) ( )} 2 {[ ( ) ( )} {[ ( ) ( )}

       =C(0)-2 ( , ) ( , )
n

E Y Y

E Y Y E Y Y E Y Y

C C

u u

u u u u u u

u u u uα α α β α β
α α β

σ

λ λ λ

= −

− +

+∑ ∑∑

         (2.18) 

The optimal weights are calculated from the minimization of Equation 2.18:                        

n

=1
( , ) ( , )   =1,...nC Cu u u uβ α β α β

β

λ α=∑                         (2.19) 

Then the minimum error variance is simplified to: 

     
n

2
SK

=1

=C(0)- ( , )C u uα α
α

σ λ∑                                      (2.20) 

 

Cokriging is a formalism for multiple data types. Consider P data types and each data 

type has np nearby data for each type. Consider the residual as the variable. The 

cokriging estimate is written: 

          
pnP

*
i p p p

p=1 =1

Y ( )= ( )Yu uα α
α

λ∑∑                                      (2.21) 

The weights for primary and secondary data are determined by the cokriging system 

of equations: 

pnP

ip p
q=1 =1

( , )=C ( , )    =1,...,P; =1,...,np p p pC pu u u uβ α β α
β

λ α∀∑∑          (2,22) 

And the corresponding estimation variance is: 

   
pnP

2
SCK ii

p=1 =1

=C (0)- ( , )    p ip pC u uα α
α

σ λ∑∑                         (2.23) 
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Where the above equation indicates the minimized variance of cokriging system. All 

of the required covariances for different and same variable are calculated by the LMC 

model. 

  

2.4 Techniques for multivariable Block LU simulation 

In mining, the decision of what material in a deposit is worth extracting and 

processing is based on the estimated block values; it is not based on the point scale of 

data. An estimate of each block is required. The Block LU simulation amounts to 

discretize each blocks into many points and then average the individual point 

simulations to get the block values.  

 

2.4.1 Unconditional LU simulation. 

Let C be the covariance matrix between the data. It contains the relationship between 

the data points. C is symmetric and positive-definite and its Lower and Upper 

decomposition could be obtained (Davis 1987): 

            '
C LU
L U
=
=

 

Consider the random vector F that is a vector with standard normal distribution N 

(0, 1) values. The multiplication of Lower matrix by the random vector F  is: 

           

y LF=  

The expected value of the n×n matrix 'YY  is given by  

           

{ '} { ' }
            = { '}
E YY E U

LE U
FF
FF

=
   

Because F is a vector of independent standard normal distribution N (0, 1).  

           { '}E IFF =  

So 
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{ '} { ' }

            = 
            = C

E YY E L U
LIU

FF=
 

Thus, the simple multiplication provides the unconditional realizations of the random 

function at data location with covariance matrix C (Alabert, 1987). This method can 

handle a moderate-sized grid up to 7000 points. 

 

2.4.2 Conditional LU simulation. 

Consider the covariance matrix of data locations and the grid to be generated. The 

matrix is partitioned the matrix as follows: 

11 12

21 22

C C
C

C C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                                  (2.24) 

Where the 11C  is the covariance and cross-covariance between n data points. 12C is 

the covariance and cross-covariance  between the data points and the grid 

discretization points or grid points.  22C  is the covariance and cross-covariance 

matrix between the N unsampled locations . To be specific with one variable: 

1 1 1

11

1

( , ) ( , )

( , ) ( , )

n

n n n

c c
C

c c

u u u u

u u u u

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# % #

"
                            (2.25) 

1 1 1

12

1

( , ) ( , )

( , ) ( , )

N

n n N

c c
C

c c

u u u u

u u u u

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# % #

"
                            (2.26) 

1 1 1

22

1

( , ) ( , )

( , ) ( , )

N

N N N

c c
C

c c

u u u u

u u u u

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# % #

"
                           (2.27) 

1( )

( )n

z
Z

z

u

u
α

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

#                                           (2.28) 

The LU approach can consider data of different types or different variables. 
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Incorporating a multivariate version of block LU simulation allows the modeler to 

consider data of different types simultaneously. There are many secondary variables 

that could provide additional information on the variable of interest (Boisvert and 

Deutsch 2007).  

If there are 3 variables u, v and w. Each matrix is extended as follows (n data location 

and N unsampled locations): 

1 1 1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1

11

1 1

1 1

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
( , ) (

n n n

n n n n n n n n n

n n

n n n n n n

c c c c c c

c c c c c c
c c c c

C
c c c c

c c

u u u u u v u v u w u w

u u u u u v u v u w u w
v v v v v w v w

v v v v v w v w
w w

=

" " "
# % # # % # # % #

" " "
" "

# % # # % #
" "

" 1

1

, )

( , ) ( , )

n

n n nc c

w w

w w w w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

# % #
"

 (2.29) 

1 1 1 1 1 1 1 1 1

1 1 1

1 1 1 1 1 1

12

1 1

1 1

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
( , ) (

N N N

n n N n n N n p N

N N

n n N n n N

c c c c c c

c c c c c c
c c c c

C
c c c c

c c

u u u u u v u v u w u w

u u u u u v u v u w u w
v v v v v w v w

v v v v v w v w
w w

=

" " "
# % # # % # # % #

" " "
" "
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(2.31) 

 

  

Because C is symmetric, so 21 12 'C C= , Any symmetric, positive definite, matrix C 

has a unique LU decomposition (Horn and Johnson 1985): 
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11 12 11 11 12

21 22 21 22 22

0
0

C C L U B
C

C C A L U
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                        (2.32) 

The SK estimator is written as:  
* 1

21 11

11 12
1

11 11
1

21 11

'

 

      

      

Z Z C C Z

where C C

C C

C C

α αλ

λ

λ

λ

−

−

−

= =

=

⇒ =

⇒ =

                                    (2.33) 

The lower matrix multiple a vector F of N independent random numbers with a 

standard normal distribution.  

11 11

21 22 22

LY
L LY

F
F

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

                               (2.34) 

The conditional simulation replaces 1F  by G1, where G1 is the solution to equation 

      11 1 1L zG =                                        (2.35) 

because the data has been transformed to a standard normal distribution. So 

'
1 1 11( )E z z C=  

Thus 

 

 
1

11 111 1
1

21 22 21 11 1 22 22

0L zL z
L L L L z L FF

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦⎣ ⎦

                           (2.36) 

Produces a conditional simulation of the random function, which is 1
21 11L L z− . 

2.4.3 Computational aspects of LU simulation. 

When coming into the computational aspect of the LU simulation, there is no need to 

do the LU of the big matrix C. From the following we can see (Wackernagel, 1989): 

11 12 11 11 12

21 22 21 22 22

11 11 11 12

21 11 21 12 22 22

0
0

    =

C C L U B
C

C C A L U

L U L B
A U A B L U

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥+⎣ ⎦

                (2.37) 

With L11, L22: lower triangular matrices, U11, U22: upper triangular matrices. 
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21

11 11 11
1

12 11 12 12 11 12
1

21 21 11 21 21 11
1 1 1

11 21 11 12 12

22 21 12 22 22
1 1 1

21 12 21 11 11 12 21 11 12

22 22 22

                   ( )

   

   = 

                   = 

C L U

C L B B L C

C A U A C U

A U C L C B

C A B L U

with A B C U L C C C C

L U C C

−

−

− −

− − −

=

= ⇒ =

= ⇒ =

⇒ = = =

= +

=

⇒ − 1
21 11 12      C C−

         (2.38) 

So, if given 1
22 22 22 22 21 11 12= K L U C C C C−= − , in the case where there is a single point u 

to be estimated (m=1), the matrix K22 reduces to the SK variance: 

 
2 '

22 12
1

1
22 21 11 12

( ) (0) ( )

           = 0

n

sk u C u u C C

C C C C

α α
α

σ λ λ
=

−

= − − = −

− ≥

∑                (2.39) 

In the general case, consider the matrix of error covariance is: 
* *

* * * *

' '
22 12 11

'
22 12 11 12

22

{[ ( ) ( )][ ( ) ( )]}  i,j=1,...N

= {[ ( ) ( )]} {[ ( ) ( )] {[ ( ) ( )] {[ ( ) ( )]

2

             Since 

=K                      

i i j j

i j i j i j i j

E Z u Z u Z u Z u

E Z u Z u E Z u Z u E Z u Z u E Z u Z u

C C C

C C C C

λ λ λ

λ λ

− − ∀

− − − − − + −

= − +

= − =

 

It is an error covariance matrix and it is symmetric and positive definite. Thus the 

LU decomposition of K22 is always possible. From the LU simulation expression 

(another expression but equal to (2.36)); 
* 1

21 11 22 2
1 1 1

11 12 11 22 2

( )

                   =(L C ) ( )
cs sy y r A L Z L

L Z L

F

F
α

α

−

− − −

= + = +

+
                (2.40) 

Where L22 is the LU decomposition of K22.  

Once the C11, C12, C22 are obtained. Just decompose C11 to get L11, then inverse of L11. 

Then the first part of (2.40) is obtained. At the same time K22 is also obtained by 

(2.39). Then the simulation part is achieved. 
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Chapter 3 
 
Improving LU simulation methodology.  
3.1 Approximate model of coregionalization. 

The GSLIB (Deutsch, 1998) like program, Blusim_mv, is used for calculating the 

block simulated values. The existing LU formalism approach allows us to use 

multivariate spatial data. The calculation of multivariate simulated results from 

Blusim requires the linear model of coregionalization (LMC), which is considered a 

difficult task (Vargas-Guzmán, 2004), although there are some programs to model the 

variogram and cross variogram.  If there are P variables, the method requires 

P*(P+1)/2 variogram models. And the positive definite of the LMC model conditions 

have to be fulfilled.  

In this chapter Block LU simulation with an Approximate model of 

coregionalization (AMC) is demonstrated. A new program is developed to complete 

this idea (Appendix A). This method does not require the cross variogram model 

between variables; it only needs the direct variogram for each variable and a 

correlation matrix between collocated samples. 

The main algorithm is illustrated below: 

  

 

 

 

 

 

 

 

 

 

Transform all different type data to a standard Gaussian distribution  

Calculate and model the direct variogram.

Compute covariance matrix C for the block within the search neighborhood. 
Where the unsampled location are discretized. (Figure 3.1)  

Decompose the covariance via Cholesky decomposition into L and U.  
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Figure 3.1: Block discretization with search data.  

 

The proposed approach uses the direct variogram and the correlation matrix 

between variables as the following: 

, ' , ' '( ) ( )* ( )p p p p p pγ ρ γ γ=h h h                                3.1 

The cross-variograms are obtained by using a geometric average of the corresponding 

directional variogram and scaled to correct correlation between the variables.  

Another optional methodology is using the arithmetic average of the corresponding 

Consider a random vetor Y=LF where F is a vector of independent N 
(0,1) distributed random numbers. And add this result to Kriging  

* 1
21 11Z C C Zα

−= to get the simulated values. 

Back transform the simulated values to original units in that block. 

Average the block simulated values to get block value. 

Visit all the blocks in the domain of interest. 
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directional variogram values and then scale to the correct correlation coefficient 

between variables. 

'
, ' , '

( ) ( )
( )

2
p p

p p p p

γ γ
γ ρ

+
=

h h
h                                3.2 

The geometric average will be considered as our base case because it is always less 

than or equal to the arithmetic mean and this makes it more stable. The off-diagonal 

values in the C matrix will be slightly lower and this reduces the chance of C 

becoming not positive definite. 

 This methodology does not guarantee that the C matrix is positive definite. It will 

be likely close to positive definite. A dynamic correction is proposed to make sure it is 

positive definite if required: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The constant we choose for default is 0.025, which is reasonable because the diagonal 

of C is 1 when the data are transformed to normal values. 

 

Compute covariance matrix C for the location in the search neighborhood. 
Where the unsampled location are discretized. (Figure 3.1)  

If not, divide off-diagonal by 
(1+constant*times).  

If yes, then go to next 
step.  

   C  
positive ? 

Decompose the covariance via Cholesky decomposition into L and U. 
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3.1 Transformation. 

The algorithm developed requires the variable to be transformed to standard Gaussian 

variables and the simulated values to be back transformed (Deutsch, 1998). There are 

often local variations in the variable of interests that are not reflected well by a global 

transformation. In the improved methodology, the transformation table is built every 

single local search and then back transformation proceeds with correct local back 

transformation. The program has two searches, one is a bigger search for the 

transformation table, and another is a smaller search for the conditioning data (Figure 

3.2). 

 The first step is to build the transformation table, and then back transform the 

simulated values according to that table (Figure 3.3). One potential problem is that 

there may not be enough data to build the transform table. If this happens, the global 

table will be used for that location. Another potential problem in transform is how to 

deal with the minimum data and maximum data values in the transform table and how 

it was transformed. In the following chapter, the approximate minimum and 

maximum is used for transform.   

 
Figure 3.2 Double search radii using the local transformation. 

Data used for 
Kriging. 

Additional data 
used for back 
transformation. 
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Figure 3.2. Local transformation illlustrations. Upper left is the local data histogram. 
Bottom left is the cdf of local data histogram. Bottom right is the cdf nomal 
distribution. Upper right is the histogram of normal distribution. 
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Chapter 4 
 
Case study 
A case study illustrates the methodology of Block LU simulation with an approximate 

model of coregionalization (AMC). A comparison with a full Linear model of 

coregionalization (LMC) is also conducted. The local transformation is also 

implemented with this data. 

The following steps are described: (1) exploratory data analysis, (2) spatial continuity 

analysis, (3) comparative study between AMC and LMC, (4) a sensitivity study. 

(5)CPU-time study and (6) a local transformation study. 

 

4.1 Data 

The data is a 2D nickel deposit with measurements of the mass fraction of  Ni, Fe 

and MgO. The particulars of the data set will be kept for confidential reason. The 

exploratory data analysis is important for getting representative statistics for the 

variables in the deposit. The area of interest is shown in Figure 4.1. It is 1200m 

east-west, and 700m north-south. From these location maps, one can see that the drill 

holes are collected in a spatially clustered pattern.  The univariate statistics of the 

three variables are shown in Figure 4.2. The summary of the raw statistics are shown 

in Table 4.1. 

Declustering is needed to obtain representative global statistics. The decision of 

the appropriate cell size is based on Figure 4.3. A declustering cell size of 85 is chosen 

for variable Ni. Declustering weights are largely determined on the basis of the 

geometric configuration of the data, therefore, only one set of declustering weights is 

calculated in presence of the three variables (Deutsch 2002). The declustering results 

are shown in Figure 4.4. The mean of the variables decreases after declustering. 
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Figure 4.1 Location map of drillhole data. 
 

 
Figure 4.2 Histogram for Ni, Fe and MgO (percent mass fraction).
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 Ni(%) Fe(%) MgO(%) 

Mean 1.41 19.19 19.85 

Std.dev 0.63 12.23 10.84 

Min 0.23 2.17 0.50 

Max 4.30 126.67 52.07 

Table 4.1 Summary statistics for Ni, Fe and MgO. 

 

Figure 4.3 Declustered mean versus Cell size for variable Ni. 

 

 
Figure 4.4 Histograms for Ni, Fe and MgO by using declustering weights.
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Figure 4.5 Scatter plot of Ni, Fe and MgO. 

 

The bivariate study is shown in Figure 4.5.  The correlation between Ni and Fe 

is 0.301, the correlation between Ni and MgO is 0.127. These two relationships are 

direct, but not very strong. The correlation between Fe and MgO is -0.524; which 

shows an inverse correlation. These are summarized in correlation matrix shown in 

Table 4.2 

 Ni Fe MgO 
Ni 1 0.301 0.127 
Fe 0.301 1 -0.524 
MgO 0.127 -0.524 1 

Table 4.2 Correlation between variables. 
 

4.2 Variogram Analysis. 

The omnidirectional horizontal experimental variograms are used for data pattern 

reasons and they are shown in Figure 4.6. The variogram is sensitive to the lag 

spacing, tolerance and other parameters. Larger lag spacing, tolerance parameters 

could result in more stable variograms, but the values would be less precise. 
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Note that before the variogram is calculated, the data are transformed to Gaussian 

units. Simulation is based on the Gaussian units. The variograms were modeled 

(Figure 4.7). GSLIB programs are used to fit these variograms and cross variograms. 

A positive definite LMC is the following: 

Variograms: 

38 205( ) 0.01 0.751 ( ) 0.248 ( )Ni a aExp Exph h hγ = == + +  

38 205( ) 0.01 0.737 ( ) 0.262 ( )Fe a aExp Exph h hγ = == + +  

38 205( ) 0.01 0.223 ( ) 0.776 ( )MgO a aExp Exph h hγ = == + +  

Cross variograms: 

38 205( ) 0.01 0.066 ( ) 0.234 ( )Ni Fe a aExp Exph h hγ − = == + +  

38 205( ) 0.01 0.084 ( ) 0.042 ( )Ni MgO a aExp Exph h hγ − = == + +  

38 205( ) 0.01 0.388 ( ) 0.137 ( )Fe MgO a aExp Exph h hγ − = == − −  

The sill of all direct variograms is 1.0, and the sill of the cross variogram is 

correlation coefficient between the pair of variables.The AMC model only requires 

the direct variograms. The direct variograms are modeled manually (Figure 4.7) as 

follows: 

35 200( ) 0.01 0.726 ( ) 0.273 ( )Ni a aExp Sphh h hγ = == + +
 

30 200( ) 0.01 0.710 ( ) 0.289 ( )Fe a aExp Exph h hγ = == + +  

35 200( ) 0.01 0.310 ( ) 0.689 ( )MgO a aExp Exph h hγ = == + +  

Figure 4.8 shows the cross variogram model between Fe and MgO by using the two 
different models.  
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Figure 4.6 Ni, Fe and MgO variogram and cross variogram fitted by LMC. 
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Figure 4.7 Ni, Fe and MgO variogram model fitted separately.  

  

 
Figure 4.8 Comparative cross variogram model between LMC and AMC 



26 
 

 
4.3 Comparative simulation with AMC and LMC  
 
A GSLIB FORTRAN program called Blusim_AMC was developed for performing 

block multivariate LU simulation (Appendix A). An explanation of all parameters is 

included. This program does not require the LMC model to calculate the cross 

variogram model but upper diagonal correlation coefficient matrix of variables.    

Using the AMC does not assure that the covariance matrix is positive; however, 

no non-positive definite matrices are found.  

The summary statistics of the block averaged simulated value are shown in Table 

4.3. 100 realizations are used for both methods. The mean of Fe is slightly bigger 

using AMC. The mean of Ni are slightly smaller using AMC. The mean of MgO is the 

same. The AMC also shows slightly lower minimum and slightly higher maximum 

value (Figure 4.9, 4.10).  This is seen in the visualized simulation results in Figure 

4.14 and 4.15. From the scatter plot of these two, the high correlation shows that the 

Blusim with AMC is quite close to Blusim with LMC (Figure 4.13). The computation 

of mean grade and proportion above a cutoff grade are shown in Figure 4.18 (LMC)in 

Figure 4.19 (AMC).  

The summary statistics of the simulated global variance are shown in Table 4.4, 

and the histograms are shown in Figures 4.11 and 4.12. The mean of variance for Ni 

and MgO is quite similar: similar mean, minimum and maximum value. But for Fe, 

the variance using AMC shows slightly higher variance and slightly higher minimum 

and maximum value. 

Model 

Variable 
LMC AMC 

 

Ni 

mean 1.21 1.19 

std.dev 0.23 0.25 

min 0.35 0.37 

max 3.17 3.13 
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Fe 

mean 18.1 18.7 

std.dev 3.58 3.82 

min 5.75 5.82 

max 50.5 46.9 

MgO

mean 18.1 18.0 

std.dev 7.10 7.10 

min 0.68 0.86 

max 40.6 40.0 

Table 4.3 Summary simulation statistics for Ni, Fe and MgO.   
 

Model 

Variable 
LMC AMC 

Ni 

mean 0.19 0.18 

std.dev 0.07 0.06 

min 0.00 0.00 

max 0.59 0.58 

Fe 

mean 62.9 68.6 

std.dev 30.0 35.1 

min 0.16 0.21 

max 324 296 

MgO

mean 68.9 69.5 

std.dev 36.0 33.1 

min 0.17 0.38 

max 127 123 

Table 4.4 Summary variance statistics Ni, Fe and MgO. 
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Figure 4.9 Block averaged simulation histograms using LMC (left). 
Figure 4.10 Block averaged simulation histograms using AMC (right). 
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Figure 4.11 Block global variance using LMC (left). 
Figure 4.12 Block global variance using AMC (right). 
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Figure 4.13 Scatter plot of block averaged simulation using AMC and using LMC 
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Figure 4.14 Block averaged simulation plots using LMC (left). 
Figure 4.15 Block averaged simulation plots using AMC (right). 
 
 
 

 

 

 

 
Figure 4.16 Block global variance plots using LMC (left). 
Figure 4.17 Block global variance plots using AMC (right). 
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Figure 4.18 Ni mean grades and proportion of grid above cutoffs using LMC. 
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Figure 4.19 Ni mean grades and proportion of grid above cutoffs using AMC.
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4.4 Sensitivity analysis. 
The sensitivity analysis focuses on the effects of grid size, search strategy used and 

discretization. To determine the sensitivity of the grid size in this Nickel deposit, 6 

different block sizes are chosen. The different increasing cutoff to Ni, Fe and MgO 

estimate are conducted, and then the tonnage fractions are calculated shown in Figure 

4.20. For each block model, the cutoff grade is applied above cut off for SMU sizes 

5×5, 10×10, 15×15, 20×20, 25×25, 30×30. Using these maps, the fraction of total 

tonnage is not so sensitive to the block size. 

 

 

Figure 4.20 Grade tonnage curve of Ni, Fe and MgO using different block size. 
 
A sensitivity study on the effect of the search data is also conducted.  

The variance of the simulation is sensitive to the number of data used (Figure 4.21). 

The standard deviation of the three variables is increasing when the search data 

increases, and it flattens off at round 20 data used.    
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Figure 4.21 Standard deviation of Ni, Fe and MgO versus the number of data used in 
the search.  
 
 
A sensitivity study on effect of the discretization points in the grid was conducted. 

The more discretization points are required, the more points are simulated in the grid, 

but more computation memory is needed and the computations are slower. In this case, 

the discretization points are chosen as 2, 4, 6, 8, 10, 12 and 14.  

The variance is decreasing as the discretization points is increasing, and reach a stable 

value (Figure 3.22). Considering CPU-time will increase as discretization points 

increases, the optimal discretization points should be 4.  
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Figure 4.22 Standard deviation of Ni, Fe and MgO results versus the number of 
discretization points used. 

 

 
4.5 CPU-time study. 
 
In Figure 4.23, it shows that when doing the block LU simulation with AMC, once the 

grid size, discretization points and other parameters is set up, the C22 sub-matrix is all 

the same during algorithm, because C22 sub-matrix is the covariance matrix between 

discretization points. The improved algorithm is using the same C22 sub-matrix over 

all the simulation process. Figure 4.24 shows that the compared CPU-time study on 

improved algorithm and the old one when the simulation number, search data used 

and discretization points are increasing. 
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Figure 4.23: A case for two blocks using the same discretization. 
 
 

 

 
Figure 4.24. CPU-time study on improved algorithm where C22 is calculated once 
(square) compared with previous where C22 is calculated every time (star). 
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4.6 Transformation study 
The program BLUSIM_AMC allows the data to be transformed locally. The locally 

data are used to build the transformation table, and back transformed by the results. A 

larger search will ensure a stable transformation table. Declustering can also be used. 

 

 

 
Figure 4.25. Block averaged simulation histograms using local transformation. 
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Figure 4.26. Block averaged simulation plots using local transformation. 

 

 
Figure 4.27. Block global variance histograms using local transformation. 
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Figure 4.28. Block global variance plots using local transformation. 

 

For this case, 20 data are used to build transformation table. The block averaged 

simulation histograms are shown in Figures 4.25 and 4.26. From these plots, one can 

see that the variance is zero at the data points. The local data area are better respected 

using the local transformation table: the high valued areas have more higher values 

and the low areas have more low values. For example, for Ni, there are more low 

values in the upper right corner. The variances are shown in Figure 4.27 and 4.28.  
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Chapter 5 
 
Conclusions and Future Work 
 

Block simulation using the LU technique in geostatistics has been an active area of 

research. Accounting for multiple variables improves the quality of geostatistical 

estimates. The linear model of coregionalization is traditionally required for calculate 

the relationship between pairs of variable, which is considered a difficult task.   

 This thesis developed an approximate model of coregionalization in the 

framework of the block LU simulation technique. The main idea is to model the direct 

variogram model separately to get the relationship between the same variable and then 

use the correlation matrix and previous direct variogram to get the relationship to 

different variables. The covariance matrix is built using these relationships between 

pairs of variable. To ensure the covariance matrix to be positive definite so that the 

LU could be implemented, the detection and iterative correction could be applied.    

A FORTRAN code called blusim_AMC is developed to apply the methodology.  

The methodology is applied to a real Ni deposit. Two other variables Fe and MgO are 

used to get the approximate model coregionalization. The results are compared with 

the linear model of coregionalization. Similar simulation results for all variables were 

obtained with both techniques. 

 Sensitivity analysis based on the approximate model of coregionalization was 

also conducted. The results show that the optimum grid size, data used for kriging and 

discretization points. The CPU-time on improved covariance matrix calculation shows 

some improvement.  

 Another development in the program is to take local variations into consideration. 

Two search radii are used, the inner search radius is for kriging and the outer radius 

search is for transformation. This is explored in the Ni deposit. The result of local 

transformation shows a closer reproduction of the local data.  
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Future Work 
Regarding future work, the iterative correction of the C22 matrix calculated must be 

documented more completely. The current case study happened to not need any 

correction. Further development on this correction scheme is still subject to testing.   

 The program developed in this thesis deal with the collocated data.  This 

program should be extended to the non-collocated case, that is, when not all variables 

are at the same location.  

 Some minor visual artifacts with using the double search radius scheme, the 

transformation using the local data requires further development and exploration.  
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Appendix A 
FORTRAN Code: Block LU simulation with    
               AMC 
 
A GSLIB-like program, called blusim_AMC, is developed to calculate the resource 
reservoir simulation with multi-variable. The program does not require the LMC 
model. To calculate the cross variogram between variable, it need the upper diagonal 
correlation coefficient matrix. The parameters required for this program are: 

 

 

• Information about the data (line 6-10). Name of the data file, columns for the coordinates X, Y, 

Z ant the variable ID, variable and the weights. The variable ID must be indicated in the data 

file. The number of variable for line 8 must equal to the highest ID of the variable in the data 

file.  

 

• Correlation information and trimming options (line 10-11). Line 10 is the upper diagonal 

correlation matrix of among the variables. Line 11 is the trimming options 
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• Transformation options (line 12-19). Line 12 and 13 is the option weather to transform the 

data and the output file. Line 14 to 16 is weather to consider a transformation table. This is in 

one file with each column representing a different variable. 

 

• Debugging options and output file (line 20-22). This option allows the user to check the 

calculation, but if set higher debugging level; the debugging file could be large. Line 22 is the 

name of output file.  

 

• Parameters for simulation grid and discretization (line 23-28). Line 23 is number of 

realizations, Line 24-26 is the gird definition. Line 27 is number of discretization points in the 

panel; Line 28 is the number of Selective Mining Unit in the panel. Note that number of 

discretization points divided by number of SMU should be a whole number. 

 

• Parameters for cutoff report (line 29- 34). Line 29 and 30 is number to cutoffs and value of 

cutoffs. Line 31 is the option to consider equivalent grade, which requires a factor for each 

data simulated. Line 32 is the option weather to write out all SMU realizations, which could 

be large if the realization is large. 

 

• Seed for random number (line 35) 

 

• Search information (line 36-39). Line 36 is the min and max data used in simulation. Line 37 

is whether to consider octant search. Line 38 is the search radii.  

 

• Variogram model parameters (line 40-end). These are only the direct variogram models for the 

data.  

 
 
 
 
 


