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Abstract

A major response to vagueness and sorites paradoxes is fuzzy logic, or logic with
an infinite number of truth values. This thesis presents a procedure for
constructing algebraic tableaux for RPLA, which is Lukasiewicz’s Ly extended
with constant truth functions and a determinacy operator. It appears that no tab-
leau procedure has yet been developed for this particular system. The procedure
is then extended to cover the finitely many-valued members of the Lukasiewicz
family, product logic, and Zadeh’s hedges. The soundness of the procedure for

each of these systems is proven.



Fuzzy reasoning

In this thesis, I will present a tableau procedure for RPLA, a system of
infinite-valued propositional logic, and prove its soundness. These will be called
algebraic tableaux, in order to highlight certain differences between these
tableaux and standard semantic tableaux. RPLA is an extension of L ukasiewicz’s
Ly, the most prominent system of infinite-valued logic; RPLA adds to Ly the
additional apparatus necessary to talk about the truth values of formulas within
the system itself. It is thus a very powerful and useful system of fuzzy logic.

This chapter gives a brief introduction to propositional fuzzy logic and its
applications to vagueness and control systems. Chapter II gives a detailed
analysis of RPLA, the rationale for its truth functions, some of its interesting
metalogical properties, and discusses some of the tautologies and valid inferences
of the system. Chapter III discusses the extant decision procedures for
propositional fuzzy logics. Chapter IV presents the tableau procedure and proves
its soundness. Chapter V extends algebraic tableaux to cover several other
prominent many-valued logics, and discusses some areas for future research. By
and large, chapters I and IIl are informal and in English, the rest of the paper
formal and more thick with symbolism. The reader who wishes to understand the
general conclusions without slogging through too much formal language can read

chapters I and III and sections V.5 and V.6. The reader interested only in the



main results presented here, and already familiar with fuzzy logic, can read
chapters I through V.

I will have to begin this chapter with a disclaimer. I will try to give an
account of the motivations behind adopting an infinite-valued logic, in order to
give the reader a better sense of what the logic is for. I will not, however, make a
serious attempt to argue that we should adopt an infinite-valued logic, nor will I
give a serious discussion of its merits and demerits. Such a project would be far
beyond the scope of this work, and will have to be left for another occasion.

Finally, a brief note on terminology is in order. The term “fuzzy logic” is
used to refer to many very different logical systems. Besides the systems of
interest here, “fuzzy logic” includes systems in which the truth values of formulas
are subintervals of [0,1], systems in which the truth values are only partially
ordered, systems in which the truth values are themselves fuzzy sets, etc.
Furthermore, commercial products using “fuzzy logic” generally use large finitely
many-valued systems, not infinite-valued logics at all. The term’s ambiguity
seems to have led to confusion on at least one occasion.' Here, I will use “fuzzy
logic” with what seems to be its standard denotation, to refer to any logical
system with a whole lot of truth values. Systems in which the truth values are the
real numbers in [0,1] will be referred to as infinite-valued logics; many-valued

logics are systems where the truth values are at least three in number.

1. Worries about bivalence

One of the fundamental principles of classical logic is the law of

bivalence—every proposition is either true or false. Similar laws are tertium non

! Susan Haack attacks Zadeh’s FL (in which the truth values themselves are fuzzy sets), and does
not challenge infinite-valued systems like 1. and RPLA (1996: 232-3). (Moreover, her arguments
do not apply in any serious way to the latter systems.) Strangely, she calls FL “fuzzy logic”, and
refers to-the latter systems as the “base logics”. At least one response to her paper (Entemann
2002) seems to have interpreted her as criticizing infinite-valned logics in general (and having
interpreted her arguments that way, refutes them without difficulty).



datur, or “there is no third [truth value]”, and the law of excluded middle, the
tautology p v —p. These are not always equivalent—for instance, on a
supervaluationist account not every proposition is true or false, but p v —p is a
tautology. The differences are, however, not relevant to the present work, and so
for current purposes the various laws may be run together. Although bivalence
has generally been regarded as a fundamental law of logic, it has some bizarre
consequences, which have worried logicians throughout history.

The first logician to question bivalence may very well have been Aristotle.
In De interpretatione 9, he might have proposed that propositions about
contingent future events are neither true nor false before those events occur, in
response to an argument indicating that determinism followed from bivalence and
disquotationality. (See Haack 1996: 73-90 for a discussion.) Philosophers in the
Middle Ages extensively discussed this argument and its implications for the law
of excluded middle.

Modern work has focused on problems caused by the vague terms that
make up most of natural language. Vagueness is itself at best vaguely defined,
and likely includes a number of different linguistic (and possibly epistemic and
ontological) phenomena. The serious threat to bivalence comes from the fact that
vague predicates have borderline cases, in which the predicate seems neither
really to apply nor not apply. Suppose Phil, who is 5’10 tall, is standing in the
doorway wearing a shirt of a shade midway between red and orange. Neither
“tall” nor “not tall”, nor either “in the room” or “not in the room” really apply to
Phil, and neither “red” nor “not red” really apply to his shirt. The law of excluded
middle, ¢ v —¢, seems to fail for such borderline cases. One is inclined to say
that Phil is neither really tall nor not tall, and neither really in the room nor not in
the room; but since —p A ——p is equivalent to —(p v —p), this move seems to
directly contradict bivalence.

Furthermore, there are a number of paradoxes associated with vagueness.

These are not immediately counterexamples to bivalence, but arise from attempts



to apply classical logic to vague predicates. The ancients called the most
important of these sorites or falakros paradoxes—the former from soros, meaning

“heap”, the latter meaning “bald man”. Obviously,

[SO] A man with 100 000 hairs on his head is not bald.

Just as obviously,

[S1] If a man with n hairs on his head is not bald, a man with n - 1 hairs is not

bald.

One hair either way makes no difference. [SO] and [S1] imply

[S2] A man with 99 999 hairs is not bald,

which is perfectly reasonable; [S1] and [S2] imply

[S3] A man with 99 998 hairs is not bald,

which is, again, quite right. But if we continue reasoning in this manner, after

100 000 applications of modus ponens we get

[S10°] A man with 1 hair on his head is not bald.

This conclusion is obviously false, although it might be comforting to some. We
can additionally run the sorites in the other direction and reach the conclusion that
regardless of how many hairs they have, all men are bald.

Sorites paradoxes come up (far too often) in argumentation in the form of

slippery slope fallacies, and a fundamental part of successful informal reasoning



is the ability to avoid being misled by such arguments. Hence, the sorites is not
just a clever puzzle that can be readily ignored; its seeming classical validity

shows that classical logic is not an adequate representation of cogent reasoning.

2. Major responses to vagueness

There has been a number of responses to the problem of vagueness and
sorites paradoxes. I will (much too briefly) summarize the most important of
these, to give the reader a better sense of what problems fuzzy logic was

developed to avoid.

The epistemic view. The gist of this response is, interestingly, to deny that
predicates actually have borderline cases, and likewise to deny that [S1] is true at
all. For any predicate, there is an exact boundary between the objects of which it
is true and the objects of which its negation is true. But no one can ever know
just where this boundary is. (See Williamson 1992 and 1994 for a discussion and
defense.) This response has the advantage of preserving the law of excluded
middle—every man is either bald or not, although in some cases we cannot know
the answer. Postulating linguistic facts no speaker of the language could possibly
know, and which have no causal link to actual or possible speech behaviour, is

accompanied by a litany of disadvantages, as the reader can imagine.

Supervaluations. A number of thinkers have proposed that vague expressions
lack truth value—by failing to be precise, an expression fails to be true or false.
The most popular version of this position is supervaluationism. The basic idea is
that vague expressions may be made precise (“sharpened”) in any number of
ways. A supervaluation is an evaluation of every admissible sharpening of the
vague elements of a proposition. A vague proposition is true if every admissible

sharpening is true, false if every admissible sharpening is false, and neither if



some sharpenings are true and some false. (See Kamp 1975, or Williamson 1994:
142-64.) Supervaluationism denies bivalence, since some propositions are neither
true nor false, but ¢ v —¢ is a theorem, since on every sharpening, either ¢ or —¢
is true. Supervaluations handle the sorites paradox by maintaining that on every
sharpening, there is an exact, one-hair boundary between being bald and not being

bald. Hence,

In(a man with n hairs is not bald A a man with n — 1 hairs is bald)

is true. However, since different sharpenings mark this line in different places,
there is no number & such that instantiating » by £ is true.

The supervaluationist approach has the serious defect of ignoring the
phenomenon of higher-order vagueness. There is no boundary between border-
line cases and non-borderline cases, or between borderline-borderline cases and
borderline cases, etc. That is, any sharp boundary between the true, false, and
neither cases of a predicate will be just as arbitrary as a sharp line between the
extension of the predicate and the extension of its negation. A further problem is
that there is variation within borderline cases. A proposition true on every
sharpening except one is certainly in a better position than a proposition false on
every sharpening except one, yet on a supervaluationist approach both are

categorized the same way, as neither true nor false.

Three-valued logic. Instead of saying that vague expressions are neither true nor
false, some authors have proposed assigning them a third value between true and
false. The result is a logic with three truth values. There are a number of logical
systems that might be used for this purpose, the details of which I will omit—
Lukasiewicz’s 13, Kleene’s K3, and Bochvar’s B; are the most likely candidates.
(See Rescher 1969: 22-36 on these systems.) This approach has the same

limitations as supervaluations—it does not account for higher-order vagueness or



variation between borderline cases. The three-valued response to sorites
paradoxes would be to draw two discrete lines, one between bald and borderline
bald, and another between borderline bald and not bald. This is not much of an
improvement over the two-valued response.

One might try to remedy these problems by moving to, say, a five-valued
logic with the values “true”, “borderline true/borderline”, “borderline”, “border-
line false/borderline”, “false”. But this would not eliminate the problem; the lines
between the five cases would have to be arbitrarily drawn. There is no principled
way to divide vague assertions up into discrete packages, however many packages

we try to use.

Precisification. A fourth approach is to throw up one’s hands in disgust at the
unclarity of natural language and “precisify” vague terms, replacing them with
precisely defined counterparts. Frege and Carnap favoured this project, and

Russell memorably wrote

All traditional logic habitually assumes that precise symbols are
being employed. It is therefore not applicable to this terrestrial life
but only to an imagined celestial existence...logic takes us nearer
to heaven than other studies (1923: 65).

So rather than worry whether Phil is tall or his shirt red, we might define a new
predicate TALL, such that x is TALL iff x is more than 5’11 tall, or specify a new
predicate RED that holds of objects that reflect light in a precisely specified part of
the spectrum under precisely specified standard conditions. This approach does
not deny that [S1] is obviously true of the natural language predicate “bald”. The
apparatus of formal logic, however, can only be applied to precise terms with

definite boundaries; if BALD is a precisification of “bald”, the analogue to [S1]

If a man with n hairs is not BALD, a man with n - 1 hairs is not BALD,



is actually false.

In some cases, instead of precisifying predicates, we can abandon them
altogether in favour of descriptions of the states of affairs the property to which
the vague term refers supervenes on. In this example, we would forego using tall
and red and instead talk directly about Phil’s height and the wavelength of the
light reflected from his shirt under standard conditions. This is not, however,
generally feasible, as vague terms frequently refer to properties that supervene on
states of affairs so complex or disparate that referring to them with a special term
is unavoidable. (Most important biological concepts, for instance, cannot be
reduced to purely physical language.)

Precisifying vague terms preserves bivalence, which some might see as an
advantage. There are two serious disadvantages, however. First, precisifications
of complex terms are frequently extremely complex, since each borderline case
must be accounted for without losing sight of the core meaning of the term.
Before developing fuzzy set theory, Lotfi Zadeh worked on successively refining
the meaning of terms like “state” and “adaptive” in accordance with this response
to vagueness (see Gaines 1976: 624). These experiences led to his later claim that
“complexity and precision bear an inverse relation to one another in the sense
that, as the complexity of a problem increases, the possibility of analyzing it in
precise terms diminishes.” (Zadeh 1972: 150)

A second disadvantage is that precisified predicates are less informative
than their vague counterparts, because they have no borderline cases. Suppose we
say that an object is RED iff under standard conditions, it reflects light of a
wavelength between 630 and 670 nm. Suppose A reflects light at 670 nm, B at
630 nm, and C at 629 nm. A and B are RED, but C is not RED. Nonetheless, the
colours of B and C are indistinguishable without complex equipment, while A and
B have very different shades. We express this sort of information in natural
language by hedging claims about the colour of objects; we might say that A is

“definitely red” but B and C are only “more-or-less red”. But it is no more



possible to be “more-or-less RED” than to be more or less an even integer, and so
this option is not available.* Thus knowing whether a precisified predicate
applies to either of two objects in many cases does not allow us to infer anything
at all about the relations between those objects. Precisifications attempt to
legislate away variation in borderline cases, but can only achieve this at the cost

of reducing the expressive power of the language.
3. The motivation for fuzziness

Here, 1 will give what seem to me to be the central considerations
motivating a move to an infinite-valued logic. The reader should note, as already
indicated above, that these should not be taken as arguments per se for adopting
fuzzy logic as a response to vagueness. What it means for a proposition to be
“true to degree n” is obvious for some and inscrutable for others; my aim is
simply to try to explain what we are trying to represent with such locutions, in the
hope of giving the reader a better intuitive understanding of the basic concepts
behind the logic.

The central intuition is that borderline cases just are borderline cases. A
reddish-orange patch is a shade roughly halfway between red and orange on the
spectrum of visible light; a man who is 5°11” is a man who is slightly above the
average height. Whether we categorize the patch as “red” or “not red”, the man
as “tall” or “not tall”, we lose the information that the patch is just as close on the
spectrum to red as to orange, and that the man is not as tall as someone who is
clearly tall. But any finite characterization of a property like redness or tallness

will ignore the similarity between cases on the boundary between categories, and

? On the basis of our background knowledge about the objects to which the predicate applies, we
can say that 630 nm is a borderline case of RED; but the predicate itself says nothing of the sort.
Similarly, we know that Des Moines is “more American” than El Paso, but US law applies no less
to the latter than to the former.



the differences between cases at opposite extremes of the same category. Hence,
we are driven to adopt a continuum of degrees of applicability of a predicate.

More directly, we can note that the manifestations of many properties can
be linearly ordered. Colour patches, obviously, can be ordered by their similarity
to pure red, and men can be ranked in order of their baldness or height. Other,
more interesting, examples are readily found. Compounds can be ordered in
terms of toxicity from those that are harmless, through those that cause illnesses
of progressively increasing severity, to those that cause immediate death. If we
take democracy to be popular control of legislative structures, then we can order
political systems in terms of the amount of control the populace has over the
government. ~ Drawing lines across such orderings is usually incredibly
complicated, and arbitrarily divides borderline cases. A truly rigourous descrip-
tion of the phenomenon will have to talk directly about such orderings, and this is
what infinite-valued logic is for.

Although fuzzy logic is formally a generalization of finitely many-valued
approaches to vagueness, it is best understood as an extension of the program of
precisifying vague terms (cf. Gaines 1976: 627-31); it is primarily an attempt to
adapt vague predicates for use in science and engineering. In this sense, it is a
continuation of Russell and Frege’s project of cleansing the language of
vagueness, ambiguity, and imprecision, in order to meet the needs of rigourous
discourse and precise representation. The attempt to model how vague
expressions are actually used in language is only a secondary goal. In particular,
infinite-valued logic does not attempt to model the imprecision in the use of, and
indeterminacy of extension of, vague predicates in natural language.” So right

away we should note that we are not discussing a “logic of vagueness”, if we

* There are many systems of fuzzy logic that do attempt to model other aspects of vagueness. For
instance, Nguyen et al. (1996) model our inability to determine what the precise truth value of a
proposition should be by taking the truth values of propositions to be subintervals of [0,1] rather
than points in [0,1]. Zadeh’s (1975) FL goes one step further and models the truth values
themselves as fuzzy sets on [0,1]. Such systems are best seen as extensions on the basic infinite-
valued logic with which we are concerned here.

10



understand this as meaning an exhaustive formal characterization of the behaviour
of vague expressions. Rather, infinite-valued logic is an attempt to allow precise,
rigourous language while avoiding the defects described above in the
precisificationist approach—it is a logical framework for rigourous com-

munication using, rather than avoiding, predicates with borderline cases.

4. The basics of infinite-valued logic

The foundation of all systems of fuzzy logic is that instead of just the
traditional two truth values, there are infinitely many degrees between absolute
true and absolute false. [ hope the reader will allow me to avoid discussing the
question of what exactly degrees of truth are, and what relation they bear to
traditional (particularly, metaphysical) conceptions of truth. This question is far
too complicated to address here; for now, let us set the metaphysics aside and take
fuzzy truth as a purely formal structure to increase the expressive power of our
logic. In this paper, I will use /¢/ to represent the truth value of ¢. The truth
values will be taken to be all the points in the interval [0,1]. A formula is a
tautology iff it always takes the value 1. Similarly, a set of premises X seman-
tically implies a conclusion ¢, written as always X k& ¢, iff on every valuation on
which Yy € %, iy/ =1, we have /¢/ = 1.

We want, of course, to be able to talk about approximately true formulas
and approximate inferences. This is commonly done by defining a subinterval of
[0,1] as the designated (“truth-like”, assertible, belief-worthy, or what have you)
values. We then take a tautology to be a formula that always takes designated
values, and a valid argument to be one where the conclusion takes a designated
value whenever all the premises do. (See e.g. Priest 2001: 216-7.) The logic
developed here allows us to state the truth values of formulas within the system,

which in turn allows for both a very general, context-sensitive characterization of

11



approximate validity, and a full syntactic treatment of the logic. Throughout, I
will use the symbol 0 for the greatest lower bound of the designated values.

As should be obvious, any denumerable set of connectives for a
continuum-valued logic is functionally incomplete. Our choice of connectives
thus determines what logical system we end up with, and is thereby very
important. There is a very wide variety of different connectives used by different
people working in the field, and thus a wide variety of infinite-valued logics. The
versions of the classical connectives discussed in this section, and on which this
thesis focuses, are the most widely used overall,' and also retain the greatest
number of classical validities. I will leave off discussing the arguments for using
these particular connectives until 1I.3-4, since the more general reasoning with
which we are concerned in this section does not really depend on the specific
choice of connectives. The system I will discuss will be called RPLA. 1t is
Lukasiewicz’s infinite-valued system Ly extended with constants and a deter-
minacy operator, and was first proposed by C. G. Morgan and F. J. Pelletier
(1977).

We define conjunction, disjunction, and negation as

[(§ v w) = max (/§/, y/),
(A W) =min (/¢/, /),
I=¢/=1-/¢/.

That is, a conjunction has the same value as the least true of its conjuncts, and a
disjunction takes the value of the most true of its conjuncts. Negation “flips” the
truth value of a proposition; the distance of —¢ from 0 is the same as the distance

of ¢ from 1.

* For instance, Zadeh (1975) uses these connectives as the basis for his FL; the Kenevan Truth
Interval Logic and Nguyen et al.’s (1996) interval-valued systems use these definitions of
conjunction, disjunction, and negation; Machina (1976) uses these connectives in his logic of
vague terms; etc.

12



The conditional will be defined as

/(O D) =min (1, 1-/¢/+ /),

or equivalently,

(o ow)Y = 1if/¢/ < Ny,
1 - (/§/ - hy/) otherwise.

The truth value of a conditional is one minus the amount of truth lost when
proceeding from the antecedent to the consequent. If /¢/ < /y/, no truth is lost
when going from ¢ to y, and so the value of the conditional is 1. The primary
inference rule for the conditional is fuzzified modus ponens; given /¢/ and /¢ > y/,

we can determine a lower bound for /\y/, since

NI 2 10+ /b Syl - 1.

Fuzzified modus ponens will be discussed further in 11.4.

Equivalence is defined as

Jo =yl =1-/o/ - hyl|.

The truth value of the biconditional is one minus the difference between the truth
values of the two formulas. As usual, ¢ =y is equivalent to (¢ D y) A (y D ¢).

We can define two other useful connectives in terms of the conditional,

@ Y W) =4 (—d D),
(& A W) =ar ~($ D —y).

13



These are called bounded sum and bounded difference, respectively, and are the

Lukasiewicz t-norm and t-conorm (discussed in I1.4). They take the values

Ad Y ) =min (1, /¢/ + /y/),
/(A w) =max (0, /¢/ + /y/ - 1).

Additionally, we will want to be able to talk about the truth values
themselves in the system. To do this, we introduce a denumerable infinity of

constants:

/Ci/ =1, for each rational number i € [0,1].

We do not introduce constants for all the reals in {0,1] simply to avoid having an

indenumerable set of primitive truth functions. The constants will be essential in

characterizing approximate validity and approximate truth, as we will see in IL.5.
Finally, we introduce a determinacy operator J;, which we use to indicate

whether or not a formula is absolutely true:

/= 1if 14/ =1,

0 otherwise.

The symbol ‘A’ is also widely used for this operator. We can define several other

useful connectives in terms of Jq:

(& = ) =a J1(d D ),
(¢ <) =aJi(d = W),
Jid =ar ¢ <> Cy, for each C;,

which take the values

14



o —> ) = 1if lo/ < My,

0 otherwise;

1 <> y) = 1if /o) = My,

0 otherwise;

T/ = 1if/e/ =1,

0 otherwise.

The truth functions of RPLA are also given at the very end of this thesis, for easy

reference while reading.

5. The fuzzy approach to vagueness

Having set out the basics of the logic, we can now see how it can be
applied to various sorts of problems. Borderline cases of predicates are assigned
truth values between absolute true and absolute false that correspond to the
relations they bear to other cases of the predicate. For instance, a patch of colour
equidistant on the spectrum between red and orange would be considered red to
degree 0.5; a patch that is red with just a slight tinge of orange might be red to
degree 0.9; a patch of orange with a tinge of red might be red to degree 0.1, and
SO on.

Note that assignments of truth values to vague expressions must be made
relative to particular contexts. The truth value of “Phil is tall”, where Phil is
5’117, depends on the context in question. If we are using the locution in the
context of tall men, “Phil is tall” might be true to degree 0.6. If the context
includes both men and women, “Phil is tall” would have a somewhat higher truth
value. If the context is professional basketball players, “Phil is tall” would take a

value very close to 0.
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The fuzzy analysis of sorites paradoxes is particularly elegant. The central

idea is that the conditional

If a man with n hairs is not bald, a man with n — 1 hairs is not bald,
is not perfectly true. It is so close to being true that the difference between it and
a perfectly true conditional is scarcely appreciable; the difference only manifests

itself in long chains of conditionals. To see this, let

[SO] /—(A man with 100 000 hairs is bald)/ = 1,
[S1] /—(A man with n hairs is bald) > —(A man with n — 1 hairs is bald)/
=0.99999.

(Since the system we are using does not have quantifiers,” we can take [S1] to be
a schema of premises, one for each n up to 100 000, and all with the same truth

value.) [SO] and [S1] entail

[S2] /—(A man with 99 999 hairs is bald)/ = 0.99999,

That [S2] is not perfectly true is scarcely noticeable, and likewise for
[S3] /—(A man with 99 998 hairs is bald)/ = 0.99998.

But if we iterate the argument 99 999 times, we get

3 /Vx¢x/ is normally defined as the greatest lower bound of /¢x/ for all values of x. So the
quantified version of [S1],

Vn[-(A man with n hairs is bald) > —~(A man with n ~ 1 hairs is bald)],
takes the greatest lower bound of all the results of substituting an appropriate integer for n. On

this solution to the paradox, every such formula has a truth value of (say) 0.99999; thus, the
quantified version of the formula also takes the value 0.99999.
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[S10°] /—(A man with 1 hair is bald)/ = 0.00001.
So we can see that fuzzy logic provides a powerful response to the sorites
paradox; it avoids the false conclusion while at the same time explaining why we
consider [S1] to be obviously true.

This response depends neither on the particular characterization of the
conditional we have used nor the exact truth values assigned to sentences. To see
this, let us look at a resolution of the paradox involving a different fuzzy con-

ditional, the Goguen implication = (discussed further in I1.4), defined as:

1o y/=1if 1§/ < hyl,
/! + /¢/ otherwise.

Let

[S1/] /(A man with n hairs is bald) ® —(A man with n — 1 hairs is bald)/
=0.99995.

If we run through the paradox using [S1/] instead of [S1], we get

[S2/1 /—(A man with 99 999 hairs is bald)/ = 0.99995,

[S3/] /—(A man with 99 998 hairs is bald)/ » 0.99990,

until we eventually reach

[S10°1]/—(A man with 1 hair is bald)/ ~ 0.00674.
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The response to the sorites using the Goguen conditional differs only
marginally from that using the Lukasiewicz conditional. Note that if we were to
set [S1/] = 0.99999, we would have /[S10°/}/ ~ 0.368, which is surely wrong; it
should be at most imperceptibly true that a man with only one hair is not bald.
Fuzzy theorists do not mean to suggest, however, that sentences actually have
precise truth values in [0,1], so that we might be wrong in assigning [S1/] a value
of 0.99995 instead of 0.99999. Rather, the claim is just that [S1] is almost
completely true. There are infinitely many value assignments that satisfy this
requirement, and we choose which particular value to assign to [S1] primarily by

the standards of convenience.’
6. Fuzzy control systems

The primary success of fuzzy logic has come not from its approach to
vagueness, but rather from control systems based on it. The central principle
between fuzzy control systems is easy to see, and does not require too many
details about the exact workings of the system. (See Kosko 171ff. for a more
thorough discussion.)

The strength of a system’s response to an environmental factor should
depend on how strong the environmental factor is. If the car is slightly too cold,
one turns up the heat slightly; if it is extremely cold in the car, one puts the heat
on higher; and so forth. When filling a glass of water, one pours the water
quickly at first and more slowly as the glass becomes full, to prevent spilling.

Translating this sort of reactivity to circumstances into rules for a control system

® A similar view has been proposed for the truth functions themselves. As we have seen for the
sorites paradox, different characterizations of the fuzzy connectives frequently lead to almost
identical results in actual applications. This has led Gaines to propose that there may not be
uniquely correct characterizations of the fuzzy connectives at all, that “the operations may be
fuzzy as well as the data.” (1976: 636)
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is very complicated, however. If one were designing a thermostat, one would

need a whole host of rules along the lines of

if the temperature is 2° below target, motor speed should be at 100 rpm;

if the temperature is 4° below target, motor speed should be at 150 rpm;

and so forth.
The basic idea of a fuzzy control system is that the same rule can be
applied to different degrees depending on the strength of the relevant environ-

mental factor. A rule for a thermostat might be of the form

if the temperature is LOW, motor speed should be FAST.

The system would regard different temperatures as LOW to different degrees, and
similarly for FAST. Hence, the rule will be invoked to different degrees depending
on how high the temperature 1s. For instance, suppose 15° is LOW to degree 0.4.
Then if the temperature is 15°, the rule is invoked to degree 0.4, and the output
will be a motor speed that is FAST to degree 0.4. A single rule applied to different
degrees can take the place of a large number of rules each of which applies fully
or not at all.

The result is that fuzzy control systems allow for very efficient
computation. Most of its applications have been in commercial products—fuzzy
controllers are used in washing machines, cameras, air conditioners, stock traders,
etc. (See Kosko 1993: 184-90 for a seemingly exhaustive list.) This track record
tends to underwhelm the detractors of fuzzy logic, since the tasks these fuzzy
systems perform can also be done by systems based on classical logic or Bayesian
probability theory. By increasing the efficiency of computation, however, it
becomes possible to perform tasks for which the computational resources were

not previously available; hence, we can expect that there will be tasks that fuzzy
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control systems can manage that cannot be done by any other sort of system. This
prediction has already been realized in at least one case; Michio Sugeno has
developed a control system that can stabilize a helicopter that loses a rotor blade
in flight, something no human or previous mathematical model has been able to
do (Kosko 1993: 170). We can thus only expect fuzzy systems to be applied to

more and more problems in the future.

7. Decision procedures

A decision procedure for a system of logic is an algorithm by which one
can determine whether or not an arbitrary formula is a tautology, and whether a
certain set of premises entails a certain conclusion. A third aim is to be able to
determine if two given formulas have the same truth value on every valuation.” In
RPLA, this third aim is satisfied by any procedure that satisfies the first, since
/¢ = y/ =1 on every valuation iff ¢ and y always take the same truth value. A
decision procedure must, of course, terminate after a finite number of steps.

For any finite-valued truth-functional system, truth tables are an effective
decision procedure—writing out the full truth table for any formula will indicate
whether or not the formula is tautologous, and since formulas can only be finitely
long, the truth table will always be finite. This procedure is not exactly prac-
ticable for an infinite-valued system.

There are a number of reasons why having a decision procedure is
important for any logical system, and particularly for infinite-valued logic. The
main interest will be, of course, for people applying the system in question to
actual problems, and particularly those designing systems based on infinite-valued
logic. A procedure to determine what formulas are tautologies or equivalent on
all valuations, and what entailments are valid, is of paramount value in developing

control systems, computer programs, and the like, based on the logic in question.

7 This is what Gehrke et al. (1999) require a decision procedure to accomplish.
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Beyond this, however, a decision procedure for infinite-valued systems is
of specifically philosophical interest. Gehrke et al. (1999) note the importance of
a decision procedure for determining whether a system is acceptable; with a
decision procedure for the logic, we can determine what formulas are tautologous
or not and thus what inferences we sanction or abandon if we adopt the logic. A
decision procedure for RPLA will lead to a better understanding of how the logic
models vagueness and approximately valid inferences. In particular, a number of
theorists have proposed that fuzzy logic can be used to model much of
approximate and inductive reasoning (see e.g. Gaines 1976: 649-56). A fuller
understanding of how arguments work in RPLA will help us to determine just
what role infinite-valued logic should play in the formal study of these subjects.

Finally, there are particular advantages that come from having a tableau
procedure for a logical system, which is the sort of procedure I will present in
chapter IV. Knowing the definitions of the connectives of a formal system is not
enough to gain a real understanding of the system; one must in addition be able to
work in the system, to understand how the connectives relate to each other and the
role they play in deduction. Reviewing a list of tautologies and nontautologies of
the system is not sufficient for really understanding the system either; one needs
to prove tautologies and give counterexamples oneself in order to get a sense of
why certain formulas are valid in the system and not others. The extant
axiomatizations of infinite-valued logic are not particularly perspicuous, and it is
difficult to get a feel for the system by working with them. By facilitating
deductions in RPLA, a tableau procedure should make it easier to understand the
system, and might lead to a wider understanding of infinite-valued propositional
logic.

To be of any use at all, a decision procedure must be sound; that is,
whatever the decision procedure indicates as valid must actually be valid in the

semantics. Using, of course, X + ¢ to indicate that ¢ is entailed by X according to

the decision procedure, the procedure is sound iff Z + ¢ implies £ = ¢. A true
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decision procedure should furthermore be complete, which is the case if every
semantic validity can be shown to be such with the procedure; i.e., the procedure
is complete iff Z = ¢ implies Z + ¢.

I will prove (in IV.7) that algebraic tableaux are sound for RPLA. I will
not, however, prove that the procedure is complete. Furthermore, I will not give
an algorithm for constructing algebraic tableaux. Instead, I will give a slightly
more informal procedure for constructing tableaux that can be readily used by
anyone familiar with basic algebra. Since the procedure I will present in chapters
IV and V is not a sound and complete algorithm for finding tautologies in infinite-
valued logic, it is not strictly speaking a decision procedure for these logics. It
should not be difficult to develop a true decision procedure based on algebraic
tableaux, but this final step will not be taken in this thesis (as will be discussed
further in V.5). However, so far as I am aware, no tableau procedures for RPLA
have been previously developed (although procedures for Ly do exist), and a
procedure that has not been shown to be complete is still better than no procedure

at all.
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1T

An overview of infinite-valued logic

The system with which we are concerned is best understood as being made
up of four subsystems: VSS, Ly, RPL, and RPLA. Each of the last three is an
extension on its predecessor in the series. In this chapter, I will look at each
system in turn, giving a general overview of the system, its valid formulas and
inferences, and some interesting properties. I will state theorems without proving
them, but cite the locations of the proofs for the interested (or suspicious) reader.

There are two reasons for examining each fragment of the main system
separately. First, examining each system independently makes it easier to see the
motivations for moving to the more powerful system. Second, each system is of
interest in its own right and has been independently studied; thus, it is worthwhile
to give a brief overview of each system.

As indicated in the last chapter, the truth values are all the real numbers in
the interval {0,1]. The notions of formula, valuation, etc., are defined as usual,

brackets are dropped according to the usual conventions, and so forth.
1. VSS
VSS (for Variant Standard System) is the most basic infinite-valued

system. The only connectives are conjunction, disjunction, and negation, defined

as:
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J— =1 - /9,
/(b v W)/ = max (41, hyl),
/(b A ) = min (/§/, ).

These truth functions are propositional analogues of the basic operations of fuzzy
set theory, in which objects belong to sets to varying degrees; that is, for each set
S and object o in the domain, o € S is assigned a truth value in [0,1]. Union,

intersection, and complement are defined in this fuzzy set theory as:

/oo e AU B/=max (/a € A/, /o € B/),
/oo e AN B/=min (/o € A/, /o € BY),
looe All=1-/a. € A.

VSS is a very limited language. The most serious problem is that every
formula takes the value 0.5 whenever all its propositional variables take 0.5.
Hence, there is no reasonable notion of validity according to which VSS has any
logical truths. Entemann (2000) takes a “fuzzy tautology” to be a formula that
uniformly takes a value greater than 0.5, but then has to restrict valuations so that
no propositional variable takes the value 0.5. As a result, a stronger system is

greatly desirable.

2. Ly

Ly is the result of adding a particular sort of conditional to VSS. (I will
discuss infinite-valued conditionals in more detail in 1.4, after describing Ly.)
Ly is a member of Lukasiewicz’s family of many-valued logics. These logics all

have the same primitive functions:

/(b >y =min (1, 1 - // + Ayl),
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/—¢/=1-/d/,
and various derived truth functions, the most important of which are:

dVvy=¢(@DY)DY,

¢ A Y =4 (=0 v y),
b=y = @DV A(WD9),
(0 Y y) =ar (—$ D ),

(0 A y) =ar (¢ > —y),

the truth values of which are given at the end of this work. 1 is the only
designated value. Each logic in the family then has a different number of truth
values. The values of any system L, can be represented as the set of fractions
{0/11_1, Yty oo “'1/n-1}. 1., with the two truth values 0 and 1, is equivalent to
classical logic. 1.3 is the most extensively studied finitely many-valued member
of the family. (See Rescher 1969: 22-8.)

At the other end of the scale are L.y and Ly, in which the truth values are
the rationals and reals, respectively, in the unit interval. Lo and Lyg, have the
same set of tautologies (Malinowski 1993: 37), and so are considered variants of a
single system P8

The Lukasiewicz family of systems has the interesting property that if n is
an integer multiple of m, (i.e. there is an integer k such that km = n), then all the
valid implications of the system L., are valid implications of L.,+;. Additionally,
if n > m, there are valid implications of L, that are not valid in 1., (Ackerman

1967: 60-3).

® I do not know of any proof, however, that all extensions on L.y, and Ly;—for instance, RPL as
opposed to a variant of RPL where the truth values are just the rationals in [0,1]—have the same
tautologies. 1 will follow what seems to be standard convention, however, and speak of RPL as an
extension of Ly instead of Ly,.
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Since every integer is divisible by 1, we can see that the tautologies of any
L, are proper subsets of the tautologies of L, (the classical tautologies). The
tautologies of Ly are the intersection of the tautologies of every finite-valued
member of the Lukasiewicz family (Malinowski 1993: 37-8). Because of this,
any decision procedure that is sound for Ly is also sound for any other member of
the Lukasiewicz family (including 1.,). I will make use of this fact to provide
tableau procedures for the members of the Lukasiewicz family in V.2.

Since 1 is the only designated value in L, modus ponens is valid; i.e.,

10, 0Dy} Fy.

Having only one designated value has the disadvantage, however, that we cannot
represent approximately valid arguments in L. For this purpose, we will have to
move to a stronger system, as will be discussed further below in IL.5.

Let

0" =4r ¢ A ... A ¢, with n instances of ¢.
The Deduction Theorem holds for Ly in the following form (Hajek 1998: 43):

T U {0} =y iff dn such that X & ¢" > .

Since modus ponens is valid, of course, if L= ¢ Dy, then 2 U {¢} = .
An important property of classical logic that fails for Ly is compactness; if

> E ¢, there is not necessarily a finite A ¢ Z such that A = ¢. For instance, let

ng =¢r d Y ... V¥ ¢, with n instances of ¢.

Then consider this set of premises (from Hajek 1998: 75):
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{np D q | nnatural} U {~p D q}.

/q/ = 1 on every model of this theory. If /p/ = 0, then /=p/ = 1, so by the last

premise /q/ = 1. If there is a k such that /p/ >/, then since for any given k,

¢/ = 1if /p/ =y,

/kp o g/ = 1 only if /q/ = 1. However, every finite subset of the premises has a
model in which /g/ < 1. Compactness also fails for Ly’s extensions RPL and
RPLA.

Since compactness fails and a syntactic decision procedure can use only
finitely many members of a set of premises, there are conclusions that are
semantically implied by infinite sets of premises but not deducible by any syntac-
tic method. As a result, there can be no syntactic decision procedure for Ly
(Hajek 1998: 75) or RPLA (Morgan & Pelletier 1977: 88-90) that is complete for
infinite sets of premises.” Decision procedures for these systems can be complete,

however, in the form

for finite Z, Z + ¢ iff = ¢.

Since no stronger result is possible, I will henceforth use “complete” simpliciter
to mean “complete for finite sets of premises”. In this sense of “complete”, there
are complete axiomatizations of both Ly (Hajek 1998: 64, 70-5) and RPLA
(Hajek 1998: 57-61, 79-82).

? There is, however, an axiom set for RPL (Ly with constants but without the determinacy
operator J;) that is complete for infinite sets of premises. This is because of the way provability is
defined in the syntax, a complex issue into which we need not enter. (See Hijek 1998: 80-2.)
Similar results cannot be obtained for L or RPLA.
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3. The rationale for the VSS connectives

We should pause momentarily in the exposition of the formal properties of
the system to look at the motivations behind the definitions of the connectives.
The first requirement for the definition of any many-valued connective is that it
‘honour classicality’ by yielding classical outputs for classical inputs; restricted to
the truth values 0 and 1, the connectives should be equivalent to the classical
connectives. The justification for this condition is just that if a many-valued
connective C/ does not agree with a classical connective C when restricted to the
classical truth values, C/ just isn’t a generalization of C. Suppose, for instance,

that we were to define

16 11w/ = () + hyl) + 2.

Regardless of what interesting properties this operator has, since /1 1 0/ = %2
instead of 0, we cannot claim that this is a many-valued generalization of
conjunction; we must view it as a new operator, one not analogous to any
classical truth function.

It is more difficult to specify how to assign outputs for nonclassical inputs.
Williamson proposes that any many-valued analogue of conjunction should

satisfy these three principles (1994: 115-6):
1o/ <1 A G/,
/o A/ < /o) and /1§ A/ < Ay,

if /§1/ < /do/ and /y/ < o/, then /d1 Ay < /da Ao/,

He then proves that the truth function uniquely satisfying these principles is

min (/¢/, /p/). Similarly, he argues that disjunction must satisfy
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16/ 219 v ¢/,
/o~y 2 /o) and /1§ v/ 2 Ny,
if /91 < /do/ and M/ < My, then /o v yn/ < /da v yof;

and shows that these conditions are uniquely satisfied by max (/¢/, /y/). (Gaines
1976: 631-2 presents a similar argument to the same conclusion.)

For negation, we can reason as follows. The extent to which ¢ is true
should be the same as the extent to which —¢ is false. The distance of /¢/ from 0

should be the same as the distance of /—¢/ from 1; i.e.,

[1-/6/| =10 - /=¢/,

which is equivalent to

J—0/ =1 - /4.

We can thus see that there are strong intuitive grounds for seeing the truth-
functions of VSS as the intuitively strongest generalizations of classical conjunc-

tion, disjunction, and negation.

4. Conditionals in infinite-valued logic

The choice of the Lukasiewicz conditional is less obvious. There are more
intuitively plausible ways of generalizing the classical conditional, and no truth
function that satisfies all the intuitively plausible conditions we can come up with.
The easiest way to see what constraints a suitable account of fuzzy implication
should satisfy is to look at the development of generalized fuzzy logic—general
conditions that are satisfied by a number of different specific systems (following

Hajek 27-32).
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Two of the basic principles underlying classical material implication are
ex falso quodlibet, that a falsehood implies everything, and verum ex quodlibet,
that everything implies a truth. The natural way to extend these principles to the
infinite-valued case is to specify that a conditional is true whenever the antecedent
is less true than the consequent—that is, if /¢/ < /y/, /¢ D y/=1.

Another central requirement is that fuzzified modus ponens hold; given /¢/
and /¢ o y/, we should be able to compute a lower bound of /y/. Furthermore,
we will want this rule to be as strong as possible; from /¢/ and /¢ > y/, we want to
be able to compute a lower bound of /y/ as close as possible to the true value of
.

It is important to distinguish fuzzified modus ponens from ordinary modus
ponens, which in fuzzy logic becomes the rule that if ¢ and ¢ >  are designated,
y is designated. Fuzzified modus ponens is not concerned with preserving
designation; given the values of the conditional and the antecedent, fuzzified
modus ponens places restrictions on the value of the consequent regardless of
what truth values are designated in a particular context. It thus separates the use
of a conditional to make inferences about the truth value of its consequent from
the use of a conditional to make inferences from designated premises to
designated conclusions. As we will see in I1.5, levels of designation are not fixed,
but rather vary from context to context. Fuzzified modus ponens does not
guarantee that y is designated if ¢ and ¢ > y are. But (except for the case where
¢ is not designated and /¢ > y/ = 1), fuzzified modus ponens guarantees that we
can always determine whether y is designated for the particular level of
designation used in that context.

As we will see below, ordinary modus ponens is not valid for designated
values other than 1. This might seem odd. But when we remember that a sorites
paradox is just a long chain of applications of modus ponens, we can see that an
appropriate response to sorites paradoxes requires that ordinary modus ponens not

always be valid.
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The requirement that given /¢/ and /¢ > y/, we should be able to compute
a lower bound of /w/ can be formally expressed by saying that there should be

some operation AND such that

/b AND (§ D )/ < Myl

We can state that we want this rule to be as strong as possible by saying that given

this operation AND, we want

/6 D y/ =max (/y/ | /6 AND y/ < /y/).

(We assume that for any /¢/, /y/, there is a /y/ that satisfies this condition.)
To make our account of the conditional as general as possible, we will
only assume that AND is recognizable as a form of conjunction. A continuous t-

norm is a binary operator % on [0,1] satisfying the following properties:

1o * y/ =y % §/,

1o % (y % x)/ =/(¢ * ) x 1/,

if /d1/ < /¢o/, then /§1 x y/ < /9y % i/,
if A/ < o, then /o % i/ < 1§ % ol
/1% ¢/ =1/,

/0 % ¢/ =0.

A continuous t-norm % is a form of fuzzy conjunction. The dual of a t-norm is a

t-conorm, +, and is a form of fuzzy disjunction.'

' A t-conorm must satisfy the first four conditions for a t-norm; the last two conditions are
changed to /1 + ¢/ =1 and /0 + ¢/ = /¢/.
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The residuum of a t-norm, =, is a form of fuzzy implication, defined (as

the reader will have guessed) as

/o = y/=max (/| /¢ % x/ < /).

Given the restrictions on t-norms, the residuum will satisfy these intuitively

plausible conditions for implication:

/o = w/=1iff/o/ < hyl,
/o= ¢/=1,
1= ¢/ =/¢/.

(The second, of course, follows from the first.)
Finally, we introduce a constant function Cy, where /Co/ = 0. The

precomplement of a t-norm, —, is a form of fuzzy negation, defined as

—(I) =df¢ = C().

These conditions are fairly general, and so there are a number of different
functions that satisfy the requirements for a t-norm. We will look at the three of

the most notable here, along with their t-conorms, residua, and precomplements:

Godel t-norm: /$ % y/ =min (/¢/, /\y/)
Godel t-conorm: /¢ +¢ y/ = max (/¢/, \y/)
Godel residuum: /¢ =g ¢/ = 1 for /¢/ < /y/,
/y/ otherwise
Godel precomplement: /—¢/ = 1 for /¢/ =0,

0 otherwise
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Goguen t-norm'": / © /= /¢/ x Iyl
Goguen t-conorm'?: /¢ @ i/ = /¢/ + I/ - (/9] x /)
Goguen residuum: /¢ 2 y/ = 1 for /¢/ < /y/,
/! + /¢/ otherwise
Goguen precomplement: /~g¢/ = 1 for /¢/ =0,

0 otherwise

Lukasiewicz t-norm: /(¢ A y)/ = max (0, /¢/ + hy/ - 1)
Lukasiewicz t-conorm: /(¢ ¥ )/ =max (1, /¢/ + /y/)
Fukasiewicz residuum: /(¢ o y)/ =min (1, 1 - /¢/ + hy/)
Lukasiewicz precomplement: /—=¢/ =1 - /¢/

I introduce different symbols for each set of truth functions for ease of later
reference; the system defined by the Goguen connectives, product logic, will be
discussed again in V.3.

Any system defined in this manner contains the conjunction and

disjunction of VSS. For any continuous t-norm and its residuum, if we define

O AY=aryx (= ),
dvy=al[(®d=v)=ylAl(y=0¢)= 0],

we have

(d A ) =min (/§/, Iy/),
Ad v w) =max (/¢/, /).

" Generally called algebraic product.
2 Generally called algebraic sum.
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Hence, any system of generalized fuzzy logic contains those valuable connectives.

Each of these three conditionals can be seen as minimally acceptable
accounts of fuzzy implication; they are not, however, all equal. An intuitively
very plausible requirement for the conditional is that when /¢/ > /y/, /¢ > y/
should be in some way proportionate to how different /¢/ and /q}/ are. The Godel
conditional = does not satisfy this requirement. For instance, let /¢/ = 0.8,
N/ = 0.3, and /y/ = 0.2. Then /¢ =g y/ = /v =¢ y/ = 0.2; but since /¢/ is much
greater than /y/, whereas /y/ is only slightly greater than /y/, we would expect that
the truth value of “¢ implies " would be much lower than that of “y implies %”.
So =>¢ is not really acceptable as a fuzzy conditional.”

The Goguen and Lukasiewicz conditionals both avoid this problem. Both
sets of truth functions are used fairly widely. (See e.g., Gaines 1976 for dis-
cussion.) There are several considerations, however, militating towards viewing
the Lukasiewicz conditional as the proper generalization of material implication.
For the reasons given in I1.3, the bLukasiewicz precomplement — is a much
stronger candidate for a generalization of classical negation than the Goguen
precomplement —¢. Adopting the Lukasiewicz conditional along with its

precomplement gives us

1o D/ = /-y D/,
/=¢/ =1$ 2 Cy/.

For the Goguen conditional 3, the latter holds only for the Goguen precom-
plement —g, and the former holds with neither negation.
The Goguen conditional is very similar to the rule governing conditional

probability; because of this, it can be expected to be very useful in some

3 The primary theoretical interest in Gédel’s system comes from its relationship to intuitionistic
logic. The logic produced by these truth functions is the intuitionistic logic IPC extended by the
axiom (¢ D ) v (D ¢). (See Hijek 1998: 98-9.)
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applications. The fukasiewicz conditional is, however, a much more plausible
generalization of the classical conditional. Similarly, fuzzy theorists also frequen-
tly use the Goguen t-norm © and t-conorm @©. A and v are, as noted in the last
section, better generalizations of classical conjunction and disjunction. In

particular, idempotency fails for both ® and ®; for 0 </¢/ <1,

1o ® &/ <4,
16 @ &/ > /4.

However, these two operators are widely seen as preferable to A and v for some
applications, precisely because idempotency fails (Gaines 1976: 635-6).!* So the
Goguen truth functions, although not suitable as a generalization of classical
logic, are interesting in their own right.

Although I will focus on RPLA, in order to make the decision procedure
presented here as general as possible, it will be desirable for it to be applicable to

all of these three systems. The Gddel truth functions are all definable in RPLA:

b *xcy=ard AV,

¢ tc Y =uad vy,

¢ =6y =a (9> W)V,
-6 =ar 1.

' There are certainly linguistic phenomena that need to be formalized with a form of conjunction
or disjunction that takes account of the truth values of both inputs, not just the lesser or greater,
respectively—and idempotency fails for such connectives. Suppose there are two balls, A and B,
such that

/A isted/ =1, /Bisred/ =1,
/A is small/ = Y4, /B is small/ = Y.

/A is red A A is small/ = /B is red A B is small/ = 5. But if one asks, “Bring me a ball that is red
and small,” A is a much better candidate than B (Edgington 1996: 304). Since /A isred ® A is
small/ = % whereas /B is red © B is small/ = ', using algebraic product instead of max yields the
desired result.
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There is thus no reason to introduce new tableau rules for the Godel truth
functions. The Goguen truth functions (except for the precomplement —) are not
definable in RPLA. Hence, tableau rules for these connectives will be presented,

and proved to be sound, in V.3.
5.RPL

We do not want to restrict ourselves to a logic that admits of the
possibility of infinitely many degrees of truth, but only allows us to zalk about
perfectly true or perfectly false formulas. Furthermore, we are interested in
modeﬁng approximate truth, and thus need a notion of what it is for a proposition
to be “true enough” for the purposes at hand. The former problem is solved by
augmenting the language so that we can talk about the truth values themselves in
the system; the latter problem requires being able to identify more truth values as
designated, or “truth-like”. Both tasks can be accomplished by a single extension
only.

The designated truth values of a many-valued system are, roughly, those
that are sufficiently true to be asserted or believed. The designated values are all
the reals in an interval [0,1] or (8,1]. Given a particular choice of designated
values, we will be interested in formulas that uniformly take designated values
and arguments where, on every valuation giving all the premises a designated
value, the conclusion is also designated. Correspondingly, the antidesignated
values are the “false-like”, or approximately false values. In the systems with
which we are concerned, we can say that ¢ is antidesignated iff —¢ is designated.

The degree of truth necessary for a statement to be designated will vary,
however, depending on the context. Suppose I report “I put 50 grams of powder
in the water,” when I actually mixed 55g of powder into the water. If I were
making instant coffee, my statement would be true enough to be perfectly

acceptable; if I were performing a chemical experiment, my statement would be
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dangerously inaccurate. Hence, we cannot specify a single level of designation
that applies to all situations. To maximize the generality and context-
independence of our logic, we want to be able to talk about what would be true
given any level of designation. The only categorical limitation to put on the level
of designation is to require that the value 0.5 not be designated; otherwise, both a
formula and its negation could be designated.

We also want our logic to be able to represent approximately valid argu-
ments. That is, we want to be able to distinguish between an argument that is not

perfectly true, but which has a very high degree of validity, such as

A man with 100 000 hairs is not bald.
Therefore, a man with 99 999 hairs is not bald.

and an argument that has a very low degree of validity, like

A man with 100 000 hairs is not bald.

Therefore, a man with 9 hairs is not bald.

RPL, or Rational Pavelka Logic, provides us with the vocabulary to
represent both varying levels of designated values and approximate validity. RPL

introduces, for each rational i € [0,1], a constant truth function C;, where

/Ci/ =1.
We do not introduce constants for all the reals to avoid having an indenumerable
set of primitive truth functions. This extension allows us to make statements

about the truth values of formulas with values other than 1 or 0, since

ICio o = 1iff ¢/ =1,
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/6> Cyf = 1iff/o/ < i.

So for any set of designated values [0,1], a formula ¢ is designated iff /Cs D ¢/ =
1, and a formula is a fuzzy tautology for that level of designation iff = C5 D ¢.
We can represent approximately valid arguments as well; the conditional [S1]

from our solution of the sorites paradox in 1.5 can be represented as

—(a man with n hairs is bald) > [Cg 99999 D —(a man with n — 1 hairs is bald)].

In effect, once combined with constants, material implication can perform double
duty as both a formal analogue of the conditional and a mechanism for stating the
truth values of formulas.

RPL has the derived deduction rule (Hajek 1998: 80)

{Ciod, Cio(@oy)} ECkDy, wherek=1+j—1.

Thus, we can state fuzzified modus ponens in the system itself.

6. RPLA

The language of RPL is still somewhat limited. We cannot define bivalent
truth functions in it—more generally, since all the operators are continuous, we
cannot define any discontinuous truth functions. A further problem is that
although we can state in RPL that /¢/ <1, /¢/ > 1, or /¢/ =1 (with ¢ D C;, C; D ¢,
and ¢ = Cj, respectively), we cannot state /¢/ <1i or /¢/ > i. For instance, we can-
not state that /¢/ > 0.5 with (¢ o Cps). To make that assertion, we need a

formula the value of which will be 1 iff /¢/ > 0.5. But
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/=6 > Cos) =1—min (1, 1 -/d/+0.5)
=1-min(l, 1.5 - /¢/)

Since /¢/ < 1, min (1, 1.5 - /¢/) = 0.5; thus, /—(¢ D C;)/ £0.5. It is not hard to see
that /—[¢ > C;}/=1onlyif/¢/=1andi=0.
We can augment the language to eliminate this difficulty by adding the

new operator

116/ = 1if /o) =1,

0 otherwise.

The philosophical literature on vagueness generally uses the symbol ‘A’ for this
operator (as does Hajek 1998), and thus the system may be more readily
recognized if referred to as RPLA. I will refer to the basic operator as ‘J;’,
however, by analogy with the J-operators for other truth values, which can be

defined using J;:
Ji(l) =4f J1((I) = Ci), for each Ci.

We can also use J; to define the bivalent implication and equivalence mentioned

above in 1.4:'°

@ = ) =ar J1(¢ D W),
(¢ <> ) = J1($ = ).

' Equivalently, one can take the bivalent implication — as primitive, and then define
Jip =df (¢ - C) A (Ci > ¢).

(See Morgan & Pelletier 1977: 86n.)
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Since

b —> w) = 1if /o) < Ny,

0 otherwise,

we can readily see that /—=(C; — ¢)/ =1 iff /¢/ <iand /-(¢p — Ci)/ = 1 iff /¢/ > i.
We can also use the bivalent conditional to give a syntactic account of open
intervals of designated values; if the designated values are (8, 1], then ¢ is desig-
nated iff /-(¢p — Cs)/ = 1.

If we note that for any n, J1¢ > ¢" (where ‘9" is, as above, ¢ A ... A ¢,
with n instances of ¢), we can see that the Deduction Theorem holds for RPLA in

the form

SU{dteyiffZEhdDwv.

7. Tautologies and non-tautologies of RPLA

I will close this chapter by discussing some tautologies of RPLA and some
formulas which are tautologies of classical logic but not of RPLA. This section
will hopefully give the reader a better sense of what are and are not logical truths
of the system with which we are concerned. As in the rest of this chapter, proofs
will not be given here; proofs for most of the tautologies can be found in Hajek
1998, chapters 2-3.

Most of the standard properties of conjunction and disjunction hold, such

as

FPAQDqAD,
(commutativity)

EpvgoqvVvp,
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Elpr(@an]={prgar],
(associativity)

Elpvigvnl=[pvavr],
E-(pAqQ=—-pVq

(DeMorgan’s Laws)
i:"‘l(pvq)E’ﬁp/\"!q,
EpAqDp, (simplification)
EpDopVvq, (addition)
EpD(gDpAq), (adjunction)
Epv@Arn=@vyAalp Vv,

(distribution laws)
EpAa(@vn=@Ag V@A)

As noted in II.1, the Lukasiewicz conditional is not definable in terms of A, v, and

—. We have

Epvq2(-p>Dq),
E=(pA—-q)D(P>D9),

but the converses do not hold:

B(P>Q>D-pVQ,
#E(P>q) DA ).

Needless to say,

EpYV—p,

H "—l(p A _Ip)
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We do have, however,

ECosDp VP,

EpA—pD Co‘s;

ie., /pv—p/20.5and /—~(p A —p) < 0.5. Thus as long as the designated values
are a (not necessarily proper) subinterval of (0.5, 1], p A —p will never be desig-
nated, and p v —p will never be antidesignated.

Double negation holds, i.e.

Ep=—-p.

Many properties of the classical conditional obtain for its fuzzy

counterpart:

E=(p D q) = (—q D —p), (contraposition)
E[pD(@>1)]=(pAq>Dr), (exportation)
Elpo)A(@o1)] > vg>or), (disjunctive syllogism)
E(p>1) D (pAqDr), (strengthening antecedent)
E(P>9Vv@>p)

EqD(p>Dq), (paradoxes of material implication)
Ep2(=p>9),

=CoDp, (exfalsoquodlibert)

Ep > Ci, (verum ex quodiiber)

E(Ciop)=p,
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Flp2@>0l=2[g>@>0)

and similarly for the biconditional:

=p=D,
F(p=9)>(>1)=(q>0),
F(p=q>@>p)=(>q).

If the only designated value is 1, then the usual inference rules hold:

{p,p>q} Eq, (modusponens)
{—=q,pD>q} E—p, (modus tollens)
{poq q>D1} EpDr, (transitivity)

{p v q,—p} =q, (modus tollendo ponens)

{pAq} Fp,
(simplification)

prdqtEq

The first three, however, do not always hold if we designate more values than 1;

1.e., if the designated values are [3,1], we have

{Cs2p, Cso(po )} #CsDq,
{Cs2q,Co(poq}rCsD—0,
{Cso(p2q,Cs(qon}rCs(pD0).

For instance, let /p/ = /p o q/ = 9. Then /g/ =28 — 1 < 3. We have fuzzified

versions of each of these inferences:
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g/ =zhp/+/pogl/-1,
/=pl=/-q/+/p>2q/-1,
lpor/z2/poqg/+/q>or/-1.

These allow us to compute a lower bound for the truth value of the consequent,
although we cannot guarantee that the consequent will be designated whenever
the premises are. The analogues for designated values [6,1] of the latter two rules

above are valid:

{CsopVvq, (Cs>p)} ECsDq,
{Cooprgi ECsDp,
{CsopaqiECsDq.

A few important nontautologies of RPLA are

EpA—-p>Dq, (explosion)
Elpog >plop, (Peirce’s law)

rpo>(P>q9]>(P>q). (contraction)
Note, however, that as long as 8 > 0.5,
{CsopA—p}EQ,
since on no valuation is the premise true.
Finally, there are a number of tautologies and inferences that depend on

having a finite number of truth values that fail in RPLA. For instance, in any

logic with a finite number n of truth values, there is a tautology of the form

Pi=p2)V...v@1=Ppur) V(P2=Por) V ... V (P = Put1)
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with n + 1 propositional variables. In classical logic, for instance,

E(P1=p2) v (P1=p3) v (p2=D3),
and in L,

E@Ei=p2) v (E1=p3) vV (P1=ps) Vv (P2=D3) v (p2=pa) V (3 = pa).
In RPLA, however, for any finite n,

E@1=p2) V... V(1 =pn) vV (P2=Pn) V... V (Pn1 =Pn)-
Similarly, in every finite-valued L.,

pYp™}Ep,

with p* defined as in I1.2. But in Ly (and RPLA), for any finite n,

n-1

{pYp j¥p.
If 8 < 1, however, for any 0 there is a finite k such that
{Cs>p¥ptECsop,

although for any k,

{C{,DpMpk} # Cs D Jip.
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This should give the reader a sufficient understanding of RPLA to be able to see
roughly the structure of the logic and the inferences it sanctions and does not

sanction. We now turn to looking at decision procedures for this system.
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III

Decision procedures for infinite-valued logic

Despite the extensive interest in it, fairly little work has been done on
decision procedures for fuzzy logic. This chapter reviews what seems, to the best
of my knowledge, to be all the decision procedures for infinite-valued logics that
have been proposed. Two procedures have been proposed for VSS, and three for
Lyx. A decision procedure covering most major propositional fuzzy logics has
been proposed, and another procedure specifically for RPLA has been proposed,
but not formalized. All of these methods either do not cover all the truth
functions of RPLA or have significant limitations. As a result, there is a real need

for a sound decision procedure for RPLA.
1. A general decision procedure for infinite-valued logics

Gehrke et al. (1999) have shown that algorithms exist for most forms of
propositional fuzzy logic to determine if two formulas are equivalent on all
valuations. They define an algebraic set as the union of finitely many sets Sy, ...,
Sn, where each S; consists of all tuples satisfying one or more conditions of the

form

Pk(Xl, sey Xn) = Qk(xly [ERD) Xl‘l)a
Pk(xla ERET) Xn) > Qk(xla LR Xl’l): or

Pu(x1, --.5 Xn) 2 Qu(X1, - .o, Xn),
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where Py, Q are polynomials with rational coefficients. A function f is algebraic
iff its graph, the set of tuples <xy, ..., Xy, f(X1, ..., Xy)>, is algebraic; a propo-
sitional logic is algebraic iff its set of truth values is a algebraic set and all its
logical operators are algebraic functions. They then show that the truth values of
fuzzy propositional logic (including interval-valued logics'®) are algebraic, and
most major operators of fuzzy logic are algebraic, including those of RPLA."’

The question of whether two formulas F and G of a given propositional

logic L are equivalent on all valuations can be stated as
Vp1...Vpu(/F/ = /G/),

where p;...pn are all the propositional variables found in F or G. IfL is algebraic,
this formula will be a composition of algebraic functions. Tarski (1957) has given
a decision procedure for all formulas of this form, and so this procedure will work
for any algebraic propositional logic. Gehrke et al. (1999) go on to show that
propositional logics the operators of which are nonalgebraic functions (e.g., by
only being definable in terms of polynomials Py, Qi with irrational coefficients)
are undecidable.

Where n is the number of propositional variables, Tarski’s algorithm in
some cases takes more than 22" steps to run. Hence, despite the generality of
Gehrke et al.’s (1999) procedure, it is too complex to be generally feasible as a

decision procedure for RPLA. A less complex algorithm is greatly desirable.

' In which the truth values of formulas are subintervals of [0,1], instead of points in [0,1]. Such
logics try to model the indeterminacy of vague expressions by not specifying precise truth values
for formulas (as discussed in 1.3). Nguyen et al. (1996) have constructed such a system with the
connectives A, v, and —.

7 Gehrke et al. (1999) show that bounded sum and difference, in terms of which the Lukasiewicz
conditional may be defined, are algebraic. The graph of each C;is {i}, and the graph of J; is

{EZLx) [ x1=1A%=1} U (X, X)) [ X <1 AX, =0},

both of which are algebraic sets.
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2. Kenevan truth interval logic

Gehrke et al. (1997) show that VSS is equivalent to a three-element
algebra; since this algebra is finite, there is a finite algorithm that determines
tautologousness in VSS." A less erudite decision procedure for VSS is the
Kenevan Truth Interval Logic (KTIL), a tableau procedure for VSS, which I will
briefly discuss.

Kenevan et al. (1992) take the truth value of a formula to be a discrete
point in [0,1], but do not assume that we know what the exact truth value is—the
truth value of a formula may be represented as an interval [a,b] of [0,1]. If we
know nothing about the truth value of a formula ¢ at all, we represent its truth
value as being in the interval [0,1]. Each formula and the interval containing its

truth value is represented in the tableau by

A: [ag,a1].
If we know /A/ = a, we represent this with the line
A: [aa].

Open intervals can be represented in KTIL by assigning o to an interval
[a0, a1 - €] or [ag + €, &}, where we dictate that a; - € < aj, but for all values x
found in the tableau such that x # a;-¢ and x < a;, X < a; - € (and similarly for
ap + €).

The decomposition rules for the connectives are:

8 As well, Nguyen et al. (1996) show that the tautologies of their interval-valued system are a
proper subset of the tautologies of VSS. Thus, the decision procedure for their system is a sound,
though incomplete, decision procedure for VSS.
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Disjunction:

A Tag,a1]
B: [bo,b1]
A v B: [po,p1]
v N
A: [ag, min(ay, p1)] A: [max(ag, po), min(a;, p1)]
B: [max(bo, po), min (b1, p1)] B: [bo, min(b;, p1)]

A v B: [max(ao,bo,po), min(p;, max[a;,b;])] A v B: [max(ao,bo,po), min(p;, max[a;,b;])]

Conjunction:
A: [ag,a1]
B: [b(),b1]
A A B: [po,pi]
e N
A: [max(ao, po), a1] A: [max(ao, po), min(aj, p1)]
B: [max(by, po), min(by, p1)] B: [max(bo, po), b1]

A A B: [max(po, min[ao, bo]), min(a;,by,p1)] A A B: [max(po, minfao,bo]), min(a;,by,p1)]

Negation:
A: [ag,ai]

—A: [1—a, 1 -—-a]

Intersection:

A: [Xo,X]]
A: [yo,yi]
)
A: [max (X0,y0), min (x1,y1)]

If a branch of a tableau indicates that the truth value of a formula is in a null
interval, then that branch closes (being impossible).

Proofs can be performed in KTIL by either of two methods. The first is
“truth interval refinement” (Entemann 2000: 170), in which one enters as
premises the smallest intervals in which the truth values of the formulas are

known to be, and then applies the decomposition rules until the intervals either
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cease to contract or become null. Any open branches yield more accurate
estimates of the truth values of the formulas; if all branches are closed, there are
no valuations satisfying the conditions in the premises.

One can also perform “proofs by contradiction”, modeled after the stan-
dard methods for tableaux, where one assumes that each of the premises (if any)
is in the interval (0.5,1], and the conclusion is in [0,0.5). (Entemann takes the
interval (0.5,1] to be the designated values and forbids propositional variables to
take the value 0.5, a move I will discuss in a moment.) If all branches of the
tableau close, then it is impossible for the premises to be designated and the
conclusion undesignated. Any open branches give counterexamples to the
inference.

Entemann has proven proofs by contradiction in KTIL to be sound and
complete for all valuations of VSS on which no formula takes the value 0.5.
Kenevan et al. (1992) have shown the “correctness” of the disjunction rule; i.e.,
that on any valuation on which the antecedent lines are true of the values of A, B,
and A v B, the lines inferred will also be true for those formulas. 1 will prove the
soundness of the truth interval refinement method in IV.6, by showing that the
inference rules are valid in the tableau procedure given here, which is sound.

The serious limitation of KTIL is that it is only valid for the meager
language of VSS. Entemann has to restrict his completeness theorem with the
assumption that no formula takes the value 0.5 because without this assumption,
VSS has no logical truths—every truth function yields 0.5 if all the inputs are 0.5.
We now look at proof procedures for more powerful logics that yield logical

truths for inputs with values anywhere in [0,1].
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3. Constraint tableaux

So far as I am aware, only two decision procedures for practical use have
been proposed specifically for Ly," by Hahnle (1994)° and Beavers (1993).
Both procedures work by converting the problem of determining theoremhood in
Ly into a problem in linear programming; there are a number of automatic
procedures for solving the latter set of problems. Because the principles under-
lying the two systems are so similar, I will only look in detail at Hihnle’s con-
straint tableaux.

Constraint tableaux are a variant on signed tableaux for finite-valued
logics, which consist of formulas prefixed with signs indicating their truth values.
(See D’Agostino et al. 1999: 538-48.) In constraint tableaux, rather than repre-
senting individual truth values, the signs place constraints on the truth values of

their formulas. These constraints can include variables; for instance,

<1¢

indicates that /¢/ < 1, while

indicates that /¢/ < 1.
The decomposition rules of constraint tableaux result in new constraints

applied to the formulas of which the original was composed, and inequations

" Mundici (1987) also gives a procedure for determining if a formula of L is satisfiable (takes a
value greater than 0 on some valuation). This procedure can be used to determine if a formula is a
theorem of Ly by determining if its negation is satisfiable. Mundici’s method, however, is only
given in order to prove that satisfiability in Ly is in NP, and does not appear to be feasible for
practical use.

% Constraint tableaux were first presented in Hihnle (1993); Hihnle (1994) provides a more
detailed discussion of constraint tableaux specifically for L.
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representing the relations between the variables used in the signs. There are no
branching rules; instead, Héhnle uses binary variables (variables that can only be
0 or 1), which represent the same information as new branches of the tableau

would. For instance, the decomposition rules for o are:

<idowy >i¢oy
{ {
Zi1(|) y<i,<l-y .<.i1(|)
Siz\lf l-11+1=1 Ziz\jl 1—4y+1=1

In the left-hand rule, y is a binary variable. The information contained in the

signs can also be entered into the series of inequations; for instance, from

<y

we infer /y/ < i,.

Applying the decomposition rules for constraint tableaux is simple,
particularly since there are no branching rules. The difficult part is determining
whether a branch is open or closed. To do this, Hihnle treats the series of
inequations associated with a tableau as a problem in bounded mixed integer
programming (bMIP). Roughly, a bMIP problem is an attempt to find the least
set of variables that satisfies a set of inequations. If there is no set of variables
that satisfies the inequations associated with a constraint tableau, the branch
closes.

To prove that a formula ¢ is a theorem of Ly, it is sufficient to assume

decompose ¢ fully, and apply bMIP to the resulting inequations. ¢ is a theorem

-iff the least 1 that satisfies every inequation is 1.
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Héhnle has proven constraint tableaux sound and complete for Ly, and it
seems that it would not be difficult to extend this result to RPL. However, as
Hihnle (1994) notes, constraint tableaux cannot be extended to systems that
contain discontinuous or non-linear truth functions, since these functions cannot
be represented in bMIP. Hence, his system cannot be extended to cover RPLA or
product logic.

Constraint tableaux appear to have been designed specifically for
implementation in automated theorem provers. Since the mathematical know-
ledge required to solve bMIP problems is not that widely found,?' it seems that
constraint tableaux are not feasible as a tableau system for general use. (Mutatis
mutandis, this problem also afflicts the procedure presented in Beavers [1993]).
Hence, there is still a need for a decision procedure that covers infinite-valued
logics more powerful than Ly, and that can be readily used without much mathe-

matical expertise.
4. The method of hypotheses

Morgan and Pelletier (1977: 92-5) have sketched a procedure for finding
tautologies of RPLA, the outline of which they attribute to David Lewis. Their
“method of hypotheses” is based on the idea that since every formula is only
finitely long, one need only check a finite number of points and intervals in [0,1]
in order to determine if the formula is tautologous. Which points and intervals the
formula needs to be evaluated on depend on the relations between the
propositional variables in the formula. The method thus attempts to determine
what points and intervals are relevant to the tautologousness of a formula, and
then checks the truth value of the formula on all the possible assignments of truth

values to relevant truth intervals.

*' E.g., among philosophers.
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The method of hypotheses has not been formalized, and so I can only give
a rough sketch of what a decision procedure based on it would look like. Let <¢>
be the set of all subformulas of ¢. (Since ¢ is finite, <¢> is finite.) The procedure

then consists of the following steps:

(D We first (tentatively) identify reference points and reference intervals. 0
and 1 are reference points, and if ¢ contains any constants C; or J-operators Jj, i is
a reference point. A reference point, or the interval (j,k) between any two
reference points j and k, is a reference interval. If we are interested in an interval
[8,1] or (8,1] of designated values, then instead of having 0 and 1 as reference
points, we add the reference intervals [0,1 — 8] and [0,1] or [0,1 — 0) and (9,1]

respectively.

(2) A hypothesis consists of an assignment of each member of <¢> to a
reference interval. We construct all the hypotheses; i.e., all combinations of
assignments of members of <¢> to reference intervals. This is done by first
constructing all possible assignments of propositional variables to reference
intervals; then, for each assignment of propositional variables, we add every
possible assignment of members of <¢> with one connective; and so on through
subformulas of ¢ of increasing complexity until we have constructed all possible
hypotheses. The number of hypotheses may be, to say the least, large, but since
<¢> is finite and the number of reference intervals is finite, there can only be

finitely many hypotheses.

(3)  For each formula o with one connective in each hypothesis, we determine
whether it is possible for o to be in the reference interval to which it is assigned
by that hypothesis, given the reference intervals the propositional variables in o
occupy. We discard impossible hypotheses. For each hypothesis that remains

once this is complete, we determine whether it is possible for each formula with
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two connectives to be in the reference interval assigned to it given the reference
intervals of its components, and so on until we have covered all members of <¢>.

The conditions under which a hypothesis is possible are not ideally clear,
because the method has not been formalized. It seems that a hypothesis is pos-
sible iff every valuation on which the values of each member of <¢> are within
the intervals specified by the hypothesis is consistent. For instance, if p is
assigned to (0.25,0.5), q is assigned to 0, and p v q is assigned to 1, then the hypo-
thesis is impossible, because given the values assigned to p and q, /p v ¢/ < 0.5.

The hypothesis may not contain sufficient information to determine
whether it is possible. For instance, if p is assigned to (0.25,0.5) and —p is
assigned to (0.5,1), the hypothesis would be possible were --p € (0.5,0.75), but
impossible were —p € [0.75,1). In such cases, we need to add new reference
intervals that reflect all the information we need. In this example, we add the
reference point 0.75, getting three new reference intervals—(0.5,0.75), 0.75, and
(0.75,1). If we have divided a former reference interval (a,b) into new reference
intervals (a,c), ¢, and (c,b), then for each hypothesis not already found to be
impossible that assigns o, a member of <¢>, to (a,b), we construct three sub-
hypotheses, assigning o to (a,c), ¢, and (c,b).

Successively refining reference intervals will not always be sufficient for
determining if formulas are tautologies of RPLA. Consider a hypothesis
assigning each of ¢, y, and ¢ D y to (0,1). We do not know if this hypothesis is
possible without more information about the truth values of ¢ and w; if /¢/ > /y/,
then /¢ o y/ € (0,1), but if /¢/ < /y/, then /¢ o y/ = 1. Introducing a new refe-
rence point ¢ that divides (0,1) into three reference intervals (0,c), ¢, and (c,1)
does not help the problem. Knowing that /¢/ and /yp/ are in an interval (i,j) does
not allow us to determine /¢ D y/; we need to know in addition whether /¢/ < /y/
or /¢/ > hy/. Rather, we would need to construct subhypotheses giving infor-

mation about the relative values of formulas. In the case just described, for
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instance, we might add three subhypotheses, on which /¢/ < Ay/, /¢/ > hy/, and
10/ = hy!

“) If ¢ 1s assigned the reference interval 1 by every possible hypothesis, ¢ is a
tautology. If we are working with designated values other than 1, then if every
possible hypothesis assigns ¢ to [8,1] (or (3,1], as the case may be), ¢ is a fuzzy
tautology.

The method of hypotheses has the disadvantage of having extremely high
computational complexity. If m is the number of subformulas of ¢ and n is the
number of reference intervals, the number of possible hypotheses is n™. So for

instance, let ¢ be

[Cho@29]vI[Cyo(=pDg)].

¢ has eight subformulas, and we need at least five reference intervals (and
possibly more, if the hypotheses generated with those five intervals contain
insufficient information). There are 5° possible assignments of subformulas of ¢
to reference intervals, and so there are 5° = 390 625 hypotheses that need to be
checked. Hence, a decision procedure with lower complexity would be very

advantageous.
5. Informal reasoning in RPLA

It would seem that the most fruitful method for finding a decision

procedure for infinite-valued logic would be to attempt to formalize how people

2 Morgan and Pelletier (1977) does not mention forming hypotheses with this sort of information.
Pelletier (personal communication) has indicated, however, that this was what he and Morgan had
intended.
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actually reason when doing informal proofs. There are several different ways of
doing this (see Gaines 1976: 654 or Rescher 1969: 39 for examples), but given the
strength of reductio ad absurdum proofs, we should pay particular attention to
formalizing the informal rules people use when performing reductiones in
infinite-valued logic. An example should show how such reasoning can be
performed.

I will prove that p © (q D p) is a tautology of RPLA. To begin with, we

can assume

[11  /p>2@>p)<L

if this assumption leads to a contradiction, we know the formula is a tautology.

Looking at the definition of /p o ¢/, we can see that /p D q/ < 1 only if /p/ > /qg/.

So we can infer

[2] /p/ > 1q>pl.

This is equivalent to

[3] lqop/ </pl.

Since /p/ < 1, this line tells us that

[4] /lqop/ <1.

We know that whenever /p D q/ <1,

(5] pog/=1-/p/+/q/;
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thus, we can substitute the right-hand side of [5] into [3], which gives us

[6] 1-/q/+/p/ <Ipl.

Dropping /p/ from both sides and rearranging the terms, we see that this is

equivalent to

(7] /q/ > 1.

But this is impossible; we know that the truth value of a formula can never exceed
1. Hence, /p © (q > p)/ <1 is impossible, and p > (q D p) is a tautology. The
tableau system presented in the next chapter attempts to formalize this sort of

reasoning about infinite-valued logic.
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v

Algebraic tableaux for RPLA

In this chapter, I will present algebraic tableaux for RPLA. The tableau
procedure works by giving rules by which to resolve the assumptions into
inequalities involving only numbers and the truth values of propositional
variables, which are then solved using standard algebra. (Hence it is best to call
them “algebraic”, rather than “semantic”, tableaux.) Instead of giving an
algorithm that generates algebraic tableaux, I will present a more informal
procedure that may be easily used by anyone familiar with basic algebra. Finding
an algorithm for constructing algebraic tableaux is a project for future work.

The system is fairly complicated, due to the number of connectives in the
system and the large number of cases that need to be accounted for. Even so, in
order to avoid redundancies, 1 have avoided introducing separate rules for
inferences that can be made using a combination of several different rules. As a
result, the rules may seem counterintuitive or difficult to work with when
considered independently. After presenting the basic system, 1 will explain
informally how the rules can be combined in order to make the inferences one
needs in the tableaux. I will also present a set of derived rules that simplify
making tableaux, and show that they are merely shortcuts that add nothing to the
basic rules of the system. In a similar vein, I will show that the decomposition
rules of the Kenevan Truth Interval Logic are reducible to the rules of my
procedure; since the latter is sound (as will be proved at the end of this chapter),

the former is also sound. Before showing the validity of the derived rules and the
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soundness of KTIL, I will give a few examples of the tableau procedure in action,
so that the reader can see how it is used. Finally, I will prove the soundness of the

procedure for RPLA.

1. Tableau rules

We begin with a conclusion A, which we wish to prove, and a possibly

empty set of premises . The procedure has three steps.

Step 1. If 1 is the only designated value, the first line of the tableau should be

A/ <1.

Next, for any formula ¢ € Z, a line of the form

1o/ =1

should be entered in the tableau.

One may want to prove restrictions on the truth values of one’s
conclusion, or put restrictions on the truth values of the premises, other than that
they are absolutely true. For instance, one may want to prove that the conclusion
is designated, or assume that the premises are designated. More generally, one
may want to show that whenever the truth value of the premises exceeds some n,
the conclusion does also; this shows that whenever n is designated, the argument
holds. There are two ways to do such proofs in the tableaux. The more intuitive
way is to enter such restrictions directly into the tableau as inequalities. So for

instance, if one wants to prove that /A/ > n, the first line of the tableau should be

A/ <n.
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(I.e., if one wants to prove that A is designated, the first line would be /A/ < 9; if
one wanted to prove, say, that /A/ > %, the first line would be /A/ < '%; etc.) To

say that a premise B is designated, one would enter the line

/B/ 23,
(or /B/ > 8, depending on whether the designated values form an open or closed
interval).

The other way to represent restrictions on the truth values of premises is to

state them directly in RPLA. Using this method, the two cases in the last

paragraph would be represented as

/ChD A/ <1,

and

/CsDB/=1.

For every constant C; found in any formula of the premises or conclusion,

enter a line of the form

/Ci/ =1.

For future reference, this rule will be called “C”.
For every formula or subformula ¢ found in the premises or conclusion

that is negated (prefixed with —), enter a line of the form

=0/ =1 - /4.
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This rule will be called “N”’.

For instance, suppose we want to show that /p > —g/ = 0.5, and we are
assuming /p D1/ =1 and /r © (q > Cos)/ = 0.75. Then the first few lines of the
tableau should look like this:

p>o—=qg/<0.5
por/=1

to(q>o Cos)/ 20.75
/-q/=1-/q/

/C0_5/ =0.5

If we want to state these inequalities in the language of RPLA, the first few lines

should be

/CosD(pDq) <1
pot/ =1
[CorsD[r2(q2Cos)l =1
/=q/=1-/q/

/C0,5/ =0.5

/CO,75/ ={0.75

Step 2. The following rules may be applied at any point in the derivation, and

come in three categories.

(a) Decomposition rules. These can be applied at any time to any formulas of the

forms specified. Names are given above the rules for future reference.

vGE vLE
Ipvyl/ =y 1o v g/ <y
e N }
16/ 2y =y 1o/ <7y
/<y
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vSG
1o vyl >y
' p
19/ >y, />y

~AGE

oAyl =y
{

10/ =y

ylzy

ASG

/o A/ >y
)

1§/ >y

/>y

oGE
Ibowy/ 2y
!
o/ <hy/ -y +1

o8G
oDy >y
!
1o/ <hyl -y +1

=GE
fp=wy/zy

]
10/ < hyl -y + 1
hl <191 -y + 1

vSL

Ipvyl<y
i
I/ <y
/<y
ALE
oA/ <y
v N
1o/ <y /<y
ASL
o A/ <y
e N
1o/ <y <y
DLE
I oy/ <y
v N
16/ = g/ -y + 1 19/ < hy/
x =1
oSL
16Dyl <y
e N
1o/ >yl -y + 1 16/ < hy/
x>1
=LE
Ib=y/ <y
v N

/2yl -y 1 Nl =) -+ 1
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=SG
d=y/>y

{
10/ </l -y +1
Nl </$/ -y +1

=SL

o=/ <y
v N
19/ >l -y +1 N/ >/p/-y¢+1

VGE VLE
oYyl zy oY/ <y
} e pe
1o/ + Iyl =y 19/ + gl <y 10/ + gl > 1
y=1
vSG VSL
oY y/ >y 1o Yyl <y
1 i N
16/ + N/ >y 1/ + hpl <y 19/ + hy/ =1
x> 1
AGE ALE
IOAY 2y IO AW/ Sy,
e N }
o/ + Nyl Zzy+1 1o/ + Iyl <1 16/ + N/ <o+ 1
1<0
ASG ASL
o Ry >y 1o AW <y
e h¢ {
16/ + />y +1 16/ + g/ <1 10/ + Iyl <y +1
%<0
—->5G —>SL
o —=>y/>0 1o —y/ <1
{ 1
16/ < hyl 10/ > hy/
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->SG <~SL

/b <> y/>0 I >/ <1
' v N
1o/ = hy! 16/ > hy! 16/ < hyl
JSG JSL
T/ >0 T/ <1
' v N
/ol =i 1o/ >i 16/ <i

Note that “y’ can be a number, the truth value of a formula, some combination of

these, or so forth. For instance, the following is a proper use of the rule DLE:

hhog/<lhp—>q/
Ve N
plzlg/~hp-—>q/ +1 p/ </lp—>q/
p—>aq/21

(b) Inequality rule: Any inequality that is, in elementary algebra, equivalent to or

deducible from those entered in the derivation, may be entered as any line in the

tableau. E.g.,
1. /p/>/g/~pvg +1
2. pvg/=1
3. lpvag/>/g/—/p/+1 (from [1])
4. Jg/-hp/+1<1 (from [2] and [3])
5. g/ </p/ (from [5])

We need add only one rule to match reasoning using inequalities to the

tableau format:

16/ %,
% N
16/ > 16/ <y
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Both sorts of inequality rules will be referred to as “A” (for “algebra™).
(c) Boundary rules. These rules allow one to make use of the fact that 0 </¢/ < 1.

For any formula ¢ of RPLA, a line of the form

4/ <1

or

14/ 20

may be entered at any point in the tableau. This rule will be called “B”.

Step 3. A branch of the tableau terminates when it contains a line or lines
asserting an inequation that is not possible on any valuation. To be more specific,
a branch terminates when it contains either (a) a line or lines indicating a
mathematically impossible inequation (e.g. /p/ < /p/, 1 > 1), (b) a line asserting
that the truth value of a formula of RPLA is greater than 1 or less than 0, or (c)
lines asserting that the value of some formula occupies both of two disjoint
intervals (e.g., /p/ > /q/, /p/ < /q/). (Strictly speaking, (b) is reducible to (c) by rule
B, and (¢) is reducible to (a) by rule A, but both are worth mentioning separately.)
The derivation is complete when every branch has terminated; then, the argument
has been shown to be valid, the formula a theorem, or more generally, the restric-
tions on /A/ have been shown to hold.

In ordinary tableaux, a branch of a derivation also terminates when no
more rules can be applied to it. I have not, however, given an algorithm for deter-
mining when rule A (any inequality following from previous lines by elementary
algebra is admissible) no longer applies. Until such an algorithm is added to the
procedure (an important area for future research on the system), a branch can only

be said to terminate when it asserts something that cannot possibly be true of the
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truth values of the formulas referred to on that branch. (This will be discussed
further in V.5.)

To make writing the tableaux less tedious, we will adopt the convention
that one may drop the slashes around formulae. As nothing in the tableaux hinges
on distinguishing formulae from their truth values, this convention will not lead to
any confusion. The tableaux given from here on will follow this convention, lest I

wear out my ‘/° key.

2. Using the tableau rules

Here, 1 will give some indications of how the different rules can be
combined when doing tableaux. The reader will certainly have noticed that there
are no decomposition rules for negation. This is because the rules N and A can be
combined to mimic decomposition rules, and a single rule governing negation is

easier to remember than four. For instance, from —p = 8 we reason:

—-p=1-p [N]
1-p>3 [A]
p<1-9 [A]

There are also no rules governing equalities in the basic system.

Equalities can be treated as follows:

= o S
vV A

X

x [A]
X [A]

and then the various GE and LE rules can be applied. This is really too tedious to

be practical; hence, derived rules governing equalities will be given below and

shown to be abbreviations of uses of the A, GE, and LE rules in the manner just
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shown. The rules governing equalities are not presented as basic rules in order to
make proving the soundness of the procedure simpler.

The rules for —, <>, and the J-operators are all based on the same basic
principle. If, for instance, /¢ — y/ < 1, then since — is a bivalent connective,
/¢ — y/ = 0, and thus we can infer that /¢/ > /y/. The other rules are justified
similarly. Hence, GE and LE rules are not of much use for these connectives;
given, for instance, that /¢ — y/ > 7y, we cannot infer anything about /¢ — v/
unless we additionally know that x > 0. In lieu of GE and LE rules, we can use

reasoning along these lines:

Iip<q
q<1
Jip<l [A]

Finally, rule B allows one to enter into the tableaux the information that
the truth values of formulas are bounded. We can then apply rule A to make use

of this information; e.g.,

pP>q
qz0 [B]
p>0 [A]

The remainder of the tableau rules should be (relatively speaking) self-
explanatory.

Because of the large number of tableau rules, it is easy to get caught up in
complicated tangents that turn out not to lead to closed branches. To avoid this, it
is best to apply just the decomposition rules, using rule A only to simplify expres-
sions, until all complex formulas have been decomposed into propositional
variables. Then one applies the boundary rules and more complex algebra to
close any remaining branches. One can, of course, frequently find shorter

tableaux by applying rules A and B before all complex formulas have been
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decomposed, but as a general rule it is best not to do so unless it is obvious that

this will lead directly to the closure of a branch.

3. Derived rules

These decomposition rules can be proven from the rules above, which will be
done for some of them in IV.5. They are thus not strictly necessary for the
system, but provide useful shortcuts when making tableaux. Tableaux given as
examples will use these rules, and will refer to them by DR plus the number of the

rule.

1. 2,
dvy=yx ¢vy=
N N v N
o=x Y= =1 y=1
Y=y o<y
3, 4.
¢Ay =y pAy=1
v N ]
o= Y=y ¢=1
Yy o= y=1
5 6.
POy =y ¢oy=1
v Y !
p=wy-y+1 o<y ¢ <
x=1
7. 8
b=y=1y p=y=1
v \Y !
p=y-yx+1 y=¢-x+1 o=y
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9.
GV Y=y
/ \
o+y=y ¢p+yz1
x=1
11.
dbAY=y
7 \
d+y=y+1 dpry<l
x=0
13.
dowy<l
!
o>y
15.
CiD(I):l
!
o1

4. Examples

Cj3¢<1

p<i

[ will now give a few examples of the tableaux in action. In the tableaux

given in the rest of this chapter, I will adopt the practice of repeating lines of the

tableaux, so that new lines will always follow from applications of the rules to the

lines immediately preceding them. 1 will also introduce lines in accordance with

the N and C rules immediately before their first use, rather than at the beginning

of the tableau, as is strictly correct. This should make the tableaux easier for the

reader to follow and avoid the need for extensive commentary.
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Proof that /p v —p/ > V2:

pv-p<r [hyp.]
p<¥ [VSL]
—p<¥ [VSL]
—p=1-p [N]
l1-p<% [A]

p> [A]

p<% [repetition]

Proof that (—q > —p) D (p D q) is a tautology:

(~go>-p)opo>p<1 [hyp.]
—~gD—p>pDq [DR13]
~q<-p—-(p>q)+1 [>SG]
—-p=1-p [N]
—~q<2-p-(p>9 [A]
—~q=1-q [N]
1-q<2-p-(p>9) [A]
p>og<q-p+l [A]
i N
[2SL] p>q-(q-p+1+1 p=<q [DSL]
[A] p>p q-pt+t1>1 [D>SL]
X —~qD-p>pDq [repetition]
pogq<l [B]
p>q [DR13]
p<q [repetition]

X
5. The validity of the derived rules
I will now show the validity of five of the derived rules presented in IV.3,

by showing that a use of any of them can be replaced by a sequence using only

the basic rules of the system. Proofs for the other derived rules are sufficiently
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similar to the ones given that the reader should be able to easily satisfy herself

that those rules are also valid.

(DR1)

(DR5)

(DR6)

(DR16)

[VGE]
[repetition]
[A]
[repetition]

[DLE]
[repetition]
[A]

[>SL]
[A]
[C]
[A]

¢vy=y  [prem]
pvyzy  [A]
dvwsy (A
<y [VLE]
Y=y [VLE]
dvyzy [repetition]
& N
o= vy [VGE]
o<y Yy [repetition]
o= Y=y [A]
vy o<y [repetition]
¢oy=y  [prem]
dowsy  [A]
¢oyzy  [A]
db<wy-y+1 [DGE]
dow=y [repetition]
e N
¢zy-x+l o=y [>LE]
d<sy-y+1 x=1 [DLE]
d=y-y+1
¢oy=1 [prem.]
ooyl [A]
¢<y+1-1 [DGE]
o=y [A]
Cioo<l1 [prem.]
Ve N
Ci>¢-1+1 Ci<éd [>SL]
Ci>o 1>1 [DSL]
Ci = i X
¢ <i
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(DR9) ¢¥Yy=y  [prem]

dyy<y  [A]

dvyzy  [A]

p+y2y  [VGE]

dVYy<y [repetition]

s N

[VLE] d+y<y d+y=1 [VLE]
[repetition] o¢+wy=>y x =1 [VLE]
[A] dty=yx

6. Proof of soundness of KTIL

As mentioned in I1I.2, Entemann (2000) proved that proof by contradic-
tion in KTIL was sound for VSS. He did not prove the soundness of the truth
interval refinement method, in which one narrows down the possible truth values
of a set of formulas instead of trying to prove them inconsistent. Kenevan et al.
(1992) proved that the rules were “correct”, but did not give a full proof of the
soundness of the system. Since, as will be proved in IV.7, RPLA-tableaux are
sound for RPLA, and VSS is a fragment of RPLA, showing the validity of KTIL
in RPLA demonstrates its soundness for VSS. 1 will show that the KTIL disjunc-
tion rule is equivalent to certain uses of the rules of RPLA-tableaux; similar
tableau sequences indicate that the same holds for the conjunction rule. The
soundness of the KTIL rules for intersection and negation is obvious.

The disjunction decomposition rule for KTIL is:

A: [ag,a]
B: [bo,b1]
A v B: [po,p1]
v N
A: [ag, min(ay, p1)] A: [max(ao, po), min(ai, p1)]
B: [max(bo, po), min (b;, p1)] B: [by, min(by, p1)]

A v B: [max(ao,bo,po), min(p;, max[a;,b:])] A v B: [max(ag,be,po), min(p;, maxfa;,b,])]
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The validity of the refinements of the intervals of A and B in the disjunc-

tion rule is shown by:

AvB2zpg [prem.]
AvB<p [prem.]
A<p [VLE]
B<p [VLE]
' N
[VGE] A 27 B>po [VGE]

If we additionally know that /A/ < a; and /B/ < by, then since /A/ < p; and /B/ < py
we know that /A/ < min(a;, p1) and /B/ < min(b;, py); similarly, we know that
either /A/ > max (a9, po) or /B/ = max (bg, po).

The next tableau shows that if /A/ > ag, /A v B/ = ag:

Aza [prem.]

AvB<a [hyp.]

A<ag [vSL]
X

The proof that if /B/ > by, /A v B/ > by is the same, mutatis mutandis. As before,
if we know /A v B/ > ag, /A v B/ 2 by, and /A v B/ = py, we know /A v B/ >

max (2o, bo, Po)-

Let max (aj, by) = ay:

A<y [prem.]
B<h [prem.]
a =by [prem.]
AvB>a [hyp.]
v N
[vSG] A>a B >a [vSG]
X B >b, [A]
X
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The tableau is the same, mutatis mutandis, for max (a;,b;) = b;. Hence, the truth
interval refinement method of proof in KTIL is sound if RPLA-tableaux are,

which is about to be proven.

7. Proof of soundness of RPLA-tableaux

Some definitions will be necessary to prove the soundness of the
procedure. A valuation v of propositional variables of RPLA is faithful to a
branch b of a derivation iff any assertion about the truth values of a formula made
by any line of b states a truth about the value v assigns to that formula.
Equivalently, v is faithful to b iff every assertion on b about the truth values of
formulas is consistent with the values assigned to propositional variables by v.

Let ¥ + A indicate that there is a tableau showing that /A/ = 1 can be

deduced from the assumption that for every ¢ € Z, /¢/ = 1.

Soundness lemma. Suppose a valuation v is faithful to a branch b of a
derivation. If any tableau rule is applied to any line or lines of b, v will be faithful
to at least one of the branches generated.

Unfortunately, the lemma must be proven separately for each rule.

A. Since this rule allows only mathematically valid inferences, any result of
applying it will be entailed by or equivalent to previous lines in b, and thus v will
be faithful to the new lines in the branch as well.

Recall that A also includes the rule:

/ol # 7,
% N
16/ >y 1h/ <7,
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Suppose /¢/ # y; then either /¢/ > or /¢/ <7, and so v will be faithful to
one of the new branches formed by applying this part of the rule.

B. Since any valuation can only assign formulas truth values in [0,1], where ¢
is a formula of RPLA, a line of the form /¢/ < 1 or /¢/ = 0 states a truth about /¢/

on every valuation.

C. Follows immediately from the definition of /Cy/.

N. Follows immediately from the definition of /—/.

vSG. If /¢ v y/ >y, then max (/¢/, /) > y. IE/¢/ = Ny/, then 1§/ > y; if g/ = 7,
then Ay/ >y

vGE. Analogous to the proof for vSG; just replace >’ with >’.

VvSL. If /¢ v y/ <y, then max (/¢/, y/) <. But if the larger of /¢/ and /y/ 1s

less than ¥, /¢/ <y and /\y/ <7y. (The same, mutatis mutandis, for vVLE.)

ASG. If /¢ A/ >y, then min (/¢/, /y/) > x. So both /¢/ >y and /y/ > y. (The

same, mutatis mutandis, for AGE.)
ASL. If /¢ A y/ <y, then min (/¢/, /w/) < y. Suppose /¢/ < /w/. Then

min (/¢/, /) =19/, so /¢/ <7y. Similarly for /¢/ = /y/. (The same, mutatis mutan-
dis, for ALE.)
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>SG. Suppose /¢/ < /y/. y < 1, since otherwise /¢ D y/ > 1, which is
impossible. So 1 -y >0;/¢/</y/ -y + 1 immediately follows. Recall that impli-

cation can be defined as

/o o/ = 1if/d/ </,
1 —/¢/ + hy/ otherwise.

So suppose /¢/ > /y/; then /¢ D/ =1—/¢/+ hyl. So 1 —/¢/+ hy/ >y, which is
equivalent to /¢/ < /y/—y + 1.

SGE. If/p/ < /hy/,thenify <1,1-%20,s0/0/ </y/ -5+ 1. If x> 1, then
/o6 o y/ > 1, which is impossible. If /¢/ > /y/, then /¢ D w/ =1 —/§/ + hy/ and
1 —/¢/ + hy/ =y, which is equivalent to /¢/ < ry/ — ¢ + 1.

OSL. Suppose /¢/ > y/; then /¢ D y/=1—/¢/ + hy/. So 1 —/$/ + hy/ <y, which
is equivalent to /¢/ > /y/ — /p/ + 1. Suppose /¢/ < /\y/; then by the above definition
powy/=1,s0%>1.

DLE. Suppose /¢/ < /y/. Then by the above definition /¢ D y/ =1, so y > 1.
Suppose /¢/ > /y/. Then /¢ o y/=1-~/o/+ y/ and 1 - /§/ + g/ < 7, so /¢/ =
/=y + 1.

=SG. If/d=y/>y, 1-1/¢/- /| >y, and |/§/ - y/| <1 -%. Suppose /¢/ > /y/.
Then /¢/ - hy/ <1 - %, which is equivalent to /¢/ < /y/ -y + 1. y <1, or else
/o =y/>1,s01-7y>0. Thus, since /y/ < /¢p/, \y/ < /$p/ - x + 1. Similarly for
/§/ < hy/. Suppose /¢/ = /y/. Since 1 - x > 0, both /¢/ < /y/ -y + 1 and /y/ <
// -y + 1 immediately follow.
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=GE. If /¢ = y/ = 7, as above, |/¢/ - /w/| < 1 - x. Suppose /¢/ = /y/. Then
19/ - hyl <1 -y, which is equivalent to /¢/ < /y/ - ¢ + 1. Since /y/ </¢p/ and y < 1
(orelse /p =/ > 1), Y/ </¢/ -y + 1. Analogous for /¢/ < hy/.

=SL. If/o=wy/ <y, [/d/-/y/|>1-y. Suppose/d/=/y/. Then/d/ -/ y/>1 -7,
which is equivalent to /¢/ > /y/ - x + 1. Analogous for /¢/ < /y/.

=LE. If/¢p=wy/<y, |/¢/-/y/|=1-7y. Suppose /¢p/=/y/. Then /¢p/-/1y/ =1 -7,
which is equivalent to /¢/ = /\y/ -y + 1. Analogous for /¢/ < hy/.

VGE. If/¢ Y/ 2y, min (1, /¢/+ /)y = y. If/¢/+ /y/ > 1, since g <1 (or else
/O N /> 1), 10/ + />y, s0 /¢l + gl =y IE/G/+ N/ <1, min (1, /§/ + [y/) =
16/ + N/, so 1§/ + g/ 2 . (The same, mutatis mutandis, for VSG.)

VLE. Suppose /¢/ + /y/ = 1. Then min (1, /¢/ + /y/) =1, so ¢ = 1. Suppose
19/ + hy/ < 1. Thenmin (1, /¢/ + ~y/) =/¢/ + I/, so /¢/ + Nyl <.

VSL. If /¢/+ /y/ <1, then min (1, /¢/ + /y/) = /§/ + N/, and /o/ + hy/ <. If
1o/ + hy/ = 1, then min (1, /¢/ + y/)y=1,s0 % > 1.

AGE. If /o6 A w/ =y, max (0, /¢/ + hy/ - 1) 2 . Suppose /¢/ + /py/ < 1. Then
max (0, /¢/ + ¢/ - 1) =0, so y < 0. Suppose /¢/ + y/ > 1. Then max (0,
19/ + N/ - 1)y =/¢/+ I/ - 1. Therefore, /o/ + /- 1 2y, and /§/ + N/ Z ¢ + 1.

ASG. If /¢ A/ >y, max (0, /¢/ + hy/ - 1) > y. Suppose /¢/ + /y/ > 1. Then

max (0, /¢/ + /- 1) =19/ + Nyl - 1, 1o/ + hg/ - 1 >y, and /o/ + Nyl >y + 1.
Suppose /¢/ + /\y/ < 1. Then max (0, /¢/ + /- 1) =0, so % <O0.
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ALE. If/¢ A wy/ <y, max (0, /¢/ + /y/ - 1) <y. Suppose /¢/ + /y/ < 1. =20, or
else /¢ A y/ <0, which is impossible; so /¢/ + /y/ <y + 1. Suppose /¢/ + y/ > 1.
Then max (0, /¢/ + g/ - 1) = /¢/ + hy/ - 1, 80 /§/ + /y/ - 1 <y and /o/ + N/ <

% + 1. (The same, mutatis mutandis, for ASL.)

—SG. If /¢ — y/ 1s strictly greater than 0, since ‘—’ is a bivalent connective,

/6 —w/=1. So o/ <y,

—SL. If /¢ — y/ 1s strictly less than 1, since ‘—>’ is a bivalent connective,

/& —> /= 0. So /¢/ > hy/.

JSG. Since the J-operators are bivalent, if /Ji¢/ is strictly greater than 0, /J;¢/ = 1.
So /¢/ =1.

JSL. Since the J-operators are bivalent, if /Ji¢/ is strictly less than 1, /J;¢/ = 0.
So /¢/ #1; 1.e. /[§p/ <ior /§/ > 1.

<>SG. Since ‘«>’ is a bivalent connective, if /¢ <> y/ is strictly greater than 0,

/o <> w/=1. So /p/ = hyl.

<>SL. Since ‘«>’ is a bivalent connective, if /¢ <> y/ is strictly less than 1,

/o <>/ =0. So/Y/ = Ny/;ie., /d/ > N/ or 1§/ < Iyl

Special soundness theorem.

IfX+A then2X = A.

Proof: We prove the contrapositive. Suppose £ # A. Then there is a valuation v

such that for all ¢ € Z, /¢/ = 1, and /A/ < 1. Consider a tableau in which for each
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¢ € Z, ‘¢ = 1" has been entered as a line, ‘A < 1’ has been entered as a line, and
every branch of which has terminated. v is faithful to the initial segment of this
derivation. By repeated applications of the Soundness Lemma, v must be faithful
to every initial section of some branch b generated from this initial list by
repeated applications of the tableau rules. So v is faithful to the entirety of branch
b. If b were closed, it would have to contain some impossible inequality. But this
cannot be the case, since v is faithful to b, and an impossible inequality cannot

state a truth about the values of formulas on v. So there cannot be any such

tableau, and X 1 A.

Let us introduce a further notational convention in order to prove the
soundness of the tableaux when we assume restrictions on the truth values of the

premises other than that they are equal to 1, or prove facts about the truth value of
the conclusion other than it equals 1. Let ¢, ¢, ..., ¢n, Y be formulas and 1, I,

..., I, J be subintervals, or unions of disjoint subintervals, of [0,1]; then

o/ e, /d/ e by, .., o/ e LENW €]

means that for every valuation on which /¢)/ € Ii, /¢y/ € L, ..., /d/ € I, y/ € .
Similarly, let

Jov €Ly, 1) €Ly, . fb) € -1/ €3

mean that there is a tableau showing that /y/ € J from the assumptions that
/1 € 11, 1o/ € I, ..., b/ € Ih. (We cannot, of course, directly state lines like
/¢/ € [a,b] in the tableaux. This should be interpreted as shorthand for the pair of
lines indicating /¢/ > a, /¢p/ < b. Where the lower bound of the interval in which
/$/ is placed is O or the upper bound 1, we may not have entered this information

explicitly in the tableau, but by rule B, we may do so at any point.) For both

81



forms of notation, if no restrictions on the values of any propositional variables
are assumed, we state nothing on the left side of the turnstile.
A few examples should make the idea clearer. As noted in ILS,

/p v —p/ = 0.5. Using this notation, we state this as
=/pv-p/ e[05,1].

Similarly, suppose we have a tableau showing that if —p is designated, we can

deduce that p D q is designated; we state this as
/-p/ € [8,1]-/p>Dq/ € [8,1].
Now we can establish the more general result.

General soundness theorem.

If /o) €Ty .o, i/ €L -/A/ € T then /gn/ € Ty, ..., /bl € T, £ 1A/ € J.

Proof: We prove the contrapositive. Suppose /¢1/ € 1y, ..., b/ € I, # /A/ € I.
Then there is a valuation v such that /¢;/ € L, ..., /¢4/ € I, and /A/ ¢ J. Consider
a tableau such that for each ¢y, the assumption that /¢1/ € I has been entered as
one or more lines, a line has been entered indicating that /A/ ¢ J, and every
branch of which has terminated. v is faithful to the initial segment of this
derivation. By repeated applications of the Soundness Lemma, v must be faithful
to every initial section of some branch b generated from this initial list by
repeated applications of the tableau rules. So v is faithful to the entirety of branch
b. If b were closed, it would have to contain some impossible inequality. But this
cannot be the case, since v is faithful to 5, and an impossible inequality cannot
state a truth about the values of formulas on v. So there cannot be any such

tableau, and /¢1/ € 1y, ..., /y/ € L+ /A/ € T.
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Extensions on algebraic tableaux

The value of the tableau system presented in the last chapter can be easily
seen—it provides a sound procedure for finding validities and tautologies of
RPLA that can be used without much difficulty or mathematical knowledge. This
chapter looks at a few remaining areas of interest regarding the procedure. I will
first point out that since one can refer to the truth values of formulas within the
tableaux, one does not strictly need the ability to refer to truth values in the formal
language itself. Hence, instead of working in RPLA, one can use the more
intuitive, simpler language of Ly. Then, I will present three extensions to the
tableau rules. One set of rules augments the procedure to cover the other systems
in the Lukasiewicz family (including I, classical propositional logic). The
second covers another important infinite-valued system, product logic (discussed
in I1.4), and the third covers Zadeh’s accounts of linguistic hedges. Finally, I will
discuss some problems for future research, the most important of which are

automating the tableau procedure and proving its completeness.
1. Ly-tableaux

As I have previously noted, not much work has been done on decision
procedures for propositional fuzzy logic. The only completely formalized
procedure covering RPLA, discussed in IIL1, is too complicated for use in

practice. Several reasonably simple procedures have been developed for finding
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theorems of L. But as we saw in IL.5, Ly is too weak to model vagueness and
approximate reasoning. If our language cannot talk about intermediate truth
values, “the apparent many-valuedness is only illusory, since we cannot say
anything in a many-valued way” (Morgan & Pelletier 1997: 86, emphasis in
original).

The lack of a suitable decision procedure for RPLA is, therefore, a
significant absence, and the tableau system I present here should represent a
significant contribution to the study, application, and dissemination of fuzzy
logic. The procedure is certainly much more complex than most tableau systems,
although more intuitive than the constraint tableaux discussed in III.3. This is
because of the complexity of the logic itself—despite appearances, the tableaux
greatly simplify working with infinite-valued logic. I will briefly discuss one
aspect of this simplification.

In this section and V.2, we will consider just the rules of the tableau
procedure for the language of Ly; that is, we ignore the rules for constants, J-
operators, —, and <> and consider only A, B, N, and the rules for v, A, D, and =.
Algebraic tableaux using only these rules will be called 1.y-tableaux. As we saw
in chapter II, Ly is the basic logic in which we are interested; we added constants
and the determinacy operator only in order to allow us to refer to the truth values
in the language itself. RPLA is, however, less than perfectly perspicuous; it is
fairly counterintuitive that ¢ > y means “¢ implies y”, but Cs D y means “y is
designated”.

A more mtuitively appealing way of talking about the truth values of
formulas is to do so in Ly-tableaux, rather than in the formal language itself.
Consider, for instance, this commonsense argument that cannot be represented in

classical logic:

Anyone who can do logic is interesting.

Wilfred is kind of boring.
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Therefore, Wilfred isn’t very good at logic.

(Such arguments are of significant interest for fuzzy theorists; see e.g. Gaines
1976.) One way to formalize this argument in RPLA® is as follows (assuming

we have some principled way of assigning these particular truth values):

Pl.  Cyo > (Wilfred can do logic > Wilfred is interesting)
P2. Cos © —~(Wilfred is interesting)
C. Wilfred can do logic o Co

These lines assert that

P1.  /Wilfred can do logic o Wilfred is interesting/ > 0.9
P2.  /—=(Wilfred is interesting)/ > 0.5
C. /Wilfred can do logic/ < 0.6

But we can enter these assertions directly into Ly-tableaux; we do not
need to translate them into the language of RPLA. That we can do so is what the
general soundness theorem of IV.7 proves. That theorem states that however we
place restrictions on the truth values of the premises, any restrictions on the truth
value of the conclusion that we deduce in a tableau will obtain, for any valuation
on which the truth values of the premises are in the intervals we specified. In this
example, we can make a (very simple) tableau to show that on any valuation
where /p © q/ 2 0.9 and /—q/ 2 0.5, /p/ £ 0.6. The tableaux are sound whether we
state such restrictions on the truth values of the premises in RPLA or directly as

lines in a tableau. Most people will probably find working with ¥.y-tableaux

% Instead of taking “kind of” and “not very” as placing lower and upper bounds on the truth values
of propositions, we could also formalize these locutions as hedges, a method arguably more
faithful to the original language. Hedges will be briefly discussed in V 4.
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casier than working with RPLA; hence, the tableau procedure should facilitate
working with the approximately valid arguments we have heretofore needed

RPLA to formalize.

2. Tableaux for the Lukasiewicz family

As noted in IL.2, the tautologies of Ly are the intersection of the
tautologies of all the L., in the Lukasiewicz family. Hence, the tableau rules given
in the last chapter are sound for all members of the Lukasiewicz family (including
L,, which is classical propositional logic).

We can get a stronger tableau procedure for members of the Lukasiewicz
family by adding two new rules to reflect the fact that any 1., has only finitely
many truth values. Where #n is the number of truth values in the logic and k is an

integer less than n,

10/ <¥/4 10/ > Xy
y !
16/ <¥V o 16/ 254

In 1.,, these rules allow the inferences

p<l1 p>0
i +
p<0 p=1

In 1.3, we have four inferences:

p<l p<% p>0 p>"
4 + 1 +
ps p<0 p=t p=1
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One can, of course, easily show that we can infer p = 0 and p = 1 instead of p <0
and p > 1. Inferring the former equalities rather than the latter inequalities would
be a suitable derived rule for use in practice.

The soundness of these rules should be easy to see, and does not need a
formal proof. Since any yvaluation v of L, can only assign a formula a value
divisible by n - 1, if v is faithful to a line of the form /¢/ < */,.;, v must assign ¢
some value divisible by n - 1 and less than k/n_l, the greatest of which is k'l/n_l.
The reasoning is similar for the second new rule. Having established that a
valuation faithful to the first line is also faithful to the line that the rule allows us

to infer, the remainder of the soundness proof proceeds exactly as before.
3. Tableaux for product logic

As discussed in I1.4 above, another very prominent infinite-valued system
is product logic. This system replaces &, V, and > with ©, @, and S respectively,

with the latter truth functions defined as:
1o Oyl =14/ x hy/,
1 @/ =/1d/ + N/ - 19/ x Iyl

/d 2w/ =1 for /o/ < Nyl
Iyl + [$/ otherwise.

(The Goguen precomplement —g¢, equivalent to J;—¢ in RPLA, is sometimes
used for negation, but the Lukasiewicz negation — seems to be more commonly

used.”*) A number of theorists consider these versions of the connectives to be

** E.g., in Gaines (1976), Goguen (1969), and Gehrke et al. (1999).
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superior to those of Ly for some purposes (see e.g. Gaines 1976: 635-6, Goguen
1969: 346-7). Although the Lukasiewicz connectives should be regarded as the
proper generalizations of the classical connectives (because, as noted in IL.4,
idempotency fails for © and @, and contraposition for ), the Goguen connec-
tives are still of substantial importance. So, I will give a set of additional tableau
rules to cover these alternative connectives.

For any formula or part consisting of two subformulas ¢, y conjoined by

®, a line of the form

/6 © /= 19/ x \y/

should be entered into the tableau. This rule will be called GC.
For any formula or part consisting of two subformulas ¢, \ disjoined by

@, a line of the form

16 @/ = 16/ + I/ — 1] x Iy

should be entered into the tableau. This rule will be called GD.

Decomposition rules for ® are:

GE SLE
w2y b2/ <y
i e N
Nl =19/ x Nl <1l <y 10/ < hy/
x =1
258G oSL
by >y by <y
i e h"
! > 19/ x ! </pl x g, 16/ < hy/
x>1
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The proof of the soundness of these rules for product logic is exactly
similar to the soundness proof of IV.7; all that needs to be added are the requisite

clauses of the Soundness Lemma that pertain to the new rules:

GC. Follows immediately from the definition of /®/.

GD. Follows immediately from the definition of /&®/.

SGE. Suppose /¢ 2 y/ = 1. Then /¢/ < hy/. Since /¢ D ¢/ = %, x < 1, so
16/ x y < Npl; 1.e., g/ 24/ x x. Suppose /¢ 2w/ <1. Then /¢ 2 y/=/y/ + /¢/, so
N/ + 1o/ =y and Nyl =2 /¢/ x x. (The same, mutatis mutandis, for SG.)

SLE. Suppose /¢ @ y/ = 1. Then /¢/ < /y/ and since /¢ 2 y/ <y, y = 1.
Suppose /¢ 2 y/ < 1. Then /¢ D y/ = hy/ + ¢/, so ly/ + /§/ <y and N/ < /¢/ x 7.

(The same, mutatis mutandis, for DSL.)

4. Hedges

A final important group of truth functions in fuzzy logic are hedges.
These are locutions like “very”, “slightly”, “not too much”, and so forth, which
we use to qualify the truth values of our sentences. For instance, in ordinary
speech we might distinguish between the height of A, who is 6°6”, and of B, who
is 5’117, by saying that A is very tall, whereas B is sort of tall. Fuzzy theorists
interpret the former locution as indicating that the truth value of “A is tall” is very
close to 1; the latter locution is interpreted as indicating that B is close to being a
borderline case of tallness.

The hedges concentration and dilation, representing “very” and “slightly”,

respectively, are generally taken to be basic; other natural language hedges can be

defined in terms of these. (See Gaines 1976: 650-3.) There is a way to represent
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these hedges in Ly; we can define “very ¢” as ¢ A ¢, and “slightly ¢” as ¢ V ¢,

since these take the values

/6 /=2 x 1§/ - 1 for 1§/ > 0.5,

0 otherwise;

/oY ¢/ =1 for /§p/ =2 0.5,
2 x /¢/ otherwise.

These definitions may not be entirely satisfactory. A plausible constraint on an
account of concentration is that if /¢/ > /y/, /very ¢/ > /very y/. However, let
/¢/ =0.4 and hy/ =0.1; then /o A ¢/ =/y A y/ = 0.

Potentially more satisfactory hedges can be obtained in product logic by

defining “very ¢” as ¢ © ¢ and “slightly ¢ as ¢ @ ¢, since

16 © ¢/ =1/,
16 ® &/ =2 x /o — 19/,

The most commonly used hedges, however, seem to be those proposed by Zadeh
(see Gaines 1976: 643, 650-2). Using y¢ for “very ¢” and o¢ for “slightly ¢”, we

have

v/ = 19/,
180/ = 19/°7.

It is very simple to augment algebraic tableaux to cover Zadeh’s hedges.

For any formula or subformula ¢ in the scope of an operator y, we enter into the

tableau a line of the form
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Iyl = /.

Likewise, for any formula or subformula ¢ in the scope of an operator 8, we enter

into the tableau a line of the form
184/ = 1p/>.

It is also easy to see that these rules are sound for Zadeh’s hedges; the
necessary soundness lemmas proceed immediately from the definitions of the
connectives. The tableau procedure is thus now fully developed, as it covers all

the most important operators used in propositional fuzzy logic.
5. Problems for future research

I have presented algebraic tableaux as an informal system. A number of
different rules will typically apply to any given line of a proof, and the user may
choose to apply whichever of them seems most likely to lead to the desired
conclusion. This way of presenting the tableaux makes them easier for people to
use, but has the disadvantage of not providing an algorithm for determining when
an open branch of a tableau is finished. There is thus no algorithm as of yet for
determining if an open branch of a tableau furnishes a counterexample to the
inference in question. Branches that seem open do provide hypotheses for
counterexamples, the accuracy of which may be easily checked. So far, in work
with the tableaux, branches to which no more rules seem to apply have always
furnished counterexamples. Inductive evidence is not, of course, a proof;, but it
does suggest that a proof is possible.

In addition, it seems that the completeness of the system (for finite sets of
premises, as noted in I1.2) cannot be proven without an algorithm for determining

when no more rules can be fruitfully applied to open branches. Thus, providing
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an algorithm for constructing algebraic tableaux will provide a true decision
procedure for infinite-valued logic. There should be no difficulty in finding such
an algorithm for generating algebraic tableaux for RPLA and the Lukasiewicz
family, since the fragment of arithmetic with just addition and subtraction is
known to be decidable. It is not clear, however, if it is possible to provide an
algorithm for constructing tableaux for the Goguen connectives and Zadeh’s
hedges, since not all arithmetical statements involving multiplication and division
are decidable. Automating the tableaux—giving an algorithm for making tab-
leaux—and proving the completeness of the procedure (or an augmented version,
if the current procedure is not complete) will be the main aims of future work on
algebraic tableaux.

A further question is the computational complexity of the procedure. This
issue has not yet been studied, and sets a research agenda for those fuzzy logi-

cians interested in the theory of their subject.

6. Conclusion

The main thrust of this work has been to present a tableau procedure for
RPLA, an extension on Ly, the most commonly used infinite-valued logic. I have
then extended the system to cover the finite-valued members of the Lukasiewicz
family, product logic, and Zadeh’s hedges. The tableau procedure is sound for all
these systems, but has not been proven complete. In addition, in order to increase
the reader’s familiarity with infinite-valued logic in general and RPLA in
particular, I have given an overview of the use of fuzzy logic in vagueness, sorites
paradoxes, and control systems, an account of the central principles motivating
fuzzy logic, and a summary of the most important technical details of the systems
in question. Thus, the reader will hopefully be able to see what infinite-valued
logic has to offer in areas that classical logic addresses only poorly (if at all), and

what algebraic tableaux have to offer for the study and application of fuzzy logic.
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Appendix: major truth functions used in the text

VSS:
/=¢/=1-/¢/
(o v ) =max (/¢/, /y/)
($ A ) =min (/§/, /)

} P
o Dw) =min (1, 1-/¢/+ /)
(¢ Y y) =min (1, /¢/ + /)
/(¢ Ay) =max (0, /¢/ + y/ - 1)
(G=w) =1-1/¢/- Iy

/Ci/ =1, for each rational i € [0,1]
RPLA:

/T:¢/ = 1if /¢/ =1, for each rational i e [0,1]
0 otherwise

(o =)/ = 1if/d/ <yl
0 otherwise

(o &> y) = 1if/¢/=/y/
0 otherwise
Product logic:
1o O/ =/¢/ x hy/
1o D/ =14/ + N/ - 16/ x Iy/

/602 y/=1if/¢/ < hy/
N/ + 19/ otherwise
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