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Abstract

In this thesis we report on several projects that stemmed out from an attempt

to obtain an example for the last class in Doran-Morgan classi�cation of �vari-

ations of Hodge structure which can underlie families of Calabi-Yau threefolds

over the thrice-punctured sphere with b3 = 4, or equivalently h2,1 = 1� [DM06].

First, a framework for toric varieties and their Calabi-Yau subvarieties

has been implemented in the free open-source mathematical software system

Sage. While there are other software packages, both commercial and free, for

toric geometry, Sage has the advantage of smooth integration of numerous

libraries for other related objects such as graphs, symbolic expressions, fast

linear algebra, arbitrary precision and exact arithmetic, etc., combined with a

powerful yet simple interface. We hope that our framework will prove useful

both in research and teaching.

Next, closed-form combinatorial expressions were obtained for Hodge num-

bers hp,1(X) of Calabi-Yau nef complete intersections of two hypersurfaces in

toric varieties. Such formulas were long known for anticanonical hypersur-

faces, while for nef complete intersections one had to use a highly-recursive

generating function, whose actual computation requires signi�cant resources.

Our result provides a more e�cient way to compute Hodge numbers of given

Calabi-Yau varieties and can potentially be exploited to search for complete

intersections with prescribed Hodge numbers.



Finally, we have used torically induced �brations by M -polarized K3-

surfaces to construct an explicit geometric transition between an anticanonical

hypersurface and a nef complete intersection through a singular subfamily of

hypersurfaces. While we have concentrated on varieties inspired by the afore-

mentioned Doran-Morgan classi�cation, similar techniques may be used for

(partial) desingularization of other singular subfamilies of generically smooth

hypersurfaces.
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Introduction

In this brief introduction (partially based on [CdlOHS08, CK99, HKK+03,

Mav00]) we highlight some of the key points in the discovery and study of the

mirror symmetry phenomenon.

Calabi-Yau manifolds got a lot of attention after it was noticed [CHSW85]

that they arise naturally in the context of string theory: in addition to the

usual four dimensions of the space-time, six (real) extra ones have to be com-

pacti�ed to a Calabi-Yau (complex) threefold. It was also suggested [Dix88,

LVW89] that Calabi-Yau threefolds should come in pairs (M,M◦), with each

threefold in a pair leading to the same physical theory. Such pairs (M,M◦)

became known as mirror pairs.

More and more examples of Calabi-Yau manifolds were constructed, includ-

ing complete intersections in products of projective spaces [CDLS88, CLS88]

and orbifold quotients of hypersurfaces in projective [GP90] and weighted pro-

jective spaces [CLS90]. Some of them were explicitly constructed as mirror

pairs [GP90], but the symmetry was not perfect: it was expected that Hodge

numbers are reversed in a mirror pair (M,M◦): h1,1(M) = h2,1(M◦), yet in

the obtained lists there were numerous threefolds without possible mirrors.

All of the examples of Calabi-Yau threefolds mentioned above were even-

tually gathered in the setting of toric geometry [Bat94, BB96b] with a simple

combinatorial recipe for obtaining candidate mirror pairs realized as hypersur-

faces or complete intersections in toric varieties. It was shown [BB96a] that

mirror symmetry holds for the appropriately de�ned Hodge numbers of these

candidates in arbitrary dimension. In dimension three all Hodge numbers

of Calabi-Yau hypersurfaces in toric varieties were computed [KS02], giving

30,108 distinct pairs. Figure 1 on the following page shows these Hodge num-

ber pairs and, on the same scale, 264 pairs of Hodge numbers corresponding

to all complete intersections in products of projective spaces.
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Figure 1: Hodge numbers of Calabi-Yau threefolds realized as hypersurfaces
in toric varieties (left) and complete intersections in products of projective
spaces (right). Horizontal axis: χ(M) = 2(h1,1(M) − h2,1(M)), vertical
axis: h1,1(M) + h2,1(M). Mirror symmetry corresponds to χ(M) = −χ(M◦)
(and is clearly absent for complete intersections). Both images are taken
from [CdlOHS08].

More recently tropical geometry was combined with toric geometry in an

attempt to make the construction of mirror manifolds more direct and less

dependent on embedding into a suitable ambient space [GS06, GS10b]. It is

expected that this approach will help us to better understand mathematical

reasons of mirror duality: physics suggests much more than just exchange of

the Hodge numbers in a mirror pair, yet physical arguments are based on

string theory which does not yet have a complete mathematical foundation.

Mirror symmetry and geometry of Calabi-Yau manifolds remains a very

active area of research involving and connecting many areas of mathematics

including all �avours of geometry (algebraic, arithmetic, combinatorial, dif-

ferential, symplectic, toric, tropical, . . . ) and homological algebra. There is

a number of generalizations one can make compared to the original case of

Calabi-Yau compact complex three-dimensional manifolds. Mild singularities

are very natural in the context of toric and tropical approaches in mathematics

and have certain interpretations in physics. It is of interest both to mathe-

maticians and physicists to consider Calabi-Yau varieties of dimension lower

(elliptic curves and K3 surfaces) or higher than three. Some models consider

non-compact varieties and varieties over �elds other than complex numbers.

There are even proposals that drop the Calabi-Yau requirement and expect a

kind of mirror symmetry to hold for varieties of other types as well!
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This thesis is organized in the following way: Chapter 1 introduces general

foundations of toric geometry, simultaneously serving as an excuse to demon-

strate the framework for toric varieties in Sage. Chapter 2 explains mirror

symmetry constructions in toric geometry. Chapter 3 presents a new combi-

natorial way to compute Hodge numbers of Calabi-Yau complete intersections

in toric varieties, based on the previously known generating function. Chap-

ter 4 relies on Sage to connect certain Calabi-Yau hypersurfaces and complete

intersections in toric varieties via explicit geometric transitions.

3



Chapter 1

Toric Geometry via Sage

In this chapter we provide an introduction to relevant parts of toric geometry.

Standard references are books by Oda [Oda88] and Fulton [Ful93], but we

base our exposition mostly on a wonderful new textbook by Cox, Little and

Schenck [CLS11], which re�ects modern development of the area, provides vast

detailed examples, and has a lot of exercises.

While all mathematical results presented in this chapter are well known

(and can be found in [CLS11]), the novelty of our presentation is in illustrating

all notions using code [BN11] developed for Sage [S+11] by Volker Braun and

the author, whenever possible. (This code is still under active development and

certain features are not implemented, but it already includes several hundred

methods covering some of the major constructions.)

1.1 Why Sage?

When one decides to use computers for mathematical computations, there are

many software options to choose from, including general-purpose programming

languages such as C if one is ready to implement all necessary supporting

framework. To some extent the �nal choice depends on personal preferences

and it is likely to be impossible to convince everyone that this choice is right.

Nevertheless, in this section we try to provide some hopefully convincing ar-

guments in favour of Sage.

Sage is a software for mathematical computations. It covers many areas

of mathematics, so it is likely that one does not have to reimplement any

algorithms for basic computations (e.g. precise arithmetic, linear algebra,
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polynomial rings, plots) and there is a good chance that more advanced ones

will be available (e.g. symbolic operations, graphs, cohomology). So at the

very least Sage deserves consideration as a platform of choice.

Sage makes it easy to interface other software packages. If it turns out that

it is absolutely necessary to use some feature X from a package Y (but the

package Y cannot do everything that you need), it is quite easy to do so from

Sage. Interfaces to many packages are already included in Sage and there is a

general framework for creating new interfaces.

Sage is free (costs no money). While commercial software packages may

be available to students and faculty in universities �free of charge� and there

are often signi�cant discounts to students wishing to install it on their own

computers, universities still have to pay for expensive site licenses, students

may no longer use their copies after graduation, and even after discounts these

packages are too expensive for people in many countries.

Sage is free (has non-restrictive license) and open-source. The usual anal-

ogy used by Sage developers is that anyone can read a proof of some theorem

and then use both the theorem and its proof to create new results. Similarly,

if a program was used to produce mathematical results, its code has to be

available for anyone to study and modify, if desired.

Sage is convenient. It uses a general-purpose easy-to-learn interpreted

programming language Python [vR+10] for its interaction and at the same

time allows smooth transition to compiled code via Cython [EBB+10]. The

graphical user interface of Sage works through a browser, in the same way on

all supported platforms, both locally and over a network, with built-in features

for collaboration.

Sage is documented and supported. While it is di�cult to compete with

commercial projects in this area, Sage strives to provide extensive documenta-

tion and automatic tests for every function (currently about 85% of functions

are fully documented). Despite inclusion of multiple components, Sage auto-

matically builds on all supported platforms without necessity of any tuning or

requiring administrative rights. In fact, installing �complete Sage� can be the

easiest way to get a working installation of some of its components!

Sage development process is transparent. All contributions to Sage are

peer reviewed, author-referee communication takes place on a freely accessible

site, and anyone has immediate access to code implementing new functionality

5



even before it gets merged into the main distribution. In particular, when you

report a bug there is a chance that it will be �xed in a matter of days if not

hours, which is important if this bug prevents you from continuing your work

and you are not able to �x it yourself.

Quoting a recent note in Nature [Mer10], �As a general rule, researchers do

not test or document their programs rigorously, and they rarely release their

codes, making it almost impossible to reproduce and verify published results

generated by scienti�c software [...]. At best, poorly written programs cause

researchers [...] to waste valuable time and energy. But the coding problems

can sometimes cause substantial harm, and have forced some scientists to

retract papers.� We hope that future development of Sage will promote better

coding practices and sharing between researches: since code submitted to Sage

must be documented, tested, and readable, and since at least one person other

than the author of the code must certify that it looks correct, it is likely to

be of substantially higher quality than code written �just for internal use�. Of

course, writing proper documentation and tests requires extra time, but being

able to reuse previously submitted code should amply compensate for it.

Due to the above arguments and personal preferences the author decided

to use Sage. Perhaps, the fact that most computer-aided examples in [CLS11]

are implemented either in Macaulay2 [GS+10a] or in Sage can serve as a more

objective indication of a good choice of platform. Also, in the spirit of inter-

facing other software packages from Sage, the author has done some work on

improving robustness of Sage-Macaulay2 interaction and it is anticipated that

there will be support for automatic conversion of toric geometry objects be-

tween these systems allowing one not only to complement features missing in

one of the implementations, but also use it as a way of correctness veri�cation.

As an unanticipated and very pleasant side-e�ect of using Sage, the author

was able to use SageTeX [D+10] to automatically process all code examples

and create graphics for this thesis, eliminating the need for copy-pasting and

formatting of command line sessions and/or inserting screenshots.

1.2 Cones and Fans

Let M and N be dual lattices of rank n, i.e. M ' N ' Zn as free Abelian

groups and we identify M with HomZ(N,Z) and N with HomZ(M,Z) using

6



the natural pairing 〈·, ·〉 : M × N → Z. We can create such lattices in Sage

for any explicit rank n:

sage: N = ToricLattice(2)

sage: M = N.dual()

sage: M

2-d lattice M

sage: N(3,4)

N(3, 4)

sage: M(1,2) * N(3,4)

11

While the default names for dual toric lattices areM and N as above to match

the standard notation in the literature, it is possible to use any other names

as well:

sage: L = ToricLattice(5, "L")

sage: L, L.dual()

(5-d lattice L, 5-d lattice L*)

For each lattice we have the associated real vector space, which we will denote

by the subscript R, e.g. for the lattice N it is NR = N ⊗Z R. In order to avoid

excessive repetitions, below M , N , MR, and NR are always assumed to be as

described above.

De�nition 1.2.1. A convex polyhedral cone σ in NR is a set of the form

σ = Cone(S) =

{∑
v∈S

λvv : λv ∈ R>0

}

for some �nite set S ⊂ NR. We say that σ is strictly convex if it contains

no subspaces of NR except for the trivial one. We say that σ is rational, if it

can be generated by a �nite set S ⊂ N . We also let Cone(∅) = {0}.

Remark 1.2.2. Note that for a strictly convex rational polyhedral cone there

is a canonical choice of generators, namely the lattice points of minimal (non-

zero) norm on the generating rays (or edges) of the cone.

Remark 1.2.3. Below we deal exclusively with rational convex polyhedral

cones, so after the above de�nition we actually drop these adjectives and refer

7



to such cones as �just� cones. In most cases, but not all, our cones are also

strictly convex, this condition is always stated explicitly.

In Sage, cones take into account both remarks:

sage: quadrant = Cone([(1/2,0), (1,2), (0,3)])

sage: quadrant.rays()

(N(1, 0), N(0, 1))

The Cone command constructs a (rational convex polyhedral) cone, normal-

izing generators to primitive integral vectors and discarding unnecessary gen-

erators. It does not always pick a minimal set of generators for non-strictly

convex cones, since it is usually more convenient to deal with pairs of opposite

generators:

sage: plane = Cone([(1,0), (0,1), (-1,-1)])

sage: plane.rays()

(N(1, 0), N(-1, 0), N(0, 1), N(0, -1))

sage: plane.ray_matrix()

[ 1 -1 0 0]

[ 0 0 1 -1]

However, you can force Sage to use the rays provided by you, if necessary:

sage: plane = Cone([(1,0), (0,1), (-1,-1)], check=False)

sage: plane.ray_matrix()

[ 1 0 -1]

[ 0 1 -1]

In these examples we have used rays and ray_matrix methods to output rays

either as a list or as columns of a matrix. There are also several other repre-

sentations described in the documentation.

De�nition 1.2.4. Let σ ⊂ NR be a cone. Its dual cone σ∨ is

σ∨ = {u ∈MR : 〈u, v〉 > 0 for all v ∈ σ} .

For the two cones constructed above the dual ones are the �rst quadrant

and the trivial cone in MR:

sage: quadrant.dual()

2-d cone in 2-d lattice M

8



sage: quadrant.dual().rays()

(M(1, 0), M(0, 1))

sage: plane.dual()

0-d cone in 2-d lattice M

sage: plane.dual().rays()

()

sage: plane.dual().is_trivial()

True

sage: plane.dual().dual() is plane

True

De�nition 1.2.5. A face τ of a cone σ ⊂ NR is any set of the form τ =

σ ∩ u⊥ for u ∈ σ∨, where u⊥ = {v ∈ NR : 〈u, v〉 = 0} (for u 6= 0 it is called a

supporting hyperplane of σ). A proper face τ is any face τ 6= σ.

Faces of a strictly convex cone σ (including the origin and σ itself) form an

atomistic and coatomistic Eulerian lattice with respect to the inclusion relation

and grading by dimension.

De�nition 1.2.6. Let P be a poset. It is a lattice if any two elements of

P have a unique in�mum (called their meet) and a unique supremum (called

their join).

For cones the intersection of any two faces is a face and for any two faces

there is a unique smallest face containing them.

Remark 1.2.7. If P is a lattice, then, of course, any �nite collection of its

elements has both meet and join. In particular, if P is �nite, then it has the

minimum and maximum elements which we will denote as 0̂ and 1̂ respectively.

De�nition 1.2.8. Let P be a lattice with the minimum element 0̂. An element

a ∈ P is an atom if it covers 0̂, i.e. there is no element x ∈ P such that

0̂ < x < a. Lattice P is atomic if for any element x ∈ P there exists an atom

a ∈ P such that a 6 x. Lattice P is atomistic if any element x ∈ P is a join

of atoms of P . Coatom, coatomic, and coatomistic are dual notions.

For cones any face can be speci�ed by either rays generating it or facets

(faces of codimension one) containing it.

9



De�nition 1.2.9. A graded poset P is an Eulerian poset if any non-trivial

interval in P , i.e. the set [x, y] = {z ∈ P : x 6 z 6 y} for any x, y ∈ P such

that x < y, has the same number of elements of even and odd rank.

Sage provides a number of methods for working with faces and �walking

along� the face lattice, to illustrate some of these methods we �rst construct

a slightly more complicated cone than before:

sage: cone = Cone([(0,0,1), (1,0,1), (1,1,1), (0,1,1)])

sage: cone.face_lattice()

Finite poset containing 10 elements

sage: [len(cone.faces(d)) for d in [0..3]]

[1, 4, 4, 1]

sage: ray = cone.embed(Cone([(1,0,1)]))

The last command constructed a 1-dimensional cone ray in the direction

(1, 0, 1), which �knows� that it is considered as a face of cone. This is im-

portant if we want to look at neighbours of ray in the face lattice of cone:

sage: ray.facets()

(0-d face of 3-d cone in 3-d lattice N,)

sage: ray.facet_of()

(2-d face of 3-d cone in 3-d lattice N, 2-d face of 3-d cone in

3-d lattice N)

sage: ray.adjacent()

(1-d face of 3-d cone in 3-d lattice N, 1-d face of 3-d cone in

3-d lattice N)

For non-strictly convex cones the situation is similar, but all faces share the

largest contained linear subspace and the minimal set of generating rays is

de�ned only modulo this subspace. Note also that cone duality induces an

inclusion-reversing bijection between the faces of a cone σ ⊂ NR and the faces

of its dual cone σ∨ ⊂MR.

De�nition 1.2.10. A fan Σ in NR is a �nite collection of strictly convex

rational polyhedral cones in NR such that

1) if σ ∈ Σ and τ is a face of σ, then τ ∈ Σ,

2) if σ1, σ2 ∈ Σ, then τ = σ1 ∩ σ2 is a face of each.

The set of all k-dimensional cones of Σ will be denoted by Σ(k) and the set of

maximal cones (not contained in any other cone of Σ) by Σmax.

10



Note that because of the face containment requirement fans are likely to

contain �a lot� of cones, but to de�ne a fan it is su�cient to provide only its

maximal cones. Sage allows fan construction from any collection of (compati-

ble) cones, but it may warn you about �redundant� ones.

sage: cone0 = Cone([(1,0), (0,1)])

sage: cone1 = Cone([(0,1), (-1,-1)])

sage: cone2 = Cone([(-1,-1), (1,0)])

sage: fan = Fan([cone0, cone1, cone2])

sage: fan

Rational polyhedral fan in 2-d lattice N

sage: fan.ngenerating_cones()

3

sage: fan(1)

(1-d cone of Rational polyhedral fan in 2-d lattice N, 1-d cone of

Rational polyhedral fan in 2-d lattice N, 1-d cone of Rational

polyhedral fan in 2-d lattice N)

sage: fan.ray_matrix()

[ 0 1 -1]

[ 1 0 -1]

Similar to the face lattice of a cone, cones of a fan form a lattice with the

fan itself as its maximal element. These lattices are particularly similar for an

important special case of complete fans.

De�nition 1.2.11. Let Σ be a fan in NR. Its support is

|Σ| =
⋃
σ∈Σ

σ ⊂ NR.

If |Σ| = NR, Σ is called complete.

For complete fans every cone can be described either by rays (1-dimensional

cones) generating it, or by maximal-dimensional cones (analogs of facets) con-

taining it:

sage: ray = fan(1)[0]

sage: ray.rays()

(N(0, 1),)

sage: ray.ambient_ray_indices()

11



(0,)

sage: fan.rays(ray.ambient_ray_indices())

(N(0, 1),)

sage: ray.star_generator_indices()

(0, 1)

sage: fan.generating_cone(0).intersection(

fan.generating_cone(1)).rays()

(N(0, 1),)

1.3 Fans from Polytopes

A natural source of fans is provided by lattice polytopes.

De�nition 1.3.1. A lattice polytope ∆ in MR is the convex hull of �nitely

many lattice points of M . We call ∆ full-dimensional if the a�ne subspace

spanned by it is MR itself.

In Sage support for lattice polytopes is provided via lattice_polytope

module written mostly by the author [Nov11], while more general polyhedra

can be handled by polyhedra module written mostly by Volker Braun and

Marshall Hampton [BH11]. Both modules were written before the rest of the

toric geometry framework and sometimes it leads to (small) interface incon-

sistencies, e.g. lattice polytopes in Sage are not actually aware of any lattices

except for Zn. We plan to improve intermodule integration in the near future.

sage: simplex = LatticePolytope([(0,0), (1,0), (0,1)])

sage: simplex

A lattice polytope: 2-dimensional, 3 vertices.

sage: simplex.vertices()

[0 1 0]

[0 0 1]

sage: Delta = LatticePolytope([(-1,-1), (-1,2), (2,-1)])

sage: Delta.vertices()

[-1 -1 2]

[-1 2 -1]

sage: Delta.points()

[-1 -1 2 -1 -1 0 0 0 1 1]

[-1 2 -1 0 1 -1 0 1 -1 0]
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In Sage LatticePolytope's methods vertices and points behave similar to

ray_matrix for Cone's and Fan's: they return matrices whose columns are ver-

tices or all lattice points of the polytope.

De�nition 1.3.2. Let ∆ ⊂ MR be a full-dimensional lattice polytope. Its

normal fan Σ∆ in NR is generated by cones Cv for all vertices v of ∆. Each

Cv is generated by inner normals of facets of ∆ containing v.

Note that the normal fan is insensitive to shifts and scaling of the original

polytope, in particular simplex and Delta constructed above should produce

the same normal fans:

sage: Sigma_simplex = NormalFan(simplex)

sage: Sigma_simplex.is_complete()

True

sage: Sigma_simplex.ray_matrix()

[ 1 0 -1]

[ 0 1 -1]

sage: Sigma_Delta = NormalFan(Delta)

sage: Sigma_Delta.ray_matrix()

[ 1 0 -1]

[ 0 1 -1]

sage: Sigma_simplex == Sigma_Delta

False

This may seem wrong, but this is due to the fact that equality of fans in Sage

is understood as having the same rays and cones in the same order. To check

mathematical equality we may use is_equivalent method:

sage: Sigma_simplex.is_equivalent(Sigma_Delta)

True

De�nition 1.3.3. Let ∆ ⊂ NR be a lattice polytope containing the origin.

Its face fan, as the name suggests, consists of cones generated by faces of ∆.

We construct the same fan as above one more time, now as a face fan:

sage: Delta_p = LatticePolytope([(1,0), (0,1), (-1,-1)])

sage: fan = FaceFan(Delta_p)

sage: fan.ray_matrix()
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[ 1 0 -1]

[ 0 1 -1]

sage: fan.plot()

Graphics object consisting of 16 graphics primitives

If you execute the last command in Sage, you are actually more likely to get

the plot showed in Figure 1.1 either opened in a graphics viewer or embedded

into a notebook worksheet, rather than its text description. Dots are lattice

points, coloured sectors are 2-dimensional cones, and lines between them are 1-

dimensional cones with primitive integral generators marked via arrows. Label

indices correspond to the internal order of rays and cones of the fan, we often

hide them if there is no need to reference particular cones on diagrams.

ρ0

ρ1

ρ2

σ0

σ1

σ2

Figure 1.1: Complete 2-dimensional fan

1.4 Fan Morphisms

Recall that toric lattices are groups isomorphic to Zn, so while one is free to

pick a basis, the origin is �xed, and a morphism between toric lattices is a group

homomorphism sending the origin to the origin. If such a morphism behaves

well with respect to other cones of two �xed fans, we get a fan morphism.

De�nition 1.4.1. Let N and N ′ be lattices, Σ be a fan in NR, and Σ′ be

a fan in N ′R. A fan morphism ϕ from Σ to Σ′ is a lattice homomorphism

ϕ : N → N ′ such that for any cone σ ∈ Σ its image (under the linear extension

ϕR : NR → N ′R of ϕ) is completely contained in some cone σ′ ∈ Σ′.
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Note that ϕ also induces a map between Σ and Σ′ as �nite sets of cones:

σ ∈ Σ is mapped to the smallest σ′ ∈ Σ′ containing ϕR(σ) or, alternatively,

σ 7→ σ′ if the image of the relative interior of σ under ϕR lies in the relative

interior of σ′. We will denote this map of cones by ϕ as well, so ϕ(σ) = σ′ if

ϕR(RelInt(σ)) ⊂ RelInt(σ′).

De�nition 1.4.2. Let ϕ : Σ → Σ′ be a fan morphism, let σ ∈ Σ, and let

σ′ = ϕ(σ). Then σ is a primitive cone corresponding to σ′ if there is no

proper face τ of σ such that ϕ(τ) = σ′.

Two special cases of fan morphisms are fan subdivisions and inclusions of

subfans (e.g. generated by a single cone), in both cases lattices N and N ′

coincide and ϕ : N → N ′ is the identity map. The following code creates

two such fan morphisms in Sage, with the relevant fans shown in Figure 1.2

and Figure 1.3 on the following page.

sage: quadrant = Fan([Cone([(1,0), (0,1)])])

sage: subdivided_quadrant = quadrant.subdivide([(1,1)])

sage: phi = FanMorphism(identity_matrix(2), subdivided_quadrant,

quadrant)

sage: half_quadrant = Fan([subdivided_quadrant.generating_cone(0)])

sage: psi = FanMorphism(identity_matrix(2), half_quadrant,

subdivided_quadrant)

ϕ−→

Figure 1.2: Fan subdivision

In the above example we have used subdivide method of fans to produce

subdivided_quadrant by specifying new rays that had to be present in the

new fan. It is also possible to automatically perform subdivisions necessary

for obtaining fan morphisms between �incompatible fans.� We demonstrate it

15



ψ−→

Figure 1.3: Subfan inclusion

using previously constructed complete fan (shown in Figure 1.1 on page 14)

projected onto the vertical axis:

sage: v_fan = Fan([Cone([(0,1)]), Cone([(0,-1)])])

sage: xi = FanMorphism(matrix(2, 2, [0,0,0,1]), fan, v_fan,

subdivide=True)

sage: xi.domain_fan().ngenerating_cones()

4

In this case it was necessary to split one of the cones (the �top-left� one) into

two, since otherwise the image of this cone was not contained in a single cone

of the codomain fan, in fact, its image was not even strictly convex! The

resulting fans are shown in Figure 1.4.

ξ−→

Figure 1.4: Automatic fan subdivision

1.5 Toric Varieties

In the context of toric geometry tori are di�erent from the usual de�nitions

such as products of circles.
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De�nition 1.5.1. A torus T is an a�ne variety isomorphic to (C∗)n with

the group structure corresponding to componentwise multiplication in (C∗)n.

Every n-dimensional torus T has two dual lattices of rank n associated to it:

its character lattice M and the lattice of one-parameter subgroups N . Fixing

an isomorphism T ' (C∗)n also �xes isomorphisms M ' Zn and N ' Zn.
Under these isomorphisms, an element m = (a1, . . . , an) ∈ M corresponds to

the character χm : T → C∗ de�ned by χm(t) = χm (t1, . . . , tn) = ta1
1 . . . tann ,

while an element n = (b1, . . . , bn) ∈ N corresponds to the one-parameter

subgroup λn : C∗ → T de�ned by λn(t) =
(
tb1 , . . . , tbn

)
. The natural pairing

between M and N corresponds to the usual dot product 〈m,n〉 =
∑n

i=1 aibi

or, equivalently, 〈m,n〉 = `, where ` ∈ Z is such that χm ◦ λn(t) = t`. There

is also a canonical isomorphism N ⊗Z C∗ ' T , given by n⊗ t 7→ λn(t), so we

can start with an arbitrary lattice N and obtain a torus denoted by TN , such

that N is the lattice of one-parameter subgroups of TN .

De�nition 1.5.2. A toric variety is an irreducible variety X containing a

torus T as a Zariski open subset such that the action of T on itself extends to

an algebraic action of T on X.

There are di�erent ways to construct toric varieties, but in this work we

are primarily interested in toric varieties corresponding to cones and fans.

Theorem 1.5.3. Let σ ⊂ NR be a strictly convex cone. Then

Uσ = Spec (C[σ∨ ∩M ]) ,

where C[σ∨ ∩M ] is the semigroup algebra of σ∨ ∩M , is a normal a�ne toric

variety of dimension n = rkN with torus TN ⊂ Uσ.

If X is a normal a�ne toric variety with torus TN , then X = Uσ for some

σ as above.

Proof. See Theorems 1.2.18 and 1.3.5 in [CLS11].

For example, if σ = {0} is the trivial cone in NR, then σ
∨ ∩M = M and

Uσ = Spec(C[M ]) ' Spec
(
C
[
t±1
1 , . . . , t±1

n

])
= (C∗)n ' TN .

Proposition 1.5.4. Let σ ⊂ NR be a strictly convex cone and τ be its face.

Then there is a natural inclusion Uτ ↪→ Uσ.
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Proof. See Proposition 1.3.16 in [CLS11] and comments thereafter.

In particular, the inclusion TN ↪→ Uσ corresponds to the origin being a face

of any strictly convex cone σ ⊂ NR. It is also possible for two strictly convex

cones σ1 and σ2 in the same space NR to have a bigger common face τ than

the origin. In this case we get natural inclusions Uσ1 ←↩ Uτ ↪→ Uσ2 , that allow

us to glue Uσ1 and Uσ2 along a common open subset. Of course, this works

best if σ1 and σ2 have particularly agreeable face structures.

Theorem 1.5.5. Let Σ be a fan in NR. Let XΣ be a variety obtained by gluing

a�ne toric varieties Uσ for all σ ∈ Σ along their maximal common subsets,

i.e. Uσ1 and Uσ2 are glued along Uσ1∩σ2. Then XΣ is a separated normal toric

variety with torus TN .

If X is a separated normal toric variety with torus TN , then X = XΣ for

some Σ as above.

Proof. See Theorems 3.1.5, 3.1.7, and Corollary 3.1.8 in [CLS11].

Below we use notation XΣ for the normal toric variety associated to a fan

Σ and, to avoid towers of subscripts, X∆ for the toric variety associated to the

normal fan Σ∆ of a lattice polytope ∆.

In Sage we can construct toric varieties of the form Uσ and XΣ as follows

(as Σ we use fan constructed earlier):

sage: sigma = Cone([(1,0), (1,2)])

sage: U_sigma = AffineToricVariety(sigma)

sage: U_sigma

2-d affine toric variety

sage: U_sigma.is_smooth()

False

sage: U_sigma.is_orbifold()

True

sage: X_Sigma = ToricVariety(fan)

sage: X_Sigma

2-d toric variety covered by 3 affine patches

sage: X_Sigma.is_smooth()

True

sage: X_Sigma.is_complete()

True
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Note that XΣ in the above example is �covered by 3 a�ne patches.� While

there are de�nitely more a�ne open subsets of XΣ, three special ones corre-

sponding to maximal cones of Σ are su�cient to cover XΣ. Smoothness and

completeness of XΣ in this example easily follow from the structure of Σ.

De�nition 1.5.6. A cone σ ⊂ NR is called a smooth cone if it can be gen-

erated by a subset of an integral basis, i.e. a basis of the underlying lattice N .

A fan is called a smooth fan if all of its cones are smooth.

De�nition 1.5.7. A cone σ ⊂ NR is called a simplicial cone if it can be

generated by a linearly independent set. A fan is called a simplicial fan if

all of its cones are simplicial.

Theorem 1.5.8. Let Σ be a fan in NR. Then

1) XΣ is smooth if and only if Σ is smooth,

2) XΣ is an orbifold (has only �nite quotient singularities) if and only if Σ

is simplicial,

3) XΣ is complete (and compact in the Euclidean topology) if and only if Σ

is complete.

Proof. See Theorem 3.1.19 in [CLS11].

1.6 Homogeneous Coordinates

While the usual de�nition of toric varieties corresponding to fans involves

gluing a�ne toric varieties corresponding to cones, just as we have done in

Theorem 1.5.5, it is often more convenient to work with homogeneous coordi-

nates �covering� the whole variety at once, rather than chart by chart. This

description works best for orbifolds without torus factors, so we often state

results for such varieties only, although most of them have variations without

this assumption.

De�nition 1.6.1. A toric variety X with torus T has a torus factor if it is

equivariantly isomorphic to the product X ′× T ′′ of a non-trivial torus T ′′ and
a toric variety of smaller dimension X ′ with torus T ′, i.e. X ' X ′ × T ′′ and
T ' T ′ × T ′′.

Proposition 1.6.2. Let Σ be a fan in NR. Then XΣ has a torus factor if and

only if rays of Σ do not span NR.
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Proof. See Proposition 3.3.9 in [CLS11].

De�nition 1.6.3. Let XΣ be a toric variety without torus factors associ-

ated to a fan Σ in NR. The total coordinate ring (a.k.a. homogeneous

coordinate ring or Cox's ring) of XΣ is the polynomial ring S(Σ) =

C [zρ : ρ ∈ Σ(1)] with one variable for each ray of Σ. The irrelevant ideal is

B(Σ) =
〈
zσ̂ : σ ∈ Σ

〉
, where zσ̂ =

∏
ρ 6∈σ zρ. The zero set of this ideal is the

exceptional set Z(Σ) = V (B(Σ)) ⊂ CΣ(1), where CΣ(1) = Spec(S(Σ)) is the

usual Cartesian product of copies of C indexed by rays ρ ∈ Σ(1).

Theorem 1.6.4. Let XΣ be an orbifold toric variety without torus factors

corresponding to a fan Σ in NR. Let G ⊂ (C∗)Σ(1) be the kernel of the map

(C∗)Σ(1) → TN sending the ray in (C∗)Σ(1) corresponding to ρ ∈ Σ(1) to the

one-parameter subgroup of TN corresponding to the primitive generator of ρ.

Then XΣ '
(
CΣ(1) \ Z(Σ)

)
/G, where the action of G is given by component-

wise multiplication.

Proof. See Theorem 5.1.11 in [CLS11].

Remark 1.6.5. Homogeneous coordinates can be used for more general toric

varieties as well, however if there is a torus factor, the choice of coordinates

corresponding to it is not canonical, while allowing worse than orbifold singu-

larities leads to only almost geometric quotient, see Chapter 5 in [CLS11] for

further details.

Example 1.6.6 (The Projective Plane). Let's take a look at the quotient rep-

resentation of XΣ corresponding to the complete fan we have already encoun-

tered many times. Let Σ contain the trivial cone, rays generated by v0 = (1, 0),

v1 = (0, 1), v2 = (−1,−1), and 2-dimensional cones σ0 = Cone({v1, v2}),
σ1 = Cone({v0, v2}), σ2 = Cone({v0, v1}) (see Figure 1.1 on page 14).

Since we have 3 rays, the total coordinate ring is S = C[z0, z1, z2] and

CΣ(1) = C3. The irrelevant ideal is generated by 7 monomials (one for each

cone of the fan):

B(Σ) = 〈z0z1z2, z1z2, z0z2, z0z1, z2, z1, z0〉 = 〈z0, z1, z1〉 .

The exceptional set is just the origin, Z(Σ) = V (z0, z1, z2) = {(0, 0, 0)}.
It remains to determine G, which is the kernel of the map (C∗)3 → (C∗)2

given by (λ0, λ1, λ2) 7→ (λ0λ
−1
2 , λ1λ

−1
2 ). Since (λ0λ

−1
2 , λ1λ

−1
2 ) = (1, 1) if and
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only if λ0 = λ1 = λ2, we see that G ' C∗ with action on C3 given by

λ · (z0, z1, z2) = (λz0, λz1, λz2).

Combining all pieces together, we get XΣ = (C3 \ {(0, 0, 0)})/G, which is

the usual quotient description of the projective plane, XΣ ' P2!

Now that we know that our XΣ is the projective plane, we can access it in

Sage much quicker, avoiding explicit fan and variety construction:

sage: P2 = toric_varieties.P(2)

sage: P2

2-d CPR-Fano toric variety covered by 3 affine patches

sage: P2.plot()

Graphics object consisting of 16 graphics primitives

We explain the meaning of �CPR-Fano� in the description of P2 in Section 2.1,

meanwhile, note that it is possible to plot P2: Sage actually plots the underly-

ing fan with rays labelled by corresponding coordinates, as shown in Figure 1.5.

z0

z1

z2

σ0

σ1

σ2

Figure 1.5: Projective plane

When working with toric varieties in Sage, beware of the following conven-

tion:

sage: P2.coordinate_ring()

Multivariate Polynomial Ring in z0, z1, z2 over Rational Field

As you see, the coordinate ring of P2 turned out to be over rational rather than

complex numbers. This is done for the sake of fast and precise arithmetic, we
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still treat toric varieties as de�ned over complex numbers. If you wish, you

can drop this implicit assumption and work with �honest� complex varieties:

sage: P2_over_CC = P2.base_extend(CC)

sage: P2_over_CC.coordinate_ring()

Multivariate Polynomial Ring in z0, z1, z2 over Complex Field with

53 bits of precision

The projective plane example suggests that the original description of the

irrelevant ideal in De�nition 1.6.3 is not the most e�cient one. Indeed, it

is enough to take only monomials zσ̂ corresponding to all σ ∈ Σmax, since

all other cones will give multiples of these monomials. It is also possible to

describe irreducible components of the exceptional set.

De�nition 1.6.7. Let Σ be a fan. A primitive collection of Σ is any subset

C of rays of Σ such that

1) C is not contained in any cone σ ∈ Σ;

2) any proper subset of C is contained in some cone σ ∈ Σ.

Proposition 1.6.8. Let Σ be a fan. The decomposition of the exceptional set

Z(Σ) into its irreducible components is given by Z(Σ) = ∪CV (zρ : ρ ∈ C) with

C running over all primitive collections of Σ.

Proof. See Proposition 5.1.6 in [CLS11].

In addition to the projective plane, let us also mention toric realizations of

other standard spaces. In the 1-dimensional case there are only three possible

fans: the origin corresponding to the torus C∗, the ray corresponding to the

a�ne line A1, and the complete fan corresponding to the projective line P1.

In any dimension n the fan generated by the cone on standard basis vectors

of the lattice corresponds to An. If we add one more ray opposite to the sum

of basis vectors and take all cones generated by all-but-one rays from this

collection, we get the fan corresponding to Pn. In Sage one can quickly con-

struct these varieties using toric_varieties.A(n) and toric_varieties.P(n).

Finally, the product of fans corresponds to the product of varieties, for exam-

ple Figure 1.6 on the next page shows the fan of P1 × P1, accessible in Sage

via toric_varieties.P1xP1().
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st

x

y

σ0σ1

σ2 σ3

Figure 1.6: Product of projective lines

1.7 Torus Orbits and Toric Divisors

Since any toric variety X comes equipped with a torus action by de�nition, it

has a strati�cation into orbits of this action. One of them is the torus itself

and, by de�nition, its closure is the whole variety. Closures of other orbits

correspond to subvarieties of smaller dimension and it turns out that they are

numerous enough to generate both the class group Cl(X) and the Chow group

of X.

Theorem 1.7.1. Let Σ be a fan in NR, dimNR = n. Then:

1) There is a bijective correspondence between cones σ ∈ Σ and TN -orbits

O(σ) ⊂ XΣ, with dimO(σ) = n− dimσ.

2) A�ne subsets Uσ are unions of orbits, Uσ =
⋃
τ face of σ O(τ).

3) The closure of O(σ) is O(σ) =
⋃
σ face of τ∈ΣO(τ) in both Zariski and

Euclidean topologies.

Proof. See Theorem 3.2.6 in [CLS11].

De�nition 1.7.2. Let Σ be a fan in NR. For any ρ ∈ Σ(1) a prime toric

divisor Dρ of XΣ is the torus-invariant Weil divisor Dρ = O(ρ). The group

of toric divisors is DivTN (XΣ) =
⊕

ρ∈Σ(1) ZDρ ⊂ Div(XΣ).

Characters correspond to principal toric divisors, so we get a natural map

M → DivTN (XΣ) and its cokernel is the class group.
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Proposition 1.7.3. Let Σ be a fan in NR. Let m ∈ M . Then the divisor

on XΣ corresponding to χm is div(χm) =
∑

ρ∈Σ(1) 〈m, vρ〉Dρ, where vρ is the

primitive integral generator of ρ.

Proof. See Proposition 4.1.2 in [CLS11].

Theorem 1.7.4. Let XΣ be the toric variety without torus factors correspond-

ing to a fan Σ in NR. Then

0→M → DivTN (XΣ)→ Cl(XΣ)→ 0

is a short exact sequence.

Proof. See Theorem 4.1.3 in [CLS11].

The exact sequence of the above theorem gives a Cl(XΣ)-grading on the

total coordinate ring of XΣ: for a monomial za ∈ S(Σ) with a ∈ ZΣ(1) we

de�ne its degree deg(za) to be the class of the divisor
∑

ρ aρDρ. This grading

strengthens the similarity between projective spaces and more general toric

varieties.

Theorem 1.7.5. Let Σ be a simplicial fan. Then there is a bijective corre-

spondence between closed subvarieties of XΣ and radical homogeneous ideals

I ⊂ B(Σ) ⊂ S(Σ).

Proof. See Proposition 5.2.7 in [CLS11].

While it is necessary to require inclusion into the irrelevant ideal to get a

bijective correspondence between ideals and subvarieties, it is sometimes more

convenient to work with simpler ideals that fail to satisfy this condition. In par-

ticular, a prime toric divisor Dρ can be described by the equation zρ = 0, while

the ideal corresponding to it according to the theorem is I(Dρ) = 〈zρ〉∩B(Σ).

This does not imply that these divisors are always Cartier, since homogeneous

coordinate functions may often fail to be valid functions on the toric variety

due to incompatibility with the quotient map.

Here is an example of creating a Weil toric divisor in Sage, checking that

it is in fact Cartier, mapping it to the (rational) class group and lifting back

to the toric divisor group.

sage: P1xP1 = toric_varieties.P1xP1()
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sage: D1 = P1xP1.divisor(1)

sage: D1

V(t)

sage: D1.is_Cartier()

True

sage: D1_class = D1.divisor_class()

sage: D1_class

Divisor class [1, 0]

sage: P1xP1.rational_class_group().rank()

2

sage: D1_class.lift()

V(s)

sage: D1_class.lift() == D1

False

Next we give a combinatorial description of global sections of toric divisors.

De�nition 1.7.6. Let Σ be a fan in NR, let D =
∑

ρ aρDρ be a toric divisor

on XΣ. The polyhedron of the divisor D is

PD = {u ∈MR : 〈u, vρ〉 > −aρ for all ρ ∈ Σ(1)} ,

where vρ are primitive integral generators of the rays ρ. Given a character χm

with m ∈ PD ∩M , its D-homogenization is the monomial

z〈m,D〉 =
∏
ρ

z〈m,vρ〉+aρρ ∈ S(Σ).

Polyhedra of divisors are not lattice polytopes in general: they may be

unbounded and may have non-integral vertices. Clearly, it is possible to re-

construct the divisor D from the inequalities used in the de�nition of PD,

however some of these inequalities may be redundant or non-unique for spec-

ifying PD (e.g. if it is the empty polytope, it can be described by any pair of

incompatible inequalities), so we don't get a bijective correspondence here.

Proposition 1.7.7. Let Σ be a fan in NR, let D be a toric divisor on XΣ.

Then Γ(XΣ,OXΣ
(D)) =

⊕
m∈PD∩M Cχm.

Proof. See Proposition 4.3.3 in [CLS11].
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Of particular interest to us are the canonical divisor KX of a toric variety

X and global sections of the anticanonical divisor −KX .

Theorem 1.7.8. Let Σ be a fan. Then a toric canonical divisor on XΣ is

KXΣ
= −

∑
ρDρ.

Proof. See Theorem 8.2.3 in [CLS11].

The anticanonical divisor of P1 × P1 has 9 sections:

sage: P1xP1.K()

-V(s) - V(t) - V(x) - V(y)

sage: aK = - P1xP1.K()

sage: aK

V(s) + V(t) + V(x) + V(y)

sage: P_aK = aK.polyhedron()

sage: P_aK

A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 4

vertices.

sage: P_aK.vertices()

[[1, -1], [1, 1], [-1, 1], [-1, -1]]

sage: aK.sections()

(M(1, -1), M(1, 1), M(-1, 1), M(-1, -1), M(-1, 0), M(0, -1), M(0,

0), M(0, 1), M(1, 0))

sage: aK.sections_monomials()

(s^2*y^2, s^2*x^2, t^2*x^2, t^2*y^2, t^2*x*y, s*t*y^2, s*t*x*y,

s*t*x^2, s^2*x*y)

1.8 Toric Morphisms

Given a morphism between two toric varieties, it is natural to require its

compatibility with the torus action.

De�nition 1.8.1. Let N and N ′ be lattices, Σ be a fan in NR, and Σ′ be

a fan in N ′R. A morphism ϕ : XΣ → XΣ′ between toric varieties is a toric

morphism if ϕ maps the torus TN ⊂ XΣ into the torus TN ′ ⊂ XΣ′ as a group

homomorphism.
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Theorem 1.8.2. Let N and N ′ be lattices, Σ be a fan in NR, and Σ′ be a fan

in N ′R. There is a bijection between toric morphisms from XΣ to X ′Σ and fan

morphisms from Σ to Σ′. For a fan morphism ϕ : Σ→ Σ′ the associated toric

morphism ϕ̃ : XΣ → XΣ′ is given on the torus TN by

TN ' N ⊗Z C∗
ϕ⊗1−−→ N ′ ⊗Z C∗ ' TN ′

and extended to XΣ by continuity.

Proof. See Theorem 3.3.4 in [CLS11].

Now we turn our attention to a description of toric morphisms in terms of

homogeneous coordinates. Recall that these coordinates work best for orbifolds

without torus factors, so let's assume that we are in such a situation, i.e. both

the domain fan Σ and the codomain fan Σ′ are full-dimensional and simplicial.

Let v be the primitive generator of a ray ρ ∈ Σ. Let σ′ ∈ Σ′ be the

minimal cone containing ϕ(v). Let v′1, . . . , v
′
k be the primitive generators of

rays ρ′1, . . . , ρ
′
k of σ′. Then ϕ(v) = a1v

′
1 + · · · + akv

′
k for a unique choice of

a1, . . . , ak ∈ Q>0, since σ
′ is simplicial and ϕ(v) is its interior point. (We could

replace Q with Z if σ′ was smooth.) Now a point p ∈ XΣ with all homogeneous

coordinates but zρ equal to 1 is sent to a point p′ ∈ XΣ′ with homogeneous

coordinates zρ′1 = za1
ρ , . . . , zρ′k = zakρ and all others equal to 1. This is su�cient

to de�ne the image of any point p ∈ XΣ without zero homogeneous coordi-

nates, but the resulting expression for the map makes sense globally due to

the compatibility of ϕ with fans Σ and Σ′.

A subtle point of the above description is a possibility of fractional powers.

While this does mean that the induced map between total coordinate rings

S(Σ′) → S(Σ) is not polynomial, the ambiguity of a branch choice merely

re�ects the presence of a �nite group action identifying them. As long as

the made choice is consistent, it is still possible to use this map to pullback

functions from XΣ′ to XΣ. We illustrate this via the following example.

Example 1.8.3 (Resolution of WP(1, 2, 3)). Let XΣ′ be a toric realization

of the weighted projective space WP(1, 2, 3) (X_p in the code below) and XΣ

be its desingularization (X in the code). We use coordinates z on the original

space and y on the desingularization, the fans are shown on Figure 1.7 on the

following page.
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sage: Delta_polar = LatticePolytope([(1,0), (0,1), (-2,-3)])

sage: X_p = ToricVariety(FaceFan(Delta_polar))

sage: X_p.is_smooth()

False

sage: X = X_p.resolve(new_rays=[(-1,-1), (-1,-2), (0,-1)],

coordinate_names="y+")

sage: X.is_smooth()

True

Since it is a subdivision, an acceptable point with homogeneous coordinates

y0

y1

y2

y3

y4 y5

ϕ−→ z0

z1

z2

σ ′0

σ ′1

σ ′2

Figure 1.7: Resolution of WP(1, 2, 3)

[y0 : y1 : y2 : 1 : 1 : 1] is sent to [y0 : y1 : y2]. To determine images of other

points, we need to decompose the generator corresponding to y3 using ray

generators of σ′0 and generators corresponding to y4 and y5 using ray generators

of σ′2. We have:

y3 : (−1,−1) =
1

2
· (0, 1) +

1

2
· (−2,−3),

y4 : (−1,−2) =
1

3
· (1, 0) +

2

3
· (−2,−3),

y4 : (0,−1) =
2

3
· (1, 0) +

1

3
· (−2,−3),

so the map is

[y0 : y1 : y2 : y3 : y4 : y5] 7→
[
y0y

1/3
4 y

2/3
5 : y1y

1/2
3 : y2y

1/2
3 y

2/3
4 y

1/3
5

]
.
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Sage does not (yet) provide built-in support for such maps, but we can emulate

them using �positive� symbolic variables to allow simpli�cation of fractional

powers:

sage: [var(v, domain="positive") for v in

X_p.coordinate_ring().variable_names()]

[z0, z1, z2]

sage: [var(v, domain="positive") for v in

X.coordinate_ring().variable_names()]

[y0, y1, y2, y3, y4, y5]

sage: sd = {z0: y0*y4^(1/3)*y5^(2/3), z1: y1*y3^(1/2), z2:

y2*y3^(1/2)*y4^(2/3)*y5^(1/3)}

Substituting this dictionary into functions on the original variety, we will get

pullbacks to the resolved one. For example, let's pullback the sum of all

monomial sections of the divisor corresponding to z0:

sage: D = X_p.divisor(0)

sage: D

V(z0)

sage: sum(D.sections_monomials())

z2^2 + z0

sage: SR(sum(D.sections_monomials())).subs(sd)

y2^2*y3*y4^(4/3)*y5^(2/3) + y0*y4^(1/3)*y5^(2/3)

Here is a typeset and factored version of the pullback:

(
y2

2y3y4 + y0

)
y
( 1

3)
4 y

( 2
3)

5 .

Obviously, this is not a rational function, but we could expect something like

this since we were pulling back only a Q-Cartier divisor:

sage: D.is_Cartier()

False

sage: D.is_QQ_Cartier()

True

sage: threeD = 3*D

sage: threeD

3*V(z0)
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sage: threeD.is_Cartier()

True

Performing the above steps for threeD instead of D shows that the pullback of

its section

z6
2 + z0z

4
2 + z2

0z
2
2 + z1z

3
2 + z3

0 + z0z1z2 + z2
1

is

y6
2y

3
3y

4
4y

2
5 + y0y

4
2y

2
3y

3
4y

2
5 + y2

0y
2
2y3y

2
4y

2
5 + y1y

3
2y

2
3y

2
4y5 + y3

0y4y
2
5 + y0y1y2y3y4y5 + y2

1y3.

These two polynomials are actually sections of the anticanonical line bundles

and, as we will see in the next chapter, they de�ne one-dimensional Calabi-Yau

varieties, i.e. elliptic curves.
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Chapter 2

Toric Geometry in Mirror

Symmetry

In this chapter we describe Batyrev's construction of mirror families of Calabi-

Yau anticanonical hypersurfaces in toric varieties [Bat94] and its generalization

to nef complete intersections by Batyrev and Borisov [BB96b]. As before, we

provide Sage examples whenever possible.

2.1 Re�exive Polytopes and Fano Varieties

We have already seen in Section 1.3 how fans and, therefore, toric varieties

can be associated to lattice polytopes. Now we concentrate on a special class

of such varieties.

De�nition 2.1.1. A Gorenstein Fano variety is a complete normal variety

whose anticanonical divisor is Cartier and ample.

De�nition 2.1.2. Let ∆ ⊂ MR be a full-dimensional lattice polytope. Its

polar polytope is ∆◦ = {v ∈ NR : 〈u, v〉 > −1 for all u ∈ ∆} ⊂ NR.

De�nition 2.1.3. A re�exive polytope is a full-dimensional lattice polytope

∆ ⊂ MR such that its polar ∆◦ ⊂ NR is also a (full-dimensional) lattice

polytope.

Alternatively, a lattice polytope ∆ ⊂MR is re�exive if it contains the origin

in its interior and the lattice distance from every facet to the origin is 1, i.e.
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if v is a primitive integral inner normal to a facet of ∆, then the equation of

the supporting hyperplane of this facet is 〈u, v〉+ 1 = 0.

Note that (∆◦)◦ = ∆, so we get polar duality between re�exive polytopes

in MR and re�exive polytopes in NR. Similar to duality of cones, faces of ∆

and ∆◦ are in an inclusion-reversing bijective correspondence.

Theorem 2.1.4. Let Σ be a fan in NR. Then XΣ is a projective Gorenstein

Fano variety if and only if Σ is the normal fan of a re�exive polytope ∆ ⊂MR,

i.e. Σ = Σ∆.

Proof. See Theorem 8.3.4 in [CLS11].

We have constructed the fan of the projective plane in several ways, one of

them was using the normal fan of the following polytope:

sage: Delta = LatticePolytope([(2,-1), (-1,2), (-1,-1)])

sage: Delta.is_reflexive()

True

sage: Delta.polar().vertices()

[ 1 0 -1]

[ 0 1 -1]

sage: NormalFan(Delta).ray_matrix()

[ 1 0 -1]

[ 0 1 -1]

For a re�exive polytope ∆ vertices of ∆◦ coincide with primitive integral gen-

erators of rays of the normal fan Σ∆, so one can also think of Σ∆ as the face

fan of ∆◦. From the computational point of view, it may be more convenient

to use the latter since you can pick the order of vertices of ∆◦ if you con-

struct them directly (automatically constructed polar polytopes and normal

fans have their vertices/rays in a �xed, but random order).

sage: P2_n = ToricVariety(NormalFan(Delta))

sage: P2_f = ToricVariety(FaceFan(Delta.polar()))

sage: P2_n == P2_f

True

Sage provides special support for working with Fano toric varieties, so instead

of the above commands one can use
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sage: P2_n = CPRFanoToricVariety(Delta)

sage: P2_f = CPRFanoToricVariety(Delta_polar=Delta.polar())

sage: P2_n == P2_f

True

Now let's take a look at the Fano toric variety corresponding to the normal

fan of ∆◦ or, equivalently, let's switch the roles of ∆ and ∆◦ in our computa-

tions:

sage: Delta = Delta.polar()

sage: X = CPRFanoToricVariety(Delta)

sage: X

2-d CPR-Fano toric variety covered by 3 affine patches

sage: X.is_smooth()

False

sage: X.is_orbifold()

True

As we see, X has some �nite quotient singularities, since its fan (shown in Fig-

ure 2.1 on the next page) is simplicial but not smooth. To �gure out the exact

nature of these singularities, we can use the quotient description of X from

Section 1.6. As for the projective plane, X = (C3 \ {(0, 0, 0)})/G, but the

group G is a little di�erent. It is the kernel of the map (C∗)3 → (C∗)2 given

by (λ0, λ1, λ2) 7→ (λ2
0λ
−1
1 λ−1

2 , λ−1
0 λ2

1λ
−1
2 ). Equating the image to (1, 1), we get

λ2
0 = λ1λ2 and λ0 = λ2

1λ
−1
2 , so λ4

1λ
−2
2 = λ1λ2 and λ3

1 = λ3
2. Then λ1 = ε3λ2,

where ε3 is a primitive cube root of unity, and λ0 = (ε3λ2)2λ−1
2 = ε23λ2.

We see that G ' C∗ × Z3 with action on C3 given by (λ, k) · (z0, z1, z2) =

(λε2k3 z0, λε
k
3z1, λz2), so X = P2/Z3.

It is possible to resolve orbifold singularities of toric varieties in Sage by

specifying either rays used for fan subdivision or, in the case of Fano varieties,

points of ∆◦. The easiest way to resolve many (but not necessarily all in higher

dimensions) singularities is to use all these points:

sage: X_res = CPRFanoToricVariety(Delta, coordinate_points="all")

sage: X_res

2-d CPR-Fano toric variety covered by 9 affine patches

sage: X_res.is_smooth()

True
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z0

z1

z2

Figure 2.1: Fano toric variety polar to the projective plane

The fan of this resolved variety is shown in Figure 2.2. Since it is obtained as

a subdivision of Σ∆, it is not immediately clear if it is the normal fan of some

other re�exive polytope. We will see later that it is not, so Xres is not Fano.

On the other hand, it is closely related to one.

z0

z1

z2

z3

z4

z5

z7

z8

z9

Figure 2.2: Resolution of the toric variety polar to the projective plane

De�nition 2.1.5. Let ∆ ⊂MR be a re�exive polytope. Let Σ be a subdivision

of Σ∆. If all rays of Σ are generated by (some of) the boundary lattice points of

∆◦, it is a crepant subdivision. If Σ is also simplicial and the corresponding

toric variety XΣ is projective, it is a projective crepant subdivision. If

also all boundary lattice points of ∆◦ generate rays of Σ, it is a maximal
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projective crepant subdivision.

Such subdivisions correspond tomaximal projective crepant partial desingu-

larizations (MPCP-desingularizations) introduced by Batyrev in [Bat94]. The

meaning of �maximal� and �projective� is clear from the de�nition. �Partial�

re�ects the fact that such subdivisions are not always su�cient to completely

resolve all singularities of the toric variety associated to the original normal

fan. Finally, �crepant� means that the corresponding morphism between vari-

eties is crepant.

Proposition 2.1.6. Let ∆ ⊂MR be a re�exive polytope. Let Σ be a subdivision

of Σ∆. Then the associated morphism ϕ : XΣ → X∆ is crepant (meaning that

ϕ∗ (KX∆
) = KXΣ

) if and only if Σ is a crepant subdivision.

Proof. See Proposition 2.2.12 in [Bat94].

From the computational point of view, it is not always convenient to work

with maximal subdivisions since associated varieties may involve too many

homogeneous variables and a�ne charts. Also, as it is clear from the de�nition,

�crepant� has a simpler combinatorial interpretation than �projective.� For

these reasons Sage provides support for crepant partial resolutions of Fano

toric varieties and we refer to them as CPR-Fano toric varieties.

There are in�nitely many re�exive polytopes, for example, all polygons

Pk = Conv {(1, 0), (k, 1), (−1− k,−1)} , k ∈ Z,

are re�exive with polar polygons

P ◦k = Conv {(2,−2k − 1), (−1, k − 1), (−1, k + 2)} .

Note that in this example we can go from any polygon Pk1 to any other Pk2

using a GL(2,Z)-transformation, i.e. by changing lattice coordinates:

Pk2 =

(
1 k2 − k1

0 1

)
· Pk1 .

These transformations induce isomorphisms between corresponding toric vari-

eties, so it is natural to distinguish re�exive polytopes only up to a GL(2,Z)-

transformation. In this case it is known that there are only �nitely many re-
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�exive polytopes in each dimension. Obviously, there is only one 1-dimensional

re�exive polytope, it is also not very di�cult to obtain by hand all 16 re�exive

polygons. The general construction algorithm is known [KS97] and imple-

mented in software PALP (Package for Analyzing Lattice Polytopes) [KS04].

Using their software Kreuzer and Skarke have obtained complete lists of 4,319

re�exive polytopes in dimension 3 [KS98] and 473,800,776 re�exive polytopes

in dimension 4 [KS02]. It is estimated that there are about 1018 re�exive

polytopes in dimension 5 [Kre08].

Re�exive polygons and 3-dimensional polytopes are easily accessible in

Sage:

sage: p = ReflexivePolytope(2, 12)

sage: p

Reflexive polytope 12: 2-dimensional, 3 vertices.

sage: p.vertices()

[ 1 1 -3]

[ 0 2 -2]

sage: max(p.nfacets() for p in ReflexivePolytopes(2))

6

The last computation shows that there are no re�exive polygons with 9 facets,

therefore, the fan in Figure 2.2 on page 34 is not the normal fan of one.

2.2 Anticanonical Hypersurfaces

Since we need to allow some singularities, we are using the term Calabi-Yau

variety in the sense of De�nition 1.4.1 in [CK99].

De�nition 2.2.1. A Calabi-Yau variety is an irreducible normal compact

variety V which satis�es the following conditions:

1) V has at most Gorenstein canonical singularities;

2) V has trivial canonical sheaf;

3) H i(V,OV ) = 0 for i = 1, . . . , dimV − 1.

Theorem 2.2.2. Let ∆ be a re�exive polytope of dimension n. A generic anti-

canonical hypersurface in X=X∆, i.e. a generic section f ∈ Γ(X,OX(−KX)),

is a Calabi-Yau variety of dimension n − 1. A generic anticanonical hyper-
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surface in X = XΣ, where Σ is a projective crepant subdivision of Σ∆, is a

Calabi-Yau orbifold of dimension n− 1.

Proof. See Proposition 4.1.3 in [CK99].

For a re�exive polytope ∆ ⊂ MR projective crepant subdivisions of Σ∆

correspond to special triangulations of the boundary of ∆◦. For any such sub-

division the polytope of the anticanonical divisor is easily seen to be ∆ itself.

This means that in equations of anticanonical Calabi-Yau hypersurfaces vari-

ables correspond to points of ∆◦ while (coe�cients of) monomials correspond

to points of ∆. Due to polar duality of re�exive polytopes roles of ∆ and ∆◦

can be reversed, leading to another family of hypersurfaces in another toric

variety. Batyrev showed [Bat94] that if dim ∆ = 4, then generic anticanoni-

cal hypersurfaces in MPCP-desingularizations of X∆ are smooth Calabi-Yau

threefolds and the exchange ∆! ∆◦ corresponds to the exchange h1,1 ! h2,1

of the Hodge numbers of anticanonical hypersurfaces of two families, making

them candidates for mirror pairs.

The anticanonical �hypersurfaces� in the projective plane and its quotient

discussed above are 1-dimensional Calabi-Yau varieties, i.e. elliptic curves:

sage: P2 = toric_varieties.P(2)

sage: P2.anticanonical_hypersurface()

Closed subscheme of 2-d CPR-Fano toric variety covered by 3 affine

patches defined by:

a0*z0^3 + a1*z1^3 + a6*z0*z1*z2 + a2*z2^3

sage: P2.anticanonical_hypersurface(

monomial_points="all").defining_polynomials()[0]

a0*z0^3 + a9*z0^2*z1 + a7*z0*z1^2 + a1*z1^3 + a8*z0^2*z2 +

a6*z0*z1*z2 + a4*z1^2*z2 + a5*z0*z2^2 + a3*z1*z2^2 + a2*z2^3

sage: P2P = CPRFanoToricVariety(P2.Delta_polar())

sage: P2P.anticanonical_hypersurface(

monomial_points="all").defining_polynomials()[0]

a0*z0^3 + a1*z1^3 + a3*z0*z1*z2 + a2*z2^3

Anticanonical hypersurfaces in P2 are zero sets of cubic polynomials, which

may include up to 10 monomials corresponding to 10 lattice points inside of

the lattice polytope ∆ corresponding to P2. As the above example shows, only

4 of these monomials are used in Sage by default. This is due to the fact that
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using automorphisms of the toric variety it is possible to set to zero coe�cients

of monomials corresponding to interior points of facets of ∆ (see Section 6.1.2

of [CK99]), so in most situations they can be discarded. For the quotient

P2/Z3, however, there are only 4 monomials invariant under the Z3-action and

it is not possible to use more.

2.3 Nef Complete Intersections

The construction of Calabi-Yau varieties as anticanonical hypersurfaces in toric

varieties was generalized by Batyrev and Borisov to the case of complete in-

tersections associated to nef-partitions of re�exive polytopes [Bor93, BB96b].

De�nition 2.3.1. Let ∆ ⊂ MR be a re�exive polytope. A nef-partition is

a decomposition of the vertex set V of ∆◦ ⊂ NR into a disjoint union

V = V0 t V1 t · · · t Vr−1

such that divisors Ei =
∑

vρ∈Vi Dρ are Cartier. Equivalently, let ∇i ⊂ NR

be the convex hull of vertices from Vi and the origin. These polytopes form

a nef-partition if their Minkowski sum ∇ ⊂ NR is a re�exive polytope. The

dual nef-partition is formed by polytopes ∆i ⊂ MR of Ei, which give a

decomposition of the vertex set of ∇◦ ⊂MR and their Minkowski sum is ∆.

For the remainder of this section we use the notation of the above de�nition

without repeating it.

Remark 2.3.2. The term �nef-partition� may be used for any of the following

decompositions:

1) V (∆◦) into the disjoint union of Vi,

2) ∆ into the Minkowski sum of ∆i,

3) the anticanonical divisor of X∆ into the sum of Ei.

Each of these decompositions can be easily translated into another and some

care should be taken only to avoid mixing a nef-partition and its dual.

As it follows from the de�nition, the polar duality of re�exive polytopes

switches convex hull and Minkowski sum for dual nef-partitions:

∆◦ = Conv (∇0,∇1, . . . ,∇r−1) ,

∇ = ∇0 +∇1 + · · ·+∇r−1,
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∆ = ∆0 + ∆1 + · · ·+ ∆r−1,

∇◦ = Conv (∆0,∆1, . . . ,∆r−1) .

It is possible to give a purely combinatorial description of the nef-partition

duality, which is convenient for computational purposes.

Proposition 2.3.3. For the polytopes of dual nef-partitions we have

∆i = {u ∈MR : 〈u,∇j〉 > −δij for all j ∈ {0, . . . , r − 1}} ,

∇i = {v ∈ NR : 〈∆j, v〉 > −δij for all j ∈ {0, . . . , r − 1}} .

Proof. See Proposition 3.13 in [BN08].

One can also interpret the duality of nef-partitions as the duality of asso-

ciated cones. Below M = M ×Zr and N = N ×Zr are dual lattices, MR and

NR are vector spaces spanned by them.

De�nition 2.3.4. The Cayley polytope P ⊂MR of a nef-partition is given

by

P = Conv(∆0 × e0,∆1 × e1, . . . ,∆r−1 × er−1) ,

where {ei}r−1
i=0 is the standard basis of Zr. The dual Cayley polytope

P ∗ ⊂ NR is the Cayley polytope of the dual nef-partition.

De�nition 2.3.5. The Cayley cone C ⊂ MR of a nef-partition is the cone

spanned by its Cayley polytope.

Proposition 2.3.6. The Cayley cone C is full-dimensional. The dimension

of the Cayley polytope P is n− r + 1.

Proof. Since ∇◦ = Conv(∆0,∆1, . . . ,∆r−1) is re�exive and full-dimensional,

we can pick n linearly independent vertices of it, v1, . . . , vn. The corresponding

points of the Cayley polytope are (vj, eij), where vj ∈ ∆ij . The origin has r

corresponding points (0, ei), since it is contained in every ∆i. These n + r

points are linearly independent in MR × Rr: if their linear combination is

equal to zero, then the �rst n coe�cients must be equal to zero due to linear

independence of v1, . . . , vn and the last r coe�cients due to linear independence

of points corresponding to the origin. Therefore, dimC = n+ r.
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Since C is generated by P and dimC = n + r, we already know that

dimP > n+ r − 1. To see that dimP < n+ r, observe that it is contained in

the hyperplane normal to (0, . . . , 0, 1, . . . , 1) (n zeros and r ones).

De�nition 2.3.7. A lattice polytope Q is aGorenstein polytope of index r

if its multiple r ·Q has a unique interior lattice point q and its shift r ·Q− q
is a re�exive polytope.

In particular, all re�exive polytopes are Gorenstein polytopes of index 1.

De�nition 2.3.8. A full-dimensional cone σ ⊂MR is aGorenstein cone if it

generated by �nitely many lattice points which are contained in the hyperplane{
u ∈MR : 〈u, n〉 = 1

}
for some n ∈ N . If the intersection of this hyperplane

with σ is a Gorenstein polytope Q of index r (with respect to the sublattice

of this hyperplane), σ is a re�exive Gorenstein cone of index r supported

by Q.

Proposition 2.3.9. The Cayley polytope P is a Gorenstein polytope of index

r with respect to its spanned a�ne sublattice. The Cayley cone C is a re�exive

Gorenstein cone of index r supported by P . Its dual cone C∨ is supported by

the dual Cayley polytope P ∗.

Proof. See Theorem 2.6, De�nition 3.11, and Proposition 3.13 in [BN08].

Remark 2.3.10. Note that all de�nitions and results above make sense for

r = 1, i.e. for partitions with a single part. In this case the duality of Cayley

polytopes is the polar duality of re�exive polytopes.

In order to �nd nef-partitions of a given re�exive polytope, one can use

nef.x program from PALP [KS04]. Two-part nef-partitions computed by it

are readily accessible in Sage:

sage: Delta_polar = LatticePolytope([(1,0), (0,1), (-1,0), (0,-1)])

sage: Delta_polar.nef_partitions()

[

Nef-partition {0, 2} U {1, 3} (direct product),

Nef-partition {0, 1} U {2, 3},

Nef-partition {0, 1, 2} U {3} (projection)

]

sage: np = Delta_polar.nef_partitions()[1]
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sage: np.nabla().vertices()

[ 1 0 0 -1 1 -1]

[ 0 1 -1 0 -1 1]

sage: np.nabla(0).vertices()

[1 0 0]

[0 1 0]

sage: np.nabla(1).vertices()

[-1 0 0]

[ 0 -1 0]

Given a nef-partition of an n-dimensional re�exive polytope, consisting

of r-parts, generic sections of divisors Ei determine an (n − r)-dimensional

complete intersection Calabi-Yau variety. In [BB96a] Batyrev and Borisov

showed that such varieties corresponding to dual nef-partitions have mirror-

symmetric stringy Hodge numbers. We will come back to this duality in more

detail in Chapter 3, for now let's just glance at the complete intersection

corresponding to the nef-partition above and its dual:

sage: X = CPRFanoToricVariety(np.Delta())

sage: X.nef_complete_intersection(np)

Closed subscheme of 2-d CPR-Fano toric variety covered by 4 affine

patches defined by:

a3*z0*z1 + a2*z1*z2 + a1*z0*z3 + a0*z2*z3,

b1*z0*z1 + b0*z1*z2 + b2*z0*z3 + b3*z2*z3

sage: Y = CPRFanoToricVariety(np.dual().Delta())

sage: Y.nef_complete_intersection(np.dual())

Closed subscheme of 2-d CPR-Fano toric variety covered by 6 affine

patches defined by:

a2*z0*z1*z2 + a1*z2*z3*z4 + a0*z1*z4*z5,

b0*z0*z2*z3 + b1*z0*z1*z5 + b2*z3*z4*z5

In order to get �honest� Calabi-Yau varieties, it is necessary to exclude a

special type of nef-partitions.

De�nition 2.3.11. A nef-partition ∆ = ∆0+∆1+· · ·+∆r−1 is indecompos-

able, if the Minkowski sum of any proper subset of {∆i}r−1
i=0 is not a re�exive

polytope in the generated sublattice. It is decomposable otherwise.

Decomposable nef-partitions correspond to products of Calabi-Yau vari-
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eties, each of which is represented as a complete intersection of a smaller

number of hypersurfaces in toric varieties of smaller dimensions.

2.4 Torically Induced Fibrations

Let N and N ′ be lattices, Σ be a fan in NR, and Σ′ be a fan in N ′R. By

Theorem 1.8.2 there is a bijection between toric morphisms ϕ̃ : XΣ → XΣ′

and fan morphisms ϕ : Σ → Σ′, i.e. lattice homomorphisms ϕ : N → N ′

compatible with the fan structure (see De�nitions 1.4.1 and 1.8.1).

Consider the special case when the lattice homomorphism is surjective, i.e.

we have an exact sequence of lattices

0→ N0 → N
ϕ−→ N ′ → 0,

where N0 = kerϕ. Let Σ0 = {σ ∈ Σ : σ ⊂ (N0)R}. We can consider Σ0 either

as a fan in NR or as a fan in (N0)R with two corresponding toric varieties XΣ0,N

(a dense subset of XΣ) and XΣ0,N0 .

As it is discussed in � 3.3 [CLS11], there is a clear relation between these

two varieties,

XΣ0,N ' XΣ0,N0 × TN ′ ,

and, in fact, XΣ0,N = ϕ̃−1(TN ′), so a part of XΣ is a �ber bundle over TN ′ with

�bers being XΣ0,N0 . Moreover, if Σ is split by Σ′ and Σ0 (see De�nition 3.3.18

in [CLS11]), then the whole XΣ is a �ber bundle over XΣ′ (see Theorem 3.3.19

in [CLS11]). However, splitting is a very strong condition on fans, so instead

of imposing it we will work with more general �brations than �ber bundles.

De�nition 2.4.1. Let ϕ : X → Y be a morphism between two varieties. Then

ϕ is a �bration if it is surjective and all of its �bers have the same dimension

dimX − dimY .

The following result provides a combinatorial characterization of toric �-

brations in terms of primitive cones (see De�nition 1.4.2).

Theorem 2.4.2. Let ϕ̃ : XΣ → XΣ′ be a surjective toric morphism. Then it

is a �bration if and only if ϕR
∣∣
σ

: σ → σ′ is a bijection for all primitive cones

σ ∈ Σ corresponding to all σ′ ∈ Σ′.
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Proof. See Corollary 2.1.13 in [HLY02].

In Proposition 2.1.4 [HLY02] the authors provide a detailed description

of �bers of arbitrary toric morphisms1, but we are primarily interested in �-

brations ϕ : XΣ → XΣ′ since they may induce �brations ϕ
∣∣
Y

: Y → XΣ of

Calabi-Yau subvarieties Y realized as anticanonical hypersurfaces or nef com-

plete intersections in XΣ. The �bration condition may prevent Σ from being

�too re�ned�, leading to singularities of Y , however it may be possible to

compose ϕ with a crepant resolution of singularities in such a way that Y

becomes smooth and the restriction of the composition to Y is still a �bra-

tion. See [PS97] or [Roh04] for an explicit treatment of such resolutions of

elliptically �bered K3-surfaces, where it is shown how one can determine the

type of (some) exceptional elliptic �bers based directly on combinatorics of

the associated re�exive polytopes.

We now describe a strategy for searching for toric �brations. Let ∆ ⊂MR

be a re�exive polytope and let Σ be a crepant subdivision of Σ∆. Suppose

that ϕ : Σ → Σ′ is a �bration (meaning that ϕ̃ : XΣ → XΣ′ is a �bration

in the above sense). As before, its �ber is determined by the subfan Σ0 of

Σ in the sublattice N0 = kerϕ of N . Since we would like �bers of Calabi-

Yau subvarieties to be lower-dimensional Calabi-Yau varieties, it is natural to

require that Σ0 is also associated to a re�exive polytope, i.e. that it is a crepant

subdivision of Σ∇ for ∇ ⊂ (M0)R, where M0 is dual lattice of N0. Then ∇◦ is
a �slice� of ∆◦ by a linear subspace, so one can search for such slices of ∆◦ and

then take as ϕ the projection along the linear subspace of ∇◦. We can also

reformulate this problem in dual terms: M0 = M/(N0)⊥ and the condition

that ∇◦ is inside ∆◦ implies that the image of ∆ in M0 is inside ∇. So one

can alternatively look for �projections� of ∆ that are re�exive. Recall that the

origin is the only interior lattice point of any re�exive polytope, so all lattice

points of ∆ must be projected either into the origin or into the boundary of

the projection. Due to this restriction a �large� ∆ with many lattice points is

less likely to have any �brations than a �small� one.

We consider several toric (and torically induced) �brations in detail in

Chapter 4.

1Note that while notation in [HLY02] is very similar to ours, the authors sometimes
implicitly assume that toric varieties in question are complete.
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Chapter 3

Hodge Numbers of CICY in Toric

Varieties1

In this chapter we use Batyrev-Borisov's formula for the generating function

of stringy Hodge numbers of Calabi-Yau varieties realized as complete inter-

sections in toric varieties in order to get closed form expressions for some of

the Hodge numbers of complete intersections of two hypersurfaces.

In [Bat94] Batyrev obtained combinatorial formulas for the Hodge numbers

h1,1(X) and hn−1,1(X) of an n-dimensional Calabi-Yau variety X realized as an

anticanonical hypersurface in a toric variety associated to a re�exive polytope.

It is immediate from these formulas that h1,1(X) = hn−1,1(X◦), where X◦ is

Batyrev's mirror of X, and this equality su�ces to show that mirror symmetry

holds on the level of Hodge numbers for Calabi-Yau 3-folds. However, it is

also important to consider higher dimensional Calabi-Yau varieties including

singular ones.

Batyrev and Dais, motivated by �physicists Hodge numbers�, introduced

string-theoretic Hodge numbers [BD96] for a certain class of singular vari-

eties. The string-theoretic Hodge numbers coincide with the �regular� ones for

smooth varieties and with �regular� Hodge numbers of a crepant desingulariza-

tion if it exists. Later Batyrev also introduced stringy Hodge numbers [Bat98]

for a di�erent class of singular varieties. While stringy and string-theoretic

Hodge numbers are not the same, they do agree for the varieties we will be

dealing with in this chapter, see [BM03] for further details on relations between

1A version of this chapter has been published [DN10].
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them.

Batyrev and Borisov were able to obtain a formula for the generating func-

tion of string-theoretic Hodge numbers in the case of complete intersections

in toric varieties and show that this function has properties corresponding to

mirror symmetry [BB96a]. While their formula can be used in practice for

computing Hodge numbers (as it is done in software PALP [KS04]), it is re-

cursive, takes signi�cant time even on computers, and does not provide much

qualitative information on particular Hodge numbers.

Our work was motivated by the desire to obtain for the stringy Hodge

numbers of complete intersections formulas similar to those for hypersurfaces.

We were able to accomplish this goal in the case of two intersecting hypersur-

faces, see Theorem 3.3.1 for arbitrary nef-partitions and Theorem 3.3.7 for the

simpli�ed expressions in the indecomposable case.

3.1 Generating Functions for Stringy Hodge

Numbers

In this section we �x the notation and de�ne the generating function for the

stringy Hodge numbers of a complete intersection. The exposition is based

on [BB96a, BN08], where one can also �nd further properties of the objects in

question (the notation there is slightly di�erent, as those authors work with

faces of cones, not of supporting polytopes). Since our approach is mostly

combinatorial, we will use the generating function to de�ne the stringy Hodge

numbers.

As before, let M and N be dual lattices of dimension n, let ∆ ⊂ MR

be a re�exive polytope with polar ∆◦ ⊂ NR, let Σ be a projective crepant

subdivision of Σ∆, and let XΣ be the associated toric variety. A nef-partition

V (∆◦) = V0 t V1 t . . . t Vr−1

determines Cayley polytope P , Cayley cone C, and dual Cayley polytope P ∗ as

described in Section 2.3. It also determines a family of complete intersections

Y ⊂ XΣ (we take Y to be a generic member of this family).

As it was noted in Section 1.2, the face lattice of C is an Eulerian poset

with the minimal element being the vertex at the origin and the maximal
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element C itself. This poset is the same as the face lattice of P , with ∅ and P
representing the vertex of C and C itself respectively. The face lattice of C is

also dual to the one of C∨, which in turn is the same as the face lattice of P ∗.

These relations allow us to de�ne the dual face x∨ of P ∗ for any face x of P .

It is more convenient for our purposes to use faces of polytopes rather than

cones, but there is a dimension discrepancy between them. While for a cone

it is natural to de�ne the rank of a face in the face lattice to be its dimension,

for a face x of a polytope we let rkx = dimx + 1 with the convention that

dim ∅ = −1, so that rk ∅ = 0.

De�nition 3.1.1. Let P be an Eulerian poset of rank d with the minimal

element 0̂ and the maximal one 1̂. If d = 0, let GP = HP = BP = 1. If d > 0,

let polynomials GP , HP(t) ∈ Z[t] and BP(u, v) ∈ Z[u, v] be de�ned recursively

by

HP(t) =
∑

0̂<x61̂

(t− 1)rkx−1G[x,1̂](t),

GP(t) = τ<d/2(1− t)HP(t),

where

τ<d/2

∞∑
k=0

akt
k =

∑
06m<d/2

akt
k

is the truncation operator, and∑
0̂6x61̂

B[0̂,x](u, v)ud−rkxG[x,1̂](u
−1v) = GP(uv).

Proposition 3.1.2. Let P be an Eulerian poset of rank d. The polynomial

BP has the following properties.

1) The degree of BP(u, v) in v is (strictly) less than d/2.

2) If d 6 2, then BP(u, v) = (1− u)d.

3) If P is the face lattice of a polygon with k vertices (and k edges), then

d = 3 and BP(u, v) = 1 + [k − (k − 3)v](u2 − u)− u3.

Proof. See [BB96a], Examples 2.8, 2.9, and Proposition 2.10.
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De�nition 3.1.3. Let F ⊂ MR be a d-dimensional lattice polytope (or a d-

dimensional face of a lattice polytope). Let `(F ) = |F ∩M | be the number

of lattice points inside F . Let `∗(F ) be the number of lattice points in the

relative interior of F . (If F is a single point, then `(F ) = `∗(F ) = 1.) De�ne

functions SF and TF by

SF (t) = (1− t)d+1

∞∑
k=0

`(k · F )tk,

TF (t) = (1− t)d+1

∞∑
k=1

`∗(k · F )tk.

We also set S∅ = 1.

Proposition 3.1.4. Let F ⊂ MR be a d-dimensional lattice polytope. The

functions SF and TF have the following properties:

1) SF (t) = td+1TF (t−1).

2) SF (t) = 1 + [`(F )− d− 1]t+ higher order terms.

3) TF (t) = `∗(F )t+ [`∗(2 · F )− (d+ 1)`∗(F )]t2 + higher order terms.

4) SF is a polynomial of degree at most d.

5) TF is a polynomial of degree exactly d+ 1.

6) SF has degree d− r + 1 and SF (t) = td−r+1SF (t−1) if and only if F is a

Gorenstein polytope of index r.

Proof. For 1 see [BB96a], Proposition 3.6 and references therein. The next

two properties are immediate from the de�nition. Then 4 and 5 follow from

1�3. For 6 see [BN08], Remark 2.15 and references therein.

De�nition 3.1.5. The stringy E-function of a Gorenstein polytope P of

index r is

EP (u, v) =
1

(uv)r

∑
∅6x6y6P

(−1)1+dimxu1+dim ySx

(v
u

)
Sy∨(uv)B[x,y]

(
u−1, v

)
.

If P is the Cayley polytope of a nef-partition, the coe�cients of the stringy E-

function are the stringy Hodge numbers of the corresponding Calabi-Yau

47



variety Y up to a sign:

EP (u, v) =
∑
p,q

(−1)p+qhp,qst (Y )upvq .

Remark 3.1.6. The formula above is taken from [KRS03], the original one

in [BB96a] is less convenient for actual computations since it includes in�nite

sums. A similar formula is also given in [BN08] (line 11 on page 57), but there

is a typo � the posets of B-polynomials must be dualized.

Remark 3.1.7. It is not obvious from the expression for EP that it is a polyno-

mial of degree 2(n− r), although this is the case for Cayley polytopes. On the

other hand, the de�nition of EP makes sense for any (n + r − 1)-dimensional

Gorenstein polytope of index r and it was conjectured that it is always such a

polynomial in [BN08]. This claim was later proved in [NS10].

3.2 The Hypersurface Case

In this section we consider the situation n = 4 and r = 1, i.e. Y is actually a

hypersurface inXΣ. In this case it is possible to completely resolve singularities

of Y using crepant subdivisions of Σ. If we do it, then hp,qst (Y ) = hp,q(Y ). These

Hodge numbers were computed without using the stringy E-function [Bat94]

and it is not obvious a priori that extracting its coe�cients will lead to the

same expressions. We verify that this is indeed the case and, therefore, it is

reasonable to expect that extracting coe�cients of the stringy E-function for

other n and r gives suitable generalizations of Batyrev's formulas for hyper-

surfaces.

Theorem 3.2.1. Let ∆ be a re�exive polytope of dimension 4. Let Y be a

generic anticanonical Calabi-Yau hypersurface in an MPCP-desingularization

of X∆. Then

h1,1(Y ) = `(∆)− 5−
∑

dim y=0

`∗(y∨) +
∑

dim y=1

`∗(y)`∗(y∨), (3.2.1)

where each sum runs over the faces of ∆ of the indicated dimension.

Proof. If we consider Y as a complete intersection, the number of parts in

the nef-partition is r = 1, the Cayley polytope P ' ∆, and the dual Cayley
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polytope P ∗ ' ∆◦.

For n = 4 and r = 1 the stringy E-function is given as

uvEP (u, v) =
∑

∅6x6y6P

(−1)1+dimxu1+dim ySx

(v
u

)
Sy∨(uv)B[x,y]

(
u−1, v

)
and h1,1(Y ) = h2,2(Y ) is equal to the coe�cient of u2v2 or u3v3 on the right

hand side. Below, extensively using Propositions 3.1.2 and 3.1.4 without fur-

ther mention, we will determine the coe�cient of u3v3 in the term correspond-

ing to each pair (x, y) on the right hand side. The reason for concentrating on a

�high v-degree� term is that it allows us to deal only with simple B-polynomials

corresponding to Eulerian posets of small rank, as we will see below. Note also

that for the current case dim y∨ = 3− dim y and rk[∅, P ] = 5.

First of all, observe that terms with B depending on v do not contribute to

the coe�cient of u3v3. Indeed, if the v-degree of B is positive, then rk[x, y] > 3

and we must have dimx 6 1, dim y > 2, i.e. dim y∨ 6 1, and at least one

of these inequalities is strict. Then either both S-polynomials are equal to 1

or one is equal to 1 and the other is linear. On the other hand, B[x,y] (u−1, v)

could only have the v-degree 2 or more if rk[x, y] > 5, which is only possible

for [x, y] = [∅, P ], where both S-polynomials are equal to 1. Therefore, the

product of all these polynomials does not contain a u3v3 term.

Next we are going to consider cases with rk[x, y] 6 2 and either x = ∅ or
y = P . The reason for separating these cases from the rest is that the degree

of S∅ = SP∨ = 1 is not bounded by dim ∅ = −1.

Suppose x = ∅ and dim y 6 1. Then the corresponding term of the

generating function is

u1+dim ySy∨(uv)(1− u−1)1+dim y = Sy∨(uv)(u− 1)1+dim y,

where Sy∨ is a polynomial of degree at most 3− dim y. We see that the only

possible cases are dim y = −1 and dim y = 0 with the contribution to u3v3-

term determined by the third degree term in Sy∨ . Using the symmetry property

of the S-polynomial of the re�exive polytope P ∗, we obtain contributions

`(P ∗)− 5, (3.2.2)

49



−
∑

dim y=0

`∗(y∨). (3.2.3)

Suppose dimx > 2 and y = P . Then the corresponding term of the

generating function is

(−1)1+dimxu5Sx

(v
u

)
(1− u−1)4−dimx,

where Sx is a polynomial of degree at most dimx, which must be 3 or 4 in

order to have any term with v3. In these cases the contribution is determined

by the third degree term in Sx, however,
(v
u

)3

must be multiplied by u6 in

order to get u3v3, which is not possible. We see that there are no contributions

to the u3v3-term.

Now we consider remaining cases rk[x, y] = 0, 1, 2, with x 6= ∅ and y 6= P .

Suppose x 6= ∅, y 6= P , and x = y. Then the corresponding term of the

generating function is

(−u)1+dim ySy

(v
u

)
Sy∨(uv),

where Sy and Sy∨ are polynomials of degrees at most dim y and 3− dim y. In

order to get v3, we need to multiply the leading terms of these polynomials.

The u-degree of the v3 term in the total product will be

(1 + dim y)− dim y + (3− dim y) = 4− dim y.

Since we are interested in terms with u3, we must have dim y = 1. The

corresponding contribution is ∑
dim y=1

`∗(y)`∗(y∨). (3.2.4)

Suppose x 6= ∅, y 6= P , and dim y = 1 + dimx or dim y = 2 + dimx.

Then we see that there are no contributions to the u3v3-term, since the total

degree of the product of the S-polynomials is at most 2.

Now combining all of the above contributions we obtain (3.2.1), which

completes the proof.

Remark 3.2.2. The terms of (3.2.1) have the following algebro-geometric mean-
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ing. Toric divisors of the ambient space, corresponding to all lattice points of

∆◦ except for the origin, have 4 linear relations between them. Divisors corre-

sponding to the interior points of facets do not intersect a generic Calabi-Yau

hypersurface Y , while divisors corresponding to the interior points of faces of

codimension 2 may become reducible when intersected with Y and split into

the number of components determined by the dual face.

Corollary 3.2.3. Let ∆ be a re�exive polytope of dimension 4. Let Y be a

generic anticanonical Calabi-Yau hypersurface in an MPCP-desingularization

of X∆. If h
1,1(Y ) = 1, then ∆ is a simplex.

Proof. This easily follows from (3.2.1), if we split `(∆◦) into the sum of internal

points of all of its faces:

h1,1(Y ) = `∗(∆◦) +
∑

dim y=0,1,2,3

`∗(y∨)− 5−
∑

dim y=0

`∗(y∨) +
∑

dim y=1

`∗(y)`∗(y∨)

=
∑

dim y=1,2

`∗(y∨) +

[ ∑
dim y=3

`∗(y∨)− 4

]
+
∑

dim y=1

`∗(y)`∗(y∨),

where all sums are over faces of ∆ of indicated dimensions. Since faces dual

to faces of dimension 3 are vertices of ∆◦, we see that the term in brackets is

positive while all others are non-negative, and if h1,1(Y ) = 1, then ∆◦ must

have exactly 5 vertices, i.e. be a simplex. Then its polar ∆ also must be a

simplex.

As it was noted in Section 2.1, the number of re�exive polytopes of any

�xed dimension is �nite (up to GL(n,Z)-action) and there is an algorithm

allowing one to construct all of them, but this number for dimension 5 and

higher is so big, that it is practically impossible. Results similar to the above

corollary may lead to algorithms for construction of all re�exive polytopes

corresponding to Calabi-Yau varieties with small Hodge numbers.

3.3 The Bipartite Complete Intersection Case

In this section we derive closed form expressions for the stringy Hodge numbers

hp,qst (Y ), where 0 6 p 6 n − 2 and 0 6 q 6 1, of an (n− 2)-dimensional

Calabi-Yau complete intersection Y corresponding to a two-part nef-partition
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of an n-dimensional re�exive polytope. (We actually look for hn−2−p,n−2−q
st (Y ),

since it is technically easier, but stringy Hodge numbers satisfy the Poincare

duality, see Corollary 6.13 in [BD96].) While for irreducible nef-partitions

h0,0
st (Y ) = hn−2,0

st (Y ) = 1 and hp,0st (Y ) = 0 for 1 6 p 6 n− 3, these expressions

are still of interest for general Gorenstein polytopes. In addition, they may

provide non-trivial relations between lattice point counts of faces of Cayley

polytopes which do come from irreducible nef-partitions.

Theorem 3.3.1. Let ∆ be a re�exive polytope of dimension n > 5. Let Y be

a generic Calabi-Yau complete intersection in an MPCP-desingularization of

X∆, corresponding to a two-part nef-partition with Cayley polytope P . Then

h1,1
st (Y ) = `(P ∗)− n− 2 −

∑
dim y=0

[`∗(2 · y∨)− (n+ 1)`∗(y∨)]

+
∑

dim y=1

`∗(y∨) +
∑

dim y=1

`∗(y) [`∗(2 · y∨)− n`∗(y∨)]

−
∑

dim y=2

[`(y)− `∗(y)− 3] `∗(y∨) +
∑

dim y=3

[`∗(2 · y)− 4`∗(y)] `∗(y∨)

−
∑

dimx=2
dim y=3
x<y

`∗(x)`∗(y∨)

and for 2 6 p 6 n− 4 we have

hp,1st (Y ) =
∑

dim y=p

`∗(y) [`∗(2 · y∨)− (n− p+ 1)`∗(y∨)]

+
∑

dim y=p+2

[`∗(2 · y)− (p+ 3)`∗(y)] `∗(y∨)

−
∑

dimx=p
dim y=p+1

x<y

`∗(x)`∗(y∨)−
∑

dimx=p+1
dim y=p+2

x<y

`∗(x)`∗(y∨),

where all sums run over faces of P of indicated dimensions. The expression

for hn−3,1
st (Y ) is the same as for h1,1

st (Y ) with roles of P and P ∗ interchanged.

Proof. We have the following relation for the generating function:

(uv)2EP (u, v) =
∑

∅6x6y6P

(−1)1+dimxu1+dim ySx

(v
u

)
Sy∨(uv)B[x,y]

(
u−1, v

)
,

52



so hp,qst (Y ) is equal (up to a sign) to the coe�cient of up+2vq+2 in the right sum.

Our �rst step is to determine which of the terms in the sum may give

contributions to monomials of the v-degree n − 1 or higher. If [x, y] = [∅, P ],

then the v-degree is determined by the B-polynomial and it is less than n/2+1

which is less than n− 1, since rk[∅, P ] = n+ 2 and n > 5. Now let rk[x, y] = d

and note that dim y∨ = n − dim y. If either x = ∅ or y = P , the maximum

possible v-degree of the corresponding term is less than n+ 1− d/2, so d can

be at most 3. If both x and y are proper faces, then the maximum possible

v-degree is less than n − d/2 and d can be only 0 or 1. In Table 3.1 on the

following page we list all terms of Sx(v/u), Sy∨(uv), and B[x,y](u
−1, v) that can

together give vn−1 or higher. We distribute u1+dim y in such a way that there

are no negative powers and we use k(y) to denote the number of facets of y.

Now we can read o� the coe�cients of monomials with vn−1 or vn. For

h1,1
st (Y ) = hn−3,n−3

st (Y ) we need to take the coe�cient of un−1vn−1, which is

h1,1
st (Y ) = `(P ∗)− n− 2 −

∑
dim y=0

[`∗(2 · y∨)− (n+ 1)`∗(y∨)]

+
∑

dim y=1

`∗(y∨) −
∑

dim y=2

[k(y)− 3] `∗(y∨)

+
∑

dim y=1

`∗(y) [`∗(2 · y∨)− n`∗(y∨)] +
∑

dim y=3

[`∗(2 · y)− 4`∗(y)] `∗(y∨)

−
∑

dimx=1
dim y=2
x<y

`∗(x)`∗(y∨) −
∑

dimx=2
dim y=3
x<y

`∗(x)`∗(y∨).

Observe that two sums with dim y = 2 can be naturally combined. For a �xed

y the �rst sum contains the number of edges of y, which is the same as the

number of vertices of y, while the second sum counts internal lattice points of

all edges of y. Together these two sums count the number of boundary lattice

points of y and their total contribution is

−
∑

dim y=2

[`(y)− `∗(y)− 3] `∗(y∨).

This leads us to the stated formula for h1,1
st (Y ).

The expression for the �middle� stringy Hodge numbers follows from the

table without any obvious simpli�cations.
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Finally, we know that hn−3,1
st (Y ) = h1,n−3

st (Y ) can be computed by dualizing

the expression for h1,1
st (Y ) due to mirror-symmetric properties of the stringy

E-function. One can also determine the coe�cient of u3vn−1 using the table �

this way gives exactly the same expression.

Lemma 3.3.2. In the notation of Theorem 3.3.1, we have

h0,0
st (Y ) = 1−

∑
dim y=0

`∗(y∨) +
∑

dim y=1

`∗(y)`∗(y∨),

hp,0st (Y ) =
∑

dim y=p+1

`∗(y)`∗(y∨), for 1 6 p 6 n− 3,

hn−2,0
st (Y ) = 1−

∑
dim y=n

`∗(y) +
∑

dim y=n−1

`∗(y)`∗(y∨).

Proof. Follows directly from Table 3.1 on the previous page using the same

approach as in the proof of Theorem 3.3.1.

Corollary 3.3.3. In the notation of Theorem 3.3.1, the following relations

hold, if the nef-partition is indecomposable:∑
dim y=1

`∗(y)`∗(y∨) =
∑

dim y=0

`∗(y∨), (3.3.1)∑
dim y=m

`∗(y)`∗(y∨) = 0, for 2 6 m 6 n− 2, (3.3.2)∑
dim y=n−1

`∗(y)`∗(y∨) =
∑

dim y=n

`∗(y). (3.3.3)

Proof. Follows immediately from Lemma 3.3.2, since we know that h0,0
st (Y ) =

1 = hn−2,0
st (Y ) and hp,0st (Y ) = 0 for 1 6 p 6 n− 3.

Now we use this corollary to prove the following result.

Lemma 3.3.4. Let ∆ be a re�exive polytope of dimension n > 5. Let P be

the Cayley polytope of an indecomposable two part nef-partition of ∆. Then

`∗(y)`∗(y∨) = 0 for any face y of P .

Proof. First, let y be a vertex. Then `∗(y) = 1 and we need to show that

`∗(y∨) = 0. Note that y∨ is an n-dimensional facet of P ∗. Then either y∨ is one

of the polytopes ∇1 or ∇2 of the nef-partition and it does not have an interior

point, since the nef-partition is indecomposable ([BN08], Corollary 6.12), or
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y∨ has a non-empty intersection with both ∇1 and ∇2. In the latter case

consider the projection of NR × R2 ⊃ P ∗ onto the second factor, which is a

lattice morphism. Then the image of y∨ is the line segment from (1, 0) to (0, 1),

which does not have interior lattice points. Therefore, in any case `∗(y∨) = 0,

as desired.

Now that we know the result is true for m = 0, we conclude from (3.3.1)

that it is true for m = 1. Then (3.3.2) and duality of P and P ∗ show that it

is true for all m. (Including, obviously, non-proper faces as well.)

Lemma 3.3.5. In the notation of Theorem 3.3.1, we have2

h0,1
st (Y ) = −

∑
dim y=2

[`(y) + 2`∗(y)− `∗(2 · y)− 3] `∗(y∨).

Proof. Using again Table 3.1 on page 54, we get

−h0,1
st (Y ) =

∑
dim y=0

[`∗(2 · y∨)− (n+ 1)`∗(y∨)]−
∑

dim y=1

2`∗(y∨)

+
∑

dim y=2

[k(y)− 3] `∗(y∨)−
∑

dim y=0

[`∗(2 · y∨)− (n+ 1)`∗(y∨)]

−
∑

dim y=2

[`∗(2 · y)− 3`∗(y)] `∗(y∨)

+
∑

dim y=1

2`∗(y∨) +
∑

dimx=1
dim y=2
x<y

`∗(x)`∗(y∨).

Now cancelling the same terms and eliminating k(y) as it was done in the

proof of Theorem 3.3.1 we obtain the stated result.

Corollary 3.3.6. In the notation of Theorem 3.3.1, the following relation

holds, if the nef-partition is indecomposable:∑
dim y=2

[`(y)− 3] `∗(y∨) =
∑

dim y=2

`∗(2 · y)`∗(y∨).

Proof. Follows from Lemmas 3.3.4 and 3.3.5, since h0,1
st (Y ) = 0.

2There was a typo in the analogous formula for h3,2(X) in Lemma 4.2 [DN10]: the
coe�cient of `∗(y) must be 2. Fortunately, this error did not propagate, for `∗(y)`∗(y∨)
vanishes in the indecomposable case where this expression was used.
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Alternatively, we can use Lemma 3.3.4 and Pick's formula. Indeed, let y

be a face of P of dimension 2, such that `∗(y∨) 6= 0. Then `∗(y) = 0, the area

of y is A(y) = `(y)/2− 1 and

A(2 · y) = `∗(2 · y) +
`(2 · y)− `∗(2 · y)

2
− 1 = 4A(y) = 2`(y)− 4,

but the number of boundary lattice points of 2 · y is 2`(y), thus `∗(2 · y) =

`(y)− 3.

Theorem 3.3.7. Let ∆ be a re�exive polytope of dimension n > 5. Let Y

be a generic Calabi-Yau complete intersection in an MPCP-desingularization

of X∆, corresponding to a two-part indecomposable nef-partition with Cayley

polytope P . Then

h1,1
st (Y ) = `(P ∗)− n− 2 −

∑
dim y=0

`∗(2 · y∨) +
∑

dim y=1

`∗(y∨)

+
∑

dim y=1

`∗(y)`∗(2 · y∨)−
∑

dim y=2

`∗(2 · y)`∗(y∨)

+
∑

dim y=3

`∗(2 · y)`∗(y∨)−
∑

dimx=2
dim y=3
x<y

`∗(x)`∗(y∨)

and for 2 6 p 6 n− 4 we have

hp,1st (Y ) =
∑

dim y=p

`∗(y)`∗(2 · y∨) +
∑

dim y=p+2

`∗(2 · y)`∗(y∨)

−
∑

dimx=p
dim y=p+1

x<y

`∗(x)`∗(y∨) −
∑

dimx=p+1
dim y=p+2

x<y

`∗(x)`∗(y∨),

where all sums run over faces of P of indicated dimensions. The expression

for hn−3,1
st (Y ) is the same as for h1,1

st (Y ) with roles of P and P ∗ interchanged.

Proof. Follows from Theorem 3.3.1, Lemma 3.3.4, and Corollary 3.3.6.

3.4 Examples

In this section we apply our results to compute Hodge numbers of several

complete intersections corresponding to nef-partitions of �ve-dimensional poly-
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topes. In this case MPCP-desingularizations actually completely resolve singu-

larities of generic complete intersections and their Hodge numbers and stringy

Hodge numbers coincide.

The re�exive polytopes considered here were selected from the data sup-

plements to [KKRS05].3 In each of the examples below we give the �le name

and the index of ∆◦ (starting with 0) in this database. We also explicitly give

vertices of ∆◦ and their decomposition into a nef-partition. The expressions

for Hodge numbers of the corresponding complete intersection are written as

h1,1(Y ) = s0 + · · ·+ s6,

where s0 = `(P ∗) − 5 − 2 and si for 1 6 i 6 6 is the i-th sum in the formula

in Theorem 3.3.7. (In a few cases Hodge numbers do not coincide with the

numbers in the �le name. This is not an error, but an example of a re�exive

polytope with several sets of Hodge numbers associated to its nef-partitions.)

First we give examples showing that for complete intersections there is no

relation between conditions h1,1(Y ) = 1 and �∆ is a simplex�, i.e. an analogue

of Corollary 3.2.3 is not obvious.

Example 3.4.1 (0-th polytope from �H.1.25�, simplex, h1,1(Y ) = 1). Let

vertices of ∆◦ be given by columns of the matrix
−1 0 1 0 0 0

−2 1 0 0 0 1

−2 1 0 1 0 0

−3 2 0 0 1 0

−3 3 0 0 0 0


and consider the nef-partition with V0 = {0, 1, 3} and V1 = {2, 4, 5}. Then

h1,1(Y ) = 1− 0 + 0 + 0− 0 + 0− 0 = 1,

h2,1(Y ) = 33− 8 + 0 + 0− 0 + 0− 0 = 25.

3Available at http://hep.itp.tuwien.ac.at/~kreuzer/CY/hep-th/0410018.html.

58

http://hep.itp.tuwien.ac.at/~kreuzer/CY/hep-th/0410018.html


Example 3.4.2 (1-st polytope from �H.1.37�, non-simplex, h1,1(Y ) = 1). Let

vertices of ∆◦ be given by columns of the matrix
1 1 −1 0 0 0 1

1 −3 0 1 0 0 0

0 −1 0 0 1 0 0

1 −2 0 0 0 1 0

2 −2 0 0 0 0 0


and consider the nef-partition with V0 = {0, 1, 4, 5} and V1 = {2, 3, 6}. Then

h1,1(Y ) = 2− 1 + 0 + 0− 0 + 0− 0 = 1,

h2,1(Y ) = 47− 14 + 0 + 5− 1 + 0− 0 = 37.

Example 3.4.3 (2-nd polytope from �H.1.73�, non-simplex, h1,1(Y ) 6= 1). Let

vertices of ∆◦ be given by columns of the matrix
0 2 −1 0 0 0 1

0 −2 0 1 0 0 0

0 −1 0 0 1 0 0

0 −1 0 0 0 1 0

1 −1 0 0 0 0 0


and consider the nef-partition with V0 = {0, 1, 2} and V1 = {3, 4, 5, 6}. Then

h1,1(Y ) = 2− 0 + 0 + 0− 0 + 0− 0 = 2,

h2,1(Y ) = 107− 35 + 0 + 0− 0 + 0− 0 = 72.

Example 3.4.4 (9-th polytope from �H.2.56�, simplex, h1,1(Y ) 6= 1). Let

vertices of ∆◦ be given by columns of the matrix
0 −2 1 0 0 0

1 −3 0 0 0 1

0 −1 0 1 0 0

0 −1 0 0 1 0

2 −2 0 0 0 0


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and consider the nef-partition with V0 = {0, 1, 5} and V1 = {2, 3, 4}. Then

h1,1(Y ) = 2− 0 + 0 + 0− 0 + 0− 0 = 2,

h2,1(Y ) = 61− 18 + 0 + 13− 0 + 0− 0 = 56.

In all of the examples above three terms were always zero: s2, s5, and s6.

We give a few more examples showing that none of the terms in expressions

for Hodge numbers for indecomposable nef-partitions vanishes identically, i.e.

these expressions cannot be easily simpli�ed further.

Example 3.4.5 (1-st polytope from �H.1.73�). Let vertices of ∆◦ be given by

columns of the matrix 
0 −2 0 1 0 0

0 −2 1 0 0 0

0 −1 0 0 0 1

0 −1 0 0 1 0

1 −1 0 0 0 0


and consider the nef-partition with V0 = {0, 1, 2, 3} and V1 = {4, 5}. Then

h1,1(Y ) = 1− 0 + 0 + 0− 0 + 0− 0 = 1,

h2,1(Y ) = 193− 92 + 2 + 0− 0 + 0− 0 = 103.

Example 3.4.6 (0-th polytope from �H.6.20�). Let vertices of ∆◦ be given by

columns of the matrix
0 −1 1 0 0 0 −2 0

1 −3 0 0 0 −1 0 1

1 −1 0 1 0 0 −1 0

1 −2 0 0 1 0 0 0

2 −2 0 0 0 0 0 0


and consider the nef-partition with V0 = {0, 1, 5, 7} and V1 = {2, 3, 4, 6}. Then

h1,1(Y ) = 4− 2 + 0 + 0− 0 + 7− 3 = 6,

h2,1(Y ) = 26− 8 + 0 + 2− 0 + 3− 3 = 20.
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3.5 Relations with Other Results

It would be desirable to have a geometric interpretation for each term of the ob-

tained expressions for stringy Hodge numbers and, in particular, to be able to

identify the toric component of h1,1
st (Y ), given by images of the torus-invariant

divisors of the ambient space or, equivalently, the polynomial part of hn−3,1
st (Y ),

corresponding to polynomial deformations of the complete intersection in the

ambient space. (In the hypersurface case this extra information follows �for

free� from the proof of Batyrev's formulas for the Hodge numbers.) While

there is an algorithm for computing the toric part of the cohomology ring

(see [BOKS07], for example), it does not give directly a �closed form� expres-

sion for its dimension. Also Borisov and Mavlyutov have constructed complete

stringy cohomology spaces in [BM03] for semiample hypersurfaces in toric va-

rieties and perhaps their techniques may be used in complete intersection case

as well.

It would also be interesting to compare the result of Theorem 3.3.7 with

the previously known formulas for Hodge numbers of complete intersections

obtained by Batyrev and Borisov in [BB96b]. They have considered a special

case when all divisors of the nef-partition in the non-resolved variety X∆ are

ample. Doran and Morgan related formulas from [BB96b] to the mixed Hodge

structure on the middle-dimensional cohomology of Y [DM07]. Our results

could be useful for such applications, if we had a geometric interpretation

for each term and identi�cation of the toric contributions. Batyrev-Borisov

formulas restricted to our case are given below, although we were not yet able

to match all terms with ours.

De�nition 3.5.1. A lattice polytope ∆′ is a Minkowski summand of another

lattice polytope ∆ if there exist µ ∈ Z>0 and a lattice polytope ∆′′ such that

µ∆ = ∆′ + ∆′′.

If divisors Ei of a nef-partition are ample in X∆, then ∆ is a Minkowski

summand of ∆i for all i, all these polytopes are combinatorially equivalent,

and each face θ of ∆ decomposes into Minkowski sum θ =
∑

i θi, where θi

is a face of ∆i of the same dimension as θ. In this case the nef-partition is

necessarily irreducible and Theorem 3.3.7 is applicable, as well as the following

result.
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Proposition 3.5.2. Let ∆ be a re�exive polytope of dimension n > 5. Let Y

be a generic Calabi-Yau complete intersection in an MPCP-desingularization

of X∆, corresponding to a two-part nef-partition with ample divisors Ei. Then

h1,1(Y ) = `(∆◦)− n− 1−
∑

dim θ=0

`∗(θ∨)−
∑

dim θ=1

`∗(θ∨)

+
∑

dim θ=2

[
`∗(θ)− `∗(θ0)− `∗(θ1)

]
`∗(θ∨),

hp,1(Y ) =
∑

dim θ=p+1

[
`∗(θ)− `∗(θ0)− `∗(θ1)

]
`∗(θ∨), for 2 6 p 6 n− 4,

hn−3,1(Y ) =
[
`∗(∆ + ∆0)− `∗(2 ·∆0) + `∗(∆ + ∆1)− `∗(2 ·∆1)

]
− n− 2

−
∑

dim θ=n−1

[
`∗(θ)− `∗(θ0)− `∗(θ1)

]
+

∑
dim θ=n−2

[
`∗(θ)− `∗(θ0)− `∗(θ1)

]
`∗(θ∨),

where the sums are over faces of ∆ of indicated dimensions, θ∨ is the face of

∆◦ dual to θ, and θ = θ0 + θ1 is the decomposition into Minkowski sum with

θi being a face of ∆i.

Proof. Follows from Corollary 8.4 in [BB96b], with the restriction to r = 2.

Note that there was a typo in the expression for hk(Ω1
V̂

): the sum should be

taken over dim Θ = d − r − k, not d − r − k − 1. This is obvious if one

compares this expression with the �corner� cases, since they include the same

contribution with k = 1 and k = d− r− 1. See also Corollary 8.5 in [BB96b],

where all dimensions are correct.

Our results presented in [DN10] have been recently used in [BJRR10],

where the authors have observed some correspondence between their algorithm

of computing Hodge numbers using line bundles and the following combina-

tions of terms in the expression for h1,1
st (Y ) from Theorem 3.3.7 in the case

n = 5:

h1,1
5 (Y ) = `(P ∗)− 7,

h1,1
4 (Y ) = −

∑
dim y=0

`∗(2 · y∨) +
∑

dim y=1

`∗(y∨),
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h1,1
3 (Y ) =

∑
dim y=1

`∗(y)`∗(2 · y∨)−
∑

dim y=2

`∗(2 · y)`∗(y∨),

h1,1
2 (Y ) =

∑
dim y=3

`∗(2 · y)`∗(y∨)−
∑

dimx=2
dim y=3
x<y

`∗(x)`∗(y∨),

see Equation (164) in [BJRR10]. These contributions h1,1
i (Y ) are described as

hi(X;OX(m,n)) hp,qi

in Equation (54) in [BJRR10]. Unfortunately, the authors of [BJRR10] do

not explain exactly what do they mean by �contributions� and how the corre-

spondence can be observed. As one can see from our examples in the previous

section, h1,1
4 (Y ) 6 0, so it is not the dimension of any cohomology space.

Of course, it can be such a dimension counted with negative sign. However,

h1,1
3 (Y )-contributions may have di�erent signs. In Example 3.4.6 it is positive

for the dual nef-partition (since nef-partition duality exchanges h1,1 and h2,1),

while in the following example it is negative (also for the dual nef-partition).

Example 3.5.3 (4-th polytope from �H.1.101�). Let vertices of ∆◦ be given

by columns of the matrix
1 0 0 0 0 1 −1

0 0 1 0 0 0 −1

0 0 0 1 0 0 −1

0 0 0 0 1 0 −1

−1 1 0 0 0 0 0


and consider the nef-partition with V0 = {0, 1, 5} and V1 = {2, 3, 4, 6}. Then

h1,1(Y ) = 2− 0 + 0 + 0− 0 + 0− 0 = 2,

h2,1(Y ) = 130− 43 + 0 + 0− 1 + 0− 0 = 86.

Note that in this example terms without products of lattice point counts

give an �overestimate� for h2,1(Y ). Such examples prevented us from making

a tempting conjecture that non-product terms correspond to the toric part of

h1,1(Y ) and the polynomial part of h2,1(Y ), as it is the case for hypersurfaces.
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Chapter 4

Geometric Transitions Through

Singular Subfamilies

In this chapter we present a detailed study of singularities of several subfamilies

of Calabi-Yau threefolds realized either as anticanonical hypersurfaces or nef

complete intersections in toric varieties. The considered subfamilies arose as

potential representatives of the only class of variations of Hodge structure in

Doran-Morgan classi�cation [DM06] without known geometric realizations. In

this analysis we rely on �brations of the threefolds by polarized K3-surfaces,

as these �brations help us to establish a relation between the subfamilies.

4.1 Complete Intersection Model

In [DM06] Doran and Morgan have shown that there are 14 possible classes

of variations of Hodge structure which can be associated to families of Calabi-

Yau threefolds Y with h2,1 = 1. They have provided explicit examples for all

but one of these classes and some suggestions on how one could construct an

example for the last class. By analogy with other examples, one could hope

to start with a complete intersection with h1,1 = 1 in the weighted projective

space WP(1, 1, 1, 1, 4, 6). Unfortunately, this ambient space is not Fano, so

the Batyrev-Borisov mirror construction based on nef-partitions, described in

Section 2.3, is not applicable to obtain a family with h2,1 = 1. Kreuzer and

Sheidegger have suggested to work with a slightly di�erent ambient space, a

non-crepant blow-up of WP(1, 1, 1, 1, 4, 6), which is Fano and has a family of

complete intersections corresponding to a suitable nef-partition, so the mirror
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transition is possible. (See Section 8 and Appendix E.2 in [KKRS05] for some

discussion of this example.) We construct and explore this mirror family below

using Sage.1

Let ∆ ⊂MR be a 5-dimensional re�exive polytope with its polar given by

sage: Delta5_polar = LatticePolytope([(1,-1,0,0,0), (-1,1,0,0,0),

(-1,-1,0,0,0), (-1,-1,2,0,0), (12,0,-1,-1,-1), (0,12,-1,-1,-1),

(0,0,-1,-1,-1), (0,0,11,-1,-1), (0,0,-1,2,-1), (0,0,-1,-1,1)])

i.e. vertices of ∆◦ are given by columns of the following matrix
1 −1 −1 −1 12 0 0 0 0 0

−1 1 −1 −1 0 12 0 0 0 0

0 0 0 2 −1 −1 −1 11 −1 −1

0 0 0 0 −1 −1 −1 −1 2 −1

0 0 0 0 −1 −1 −1 −1 −1 1

. (4.1.1)

The nef-partition we are interested in is �in agreement� with the block structure

of this matrix: one part is formed by the �rst four vertices and the other by

the last six.

sage: np = NefPartition([0]*4+[1]*6, Delta5_polar)

sage: np

Nef-partition {0, 1, 2, 3} U {4, 5, 6, 7, 8, 9}

Let Σ be a crepant subdivision of Σ∆ and X = XΣ be the corresponding

crepant partial resolution of X∆. The choice of this resolution will depend on

our needs, for the moment we only ensure that Σ is simplicial. We will use yi

as homogeneous coordinates on X with i being the index of the corresponding

point of ∆◦. For future use we introduce parameters c, d, and e into the

base �eld of X. Let Y ⊂ X be a generic member of the family of complete

intersections corresponding to the nef-partition above.

sage: X5 = CPRFanoToricVariety(np.Delta(), make_simplicial=True,

coordinate_names="y+", base_field=QQ["c,d,e"].fraction_field())

sage: Y = X5.nef_complete_intersection(np)

1Computations shown in this section were performed using Sage 4.6.2 with several extra
patches applied which are not yet included in the main code base. Therefore, these computa-
tions may not be reproducible in the current o�cial releases of Sage, but all used patches will
be submitted for inclusion in the near future and should become available shortly thereafter.
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The de�ning polynomials of Y are2

g0 = a0y
2
0y

12
4 + a1y

2
1y

12
5 + a2y0y1y2y3, (4.1.2)

g1 = b4y
6
4y

6
5y

6
6y

6
7 + b5y

4
4y

4
5y

4
6y

4
7y8 + b3y

2
2y

12
6 + b2y

2
3y

12
7

+ b7y
3
4y

3
5y

3
6y

3
7y9 + b6y

2
4y

2
5y

2
6y

2
7y

2
8 + b8y4y5y6y7y8y9 + b0y

3
8 + b1y

2
9. (4.1.3)

There are 12 parameters, but their number can be signi�cantly reduced. First

of all, we can set b5 = b6 = b7 = 0 using a change of variables. To see it easier,

we switch to an a�ne chart.

sage: Yap = Y.affine_patch(3)

sage: g1 = Yap.defining_polynomials()[1]

In this chart g1 takes the form

g1 = b0y
3
8 + b3y

2
2 + b2y

2
3 + b6y

2
8 + b8y8y9 + b1y

2
9 + b5y8 + b7y9 + b4

and making a substitution y8 = y8 + c, y9 = y9 + d+ ey8 does not lead to any

new monomials.

sage: X5 = Y.ambient_space()

sage: X5.inject_coefficients();

sage: X5.inject_variables();

sage: g1s = g1.subs(y8=y8+c, y9=y9+d+e*y8)

sage: g1s.monomials()

[y8^3, y2^2, y3^2, y8^2, y8*y9, y9^2, y8, y9, 1]

sage: g1s.monomial_coefficient(y8^2)

e^2*b1 + 3*c*b0 + e*b8 + b6

sage: g1s.monomial_coefficient(y9)

2*d*b1 + c*b8 + b7

sage: g1s.monomial_coefficient(y8)

3*c^2*b0 + 2*d*e*b1 + c*e*b8 + 2*c*b6 + e*b7 + d*b8 + b5

We see that one can pick c, d, and then e to make coe�cients of these 3 mono-

mials vanish, leaving only 9 parameters. Since we can also scale 2 polynomials

2Since we consider in this chapter �real life� examples rather than elementary ones as in
Chapter 1 and Chapter 2, the command line output of Sage may take a lot of space and be
hard to comprehend. Here gi can be obtained as Y.defining_polynomials(), and that
is exactly how they were obtained, but we present them in a typeset version (which can be
used by default in Sage notebook interface).
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and 5 variables, we can further reduce the number of parameters to 2. On the

other hand, applying Theorem 3.3.7 to Y , we get

h1,1
st (Y ) = 754− 557 + 46 + 0− 0 + 0− 0 = 243,

h2,1
st (Y ) = 5− 3 + 0 + 0− 0 + 1− 0 = 3.

If we took X to be a MPCP-desingularization of X∆, Y would be gener-

ically smooth and stringy Hodge numbers would coincide with the regular

ones, so the dimension of the space of complex deformations of Y is 3. Per-

formed reduction of the number of parameters in de�ning polynomials of Y

to 2 suggests that the dimension of the space of polynomial deformation of Y is

h2,1
poly(Y ) = 2. To con�rm this observation we compute the toric part of h1,1

st (Y ◦)

for the Batyrev-Borisov mirror Y ◦ of Y inside a MPCP-desingularization X◦

of X∇. (It is easy to work with a maximal resolution in this case, since ∇◦ is
much smaller than ∆◦, i.e. it has only a few lattice points.)

sage: X5m = CPRFanoToricVariety(np.nabla(), make_simplicial=True,

coordinate_points="all")

sage: X5m.is_smooth()

True

sage: Ym = X5m.nef_complete_intersection(np.dual(),

monomial_points="vertices")

sage: H = Ym.ambient_space().cohomology_ring()

sage: H.gens()

([z5], [z5], [4*z5 + 2*z6 + z7 + z9], [6*z5 + 3*z6 + 2*z7 + z8 +

z9], [z5], [z5], [z6], [z7], [z8], [z9])

Here we have restricted monomials used in the de�ning equations of Y ◦ to save

some time, since nef divisors corresponding to it have hundreds of monomial

sections and we need only its cohomology class. Note that X◦ is smooth, so Y ◦

is (generically) smooth as well, h1,1
st (Y ◦) = h1,1(Y ◦) and to compute h1,1

tor(Y
◦),

the contribution ofH1,1(X◦) toH1,1(Y ◦), we just need to consider intersections

of the cohomology class of Y ◦ with generators of the cohomology ring ofX◦. As

it can be seen from the above output, this ring can be generated by the last �ve

of �all generators�, each of which corresponds to a torus-invariant subvariety

of codimension 1, e.g. [z5] corresponds to {z5 = 0}, whose cohomology class

is equivalent to {z0 = 0}, {z1 = 0}, and {z4 = 0}.
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sage: Ym_c = Ym.cohomology_class()

sage: Ym_c

[24*z5^2 - 6*z6^2 + 8/3*z7*z8 - 2/3*z8^2 - 13*z6*z9 - 3/2*z9^2]

sage: [Ym_c * g for g in H.gens()[-5:]]

[[24*z5^3 + 3*z6^3 + 14/9*z7*z8^2 + 1/9*z8^3 + 19/2*z6^2*z9 +

3/8*z9^3], [-z6^2*z9], [0], [0], [0]]

We conclude that h1,1
tor(Y

◦) = h2,1
poly(Y ) = 2.

As it was pointed out in [DM06], a certain subfamily of complete intersec-

tions Y corresponds to the desired hypergeometric series. To describe that sub-

family precisely in our setting, we will compute the GKZ series of Y following

the algorithm outlined in Section 5.5 of [CK99] and Appendix A of [KKRS05].

It is easy to check that monomials that can be eliminated in equations for

Y correspond to all points of ∆i that are neither vertices of ∆i nor the origin.

(This is true for our particular case, in general such information cannot be

easily determined and one has to perform computations in the cohomology

ring as above.) Let's use this information to reconstruct our varieties:

sage: X5 = CPRFanoToricVariety(np.Delta(), make_simplicial=True,

coordinate_names="y+")

sage: Y = X5.nef_complete_intersection(np,

monomial_points="vertices+origin")

sage: X5m = CPRFanoToricVariety(np.nabla())

sage: X5m.Mori_cone().rays()

((1, 1, 0, 0, 1, 1, -2, -2), (0, 0, 2, 3, 0, 0, 1, -6))

We now use the generators of the Mori cone of X◦ to construct moduli param-

eters of Y . These generators are given as elements of the row span of the Gale

transform of the fan of X◦, the i-th element of each generator corresponds to

the i-th ray of this fan, except for the last one which corresponds to the origin

and is equal to the negative sum of other entries. For complete intersections

we need to take such sums for each part of the nef-partition separately. The

following code adds them in a way compatible with the order of coe�cients of

Y in Sage with a2 and b8 corresponding to the origin (coe�cient-monomial cor-

respondence for the newly constructed Y is the same as in (4.1.2) and (4.1.3),

since coe�cient indices come from the internal enumeration of polytope lattice

points).
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sage: coefs = Y.ambient_space().base_ring().gens()

sage: coefs

(a0, a1, a2, b0, b1, b2, b3, b4, b8)

sage: degrees = [[[ray[i] for i in p] for p in np.dual().parts()]

for ray in X5m.Mori_cone()]

sage: degrees = [flatten([p + [-sum(p)] for p in degs]) for degs

in degrees]

sage: matrix(degrees)

[ 1 1 -2 0 0 1 1 -2 0]

[ 0 0 0 2 3 0 0 1 -6]

sage: B = [prod(c^d for c, d in zip(coefs, ds)) for ds in degrees]

The modular parameters of Y are

B0 =
a0a1b2b3

a2
2b

2
4

, B1 =
b2

0b
3
1b4

b6
8

,

and its GKZ series is∑
m,n

(2m)!(6n)!

(m!)4(2n)!(3n)!(n− 2m)!
Bm

0 B
n
1 ,

where the summation is over all integers m and n such that all arguments of

factorials are non-negative. Making a substitution (n− 2m)→ n, we can sum

over all non-negative integers:

∑
m,n∈Z>0

(2m)!(12m+ 6n)!

(m!)4(4m+ 2n)!(6m+ 3n)!n!
Bm

0 B
2m+n
1 .

To simplify the description of Y further, we now scale its de�ning poly-

nomials and coordinates to set all coe�cients to 1 except for b3 = ξ0 and

b4 = ξ1.

sage: Y = X5.nef_complete_intersection(np, monomial_points=

"vertices+origin",coefficients=[[1,1,1],[1,1,1,"xi0","xi1",1]])

Now de�ning polynomials of Y are

g0 = y2
0y

12
4 + y2

1y
12
5 + y0y1y2y3, (4.1.4)

g1 = ξ1y
6
4y

6
5y

6
6y

6
7 + ξ0y

2
2y

12
6 + y2

3y
12
7 + y4y5y6y7y8y9 + y3

8 + y2
9, (4.1.5)
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and the GKZ series takes the form∑
m,n∈Z>0

(2m)!(12m+ 6n)!

(m!)4(4m+ 2n)!(6m+ 3n)!n!
ξm0 ξ

n
1 .

Comparing this series with the one given in the end of [DM06], we see that

the subfamily of interest is ξ1 = 0, leading to the series

∑
m∈Z>0

(2m)!(12m)!

(m!)4(4m)!(6m)!
ξm0 .

We will come back to this subfamily in Section 4.7.

Going back to the de�nition of ∆◦ in (4.1.1), we observe that in addition

to its column decomposition into a nef-partition it has a �natural� row decom-

position. Indeed, the projection onto the �rst two coordinates corresponds to

a toric �bration α̃ : X → B over a 2-dimensional toric variety B, as long as we

pick a compatible resolution of X∆. To get such a resolution, we start with the

face fan of ∆◦, take its minimal subdivision compatible with the projection,

and then subdivide it to get a simplicial fan, so that X is an orbifold.

sage: m = matrix([(1,0), (0,1)] + [(0,0)]*3)

sage: Delta2_polar = LatticePolytope([(1,-1), (-1,1), (-1,-1),

(1,0), (0,1)])

sage: B2 = CPRFanoToricVariety(Delta_polar=Delta2_polar,

coordinate_names="u+")

sage: Sigma5 = FaceFan(Delta5_polar)

sage: Sigma5.nrays(), Sigma5.ngenerating_cones()

(10, 14)

sage: Sigma5 = FanMorphism(m, Sigma5, B2.fan(),

subdivide=True).domain_fan()

sage: Sigma5.nrays(), Sigma5.ngenerating_cones()

(10, 22)

sage: X5 = CPRFanoToricVariety(np.Delta(),

charts=[C.ambient_ray_indices() for C in Sigma5],

coordinate_names="y+", make_simplicial=True, check=False)

sage: alpha = FanMorphism(m, X5.fan(), B2.fan())

sage: alpha.is_fibration()

True
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The command reconstructing X5 may look a little strange: at the moment

Sage does not support constructing CPR-Fano toric varieties directly from a

given fan, so we extracted the information about generating cones from the

fan to explicitly specify charts. In this form the variety constructor performs

compatibility checks and they may take quite a while, but we suppressed them

via check=False option, since we know for sure that our input de�nes a crepant

subdivision of Σ∆.

In homogeneous coordinates

α̃ : [y0 : · · · : y9] 7→ [u0 : · · · : u4] =
[
y0 : y1 : y2y3 : y12

4 : y12
5

]
.

Note that the hypersurface de�ned by the polynomial g0 in (4.1.4) depends

only on the variables involved in the projection map. This means that we can

interpret g0 = 0 as a de�ning equation of a curve C = α̃({g0 = 0}) ⊂ B and

g1 = 0 as a de�ning equation of a surface in each �ber of α̃, in other words, α̃

induces a �bration of the complete intersection Y over C.

Generic �bers of α̃ : X → B correspond to the fan whose rays are generated

by the last four vertices of ∆◦. The polytope spanned by these vertices is the

last (the 4318-th) 3-dimensional re�exive polytope in the Kreuzer-Skarke list

(included in Sage), with its normal fan corresponding to WP(1, 1, 4, 6):

sage: Sigma_0 = alpha.kernel_fan()

sage: vertices = Sigma_0.ray_matrix().matrix_from_rows([2,3,4])

sage: p = LatticePolytope(vertices)

sage: p.is_reflexive()

True

sage: p.index()

4318

sage: NormalFan(p).rays()

(N(1, 0, 0), N(0, 1, 0), N(0, 0, 1), N(-1, -4, -6))

4.2 Anticanonical Hypersurface Model

In the previous section we were able to represent the complete intersection Y as

a �bration over a curve with �bers living in the space polar to WP(1, 1, 4, 6).

This suggests that we can also look for a family realized as anticanonical
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hypersurfaces in a four-dimensional space which can be �bered by the same

toric varieties. We have searched for Fano varieties �bered by WP(1, 1, 4, 6)

among those whose anticanonical hypersurfaces have small h1,1 and with an

extra condition that the torically induced �bration is �balanced� in the sense

that the same 3-dimensional re�exive polytopes can play roles of both slices

and projections, as it was described in Section 2.4. The weighted projective

space WP(1, 1, 2, 8, 12) satis�es these requirements and below we consider the

family of anticanonical hypersurfaces in its polar.

Let ∆ ⊂MR be a 4-dimensional re�exive polytope given by

sage: Delta4 = LatticePolytope([(1,0,0,0), (0,1,0,0), (0,0,1,0),

(0,0,0,1), (-1,-2,-8,-12)])

i.e. vertices of ∆ and vertices of ∆◦ ⊂ NR are given by columns of the following

matrices 
1 0 0 0 −1

0 1 0 0 −2

0 0 1 0 −8

0 0 0 1 −12

,


23 −1 −1 −1 −1

−1 −1 11 −1 −1

−1 2 −1 −1 −1

−1 −1 −1 −1 1

.

Let Σ be a crepant subdivision of Σ∆ and X = XΣ be the corresponding

crepant partial resolution of X∆. As before, the choice of this resolution will

depend on our needs, for now we add only one extra ray in addition to the

vertices of ∆◦, namely the ray corresponding to the midpoint (11,−1,−1,−1)

between the 0-th and the 3-rd vertices, which is the 16-th point in the internal

enumeration in Sage:

sage: Delta4.polar().point(16)

(11, -1, -1, -1)

sage: X4 = CPRFanoToricVariety(Delta=Delta4,

coordinate_points=range(5)+[16])

sage: B1 = toric_varieties.P1("s,t")

sage: beta = FanMorphism(matrix([1,1,4,6]), X4.fan(), B1.fan())

sage: beta.is_fibration()

True

This extra ray is necessary to make Σ compatible with the projection onto the

line in the direction (1, 1, 4, 6). If B = P1 with coordinates [s : t] corresponding
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to the (unique) complete fan on this line and β̃ : X → B is the toric morphism

associated to this projection, then

β̃ : [z0 : z1 : z2 : z3 : z4 : z16] 7→ [s : t] =
[
z12

0 : z12
3

]
. (4.2.1)

Let Z ⊂ X be a generic anticanonical hypersurface. Its de�ning polynomial is

h = a0z
24
0 z

12
16 + a5z

12
0 z

12
3 z

12
16 + a4z

24
3 z

12
16 + a6z

6
0z

6
2z

6
3z

6
16

+ a1z
12
2 + a10z0z1z2z3z4z16 + a2z

3
1 + a3z

2
4 .

Scaling the whole polynomial and four independent coordinates we can elimi-

nate 5 out of 8 parameters. Using Batyrev's formulas for the Hodge numbers

of anticanonical hypersurfaces, we check that h2,1(Z) = h2,1
poly(Z) = 3, so we

should indeed have 3 independent parameters.

Anticanonical hypersurfaces inside the space polar toWP(1, 1, 2, 8, 12) were

extensively studied in [BDF+98] and in order to conveniently use their results

we will match our toric description with theirs. (They have considered hy-

persurfaces in WP(1, 1, 2, 8, 12) with extra symmetries, which allow taking the

quotient under a certain group action. This is similar to the polar projective

plane being P2/Z3, as it was shown in Section 2.1.)

First, we rewrite the polynomial of Z in its ��bered� form, thinking of it

as a polynomial in z1, z2, z4, z16 only and working in a chart with t = z3 = 1:

[
a0s

2 + a5s+ a4

]
z12

16 +
[
a6z

6
0

]
z6

2z
6
16 + a1z

12
2 + [a10z0] z1z2z4z16 + a2z

3
1 + a3z

2
4 .

Now we can compare our representation with (4.19) in [BDF+98]:

W (2)(x;B′, ψ0, ψ1) =
1

12
(B′x12

0 + x12
3 ) +

1

3
x3

4 +
1

2
x2

5 − ψ0x0x3x4x5 −
1

6
ψ1x

6
0x

6
3.

We see that the matching of coordinates and coe�cients is

z1 = x4, z2 = x3, z4 = x5, z0z16 = x0,

a1 =
1

12
, a2 =

1

3
, a3 =

1

2
, a6 = −1

6
ψ1, a10 = −ψ0,
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and

a0s+
a4

s
+ a5 =

1

12
B′.

To match these remaining parameters we use the de�nition of B′ given in

(3.18)[BDF+98]:

B′ =
1

2

(
Bζ +

B

ζ
− 2ψs

)
,

where ζ is an a�ne coordinate on the base of the �bration, so

s = ζ, a0 =
B

24
, a4 =

B

24
, a5 = −ψs

12
.

We can use these parameters in Sage as follows:

sage: var("B,psi0,psi1,psi_s");

sage: Z = X4.anticanonical_hypersurface(

coefficients=[B/24,1/12,1/3,1/2,B/24,-psi_s/12,-psi1/6,-psi0])

Now the de�ning polynomial of Z has the form

B

24
z24

0 z
12
16 −

ψs
12
z12

0 z
12
3 z

12
16 +

B

24
z24

3 z
12
16 −

ψ1

6
z6

0z
6
2z

6
3z

6
16

+
1

12
z12

2 − ψ0z0z1z2z3z4z16 +
1

3
z3

1 +
1

2
z2

4 .

One of the four parameters in this representation is redundant, e.g. we can

set ψ0 = 1.

4.3 Geometric Transitions

Both complete intersections and anticanonical hypersurfaces presented above

have h2,1 = 3, while the original goal in their construction was to obtain

families with h2,1 = 1. In fact, in the hypersurface case it was known in advance

that we will �fail�, since it is known that there are only 5 re�exive polytopes

yielding Calabi-Yau threefolds with h2,1 = 1 and it was shown in [DM06] that

they provide examples for other classes of Hodge structure variations.

However, we still can try to obtain desired families using subfamilies of
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the constructed ones. Of course, just �xing some of the parameters does not

change the Hodge numbers of the Calabi-Yau threefolds in question, but if

these threefolds become singular, we may try to resolve the singularities and

for the resolved family it is possible to have h2,1 = 1. So what we are looking for

now are geometric transitions from the already constructed families to some

new ones with, hopefully, �correct� Hodge numbers. We now give a precise

de�nition and basic classi�cation of geometric transitions following [Ros10].

De�nition 4.3.1. Let Y and Ỹ be smooth Calabi-Yau threefolds. They are

connected by a geometric transition if there exist a normal variety Y , a

birational contraction ϕ : Y → Y , and a complex deformation (smoothing) of

Y to Ỹ . It is a primitive geometric transition if ϕ cannot be factored into

birational morphisms of normal varieties. It is a conifold transition if Y has

only conifold singularities (ordinary double points). It is a trivial geometric

transition if Ỹ is a deformation of Y .

Theorem 4.3.2. Let ϕ : Y → Y be a primitive contraction of a smooth

Calabi-Yau threefold Y to a normal variety Y . Let E be the exceptional locus

of ϕ. Then ϕ is of one of the following three types:

type I ϕ is small, E may be reducible and is composed of �nitely many rational

curves;

type II ϕ contracts a divisor to a point, E is irreducible and is a generalized

del Pezzo surface;

type III ϕ contracts a divisor to a smooth curve C, E is irreducible and is a

conic bundle over C.

Proof. See [Wil92, Wil93], the given formulation is Theorem 1.9 in [Ros10].

De�nition 4.3.3. A primitive geometric transition is of type I, II, or III, if

the corresponding birational contraction is of type I, II, or III, respectively.

It turns out, that our models are connected via a type III geometric tran-

sition. To see it explicitly, we �rst compare their �bration structures.
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4.4 K3 Fibrations

Generic �bers of the �brations induced by α̃ and β̃ constructed earlier are

anticanonical (�hyper�)surfaces inside the three-dimensional space polar to

WP(1, 1, 4, 6), i.e. they are generically two-dimensional Calabi-Yau varieties �

K3 surfaces. The choice of the toric ambient space for them induces a lattice

polarization, in this case by the latticeM = H⊕E8⊕E8, whereH is the hyper-

bolic lattice of rank 2 and E8 is the unique even negative-de�nite unimodular

lattice of rank 8. Such M -polarized K3 surfaces (the name �M -polarized� is a

bit unfortunate in the toric context, but it should not cause too much confu-

sion) were studied in [CD07] and [CDLW09], we start this section with some

basic facts about them.

De�nition 4.4.1. An M -polarization on a K3 surface X is a primitive lattice

embedding i : M ↪→ NS(X), such that the image i(M) in the Néron-Severi

lattice NS(X) contains a pseudo-ample class (corresponding to an e�ective nef

divisor with positive self-intersection).

Theorem 4.4.2. Let X be an M-polarized K3 surface. Then

1) X is isomorphic to the minimal resolution of a quartic surface in P3

given by

y2zw − 4x3z + 3axzw2 + bzw3 − 1

2
(dz2w2 + w4) = 0;

2) parameters a, b, and d in the above equation specify a unique point

(a, b, d) ∈WP(2, 3, 6) with d 6= 0;

3) X canonically corresponds to a pair of elliptic curves {E1, E2};

4) modular parameters of X and {E1, E2} are related by

π = j(E1)j(E2) =
a3

d
and σ = j(E1) + j(E2) =

a3 − b2 + d

d
;

5) there are exactly two isomorphism classes of elliptic �brations with sec-

tions on X.

Proof. See Theorem 1.1, Corollary 1.3, and Section 3 in [CD07] and Theo-

rems 3.1 and 3.2 in [CDLW09].
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Proposition 4.4.3. An anticanonical hypersurface in the space polar to the

weighted projective WP(1, 1, 4, 6) is an M-polarized K3 surface de�ned by

λ0x
12
0 + λ4x

6
0x

6
1 + λ1x

12
1 + λ5x0x3x1x2 + λ3x

3
3 + λ2x

2
2 = 0.

It is related to the normal form given in Theorem 4.4.2 by

a3 =
1

126Λ2
0Λ1

, b2 =
(6 · 122Λ0 − 1)2

126Λ2
0Λ1

, where Λ0 =
λ3

2λ
2
3λ4

λ6
5

, Λ1 =
λ0λ1

λ2
4

.

Proof. See Section 3.4 in [CDLW09]3.

For the complete intersection model Y described in Section 4.1 the role of

[x0 : x1 : x2 : x3] in Proposition 4.4.3 is played by [y6 : y7 : y9 : y8] and we

obtain the following expressions for modular parameters of a �ber:

πY =
y12

4 y
12
5

126ξ0y2
2y

2
3

, σY = 1 +
(
ξ1 − 3 · 122ξ2

1

) y12
4 y

12
5

123ξ0y2
2y

2
3

.

For the anticanonical hypersurface model Z from Section 4.2 [x0 : x1 : x2 : x3]

correspond to [z16 : z2 : z4 : z1] and we compute

πZ =
ψ12

0

2
· z12

0 z
12
3

Bz24
0 − 2ψsz12

0 z
12
3 +Bz24

3

,

σZ = 1− 2(ψ6
0ψ1 + ψ2

1)
z12

0 z
12
3

Bz24
0 − 2ψsz12

0 z
12
3 +Bz24

3

.

Next we switch to coordinates on bases B2 and B1 of �brations α̃ and β̃

respectively:4

πY =
u3u4

126ξ0u2
2

,

σY = 1 +
(
ξ1 − 3 · 122ξ2

1

) u3u4

123ξ0u2
2

,

3There was a typo in the preprint version of [CDLW09] posted on arXiv: the numerator
of the expression for b2 was not squared.

4We have used the same notation ∆, Σ, X, and B in Section 4.1 and Section 4.2 to
refer to di�erent objects. When we need to consider them together and it is necessary to
distinguish them, we will use their dimensions as superscripts. Names in Sage examples
always include these dimensions to allow reusing of objects in later sections.
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πZ =
ψ12

0

2
· st

Bs2 − 2ψsst+Bt2
, (4.4.1)

σZ = 1− 2(ψ6
0ψ1 + ψ2

1)
st

Bs2 − 2ψsst+Bt2
. (4.4.2)

Finally, recall that Y is �bered not over B2, but over a curve C ⊂ B2 corre-

sponding to g0. It is easy to see from (4.1.4), that g0 is the pullback of

u2
0u3 + u2

1u4 + u0u1u2. (4.4.3)

Using the fan of B2, shown in Figure 4.1, we can see that C does not intersect

divisors corresponding to u0 and u1, e.g. if u0 = 0, then u2
1u4 6= 0 since there

are no cones containing rays corresponding to u0 and u1 or u4. This means that

u0

u1

u2

u3

u4

Figure 4.1: Base B2 of the �bration α̃

C is isomorphic to the curve in P2 with coordinates [u : v : w] = [u3 : u4 : u2],

given by u+ v+w = 0, i.e. C ' P1 with coordinates [u : v]. In terms of these

coordinates the modular parameters of a �ber are

πY =
1

126ξ0

· uv

(u+ v)2
, (4.4.4)

σY = 1 +
ξ1 − 3 · 122ξ2

1

123ξ0

· uv

(u+ v)2
. (4.4.5)

Comparing expressions for π and σ for the complete intersection model,

(4.4.4) and (4.4.5), with analogous expressions for the anticanonical hypersur-

face model, (4.4.1) and (4.4.2), we see that they are quite similar and this
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similarity would be even more striking if we let ψs = −B:

πZ =
ψ12

0

2B
· st

(s+ t)2
, (4.4.6)

σZ = 1− 2(ψ6
0ψ1 + ψ2

1)

B
· st

(s+ t)2
. (4.4.7)

In fact, expressions (4.4.4) and (4.4.5) and expressions (4.4.6) and (4.4.7) would

be exactly the same if we let [u : v] = [s : t] and

ξ0 =
2B

(12ψ2
0)

6 , ξ1 = − 4ψ1

(12ψ2
0)

3 . (4.4.8)

Note also that with respect to the �ber modular parameters πY and σY the

subfamily of complete intersections with ξ1 = 0 is very special: in this case

σY ≡ 1, so all K3 �bers correspond to �complementary� elliptic curves with

j(E1) + j(E2) = 1.

4.5 Ambient Space Morphism

Given such a perfect matching of modular parameters, we may try to construct

a morphism between original varieties Y → Z, perhaps by constructing a

morphism (ideally � a �bration) between their ambient spaces X5 → X4.

Combining all correspondences used so far, we get

[y0 : · · · : y9]! ([u : v], [x0 : · · · : x3])! [z0 : · · · : z16],

or, more concretely,

[y4 : y8 : y7 : y5 : y9 : y6]! [z0 : z1 : z2 : z3 : z4 : z16].

This correspondence does not give us a morphism between toric varieties,

since only some of the homogeneous coordinates on X5 are used and they are

probably not well-de�ned due to relations involving the rest of coordinates

as well. But we may look for a fan morphism that will map at least rays

corresponding to these selected yi to the rays corresponding to indicated zj.
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sage: m_y =

Delta5_polar.vertices().matrix_from_columns([4,8,7,5,9,6])

sage: m_z =

Delta4.polar().points().matrix_from_columns([0,1,2,3,4,16])

sage: m = m_y.solve_left(m_z)

This computation shows that if such a fan morphism exists, it must be given

by the matrix m 
1 −1 −1 −4 −6

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

,
which is unique since m_y has maximal rank. If this matrix de�nes a �bration,

then rays of Σ5 must be mapped onto rays of Σ4 or the origin.

sage: rays = [m*r for r in Sigma5.rays() if not (m*r).is_zero()]

sage: from sage.geometry.cone import normalize_rays

sage: rays = set(normalize_rays(rays, None))

sage: points = sorted(Delta4.polar().points().columns().index(ray)

for ray in rays)

sage: points

[0, 1, 2, 3, 4, 16, 331, 333, 334]

Since all necessary image rays can be generated by lattice points of (∆4)
◦
,

we can pick Σ4 as a crepant subdivision of Σ∆4 . One can then subdivide

the current Σ5 (the subdivision of Σ∆5 compatible with the �bration α) and

obtain indeed a �bration overX4, but, unfortunately, this will not be a crepant

subdivision of Σ∆5 .

To �x this problem, we go back to the de�ning polynomial (4.4.3) of the

curve C ⊂ B2 and the fan of B2, shown in Figure 4.1 on page 78. We have

already established that C does not intersect divisors corresponding to u0 and

u1. Now we note that it also does not contain the point with u3 = u4 = 0,

since this would imply that one of the other coordinates is zero, which is not

possible. This means that C is completely contained within the part of B2

corresponding to the fan generated by rays of u2, u3, and u4. But then Y ⊂ X5

is completely contained within the toric variety corresponding to Σ5 without

all cones that contain rays corresponding to either y0, or y1, or y4 and y5
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together. Starting with such a subfan Σ5
part of Σ5 we can �nd its subdivision

leading to a �bration Φ̃ : X5
part → X4 with a�ne lines as generic �bers.

sage: selected = []

sage: for sigma in flatten(Sigma5.cones()):

... indices = sigma.ambient_ray_indices()

... if (0 in indices or

... 1 in indices or

... 4 in indices and 5 in indices):

... continue

... selected.append(sigma)

sage: Sigma5_part = Fan(cones=selected, rays=Sigma5.rays())

sage: rays = [m*ray for ray in Sigma5_part.rays() if not

(m*ray).is_zero()]

sage: rays = set(normalize_rays(rays, None))

sage: points4 = sorted(Delta4.polar().points().columns().index(r)

for r in rays)

sage: points4

[0, 1, 2, 3, 4, 16, 334]

sage: Delta4.polar().point(334)

(-1, 1, 0, 0)

sage: X4 = CPRFanoToricVariety(Delta4, coordinate_points=points4)

sage: Phi = FanMorphism(m.transpose(), Sigma5_part, X4.fan(),

subdivide=True)

sage: Phi.is_fibration()

True

sage: Phi.kernel_fan().rays()

(N(-1, -1, 0, 0, 0),)

sage: all(ray in Delta5_polar.points().columns() for ray in

Phi.domain_fan().rays())

True

sage: points5 = [Delta5_polar.points().columns().index(ray) for

ray in Phi.domain_fan().rays()]

sage: points5

[2, 3, 4, 5, 6, 7, 8, 9, 752]

sage: Delta5_polar.point(752)

(0, 0, 1, 0, 0)

sage: Phi.domain_fan().is_simplicial()
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True

sage: X5_part = ToricVariety(Phi.domain_fan(),

coordinate_names="y+", coordinate_indices=points5)

Now not only all necessary rays in the codomain can be generated by lattice

points of (∆4)
◦
, but also all necessary rays in the domain can be generated

by lattice points of (∆5)
◦
, so we can think of X5

part as an open subset of some

crepant partial desingularization of X∆5 and Y ⊂ X5
part is still a Calabi-Yau

variety.

From the computational point of view, we can no longer use the framework

of CPR-Fano toric varieties in Sage to represent X5
part and have to use generic

toric varieties. We will however still use the same convention for naming

coordinates: missing y0 and y1 now re�ect the fact that we are interested only

in charts where they are non-zero, in which case both can be set to 1 using

relations between coordinates. In homogeneous coordinates we get

Φ̃ : [y2 : · · · : y9 : y752] 7→ [z0 : z1 : z2 : z3 : z4 : z16 : z334]

= [y4 : y8 : y7 : y5 : y9 : y6 : y2
3y752],

which also does not involve y2, since it corresponds to the only ray of the kernel

fan. This map can be used to pullback Z and compare it with Y . We delay

this comparison, however, since for analysis of singularities it is convenient to

perform a few more subdivisions of underlying fans.

4.6 Singular Subfamilies: Hypersurfaces

Generically, complete intersections Y and anticanonical hypersurfaces Z in

MPCP-desingularizations of their ambient spaces are smooth, since the singu-

lar locus in this case has codimension at least four. However, we are interested

in the following subfamilies:

1) complete intersections Y with ξ1 = 0, corresponding to the subfamily

with the desired GKZ-series, we will denote a generic member of this

subfamily as Y1 to emphasize dependence on a single parameter only;

2) hypersurfaces Z with ψs = −B, corresponding to the subfamily whose

K3 �bration can be �perfectly matched� with the K3 �bration of complete

intersections Y , we will denote a generic member of this subfamily as Z2;
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3) hypersurfaces Z with ψs = −B and ψ1 = 0, corresponding to the sub-

family of the above subfamily with an analogue of ξ1 = 0 restriction, we

will denote a generic member of this subfamily as Z1.

Generic members of these subfamilies may be singular, we analyze them using

results of [BDF+98] and computer software (Sage interfacing Magma [BCP97]

for computing singular locus of a�ne varieties).

The singular locus in the moduli space of hypersurfaces Z is summarized

in relations (4.39) of [BDF+98]:

S±a1 : (ψ6
0 + ψ1)2 + ψs = ±B,

S±a2 : ψ2
1 + ψs = ±B,

S±b : ψs = ±B,

S±0 : 0 = B.

Relations S±a1 and S
±
a2 are actually the same in the sense that they are switched

by an appropriate change of coordinates (there is a �nite group action on

the simpli�ed polynomial moduli space of hypersurfaces). We see that hy-

persurfaces Z2 are singular (and, therefore, cannot be isomorphic to the full

two-parameter family of complete intersections Y ), since the condition S−b is

satis�ed. Condition ψ1 = 0 makes relations S±a2 and S±b the same, but does

not impose singularities on its own.

Explicit chart-by-chart check for singularities of Z2 using our current fan

Σ4 and ignoring the orbifold structure of X4 (i.e. ignoring singularities of Z2

which are inevitable due to the ambient space structure) reveals a singular

locus of dimension 1 in all charts involving z334. To study this singular locus,

it is convenient to put it into smooth charts of X4, so we subdivide Σ4 further.

In fact, it is better to start fresh with Σ∆4 . Recall that adding the ray

corresponding to the 16-th point v16 = (11, −1, −1, −1) of (∆4)
◦
, the mid-

point between vertices v0 = (23, −1, −1, −1) and v3 = (−1, −1, −1, −1),

was necessary for compatibility with the �bration β̃ : X4 → B1 ' P1. We also

had to add v334 = (−1, 1, 0, 0) to allow for a �bration Φ̃ : X5
part → X4. This

is the only interior point of the triangle face on v1 = (−1, −1, 2, −1), v2 =

(−1, 11, −1, −1), and v4 = (−1, −1, −1, 1). The face fan of this triangle (in

the spanned a�ne sublattice with v334 being the origin) is the fan ofWP(1, 2, 3)

used in Example 1.8.3. The three interior points of edges correspond to
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v251 = (−1, 7, 0, −1), v276 = (−1, 3, 1, −1), and v325 = (−1, 5, −1, 0).

Adding all these rays is su�cient to resolve all singularities of the 3-dimensional

cone on v1, v2, and v4, but the resulting subcones are still faces of singular

4-dimensional cones. This is also re�ected in the homogeneous coordinate rep-

resentation of β̃ (4.2.1): coordinates on the base B1 correspond to the 12-th

powers of coordinates on X4 (yet the de�ning equation of Z involves �rst pow-

ers of all variables as well). The problem is that v0 and v3 are �too far away�

from the slice hyperplane de�ning the projection to B1. We can remedy the

situation by adding two more points right �above� and �below� the face on

v1, v2, and v4 (which is completely contained in the slice hyperplane), namely

v168 = (−1, 10, −1, −1) and v170 = (1, 10, −1, −1).

Using consecutive star-like subdivisions (which are used in Sage for auto-

matic insertion of rays), it turns out that the best sequence is the following:

1) add v16 to allow �bration β̃ : X4 → B1;

2) add v168 and v170 to �improve� this �bration;

3) add v334 to allow �bration Φ : X5
part → X4;

4) add v251, v276, and v325 to cover the divisor of z334 by smooth charts.

sage: X4 = CPRFanoToricVariety(Delta4,

coordinate_points=[0,1,2,3,4,16,168,170,334,251,276,325])

sage: beta = FanMorphism(matrix([1,1,4,6]), X4.fan(), B1.fan())

sage: beta.is_fibration()

True

sage: all(sigma.is_smooth() for sigma in X4.fan() if (-1,1,0,0) in

sigma)

True

sage: Z = X4.anticanonical_hypersurface(

coefficients=[B/24,1/12,1/3,1/2,B/24,-psi_s/12,-psi1/6,-psi0])

sage: X4 = Z.ambient_space()

sage: Z2 = X4.anticanonical_hypersurface(

coefficients=[B/24,1/12,1/3,1/2,B/24,B/12,-psi1/6,-psi0])

sage: Z1 = X4.anticanonical_hypersurface(

coefficients=[B/24,1/12,1/3,1/2,B/24,B/12,0,-psi0])
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The ray matrix of the fan of X4 is now
23 −1 −1 −1 −1 11 −1 1 −1 −1 −1 −1

−1 −1 11 −1 −1 −1 10 10 1 7 3 5

−1 2 −1 −1 −1 −1 −1 −1 0 0 1 −1

−1 −1 −1 −1 1 −1 −1 −1 0 −1 −1 0


and the �bration β̃ : X4 → B1 takes form

z 7→ [s : t] =
[
z12

0 z170 : z12
3 z168

]
,

so working in a�ne charts we may treat, say, z170 as the K3 �ber parameter.

Since singularities of Z2 are located in charts involving z334, it is natural

to represent its de�ning polynomial as

h2 = q2z334 + r2, (4.6.1)

where

q2 =
1

12
z12

2 z
11
168z

11
170z

8
251z

4
276z

6
325z334 −

ψ1

6
z6

0z
6
2z

6
3z

6
16z

6
168z

6
170z

4
251z

2
276z

3
325

− ψ0z0z1z2z3z4z16z168z170z251z276z325 +
1

3
z3

1z251z
2
276 +

1

2
z2

4z325, (4.6.2)

r2 =
B

24
z12

16

(
z12

3 z168 + z12
0 z170

)2
. (4.6.3)

In this form it is easy to see that the �ber of β̃ : Z2 → B1 (which is generically

a K3 surface) over [s : t] = [−1 : 1] splits into two components, corresponding

to q2 = 0 and z334 = 0. The intersection of these components is a curve

C2, which is the singular locus of Z2. In the a�ne chart (z1, z4, z170, z334) the

de�ning equations of C2 take the form

z3
1

3
+ ψ0z1z4 +

z2
4

2
− ψ1

6
= 0, z170 = −1, z334 = 0,

which is (generically) a smooth elliptic curve. Hypersurfaces Z2 have com-

pound Du Val A1 singularities along C2.

If we now pass to the subfamily Z1, the structure of the singularities re-

mains mostly the same, except that the curve of singularities of Z1, let's call
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it C1 for this subfamily, develops a singularity of its own and becomes a nodal

elliptic curve. In the same a�ne chart as before the position of the node is

(0, 0,−1, 0).

4.7 Singular Subfamilies: Desingularization

In this section we use the �bration Φ̃ : X5
part → X4 to pullback families of

hypersurfaces to X5
part and compare them with complete intersections. We

also determine singularities of the subfamily Y1.

Since we have changed the resolution used for X4, we need to reconstruct

both X5
part and Φ̃. We do it using as a starting point Σ5

part, constructed in

Section 4.5.

sage: Phi = FanMorphism(m.transpose(), Sigma5_part, X4.fan(),

subdivide=True)

sage: [Delta5_polar.points().columns().index(ray) for ray in

Phi.domain_fan().rays()]

[2, 3, 4, 5, 6, 7, 8, 9, 109, 469, 630, 32, 667, 752]

We see that X5
part still can be realized as an open subset of a crepant partial

desingularization of X∆5 . In homogeneous coordinates

Φ̃ : y 7→
[
z0:z1:z2:z3:z4:z16:z168:z170: z334 :z251:z276:z325

]
=
[
y4:y8:y7:y5:y9: y6 :y109: y32 :y2

3y752:y469:y630:y667

]
.

Considering the subfamily of complete intersections Y1 ⊂ X5
part, it is pos-

sible to determine that there is a singular point (0, 0, 0, 0;−1) in the chart

(y2, y3, y8, y9; y32). (Recall that generating cones of Σ5
part are 4-dimensional, so

the corresponding a�ne charts have a torus factor without a canonical choice

of coordinates. In such cases we will use the coordinate corresponding to some

suitable ray of the total fan and separate it from the canonically chosen coor-

dinates by �;�.) Note that this point is mapped by Φ̃ to the singular point of

the curve of singularities C1 ⊂ Z1. It is also a singular point of X5
part itself,

since the cone on rays corresponding to y2, y3, y8, and y9 is not smooth. To

�x this we will perform one last subdivision by inserting the ray corresponding

to the midpoint (−1,−1, 1, 0, 0) between ray generators of y2 and y3. Sage
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does not (yet) support automatic insertion of rays into fans generated by not

full-dimensional cones, but since we are subdividing a simplicial fan it is not

di�cult to do it in this case.

sage: Sigma = Phi.domain_fan()

sage: sigma = Sigma.generating_cone(37)

sage: [Delta5_polar.points().columns().index(ray) for ray in

sigma.rays()]

[2, 3, 8, 9]

sage: [Delta5_polar.points().columns().index(pt) for pt in

sigma.lattice_polytope().points().columns() if not pt.is_zero()]

[2, 3, 8, 9, 745]

sage: Delta5_polar.point(745)

(-1, -1, 1, 0, 0)

sage: Sigma.is_simplicial()

True

sage: rays = Sigma.rays() + ((-1,-1,1,0,0),)

sage: last = len(rays) - 1

sage: cones = []

sage: for sigma in Sigma:

... indices = sigma.ambient_ray_indices()

... if 0 in indices and 1 in indices:

... cones.append(indices[1:] + (last,))

... cones.append((0,) + indices[2:] + (last,))

... else:

... cones.append(indices)

sage: Sigma_new = Fan(cones=cones, rays=rays, check=False)

sage: all(sigma.is_smooth() for sigma in Sigma_new if

(-1,-1,1,0,0) in sigma)

True

sage: Phi = FanMorphism(m.transpose(), Sigma_new, X4.fan())

sage: Phi.is_fibration()

True

sage: points5 = [Delta5_polar.points().columns().index(ray) for

ray in Phi.domain_fan().rays()]

sage: points5

[2, 3, 4, 5, 6, 7, 8, 9, 109, 469, 630, 32, 667, 752, 745]

87



The ray matrix of the new fan is
−1 −1 12 0 0 0 0 0 0 0 0 1 0 0 −1

−1 −1 0 12 0 0 0 0 1 0 0 0 0 0 −1

0 2 −1 −1 −1 11 −1 −1 10 7 3 10 5 1 1

0 0 −1 −1 −1 −1 2 −1 −1 0 1 −1 −1 0 0

0 0 −1 −1 −1 −1 −1 1 −1 −1 −1 −1 0 0 0


and Φ is still a �bration with coordinate representation

Φ̃ : y 7→
[
z0:z1:z2:z3:z4:z16:z168:z170: z334 :z251:z276:z325

]
=
[
y4:y8:y7:y5:y9: y6 :y109: y32 :y2

3y745y752:y469:y630:y667

]
. (4.7.1)

To construct Y as a subvariety of X5
part in Sage, we �rst construct Y in the

full space X5 using the same coordinates as for X5
part (plus y0 and y1), then

we use its equations to obtain a subvariety of X5
part. (In the code we refer to

it as Y_part, but in the text we continue using Y only since mathematically

these are the same varieties.)

sage: X5 = CPRFanoToricVariety(np.Delta(),

coordinate_points=[0,1]+points5, coordinate_names="y+")

sage: Y = X5.nef_complete_intersection(np, monomial_points=

"vertices+origin",coefficients=[[1,1,1],[1,1,1,"xi0","xi1",1]])

sage: X5_part = ToricVariety(Phi.domain_fan(), coordinate_names=

"y+", coordinate_indices=points5, base_field=Y.base_ring())

sage: X5_part.inject_coefficients();

sage: X5_part.inject_variables();

sage: S = X5_part.coordinate_ring()

sage: Y_part = X5_part.subscheme([sum(S(g.monomial_coefficient(m))

* S(m.subs(y0=1, y1=1)) for m in g.monomials()) for g in

Y.defining_polynomials()])

The de�ning polynomials of Y in the new X5
part are

g0 = y12
5 y109 + y12

4 y32 + y2y3y745, (4.7.2)
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g1 = y2
3y

12
7 y

11
109y

8
469y

4
630y

11
32y

6
667y

2
752y745

+ ξ1y
6
4y

6
5y

6
6y

6
7y

6
109y

4
469y

2
630y

6
32y

3
667y752 + ξ0y

2
2y

12
6 y745 (4.7.3)

+ y4y5y6y7y8y9y109y469y630y32y667y752 + y3
8y469y

2
630y752 + y2

9y667y752.

Now computations show that there are two singular points on complete in-

tersections Y1:
(
±1/
√
ξ0, 0, 0, 0;−1

)
in the chart (y2, y8, y9, y745; y32), which is

smooth and does not induce any singularities on its subvarieties. Both points

are conifold singularities on Y1.

We �nally turn our attention to the explicit comparison of Y and the

pullback of Z under the �bration Φ̃, combined with the �rst de�ning equation

of Y . (Recall that the �bration map α : X5 → B2 induces the K3 �bration

of Y over the curve in B2 corresponding to g0 = 0.) Since in Section 4.4

we matched modular parameters of K3 �bers of Y and Z2, we start with the

subfamily Z2.

It is clear that if we use Φ̃ (4.7.1) to pullback h2 (4.6.1), we will not get

g1 (4.7.3), due to mismatch in the number of monomials and di�erent coe�-

cients, even taking into account the parameter correspondence (4.4.8). How-

ever, the pullback of r2 (4.6.3) is

B

24

(
y12

5 y109 + y12
4 y32

)2
y12

6 =
B

24
(y2y3y745)2 y12

6 ,

where equality follows from vanishing of g0 (4.7.2). Now the number of mono-

mials is not an issue anymore, but we can see that y2
3y745 is a factor of Φ̃∗(h2).

Further comparison of Φ̃∗(h2) and g1 reveals that, subject to g0 = 0,

Ψ∗(h2) =
y2

3y745

48
g1,

where Ψ is Φ̃ precomposed with the following coordinate scaling (which cannot

be realized as a toric morphism):

y6 =
y6

ψ0

√
12
, y8 =

y8

2
, y9 = − y9√

12
, y752 =

y752

2
.

Using Ψ to pullback the de�ning polynomial h3 of a generic member Z of

the full 3-parameter family of hypersurfaces, we obtain an isomorphism of Z
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with the complete intersection de�ned by Ψ∗(h3) and g0. Indeed,

Ψ∗(h3) = Ψ∗
(
h2 −

ψs +B

12
(z0z3z16)12z168z170

)
=
y2

3y745

48
g1 −

ψs +B

127ψ12
0

(y4y5y6)12y32y109,

and Ψ∗(h3) = 0 implies that y3y745 6= 0, since otherwise it would be necessary

to have y4y5y6y32y109 = 0, but these sets of variables do not appear together

in any of the covering charts of X5
part, as can be checked via the following

computation.

sage: charts = [set(S.gen(j) for j in sigma.ambient_ray_indices())

for sigma in X5_part.fan()]

sage: any(chart.intersection([y3, y745]) and

chart.intersection([y4, y5, y6, y32, y109]) for chart in charts)

False

Then g0 = 0 can be solved for y2, which is the only �ber variable. This

3-parameter family of complete intersections does not correspond to a nef-

partition of ∆5, the easiest way to see this is to note that it shares one of the

equations with Y and in the case of two-part nef-partitions (and corresponding

nef complete intersections) each part completely determines the other.

Coming back to the subfamily Z2, we see that these singular hypersurfaces

are pulled back to the union of Y (which is generically smooth) and two toric

divisors intersected with {g0 = 0}. Both of these intersections are mapped to

[s : t] = [−1 : 1] by the composition β̃ ◦ Ψ. Let's also look at the preimage

of the curve of singularities C2 of Z2 inside of Y . This means imposing the

following conditions:

g0 = g1 = Ψ∗(z334) = Ψ∗(r2) = Ψ∗(q2) = 0.

Conditions g0 = Ψ∗(r) = 0 imply y2y3y745 = 0, while Ψ∗(z334) = 0 means

y3y745y752 = 0. But y2 and y752 cannot vanish simultaneously (we check it

below), thus y3y745 = 0. We also have g1 − 24y752Ψ∗(q2) = ξ0y
2
2y

12
6 y745 and y3

cannot vanish simultaneously with y2 or y6, thus y745 = 0. Finally, y745 and
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y752 cannot vanish simultaneously, so the above conditions are equivalent to

g0 = g1 = y745 = 0

and the preimage of C2 in Y is a (generically smooth) surface S2. Therefore, we

have obtained a geometric transition from Y to Z through a singular subfamily

Z2! In fact, S2 ' C2×P1 and we have obtained a primitive geometric transition

of type III in terms of De�nition 4.3.3. We now verify assertions made about

simultaneous vanishing of coordinates:

sage: any(chart.issuperset([y2, y752]) for chart in charts)

False

sage: any(chart.issuperset([y2, y3]) for chart in charts)

False

sage: any(chart.issuperset([y3, y6]) for chart in charts)

False

sage: any(chart.issuperset([y745, y752]) for chart in charts)

False

Our last pair of subfamilies to compare using the map Ψ is Z1 and Y1. We

have already determined that hypersurfaces Z1 have a curve of singularities C1

which itself has a singular point (0, 0,−1, 0) in the chart (z1, z4, z170, z334). Let

S1 ⊂ Y1 be the preimage of C1 (de�ned by the same equations as S2 ⊂ Y2). If

we consider the preimage of the singular point in Y1, then in addition to the

de�ning equations of S1 we need to impose y8 = y9 = 0. This leads to

y8 = y9 = y745 = y12
5 y109 + y12

4 y32 = 0,

which de�nes a projective line, containing both nodes of Y1. The surface S1

also becomes singular with the singular locus being precisely this line, which

is (∗, 0, 0, 0;−1) in charts (y2 or 3, y8, y9, y745; y32).

4.8 Involutions

There are several involutions acting on complete intersections Y . One of them

is easily visible from the vertices of (∆5)
◦
or rays of Σ5: it is the exchange of
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the �rst two a�ne coordinates. In homogeneous coordinates it is realized by

y4 ↔ y5, y32 ↔ y109,

with other yi unchanged, and in terms of the K3 �bration of Y over P1 induced

by α̃, as discussed in Section 4.4, it corresponds to [u : v]↔ [v : u].

Another involution is given in homogeneous coordinates by

y9 7→ −y9 − y4y5y6y7y8y109y469y630y32,

with other yi unchanged. It comes from either of the two elliptic �brations of

M -polarized K3 surfaces as the y 7→ −y involution in the coordinates of the

Weierstrass normal form. This is also the same involution as the one described

in Section 4.2.1 of [BDF+98].5

It is, of course, possible to take a composition of these two involutions and

it is easy to see from their representations in homogeneous coordinates that

they commute with each other, so this gives us yet another involution.

Of particular interest is the action of these involutions on the singular

locus of Y1 and its related subvarieties. In the chart (y2, y8, y9, y745; y32), used

before, the second involution is y9 7→ −y9−y8y32. On the exceptional K3 �ber

containing the nodes y32 = −1 and we are left with y9 7→ y8 − y9. The line

passing through the nodes with y8 = y9 = 0 is a part of the �xed point locus.

In order to get a chart representation of the �rst involution we need to

know the relation between y109 and the variables of the chosen chart.

sage: Delta5_polar.points().matrix_from_columns(

[2,8,9,745,32,109]).transpose().kernel()

Free module of degree 6 and rank 1 over Integer Ring

Echelon basis matrix:

[ 11 4 6 -10 1 1]

This shows that there is a C∗ scaling action on homogeneous coordinates y

5There it is realized as x5 7→ −x5 in the �alternative gauge�. One can convert it to the
gauge used in Section 4.2 via formulas (4.13) and (4.15) in [BDF+98]. (Those formulas

contain a typo in the expression for ψ̃4: the term −4b4λ
′
4
2
λ4ψ0 should not contain ψ0, while

the term 4λ′5λ
′
4λ03 should.)
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given by

[
λ11y2 : λ4y8 : λ6y9 : λ−10y745 : λy32 : λy109

]
.

Using it to eliminate y109, we get[
y−11

109 y2 : y−4
109y8 : y−6

109y9 : y10
109y745 : y−1

109y32 : 1
]
,

so a chart representation of the �rst involution is

(y2, y8, y9, y745; y32) 7→
(
y−11

32 y2, y
−4
32 y8, y

−6
32 y9, y

10
32y745; y−1

32

)
,

which reduces to

(y2, y8, y9, y745;−1) 7→ (−y2, y8, y9, y745;−1) , i.e. y2 7→ −y2,

on the exceptional K3 �ber containing the singular locus. Note that this action

exchanges the nodes of Y1.

4.9 Open Questions

A number of questions are raised by the above analysis of our families of

complete intersections and anticanonical hypersurfaces.

First of all, we have not constructed complete resolutions for 1-parameter

subfamilies. However, we have identi�ed the singular locus of Y1, classi�ed the

singularities, and found a transitive action on the nodes by a group of auto-

morphisms of Y1. This may lead to a proof of existence of a small projective

resolution of nodes via generalizing arguments of [Wer87], where hypersurfaces

in projective spaces were considered.

Alternatively, one can try to construct such a resolution directly using

suitable blow up/down maps. The shortest path would be to blow up a smooth

surface passing through the nodes of Y1, but we were not able to �nd such a

surface. Blowing up Y1 along the line of singularities L of S1 replaces S1

with the union of four smooth surfaces: Q ' P1 × P1, R ' P1 × P1, and

P± ' P2, where P± contract to two nodes, R contracts to L, and Q is the

strict transform of S1. The strict transform of Y1 has four nodes located at
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the triple intersections Q ∩ R ∩ P±, which are actually the same as double

intersections Q ∩ P±. Having smooth surfaces passing through the nodes, it

is possible to resolve them by one more blow up introducing a copy of P1 at

each node. This will not be a small resolution of Y1 and it is likely to be

discrepant, but it may be possible to blow down �extraneous� surfaces on the

resolution without reintroducing singularities. We have made some progress

in this direction, but more work has to be done to obtain conclusive results.

Assuming that a suitable resolution X of Y1 exists, the next step would

be to compute its Hodge numbers. This can be done using results in [Ros10],

relating Hodge numbers of varieties involved in a geometric transition. If

h2,1(X) 6= 1, one can also consider (resolutions of) quotients of X by lifts of

involutions on Y1.

Finally, two natural questions for further exploration are construction of

mirror families for these resolutions and generalization of the geometric tran-

sition Y → Z2  Z to other singular subfamilies of Calabi-Yau subvarieties

of toric varieties, that can be (partially) desingularized in the toric setting.
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