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- ABSTRACT
A mathematical model has been developed for the free
radical bulk polymerization of methyl methacrylate initiated .
s ) i # -
by 2-2' azopisisobutyronitrile. The dynamics of the system -

are*described in terms of monomer conversion, zeroth and second
moments éf\ghe molecular weight distribution. The kinetic
parameters é%\;hé mpdel are estimated using the experimental
data of Balke (1972). The sensitivity of the output responses
of the polymerization system relative to the kinetic parameters
is investigated.

The terminal control problem of obtaining a polymer gr@éuét
with specified conversion, number average molecular weight
Mn and weight average molecular weight Hw is =solved by con-
sidering thé!pélymerizatiéﬁ temperature, and/or the initiator
feed rate as control variables. The Eptimal profiles are
calculated via the applicatiop of the Pontryagin Maximum Principle
to the developed mathematical model. Two algorithms (discrete

control method and shooting method) are implemented to solve

the resulting two-point b@gnda§y value problem. A variety of

products with desired molecular weight distributions are Ii;:jjb

produced by applying the optimal control policies to the
polymerization reactor. Furthermore, it is shown that it is
possible to reduce the polymerization batch time by successive
minimization of the objective function while keeping the

same polymer quality. The extensive simulation results presented

in this thesis clearly demonstrate the benefits that can be
gained from the application of the optimal control theory to
the industrial p@lymigizati@n reactors.
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CHAPTER I

INTRODUCTION

I.1 Objectives

The manufacturing of polymers cé;upies a significant
portion of the chemical industry today. The polymer indus-
uses of polymers have multiplied. Nevertheless, the pro-
duction of a great number of polymeric products is even
today an art. The basic reasons for this are:

(i) The difficulty to characterize and
especially measure on-line the physical
properties (ei%, molecular weight dis-
triburion) of the polymer product

. , (ii) The lack of good mathematical models
for industrial polymerization reactors,
which makes the application of optimi--
zation techniques to these systems ques-
tionable.

The present work was undertaken and motivated by a
need to (a) develop a suitable mathematical model for the
bulk polymerization of methylmethacrylate (ﬁEA) and (b)
show the feasible application of optimal control to pc1y¥
merization reactors. Based on the above needs the goals
of this work were defined as follows:

(i) Obtain a mathematical mgdel for the free

radical batch polymerization of methylmethacrylate.
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of the model from available experimental data.

(iii) Apply the Pontryagin Minimum Principle
to the reactor model and establish a systematic procedure
for the time optimal control of the batch process.

(iv) Study the sensitivity of the optimal poli-
cies with respect to the model parameters.

| The system chosen for this study was the free radical

bulk polymerization of MMA initiated by a 2 - 2' azobisi-
sobutyronitrile (AIBN) catalyst. This polymerization
was selected because of its commercial importance and the

o - % ‘ a2 s P A
extensive experimental data available in the literature

" the éysﬁemi
This thesis is organized into seven chapters. The
first chapter states the Dbjfitives of this work and pre-
sents a literature survey on the kinetics of the palymerias
zation of MMA, and on the application of optimal control
theories to the optimization of palymeriéaciaﬁ systems.
The second chapter deals with the modelling of the
bulk polymerization ¢f MMA in a batch reactor. Using
the general population balance equations, a mathematical
model is developed that describes the dynamic behaviour
of the system. The model consists of four non-linear
differential equations and can predict monomer conversion
and the first three moments of the molecular weight dis-

tribution as a function of the polymerization temperature



and initiator concentration. The kinetic parameters of
the modei/are estimated from experimental data. The
accuracy and sensitivity of the model responses relative
to the numerical values of the kinetic parameters is also
studied.

The third chapter discusse; the application of the
Pontryagin Minimum Principle to polymerization reactors.

In the fourth chapter, two algorithms are developed
te solve the minimum time problem. It is shown that it
is possible to produce a polymer product with prespecified
desired properties (conversion, number average molecular
weight, weight average molecular weight) by controlling
the polymerizatioﬁ temperature in the reactor.

The fifth chapter presents the optimal temperature
profiles computed for different desired molecular weight
distributions. The sensitivity of the optimal temperature
policy with respect to kinetic parameters is also investi-
gated.

In the sixth chapter, both the catalyst feet rate
into the reactor and the’polymerization temperature are
considered simultaneously as control vafiablés, An algo-
rithm is developed to solve the minimum time problem and
get desired physical properties for the pclymer. Optimal
temperature and catalyst concentration profiles are pre-
sented.

The seventh chapter discusses the significance of

this work and’ its possible extensions.



I.2 Literature Survey: Kinetics of the Polymerization

of MMA
The single most important property of a polymer that

determines its quality and final use is its molecular

éeight distribution (MWD). MWD of a polymer anﬂ monomer

conversion in a reactor are the results of a number of
elementary reactions occurring in polymerization and of
their respective rates. 1In bulk free radical vinyl poly-
merization, much work has been done to establish the
reaction mechanism at low conversions (less than 10% con-
version). Beyond this range, diffusion control of some
reactions (e.g,;EETEinatiGn reaction) coupled with experi-
mental difficulties has severely hindered progress in
kinetic modelling.

Matheson and co-workers (1949) measured as a function
of temperature the average lifetiﬁe of polymethylmethacry-
late radicals in the photosensitized p@iymerizaﬁian of
the liquid momoner. By combining their experimental re-
sults with those of Schulz aﬁd.glaschke (1942), and Schul:z
and Harborth (1947), they obtained the rate constants for
propagation, termination, and transfer to monomer for con-
version up to 10%. They asserted that the accelerated
polymerization rate occurring in the later stages was due
to a decrease in the termination rate constant.

Nandi (1957), Ferington and Tobolsky (1957) pre-
sented results on the bulk polymerization of MMA. The re-

ported experimental results were obtained with a wide
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LW,

variety of initiators and under different isothermal con-
ditions. From this data, they calculated the rate constant
where kp and‘kt are the rate constants for propagation and
terminaéien reactions respectively. Their results were
in good agreement with the results of Matheson et al. (1949).

Hayden and Melville (1960), Tonoyan et al (1973)
measured the increase in temperature in an adiabatic poly-
merization reactor as a function of time. They reported
that after 107 conversion, the polymerization rate and
lifetime of the polymer chains increased due to the in-
crease of the viscosity of the reaction mixture resulting,
tﬁus, in a decrease of the c@llisicn rate of the‘gfawing
radicals. They found out that, beyond 40% cshveréiaﬁ.
the activation energy for the propagation reaction in-
creased while the corresponding velocity coefficient de-
sion controlled.

~Paul et al. (1973) observed a similar decrease in the
propagation rate constant and studied also the influence
of the stoichiometry of the initiator system (benzoyl per-
oxyde, lauroyl peroxyde, N-N-dimethyl-p-toluidine) on the
rate of polymerization.

Pavlinets and Lazar (1973) investigated the polymeri-
zation of MMA initiated by hydfépercxydesigﬁz organo-
complex systems to high degrees of conversion at 10-45°C.

They showed that the initiating systems used ensured high

#



polymerization rates even-at room temperature with an acti-
vation energy of 6.8 kcal/mole.

Yokota and co-workers (1968) carried out rotating
sector determinations of radicals lifetime for ten metha-

crylates undergoing radical polymerization at 30°C. The

termination kt have been computed from these experimental
results. However, there appears to exist a discrepancy be-
tween their values and those calculated by other investi-
gators.

Balke (1972) investigated the bulk free radical poly-
merization of MMA to high conversions. The experimental
conditions of Balke were similar to those used in indus-
temperature). Using gel permeat1gn chromeotography (GPC)
and a novel technique for the interpretation of the chro-
matograms, he was able to follow the changes in the MWD
as polvmerization proceeded. He found that the rate of
polymerization was proportional to the monomer concentration
at low conversion (less than 20%), and followed a second
order expression in monomer concentration after the onset
of the gel effect. Using Sawada's (1963) equation to
account for the gel effect, Balke ﬁredicced the change of
conversion with time? It should be noted that his model
included two different expressions for the rate of poly-
merization, a first order expression with respect to mono-

-

mer concentration before the onset of the gel effect, and
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a second order expression after the onset of the gel effect.
This introduced a discontinuity in the conversion profile
plotted as a function of :imé. Apparently this model cannot
be used for optimization studies.

Mahabadi and Meyerhoff (1979) proposed a new model for _
estimation of the characteristic rate constant for primary
radical termination, using the radical lifetime rate of poly-
merization and rate of initiation. By applying this model.
to high conversion polymerization experimental data, they
showed the conversion dependence of the termination rate
constant and the conversion dependence of the initiation rate.

In the present work, a mathematical model for the free
ragical bulk polymerization of methylmethacrylate has been
developed that‘accounts for the diffusion controlled termi-
nation and propagat:?n reactions. The kinetic parameters of
the proposed model have been determined by fitting the experi-
mental data of Balke (1972). Continuous differential equations
which describe conversion, number average molecular weight,
and weight average molecular weight are developed and solved
numerically.

I.3 Literature Survey: Optimal Control

The Principle was first hypothesized by the Russian
mathematician Pontryagin in 1956. 1In 1958, it was fully
proved by Boltyanskii and co-workers>that the maximum
principle was a necessary condition for optimality.
Relatively little work has been done with respect to the
optimal control of polymerization systems.

Ray (1967) drew conclusions on optimum settings of

temperature and catalyst concentration which minimize a



performance index described at final time only by conversion
and polydispersity, in a series of tank reactors in which
pdlymerization of styrene was taking place. He applied

a peak-seeking method to compute the best temperature and
the best catalyst concentration in each tank. Appropriate
weighting factors were applied to each term of the objec-
tive function'in order to emphasize the importance of one
variable over another. Hicks and co-workers (1969) formu-
lated a similar objective function, and tried to optimize
the performance of a polymerization reactor: (a) by con-
trolling the polymerization temperature while keeping a
constant initiator concentration, (b) by using both tem-
perature and initiator concentration as control variables.
The latter attempt proved unsuccessful due to computational
problems. 1In both situagions, the minimﬁﬁ time problem

was not addressed.

Osakada and Fan (1970) calculated sub-optimal temper-
ature and catalyst feed rate policies in an attempt to
obtain a desired molecular weight distributien. These
near-optimal policies were represented by two time vary-
ing polynomials, the coefficients of which were estimated
by a pattern search technique, coupled with a non-linear
search technique. They found that the suboptimal tempera-
ture and catalyst feed rate policies were oscillatory.

Crescitelli and Nicoletti (1973) derived a modified
form of the discrete maximum principle for svstems with

finite memory and presenteJ a computational procedure to



find near-optimal policies in practical applications. They
gave a numerical éxample relative to the cogputation of

the optimal temperature profile in a batch reactor where
two consecutive irreversible reactions were taking place.

Sacks and co-workers (1972) applied the continuous
maximum principle to minimi?e the reaction time for chain
addition polymerization in batch reactors, while the num-
ber average molecular weight at the end of the reaction
was fixed. The optimal policy was féund to be a rising
temperature profile for a given constant initiator con-
centration.

Shatkan and Gilman (1966) applied the method of
variational calculus to search for an optimal temperature
policy for batchwise thermally initiated bulk polvmerization
of styrene. 1In the searching process, they first set the
final conversion at 957 and predetermined the number average
molecular weight at some specific value. Tﬁe optimal tem-
perature so obtained increased with monomer conversion
and reached an extremely high level (far above 200°C).

Then éhey applied this temperature policy to the case where
monomer ‘tonversion was nearly complete (99%) by following
the optimal temperature trajectory until a predetermined
upper limit of temperature was reached, then held the
temperature at this limit till the end of the reaction.
Obviously the temperature policv for the entire reaction
was not optimal.

Show-An Chen and W.F. Jeng (1978) studied the minimum-



time problem for the polymerization-of styrene in a batch
reactor by considering she polymerization temperature T(t)
aqd the initial initiator concentration [Io] as two control
vafiables. Their kinetic model included the gel EfEEEti
Calculatiods showed that the optimal temperature policy
was significantly better than the best isothermal policy.
Experimental verification of their theoretical findings
revealed that there was a good agreement between experimen-
tal and-calculated final conversion values. .Hogev'ef, an :
appreciable deviation existed between experimental and
calculated numbé¥'average chain length. In 1980, Chen
and Lin considered a two-stage polymerizatign process.
The first stage of the process, initiated by a chemical
initiator, was operated along®he best isothermal policy
computed to obtain predetermined number averace molecular
weight and monomer conversion at the end of the stage.
The second stage was operated at a higher temperature at
which thermal initiation was important. .They used the Mini-
mum Principle to find the optimal temperature profile during
the second stage, in order to minimize a performance index
described by final time, conversion and number average
molecular weight at the end of the second stage. Calculations
showed that the optimal two-stage process was significantly
better (ip.gprms of final time for a predetermined quality
of polystyrene) than the best isothermal one-stage process.
Masterson (1977) and Clough et al. (1978) applied the

maximum principle to solve the minimum time problem for batch



pcl merization of styrene. They obtained a product with

desired conversion, desired number average molecular weight

and desired weight average molecular weight by controlling

temperature and initiator feed rate. The numerical solution
*

has proven challenging. The search was successful only

when carried out first by a gradient approach, then by a
novel vértex.téchnique? They found one temperaturé:prcfile
which conformed to industrial applied te§PeraturE profiles.
‘They reported that a similar studjrwauldiZntail a cost of
$2000 in CPU time. }ﬁ\h

Wu et al. (1980) gave a shrewd graphical s@iuti@ﬁ to
the minimum time problem of styrene polymerization. Their
performance index depended only on conversion aﬁé‘number
average molecular weight at the end of the reaction. Thus,

by applving the maximum prinéiplé, thev were able to obtain

rl'

analytical expressions for the costate variables and derived

a differential eq uation describing the Dptlmal variation of

temperature with time. Their theoretical predictions were

in agreement with experimental measurements of conversion

In this work a general algorithm which solves the
minimum}time problem faricbtainiﬁg a polymer with desired
final conversion, final number average molecular weight
-and weight average molecular weight, is developed. Optimal
temperature palicies and iﬁitiatﬁf feed rate programs are
computed for obtaining a polymer with désiféa'ﬁélééulaf;

weight distribution. A pilot scale batch polymerization



reactor has been built by the author to verify the optimal
policies as part of an@thér!préjéct, In this equipment,
the tempefatgre of the polymerization reactor is adjusted
as per predetermined optimal policies by supervisory compu-=
ter control of the temperature loop under analogue PID con-
trol. Conversion, number average molecular weight and

measg}eé on and off-=1line

m

weight average molecular weight can b

nd checked against simulation results. A detailed description

]
]

of the experimental apparatus is ‘shown in Appendix E.



CHAPTER I1

DEVELOPMENT OF POLYMERIZATION KINETICS FOR MMA

P

N

Description of the Reaction Mechanism

II.1

Polymethylmethacrylate (PMMA) can be obtained via

the free radical polymerization of MMA monomer.

- (MMA)

A general description
pléce during the free

monomers initiated by

CH
|
i
€O, CH,

-G£,

of the reactions which are taking

(PMMA)

e
= B

radical polymerization of vinyl

a free radical catalyst is as follows:

Catalyst decomposition

k
I _g, 2 P‘o — 2fR3
Initiation
Ro + M Ky RY
. Propagation
‘ ) : .
*x ; e ; 1 o
' ¥ MR Ry o x €M
1
Transfer to monomer L 4
* k *
Rk, + M £ P+ R ., x €[1,=)
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Termination by disproportionation

R* + R* Keg P + P , (x,y) €[1,=) X[1,e)

Termination by combination

* * k |
%Rx + Ry _te Px+y ' (x,y) €[1,=) X[1,=)

where I denotes tﬁé initiator molecules, RD’ the initiator
radicals aﬁd R§ , the activated initiator radicals. M
denotes the monomer, Ri; represents thg live radicals of
chain length x. f is the initiat@r efficiency factor. Kq»
ki‘ kpi kfi kdi ané kté are the rate constants for initiator
dissaciagiaéj initiation, propagation, transfer to monomer,
termination by dispf@pa;ti@ﬁatian and termination by com-
bination reactions respectively. !

The initiator used in this study is 2 - 2' azobisisc-

i

butyronitrile (AIBN), which 2s very common in industrial
reactors; its decomposition rate follows first-order kinetics.
Using the above proposed kinetic scheme, equations
describing the éqnve%sign of monomer, the concentration
of Initiator, and the molecular weight distribution fHWD)
in a batch reactor are derived. To simplify the mathematical
description of the system, the following assumptions are
made:
(i) All reactions are irreversible.
(1i) Reaction rate constants are independant of

chain length.
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(iii) Transfer to monomer is negligible.
(iv) Termination reaction is by disproportionation only.
(v) Reactor contents are perfectly mixed and there
are no temperature gradieﬁts in the reactor.
These assumptions are common and well documented in the

modelling of the free radical polymerization of MMA.

I1.2 Derivation of _the Kinetic Equations

The catalyst decomposition reaction follows first-
order kinetics. The rate of disappearance of catalyst is

described by the following differential equation:

F
Qiil = - kg (1) + S (11.1)
t i

where [I]) is the initiator concentration, t is the time,

kd is the rate constant of catalyst decomposition, Fc the
catalys* feed rate in the reactor during the leVmérlzatlgﬂ
and V is the volume of the reactor. Any variation of the
volume of the reacting mixture due to density changes and/or
initiator addition is assumed to be negligible.

Pertinent steps in the derivation of the equation

o

describing the rate of disappearance of moncme?Tire outline

in Appendix A. The monomer conversion X is defihed as-:

M} - [M]] | -
- 0 (I1.2)

where [M] is the monomer concentration in the reactor during
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the polymerization, and [HG] is the monomer concentration
in the reactor at time t = 0. The change of the monomer
conversion is described by the following differential

equation:

%% -y kp (1-X) (11.3)

where f is the initiator efficiency, kp is the propagation
rate constant and kt is the termination rate constant.

The MWD of polymers can be expressed in terms of its
moments when the MWD is unimodal, as it is the case for the
The moments of the live and dead polymer distributions are

defined as follows:

] (11.4)
where ), is the KD moment of the live polymer distribution
. and [Ri] is the concentration of live radicals of chain

length x in the reactor.

(11.5)

L]
»
m\

Yk

where u;, 1is the kth moment of the dead polymer distribution,
and [P ] is the concentration of dead pélyméf:éf chain '

length x in the reactor. The zercth moment of the live



v m— e e

17

polymer distribution, \g» represents the total concentration
of live polymer in the Teaéﬁéf; The zero‘! moment of the
dead polymer distribution, ug: represents the total con-
centration of dead polymer in the reactor. The sum

(u1+xl) represents the portion of monomer which has reacted
and is equal to:

+ 2 = [HQ] - M) = [Mj]) X (1I1.6).

"1 1

.
The differential equations describing the variation of the
moments of the dead polymer distribution are derived in
Appendix A. The rate of change of the zerath and second

moment of the dead polvmer distribution can be expressed as:

d Mo ) e ot i .
T = 2 f kd [1] ' (II?)
d u k2 S

2 _ . % a2 S
I QXé, (M) , (1I1.8)

't
Physical properties of a polymer (such as melt vis-
cosity, chemical resistance, flexibility, strength ...)

the weight average molecular weight M, of a polymer. M_ and

M, are directly related to the moments of the MWD.



U A + 2.

] 2 2

| o = My - —— —_
My F X,

=
mw

" (11.10)

£

where MW is the molecular weight of methylmethacrylaté

monomer. ' Since A, is negligible compared cjsz; (1k << “k)‘
equations (II.9) and (1I.10) can be simplikied by neglecting

the contribution of 10, 11i and »

of Mn and Mw’ Therefore,

moments to the calculatien

, ‘1 X Mg B

Mo = Mo = = MW (11.11)
n "o o :

} ATT o Bz‘ FATT uz 23 E

Hw = Mw - ?T - MW - E—THET (11;12)

The polydispersity of a polymer (PD)is defined as the ratio
s

(Hw/Mﬁ), and is an indication of the breadth of the MWD

FD = Zﬁ = iés_igﬁé
’ v w2 (M 12
n X5 (M)

(I1.13)

In bulk polymerization of methylmethacrvlate, dramatic

As_polymer concentration increases, a point is reached

where appreciable chain entanglements occur, and eventually

a glassy state may result. These
have a significant effect on both
and molecular weight development;,

ling such reactions must properly

physical changes often
rate of polymerization
and any attempt of model-

account for these¢ phenomena.

Experimental data show evidence of an autoacceleration



of the rate of polymerization at conversions above 10 - 20%.

Because of the increasing viscosity of the mixture, the rate

B
fa]

chains begin to entangle causing a dramatic reduction

0
Fh

radical chain mobility, giving a drop in kt. Because
the higher concentration of free radicals in the reactor,

the rate of polymerization increases. It is interesting

controlled. The propagation rate constant k_ drops
dramatically. That means that no more feactiéns are taking
place in the reactor, therefore a limiting conversion below
100% may be observed.

=

IT.3 Parameter Estimation and Parameter Sensitivity

The parameters which appear in the kinetic equations

1.8) are the initiator efficiency, f,

=

(I1.1, I11.3, 11.7,

the rate constant of catalvst dissociation, kd' and the

ratio of the square of the propagation rate constant é:igf,
the termination rate constant K, = (kp?/ kt),

The initiator efficiency, f, represents the*fraction
of the total number of initiator radicals that are actually
used in the formation of pclymervchaiﬂs. f is an empirical
factor #ith values in the range 0.5 - 1.0. The efficiency

)
factor usually falls with increasing reaction temperatures

and with conversions of monomer to polvmer. The changes

however are relatively small and it is reasonable to assume
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that f is independent of temperature and monomer conversion

for practical calculations. In this work, the value of f
has been chosen as 0.6, figure commonly used in literature.

The decomposition rate constant of AIBN, kdi has been
determined by many workers. Data after Balke (1972),
OfDriscoll and Dickson (1968), and Ito (1969), were correl-

ated with an Arrhenius type plot giving the following equa-

x EXP (-16298.0/T),(st)  (II.14)

tion which was used in this work:

kg = 1.35 x 10°

‘w
where T is the absolute temperature in the reactor (°K).

As explained above, the teriization rate constant,
kt, and the propagation rate constimt, kp, change with
conversion. As a result of this the ratio (Kz = k%/kt)

will also vary with conversion. To express this variation

quantitatively the following equation is used

Ky = Kyg () * g(X,T) - (11.]

—
=
Wy ]

Mt

where Ky is the value of K, at EaﬁvETSicg X=0. gX,T)
may be called the gel effect function, béCéUSEliE accounts
for the conversion depgndence of kt and kp due to the diffu--
sion control of termination and pr@pagatién reactions.

K20 can be determined by measuring the rate of poly-

merization at low conversions. Data were correlated in an

Arrhenius type plot by Balke (1972), which gave the follow-



\M‘
[

ing expression for KZO:

K,o = 100.4 x EXP (-2960/T), (1.mole Ys~1y (11.16)

#
Because of the gel effect the termination rate constant
decreases. This results in an increase of the rate of poly-
merization in the conversion range of 20 - §£0°%. Bevond
thistconversion range, even the propagation reaction could
becoie diffusion controlled, which in turn could cause a
dramatic decrease of the polymerization rate. To describe
this unusual behavior of the polymerization rate over the
whole monomer conversion range, the gélxeff2§t function,
g(X,T), must first monotonically increase:up to some monomer
conversion value (60 - 80%, depending on the polymerization
temperature), then decrease up to the final limiting con-
version value. To account for this type of behavior, an
. exponential relationship of g on X and T was assumed. Friis
and Hamielec (1975) have used a similar expression.

g(X,T) = EXP (AX> + BXZ + C) (11.17)

with A = AT 4,

' U 11.18)

L oEadaa

B = B/T+ B,

Cy. Ay, By, C,, are unknown parameters estimated by

1 »
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>ur model to the experimental data (conversion,

Hn
H
I
rn
\H-
o]
1]
O
[

Hni Hw) of Balke obtained at different temperatures.
To obtain estimates of these parameters (Table I1I.1), a
finite difference Levenberg Harquard; routine from the

IMSL Library was used.

Table II.1

__Numerical values of the parameters in p(X,T)
I
1 2

=
w

296500 = 50.] 250, < 0.5 | 75000 = 50. | -185. <0.5 | -25. - 0.5 i;o.zf"

guesses of Al Bl‘ Cl‘ Ay, By, CZ‘ because the svstem res-
ponses are sensitive to the numerical values of these para-
meters. This is discussed later in this ééctian.

Figures II.1 to I1.6. In these Figures, calculated results
for monomer conversion, Mﬁ and Hw. are compared with the
experimental values of Balke obtained at three different
polvimerization temperatures. The solid lines represent the
ca. 1laPec model response and the small squares represent
the experimental paiﬁts of Balke (1972). It can be seen
that the model is describing accurately the variations of
conversion with time. The slight discrepancy observed

in fitting the molecular weight distribution (M. M) could

be due to possible errors in experimental measurements.
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Figure II.7 shows the variation of the function g(X,T) with

conversion at two different temperécures (50°C and 90°C).
Although the mathematical model chosen in this work

can describe satisfactorily the polymerization of methyl-

methacrylate, yet our knowledge of the kinetic parameters

of this model may be imperfect. This gives rise to the

important problem of parameter sensitivity, which is de-

fined as the effect of uncertainties.in the rate coefficients

on the calculated output responses, namely, the effect of

parameter uncertainties in k,, f, K,, on the calculated

R

[11, X, In addition to the sensitivity of the sys-

BD, le
tem responses to the above parameters, we are also interes-
ted in- knowing the effects of the initial catalvst con-
centration [I5] and polymerization temperature T on the
output variables. .

The sensitivity coefficient for the parameter, pj.

and the output, Z,, is defined as the first partial deriv-

ative of Z, with respect to P;
3 Z, -
hY B N i . N B
“i3 2 ﬁj _ (11.19)

Sensitivity coefficients indicate the magnitude and the
direction of change of the reép@nse Z due to perturbations
in the values of the parameters. Since the model is a

set of non-linear ordinary differential equations, the sen-
sitivity coefficients cannot be written explicitly. Appli-

cation of the well documented sensitivity analysis to the

Y



ions (Atherton et al., 1975. Beck and Arnold,

L
(e

model equa
1977). yields a system of differential equations for the
sensitivity coefficients, called sensitivity equatianv
(see Appendix B for further details). The variation of
the sensitivity coefficients with respect to time is ob-
tained by integrating numerically the sensitivity equa-
tions. The results of "the integration of the sensitivity’
equations for kd‘ f, 0 Ali Bl‘ Cl* Az, BZ* C2 are summ-
and II1.9.

X2
arrized in Figures II.8 In order to show the

relative influence of the parameters on the output varia-

bles, normalized sensitivity coefficients, as defined by

equation (II1.20) have been plotted.

: 'pi
vio i A
"1] = 1ij Zi

A positive sensitive coefficient indicates that a positive

P
[a ]
[a]
2]
o
o

variation of the corresponding parameter causes an in-
crease in the output variable. A negative sensitivity
coefficient indicates that a pasitivg variation a% the -
parameter results in a decrease in the output variables.
It ie seéen that the output vafiables are moat sensitive
to Al, Bl' Az, B2 parameters.

"
An increase in kd or in f does not cause any sig-

nificant perturbation on the initiator concentration and on

the ZEthh moment, however it causes'a slight increase

in monomer conversion, and a slight decrease in second

moment at the end of the reaction (Figufes IT.8 and 11.9).

-]
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The effect of perturbations in the reaction temper-

ature is shown in Figure II.10. An increase in temperature
th

results in an increase in monomer conversion and zero
moment, a small decrease in initiator concentration, and
a degrease in second moment at the end of reaction.

The effect of perturbations in the initial concen-
tration of catalyst [Iy] is shown in Figure II.1l. The
output variables are much less sensitive to [I5] than to

ve sensitivity coeffi-

=

T. However, the. profiles of respect

cients have the same shape. An increase in [ID] causes

2 = e o o oo _ = 7,,Ehfi,— _ |
an increase in monomer conversion and zero moment, and
‘a decrease in the second momernt at the end of the reaction.
The guantitative _interpretation of figures I1I1.8 to 1I.1l1

'shows how accurate the estimation of the kinetic parameters
* *

_should be. As an example, consider the effect of a pertur-

‘bation in B, on the conversion X. 1In figure II.8, it is seen
that the dimeasicnless-sénsitivity coefficient v, can be

equal up to 25,

u.u
-

= 25

“hwﬁ
|
Ly
3

[
b
o

For a small perturbation of El (as 1%), yB- can be approxi-
. .71

r 25%

=
l
»
"
()1
L

A 1% perturbation in B, involves a 25% variation in X!

-
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CHAPTER 1III
APPLICATION OF THE OPTIMAL CONTROL THEORY
. " TO THE POLYMERIZATION REACTOR

III. 1 Formulation of the Optimal Control Problem

The theory of time optimal control has arisen from tﬁe
need to improve the performance of dynamic systems. More
spgcifically, given a process described by a mathematical
model, it is required to find the admissible inputs (or
control variables) which genéraze the desired output and
which, in so doing, minimize a chosen cost functional.
Stated mathematically, problems such as these belong’ to
the calculus of variations. However, classical variational
theory can not readily handle the hard physical constraints
usuallyv imposed on state variables and control variables.
This difficulty led Pontryagin (1956) to first Eanjuncﬁufe
his celebrated "Minimum Principle', and then together with
Boltyanskii and Gamkrelidze (1962) to prévide proof of it.
The Minimum Printiple gives a solution to optimal control
problems which cannot be solved by the classical variational
theory.

Consider any controlled process which can be described

by a system of ordinary differential equations:

%‘% = £ (Y, t, u | (II11.1)
37
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where Y is the state vector of dimension n

w

Z@ is the initial value of the state vector at time tQ

t 1is the time
u is the control vector of dimension m

Given the initial value for Y, equation (III.2), the solution

for equation (I1I1.1) is uniquely defined, once the control
vector u, is chosen. '

7

Consider the performance functional J-

e
f
J = G(Y (v), te) 4—jf LY (t), t, u (t)) dt (111.3)
t
o

where té and tf denote the initial and fina? time, G and L

are scalar functionals. It is required to find an admissible

control u*(t) which causes the general non-linear system

(IIT.1) with initial condition (IIT1.2) to follow an admissi-
ble trajectory Y*(t) that minimizes the performance functional

J. Then such a control u*(t) is called the optimal control
and Y*(t) the optimal trajectory.

The classical calculus of variations leads to the follow-
ing solution. .

Define the Hamiltonian H (scalar funétianal) as:

H(Y(t), u(t), P(t), t) L(Y(t), t, u(r))

+ B(E) + £QY(E), t, u(e)) . (III1.4)

where P(t) is called the costate vector or adjoint variable.
It is a vector of dimension n. The costate variables must

satisfy the canonical equations,
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- M ‘ | (I1T.5)

(a0
]

The final boundary values for costate vector P depend upon
the particular form of G(Y(tg), tg) ané‘upaﬂ the final con-
ditions for the state vector z(tf). That is,

(i) if the costate vector z(tf) is free, then

I

(tg) must satisfy the ‘following equation,

E(ﬁf) = — iféf}** | (I11.6)

(ii) If some of the components of z(tf) are specified

at the final time, i.e.,

%

Yif |
(111.7)

then P(te) must satisfy the following conditions :

Pi(tf) is frge i=1,2...r

- 2 G(z(tf). te) i 3 )
Pj(tf) = éTj(tf)”*’ 3} J = I'+1, s n

(I11.8)

classical calculus of variations is that the gradient of
* the Hamiltonian H relative to the control vector u must.

be zero along the optimal trajipeqai.

o
o]

= O : I1TI.0

Lt
=
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A heuristic proof of conditions (II1.6), (I11I1.8) and

(IF1.9) is given in Appendix C. Equatioﬁ (I11.9) is v#lid
only if the control u is not gpnstrainéa. However, in
most contr?§ problems, restrictions have to be imposed on
the control u (e.g. | u; (t) | = Mj' J=1,2 ... m,
bec;use of economical and physical constraints. Then the
above relationship (III.9) cannot be used because it breaks
down on the boundary. This relationship is replaced by
the following inequality:

H(Y*, u*, P*, t) ¢ H(Y*, u, 2*: t) (ITII.10)

for all admissible controls u(t), and all ¢t Clto, tel,
where . Y*, u*, P* represent the optimal trajectories for
Y, u, P. H is minimized by selecting the admissible controls -
which give the smallest value for the Hamiltonian Equation
(II1.10) and which is the basic statement of the Pontryagin
Minimum Principle. Solution to the optimal control problem
can be obtained by solving a two-point boundary value problem
(TPBV) f;r'the differential equations (III.1) and 111.5),
with n initial values for Y(to), r final values for X(tf),
and (n-r) final values for B(tf), while minimizing the
Hamiltonian H. It must be noted that (a) it may not be

known 4in advance that an optimal control exists and (b)

even if an optimal control exists, it may not be unique.

(Poqtryagin (1962)).

I11.2 Application of the Minimum Principle to the Poly-

! merization of MMA .. -

The bulk free radical polymerization of MMA in a batch
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reactor can be described by a knowledge of initiator con-
centration [I], monomer conversion X, zeroth moment of the
MWD ug and second moment of the MWD My These state
variables obey the differential equations (II.1), (II.3),
(IT.7), (11.8) derived in Chapter 1II. Because the state
variables [I], X, u,, w, are of a different order of magni-

2 3

tude ([I)=10"°, X=1, uozlo- , uzleA), the numerical

integration of the differential equations has been proved
challenging and was eased by the introduction of the follow-

ing state variables:

Dimensionless catalyst concentration: Y1 = %%lT
0

Dimensionless monomer conversion: Y2 - %—
d

, th Y0
Dimensionless zero moment : Y3 =
u
0od
X2
Dimensionless second moment: Y = =
| 4 ¥og

where Xd’_“Od’ 24 are the desired values of X, uo and
Mo at final time tf. In terms of the dimensionless state
variables equations (II1.1), (I1.3), (II.7) and (11.8) can

be rewritten as



N

dy I — a-v,x) :
2 . m— 2 *a. N—
I 2 £ ky [15) Y, Ky —x; (I111.11)
ay, f
= - L2 fk, (1] ¥
, voq a (ol 41
dy, , : :
P W S
IT T o, 2R M)t (- Y Xg)

The initial values for the dimensionless state variables

are given as

¥(0) = (1., 0., 0., 07 (111.12)
.

The choice of a mathematical performance functional is
a highly subjective matter, as the choice of one engineer
needs not be the choice of another. The objective functional
is based on product quality and economical needs. In this
particular problem of polymerization it is desired to
produce the 'best polymer™ in the minimum batch time.
The mathematical definition of the term 'best polymer"
depends on the final application of the polymeric product, .
hence it can widely vary. The useful mechanical and phy-
sical properties of a polymer are strongly related to its
MWD. In most cases, there is a molecular weight range in

which a polymeric product will have desired physical and
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»

mechanical characteristics. Thus the term 'best polymer"
‘will mean a polymer with specified Mn and M, and conse-
quently will possess certain desired physical and mechanical
pfoperties. Prespecified conversion, number average molecular
weight and weight average molecular weight for the final
product determine uniquely the zero, first and second morents
of the MWD at the end of the reaction. Accordingly the objective
function to-be minimized may be expressed as:

Jo= e - D x vpie) - P

2

+ (Ya(tf) - 1) (I1I1.13)

This is a Mayer problem.
The final time tf is fixed in the above objective function.
By successively minimizing this objective function for smaller
values for.tf, the minimal batch time problem can be solved.
Comparing equations (III.3) and (III.iB), we obtain the °
following expressions for L and G: |
G(¥(te), tp) = (Yy(tp) - D+ (Yt - P

+ (Y, (tp) - 1P (111.14)
L(Y(E), t, u(t)) = o.

Because the final conditions on Y have been included in
equation (III.14),'X(tf) will be free, and therefore
'g(tf) will be given by equation (III-6).

J is to be minimized by finding the optimal policy for the
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QDntrai.g(E)gg In this study the twe control vafigblgs are
the reaction temperature T and the catalyst feed rate F:’
It is assumed that Fc and T can be manipulated and fixed
at our convenience, although they could be bound by physical
constraints.

The expression for the Hamiltonian can be derived from

equations (III.4) and (III.1l1l):

f — — 1 = Yz Xd
+(\/2 f,kd (150 Yy KZ‘(T)) P,

2 £ ky [15) ¥
+ P,
UOd _
2K P@if]z(l-t’ Y .
' +* 2] 0 P, (111.16)
“2d

H is not an explicit function of time.
Therefore, as is proven in Appendi# C, H must remain con-
stant along the optimal trajectory if the equation (III.9)
is to be satisfied. | | - :

The costate differential equgtiﬂh; are derived ffum

equations (III 5) and (II11.16),
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| al L
Eazl = kg Py - f kg 1Ig) Xp° (1 - ¥) Xg) P,
2 f kd [IQ]
- . d v P3
Yod
aF 'R 1 - v. X.
at_z - [1 - %’ (3 A Y% Xg 4+ 28 Yz de) ( 7725 d)]
jEd .

\/2 £ kd (15 Yy Kz' P,

' 2 .3 2
+[4 Xy - 2(31\3{2 X;+2BY, xd)(i - Y, xd)]

2. )
. g g1 (1 - v; %) p
(111.17)

d Py
e - 0

t
d P, - 0
dt

Using equations (III.6) and (III.l4), final values of Ercgﬁ

be calculated:
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-
Fa
r
o]
L
]
Lo}

1) . (I11.18)

PB(EE) = z(chtf)

Tﬁe systems of differential equations (II1.11) and (III.17)
have to be integfated simultaneously with the initial and
final conditions (III1.12) and (III.18). Therefore, a two-
point boundary value problem has to be solved, along with
the minimization of the Hamiltonian H to obtain the optimal
control policies.
In this work three separate problems are considered:

(i) Obtain a polymer with desired X, Hn' Hw in the
minimum batch time by calculating the optimal temperature
policy in the reactor. i

(ii) Obtain a polymer with desired X, M., M, in the
minimum batch time by calculating the optimal policy for
catalyst.: feed rate.

(iii) Obtain a palymer with desired X, M . M, in the
miniium batch time by calculating the optimal policies féf
polymerization temperature and catalyst feed rate.

Solution for }rabiem (1) is developed in Chapters 1V
‘aﬁd V. Solutions for problems (ii) and (iii) are developed

in Chapter VI.



CHAPTER IV
SOLUTION OF THE TPBV PROBLEM

IV.1 Introduction

In this chapter, we solve the TPBV optimal control
pfablgm by assuming only one control variable, the poly-
merization temperature T in the reactor. No catalyst
is added to the reactor during the polymerization,
and the initial concentration of catalyst 141 ‘
is fixed to a value of 0.5% in weight. Two algorithms that
compute the optimal temperature profile in the batch reactor

are developed and their results are compared. The first one

time in N equal intervals. The control variable (temperature)
remains constant in each time interval, and the Hamiltonian

is minimized by a first-order gradient method. For the sake
of brevity, this algorithm will be referred to as the discrete
control method (DCM) algorithm. The second algorithm,

)

- which solves the two-point boundary value problem by a
shooting method will be referred to as shooting method

(SM) algorithm.

1v.2 Discrete Control Method Algorithm

The polymerization of MMA in a batch reactor can be

described by the following set of differential equations:

A o f v . o
¥ - f£@ e, D | (IV.1)

47
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with the initial conditions-

Y(t)) = ¥, N\ av.2)

The objective function to be minimized is defined as:

24yt - D24 (e - 12

,Ef
+/wt dt (IV.3)

t
o

I = (Y(tp) = 1)

According to the previous analysis in Chapter III, the

necessary conditions for the optimality of the costate
LI x , .,
trajectory can be expressed as:

gE_& - - % (IV.4)
? G(Y(tg), to) .
P(te) = 5t (1V.5)

Suppose that a temperature history Ti(c),,c i[tg. tfi is
known and used to solve the differential equations (IV.1) and

(

V.4), so that the state-costate trajectories li(t) and

[ ST o |

g-(t) satisfy the boundary conditions (IV.2) and (IV.5). 1If
this temperature history Ti(t) also satisfies equation (IV.6):
srat ettt o - o0 . (1V.6)
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for all téZ[tDi tgl, then Ii(t) satisfies all necessary
conditions for being an optimal control.
However, suppose that equation (IV.6) is not satisfied,

then for a change 6 T (t) around the control Ii(t),

i

s Ty = 1t - iy, (IV.7)

the first variation of the functional J may be expressed as:

(Seeééquatian C.12, Appendix C)

RYE i
¢ J 2[%(%) s T de ~(1v.8)
t : ; '

Hence, if the change in T" is selected using a steepest

gradient method
: a i .
§ TH(t) = - al(%—g) with a® > 0 (IV.9)
Then

(€0 s wNE £ u\E
. 2‘31/ (zgg) (;;%)dt (1V.10)

Because the integrand is positive for all Céi[ﬁﬂ; te:l,

iy

6§ J £ 0. For a sufficiently small ¢ J (i.e., a sufficiently
“small o), this implies that J(T*l(e)) ¢ 3(Ti(t)), since
the increment in J is governed esgentiall? by thé first
variation & J. Hence: if the control Ti(t) is updated

according to equation (IV.9), Th(t) will eventually converge

e
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to the optimal control T*(t), if the optimal control exists.
We shall now outline the steps required to determine the

optimal control T*(t) using the discrete control method

algorithm (V. Gourishankar, 1980).

Step 1: Select a discrete approximation to the temperature

history Ti(t)i t, € t € tg, by §ubdividing the interval

[t,, tg) into N suitably chosen subintervals of equal dura-

o
. - . T | . , .

tion. Consider the control T as being piecewise constant

during each. of these subintervals, that is:

iy = They L tert .t . k=12, 0N (IV.1D)
and store the value of Ti(tk)i§
Step 2: Uging Ti(t), integrate the state equation (IV.1)
from t, to tg with the initial condition (IV.2) and store
the resulting state trajectory zi(t). U
Step 3: Obtain gi(tf) by substituting zi(tf) in equation
(IV.5). Using this value of Pi(tf); the computed values
of the state trajectory zi(t). and the control history Ti(§)i

integrate backward equation (IV.4) from tg to t ; compute

. \i
gh(t) = (:r%) e,

Ly

in each interval [tk-l' tk] and save this value.
Step 4: If the stopping criterion is satisfied, terminate

_ the iterative procedure; in this case T (t) is the required
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optimal contr®l. Otherwise generate a new piecewise constant

control history

&

ey = they - efetr)  kel2 0N avad)

and restart the procedure from Step 2.
This algorithm is summarized in Figure IV.1l. )

In the above algorithm, the final time is fixed. The
minimum time is found by solving the same problem for diff-
erent final times and selecting the smallest final time
for which convergence is possible.

In the DCM algorithm, Ti(t) is not constrained,
therefore, the necessary condition for optimality relative

to the minimization of H is
g (t) = T =0 for all té:[tg, Ef] (1v.13)

Consequently, the above cgﬁditi@n:shéuld be the stopping
criterion for terminating the DCM algorithm. However,
instead of using the above criterion, we have chosen the
following stopping condition:

¥

|Y}(§f) - 1.] ¢ 5% for i=2,3,4. | (1V.14)

1f this stopping condition is satisfied, the desired target

set at final time has been hit by the cofhversion, the zeroth

moment and the second moment within acceptable limits. It



'| Guess a piecewise i
control profile
T(t)

-

Using T(t), integrate forward state equations
store state variables

Compute g(tf); integrate backward costate equations;
simultaneously compute g(t) = %=% ()

. . y

Compute new temperatufé history

T(t) = T(¢) - a g (t)

new old

i S B

e

Figure IV.l: Discrete Control Method -Algorithm



was found that when candiﬁian (IV.14) was satisfied, con-

dition (IV.13) was also approximately satisfied. To verify

that, the following norm for the gradient has been defined:

i, N o2
g™ Ih= 1 e ()" (IV.15)
As the above norm decreases and approaches zero, the t emper-
ature profile computed by the DCM algorithm approaches the
optimal temperature policy.

The integration of the differential equations (IV.1l)

local error and adjusts the integration step size depend-
ingly on the local error.. The lﬂitlal integration step
sizé hés been selected as 5 sec. ;ffﬁess in the dlfferf
ential equations was not encountered, because of the use
of dimensionless variables.

The gradient gl (ck) can be calculated analytically

-

in each subinterval [t, ;. t;] from equation (III.16).
5 ; E, dy, ] +E dy.
i - d “.1 5,1 (_(Zd ™2 3v348. v2x24 2

g ()= - 2 [‘ ® d¢ 1*2 ( (E R )*Ale Xa*B Yo Xt 1)‘?TE P2

) " E -
da 43 o . Ea 303, 4202
- | gt P3O wHA Y Rg B VX 0 )-gi P ]

(IV.16)

where Ed and E, are the activation energies corresponding

to the rate constants k, and K, , and R is the gas constant.
, d 2 .

o



The following numerical values were used for Ed and Ez

(Balke, 1972):

E, = 32387. cal. mole™}; E, = 5882. cal. mole”!

The choice of the length of the time subinterval

[t is important. Figures IV.2 and 1IV.3 show the

k-1 k!
effect of the length of different subintervals on the

optimal temperature profile. A longer time igterval

optimal prcfile,rbut produces an obvious discontinuity in
T(t). Shorter time intervals (5s, 1 min, 2 min, 5 min)
produce almost a continuous témperatufé profile, which
clearly indicates that the calculated profile is independ-
ent of the length of the subinterval [t, ,. t, 1. The
smallest time interval entails the most accurate solution,
.and the most expensive run, speaking of computer money.
It was faund that caﬁverggnée of the numerical solution
was reasonably fast, accurate and inexpensive, when using
a time subinterval of 1 min. Therefore, in all subsequent
apﬁimizatian runs with the DCM algorithm, a 1 min discreg:
ization intgrval was employed. |
The initial guess of the temperature history Il(t)
reﬁuired to start the DCM algorithm was chosen to be an
isothermal profile, for convenience reasons. A good
initial guess is a matter of good knowledge of the

physical behavior of the polymerization system. A
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pertubation of 3°C in the initially guessed isothermal
profile could cause some serious convergence problems in
the DCM algorithm.

The choice of the parameter a in equation (IV.12) is
challenging, because a very large value of a produces ak
oscillatory or diverging numericai solution, while a very
small value of o may increase considerably the number of
iterations needed for convergence. The numerical value of
a is directly related to éhe order of magnitude of Ti(tk)
and gi(tk) terms. Ti takes values in the range of 303°K

6 9

to 373°K, and g~ varies from 10 ° to 10~ In this study,

5

a value of a = 1.x10 ° has been proven to yield a satis-

factory convergence rate. A value of a equal to a = 5.x10-5

leads to oscillations, while a value of a = 5.10-4
increases the numbgr 3f iterations needed for convergence
from 18 to 41 iterations. The effect of different values
of o on the optimal temperature profile is shown in

Figure IV.4. It should be noted that a change in a
‘changes only the number of iterations needed. for conver-
gence and not the optimal profile.

The reliability of the DCM algorithm and its conver-
gegce characteristics is again checked in‘Figure IV.5,
where the effect of the number of iterations on the optimal
temgerature is investigateégg ?n;éll caseg, an isothermal
temperature profile at 70éé{i§ ﬁéed as the initial guess.

As the number of iterationes increases, the profile gets

steeper and finally converges to the optimal profile.
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IV.3 Shooting ngghodAlgcig
A slightly different formulation of the minimum time
problem is used in this approach. The objective functional

J' is defined as follows: :
te
J' = ‘/[ W, dt o (IV.17)

Final conditions are imposed on z(tf), as each of the
%
final state variahles Yz(tf), YBCEE)‘_YA(EE) must be
equal to one. In this case G (¥(tg), tg) = 0. That means
that the final condition (IV.5) for E(tf) must change to
the condition (IV.18):
Pz(cf). PB(EE)’ P,(tg) are free (IV.18)

The necessary condition on the Hamiltonian for Dptimalfty‘

~remains unchanged, that is:

= 0. : ‘ (I1V.19)

oy ‘ (=%}
Nl |2

- If T is constrained, relationship (IV.19) breaks on the

boundary and is replaced by the following relationship:
ok ko N T ]
H(Y , P, T, £) ¢« H(Y , P, T,t) (1IV.20)

for all admissible temperatures T and all t ¢ [tc’tf]‘

As in the previous section of this chapter, we have to"

solve a two-point boundary value problem, which consists

of eight differential equations (four state equations,
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four costate equations) with four initial values
(i(@)izﬂ)saﬁd four final values (Pl(tf) =0.; Yz(tf)
Yg(tf) = Yé(tf) = 1.). The Hamiltonian must satisfy
equation (IV.19) or equation (IV.20) along the optimal
trajectory. A shooting method is used this time to solve
the TPBV problem. B

We shall now outline the steps involved in the
shooting method algorithm. !
Step l: Guess an initial value P'(o) for the costate
vector.
Step 2: Integrate forwards from t_ to ﬁf together state
and costate equations (IV.1l) and (IV.4) with initial
condition (IV.2) and the assumed initial value of P'(o0).
Simultaneously determine the temperature history by

applying relations (IV.19) or (IV.20) along the state and

costate trajectories.

Step 3: At final time (fixed in advance), compare
Yz(tf)i ?B(tf), Yé(tf) and Pl(tf) with their respective
desired values. If the stopping criterion described in

®

equation (IV.14) is satisfied, then save the values of
optimal control. 1If the stcppiﬁé criterion is not

Step 4: Compute new initial values for the costate var-
iables, and return to step 2.

The SM al%érithm is summarized in Figure IV.6. As in the
previous algorithm, the final time is fixed. The minimum

time is found by solving the TPBV problem for different

%
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final times and selecting the smallest one for which conver-
gence can be obtained.
L /

Step 4 presents the greatest numerical difficulties
because, during this step, four final values (Pl(tf).
Yz(Ef); YBCEE), Yé(tf)) must be computed using the shooting
method. 1In this step the roots of the vector function F
relat}vely to P(o) are determined. F is defined in
équatién (Iv.21).
~ Y3 (ep)-1. : (1v.21)

P, (cf)éO,

(NS

F(P(o)) =

&

A Newton-Raphson method has been used to compute the new
initial values of the costate vector.

P(0) ey = P(O) 1y - 0 DL F | (1V.22)

where p is a relaxation factor (o < ¢ < 1), and D is the
(4x4) Jacobian matrix of F relative to P(o). The

coefficients of D are defined as:

aF,
- 1 i = ] . 1 )
J j=1,2,3,4

F is not 'an explicit function of P(o), therefore the
Jacobian D must be computed by a finite difference method._
This involves four additional integrations of the state

and costate equations and is carried out as follows:
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(i) Pertube consecutively each component of the
costate vectar, P(o), one at the time, while keeping constant

the numerical values of the other components. Obtain four

additional initial costate vectors Ez(c), 53(3), EA(Q).
P> (0) .
Pi(o) = P'(0) + 6P (0).€4

7 T . , o
where €4 (611, 512, 613, sié) , i=1,2,3,4 (IV.24)

(ii) Integrate forwards the state and costate differ-
ential equations using initial condition (1v.2) for the

state vector and the initial costate vector Ei(@f as

e

calculatedsabove. Optimize simultaneously the Hamiltonian

along the state and costate trajectories. Four new

function vectors 52, {3, EA, ESZEEE thus obtained that

correspond to the costate vectors gz(g). PEB(D)i 54(Q)g PS(G);

(iii) Calculate the partial derivatives in the

Jacobian mgtrix D wsing a finite difference approximation.
» ¢
j+1 1
oF, F,3T4-FL ,
i i i i=1,2,3,4 (1V.25)

D.. = = -
ij an(OS [ Pj(a) j=1,2,3,4

The pertubation ¢ P, was gaken as 10% of the corresponding
value of the initial costate variable Pi(c) dufing the
first ten or twénty iterations. As the solution approached
the optimal trajectory, 6§ P, was reduced to 5% of the
corresponding value of P&(ﬁ), 7

The inversion of the Jacobian obtained nﬁmericallv

was performed with a very accurate algorithm pggpgseé by
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Moyer (1978), To avoid singularity of the Jacobian. the :t;£g
variables have to be dimensionless and varying from 0 to 1.
The relaxation factor o was taken as 0.1 during the
first ten or twenty iterations, then it was changed to 0.01
as the solution approached the optimal trajectory.
The same stopping criterion as the one used in Eﬁé DCM
algorithm was employed to terminate the algorithm, that is:

¥, (tg) = 1] < 5% i=2,3,4 (1V.26)

In addition to the above condition, Pl(tf) should be zero
according to equation (IV.18). Indeed, it was found that
Pl(tf) was approaching zero as the solution came nearer to
the optimal temperature profile. We choose to impcse final
conditions onﬁz(tf) instead of minimizing the cost functional
it was found that it was easier to satisfy these final state
conditions than to satisfy'the varying final conditions on
g(tf) imposed in equation (IV.5).

The integration of the differential equations (IV!I)
and (IV.4) was performed by a Runge-Kunta routine, with an
adjustable integration step size. The initial step size
was five seconds. The differential system did not show any
‘stiffness, due mainly to the use of dimensionless variables.

The-optimal temperature profile was continuously \}
"calculated by calling the minimizatioﬁ routine at each ;
integration point. Upper and lower bounds were imposed

on the polymerization temperature (313°K and 373°K). The



temperature %as computed by minimizing the Hamiltonian H.
A half interval method was used to solve equation (IV.19)
together with the analytical expression (IV.16) for
(3H/3T). 1If no solution for equation (IV.19) could be
fcund in the interval [313, 373], the optimal temperature

was calculated from equation (IV.20),

*
o
o

T = 373°K if

|
M
o]

oT (1V.27)
ks 3H
T = 313 K lf ﬁ > 0

It was verified that the Hamiltonian was an unimodal
function in the interval [313, 373), meaning that the
calculated optimal temperature policy was unique in that
Convergence of the SM algorithm is highly dependent
on the initial guess of the costate vector P! (o). éiﬁce_
the costate variables bave no physical meaning, it is rather
difficult to know even their order of magnitude. To obtain
reasonable initial values of the costate vector, we gised
the following method:
i (i) Pertube Yz(tf),:YB(;f), Yé(tf) around their
. desired values. Set Pl(ﬁf) to zero. ’
(ii) Compute Pz(tf)i P3(tf), Pé(tf) from equation
(IV.5). Assume a reasonable value for Yl(tf),
(iii) Integrate backwards state and costaté differential
equations (IV.1) and (IV.4) from teg to t . Compute
simultaneously the polymerization temperature by using

equations (IV.19) and (IV.20).



Guess four initial values for
costate variables

1

Integrate forward simultaneously
state and costate equations, while
computing T(t) by minimizing H

.

At e

.

- Final time, a
ST L %%%giri Yes
{i% 1s stopping criterion - —
“~. satisfied? 333355333

-
—
-

No

Compute new initial values
for costate variables .
Figure IV.6: SM Algorithm :
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(iv) At t =0, check the initial conditions on Y.
If Yz(a) is zero, use the corresponding P(o) as the initial
guess in Step 1 of the SM algorithm. If Yz(a) is not

IV.4 Comparison of DCM and SM Algorithms

The two algorithms were tested by solving the same
minimum time problem of abtainiﬁg a polymer with the

desired MWD and final conversion as given in Table IV.1,

TABLE 1IV.1

-t

- Desired Properties !
PDg | X3 | ¥eq Mg My My

2.5 0.9 | 8.45x107% 2.075x107°

990000{ 2480000

The resuylts obtained by the two algorithms are presented

LY

in Table IV.2.

The difference between the final values obtained by the
two alg@fithmﬁ can explain the small discrepancy between
the two optimal temperature profiles plotted in Figure (IV.7).
_Furthermore, as it has been shown in Chapter II, the poly-
merization system is not very sensitive to temperature
pertgrbatiéns at the end of the polymerization. Thus
the rise in temperature as computed by the SM algé§ithm
éaes not result in a sigﬂificantbchange of the MWD.

Let us now examine how both algorithms satisfy the
neceésafy conditions for optimality. Both algorithms

satisfy the differential equations (IV.1) and (IV.4) with



Table 1IV.2

Comparison of the Results of the two AlgorithmaA

68

DCM Algorithm SM Algorithm

Yz(tf) = X/Xd 0.950 0.952

Conversion X 0.855 0.857
Y3(tf) = “o/”od 0.998 0.996
Oth moment u : 8.43x 10-" 8.42 x 10"‘
279 moment u, o 2.09 x 10° 2.01 x 10°
Polydispersity 2.8 2.7
Minimum time 310min 300min

initial value (IV.2). In the DCM algorithm, g(tf) is forced
to satisfy the boundary condition (IV.5). The gradient

of the Hamiltonian is continuously approaching to zero while
the Hamiltonian remains constaht along the state-costate
trajectories, which is a strong indication that the computed
temperature policy is close to the op;imum temperature
profile. In SM algorithm, Y,(tg), Y3(tf) and Y, (tg) satisfy
the conditions imposed on them within 5%. The gradient of

the Hamiltonian is always zero, and the Hamiltonian is fairly

constant, which indicates that the temperature policy computed
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by this algorithm is also very close to the optimal tem-
perature policy.

For both algorithms, convergence is highly dependent
on initial.guesses. In the DCM algorithm, an initial tem-
perature history has to be assumed over the polymerization
interval [ty tg¢] before starting the algorithm. 1In the
SM algorithm only the values of the costate vector P (o) must
be known. However it was more difficult to guess the values
for the four initial costate variables than to guess the whole
temperature profile. This is due to the fact that tempera-
ture has a physical meaning and therefore good initial esti-
mates can be easily found, especially if some knowledge about
the behaviour of the system is available. Costate variables
have no physical meaning, therefore it may be very difficult
to find some reasonable values for P (o).

Twenty to forty iterations are usually needed to obtain
convergence with both algorithms, depending on the accuracy
of the initial guesses, and on the relaxation factors o and
p. For the DCM algorithm, one iteration involves the inte-
gration of two systems of four differential equations.

For the SM algorithm, one iteration involves the integration
of five times eight differential equations,, and the solu-

tion of the e;uation (3H/3T) = o) at all integration points
(usually 10,000 points). For comparison reasons, both
algorithms were implemented on a very slow computer (HP 1000).
Teﬁ to twelve hours were needed to get convergence with the

DCM algorithm, against thrgf/Dr four days for the SM algo-



rithm. The same test performed on the Amdahl 47Q/V compu-
ter at the University of Alberta gives a CPU time for the
DCM algorithm of approximately one humdred seconds.

The fact that both algorithms predict the same optimal
temperature profile using two different numerical methods,

that the gradient of the Hamiltonian relative to the

temperature is close to zero, and that the Hamiltonian is
almost constant during the time of the reaction, strongly
indicates that the solution obtained by these algorithms

is close to the true optimal profile. However, it is

difficult to show in a mathematically rigorous manner that

the computed solution is the true optimal.

-]
m

he DCM algorithm has two main advantages over the SM

algorithm: (a) it has faster convergence rate, (b) it is
more efficient. Therefore, for computational reasons, all

optimal temperature profiles subsequently presented are

., computed by the discrete control method algorithm.

- -

5



CHAPTER V

OPTIMAL TEMPERATURE POLICIES

V.1 Reduction of the Batch Polymerization Time.

The isothermal polymerization of MMA at 50°C requires
\ [
a reaction time of 425 min to attain a conversion of 90%.
The M, and M, of the polymer product at the end of the iso-

thermal run are given in Table V.1.

Table V.1

Final MWD for the Isothermal Polymerization

of MMA at 50°C

X Mn Mw PD Mo uz

5

0.9 0.991 x 10% | 0.406 x 107 | 4.18.45x 10" |3.399 x 10

Using the DCM algorithm to calculate the optimal témperature
policy, ‘we were able to obtain a polymer.prodﬁct with the
specifications of Table V.1 only in 275 min. Tﬁat is, we
get a 23.5% decrease in the total polymerization time com-
pared to the isothermal run at 50°C. The calculgted optimal
temperature profile is shown in Figure V.1. .

.The isothermal polymerization of,MMA at 70°C requires
a reaction time of 81 min to reach a conversién of 90%. The
corresponding MWD obtéinea at the end‘df this run is presented

in Table V.2.

-



Table V.2

Final MWD for the Isothermal Polymerization
of MMA at 70°C

0.9 | 291x10° | 8.63x10°| 3.0 | 2.88x 1073/ 7.22 x 10%

Using the DCM algorithm to solve the minimum time problem,
we obtain a polymer product with the specifications of
Tablé V.2 in only 67 min. The batch time is therefore
reduced by 19%. The optimal temperature profile is shown
in Figure V.2.

Both optimal profiles (Figures V.1l and V.2) have the
' same shape. " Up to about 70% conversion, the temperature
remains almost constant, then it sharply decreases and
finally, at about 907% conversion, the temperature increases
to a final value slightly above the corresponding isothermal
temperature. Under isothermal polymerization conditions, the
rate of polymerization would sharply increase as a result
of the gel effect (Chapter II). This in turn would cause a
large increase in uy due to Ehé!dééfEESE of the termination
rate constant. It should be noted that the gel effect is
more important at low polymerization temperatures than at
higher ones. Thus if we wish to increase the polydispersity
(Hw/ﬁn) of the final product, a decrease in the temperature
profile at the onset of the gel effect phenomenon would cause

a dramatic increase in Mo and a subsequent increase in the



-
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)
polydispersity of the product. On the other hand, if we

wish to obtain a product of low polydispersity, the tem-
perature profile should increase to suppress an increase
in w, due to the onset of the gel effect. In Figures IV.3
to IV.6, the monomer conversion and the rate of polymeri-
zation are plotted as a function of reaction time. It can
be seen that in this case, the optimal temperature policy

has a tendency to flatten the rate of polymerization profile.

V.2 Quality Improvement of the Polymer Product

The minimum time problem has been solved to produce
polymers with different molecular weight distributions.
The corresponding physical properties of a product obtained
under these optimal temperature policies cannog be gotten
by any isothermal run.

By fixing the number average molecular weight Mn to
a value equal to that obtained at the end of the 50°C - iso-
thermal run (Mn = 991,000), and by varying the weight average
‘ﬁolecular weight M, different desired polydispersities have
been obtained using thé DCM algorithm. The degired MWDs
and the corrésponding computed optimal values are presented
in Table V.3. Figure V.7 shows the computed optimal profiles
for products with different polydispersities; The correspon-
ding profiles for the rate of polymerization, M,, M, and )
polydispersity aré displéyed as a function of time in
Figures V.8, V.9, V.10.

-~

By fixing the weight average molecular weight M  to a
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value equal to that obtained at the end of the 50°C - iso-
set of optimal profiles has been obtained. ghe different
desired MWDs and the corresponding computed cptim§1 values
are given in Table V.4. he é@fréSPGﬁdiﬁg optimal tempera-
ture profiles are presented in Figure V.1l1. The rate of
with txese optimal profiles are shown in Figures V.12, V.13
and V.14.

When the minimum time problem is solved to obtain
narrow molecular weight distributions (polydispersity = 2.5,
§,O) the optimal temperature profile shows a pike-shaped
increase in temperature around 70 - 90% conversion. For
"éthé case of broader MWDs (PD =+4.1, 5.0, 6.0), the computed
Gptimal temperature ﬁf@fileé show a pike-shaped decrease in

temperature around the same ‘conversion range. When a polymer

o

product of high polydispersity (PD 5.0, 6.0) is desired,
the rate of polymerization shows strong variations and even
a bimodal form. As shown in Figures V.10 and V.14, the

polydispersity always goes through a maximum at around

60 - 807% conversion. This is due to the acceleration in the
rate of change of u,, due to the gel effect. After an 80%
conversion, the polydispersity of the polymer drops dramati-

cally as a result of the decrease in (K, = xf\a?/kt) which

involves a limiting u, and a limiting conversion.
By comparing the two@ets of optimal profiles shown

in Figures V.7 and V.11, it can be seen that shorter minimum

batch times are obtained in the second set (where Hﬁ is fixed
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and M, is varying). From Tables V.3 and V.4, it can be
seen that in fact the shortestminimum time i1s always obtained
for the smallest desired M,
From the above results, it is expected that any sensible
molecular weight distribution can be obtained by computing
.the optimal temperature policy using the discrete control

algorithm.

L

As shown in Chapter II, the system responses are sen-

sitive to variations in kinetic parameters. Therefore it
may be anticipated that perturbations in the kinetic para-
meters will result in some changes in the minimum batch time
and in the optimal temperature profile. To find out if any
perturbation in the kineﬁig parameters affects the shape

of the calculated eptiméi temperature profile, the minimum
time problem was solved several times, each time perturbating

one kinetic parameter from its nominal value. Results of

this analysis are summarized in Table V.5 and in Figure V.15.

Table V.5

Effect of Parameter Perturbations on the Minimum

Time Problem

o d , KZO

‘Parameter

Perturbation [+1% |+1% [+1% }0.1% |40.1% H0.1% F0.1% [-0°1% |-1%

Computed - | z
Minimum 67mn {67mn |67mn [65mn | 65mn [65mn |69mn {67mn | 67mn

Time
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The kinetic parameters A). Ay, By, B, have a significant _

effect on the optimal temperature policy and on the com-

puted minimum time. This is understandable since the con-
version and the second moment are exponentially dependent
on A;, A,, B,. B, parameters. Again, it can be seen that

 much care is recommended when estimating these parameters.
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CHAPTER VI
OPTIMAL CATALYST FEED RATE POLICIE!

v

Up to this point, the only control variable considered
was the polymerization temperature. In this chapter,
the minimum time problem is solved by optimizing both tem-

perature and catalyst feed rate.

VI.1 Problem Formulation
Let F_ be the catalyst feed rate. The polymerization
of MMA in a batch reactor is described by the set of

differential equations III.11 deriied in Chapter III.

g% = £ @ F_, T.‘ t) -( (VI.1)

The Hamiltonian of the system can be expressed as follows
(eq. III.16) _ -

S/ ' e
, - )
. . F 1l - Y. X
= - 3 C _ i E - H y b (7 72 é)
H ( kg Yp Wﬁ)Pl + (2 £ kd[IQ] Y K, T)Fz

2 £ kyll ) ¥ 2 K, M (1Y2X)
1 P. + ) _< P (VI.2)
3 ¥2d - '

FC/HPPSQ{S linearly in the Hamiltonian, thus the necessary
condition for optimality (dH/dF, = 0) does not allow us to
calculate tﬁg optimal policy for F. Therefore the Pcntryagin
Minimum Pfinciple has to be applied to calculate the optimal

feed rate F*

A
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H(X*- 5*- T*, FC*' t) £ H(Z*i Pip T*- Fen t) (VI.B)

for all admissible F: and all ¢ [cer :f].
Design reasons require that F_Dbe constrained between a
lower and upper F_ value,

é s Fooe Foooox (VI.4)

provide the solution to the optimal catalyst feed rate policy.

This policty will be of the on-off type given as:

J
If Pl > 0 FE = 0
If P, <o F, = F, max,~——" (VI.5)
‘If Pl = 0 , Fc is undetermined and can take any
value between o and F | Such an optimal policy is called

" c max.
-bang control. An attempt to solve the minimum time

:U‘

ang
roblem by applying this bang-bang policy to our numerical

o

model did not produce any meaningful results due mainly to
convergence reasons. This may be due to the fact that for

a too small or too large Fc mas value, a solution to the
minimum time problem might not exist. In order to find the
optimal policy, [IGJ and Fc max should be optimized simul-
taneously with the computation éf the Dptimal-aatalyst feed
rate policy. An alternative is to consider [I]i'the-ini§iatar

T # i

i
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concentration, as the control variable, instead of F..
[I) can be manipulated by controlling the catalyst or inhibi-
tor addition rate into the reactor. Once the optimal profile
for catalyst concentration is known, the catalyst and inhi-

bitor feed rates can be calculated from the mass balances
i

on catalyst and inhibitor species:

drir _ |, o F o
T kql1] - ky[11(N] + e (VI.6)
%%El = - ky[I}IN] + gﬂ (VI.7)

where [N] is the inhibitor concentration in the reactor,

FN is the inhibitor feed rate, and kN is the rate constant
for consumption of initiator radicals by the inhibitor.

It is assumed that there is no change in the volume of the

reacting mixture due to catalyst and inhibitor addition.
The polymerization can be described by three state

E _ LI P L] N . I 1] & _ . th
variables (dimensionless conversion, dimensionless zero

moment, dimensionless second moment) and two control varia-

o
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d Y., - — — l - Y. X
ae tVIEkg R 7
N 7
d Y. 2 f k, [1I)
2 - . d - (V1. 8)
t Yod f
o, " 2 v 2
iiat UZd
Y'(o) = (0., 0., 0.)F (V1.9)
, U u T
where Y' = X , =2 . _Ei_)
- "4 Yod VY2d

The objective function in terms of the Y' variables is
rewritten as: -

3 i
T _ - . Ly [] 4 2
J = W, tg +i£1 (Yi (cf) - 1)

(VI.

The Hamiltonian H' for the above system can be expressed

— (1 - Y X
H= {2 f kg (1T 1 7d)

(VI.10)

—t
P
N

2 £ k, [1)
—x Pi + __;Eggﬁﬁs P!
d Yod “
v w2 4o 2
2 Ko M7 (1 - Y] X))
+ 2 o B S Y (VI.12)
H2d

and the costate vector P' is governed by the following
differential equation:

®
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do

o

Pi(tf) =

VI.2

The Optimal

[+1 - %(3 A Y2 xg +2BY]

3

- " A v'2 ¥d 4 oA ’
2(3 A Y;2 X3 + 2B Y

2(¥;(tg) - 1)

i

x2

[

d,
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2 Xg)-
x2) 1
e

J7 f &« w111
gz f ky Ky [T1] Pl

(1 - Y

1

Xd);

kM2
] ' 2 O
) -y %)

Y24

(V1.13)

(IV.14)

L]
—
"o
o

_Initiator Policy

In

[I] in the reactor as the only control variable.

this case,

we consider the

The

temperature T is arbitrarily fixed to a constant value.

The algorithm used to solve this problem is similar to the

algorithm used in Chapter V to calculate the optimal tem-

perature profile.

each interval [ty.1: ty] by applying a

method:

[I]tki”" - -

as has been chosen such that a

new

(11t 514 -

a .
2 3TIT |t

3 H

3 H -
2 37T has the same order of

initiator concentration

first order gradient

(VY. 15y

The initiator concentration is updated in

Mg
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magnitude as the term [I]). A value of a«a = 2 was proven to
yield a good convergence. The gradient of the Hamiltonian
relative to the initiator concentration can be calculated
from the following analytical expression:

3 H d d’ pr 4 d L. )
T 71T yd = Pl+ f;dx 1-’?2 (VI.15)

The numerical solution starts by assuming a constant profile
for [I]t throughout the polymerization time from t, to tg.
Again the discretization time interval was chosen as 1 min.
| The minimym time problem has been solved for two desired
molecular weight distributions, given in Table VI.l. The
-corresponding optimal profiles are shown in Figures VI.1
and VI.2. For the same desired MWD, the shape of the
optimal catalyst concentration profile is similar to the
shape of the optimal temperature profile. This is under-
standable, since an increase in initiato¥ concentration and
an increase in ﬁolymerization temperature have a similar

effect on the state variables, as shown on Figures 11.12

Hh

ficients

[

and IT1.13, where «temperature and [1,] sensitivity coe

were presented.

VI.3 The Optimal Temperature and Initiator Policies

In this section, both the polymerization temperature T
and the catalyst concentration [I], are considered as
control variables. The DCM algorithm is used to solve the

minimum time problem. The two control variables are updated
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using the following equation:
T( e T(t, ,. o
Tnew = T(dord = °1 37T e
(VI.17)

[I)(ty) e [IJ(Ey) g - 3H | .
'Yk new ' '~k’0ld %2 331 £y

The numerical values of O and a, were chosen as 1l x 105
and 2. respectively. For these values, reasonably fast
convergence was obtained. The initial guesses for T(t) and
[I)Xt)were respectively an isothermal profile (50°C) and

a constant initiator concentration (0.02 male.z_l).

The optimal temperature and initiator pglicies that
’ miﬂimize the batch time were calculated for two desired
MWDs described in Table VI.2. The optimal initiator concen-:
tration policies are shown in Figures VI.1 and VI.2 and
compared with the optimal initiator concentration policies
computed by considering only [I] as a control variable.
The optimal temperature policies are shown in Figures VI.3
and VI.4 and compared with the optimal temperature
policies cqmppted by considering only T as a control variable.
timal initiator profiles are alike for the same desired MWD,
but the simultaneous optimization of [I] and T has a smooth-

ing effect on the profiles.



ot
[ =]
el

V1.4 ;gntr;lla?ili;yipf the System

The system of differential equations which describe

the polymerization of methyl methacrylate is non-linear,
5
therefore it is difficult to show or to demonstrate if the

"controllable” in the technical sense, i.e. if it

em i

L]
i

ys
is possible to transfer an arbitrary initial state to an

arbitrary final state in a finite time. 1In this work, con-
vergence is alyays obtained because the final desired out-

ut values are allowed to lie anywhere within a *5% band,

\m\

which is satisfactory from a practical engineering point
of view. 1If a smaller tolerance were imposed on the final
desired output, it may haVErbEEﬁ more difficult and, in -
sOme cases, imp@séibl& to obtain a true optimal control
policy. This observation is supported by the following
results:

For two computer runs, the desired finéi conversion,
Oth and 2nd movements of the molecular weight‘disgributiqn
were specified as: |

Dig

]
L}

8.45 x 10”4

Hoq = : :
= 2.075 x 10° N -

I

For the first run, a tolerance of 5% was imposed on
the final desired outputs. As shown in Table VI.3, con-

vergence was obtained in a reaction time of 290 minutes.

L
For the second run, a tolerance of :

2 wa

—

iy

imposed on

the desired final output. Even by increasing the reaction

time to 335 minutes, the difference between desired output
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and the actual output was reduced only to 3%.
Table VI.3 =

_ Effect of Tolerance Limits on the Convergence

————— T —— ———————————— - —= — T — = = <
Final Time| Error 1in Conversion | Error 1n Hn Error 1 Hw

pun I 290 mins -4 8% : +3% 0%
Run II 335 mins -3% 7 - 47*1! - 2%

As it was shown in Chapter II, at the end of the reaction,
the conversion and second moments are not very sensitive
to temperature and initiator concentration (the two control
variables). This means that it is éifficglt to get the
desired final value for conversion and second moment once
we have passed a critical point after which the sensitivity

coefficients for conversion and second moment get opposite

. signs.
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CHAPTER VII
CONCLUSION

-

A mathematical model ﬁas been developed for the free
radical bulk polymerization of methyl methacrylate initiated
by AIBN. The dynamics of the polymerization system are
described in terms of monomer conversion, zeroth and second
moments of the molecular Qeight distribution. The kinetic
parameters of the model have been estimated by fitting the
expefimental data of Balke (1972). The sensitivity
coefficients of the system outputs relative to the
kinetic parameters have been calculated. It is shown that
the second moment of the molecular weight distribution
~and the monomer conversion are very sensitive to the poly-
merizatioﬁ temperature, and to the kinetic parameters Al’

B A2’ B2 describing the autoacceleration of the reaction

1
due to the gel effect. Therefore much care is recommended
in the estimation of the above parameters.

Our maln,obJectlve of applying the optimal control
theory to a polymerization system has been accomplished.
The minimum batch time problem for the bulk polymerization.
of MMA has been solved by considering the polymerization
temperature and/or initiator concentration as control
variables. Using the calculated optimal policies we were -
able to reduce the batch time of the corresponding 1sotherma1

batch time by 25% while keeping the same polymer quality.

Furthermore, we show that a desired MWD can be obtained

109
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by applying the computed optimal temperature and initiator

concentration policies to the polymerization rea&tef, Two

algorithms (DCM and SM) are deﬁelapéd in this work to

solve the two-point boundary value problem generated by

the application of the Pontryagin Minimum Principle to the

mathematical model of the polymerization of MMA. Although

both algorithms give comparab)e, K results in terms of minimum

batch time and optimal temperature profiles, the discrete

control algorithm has proven to be the fastest and most

reliable.

As a result of this investigation, the following future

projects are suggested:

(1)

(ii)

)

Experimental verification of the optimal policies.

Optimal policies and particularly the optimal

temperature policy can be implemented easily on a

system has been built, and is at this time ready for
implementing time optimal control algorithms.

Extension of this work to other chemical reactions.

The algorithms developed in this thesis are very
general and can be used for the optimization of a
large number of chemical reactors. Reactor -

productivity could therefore be greatly improved.

consumption.

Reduction of energy

Other objective functionals than minimum batch

time should be considered. The expenditure of



H\
H\
[

energy to contrel the reactor temperature should

be taken into account. Still the same algorithms

could be used by deriving an other expression for

the Hamiltaniani'



REFERENCES

Athans, M. and Falb, P.L., Optimal Control, McGraw-Hill,
(1966) . - T

Atherton, R.W., Shainker, R.B. and Ducot, E.R., AIChE J.,
: 21, No.3, pp. 441-448 (1975) .

Balke S5.T.: The Free Radical Pélymerl
to High Conversions, Ph.D. The

Ontarie (1972).

;a;;pnﬁaQ ethyl Methacrylate
s1s 1 e s

Eéﬂést r University,

Bamford, C.H., Barb, W.G., Jenkins, A.D. and Onyon, P.F.
The hlﬁetlcs of Viﬁyl Pclvmer;zatlan bzﬁRadlcal

“ééﬁanlsm% Butterworths, London (1958).

Beck, J.V. and Arnold, K.J., Parameter Estimation in
Engineering and Science, John Wiley & Sons, (1977).

Boltyanskii, V.G., Doklady Akad. Nauk SSSR, 119, No. 6 (1958).

Brandrupt, J. and Immergut, E.H., Polymer Handbook, Inter-
science, New York (1966). -

Bryson, A.E. and Ho, Y.C., Applied Optimal Control, Blaisdell
Pub. Co. (1969). - S )

Chen, S.A. and Lin, K.F., J. of the Chinese Institute of
Engineers, Taiwan, 1, No. 2, pp. 23-27 (1978).

Chen, S.A. and Jeng, W F., Chem. Eng. Sci., 33, pp. 735-743
(1978). B

Chen, S.A. andg Lin, KF., 6 Chem. Eng. Sci., 35, pp. 2325-
2335 (1980).

Clough, D.E., Masterson, P.M. and Payne, S.R., Computer
Simulation Conference, July, AFIPS pp. 279-280 (1978).

Crescitelli, S. and Nicoletti, B., Chem. Eng. Sci., 28,
PP- 463-471 (1973):

Fan, L.T., The Continuous Maximum Prlﬁclple John Wiley,
New York (1966).

Fan, L.T. and Wang, C.S., The Discrete Maximum ] Princ;ple
John Wiley, New York (196 ).

Ferington, T.E. and Tobolsky, A.V., J. of Colloid Science,
12, pp. 325-326 (1957).



113

Flory, P.J., J. of Am. Chem. Soc., 59, p. 241 (1937).

Friis, N. and Hamielec, A.E., Gel Effect in Emulsion
PalymEfizatiaﬂ of Vinyl Monomers, preprints of
A.C.S. meeting, Am. Chem. Soc., Divisian of Pol.
Chem. (1975).

Gabasov, R. and Kirillova, F., The Qualitative Peory of
Optimal Processes, Marcel Dekker Inc.,‘New York
%76,

notes, University

H

Gourishankar, V., Optimal Control, Course
of Alberta (1930).

Hamielec, A.E. and Friis, N., Polymer Reaction Engineerin

Course notes, McMaster Tniversity, Ontario, ,55
Hayden, P. and Melv: .. H., 6 J. of Pol. Sci., 43, pp. 201-
214 (1960)

Hicks, J., Mohan, A. and Ray, W.H., Can. J. of Chem. Eng.,
7, pp. 590-597 (1969).

l-ﬁ‘

Hoffman, R.F., Schreiber, S. and Rosen, G., Ind. Eng. Chem.,
56, p. 51 (1964).

IMSL Library, routine 2ZXSSQ, MTS, University of Alberta.
Tto, K., J. of Pol. Sei., Al, 7, p. 827 (1969).

Mahabadi, H.K. and Meyerhoff, G., European Pol. J., 15,
pp. 607-613 (1979). 2

Masterson, P.M., The Time-Optimal Control of a Batch Poly-
merization System, M.5c. Thesis, University of
Colorado, Colorado (1977).

Matheson, M.S5., Auer, E.E., BEV1lacqua E.B. and Hart, E.J.,
J. of Am. Chem. Soc. , 71, pp. 497-504 (1949).

Moyer, A.L., JACC, Proc. Vol. IV, pp. 191-199, Philadelphia
Oct. 15-20 (1978).

Nandi, U.S., J. of Colloid Sci., 12, pp. 321-324 (1957).

Odian, G., Principles of Polymerization, McGraw-Hill,
New York (1970).

0'Driscoll, REF; and Dickson, J.R., J. Macromol. Sci. Chem.
A2, pp. 449 (1968).



114

Osakada, K. and Fan, L.T., J} of Applied Pol. Sci.,
pp. 3065-3082 (1970).

|5

Paul, D.R., Fowler, D.W. and Houston, J.T., J. of Applied
Pol. Sei., 17, pp.2771-2782 (1973).

Pavlinets, 1. and Lazar, M., Vyzokomol. soyed, Al5, 8,
pp. 1767-1769 (1973). =

Pontryagin, L.S., Am. Math. Soc. Trans., Ser. 2, 18,
pPp- 321-329 (1961).

Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.F. and
Mishchenko, E.F., The Mathematical Theory of Optimal

Rabinowitch, E., Wood, W.C., Trans. Faraday Soc., 32, 1381
(1936) .

Ray, W.H., Can. J. of Chem. Eng., 45, pp. 356-360 (1967).
S

Sacks, M.E., Lee, 5.1. and Biesenberger, J.A., Chem. Eng.
Sci., 27, pp. 2281-2289 (1972).

Shatkan, F.A. and Gilman, I.M., Pol. Sci. USSR, 8, No. 3,

pPp. 548 (1966).

| oo

Sawada, H., J. of Pol. Sci., Bl, p. 305 (1963).

Shampine, L.F. and Allen, R.C., An Introduction to Numerical
Computing, Saunders, Philadelphia (1973). )

Schulz, G.V. and Blaschke, F., Z. Phyzik. Chem. B51, 75 (1942).
Schulz, G.V. and Harborth, G., Angew. Chem. 59A, 90 (1947).

Tonoyan, A.0. et al., Vyzokomol. soyed. Al5, No. 8, pp. 1847-1851
(1973).

Wu, G.Z.A., Denton, L.A. and Laurence, R.L., Annual Meeting

of the Am. Inst. of Chem. Eng., Chicago (1980).

Yokota, K., Kani, M. and Ishii, Y., J. of Pol. Sci., Al, 6,
pp. 1325-1339 (1968).



APPENDIX A
DERIVATION OF KINETIC EQUATIONS

The mechanism of the bulk free radical polymerization of MMA

initiated by a free radical catalyst is described as follows:

Catalyst decomposition

L4 2R 2f R¥

Initiation

* . k i
R + M i - R,
0 1

Propagation

Rx + M ., Rx+] for x € [1, =)

Termination by disproportionation

R* + R*: K, Pt p
x TNyt Tx " Ty for (x,y) € 11, %) X (1, ®)

Where [ represents the initiator molecules, RD the initiator radicals and
R; the activated initiator radicals. M denotes the MMA monomer, R: is
the live radicals of chain length x. Px is the dead polymer of chain
length x. f is the initiator efficiency factor. kd‘ ki’ kpi Et are the
rate constants for initiator dissociation, initiator, propagation and
termination reactions. It is assumed that rate constants are independent

of chain lengths.
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According to the above kinetic scheme, the mass balance equations

for the different species in the reactor are derived,

Catalyst

The mass balance for the catalyst can be expressed as:

d (1} . [ )
- _kd[I] (A1)

Where []1] is the catalyst concentration in the reactor, and t is the time,
of catalyst added will be small, so there is no change in the volume of
the reacting mixture. In this case, the mass balance equation for catalyst

is written:

d (1] . _, : F ,
e 7kd[I]*Tg (A.2)

Wwhere F_ is the catalyst feed rate, and V the volume of the reactor.

Monomer
Monomer is consumed through propagation and initiation reactions. Gener-
ation of monomer results from termination reaction between a free radical

of chain length one, and any other radical.

an

d IML =- ki (M) IRD] - ko (M) DR ek (R) 2o (R (A.3)
at x=1 ] x=1

y- 3
* -
where [M] is the monomer concentration, [Rx] is the concentration of live

_* . . ,
radicals of chain length x, [RD] is the concentration of catalyst activated

radicals,
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Activated radicals of catalyst

*
d [R) 2 k. (11 -«

] ; MR (A.4)
-3t 0

Activated radicals of chain length one

¢ IR .y (M [RT] - k_ (M [R}] CkRY) E R
_— i 0 p 1 t ' X (A.5)

dt x = 1

Activated radicals of chain length greater than one

- * . * ‘,’
d (Re) . * ) -k, IR ;
:’{ - ko IR ML+ kIR )T M) - Ky (R z R (e
y =1

Dead polymer of chain length x (x:1)

d P ok (R1 e E (r*] (A 7)
—qt ;Y

Where [P ] is the concentration of dead polymer of chain length x.

The moments of the MWD are defined as follows:

th

k- moment of live radicals distribution:

= Z; * R (A.8)
x:

kth moment of dead polymer distribution:

TR 2 e . (A9)




The rate of change for the moments of the MWD can be obtained by

differentiating equations (A.8) and (A.9)

Gy .o K 4R
- 2. B (A.10)
x =]
d jP;]
(A.11)

Substituting equations (A.5) and (A.6) into equation (A.10), a

differential equation for the kth amount of live radicals can be defined:

I o * L R 3
ks (M) [RB] - kp [M] [R1] - kt [31] ;E:: (Rx]
x =1

d A

[
ﬁ‘ ~
1]
%
M
o)
e
o

A k o * , 2. ..
+ E X (skp (M1 (R + kp (RLJ IM] = &, (R
= 2 ' y
(A.12)
moment of the live radical distribution

th

Using the definition of the k
(eg (A.8)), equation (A.12) can be rewritten as:

( IMIR) + ky M1 2 [(xen)¥ - xklfﬂxj Sk (A13)

dx,
fk = k
dt '
Therefore: - 7
dr e
X kg (M) IR)) - kg A g (A.14)

at
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(=8
3

5 R L o eme o e
ki (M) [Ro] - kt N Mot 2 kp (M) y ot kp [H]AD (A.16)

ﬁmm

In order to simplify the above equations, the quasi steady state (QSS)
approximation for the live radicals is employed, which means, that the
derivatives in equations (A.4), (A.5), (A.6) can be set to zero. Similarly
the derivatives in equations (A,14), (A.15) and (A.16) can also be set to
zero, Thus equations !A_é) and (A.14) can be rewrittenras:

2f ky 11 = ki [M] [R)) (n.17)

™

2 o
- Tk,
(+] ‘ "t

k [ﬁ]riﬁjl (A.18)

‘ =

Combining equations, (A.17) and.(A.18), an algebraic expression for Ao €an
be obtained,

(A.19)

o ‘ szi,?z
Kt
Using the QSS approximation, equation (A.15) can be recast into

equation (A.20)

-

T IR

ktAD
or
Aot 2 kgL v kg TM A (%

kt Ao



(et
"
=

Since the term (2f kg [I1) is negligible compared to (kp [M] Ay ). the
following expression ferll is obtained:
. k_[M]

T (A.22)
t

Justification for these approximations is given at the end of this
appendix,
Similarly, equation (A.16) can be rewritten as:

, = 2F k, [1] 4 (M] 5, 4 M)
Rp 2 kg T+ 2k, M oy + ky (M) (A.23)

ke %
Since (1) is negligible compared to (x), and (2f kg [11 ) is negligible
compared to (kp (M] Yo ), a simeﬂe expression for ‘, may be derived from

equation (A.23):

R B (A.24)
t o

. )
Substituting equation (A.7) into equation (A.11), differential equations
describing the rate of change of the zeroth, first and secord moments of

the dead polymer distribut ion may be derived:

dug =k, A | (A.25)
T |

dup = ke xg o xy . (A.26)
T

dup = kg Ay 2 (A.27)
a
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Substituting equations (AEIQ), (A.22) and (A.24) into equations (A_ES):

-

(A.26), (A.27), we obtain:

Ejug 7 )

5t =2 fky (I (A.28)
d

"1 ,

at "k (A.29)
d ¢ 2

dt 2 K

(A.31)

><
1]
_;‘

o’ |

Where [Ha] is the concentration of monomer at time t=o. By differentiating

equation (A.31), the rate of change of conversion is obtained:

ax . 1 d[M] | (A.32)

at " M]  Tdt

Substituting equation (A.3) into equation(A.32), we get:
dX
dt

1 (=2fk, (1) =k_[M A +k (R 12 f®
1 (-2f k =k (M A+ k (R ]2 T

—

Since (2f kd [1y + kt [R;] AO) is negligible compared to (fkp (M >.))

equation (A,.33) can be simplified.
kalm;a

" (A.34)
dT
[ My

(A.33)
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[
[ %]

Substituting equations (A;IQ)Eand (A.31) into equations (A.34), the

following differential equation for the conversion is derived:

kp (1-x) (A.35)

By noting that the sum of the first moments of the dead and live polymer

distributions is equal to the monomer consumed:

+ 9, = (M ] - M (A.36)

Neglecting the contribution of Al in equation (A.36), we obtain:
M =[HD] X (A.37)

Differentiating the last equation, we get:

d [M_] dX
_,ggéfs o It

This fast result can be verified by combining equations (A.29) and (A.35).

-

Thus, the polymerization of MMA in a batch reactor can be completely

described by the set of equations (A.2), (A.35), (A.28) and (A.30).

&

Justification of the Approximations in Equations (A.21), A.23), (A.33).

This section intends to justify the approximations made in deriving
equations (A.22), (A.24) and (A.34). Table A.1 shows the numerical values
of the different terms which appear in the kinetic equations. The
following numerical values for the kinetic parameters have been taken

after Sacks et al., (1972):



g = 1.58 x 10°° x EXP (- 30800/RT) 7

fa
M

1 3

= 5.1 x 10° x EXP (- 6300/RT) 1. mote! §°!

Fud
L}

fﬁx

. 7.8 x 108

EXP ( - 2800/RT) 1. mole™! !

o
I

—w
1]
‘D‘
o

1 x 1072 mole/1

(1]

[M] 5.mote/1 4

1]

From the numerical results of Table 2.1, it can be seen that do Al‘

2 f kd [1]) =~ kE (M] )D and kt [R,
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APPENDIX B
DERIVATION OF THE SENSITIVITY EQUATIONS

¥
The bulk polymerization of MMA in a batch reactor is described by a

set of four differential equations (A.2), (A.35), (A.28), (A.30):

. L@e (8.1)
t

and a set of four initial conditions:

Uy = L (8.2)

where Z is the output vector and p the parameter vector,

([l]9 x! UO’ UZ)T (B-3) ‘E%‘gf

~
"

(kd‘ f’ K20$ A]’ sz B]: 8

N

p LGy Gy Ty LIV (B4)

AR A

]

These parameters have been identified by fitting the experimental data of
Balke (1972) with our own mathematical model. The purpose of this appendix
is to describe the steps required to calculate the sensitivity coeffi -
cients that show the effect of pertubations in the parameter: on the output
of the system,

The sensitivity coefficient for the parameter pj and the ﬂutpu? Zi

is defined as the first partial derivative of Zi with respect to pj:

3z, . 7
oij =, __l_. \ = ]: 2, 3, 4 i (525)

apj j\‘ ]s 2, ===y N

The sensitivity matrix is the matrix of the sensitivity coefficients:

».. 9%

ij "5,

(B.6)

vl @
h3|““
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]

p
However, since equation (B.1) cannot be integrated analytically,

The information provided by the model must be used to determine

ol i~

the sensitivity analysis cannot be calculated analytically from equation

(B.6). By using the sensitivity analysis method (Atherton et al. (1975),
Beck and Arnold (1977)), a differential equatibn for the sensitivity
matrix may be derived. To do so, we interchange the order of differen-

tiation in the expression below and use equation (B.1) to obtain:

24

IR AN AR
dt \%p ar \dt ag’

I~

» Py t) (B.7)

Since Z is a function of p, the right hand expression is expanded to give:

The matrix of derivatives are defined in the usual manner as in equation
(B:6). By introducing the sensitivity coefficient ;ij defined as in

eQuation (B.5), equation (B.8) may be written in the following form:

124
¢ ;. o i1, 2, == 4
_U . afiy L3 o ~(8.9)
dt =1 ez, M 23 i=1,2,---,1

To determine the initial conditions for equation (B.8), we note that at

t =0:

Y4
—3%rigl = éij if pj is an initial conditon (as Py = [Ia] )
! _ (8.10)
3zy (o) . .
———— =0 if o, is not an initial condition
3pj J



These conditions are sumarized as:

o 0 if p. is not an initial condition )
(o) = . (B.11)

i 65 1T P, is an initial condition

Equations (B.9) and (B.11) give a set of differential equations whose
solution determines the numerical value of the sensitivity matrix as a

function of time. The number of equations is equal to the number of

state variables time the number of parameters (i.e. 4 x 11 = 44). It
can be seen that each sensitivity equation is linear in the Qij‘s and
has variable coefficients which are determined by the state Z.

The equation (B.1) describing the polymerization system has been

derived in appendix A (eq. (A.2), (A.35), (A.28), (A.30)). It is as

follows: 2
d2 £
il A kd (2] + FC
dt -
v
dz, ———
SR S
at v¢ f d ZI kz (1 - 22) (E 712)
di. U
3 = .
@ ikl .
dz, p f q ’
4 . o, 2 v 7 32 :
I 2K, M (1-1,)

~d
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Application of sensitivity equations (B.9) and (B.11) to the system
(B.12) yields the following differential equations for the sensitivity

coefficients:

For the dissociation rate constant kd:

11 = s, ¢ -2
=t 1 11 1
fr, Z,
d ¢ 2 "1 -
21 = 8§, ¢ + S + — (1-2,) -
I 2 11 3721 2kd 2z (B.13)
d ¢3] = S4 Cll + 2fZl
dt
d ¢4] = 55 62}
dt

q (o) = 0; 1, (o) = 0; 4 (Y = 0; sqp (0) =0 (B_lﬁ)»

where 51’ 52, 53, 54. 55 are defined as: 7
S, = - kg
s. = [f Kk, Kk
¢ 12 x1-1y
22, .
S.= |+ (3822 + 282,)00-2,)1 (§.10)
3 2 2 2 2 .
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. a
sg % 2k,
S, = 2[-24-(“22 + 282,)e(1 - 2,)] M2 (1 - 2]
5 3 AL Blpletl = Lol| Ky Mo (1 - 25)]
For the fnitiator efficiency f -
de,,
12 = S, 6.
d % = Sy 00 ¢ Syt t ¢ %oh -z, (8.6 B
dt 2f ' (r\
d %
- 32 = ‘
3 4, + 2k, 1
7 5 Y22
¢z (g = 0; $9o (o) = 0.; $32 (o) = 0.; ¢ap (o) = 0. (B.17)
For K,» (K = kzlk at X =0)
20 20 p't -
de .,
d 43 2T g
I 1 13 . . o
o (a1 v+ 0)
9923 =5, 43 *+ Sy dpy ¢ kg FIy»¢ (1-2,)
dat 7 ) i 2 K .
20
d ¥33 =5, &3 (B.18)
dt
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{8.19)

(B.20)

¢ (az2 + 822 +¢)y2 2
Y - .
<t S5 023 + 2e “2 2 Mo (1 22)
3 (o) = 0; ¢s3 (o) =0; ¢33 (p) = 0 %3 (o) = o.
For parameter A1
d¢
14 =5, ¢
o 1 714
44 - 5.2, + S.¢ +Zg JkaZK (1-2.)
3t 2 14 3 724 vat d “1 "2 2
d 3
=S, 3
at 4 "4
‘44 = S 2., + 2 Zg K, M (1-1.)°
= 5 "24 T+ 2 0. 2
514 (0) = 03 ¢24 (0) o; ¢34 (O) * 05 Qaa (0) 0 (8_2])

For parameter AZ

d ¢ -

2 7 s

. 3 _ .

d . \ L z T YT ey o
doe 52 b5 * S3 35 * 2 J 2f kd Z1 .Kz , (!-22) (8.22)
dt \ 7 . _

do35 =

¢
o B
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32
4% = S5%5 * 2 KM
dt

2
(1-22)

®15 (o) = o; ¢25 (o) = o; '¢35 (o) = o; %4 (o) =0 (B.23)

For parameter B]

4% = 31 %6 - (‘v -
dt- : : .
;2 N
T T S2%6 * 33 * L2 \[ 2t kg 7y K (1-2)) (g 24y .

d%3 = S54°
dt
d S, .. o+ z'zg MK (1-2.)° »
46 5 26 +~ o 2 ‘7%
dt :
@16.00) =05 4y (o) = o; °36 (0) = o; a6 {o) = o; (B.25)
Fof parameter 82‘ : -
447 = 51 ¢y o
dt : . e
do S, &7 *+ S.0,, * ‘2 2Ty
2. T2 7 TN T g N2k DKy (Zp) L (BB
d o35 = S5 ¢y -



For parameter C1

d %, S, ¢

18 ° °1 ™18

at
dd.. = S.¢.. + S o 1
° Y28 2 18 3 %28 VA

dat
dizg * 53 718

dt
d ¢ Se S0 *t 2 L W2 4,

a%é' 528 T Ky M (1222)
¢g (o) = o; ¢og (o) 0; ¢3g (o)
For parameter Cz

dat
dd. o

19 . : 1
3 5p %19 * 33 %9 7

=0, g (0) =03
2f ky 1, K, !(1-22)
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(B.27)

(B.28)

(B.29)

(B.30)
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39 = S, ¢
. [ 4 19
- 2
d ¢, Sg b9 -+ 2 K, Mi (1~Zz)
at
19 (0) =0; ¢y (o) = o; %39 (o) = o; %49 (o} = o; (B.31)

For Temperature 7 -

dii -

T T St - ek

L3 -

d: ; i

N0 = 5. ¢ +osos 1 E. ", .. 43 22, e
= 2 ¥110 3 210 2,(‘1{1 STy en )

‘/Zf ky 2; Ky (1-2,)/7
0 - s e 4 2E4 fu, 2,72

at 4 "110 ®xr 971 (8.32)

¢110 (o) = o; %510 (6) = o; ®310(o) =01 8410 (o) = o; (B.33)
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for initial initiator concentration [Ic]

—
<= © 1t

3 %211 | ‘
(B.34)

+ 5

37 %111

at "111
5 211
(0) (0) =0  (B.35)

d dan
dt
) 7% 3

The numerical integration of the sensitivity equations has been performed
along with the numerical integration of tic sjate eqﬁetians, using a fourth

order Runge-Kunta with variable step size integration routine,
Alternatively a finite difference method could be used to compute
The finite difference approximation for the

the sensitivity coefficients.
output variable and the parameter pj is defined as:

.th

i
2l i ) 7 Zj 7(31: p;zi 7
3y - 3T 5p;
!21 (D-‘ !77!::2 i | pll j,i FLH)
&p. .
DJ
|
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Following the recommendations of Beck and Arnold (1977), épj has been

chosen as:

-

¢p, = . lep.
pJ 0.000 opJ

This method was used to verify the correct integration of the sensitivity
differential equations. Sensitivity coefficients malculated by the two
different methods, did not vary significantly,

Inlorder to show the relative influence of the parameters on the
output variables, a normalized sensitivity coefficient was used in place of

the true sensitivity coefficient. It was defined as follows:




APPENDIX C
DERIVATION OF NECESSARY CONDITIONS FOR OPTIMALITY

This appendix presents a heuristic proof of the necessary conditions
for optimality derived from the classical calculus of variations.

A détailed proof of the necessary conditions for optimality and of
fhe Minimum Principle can be found in the work of Pontryagin et al.

(1962). N

The process to be optimized;is described by a set Q% differential

equations for the state variables together with initial values:

(c.1)

where Y is an n-dimensional state vector and u is an m-dimensional
control vector. Suppose that we wish to mimimize the functional J,

s

t
J =G (Y (tf), tf) + f L (Y (t), (t)_ t) dt. (C.2)
“t

(R~

0

Where G and L are two scalar functions.

Introduce the n-dimensional costate vector P (t) and rewrite the

functional J as follows: t
f E R
J=6 (Y (t), t,) /' fLeet (£-1)) a (c.3)
to
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~

" Where the superscript T indicates transpose of a matrix.

0.

In order to minimize J, we must make &J

Let ¢u, &Y, GET be the first variations of u, V, ET, We obtain the
N - ,
pertubed value J of the objective function by replacing Y by Y + &y,

u by u+ fu, ET by ET + cgf in equation(C.3).

t
0
ST Ty , iy Ay
(Br+ep?) [ f (Y +5Y, u+éu, t) - (Y+¢y)|[at (C.4)
Expanding the terms in equation (C.4) to the first order,
. 3 ET
G (Y + &Y, t) ¢ = 6 (Y (t,F), f) +1— ] oy (C.5)
- - f - 3y ~ ot
. LT sl T |
L(Y+&Y, u+cu, t) = L (Y, u t) * — Y +— &y (C.6)
- T - ay = o =
af af -
FO+eY, u +6u,t) =f(Y,u t) += ¢y +.= %Y (c.7)
' aY B au
n ' E .
86 = J-J - {c.8)

Substituting equations (C 5), (C 6) and (C.7) 1ntn equatwon (C 4} and

us1ng equatwon (C 8) to calculate the first order var1at1§n £J. we

obtain:
L 4
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1 te . N )
S0 =Ly J8X) il oy ) Y 4[5, Jout R (£-Y)
f
ta E
T[of of .
+ P é‘i(ﬁ\'*zt§£=il dt (C.9)
. 7 1
Since (f-Y=0), the coefficient of &P' vanishes.
tf
oorating | . . PT &y dt :
Integrating by parts the integral roer we obtain
t
o]
¥ *T ,- , B T 7t'F ; v . V - 77,!’ ]
Plsydt = Jp ey’ - f P&y dt . (€0)
t. :
L 0 -
t_
0 t@
Since initial  conditions for Y(t ) are fixed,
Y . = o. ; (C.11)
L.—O - . )

Substituting equation (C.10) into equation (C.9) and rearranging,
we get,
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5 _.[36 _ T 7
i
tf
T T.¢ 277 o T - .
L " 3f op 3 ev ~ 19
/H:‘ . E ,F?*E_]i*'[; +Et iy }5_- dt (C.12)
: - oy cd
t
0 .
¢Y and 6u are arbitrary variations, therefore necessary conditions
for ¢J to be zero are that the coefficient of %Y and ‘u are zero:
al et g )
sy tE gy tP =0 (C.13)
aL T 7 af | S
Define the Hamiltonian H of the system as follows:
PV _ - T . .
HIY,Pou,t) = k(Y,u,t) + P f (C.15)

Equations (C.13) and (C.14) can be rewritten in teriis of the

Hamiltonian:
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L aY © (C.16)

2= 2 (C.17)

Suppose that Yi(tf) is fixed for i = 1,2 ==r

and Yj(tf) is free for §=r + 1, r+ 2, ==n

"n

then Yite) = o for i = 1,2 --r

=

and fYJ(tp) is- an arbitrary variation fer j=r+1,--h

The following final conditions for F(tf) can be then derived from

equation (C.12) by forcing ¢J to become zero:

"G
Pj(tf) Ty for

r+1, r+ 2 -==n

o
"

i
]

Pi(tf) is free for i = 1,2, =-r (Q.18) 

It should be noted that in the minimum time problem, H is not an

explicit function of t?gfhus (3H/at) = o.

Differentiating H with respect to time:

dH aH M du OH dP BH dY

- E e F == - s&,-*;ﬁ“;—

dt 3¢ ou w

SF Gi oy uu - : (C.19)



However, along the optimal trajectory, the necessary conditions for
optimality will be:

dP oH dY 8H 3H o
-Therefore, H is constant along the optimal trajectory,
(dH/dt) = o. e
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Experimental‘equipment was built in the pélymer labor-
atory of the Department of Chemical Engineering at the ﬁniv—
ersitg:of Alberta, in order to verify the optimal temperature
poliqies for a polymerization reaction, and particularly for
the polymerization of methyl-methacrylate, as part of another
project. Thefexperimental apparatus is described in Figure
E.1l. ;

I. Measurements. 1In order to verify the vaiidity of the

mathematical model and the optimal temperature policies,
converison and molecular weight distribution must be measured
continuously éuring the reaction. Samples are therefore
téken in a continuous manner from the bottom of the reactor
by means of displaceﬁ;ﬁt pﬁﬁps:then directed thraﬁgh a
dehsit& meter and a gel permeation chromatograph (GPC),

which are interfaced to a HP 1000 computer. Measurements

of conversion and molecular weight distribution are recorded
on charts and in a data file of the AP 1000.

II. Temperature Control of the Reactor. Since polymerization

is highly sensitive to variations of temperature in the
reactor, it is important that there be good control of the
temperature in the polymerization reactor. 1In this experi-
mental system, the temperature is controlled by a PID
temperature controller. The manipulated variable of the
temperature loop is the cold water flowrate entering the
cooling coil in the reactor. The set point of the PID
controller can be activated manually or by means of a
supervisory control program on the HP 1000 computer to

gollow the optimal temperature policy. The high temperature
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of a steady flow of hot water in the outside jacket of
the reactor. Regulation of the reactor temperature is good

within *0.5°C, and has proven satisfactory.
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