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ABSTRACT

The value of generalizability theory as a perspective from
which to conduct research is discussed as a means of assessing
the dependent measure and encouraging logical consistency within
the study. Adopting this approach illuminates the logical
necessity of the treatment of dependent variables as random
factors to justify the desired inferences beyond the particular
conditions used in many educational and psychological studies.
Treatment of dependent variables as random results in difficulties
in data'analysis due to the resulting lack of an appropriate error
term for F-tests in many designs, however. Appropriate methods
of data analysis for this situation as discussed in Hopkins (1984)
are illustrated.

The use of the approach advocaied by Hopkins is extended on
a typicai data set found in education, the resulis of the June, 1989
British Columbia Ailgebra 12 school leaving examinations. In this
data set, items are nested within content domains and within
levels of cognitive complexity, resulting in an unbalanced design
due to different numbers of items being nested within each
blocking variable.

Problems in the estimation of variance components resulting
from such unbalancing are discussed and computational methods
currently available to provide variance estimates from unbalanced
data are assessed. Henderson's Method Il (Type 1) was the method
of choice for this study and it was utilized to analyze the Aigebra

12 data for four designs of varying complexity. Due to the large



design matrices resulting from the inclusion of persons as a factor
in generalizability theory, the computing resources required for an
analysis became a primary consideration in the choice of method.
Although each available method of analysis has advantages and
disadvantages, it is clear that further research into accurate and
efficient methods of variance component estimation for

unt:alanced designs wouid be valuable.
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CHAPTERI
INTRODUCTION AND OVERVIL "

In classical test theory, educational and psychoiogical
measurements are considered to have two components:

1) a 'true score' - the mean of the distribution of a person's
scores over an infinite number of hypothetical replications of a
measuremant, and

2) an error score - the deviation between a person's observed
score and true score. This error score is viewed as being made up
of random 'noise' from various undifferentiated sources.
Generalizability theory (Cronbach, Rajaratnam, & Gleser, 1963,
Cronbach, Gleser, Nanda, & Rajaratnam, 1972) was developed as a
method of examining this amorphous error more closely in an
attempt to clarify the contributions of various specific factors to
this error.

Generalizability theory partitions scores into components
through the application of a muiti-factor ANOVA to the data
coliected with a measurement instrument. In the simplest case,
the variance components associated with each score effect can be
estimated by substituting the observed mean squares from the
ANOVA into the formulas for the expected mean squares (EMS). By
convention, all of the factors in the ANOVA but the objects of
measurement are referred to as facets in generalizability theory.
However, the symmetry of the ANOVA design must be kept in mind;
this implies that any factor in the ANOVA can become the object of

measurement (Cardinet, Tourneur, & Allal, 1976). In the



calculation of a generalizability coefficient, which is similar in
many respects to the reliability coefficient in classical test
theory, the researcher decides which variance cofnponen'cs should
best be considered to contribute to "true score" variance and which
should be considered "error" variance. In generalizability theory,
the term true score is often replaced by the term universe score to
reflect its dependence on the researcher's conception of the
universe of generalization.

Although generalizability theory is often strongly associated
with the concepts of reliability and validity in measurement, it is
actually a powerful technique that can be applied to situations in
which random or mixed effects ANOVAs would be performed. The
utility of generalizability theory is in the clarification of what is
going on beneath the surface of the ANOVA.

The Nature of the Dependent Variabie in Resexzyrgh

Using the framework of generalizability theory, Hopkins
(1984) demonstrated the incongruity between the design and the
statistical analyses in many educational and psychological studies.
He pointed out that, in many studies, the total score on an
educational or psychological measure is taken as a measure of the
dependent variable. In most cases, however, the total score is the
sum of scores on individual items. Hopkins argued that if these
items are considered to be a random selection from a universe of
possible items measuring the same construct, then it follows that
"items" should be considered a random factor in a statisticai

analysis. If items are treated as fixed, then one can only



legitimately generalize the results of a study to that specific set
of items, which is clearly not what is intended by most
researchers in education and psychology.

Empirical evidence suggests that thi¢ failure to consider
items as a random facet may be of more than merely theoretical
interest. When the significant results of a major series of studies
in semantic memory were reexamined with the dependent variable
being treated as a random factor, as was appropriate to the
generalizations made from the studies, many of these results
became. suspect (Clark, 1973). However, the incorporation of
randomly sampled dependent variables introduces many
complexities into studies, particularly those involving crossed
factors. It may be for this reason that items have not typically
been explicitly treated as random factors in experimental studies.

Statistical Analvsis of Designs with Random Dependent Variables

As just indicated, many difficulties are introduced into a
statistical analysis when the dependent variable in the analysis is
treated as a random sample from the universe of possible
measures of that variable. These difficulties arise because when
the dependent variable is considered random, there is no longer an
appropriate error term for many effects of interest in most
experimental designs in which two or more factors are crossed.
To address this issue, Hopkins (1984) suggested that there are two
basic options available to researchers who wish to legitimately

generalize their results beyond the particular items used in their



measurement instrument, the use of nested designs and the use of
post hoc statistical manipulations.

Completely Nested Designs

The use of a completely nested design confounds all of the
variables in the study and results in an appropriate error term for
the main effect when the dependent variable is considered random.
Thus, a researcher can simply apply an F-test to the data and
arrive at an appropriate result. There is a general consensus that
designing studies such that appropriate F-statistics can be
obtained is preferable to the post hoc statistical manipulations
that will be discussed in the next section (Clark, 1973; Coleman,
1964; Hopkins, 1984; Malgady, Amato, & Huch, 1979). By doing so,
however, it is not possible to examine particular interactions of
interest because, in contrast to a crossed design, they cannot be
isolated.

Post Hoc Statistical Manipulaiions

In many situations in which it is impossible or undesirable
to utilize a completely nested design in a study, the best
alternative approach to the data analysis will be to employ post
hoc statistical manipulations. Although there are situations in
which it is possible to design a study such that an appropriate F-
statistic is produced, execution of the design often ihvolves (o)
much effort on the researcher's part that it is not practical or
feasible (Malgady et al., 1979). Consequently, the use of post hoc

manipulations is advisable in these situations as well.



The two approaches that can be taken to the analysis of a
design for which an appropriate error term is not available to test
the effect of interest are the use of model simplification and the
use of quasi F-ratios. In the model simplification approach,
variance components that are likely to have a zero value based on
sample data are eliminated from the expected mean squares (EMS)
equation for the effect of interest to form simplified EMSs for
which an appropriate error term may become available. |f model
simplification is not justifiable, then quasi F-ratios can be
construéted to provide approximate probability estimates for the
effects of interest. In this case, EMS equations are summed and/or
subtracted to form appropriate error terms.

An Extension of Hopkins' Design

Hopkins (1984) demonstrated the application of the options
above to the analysis of a repeated measures design in which
persons were nesied within treatment groups and crossed with
items. The person and item factors were both considered as
random factors. In this thesis, Hopkins' work on the incorporation
of generalizability theory into statistical analyses is extended to
a more complex data set in which persons are nested within gender
and test items are nested within content domains and levels of
cognitive complexity. In this case, the latter two factors are
naturally fixed factors. Thus, the extension involves incorporating
the structure of the dependent variable to more accurately reflect

the way items are typically organized on a test or measuring

instrument.



Because many educational measures are designed from tables
of specifications with the numbers of items within each content
area and level of the taxonomy preordained, they can be conceived
of as being composed of a stratified random sample of items
within each nesting variable. This type of structure for the
dependent variable is commonly encountered in educational
research. Unfortunately, the structure is also likeiy to be
unbalanced, causing nonorthogonality among the facets considered
and, consequently, further difficulties in analysis.

The data set used in this thesis consisted of the item scores
obtained by a sample of students who wrote the June, 1989 British
Columbia Algebra 12 departmental examination. Given the extant
structure of the examination data, the use of a completely nested
design involving the item, content domain, and cognitive
complexity facets was not possible. Consequently, the post hoc
analysis methods of model simplification and quasi F-ratios were
employed, taking the nonorthcgonality of the data into account.
These analyses were conducted from the perspective of
generalizability theory to demonstrate the advantages and
disadvantages of its application to such situations.

Although further complexities could be introduced into the
study by the introduction of additional independent variables, it
was felt that a systematic increase in desigii camplexity involving
only the dependent variable was the best way to assess the
practicability of Hopkins' proposed methods of data analysis for

designs of varying complexity. A subsequent study is planned in



which Hopkins' proposed methods will be applied to a design in

which additional independent variables are introduced. |t is hoped
that, with this three stage approach -- Hopkins (1984), the present
study, and the future study -- alternative data analysis approaches

which exist to handle non-orthogonal data in complex designs can
be traced and assessed.



CHAPTER li
LITERATURE REVIEW
An Overview of Generalizability Theory

The ultimate purpose of scientific measurement is to acquire
information about attributes or characteristics of objects or
people. In all sciences, however, and especially in the social
sciences, measurements are not perfect in that they contain some
amount of error. The measurements obtained can be affected by a
great number of factors related to variations in the object of
measurement and in the conditions of measurement. These factors
and their interactions can all potentially contribute to
measurement error depending on the intended interpretation of the
measurements.

Issues related to the estimation of measurement error in
psychology and education have traditionally been explored within
the framework of classical test theory. To obtain an estimate of
the measurement error, one usually first computes a reliability
coefficient and then uses it to compute the standard error of
measurement (SEM). In classical test theory, there are four basic
types of reliability corresponding to the measurement design used
and, consequently, to the source of error to which the design is
sensitive. Firstly, we may get an estimate of the stability of a
particular measurement device over time or across raters, which
is known as the coefficient of stability; SEMs calculated from this
estimate reflect variation in measurements across time. We may

also get an estimate of the stability of measurements when



different instruments are used. In this second case, the reliability
coefficient is referred to as the coefficient of equivalence and the
SEM based on this estimate reflects nonequivalence among
instruments. For assessing the stability of measurements within
a given instrument, a coefficient of internal consistency is
computed. The SEM in this case reflects nonequivalence among the
items. Lastly, there is the coefficient of stability and
equivalence, which is an estimate of reliability across
instruments and across time; the SEM based on this estimate
reflectslvariations due to the time of measurement, the choice of
instrument, and the interaction between these factors. Althcugh
the last case demonstrates the possibility of estimating the
reliability of measurements when more than one dimension is
varied, classical test theory does not allow us to differentiate
among the three sources of error identified. The existence of a
single error term in the classical test score model,

Xij = i + &jjs
inherently precludes any differentiation among multipie factors
and their interactions as sources of error within the model.

A useful approach to the estimation of error variance and
reliability coefficients when there are multiple sources of error
involves the use of analysis of variance. Cronbach et al. (1272)
comment that Fisher (1925)

revolutionized statistical thinking with the concept of

the factorial experiment in which the conditions of
observation are classified in several respects.
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Investigators who adopt Fisher's line of thought must
abandon the concept of undifferentiated error. The
error term formerly seen as amorphous is now
attributable to multiple sources, and a suitable
experiment can estimate how much variation arises
from each controllable source. (p. 1)

The use of analysis of variance to estimate measurement error
variance and reliability has a long history that dates back to the
work of Burt (1936). Most of the major formulas were worked out
by researchers such as Hoyt (1941) and Lindquist (1953) long
before Cronbach et al. (1963) published their first paper on
generalizability theory.

Although Cronbach et al. (1972) did not provide any "new"
formulas for estimating reliability per se, what they did do in
their text was provids a framework by which one could
systematically look at a measurement problem, decide upon what
factors have potential relevance to the obtained measurements,
and conduct a study by which the variance in observed scores
attributable to each factor could be estimated. Once the sources
of variance have been estimated, the next step is to decide which
of these sources of variance contributes to universe score
variance and which contributes to error variance. In
generalizability theory, Cronbach et al. (1972) developed a
systematic "way of thirking about reliability, which leads to
procedures for choosing the reliability coefficient and/or error
variance most appropriate for the situation at hand" (Crocker &
Algina, 1986, p. 158).



Th -Study_and_Univers f Admissibl rvation

Within the framework of generalizability theory, the first
step in deciding on a procedure for measuring an attribute of an
object of measurement, most frequently a person, is to specify the
facets of measurement that migh: be relevant to the situation. A
facet of measurement corresponds to a factor in the terminology
of the ANOVA; it is a set of similar conditions of measurement.
Any factor that can conceivably be a source of measurement error
could be construed as a facet of measurement. The purpose of the
G-study is to estimate the amount of variance in observed
measurements that is attributable to each of the facets in the
study, the objects of measurement, and the interactions among
facets and objects of measurement.

Once the researcher defines the facets of measurement that
are considered relevant to a study, the next decision to be made is
how to define each facet. This involves the setting of reasonable
boundaries to the populations within each facet based on the
researchers perceptions and goals. The levels of a facet that fall
within the boundaries defined by the researcher are known as the
universe of admissible observations for that facet. For example, if
a researcher wants to measure the degree of schizophrenic
symptoms displayed by patients after they have been administered
a new drug, he may decide that he will accept any clinical
psychologist with more than three years of experience in dealing
with schizophrenic patients as a rater whose judgement he will

trust. In this case, "clinical psychologist with more than three

11



years of experience in dealing with schizophrenic patients” defines
the universe of admissible observations for the rater (r) facet.
Ratings made by people who do not fit this description would fall
outside of the universe of admissible observations and would not
be considered valid by the researcher. Other researchers may
consider the boundaries of this universe to be too strict, however,
and there is no constraint on their defining a different universe of
admissible observations in another study. There is no absolute
answer as to whose universe is the "correct” one, but the universes
defined by various researchers should be kept in mind when
interpreting the findings of different studies.

in the above study, the researcher might decide that it is
important to look at the symptoms displayed by the patients at
different times in order to assess the measurement error resulting
from variations across time. This adds a second facet, time (i), to
the study. It is likely that the researcher would accept the ratings
of qualified raters regardless of the time of their observations. In
this case, the raters facet would be considered crossed with the
time facet in the universe of admissible observations; in the
conventional notation of generalizability theory this would be
denoted by r x t, where "x" is read "crossed with." Due to practical
considerations, however, the researcher might find that it is
necessary to have any single rater conduct all of his observations
at a given time. In this case, each time of observation would be

associated with a given set of raters. In this case, raters would

12



be considered to be nested within times; this would be denoted by
r:t, where ":" is read as "nested within."

Clearly, if there is a universe of admissible observations
based on defined boundaries of the facets cof the study, there must
also be a universe of people on whom the observations are
admissible. Although this is true, the word "universe" is generally
used to define the conditions of measurement (the facets) and the
word “"population" is used to define the objects of measurement in
generalizability theory. This distinction is quite artificial,
howeve'r, and it has been criticized as promoting the
conceptualization of generalizability theory as a tool to build
measures that better differentiate among persons tested
(Cardinet, Tourneur, & Allal, 1981) rather than as "a powerful
descriptive and analytic tool for other problems, where persons
are not the central object of study" (Cardinet et al., 1976, p. 119).
These authors stress the symmetry of generalizability theory: the
fact that there is no logical basis for making a distinction
between facets of a study and the objects of measurement when
estimating statistical parameters. They argue that all factors in
the ANOVA should be considered facets and suggest that depending
on the goals of the study, facets relating to the objects of the
study will constitute the face of differentiation and facets
relating to the conditions of observation will constitute the face
of instrumentation (Cardinet & Allal, 1983).

Once the researcher has defined the universe of admissible

observations and the population on which those observations are to
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be made, he is ready to collect data for the G-study and then
estimate variance components by applying a factorial analysis of
variance to the data collected. Inthe p x r x 1 design discussed
here, unbiased variance components can be estimated through
simple algebraic manipulation of the mean squares obtained from
the ANOVA provided that the design is balanced (Brennan, 1983).

The Underlying Model for Generalizability Theory

The "fundamental equation”, or underlying model, in
generalizability theory is the decomposition of a collection of
observed scores into a grand mean plus a number of score effects
associated with each factor of interest in a G-study. A score
effect is a parameter that reflects the unique contripution of a
given level of a factor or of a given combination of leveis of
multiple factors to an observed score. For the p x r x t case, the
equation decomposing observed scores into a grand mean and score

effects would be:

Xprt = 1+ (p — 1) + (ur — 1) + (1t - 1) + (Hpr —Hp — Pr + 1) +
(Kpt — Hp — Mt + W) + (Hrt — Br — Kt + W+
[(prt - Hpr - Wpt — Mt + Hp + Br + Bi — 1) + Xprt - pprl. (D)

in the above equation, Xprt represents the observed score for
person p given by rater r at time t and po represents the mean

score for a given level of a factor or a given combination of levels

of multiple factors, denoted by «. Thus pp, ur, and pt represent

the person mean, rater mean, and time mean respectively. As
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examples of the meanings of the interaction terms uprrepresents
the mean for all measurements of person p by rater r over time;
uprt represents the mean score of person p given by rater r at time
t. Because only one observation is used to estimate pprt, this
estimate is completely confounded with the final term of the
equation, the error term, as is indicated by the square brackets in

Equation 1.

Equation (1) can be expressed more simply as:
Xprt = g+ up~ + Ur~ + Wt~+ pLpr~ + ppt~ + prt~+ [Hprt~ + €], (2)

or

Xprt=i—l+2l-la~+8 (3)

where the symbol "~" denotes a score effeci. Note that for higher
order interaction terms, such as pprt~, the calculation of score
effects from mean scores can become quite complex. However,
Brennan (1983) presenis an algorithm for expressing score effects
in terms of mean scores for designs of any complexity.

As a result of the definition of score effects in terms of

mean scores (Equation 1), the expected value, E, of each effect is

zZero:

Ep~ = Er ~ = Et~ = Epr~ = Ept~ = Ert~ = Eprt~ = Ee~ = 0. (4)



Therefore, the equation for the variance for any given score effect,
denoted by a, reduces to, 624 = Ea~2. In the following section, an
ANOVA based procedure for the estimation of variance that is
applicable to balanced designs is presented.

An ANOVA Based Method of Estimating Variance Components

Assuming that each of the facets and the populaticn in a
study are of infinite size, the expected mean squares obtained
from a p x r x t ANCVA design and derived using the procedures
developed by Cornfield & Tukey (1956) are presented in Table 1.
Note that oc2(prt,e) is presented as one component rather than as
two separate components. This is a convention utilized by
Cronbach et al. (1872) to indicate the complete confounding of the

highest level interaction component with other unidentified

Table 1

Expected Values of Mean_ Squares Based on the Cornfield &

Tukey {19586) Algorithms

E[MS(p)] = 62(. 't,e) + nto2(pr) + nro2(pt) + nrnts2(p)
E[MS(r)] = o2(prt,e) + nto2(pr) + npo2(rt) + npnto2(r)
E[MS(t)] = o2(prt,e) + nro2(pt) + npo2(rt) + npnro2(t)
E[MS(pr)] = o2(prt,e) + nto2(pr)
E[MS(pt)] = o2(prt,e) + nro2{pt)
E[MS{rt)] = o2(prt,e) + npc2(rt)
E[MS(prt)] = o2(prte) = o2(prt)
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sources ot error and random measurement error. Others, though,
represent this component using only the term c2(prt), and this is
the convention adopted in the remainder of this thesis.

If the expected mean squares from the formulas in Table 1
are replaced by the observed mean squares from the ANOVA,
unbiased estimates of variance components can be obtained by the
application of linear algebra to these equations to isolate
individual variance components. The resuits of this manipulation

for the above design are presented in Table 2.

Table 2

Estimated Variance Components for a p x r x t G-Study

Desigh

625 = (MSp - MSpr - MSpt + MSprt)/nrnt
62, = (MSr - MSpr - MSyt + MSprt)/npnt
62t = (MSt - MSpt - MSrt + MSprt)/npnr
S2pr = (MSpr - MSprt)/nt

o2pt = (MSpt - MSpri)/nr

62t = (MSrt - MSprt)/np

32prt = MSprt

Application of Variance Components to the Design of Measurement
Pr r

The ultimate goal of a G-study is to obtain accurate

estimates of variance components assogiated with the universe of
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admissible observations. One important use of these estimates is
to design efficient measurement procedures that will be reliable
for making inferences about the objects of measurement in a D-
study. For instance, if one finds that an unacceptable amount of
measurement error is being introduced into a study from a given
source, it may be decided that more measurements should be taken
on that facet in order to reduce the total error variance to a
reasonable level. Continuing with the p x r x t example introduced
in the previous section, if the variance component for raters
indicated that raters contributed a sizable amount of variance to
the ratings of the symptoms displayed by schizophrenics, a
researcher comparing the effects of different antipsychotic drugs
might decide to have two or three raters examine each patient in
order to reduce this source of variance in his study.
The D-Stud n niverses of neralization

D-studies emphasize the estimation, use, and interpretation
of variance components for decision making. Although the
distinction between G-studies and D-studies is important
conceptually, in many cases the same data are used for both.
Central to a2 D-study is the universe of generalization, which is the
universe to which the decision maker intends to generalize the
measurement results. Although the definition of the universe of
generalization is dependent on the researcher's goals, it is
logically necessary that it be a subset of the universe of
admissible observations. |If G- and D-studies use the same design

and define the facets in the same way as being random or fixed,
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the universe of admissible observations and universe of
generalization will be identical. However, even with the same
data set, the two universes need not be co-terminus. This
situation commonly occurs when a facet that is defined as random
in the G-study is defined as fixed in the D-study. Generalizability
theory allows the consideration of many possible universes of
generalization, providing that each is a subset of its corresponding
universe of admissible observations. In fact, Hopkins (1983)
advocates an approach to data analysis for certain cases such that
the universe of generalization is initially restricted, and
systematically broadened until it coincides with the universe of
admissible observations.

The number of levels of each variable (i.e., the sample sizes)
need not be the same in a D-study as in a G-study. In fact, if one
has used the results of a G-study as a guide to maximizing the
efficiency of the D-study, it is unlikely that the sample sizes will
be identical. In order to distinguish D-study sample sizes from G-
study sample sizes, they are generally denoted with a prime. Thus,
for the above example, D-study sample sizes would be denoted by
np', nr', and nt'.

The Structure of D-Study Desians

D-study designs may also have a different structure than the
G-study. To begin with, in a D-study one is usually not interested
in the variance components associated with the facets in the face
of instrumentation per se. Instead, it is with the error variance

associated with mean scores over the sets of conditions of these
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facets that the researcher is generally concerned. To illustrate
that it is the mean scores in the facets of instrumentation that we
work with in a D-study. these facets are generally denoted by
upper case letters. Thus, continuing with the example introduced
above, a likely D-study design would be p x RxT.

Another aspect of the structure of a D-study design that may
differ from that of a G-study is the relationship among the facets
with respect to nesting and crossing. The ideal case for a G-study
is to have a fully crossed design because this allows the
estimation of all possible variance components for any subsequent
D-study design, whether there be nesting or not. The effect of
nesting is to confound the variance associated with the nested
variables with that due to the interaction with the variables
within which they are nested. Consequently, one can estimate all
of the variance components for a nested design from a crossed
design, but not vice versa. As is pointed out later, there are
occasions in which the confounding of effects associated with
nesting may actually be desirable in a D-study. Of course, in many
situations the nesting or crossing of variables in both G- and D-
studies is more dependent on practical considerations than on
ideal cases. Furthermore, the relationships among some variables
are such that nesting is the natural state and it would be
inconceivabie to have them crossed in any design.

Estimation of Variance Components_in D-Studies

The effect of estimating D-study variance components based

on mean scores on the facets of instrumentation is directly



analogous to the progression from the variance of a population of

scores to the variance of sample means,

2— = g2
oy = o2, /n

For the case where the variance component of interest, a, contains
more than one facet of instrumentation that is to be averaged, one

simply divides o2, from the G-study by the sample sizes for each

facet of instrumentation contained in o. For example, the D-study
variance component for o2(pRT) would be o2(prt)/n'rn's.
Eixed Versus Random Facets

The facets that make up the universe of generalization can be
conceived of as being either random or fixed and often the decision
as to how they are defined is dependent on how the researcher
wishes to interpret the results of a study. If one would like to
generalize from the specific levels of a facet that were applied in
a study to a larger population of possible levels of that facet, then
it is likely that the facet in question should be characterized as
random. On the other hand, if one has already sampled all of the
conditions from a population or is not interested in generalizing
past those that were sampled in a study, then the facet in question
would best be characterized as fixed.

niv r

Each object of measurement in a D-study can be assigned a

universe score. A universe score is defined as the mean score for

the object of measurement over ail of the conditions in a given
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universe of generalization. Thus, it is very similar in nature tc the
concept of the true score from classical test theory. The universe
score for a given patient in the above study would be,

np = ErEt(Xprt|p).
the expected value of the observed scores for the person of
interest taken over the conditions of the rater facet and the time
facet. Mean "scores" can be defined in a similar manner for
conditions of measurement (ie., raters, times) as well, but in
generalizability theory the term universe score is reserved for
objects of measurement.

Universe Score Variance

One reason for differentiating between universe scores and
true scores is that the variance of universe scores is dependent
upon the universe of generatization defined by the researcher.
Generalizability theory allows the universe score variance to
change depending upon how the universe scores are interpreted. |If
any facets in the universe of generalization are considered fixed
as defined in the next section, then the variance due to .intera'ction
of these facets with the objects of measurement contribuies to
universe score variance. |f they are considered random facets,
then their variance contributes to error variance.

A l nd Relative M remen

Measurements can be divided into two general classes,
absolute measures and relative measures. Absolute measures
assign quantitative scores on a given dimension to the object of

measurement that are considered to be invariant with respect to
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external factors. Relative measures, on the other hand, assign
scores to the object of measurement that allow one to compare it
to 'similar' objects of measurement on a given dimension. Thus,
quantifying relative standing in comparison to the norm is the
focus of relative measurement. In terms of educational
measurement, criterion-referenced score interpretations
represent absolute measurement and normative score
interpretations represent relative measurement.

Naturaily, both types of measurement have errors associated
with them. Based on the above definition, it is clear that for the
case of absolute measurements, any variation in person scores
associated with variations in the conditions of measurement is
indicative of absolute measurement error. In the example of the
schizophrenia study, this type of error can be defined as Xprt - up,
the difference between a score assigned to a given person and the
person's average score over the theoretically infinite number of
possible measurement conditions.

For the case of relative measurement, the sources of error
are more limited in scope. Only those sources of variation that
result in changes in the rankings of the objects of measurement in
a given group are sources of relative error; variation in
measurement conditions that affect all objects of measurement
equally are not sources of relative error. Using the schizophrenia
study example, these constant score effects include the effects
ur~, ut~, and prt~. By subtracting these constant score effects

from the equation for absolute error, relative error can be defined
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as (Xprt - Hp) - Br~ - Bt~ - Hrt~. Alternatively, by substituting
these score effects with their counterparts from Equation 1 and
simplifying the resulting equation, relative error can be defined as
(Xprt - 1p) - (Hrt - 1).

Absolute _and Relative Error Variance

Absolute error variance is denoted in generalizability theory
as o2(A). This is the variance of the difference between observed
scores and the universe score for each object of measurement.
Because any deviation of observed scores from universe scores is
undesirable when absolute error is of concern, all sources of
variance in the D-study that do not constitute universe score
variance contribute to absolute error variance. Therefore, all of
the variance estimates involving random facets from the face of
instrumentation can be summed to obtain an estimate of G2(A).

Relative error variance is denoted as ¢2(3). The magnitude of
o2(3) is dependent upon differences in the rank order among the
objects of measurement. In a fully crossed design, ¢2(3) can be
estimated by summing the variance components for intefactions
between random facets of instrumentation and the objects of
measurement.

Generalizabiiity _and_Dependability Coefficients

One simple method which can be used to assess the
magnitude of universe score variance for a given application of a
measurement procedure is to compare it to error variance using
something analogous to a signal-noise ratio (Brennan, 1983).

Although this would be quite a reasonable approach, it is much
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more common to construct something analogous to a reliability
coefficient that is known as a generalizability coefficient. If
absolute error variance is of concern to a researcher, the

appropriate generalizability estimate to use is

P = ezu/[azu + ’(;'2A],
where &2, is the estimated universe score variance and o2, is the
estimated absolute error variance. When relative decisions are of

interest, the appropriate form for a generalizability coefficient is
P=52,/[c2y + o23],

where o2, represents estimated universe score variance and o2
represents estimated relative error variance.

For the case of criterion-referenced measurement in which a
given cutoff score is used to segregate a group, Brennan and Kane

(1977) developed an index of dependability, the phi coefficient,
which is defined as,

”~~

@ = [62y + (0 - X)2)/[c?y + (L - 1)2 + o24],

where I is an estimate of the mean and A is the cutoff score for
the instrument in question. For the case where A =y, the phi
coefficient is equal to the generalizability coefficient for
absolute decisions.

Although they are very similar in form, reliability

coefficients and generalizability coefficients are not identical.
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Generalizability coefficients can be "tailor-made” to fit a given
universe of generalization, so they allow more flexibility than
reliability coefficients. As a result of this congruence between
the generalizability coefficient and the desired universe of
generalization, they also tend to be better estimators of the
degree of measurement error. As they tend to focus on one source
of error at a time, Hopkins (1984) argues that classical reliability
coefficients ordinarily underestimate the degree of measurement
error in the appropriate universe of generalization. This assumes,
of course, that the appropriate universe of generalization includes
more facets than those that are treated in the calculation of any

single reliability coefficient.

Issues in the Estimation of Variance Coinponents in
Generalizability Theory

Difficulties in the estimation of variance components have
been described as the "Achilles heel" of generalizability theory and
of sampling theories in general (Shavelson & Webb, 1981).. These
difficulties arise from two main sources, (a) sampling variability
that can lead to negative variance estimates and (b) difficulties in
estimation from unbalanced designs. Although these problems can
occur in all studies utilizing sampling procedures, the emphasis
placed on the estimation of variance components in
generalizability theory makes them particularly relevant in this

context.



Sampling Variability _and Negative Variance Estimates

Estimates of variance components have their own sampling
variability and these estimates tend to be relatively unstable,
especially for small sample sizes (Cronbach et al., 1972;
Marcoulides, 1990; Shavelson & Webb, 1981). It should be noted
that because variance componenis associated with each facet in a
study are important in generalizability theory, sample sizes must
be adequate not only on the person variable, but aiso on all other
random variables in question.

This need for adequate sample sizées on all random variables
is rarely mentioned explicitly in expositions on the estimation of
variance components and this issue is given even less attention in
papers which serve to "popularize” generalizability theory (eg.,
Malloy & Kenny, 1986; Shavelson, Webb, & Rowley, 1989). Even in a
paper that has a reasonable amount of discussion about the
variability of variance estimaies for small sample sizes
(Shavelson & Webb, 1981), an exampie is provided of a study with a
three way crossed design in which 20 subjects were crossed with
only two levels of each of the facets in the face of
instrumentation (Gleser, Green, & Winget, 1978). As a result of
the lack of stress placed on the need for adequate sample sizes in
the current literature, it is this author's opinion that many
researchers who apply generalizability theory to their data may
not be aware of it. Smith (1978) argues that "estimates of
variance components in multifacet generalizability studies contain

sizable error and may be so unreliable as to be useless unless the
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design utilizes a substantial number of levels of each facet. Little
or nothing will be learned from small sample generalizability
studies” (p 342).

Smith (1978, 1982) suggests that the minimum number of
levels of a facet in a generalizability study for an adequate
estimate of variance should be 10. This is a rough guideline,
however, because sampling errors of variance estimates are
dependent upon compiex relationships between the sample sizes
and the design configuration used in a given study (Smith, 1978).
As a general rule, the more variance components incorporated into
a formula for expected mean squares of a given component, the
greater the probability of serious error in estimation (Smith,
1978). This is due to the possibility of dispersion effects, a term
introduced by Leone and Nelson (1966) to dessribe the effect of
errors lower in the hierarchy progressively distorting variance
component estimates higher in the design.

One consequence of the instability of variance estimates is
that as a true variance component approaches zero, the éhancé that
ANOVA-based methods of estimation will resuit in negative
estimates approaches fifty percent (Marcoulides, 1990). The
likelihood of negative variance estimates also increases when the
other components contained in the formula for the expected mean
squares are relatively large in comparison to the component of
interest (Smith, 1982). Although several methods have been
r:oposed to deal with the existence of negative variance

components, none of them are really adequate. Cronbach et al.
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(1972) recommended setting negative variance estimates to zero
and applying the zero estimate to any mean squares equations
involving the variance component in question. This strategy
produces biased estimates, howevar (Brennan, 1983). Brennan
(1983) recommends that when focusing on a particular variance
component, a negative estimate should be set to zero, but that
negative estimates shouid be retained for the estimation of other
variance components. This results in the aesthetically displeasing
situation of using estimates that are logically impossible in
further calculations. The most appealing solution to the problem
of negative estimates is the use of techniques such as maximum
likelihood or Bayesian analyses that inherently do not allow
negative estimates to be calculated so that post hoc maniputation
of the estimates is not necessary.
Unbalanced Designs

Another complicating factor in the estimation of variance
components to be used in generalizability theory involves the
problems created by unbalanced designs. In the preceding sections
it has been implicitly assumed that the G- and D-studies have
employed the ideal case of balanced designs. Unfortunately, this is
not always the case for a variety of practical reasons. Although
the calculation of variance components from mean square
equations is relatively straightforward for the case of balanced

designs, unbalanced designs complicate the necessary procedures

considerably.
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For balanced designs, ANOVA estimators have the desirable
properties of (1) unbiasedness (assuming negative variance
estimates have not been set to zero), (2) minimum variance among
all unbiased estimators that are quadratic functions of the
observations, and, (3) given normnality, minimum variance among
all unbiased estimators (Brennan, Jarjoura, & Deaton, 1980;
Swallow & Monahan, 1984). With unbalanced data, however,
properties (1) and (2) are lost. The lack of bias is also lost if
negative estimates have been set to zero (Brennan et al., 1980;
Swallow & Monahan, 1984).

Choosing a Method of Estimating Variance
for Unbala:wed Designs

A number of alternative methods have been developed to
estimate variance components for unbalanced designs, but not all
of them are appropriate or practical for a given G- or D-study
design. Different methods have their own strengths and
weaknesses, so choosing the appropriate one involves
consideration of several factors. These factors fall into' three
general categories: (a) properties and appropriateness of the
method, (b) accuracy of the variance estimates obtained, and (c)
the computing resources required. These considerations will be
discussed in the following sections.

Properties and Appropriateness of the Method

The appropriateness of several methods for estimating
variance components in generalizability theory was assessed by

Brennan et al. (1980, pp. 36 - 44) and this section follows their
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discussion closely. They divided the various available techniques
into two categories, ANOVA-like procedures and general

approaches.

ANOVA-like Procedures

The procedures discussed in this section all utilize the
technique known as the method of moments for estimating
variance components. These procedures are variations on the basic
ANOVA method described by Cornfield and Tukey (1956) and
illustrated earlier (see Tables 1 and 2). "They all involve the same

basic steps of:

(a) calculating specified guadratic functions (forms) of the
observations;

(b) determining the expected values of the quadratic
functions in terms of the variance components in the model; and
(c) solving the set of linear equations resulting from

equating the quadratic functions with their expected values.
These procedures require no distributional assumptions and
all provide unbiased estimates providing the appropriate model is
used and negative estimates are not altered. When applied to
balanced designs, they all reduce to the basic ANOVA procedure and
produce the same results. Although these methods are quite
similar in nature, Brennan et al. (1980) argue that in the case of
unbalanced designs, they can result in quite different estimates.
The structure of the data set in question is the most important

consideration in the decision as to what method is most



appropriate. Although a number of estimation procedures based on
the method of moments exist (eg., Type 1 to Type 4 analyses), the
following discussion is restricted to the well known procedures
proposed by Henderson (1953).

Henderson's Method 1. This is the first of three methods of

estimating variance proposed by Henderson. The quadratic forms
used for this method are similar to the sum of squares terms used
with balanced designs, but they are adjusted to reflect the
unbalanced nature of the design. Although the algebra required to
calculate expected mean squares for this method can be tedious,
Hartley's (1967) method of synthesis can be used to simplify
computation. Synthesis can also be used to obtain estimates of
the variance of the variance component estimates under the
assumption of normality and therefore confidence intervals can be
calculated. Given the large potential for error in estimates of
variance components, the ability to obtain confidence intervals can
be of significant value in guiding the interpretation of results of a
generalizability study. However, Method 1 is designed fof the
estimation ¢ .riance components in a completely random model
and is strictly applicable only to this case.

Henderson's Method Il. This procedure was developed for
application to the mixed ANOVA model. The observations are
adjusted by estimating the fixed effects, partitioning them out and
then applying Method | to the adjusted observations. This method

does not allow the estimation of variance due fo interactions



between fixed and random effects, which effectively makes it

inapplicable to generalizability theory.

Henderson's_Method Ill. This procedure can be applied to any
mixed model to provide unbiased estimates of variance. It is
essentially a regression analysis approach and is often referred to
as the fitting constants method because specified sub-models are
fitted in order, with their corresponding variance components
being partitioned in the order specified. A consequence of this
procedure is that a change in the specified order of fitting can
result in a change in the estimates of variance components. The
problem of justifying a given order of fitting increases as designs
become more complex and contain more terms.

In many cases, the order of fitting is quite arbitrary and the
problem of specifying a logically justifiable order of fitting
increases with the complexity of the design (Brennan et al., 1980).
In some situations, however, a convincing argument can be made
for choosing a specific order of fitting. Brennan et al. comment
that many solutions have been suggested for cases in which a
specific order of fitting is not obvious, including the use of all
possible logical orderings. Synthesis (Hartley, 1967) can also be
applied to arrive at expected mean squares for this method.
General Approaches

in recent years, a number of approaches to the estimation of
variance components in the unbalanced situation that apply for any
design have been developed. "In contrast to the above ANOVA-like

procedures, which might be considered ad hoc solutions to
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unbalanced estimation, the newer approaches focus on providing a
theoretical framework for the general variance components model
and on optimal properties of the estimates (cf. Rao, 1971a,b;
Harville 1977)" (Brennan et al., 1980, p.41) Two classes of
estimators with desirable properties are maximum likelihood
estimators and minimum norm quadratic unbiased estimators.
Although there are notable differences between them, these two
classes have strong links (Swallow & Monahan, 1984).

Bayesian techniques also deserve mention, but they are based
on assumptions of normality (Searle, 1971) and they also lead to
difficulty in the treatment of unbalanced data (Harville, 1977). In
spite of this, several authors have argued for the potential
usefulness of Bayesian techniques of estimating variance
components in generalizability theory and suggest that they should
be further developed (eg, Cronbach et al., 1972; Novick, 1975;
Shavelson & Webb, 1981).

Maximum_likelihood _estimation. There are two types of
maximum likelihood estimation commonly found in the literature.
In unrestricted maximum likelihood estimation (ML), the values
that maximize the full likelihood function are estimated. In
restricted maximum likelihood (REML) estimation, on the other
hand, it is only the portion of the likelihood function that is free
of fixed effects that is maximized (Swallow & Monahan, 1984). In
both cases, the variance component estimates for the random
effects are invariant with respect to the values of the fixed

effects; this is known as translation invariance. Of course, both
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ML and REML also have the desirable properties of always
producing nonnegative variance estimates due to the explicit
definition of the parameter space as non-negative. However, this
restriction on the parameter space results in biased estimates.

Other desirable properties of the ML and REML methods are
that they are functions of sufficient statistics, they are
asymptotically normal and efficient, and they provide asymptotic
variances and covariances of the estimates (Brennan et al., 1980;
Harville, 1877). These properties depend upon normality
assumptions, however, which are likely to be viclated in many
studies. This is not a major drawback, however, especially
considering the fact that ML procedures share a strong relationship
to the MINQUE procedures to be discussed in the next section
(Searle, 1979, cited in Brennan et al.,, 1980).

One problem with ML estimation of variance components is
that the loss of degrees of freedom due to the estimation of fixed
effects is not taken into account (Harville, 1977). As a result of
this, the variance component estimates obtained by solving ML
equations tend to be biased in a downward direction.
Consequently, they tend not to coincide with those obtained by
ANOVA methods, even in the case of balanced designs. These
problems are eliminated in the case of REML estimation, because
REML estimates are adjusted for the degrees of freedom lost from
the estimation of fixed effects. A pleasing result of this is that
REML estimates are identical to ANOVA estimates for balanced

data (Brennan et al, 1980; Harville, 1977).

35



Minimum norm quadratic _unbiased estimation. Minimum norm

quadratic unbiased estimation (MINQUE) is a general technique
developed by LaMotte {1973) and Rao (1971a,b) that provides a
general solution to the problem of the estimation of variance
components. MINQUE estimates have the characteristic of having
local minimum mean squares of error; in other words, "they are
locally best when attention is restricted to estimators satisfying
various conditions" (Harville, 1977, p. 333). These conditions are
that the estimator minimize a Euclidean norm, be a quadratic form
of the observations, and be unbiased. No distributional
assumptions are required for the calculation of MINQUEs.

Minimum variance quadratic unbiased estimators (MIVQUES)
are a subtype of MINQUEs for which normality assumptions have
been invoked and which have the property of translation invariance
(Harville, 1977). To calculate MIVQUEs, one must supply a priori
values for the variance components and these values are used in
combination with the data to arrive at the final estimates. The a
" priori values used in the calculation of MIVQUEs usually ‘come’
from one of two sources: (a) the cutput from another variance
estimation procedure or (b) default values of one for error
variance and zero for all other variance components in the model.
Unfortunately, the property of minimum variance among
estimators in general holds for MIVQUEs only when each a priori
value equals the true value of its corresponding variance

component (Swallow & Monahan, 1984).
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Harville notes that both MINQUEs and MIVQUES are not
estimators at all in the strictest sense because they can produce
estimates that violate the restrictions on the parameter space.
Under normaiity, MINQUE and MIVQUE equations are identical and
with balanced data they produce identical results to ANOVA based
and REML methods (Swallow & Monahan, 1984). Furthermore, the
formula for the MIVQUE is identical to that for REML with the a
priori weights in MIVQUE taking the place of variance estimates
arrived at through iteration in REML (Harville, 1977; Swallow &
Monahan, 1984). Consequently, if the obtained variance estimates
from the MIVQUE are used as the starting weights for a new run,
and this process is iterated until convergence, the results will be
equivalent to the REML solution (Searle, 1987).

Accuracy of Estimates

Although ANOVA procedures require no assumptions about the
distributional form of any effects (Brennan et al., 19280),

" deviations from normality result in an increase in the standard
error of the variance estimates obtained (Swallow & Monahan,
1984; Muthen, 1983, cited in Marcoulides, 1990). In contrast,
although maximum likelihood approaches are derived on the basis
of normality, Marcoulides (1990) demonstrated that REML
estimates are consistently as accurate or more accurate than
ANOVA based estimates for a number of balanced and unbalanced
designs of varying complexity and involving a varying amount of
deviation from normality. He found that REML estimates tended to

be closer to the true parameters for the distributions and also had
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less sampling variability than ANOVA based estimates. In spite of
this conclusion, he cautions that although "the sampling variability
of REML estimates is smaller than that for analysis of variance, it
is still quite sizable and would yield considerably wide confidence
intervals of variance compeonents" (Marcoulides, 1990, p. 385).
Swallow and Monahan (1984) performed a Monte Carlo
comparison of ANOVA, ML, REML, and MIVQUE estimators of
variance components for a one-way randomni model with unbalanced
data. They varied the between group variance (c25) from a low of
zero to a high of five and maintained the within group variance
(c2¢) at one. Because Swallow & Monahan enforced nonnegativity
for all of the estimators, the property of being unbiased was lost
for the ANOVA and MIVQUE estimators, so all of the methods used
produced biased results. For the ML estimator, the downward bias
in the estimates resulting from its failure to take the loss of
degrees of freedom associated with estimation of fixed effects

became ‘quite pronounced as o253 became larger, but for smaller
values of o245 this effect was counterbalanced by the upWard bias
resulting from the enforcement of nonnegativity. The ANOVA,
MIVQUE, and REML estimators differed little in bias, but the

expected upward effect due to enforcing nonnegativity did increase
as 62, approached zero; biases for these estimators for 625 were

negligible, however.
In the Swallow and Monahan (1984) study, two variations of
the MIVQUE program were evaluated. The first variation,

designated MIVQUE(0), is the default condition for the SAS
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PROCEDURE VARCOMP (SAS Institute, 1988), in which a priori
estimates of c?«a = 0 and 0’28 = 1 are used. The second variation,
designated MIVQUE(A), uses ANOVA results to generate a priori
estimates. Swallow and Monahan found that although MIVQUE(O) is

widely used, it is a poor estimator for cza and a "terrible"”
estimator for o2¢ for the case in which 625/c2¢ = 1. Based on this

result, they comment that "MIVQUE(0) is a dangerous default and
should be used only when one is confident that 624 = 0" (p. 54).

They also conclude that unless the data are severely unbalanced
and o25/62; > 1, ANOVA estimators are adequate. MSEs were found
to be similar among the four methods for ail other conditions,
which suggests that for most instances of the one-facet case,
factors other than accuracy can take precedence in the choice of
variance estimation method.
Computing Resources Required

Chastain and Willson (1986) performed several
generalizability analyses on the data from the WAIS-R
standardization sample (n = 1880) using the four estimation
methods available in the SAS procedure VARCOMP: (a) TYPE 1, (b)
MIVQUE(0), (c) ML, and (d) REML. The TYPE 1 method computes the
Type 1 sum of squares for each effect, equates each mean square
involving only random effects to its expected vaiue, and soives the
resulting system of equations (Gaylor, Luzas, & Anderson, 1970).
This method is equivalent to Henderson's Method Ill.

Chastain & Willson (1986) divided the standardization

sample for the WAIS-R into four groups of 470 hy random



assignment and used the above programs to estimate variance
components for thifae unbalanced crossed designs: (a) a two-factor
subject by item design, (b) a three-factor subject by item by age
design, and (c) a four-factor subject by item by age by gender
design.

Although the results of the studies presented in the
preceding section suggest that REML is the most consistently
accurate method of variance component estimation, the data
presented in Table 3 indicate that the price for this accuracy is
paid for in terms of computing time required to reach convergence.
Even after 360 seconds of c.p.u. time, REML still had not reached
convergence. These results are consistent with those reported by
Bell (1985), who makes the case that because of its relative
efficiency and ease of use, MIVQUE(0O) is the most useful software
currently available for generalizability analyses. This position is
difficult to reconcile with that of Swallow and Monahan (1984)
who argue that MIVQUE(0) is a "dangerous default.” Clearly, there
is a need for more research into accurate and computatibnally'
efficient algorithms for estimation of variance components in
unbalanced designs. Ameng the four methods presented in Table 3,
however, it appears that the Type 1 method offers the most
reasonable compromise between accuracy of estimates and
demands on computing resources.

The Fixed-Effect Fallacy
In a seminal paper titled "Generalizing to a Language

Population," Coleman (1964) voiced his concern over the
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Table 3

Average C.P.U. Time and Memory Requirements for

Estimation of Variance omponents for Unbalanced

Designs Using Various Methods

Method Number of Average C.P.U. Average Memory
Factors Time (seconds) Requirement
TYPE 1 2 33.6 620 K
3 56.6 1270 K
4 91.3. 2050 K
MIVQUE(0) 2 2.1 620 K
3 3.0 1120 K
4 3.7 2000 K
REML 2 over 360 3000 K
3 over 360 3000 K
4 over 360 3000 K
ML 2 over 360 3000 K
3 over 360 3000 K
4 over 360 3000 K

incongruity between statistical analyses and the conclusions

drawn from the results of these analyses in language research. He
argued that,

Many studies of verbal behavior have little scientific
point if their conclusions have to be restricted to the
specific language materials that were used in the
experiment. It has not been customary, however, to



perform significance tests that permit generalization
beyond these specific materials, and thus there is
little statistical evidence that such studies could be
successfully replicated if a single sample of language
materials were used. (p. 219)

Nine years later, Clark (1973) pointed out that Coleman's
criticisms had "been all but totally ignored ever since™ (p. 335).
Using a classic series of studies in the field of semantic memory
as an example, Clark demonstrated that with appropriate
statistical analyses, these studies "provide no reliable evidence
for most of the main conclusions drawn from them" (p. 335). He
coined the term language-as-fixed-effect failacy to describe the
problem.

Based on the number of citations of Coleman's and Clark's
papers in various journals, Malgady, Amato, and Huck (1979)
provided evidence that although the language-as-fixed-effect
fallacy was beginning to be acknowledged by researchers in the
area of basic psychology, litlie attention was being paid to this
threat to external validity by educational researchers. They found
that more than 90% of the studies reviewed in the 1976 volume of
the Journal of Educational Psychology failed to use appropriate
statistics to demonstrate that their conclusions generalized to a
meaningfu! language population. Malgady et al. aiso pointed out

that the language-as-fixed-effect fallacy should be considered a

special case of a more general statistical error of treating random

effects as fixed effects due to failure to identify relevant

sampling variables. They specificaliy noted the relevance of the
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fixed-effect fallacy in the context of educational measurement,
stating that "items on an intelligence test may be considered a
sample from the universe of items measuring intellectual ability;
summing item scores toc create a total IQ score is therefore
tantamount to the fixed-effect fallacy" (p. 85). They also made a
reference to the utility of the distinction in generalizability
theory between the universe of admissible observations and the
universe of generalization in providing a clear framework for the
decision as to whether conditions should best be considered fixed
or random.

Hopkins (1984) focused on cases in which cognitive or
affective measures serve as the dependent variable in a study and
made identical arguments regarding the incongruity between
analysis and inference to those of Coleman and Clark. He went
beyond this, however, to propose a systematic integration of
generalizability theory and experimenial design. In Hopkins'
proposed method, items on tests or inventories are treated as
levels of a random factor in the ANOVA design, thus circumventing
the fixed-effect fallacy. His method has the additional advantage
of allowing the calculation of a generalizability coefficient for
the dependent variable being assessed using the same data.
However, although generalizability theory does provide conceptual
clarity to the situation, complications are introduced into the

statistical analysis of a study by the inclusion of multiple random

effects.
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Methodoiogical Solutions to the Fixed-effect Fallacy

Experimental Design

The most appealing way by which the fixed-effect fallacy
can be avoided is to design studies such that appropriate
inferential statistics can be applied to the data as it stands
without necessitating unisual statistical manipulations. In the
discussion to follow, it is assumed that the inferential statistic
to be employed is an F-test. As a general rule, if the random
variables are confounded such that the mean square term for the
effect of interest (the treatment effect) differs by the term for
the residual mean square by only the variance component for the
treatment effect, a simple F-ratio can be calculated which will be
associated with the appropriate probability value. To examine this
more closely, we can examine the designs presented in Hopkins
(1984).

Hopkins presented analyses of the results of a ten-item
examination administered to subjects nested within two
treatment groups. Traditionally, this design would be analyzed as
a one-factor ANOVA with treatments (T) and persons nested within
treatments (P:T) as the two sources of variation. In this design,
items are implicitly treated as a fixed facet. To make this
underlying assumption clear, if the item factor (1) is included in
this design, but is still considered fixed, we arrive at the repeated
measures design presented in Table 4. In this design, note that
there is an appropriate error term for the treatment (T) effect,

namely persons nested within treatment groups (P:T). However,
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due to the treatment of items as fixed, generalization can only be

justifiably made to the particular sample of items employed.

Table 4
ANOVA Table for the P:T x | Design (I Fixed)

SV DF BJS

T J -1 Ko2p:t + nKo2t
I K- 1 o2ip:t + NJoZ
P:T J(n - 1) Ko2p:t |

Tl (J - 1K -1) c2ip:t + NGt
IP:T JK - 1)(n - 1) o2ip:t

ltems can defined as a random factor in the P:T x | design to
allow generalization to other similar items, but this results in an
alteration of the EMS equations such that there is no longer an
appropriate error term with which to test the treatment effect
(see Table 5). Thus, model simplification or quasi F-ratios, wu:
their associated difficulties, would have to be utilized tc *a=st *ne
treatment effect for this case. These techniques will be discussed
more fully in thie next section.

One way to avoid the problems associated with model
simplification and quasi F-ratios is to design a study such that it
is possible to conduct an F-test on the effect of interest with an

appropriate error term. This can be accomplished by completely
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Table 5
ANOVA Table for the P:T x | Design (I Random)

sSv DF BvS

T J -1 62ip:t + no2ti + KoZp:t + nKo?t
| K- 1 o2ip:t + nJo?i

PT J(n - 1) o2ip:t + KoZp:t

Ti (J - 1)K - 1) o2ip:t + no2ti

IP:T JK - 1)n - 1) o2ip:t

confounding the variables in the study to allow simultaneous
generalization to multiple populations (Coleman, 1964; Hopkins,
1984; Malgady et al., 1979). In the above example, the populations
that we would like to generalize the results tc are persons and
the items that they respond to. For this example, the appropriate
design to use that allows one to ~iractly test the treatment effect
would be a hierarchical one with I:P:T. The ANOVA table for this

design is reproduced in Table 6.

Table 6
ANOVA Tabie for the i:P:T_Design

T J -1 O’zip:t+K0'2p:t +nK02t
P:T Jin - 1) c2ip:t + Ko2p:t
LP:T nd(K - 1) olip:t
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Although the technique of confounding of variables is
advantageous with respect to ease of statistical analysis for the
freatment effect, it has certain drawbacks. Firstly, the
confounding of item variance and person variance in this design
will result in an increase in the magnitude of czp;t and
consequently some increase in MSp.1, and this will not be
completely offset by the concomitant increase in MST. Therefore,
the hierarchical design results in a decrease in power and a
greater probability of a Type ll error than the factoriat design. A
second concern is that the random variables have to be sampled
from their respective populations and this could easily result in a
huge amount of labour on the researcher's part, depending upon the
difficulty involved in obtaining a large sample of the variables in
question (Malgady et al.,, 1979). When one considers the previously
discussed need for the large number of levels of each random facet
for stable estimates of variance, the amount of labour required
could become staggering. This labour can be reduced greatly if an
item bank already exists.

A final problem with this type of design is that it is only
practical if one only wants to test hypotheses regarding main
effects. If interaction effecis are of interest to the researcher,
this necessitates the employment of a factorial design. Although
methodological solutions to the fixed-effect fallacy are certainly
worth considering, it is clear that they can not be applied for all

studies. As a result of these problems, it may be necessary to



resort to post hoc statistical manipulations for many studies in

which a dependent variable is considered random.

Statistical Manipulations
Model_simplification (pooling). As is mentioned above, there

are two types of statistical manipulations that are generally
accepted for use when the appropriate error term to test for the
effect of interest is not directly available. These are model
simplification and quasi F-ratios. Model simplification becomes
an option when one can determine with a reasonable degree of
confidence that an "excess" variance component contributes
nothing to the EMS for the effect of interest. In this case, it is
permissible to remove the variance component that is assumed to
be zero from the EMS equation for the effect of interest. Once this
is done, the researcher can choose an appropriate error term for
the adjusted EMS and go on to perform a simple F-test on the data
(Green & Tukey, 1960; Hopkins, 1983; Malgady et al., 1979; Winer,
1971).

Suppose that one chose to test the treatment effect for the
P:T x | design presented in Table 5. In this case, one would have to
provide support for either the hypothesis that o2 = O or that o2p:t
= 0 in order to simplify the model such that there is an appropriate
error term with which to conduct an F-test on the treatment
effect. The first line of support for the simplification of the
model is logical; does past experience and knowledge of the
properties of the variables in question lead the researcher to

believe that the variance components in question should be zero?
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associated with the interaction in actuality is also included in the
residual term. Regardless of its pros and cons, if the data do not
support mode! simplification, the researcher will have no recourse
but to resort to some variant on a quasi F-ratio to test the
hypothesis of interest.

Quasi F-ratios. Although it is not a precise statistical test,
a quasi F-ratio, F', is generally considered to be a reasonable
approximation to a true F-ratio (see Green & Tukey, 1960, p. 151;
Satterthwaite, 1946). When there is no appropriate error term
available to test a hypothesis, one can synthesize a suitable error
term from a combination of EMS equations. Going back to the P:T x
I example (Table 5), one can construct an appropriate error term to
test the null hypothesis for the treatment effect by taking MStj +
MSp:t - MSjp:t (for general rules of construction of quasi F-ratios,
see Winer, 1971, 375-378). For this design, the degrees of

freedom for the denominator would be

(MSyi + MSp - MSpi)>

MSzﬁ + I\"ISZp:t + M§pi:t .
dfy dfp:t dfpi:t

Malgady et al. (1979) enumerate a number of problems with
the use of quasi F-ratios. These problems include: (a) they only
approximate the F distribution, (b) F' has less statistical power
than F, (c) construction of the quasi F-ratio involves addition or

subtraction of mean squares, which does not result in a true mean



square, {d) subtraction of mean squares can lead to negative
variance estimates, and (e) the design may reduce to the analysis
of binomial data, consequently violating the normality assumption
of the ANOVA. Cochran (1951) and Clark (1973) have presented
methods by which the latter two problems respectively can be
circumvented. However, these methods have problems of their own
that limit their utility (Malgady et al.,, 1979; Winer, 1971).

Milliken and Johnson (1984) point out that with unbalanced
data, quasi F-ratios are imprecise not only because the degrees of
freedom are approximated, but also because the mean squares
making up the error term are not necessarily independently
distributed.

Synopsis
neralizabili Theor

The perspective offered by generalizability theory can be
very useful for clarifying the functions going on beneath the
surface of the ANOVA. This perspective can be particularly useful
for situations such as those presented in this thesis in which
constraints on design (e.g., inability to completely nest variables
where warranted) and the definition of dependent variables as
random preclude the use of traditional F-statistics for analysis.
Generalizability theory is not mathematical wizardry, but it
forces the close examination of experimental design from start to
finish and also provides valuable information about the

performance of the dependent variable.
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A drawback of generalizability theory is that, because it
relies heavily on the estimation of variance components, a
generalizability analysis is only as good as the estimates that it
is based upon. Unfortunately, estimates of variance can be
unstable unless samples are quite large. Furthermore, because
persons are treated as a factor in a generalizability analysis,
design matrices tend to have a very large number of columns. The
large design matrices produced in many generalizability studies
can make the use of some computer analysis programs impractical,
such as those that perform maximum likelihood estimation (Bell,
1985: Chastain & Willson, 1986). Of course, the practicality of a
given method of analysis is largely dependent upon the computing
resources available to the researcher.

Unbalanced Desians

For the analyses performed in this thesis, computing
difficulties were compounded further because of the unbalanced
nature of the data. With unbalanced data, mean squares are no
longer orthogonal and therefore they lose the property of
additivity. Several methods are available to handle unbalanced
designs and these have been described along with some of their
characteristics. Each of these methods has its strong points and
its drawbacks: none of them stand out clearly as being the "best"
choice for use in an unbalanced generalizability study. The
priorities of the researcher should guide the choice of an

appropriate method.



The Fixed-Effect Fallacy

The fixed-effect fallacy is committed when one treats a
factor in an ANOVA as fixed when it should logically considered
random in order to make a desired inference. This fallacy is quite
common in educational and psychological research and its
consequences can vary from being an aesthetically displeasing
departure from strict statistical logic to raising serious doubts
about the validity of a study. It is very convenient statistically to
treat dependent variables as fixed when calculating F-ratios; this
is the default situation for most computerized statistical
packages, such as SPSSx. However, if generalization beyond the
specific conditions of the dependent variable is intended,
researchers must pay close attention to statistical considerations
and conduct their studies such that this generalization is
appropriate.

In this thesis, which utilizes the perspective of
generalizability theory, methods of avoiding the fixed-effect
fallacy in the statistical analysis of complex designs will be
demonstrated. The designs to be analyzed are extensions of the P:T
x | design described by Hopkins (1984) to the case in which there

is nesting on the dependent variable.
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CHAPTER il
METHODOLOGY

This chapter presents the methodology used to demonstrate
an extension of the type of analysis described by Hopkins (1984) in
which the dependent variable is considered to be random. The data
to be analyzed in this study consist of the results of the June,
1989 British Columbia Algebra 12 school leaving examinations.
Given the nature of these data, it is impossible to alter the basic
nature of the design, only the complexity resulting from the
number of nesting variables incorporated. Therefore, the focus of
this chapter will be on the post hoc statistical manipulations that
would be necessary in order to avoid the fixed-effect fallacy. To
maintain continuity with Hopkins (1984), the first analysis
conducted on the data will be similar to the one conducted by
Hopkins (1984) for the design summarized in Chapter I, Table 5
(see p. 46) in which persons (P) nested within treatment groups (M
were crossed with test items (1), P:T x I. Subsequent designs will
involve further nesting on the deper: w1 variable. |

Universe of Admissible Chservations

In the designs utilized in this study, five variables were
chosen with which to organize the sampled data for use in the
analyses. These variables were:

(a) persons (P), consisting of the population of students
eligible to write the June, 1989 British Columbia Algebra 12

exams. A sample of 267 students belonging tc this population was
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included in this study; of these students, 137 were male and 130
were female;

(b) gender (G), a nesting variable for the persons variable
with two possible levels, male and female;

(c) items (l), consisting of the population of multiple choice
items that could potentially be chosen to appear in the June, 1989
B.C. Algebra 12 exam. A sample of 55 such items were included in
the study; these items were scored dichotomously;

(d) levels of cognitive complexity based on Bloom's (1956)
Taxonomy of Educational Objectives (L) - this is a dichotomous
nesting variable for the items facet with zero representing
knowledge level items and one representing all items measuring
higher order cognitive processes as classified by the British
Columbia Ministry of Education;

(e) content areas (C), a nesting variable for the items facet
with five levels: (1) trigonometry, (2) conics and quadratic
systems, (3) exponents and logarithms, (4) polynomial functions,
and (5) sequences/series and binomial expansions. One content
area of the examination. ccmplex numbers, was nct included in the
analysis because there were only three items within the area, all
measuring higher order cognitive processes.

Universe of Generalization

Strictly speaking, arguments could be made against the
definition of any cf the faceis in this study as random. |{f one
accepted such arguments, then the universe of generalization

would be limited to the specific samples of conditions upon which
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the data were collected for this study. For example, the
admissible population for the person factor is the population of
students eligible to write the June, 1989 Algebra 12 examinations
in British Columbia. The sample of students in this study was not
randomly sampled per se, but was a sample of convenience drawn
from 10 schools. However, Rogers and Bateson (1991) indicated
that the "students attending these schools possessed diverse
socio-economic backgrounds, refiect the gender distribution and
major ethnic groups in the province, and represent the full range of
achievement” (p. 169). This suggests that the sample could be
considered a random sample from the population.

An argument can also be made against Loevinger's (1965)
point that items on tests are not really randomly selected.
Although items are sampied purposively, other items that are
equally acceptable could be exchanged for the observed conditions.
In fact, three sets of paralle! items are devised for different
administrations of the Algebra 12 examinations each year. In
addition, the specifications for these examinations have remained
essentially the same since their introduction in 1983. Thus,
although any sample of items in a particular form of the Algebra
1~ sxamination is not truly random, other samples of items are as
acceptable as, or exchangeable with, those used. Based on de
Finetti's (1964) concept of exchangeability, the sample of items
can therefore be considered random.

The nesting facets are more clearly of a fixed nature.

Consider the facet for content areas of algebra. Ths definition of
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content areas within algebra is arbitrary and in an educational
context, it is much more reasonable to sample individual items
from within the content areas taught rather than to choose
samples from the content areas themselves. A similar argument
can be made for the facet representing the educational objectives
measured by a test item. Of course, gender is clearly a fixed facet.

In summary, items (l) and persons (P) are random factors in
this study. Gender {G), content domain (C), and level of cognitive
complexity {L) are fixed. The nesting structure of the items
within the blocking variables, content domain and level of
cognitive complexity, for the Algebra 12 examination is presented
in Table 7. Four designs were analyzed in the following order: (a)
P:G x |, corresponding to Hopkins (1984); and three "extensions” (b)
P:G x I:C, (c) P:G x I:L, and (d) P:G x I:CL.

Naturally, the least unbalanced of the four designs is P:G x .
The lack of balance is solely on the gender factor. inspection of
the marginal totals of Table 7 reveals that the unbalancing due to
the introduction of the level-of-cognitive-complexity facet (L) is
much smaller than that due to the introduction of the content
domain facet (C). The greatest amount of imbalance occurs when
both L and C are included in the design. As the main purpose of
this study is demonstration, the progression will be made from the
most simple model to the most complex model before any attempts

at model simplification wiil be made.
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Tabie 7

Nesting Structure of the ltem Sample From the June, 1989

British Columbia Algebra 12 Examination

Content Area

Cogr wve Conics Exp. Seq. Trig. Poly. |Total
Level
Knowledge 7 3 4 7 5 26
Understanding 6 4 4 11 4 29
Total 13 7 8 18 9 n =55
1
G
E
N 13
D 1
E
R
130

Note. Descriptions of the content areas abbreviated in the headings of this table are as
follows:

1). Conics - Conics and Quadratic Systems

2). Exp. - Exponents and Logarithms

3). Seq. - Sequences, Series, and Binomial Expansions

4). Trig - Trigonhometry

5). Poly. - Polynomial Functions.
Knowledge represents knowledge level items; Understanding represents all items of
greater cognitive complexity than knowledge level items.




Data Analysis

The data for this study were analyzed on an Amdahl 5860
mainframe computer using the MTS and the IBM VM systems at the
University of Alberta. The program used to conduct the bulk of the
analysis was the LOGIC subprogram of the SPSSx userproc,
UANOVA (Taerum, 1986). This program uses Henderson's (1953)
Method I1ll for calculating sums of squares; it also outputs F-ratios
and quasi F-ratios.

The EMS equations produced by LOGIC are caiculated using
Hartley's (1967) method of synthesis. Although the EMS equations
output by LOGIC are identical to those output by the SAS procedure
GLM (T. Taerum, personal communication, September 25, 1991),
these estimates "disagree with those given in many textbooks and
with those given by another widely used statistical package,
BMDP" (Samueis, Casella, & McCabe, 1991, p. 798). This
disagreement arises because LOGIC and GLM do not set the
constraint that the sum of the effects for the interactions
between fixed and random factors equal zerc (Samuels et al.,
1991). Samuels et al. argue that for most interpretations of the
mixed model this constraint is reasonable; in generalizability
theory, this constraint arises as a direct result of the definitions
of seie effects (Brennan et al., 1980). Failing to impose this
constraint results in the variance components associated with the
interactions in question remaining in the EMS equations from
which they would otherwise be dropped. The retention of these

terms biases some of the variance estimates obtained in this
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study. However, the relative computational efficiency of the
LOGIC program (Taerum, 1989) in comparison to accessible
alternatives was a compelling point in its favour given the large
design matrices resulting from a generalizability study of this
magnitude.

Supplemeniary analyses. Due to concerns over the extent of

bias of the variance components resulting from their calculation
based on inappropriate expected mean squares, variances for two
of the simpler designs (P:G x | and P:G x I:C) were estimated using
the maximum likelihood program in the SAS procedure VARCGOMP
(SAS Institute, 1988) for comparison with the original estimates.
M | _Simplification an i F-Rati

Following completion of the preliminary analyses, the four
models were simplified as discussed in Chapter Two with the goal
of conducting F-tests for the gender effect. There are three
reasons for the simplification of complex models such as those
described above. Firstly, it can allow the formation of appropriate
error terms for "experimental" effects of interest and thus the
avoidance of quasi F-ratios. Secondly, the use of simpler models
reduces the likelihood of negative variance estimates and their
associated problems. Lastly, it can result in an increase in
statistical power due to an increase in the degrees of freedom for
the residual term, assuming the simplification is appropriate and
SSres does not increase greatiy. This last penefit will not be
attained in the analysis in question, however, because SSres is not

the error term for the gender effect (see p. 80), so changes in its
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degrees of freedom will not affect power for the analysis of
interest.

The use of quasi F-ratios provides an alternative to model
simplification for testing the significance of effects for which
there is no appropriate error term. Following the model
simplification, quasi F-ratios were calculated for the four
designs, allowing comparison of the results of each method of
analysis.

The variance estimates resulting from the preliminary
analysis of the four designs described above and their confidence
intervals are presented in the following chapter. Inferential tests
involving both the use of model simplification and quasi F-ratios
to examine the significance of the gender effect are also
illustrated.  Finally, generalizability coefficients for the

examination are calculated based on the obtained variance

estimates.
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CHAPTER IV
RESULTS

ltem level results of the June, 1989 British Columbia
Algebra 12 leaving examinations were the data used in the
analyses of four experimental designs: P:G x |, P:G x I:C, P:G x LL,
and P:G x I:CL. These data were analyzed from the pergpective of
generalizability theory with persons (P) and items (i} treated as
random factors, and gender (G), content domain (C), and level of
cognitive complexity (L) treated as fixed.

rganization of th hapter

The results of this study are presented in the sequence in
which a generalizability study is conducted. First, the expected
mean squéres calculated using the method of synthesis (Hartley,
1967) are presented together with a description of how they differ
from the expected mean squares that would be calculated based on
common algorithms for the balanced mixed model (eg., Winer,
1971, pp. 371-375). These differences are brought about by (a) the
failure to impose the constraint that the sum of score effects for
interactions involving fixed effects be zero and (b) the
nonorthogonality resulting from the unequal n's.

Following the presentation of the expected mean squares, the
variance components estimated by equating the EMS with the
obtained mean squares are presented along with their associated
confidence intervals. These variance components are then
combined to form generalizability coefficients for the four ways

of conceptualizing the structure of the Algebra 12 examination
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presented herein. Finally, inferential statistics are performed on
the gender effect, first using the model simplification approach
and then using quasi F-ratios.

Expected Mean Squares

The expected mean square equations for the four designs
considered in this study that were calculated by LOGIC (Taerum,
1986) by the application of Hartley's (1967) synthesis procedure
to the design matrices are presented in Tables 8 to 11. To
illustrate the complexities introduced with an unbalanced design,
additional terms to those expected in the balanced case that result
from the nonorthogonality of the data set have been typeset in bold
face. Variance components that appear in the EMS equations due to
the failure to impose the constraints of the gereralizability model
are underlined in these tables. The remaining terms in these
equations are those that would appear in a balanced mixed model
for each design had the constraints of generalizability theory been
imposed. For ease of reference, the EMSs for the four designs,
calculated under the constraints of generalizability theory and
assuming a balanced design, are presented in Appendix A.

As is shown in Table 8, the EMSs for the P:G x | design
contain one variance component (underlined) in E(MS)) that should
not have appeared had the constraints of generalizability theory
been imposed. Although the result, E(MS)) = o2jp:g + 133.58802ig +
267.000c2j was obtained, the appropriate equation is E(MSy) =
o2jp:g + 267.00002; (based on Winer, 1971, pp. 371-375). As more

fixed effects are incorporated into the designs, more inagpropriate



64

terms are included in the models. Thus, when L or C are included
as facets, four inappropriate terms appear (see Tables g and 10);
when both L and C are included, there are twenty-five

inappropriate terms included in the EMS equations (see Table 11).
Although the total number of terms is greater in the more complex
designs, the proportion of inappropriate terms and, thus, the threat

of bias is clearly greater for such designs.

Table 8
Mean re M I for the P:G _x & Design

SCURCE BvS

G o2ip:g + 133.40762ig + 55.00102p:g +7337.44002g
PG o2ip:g + 55.00002p:g

| 62ip:g +133.58802ig + 267.00002;

IG o2ip:g + 133.41102ig

IP:G 0‘2ip;g

Turning now to changes brought about by nonorthogonality,
additional variance components were obtained in the EMSs for the
P-G x L and P:G x I:CL designs. In the first instance (Table 9), the

additional term was 0.001c2j:| for E(MSL). In the second instance

(Table 11), several additional variance components arise (eg., see



EMS for L, C, Gx L, G x C, and PL:G). This suggests that the
dependence is most pronounced in the most complex model as
would be expected.

Inspection of the components brought about by
nonorthogonality (bold face) reveals that each contains at least
one of the nesting facets for items and each is included in an EMS
equation involving one of these nesting facets. Furthermore, for
all but one of these components [0.001c2i:j in E(MS)], if the
source of variance includes the C facet, then the additional
component includes L and vice versa. For example, E(MSgL)
contains additional terms containing ¢2j.¢l. czpc;g, and c2gc.
Comparing the additional components due to nonorthogonality (bold

face) with those that would be included in a balanced design (plain

type) reveals that they are relatively small.
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Table 9
Mean Square Model for the P:G x [:C Desigh

SOURCE  BMS

G o2ip:gc + 12.489¢2pc:g + 1666.3800%gc + 133.40702ig:c
+55.00102p:g + 7337.44007%g

C o2ip:gc + 10.62602pc:g + 133.59002ig:c + 266.99902i:c
+1419.710g2gc + 2837.48002¢

PG o2ip:gc +12.49152pc:g + 55.00062p:g

I:C o2ip:gc + 133.58902ig:c + 267.00002j:c

cC o2ip:gc + 10.62702pc:g + 133.4090%ig:c + 141 7.76002gc
PCG o2ip:gc + 10.627062pc:g

IG:C o2ip:gc+ 133.411c2ig:c

IP:GC Gzip;gc
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Table 10
Mean Square Model for the P:G x I:L. Design

SOURCE BEMS

G c2ip:gl + 27.58102pl:g + 133.40702ig:| + 3679.63002g|
+55.00162p:g + 7337.44002g

L o2ip:gl + 27.41762p|.g + 133.58902ig:| + 266.99702;;|
+7320.640062|

PG o2ip:gl + 27.58002pl:g + 55.00002p:qg
I-L o2ip:gl + 138.58902ig:c + 267.00002;;|
GL o2ip:gl + 27.41862p|:g + 133.40902{g:| + 0.00152j;|

+ 3657.82002g]|
PLG 02ip:g| + 27.42062p|;g
IG:L o2ip:gi + 133.41102ig:|

iP:GL ()'zip;gl




Table 11
Mean_ Square Model for the P:G_x l:CL Design

SOURCE _ BMS

G Gzip;gcl + Q.—i'_LB_Q’,chljg + 1334070’2|gc| + 856.238 ngI
+12.48902pc:g + 27.58102p|:g + 1666.38002gc
+ 55.00102p:g + 3679.63002¢| + 7337.44002g

L c2jp:gcl + 133.589¢%ig:cl + 6.34302pcl:g + 27.41 762pi:g
+ 0.27002j:c + 847.38302gcl + 266.99662i:cl
+ 3662.83002g! + 36.11502gc + 1693.60002%¢]
+7320.64002]

C o2ip:gcl + 133.59062ig:cl + 5.42102pcl:g + 1 0.62662pc:g
+ 0.13002¢g1 + 724.45802gcl + 266.99962:cl
+1447.91002¢| + 17.636062gl +1419.71002gc
+ 2837.48002¢

PG o2ip:gcl +6.417c2clp:g + 27.5806%pl:g + 12.49162pc:g
+ 55.0000‘2p;g

I:LC o2ip:gcl +133.588062ig:c + 267.00002i:|c

GL o2ip:gcl + 6.33802pcl:g + 133.40802ig:cl + 846.223¢%gcl
+ 0.002062j:¢c) + 0.26802pc:g +27.41802pl:g
+36.07102gc + 83657.82002g|




Table 11 (Continued)

SOURCE  EMS

C o2ip:gcl + 5.42302pcl:g + 133.40902ig:cl + 45852gcl
+ 0.13202p):g + 10.6272pc:g + 1417.76002¢qg

LC o2ip:gcl +183.5900%ig:¢ + 5.13502pcl:g + 267.00102{:¢l
+ 686.22202gc| + 1371.51002¢|

LCG o2ip:gcl + 5.13802pcl:g + 133;40962ig;c| + 685.29502g¢|
PLG ozip;gcl + 6.343g2pc|;g + 0.26902pc:g + 27.42002p|:g
PCG o2ip:gcl +5.42102pcl:g + 10.62702pc:g

IG:LC o2ip:gcl + 133.41202ig:cl

CLPG o2ip:gcl + £.1390%¢lIp:g

IPGCL  o2ip:qgi

Estimates of Variance Components
in a generalizability study, the results of primary interest
are the variance estimates for the random components of the
model. These were calculated by equating the expected mean

squares reported in Tables 8 to 11 with the computed mean



squares obtained from the ANOVA. The variance estimates
obtained are presented in Table 12 for each of the four designs.

inspection of Table 12 reveals that the variance components
common to the four designs are essentially stable, with the
exception of variance due to items. When the leve! of cognitive
complexity (L) is included in the design (Designs 2 & 4), 6%
becomes smaller. Comparison of the mean ccores for the items
classified at the knowledge level and for the items classified as
requiring greater cognitive complexity reveals that the former is
substantially greater than the latter (.660 compared to .461). Such
a difference in mean scores among content domains was not
observed. From a learning perspective, solution of items of
greater cognitive complexity requires a sound knowiedge base in
their content area:; thus if higher level items are answered
correctly, it is probable that knowledge ievel items will be
answered correctly as well, but the reverse is not necessarily
true. Content domains, on the other hand, do not exhibit this
hierarchical nature and thus it is more likely that their means will
be similar to each other.

Looking now at the decomposition of the total variance, the
largest variance components across the four models are
attributable to (a) the item factor , in which, as pointed out, a
sizable porticn of the variance can be attributed to differences in
cognitive complexity among the items, (b) the person factor, and
(c) the item by person interaction. Most of the remaining terms

have negligible amounts of variance associated with them. A
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negative variance estimate was computed for the term 82p|;g in
the P:G x I:CL design. This estimate was retained for the
computation of variance estimates for terms in which 02p|;g
contributes to the EMS.

Assessment of Possible Bias

As was discussed previously, some of the EMSs utilized in
this study for the estimation of variance components contain
terms that are inappropriate for a generalizability analysis of a
mixed model. The presence of these inappropriate terms leads to
biased estimates of variance, although this bias is likely to be
small due to the small size of the variances associated with these
terms, the largest being &2pc:g = 0.003. Assuming non-negative
variance estimates, the bias will be in a downward direction for
the highest level interaction containing an inappropriate term, but
can be in any directicn for higher terms containing a biased
variance component in their EMS. For the particular designs in this
study, however, all of the bias is in a downward direction. As an
example of the magnitude of this bias, 32p.g was calculated for
the P:G x I:C design both with the inappropriate term, 12-49102pc:g
retained and with ‘it removed (see Appendix B). This component
was chosen as an example because it is biased by 82pc:g, so it
should provide a fair indication of the magnitude of bias. The
unbiased estimate obtained was 0.01327 in comparison with the
biased estimate of 0.01263, a negligible difference. Biased

estimates are flagged in Table 12 with asterisks.
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Table 12

Variance Estimates Resulting From the Analysis of Four

Desigqns Using Henderson's Method Il

P:G x| P.GxI:C P:G xI:L P:G x I:CL
G2i 0.048* 0.049" 0.039° 0.039*
52p:q 0.015 0.013* 0.015* 0.013*
52ig 295 x 1074 | £72 x 10-4 | 313 x 10-4 | 2.15 x 10°4
32ip:g 0.184 0.182 .0.184 0.181
32pc:g N/A 0.003 N/A 0.003*
52pl:g N/A N/A 1.47 x 10-4 }-2.00 x 10-4"
52¢cip:g N/A N/A N/A 8.04 x 10-4

Note. It is assumed in the above table that wherever the item facet is indicated, it is
nested within the facets appropriate to the given design. Thus, for:

1) the P:G x I:C design, 32j represents 02i:c, O2gi represents 62gixc, and 0%ip:g
represents 82ip:gc,

2) the P:G x I:L design, 62j represents azizl, 82gi represents 82gi:l. and 82ip:g
represents 82ip:gl, and

3) the P:G x I:CL design, 32; represents 82i:c|, 82gi represents 82gi:cl. and 82ip:g
represents 32ip:gcl.

N/A indicates that the given variance component is not applicable to the design in
question.

* denotes biused estimates.

To further assess the magnitude of the bias resulting from
the use of inappropriate variance components within the EMS
equations used to estimate the variance components in this study,
supplementary variance estimates were obtained using maximum

likelihood (ML) estimation for two designs: P:G x | and P:G x i:C.



Although the fuil data set was used in the analysis of the first
design, the sample size for persons was reduced to 20 males and
16 females for the ML analysis of the P:G x I:C design due to
computer memory limitations. To have a basis with which to
compare the performance of LOGIC and ML for the P:G x I1:C design,
LOGIC was employed to obtain variance estim .es on this reduced
data set also. The variance components obtained from these
analyses are presented in Tables 13 and 14.

The comparison between the results of the two analyses in
each pair is complicated by the fact that ML estimates are also
biased. This bias is generally in a. downward direction, but is also
subject to upward pressure due to the limitation on the parameter
space for variance to non-negative values. This upward pressure
minimizes bias for variance estimates that are small relative to
the error variance (Swallow & Monahan, 1984).

For the P:G x | design (Table 13) the results of the Method Il
and ML analyses agree very closely, with the ML estimates tending
to be very slightly lower than the Method Ill estimates. This
provides further evidence that for the P:G x | design the addition ot
the inanpropriate variance component in the EMS equation for
items (Table 8) does not significantly affect the variance
estimates. For the P:G x |:C design (Table 14), the estimates from
the two methods diverge slightly for some estimates. For two
estimates, 62gi:c and 62pc:g, there was more than a 30%
difference between the results from ML and Method lil, although

the difference was still only 0.061 in each case. The
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insignificance of these differences becomes clear when one
realizes that for both of these components, the actual variances
may be zero.

Given that one would expect to find differences due to
different methods of estimation, the differences found in Tables
13 and 14 are small. However, the bias in the Method itl results
may become slightly more noticeable for the most complex
analysis due to the greater number of inappropriate terms included
in the EMS equations used to arrive at the variance estimates.

_ Regardless of this, the similarity of variance estimates acrcss
designs in Table 11 implies that the bias resuiting from the use of
Method Ill is of a small magnitude, even for the most complex

design in this study.

Tabie 13
mparison of Varian Estim Derived From Method
Il _and ML Anal for the P:G x | Design
Paxl PGxlI
(Method 111) (ML)
52 0.048* 0.047
32p:g 0.015 0.015
32gi 295 x 10-4 285 x 104

32ip:g 0.184 0.183

74



Table 14
Comparison of Variance Estimates Derived From WMethod
il and ML Analyses for the P:G x I:C Desian on z Reduce
Data Set

P.GxI:C PGxI1:C
(Method i) (ML)
S=ic 0.045 0.042
82p:g 0.011 0.011
S2gi:c 0.004 0.003
82ip:gc 0.180 0.181
32pc:e 0.005 0.004

Stability of Variance Estimates

The stability of variance estimates can be assessed by
examination of confidence intervals constructed around those
estimates. Approximate confidence intervals around the variance
estimates in Table 12 are provided in Table 15. These intervals
are calculated using Satterthwaite's (1946) procedure, which is
presented in Appendix C. In the most complex design, P:G x |:TC,
the confidence interval noticeably widens reiative to those in the
simpler designs only for the gender by item interaction. The
estimate G2¢ip:g also has a wide confidence interval in this

design, but there is no analog in the simpler designs with which to
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Table 15

Approximate 90% Confidence Intervals for the Variance

Estimates Resulting From the Application of Four Models

P:G x| P.GxI:C
df Cl df Cl
32 52.15  0.04 - 0.07 |8%i:c 48.36  0.04 - 0.07
82p:g 178.01 0.01 - 0.02 [3%pg 150.20 0.01 - 0.02
82gi 1.67 0.00 - 0.01 |B3gi:c 1.39 0.00 - 0.02
82ip:g 14410 018 - 0.19 |8%ip:gc 13250 0.18 - 0.19
R 52pc:g 21.85 .00 - 0.01
R H P:Gx I:CL
df Cl df Cl l
521 50.74  0.03 - 0.06 |382i:cl 43.22 003 - 0.06
62p:g 170.48 0.01 - 0.02 |38%pg 144.98 0.01 - 0.02
62gi:l 1.81 0.00 - 0.01 |d2gi:cl 0.48 0.00 - 0.15
§2ip:ql 14045 0.18 -0.19 |8&2ip:gcl 11¢.5 0.18 - 0.19
62pc:;g  10.49  0.00 - 0.01
62pl:g 0.12  0.00 - 0.00 |32pl:g 0.18 0.00 - 0.00
62pcl:g  0.49  0.00 - 65.55
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compare it. These wide confidence intervals can be considered
artifacts of the very small "effective” degrees of freedom for
these components, being 0.48 and 0.49 respectively.

inferential Statistics

Model Simplification

The goal of the model simplification presented here is to
alter the model such that the significance of the gender effect can
be assessed with a simple F-test. As the EMSs presented n Tables
8 to 11 are based on assumptions that are not appropriate for
testing main effects (Sarnuels et al.,, 1991), the EMS tables
relevant to this discussion are presented in Appendix & {Tables A
to D). Examination of the EMSs presented in th.ese tables revealis
that for each of the four designs, there is no existing error term
with wihich to to test the gender effect. However, in all of these
desigrs, if the variance component due to the item by gender
interaction is removed from the EMS for gender, then EMS(P:G)
becomes an appropriate error term.

Logically, one would expect (and hope) that a provincial
examination that is used to rank students academically does not
suffer from gender related item bias, or in other words that czgi =
0. Summary ANOVA tables for the four designs are presented in
Tables 16 to 19. Notz that in all of these cases, ihe «andy! Lix

item interaction is nonsignificant.



Table 16
ANOVA Table for the Analysis of the P:G x ) Design

SCOURCE SS DF MS F P
G 10.17 1 10.17 -

| 703.50 54 13.03 72.39 < .05
PG 270.49 265 1.02 5.67 < .05
Gl 12.05 54 0.22 1.22 0.14
PG 2631.54 14310 0.18 -

Table 17

ANOVA Table for_the Anaiysis of the P:G x I:C Design

SOURCE SS DF MS F P
G 7.26 1 7.26 -
C 39.47 4 9.87 -
QaC 1.15 4 0.29 -
i 664.12 50 13.28 60.96 < .05
PG 241.25 265 0.91 4.27 < .05
PCG 225.81 1060 0.21 .17 < .05
GlI.C 10.90 50 0.22 1.20 0.15
IP.GC 2405.73 13250 0.18 -
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Table 18
ANOVA Table for the Analysis of the P:G x I:L. Design

SOURCE SS D MS F P
G 10.25 1 10.25 -

L 143.82 1 143.82 -

GL 0.09 1 0.08 -

I:L 559.78 53 10.56 46.82 < .05
PG 270.17 265 1.02 5.43 < .05
PLG 49.78 2865 0.19 1.02 0.39
Gl:L 11.96 53 0.23 1.23 0.12
IP:GL 2581.76 14045 0.18

Although this effect is nonsignificant at o = .05, the obtained
p values, with the exception of that for GI:CL tend to be lower than
the .20 to .30 suggested by Winer (1971) as a minimum value for
dropping a component from the model. Winer's suggested o levels
are general guidelines, however. Green and Tukey (1960) favored
using the magnitude of an effect as a criterion for deciding on
whether or not pooling is acceptable, suggesting that pooling is
appropriate when the F-ratio of the given term is less than two (p.
138). With 14,310 degrees of freedom in the denominator of the F-
ratio in question, the effect size becomes a consideration of
primary importance. As one would expect from the small F-ratio

obtained for the gender by item interaction, 82gi i5 near zero and



Table 19
ANOVA Table for the Analysis of the P:G X |:CL_ Designh

SOURCE SS DF MS F P
G 7.10 1 7.10 -

C 36.82 4 9.20 -

L 119.24 1 119.24 -

cC 1.09 4 0.27 -

CL G.u7 1 0.07 -

CL 47 .22 4 11.80 -

GCL 1.32 4 0.33 -

1:CL 476.99 45 10.60 50.54 < .05
PG 243.06 265 0.92 5.06 < .05
PCG 227.16 1060 0.21 1.17 0.96
PLG 48.08 265 0.18 1.00 0.50
PCLG 196.34 1060 0.19 1.02 0.30
GI:CL 9.44 45 0.21 1.16 0.22
IP.GCL 2159.50 11925 0.18

very small relative to the other components in the model. Given

this, dropping this interaction from the model seems reasonable.

F-ratios for the gender effect based on the resulis of the

Method Il analysis for the four designs are presented in Table 20.
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Due to the nature of the Method Illl analysis, or fitting constants
method, mean squares are independent of each other, allowing

valid construction of F-ratios.

Tatbrte 220
F-ratios for the Gender Effect _in_ Four Experimental

Designs

DESIGN MSb MSw ' df F
P:G x| 10.17 1.02 1, 265 9.97
P:Gx I:C 7.26 0.91 1, 265 7.98
P:Gx L 10.25 1.07 1, 265 10.04
P:Gx |:CL 7.10 0.95 1, 265 7.71
Quasj F-ratios

If one 2s that it is unacceptable to drop the item by

gender interaction term from the model, then the only alternative
remaining for testing significance of the gender effect is the use
of quasi F-ratios. Quasi F-ratics calculated based on the Method
Il results for the four designs according to the method discussed
in Chapter Il are presented in Table 21. Relative to the F-ratios
presented in Table 20, the quasi F-ratios are slightly smaller in
magnitude. due to their slightly larger error mean squares. They
also have fewer degrees of freedom for the error term in all four

designs, resulting in decreased statistical power.
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Table 21

Quasi F-ratios for the Gender Effect in Four Experimental

Designs

MSb MSw df F
PG x| 10.17 1.06 1, 233.0 9.59
P:G x I.C 7.26 0.95 i1, 220.4 7.64
PG x L 10.25 1.07 -1, 232.4 9.58
P:G x I:CL 7.10 0.95 1, 214.8 7.47

Generalizability __Coefficients

One advantage of using generalizability theory in the
analysis of data collected in a study is that generalizability
coefficients for given applications of the dependent measure can
be estimated from the G-study data. The primary goal of the B.C.
Algebra 12 examinations is the ranking of students, so these
examinations can be considered norm referenced. Therefore, the
appropriate type of generalizability coefficient to calculate from
the data is one with a relative error term. As described in Chapter
II, the general formula for this type of generalizability coefficient
is P =02,/[02, + 625], where 62, represents universe score
variance and ¢25 represents relative error variance.

For all of the designs presented in this thesis, o2p; is the

only term contributing io relative error variance. The terms
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contributing to universe score variance differ among the designs,
however. This is because the interaction of persons with fixed
facets contributes to universe score variance. The universe score
variances associated with each of the four designs analyzed in this
thesis are presented below:

1) for P:G x |, 62y = o2p,

2) for P:G x 1:C, 62u = 062p + 62pc/n..

3) for P:G x 1L, o2, =82p +32p;/ng,

4) for P:G x I:CL, 62 = 62p + 62 i1c + 62p|/N| + S2pcl/NeN|.

The generalizability coefiicients computed from the four
designs are presented in Tabig 22. All of these coefficients differ
from each other by less than 0.02, regardless of differences in
design used for the estimation of variance components. The
magnitude of these deviations due to differences in design are
similar to those obtained by Chastain & Willson (1986) in their
analysis of WAIS-R data.
| The generalizability coefficients obtained in this study are
somewhat smaller than the reliability coefficient of 0.84
obtained from a previous study (Rogers & Bateson, 1991, p. 171).

Part of the reason for this is that only 55¢4pf 58 items were used in

this study, but even after the item sampl size is adjusted using
the Spearman-Brown prophecy

0.829 is obtained for the P:G x | desigi$

reliability coefficient of

¥he remaining difference
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Table 22
Estimates of Generalizability Coefficient for Four
Designs

)
PG x| .817
P:GxIC .804
PG xI:L ' .818
P:Gx I:CL .805

rmay be attributed to the effect of breaking up the sample of
students into males and females. Males and females can be
considered intact groups that differ in central tendency; the
previously obtained reliability coefficient of .84 may have been

inflated due to the pooling of these groups.
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CHAPTERYV
DISCUSSION

in this thesis, the work of Hopkins (1984) in which he
integrates generalizability theory with ANOVA for an experiment-
like decign was extended to include items of & test as a random
sample stratified by content domain and level of cognitive
complexity (ie., as a nested, random facet). The perspective of
generalizability theory was taken for two reasons. Firstly, it
requires one to explicitly define the universe of admissible
observations and the universe of generalization; this approach
makes it clear that if one wishes to fneneralize beyond the
particular measurement instrument used, then one must treat the
dependent variable as a random factor. Secondly, incorporating
generalizability theory into the data analysis allows one to
examine the performance of the dependent measure on the
population of interest by focusing attention on the variance
components associated with the facets that contribute to
measurement error in addition to the performance of inferential
statistics.

Although generalizability theory is very useful for the
reasons mentioned above, there are also problems associated with
it. The introduction of the dependent measure as a random facet,
although logically required for valid inferences beyond the
particular measuring device used, makes it unlikely that a suitable
term will exist with which to test the effects of interest. Also,

the examination of the dependent measure encouraged in



generalizability theory will often reveal that the item facet is
stratified such that the design is unbalanced, resulting in
nonorthogonality. Furthermore, like any sample-based estimates,
the variance estimates that are central to generalizability theory
are not stable. Thus, relatively large sample sizes are required to
obtain usable results, especially with a complex design.

There are also difficulties associated with the computing
resources required to conduct generalizability analyses. The
treatment of persons as a factor, a central feature of the
generalizability analysis, results in large design matrices, thereby
increasing the memory and c.p.u. time required to perform an
analysis relative to a traditional ANOVA. These large design
matrices can cause the requirements in computer resources to
become prohibitive when methods of analysis requiring matrix
inversion, such as maximum likelihood analysis, are used.
Furthermore, most ANOVA programs do not produce variance
estimates, so unless it is feasible to calculate the estimates from
the mean squa'res, the choice of packages with which to analyze
the data is limited.

Due to difficulties associated with nonorthogonality,
decreased accuracy in the estimation of variance components, and
the requirement for extensive computing resources, the analysis of
unbalanced data should be avoided if possible, especially within
the context of generalizability theory. In many cases, the option
of randomly discarding data to achieve a balanced design should be

given serious consideration (Brennan, 1983). In this study, for
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instance, it would have been quite reasonable to discard seven of
the male students to artificiaiiy balance the P:G x | design. This
option is not always feasible, however. For instance, in the most
complex design, P:G x L:CL, 25 of 55 items would have to be
discarded, leaving three items per cell. Given the large item
variance, this would not be acceptable.

Sianificance Tests for Differences Among Blocking Factors on the
D n Variabl

The data that Coleman (1973) reanalyzed to find that "no
reliable evidence for most of the main conclusions drawn from
them" (p. 335) were siructured such that samples of words were
nested within different classes (eg., homophones versus
nonhomophones). A similar analysis to the above for the Algebra
12 data presented in this thesis would be the analysis of whether
there are mean differences in p values for ilems nested within
different content domains or within different levels of Bloom's
(1956) taxonomy. Clearly, we would be well advised to try to
avoid the possibility that differences in mean scores foi’ different
conditions of the nesting variables are due to the particular items
chosen.

A general principle can be inducted from these examples. If
a goal of a study is the comparison of the effecis of different
levels of a blocking factor for the dependent variable, then the
fixed-effect fallacy is a serious threat to external validity and

this threat must be explicitly addressed.
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To test hypotheses such as those presented above, the
procedures suggested by Hopkins (1984) and incorporated into this
thesis should be utilized. Although it is very unlikely that the
variance of items within blocking factors would be zero, the
interaction of persons with the blocking factors could quite
possibly be eliminated, leaving MS; as the error term. In this case,
it is crucial for the sake of power that several levels of the
dependent measure be randomly sampled within the nesting
variable because the analysis of any differences among these two
levels is the crux of the study. The greater the variance within the
blocks, the greater the sample size needed for the nested item
variable. In such a situation, it would be valuable to first conduct
a G-study to estimate the variance within the blocks and thus
illuminate the decision as to the size of the item sample needed.
Note that for this case, persons must be defined as a factor to
permit estimation of an interactiom term that enables
simplification to an F-ratio or construction of a quasi F-ratio.

ignificance T for Differences Amon nditions of th
iIndependent Variable(s)

A common case for studies in the educational and
psychological literature is one in which the group means on a test
or inventory are compared for the different treatment groups, as
was done by Hopkins (1984). An example of this type of case -

would be an analysis of the treatment effect, gender (G) in the

design P:G x I. In this case, it is the interaction between the
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treatment effect and the dependent variable, otherwise known as
item bias, that is the threat to external validity.

Regardless of how the data are analyzed, it is clearly
undesirable to have a measure that is biased towards a given group
in such a design and ideally, the researcher should do whatever can
be done to attempt to eliminate the bias before proceeding with
the study rather than attempting to accommodate it statistically
through the use of quasi F-ratios. Although most well
standardized measures have been developed such that bias is
avoided and ngi can be logically assumed to be zero for the
universe of persons on which their use is intended, testing this
assumption statistically before simplifying to an essentially
fixed-effects model can add some strength to the case for such a
model.

Complexity _of Experimental Designs

Smith (1978) demonstrated that with increasing compliexity
of design, estimates of variance components become less accurate.
In this study, however, it was found that increasing the -Ievels' of
nesting on the dependent variable had a minimai effect on the
confidence intervals around the variance estimates for the random
effects. There are two main reasons behind this apparent
discrepancy in results. Firstly, all of the nesting facets in the
analyses presented herein are fixed. Had they been random, the
large number of variance terms included in their expected mean
squares would have made them quite susceptible to dispersion

effects, which cause instability. Secondly, all of the interaction



components that were included in the EMSs for the terms for which
variances were estimated were essentially zero (other than the
trivial case of the residual variance), so dispersion due to errors
in the estimation of these components was minimal.

In addition, all four of the designs analyzed had essentially
two crossed factors, persons and items, with the increase in
complexity coming about as a result of nesting on the second of
these factors. Although this has little relevance to the stability
of the estimates obtained in this study, it would be highly relevant
in a more ideal case. Had the variances been estimated from EMS
equations appropriate to mixed model generalizability analyses,
the EMS equations associated with the effects estimated would
have ali been very simple (see Appendix A), resulting in minimal
dispersion effects and a minimal reduction is stability with the
addition of more fixed blocking factors.

The tendency for variance estimates to becoime less accurate
with increasing complexity of design was referred to by Shavelson
& Webb (1981) as the bandwidth-fidelity dilemma. The more
factors that one includes in a study for the sake of replicating the
complexity of the real world, the less confidence one can generally
have in the resulting variance estimates. Due to this dilemma,
experimental designs should generally be kept as simple as the
research question allows, particularly with respect to crossed
factors. However, the incorporation of well chcsen fixed blocking

variables can strengthen a design (see Samuels et al., 1991 for
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examples) with little apparent adverse effects to the stability of
variance estimates for the random components of the model.

Complex crossed designs not only reduce fidelity, but are
also becoming less fashionable when their goal is an omnibus test
of significance followed by testing for every possible effect in the
hopes of breaking the .05 barrier (see Rosnow & Rosenthal, 1989).
Given a simple, well defined hypothesis, such as the ones
described in the preceding section, it should be possible for
researchers to set up designs involving a minimum of variables. In
ihese situations, the effort involved in -addressing the fixed-effect
fallacy as a threat to external validity should be minimal.

Complex designs do have their place, however. For
exploratory research, the inclusion of several variables in a study
can help provide a researcher with a better understanding of their
relationships to one another. Furthermore, in a very large study, it
may be possible to have a wide “bandwidth" and thus reflect some
of the complexity in the real world, while still retaining an
acceptable level of "fidelity.” in the obtained variance estimates

Limitation f th

One of the limitations of this study is that the EMS equations
from which the variance components were calculated are
inappropriate to a mixed model generalizability analysis, resulting
in biased variance estimates. Furthermore, the computer program
utilized for the bulk of the analysis, LOGIC (Taerum, 1986), is run
in single precision and reports results to only two or three

decimal places, while computing in double precision and reporting
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results to four decimal places is generally advocated for
generalizability studies (eg., Brennan, 1983). Thus, one cannot be
as confident in the numerical resuits as would have been the case
if methods more appropriate to the mixed model had been used.
However, the primary goal of this study was not the estimation of
variance components or the calculation of F-ratios, but the
discussion and demonstration of methods for the avoidance of the
fixed-effect fallacy through an approach incorporating
generalizability theory.

Another limitation is that the differences between the
analysis of the unbalanced designs and artificially balanced ones,
both in %&rmg % numerical results and in terms of computing
resources required, were not assossed, ¥t is also regrettable that
comparisons between computing time required for the Method Il
and ML analyses could not be made, because the necessary
information is not reported by the VM operating system on which
the ML analysis was performed.

New Algorithms for Varian mponent Estimation

One of the reasons that generalizability theory is not more
widely applied is that due to the requirements for relatively large
sample sizes and the treatment of persons as a factor in the
ANOVA, large amounts of computing resources are often required
to perform generalizability analyses. As should be clear from the
compromises that had to be made in the analysis of the Algebra 12
data, namely the use of a non-optimal method of moments

technique and the need for reduction of the data set to perform an
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ML analysis, this problem can become acute with unbalanced data.
The future hoids the promise of practical and attractive
alternatives to method of moments approaches such as Henderson's
(1953) Method IlI, however.

Not only are computing resources expanding and becoming
more affordable, but more efficient programs for variance
estimation in the unbalanced case are also being developed. In
general, the most promising methods of analysis for unbalanced
mixed models appear to be those adopting a maximum likelihood or
Bayesian approach. As the work of Dempster, Rubin and Tsutakawa
(1981) demonstrated, these approaches are not mutually exclusive.
The EM algorithm developed by Dempster et a!. uses a combination
of Bayesian and maximum likelihood approaches to arrive at
variance estimates. This approach avoids the inversion of large
matrices, but is slow to converge. Longford (1987) has devised an
approach by which the EM algorithm is used for the first few
iterations and then the Fisher-scoring algorithm is applied,
resulting in faster convergence. Advances in computing' efficiency
such as these will make generalizability analyses of large
unbalanced more feasible in the future.

At present, the 1988 software release for BMDP contains a
new program, 3V, which uses ML and REML approaches to handle the
general mixed model analysis of variance (Dixon, Brown, Engeiman,
Hill, & Jennrich, 1988, pp. 1025-1044). This program is described
as experimental as well as being "computationally intensive if the

number of parameters in the model is large" (Dixon et al., 1988, p.
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1026). Thus, it is not clear how practical this program will be for
large scale generalizabilily analyses.
Implications for Future Research

Although recent advances in computational algorithms for
the analysis of unbalanced mixed models are promising, there is a
need to continue in the search for more efficient computing
algorithms to make generalizability analyses of unbalanced data
sets less costly in terms of computing resources. As new methods
are develcped,they will also need to be assessed, both
theoretically and empirically.
Extension Mor mplex Design

In a future study planned as an extension of the one
presented herein, it is hoped that one of the methods discussed in
the previous section can be utilized and assessed. The logic of
this extension is as follows. In many educational studies,
particularly in evaluation research, complex nesting occurs on the
dependent variable. For instance, students are nested within
schools, which are nested within districts. Hopkins' (1984)
method can be extended to the analysis of data with this structure
also and this extension will be demonstrated in a subsequent study
in which one of the newer methods of variance component
estimation will be employed and assessed.

The large data set to be employed in this study (n = 32,000)
is likely to result in a design matrix that is too large for the
amount of memory available. This will necessitate the analysis of

one or more subsamples of the full data set such that a manageabie



design matrix is obtained. Depending on the size of manageable
subsamples, replications on independent subsamples may be
required because schools within districts is best considered a
random facet and dispersion effects are likely to adversely aifect
the stability of the variance estimates for this facet.
Implications for Practice

It is hoped that researchers in education and psychology will
not simply assume that the measuring device that they intend to
use flawlessly reflects the construct of interest. If (a) the
characteristics of the instrument used have been thoroughly
described for application to the relevant populations and
situations and (b) logic and previous research suggest that the
fixed-effect fallacy is not a threat to external validity, then it is
unlikely that the treatment of items as a random factor would add
much usefu! information relative to the costs. If, however, a
standardized measure is to be used in a non-standard situation or
an untried measure is to be used, then the information gained by
assessing the measurement instrument and its interactions with
the other variables in the study could prove to be invaluable.
Based on the information gained from this assessment, the
decision can be made on the extent of the threat to external
validity posed by the fixed-effect fallacy. If the relevant variance
components are very small, then simplification to an essentially
fixed-effects model is appropriate. The pros and cons of the

generalizability approach to data analysis should be carefully
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considered for the situation at hand in the decision as to whether

or not it should be used.
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APPENDIX A

Table 23

Expected Mean Squares for the Balanced P:G x | Design

SOURCE BvS

G o2ip:g + Npc2ig + Npo2p:g + NiNpo2g
PG c2ip;g + niczp;g

1 czip:g + npngczi

IG czip;g + npczig

IP:G o2ip:g

Table 24

Expected Mean Squares for the Balanced P:G_x 1:C Design

SOURCE DF BvS

G crzip;gc + npozig;c + nincczp;g + ninpncozg
C o2ip:gc + NicZpc:g + NpNgo2ixc + NiNpNgo2c
PG G2ip:gc + nincozp;g

.C ozip;gc + npngozi;c

aC czip;gc + niczpc;g + npczig;c + ninpozgc
PCG czip;gc + niczpczg

IG:C ozip:gc + np62ig:c

IP.GC Gzip;gc
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APPENDIX A (CONTINUED)

Table 25

Expected Mean Squares for the Balanced P:G x I:L Design

SOURCE BEMS

Gzip;gl + npo'zig;l + ninlczp;g + ninpn|c529

L czip;gl + niczpl;g + npngo'zi;l + ninpn902|
PG o2ip:gl + ninlo2p:g

I:L czip;gl + npngczi;l

GL czip;g| + ni02p|;g + npczig;l + ninpczgl
PLG ozip;gl + ni0'2p|;g

IG:L c2ip:gl + npo2ig:|

IP:GL c2ip:gl
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APPENDIX A (CONTINUED)

Table 26

Expected Mean Squares for the Balanced P:G_x [:CL Desigan

SOURCE BMS

Gzip;gcl + npo‘zig:c| + ninlncczp:g + ninpncn|0'2g

L czip;gd + nincczpl;g + npngczi;cl + ninpngnc(52|
C czip;gcl + nin[czpc;g + npngczi:cl + ninpngnlc?—c
PG c2ip:gcl + Ninenio2p:g
IiLC o2jp:gcl + Npngoc2i:lc
GL 62ip:gcl + Npo2ig:cl + Nincopl:g + Nincnpo?gl
cC 62ip:gcl + Npo2ig:cl + Ninlo2pc:g + NiniNps2gc
CL czip;gcl + niczpcl;@, + npngozi;cl + ninpngozcl
GCL 62ip:gcl + Nic2pcl:g + NpoZig:cl + Ninpo2gcl
PL-G o2ip:gcl + Ninco2pl:g

G 62jp:gcl + ninio2pc:g
IG.LC 62ip:gcl + npo2ig:cl
CLPG 62jp:gcl + Nic2¢lp:g

IP:GCL c2ip:gl
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APPENDIX B

lculation of Bi and Unbiased Estimates of 62p.g in the

P:G x I:C Design

Calculation of the Biased Estimate for 62p.g

EMSp.G) = o2ip:gc + 12.49102pc:g + 55.0006%p:g
55.00062p:g = E(MSp.G) - E(MS|p.G)

- 12.491/10.627[E(MSpc-G) - EIMS|p.G)]
55.00002p:g = 0.91 - 0.18 - 1.175(0.21 - 0.18)
o2p:g = 0.694/55.000 = 0.01262

Calculation of the Unbiased Estimate for ¢2p:q
E(MSp:-G) = Gzip:gc + 55.00062p:g

55.00002p:g = E(MSp:G) - E(MS|p.G)
c2p:g = (0.91 - 0.18)/55.000 = 0.01327



APPENDIXC

Satterthwaite (1946) devised a procedure by which an
approximate confidence interval for variance components can be

computed. The approximate (00(P)% confidence interval is:

{#(ZIM)\; c620) < 62(02dM)v}
Xcuv XLV

where 52q|M is the estimated variance given the modei M, j indexes
the mean squares that enter into the estimation of %o |M, and fjis
the coefficient of MSj in the linear combination of MS; that gives
8%a|M (see Table 2 and Appendix B). The terms X2uV and X2LY are
the upper, U = (1 + P)/2, and lower, L = (1 - P)/2, percentage points
of the 42 distribution With

(3, fMS)°
i -

Y, (fiM sy)?/df;
j

V=

"effective" degrees of freedom. For a more extensive discussion of

this procedure, see Brennan (1983, pp. 101 - 104, 137).
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