
“All we have to decide is what to do with the time that is given us.”

— Gandalf the Grey

University of Alberta

Applying Support Vector Machines to Discover
Just-in-Time Method-Specific Compilation Strategies

by

Ricardo Nabinger Sanchez

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Ricardo Nabinger Sanchez
Fall 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis
and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed

or otherwise reproduced in any material form whatsoever without the author’s prior written permission.

Examining Committee

José Nelson Amaral, Department of Computing Science

Duane Szafron, Department of Computing Science

Richard S. Sutton, Department of Computing Science

Bruce F. Cockburn, Department of Electrical and Computer Engineering

To Débora, for her endless love and support.

Abstract

Adaptive Just-in-Time compilers employ multiple techniques to concentrate compilation

efforts in the most promising spots of the application, balancing tight compilation budgets

with an appropriate level of code quality. Some compiler researchers propose that Just-in-

Time compilers should benefit from method-specific compilation strategies. These strategies

can be discovered through machine-learning techniques, where a compilation strategy is

tailored to a method based on the method’s characteristics. This thesis investigates the use of

Support Vector Machines in Testarossa, a commercial Just-in-Time compiler employed in the

IBM R© J9TM JavaTM Virtual Machine. This new infrastructure allows Testarossa to explore

numerous compilation strategies, generating the data needed for training such models. The

infrastructure also integrates Testarossa to learned models that predict which compilation

strategy balances code quality and compilation effort, on a per-method basis. The thesis

also presents the results of an extensive experimental evaluation of the infrastructure and

compares these results with the performance of the original Testarossa.

Acknowledgements

Throughout my research, many people helped me either directly by contributing to research
the goals, or indirectly by ensuring favorable conditions. I am thankful for each and every
one of you.

Débora, in special, for her constant support and love. My parents, especially my mother
Liane, for the remote support and for being brave enough to cross the planet and enjoy the
Winter in Edmonton. My sister and great friend Juliana, for her constant optimism even
in the darkest times. My uncle Bob, for his support and frequent updates on the weather
in Miami.

My supervisor Nelson for his mentorship and constant support. Besides being a great
supervisor, he is also a great cook. My co-supervisor Duane for the extensive advice on
machine-learning topics.

The IBM Testarossa JIT Team, especially Marius Pirvu and Mark Stoodley for their
abundant support with Testarossa. The IBM Center for Advanced Studies (CAS) for the
funding, which made the research culminating in this thesis possible.

Table of Contents

1 Introduction 1

2 IBM Testarossa 4
2.1 Just-in-Time Compilation . 4
2.2 The IBM Testarossa Just-in-Time Compiler 5

3 Support Vector Machines 8
3.1 Classifying Support Vector Machines . 8
3.2 Kernel Functions . 10
3.3 Advantages and Limitations of SVMs . 12
3.4 SVM Implementation . 12

4 Data Collection 14
4.1 Architecture Overview . 14
4.2 Computing Method Features . 15

4.2.1 Scalar Features . 16
4.2.2 Distributions . 17
4.2.3 Computing Distributions . 20

4.3 Selecting a Compilation-plan Modifier . 21
4.3.1 Special Compilation-plan Modifier . 21
4.3.2 Expiring Compilation-plan Modifiers 22

4.4 Instrumentation of Methods . 23
4.5 Storing Collected Data . 26

4.5.1 Archive Header . 27
4.5.2 Experiment Records . 28
4.5.3 String Table for Method Names . 31

4.6 Motivation for a Customized Infrastructure 33
4.6.1 Alternatives for Measuring Time . 33
4.6.2 Alternatives for Storing Collected Data 35

4.7 Concluding Remarks . 36

5 Compilation-plan Modifiers 37
5.1 A Compilation-plan Modifier . 37
5.2 Overview of the Exploration of Compilation Plan Modifiers 38
5.3 Randomized Search . 39
5.4 Progressive Randomized Search . 40
5.5 Considerations on Exploration Approaches . 41

6 Learning a Model 42
6.1 Preparing Data Sets . 42

6.1.1 Unarchiving Data . 43
6.1.2 Ranking Data . 44
6.1.3 Data Set Format . 46

6.2 Trimming . 47
6.3 Training Models . 49

6.3.1 Cost Parameter for SVMs . 49
6.3.2 Kernel Selection . 50

7 Integrating Compiler and Model 52
7.1 Normalization . 53
7.2 Class-to-modifier Mapping . 54
7.3 Socket-based Communication . 54
7.4 Trade-offs . 56

8 Experimental Evaluation 57
8.1 Experimental Setup . 57
8.2 Model Training . 57
8.3 LIBLINEAR Training . 63
8.4 Experimental Methodology . 64
8.5 Experimental Results . 65

8.5.1 Progressive Randomized Search Models 65
8.5.2 Randomized Search Models . 68
8.5.3 Hybrid Models . 70

8.6 Concluding Remarks . 71

9 Related Work 72
9.1 Individual Heuristics . 73
9.2 Compiler Optimization Flags . 74

9.2.1 Iterative Compilation . 74
9.2.2 Automatic Tuning of Compiler Heuristics 76
9.2.3 Fine-grained Compilation . 77

10 Conclusion 81

11 Future Work 83
11.1 Active Feedback Exploration . 83
11.2 Heuristic-based Search . 84
11.3 Accelerated Search based on Similarity . 85
11.4 Ordered Compilation Plans . 86

Bibliography 87

A SPECjvm98 Results 90
A.1 compress . 90
A.2 db . 92
A.3 jack . 93
A.4 javac . 95
A.5 jess . 96
A.6 mpegaudio . 98
A.7 mtrt . 99
A.8 raytrace . 101

List of Figures

2.1 Major components in IBM Testarossa . 6

3.1 Example of hyperplane placement . 9
3.2 Example of feature space transformation . 11

4.1 Data Collection during training. 15
4.2 Measuring time spent in a method by means of instrumentation 25
4.3 Organization of the binary archives . 26
4.4 Binary archive header format . 27
4.5 Binary archive record format . 29
4.6 String table format . 31
4.7 Signature of Java methods . 32

5.1 Representation of a compilation-plan modifier 37

6.1 Intermediate data set . 44
6.2 Processing of intermediate data sets . 45
6.3 Data set format used by LIBLINEAR . 47
6.4 Trimming as a noise-filtering step . 48

7.1 Architecture of the learning-enabled Testarossa 53
7.2 Format of a scaling file . 53
7.3 Format of an index file . 54
7.4 Socket-based communication between Testarossa and the model 55

8.1 Model training times . 63
8.2 Performance results using progressive randomized models 66
8.3 Additional experiment on mpegaudio using model P3 67
8.4 Compilation time using progressive randomized search models 68
8.5 Performance results using randomized models 69
8.6 Compilation time using randomized search models 69
8.7 Performance results using hybrid models . 70
8.8 Compilation time using hybrid models . 71

11.1 Heuristic search of compilation plans . 84

A.1 Progressive randomized search models on compress. 90
A.2 Randomized search models on compress. 91
A.3 Hybrid models on compress. 91
A.4 Progressive randomized search models on db. 92
A.5 Randomized search models on db. 92
A.6 Hybrid models on db. 93
A.7 Progressive randomized search models on jack. 93
A.8 Randomized search models on jack. 94

A.9 Hybrid models on jack. 94
A.10 Progressive randomized search models on javac. 95
A.11 Randomized search models on javac. 95
A.12 Hybrid models on javac. 96
A.13 Progressive randomized search models on jess. 96
A.14 Randomized search models on jess. 97
A.15 Hybrid models on jess. 97
A.16 Progressive randomized search models on mpegaudio. 98
A.17 Randomized search models on mpegaudio. 98
A.18 Hybrid models on mpegaudio. 99
A.19 Progressive randomized search models on mtrt. 99
A.20 Randomized search models on mtrt. 100
A.21 Hybrid models on mtrt. 100
A.22 Progressive randomized search models on raytrace. 101
A.23 Randomized search models on raytrace. 101
A.24 Hybrid models on raytrace. 102

List of Tables

3.1 Common SVM kernels found in the literature. 11

4.1 Set of scalar features collected . 16
4.2 Types characterized during distribution data collection 18
4.3 Operations characterized during distribution data collection 19
4.4 Signature of Java methods . 32

6.1 Effect of different trimming factors in data sets 48

8.1 Benchmarks included in the SPECjvm98 suite 58
8.2 Benchmarks used for each training data set 58
8.3 Characterization of the training data . 60
8.4 Characterization of the final data sets . 62

List of Algorithms

4.1 Single-scan computation of distributions over types and operations. 21

12

List of Acronyms

ANN Artificial Neural-Network

AoT Ahead-of-Time

API Application Programming Interface

BCD Binary-coded Decimal

CPU Central Processing Unit

FIFO First-in first-out

IL Intermediate Language

IPC Inter-process Communication

JiT Just-in-Time

JVM Java Virtual Machine

MMH Maximum Margin Hyperplane

MSR Model-specific Register

NN Nearest Neighbor

PMC Performance Monitoring Counter

RBF Radial Basis Function

RL Reinforcement Learning

RVM Research Virtual Machine

SDM Sequential Dual Method

SVM Support Vector Machines

SVR Support Vector Regression

TSC Time Stamp Counter

VM Virtual Machine

XML Extensible Markup Language

13

Chapter 1

Introduction

Dynamic programming languages such as JavaTM offer developers a wide range of features,

such as the inclusion of new types (Java classes) while the application is running. The

success of such languages relies heavily on the underlying runtime support, which in the

case of the Java language is provided by the Virtual Machine (VM). Dynamic languages

are often associated with lower execution performance, so the VM not only provides the

needed runtime support, it also employs many techniques to improve the performance of

the application [4, 10].

One of such techniques is Just-in-Time (JiT) compilation, where the application is dy-

namically compiled (i.e., while the application is running) into native code that can execute

directly on the host platform. Modern JiT compilers implement numerous code transfor-

mations used in the optimization phase of such compilations in order to further improve the

execution performance of the code generated. However, since the compiler competes with the

application for the same resources, a balance must be struck in terms of compilation effort

versus code quality [1, 6]. JiT compilers include multiple optimization levels (compilation

plans) which are selected in reaction to the execution behavior of the application, focusing

compilation efforts proportionally to the higher-demanding portions of the application. For

example, a few key methods in a Java application can be compiled at the highest optimiza-

tion level implemented by the JiT compiler, whereas infrequent or short-lived methods may

be compiled at the lowest optimization level or not be compiled at all [5].

Designing a compilation plan and selecting the combination of code transformations that

should be included requires a significant amount of effort. Currently, each optimization level

is hand-tuned by compiler experts during the course of many years across a wide range of

platform combinations. With the introduction of new platforms supported by the compiler,

the existing compilation plans can require adjustments or even platform-specific versions.

Worse, maintaining the optimization levels is difficult because changes in a compilation plan

can be beneficial for some applications, but degrade the performance of others [26].

The premise of this study is that compilation plans can be tailored on a per-method

1

basis with the use of machine-learned models. By extracting features describing methods,

and presenting the machine-learning algorithm with multiple variations of the original com-

pilation plan, it should be possible to create a model that identifies patterns in the data

presented and predicts a method-specific compilation plan. The learned model can take into

consideration, for example:

• When a code transformation is harmful (leading to slower executing code) and should

be disabled for specific methods;

• When code transformations can be disabled in the compilation plan, while delivering

equivalent code performance, at a reduced compilation cost;

• When the original, hand-tuned compilation plan is the best decision for the method.

This thesis presents a complete framework that integrates a method-specific decision

mechanism based on machine-learned models in Testarossa, an enterprise-grade, commercial

Just-in-Time compiler for Java from IBM R© used in the IBM J9TM Java Virtual Machine.

Specifically, the main contributions of this thesis are:

• A data collection infrastructure, that performs compilation experiments using a light-

weight method profiling mechanism.

• A customized binary archive format to facilitate large-scale data collection experi-

ments.

• Development of supporting tools to convert archives into the format required by the

machine-learned models used in this study.

• A lean communication protocol based on Inter-process Communication (IPC) to in-

tegrate the machine-learned models with the compiler. The communication approach

allows different machine-learned models to be easily swapped without changes to the

compiler.

• Evidence that, for some applications, method-specific compilation produces code with

performance comparable to the compilation plans currently in use, however, using less

compilation time.

Just-in-Time compilers, including IBM Testarossa, are discussed in Chapter 2. Machine-

learning models are introduced in Chapter 3. Chapter 4 presents the data collection infras-

tructure in great depth. The techniques used to explore different compilation plans are

discussed in Chapter 5. The steps needed to train a machine-learned model are detailed in

Chapter 6, followed by the approach used to integrate a learned model with the compiler,

in Chapter 7. Chapter 8 reports on the experimental results obtained with the proposed

2

solution. Similar approaches are discussed in Chapter 9. Chapter 10 presents concluding

remarks. Finally, Chapter 11 describes future work.

3

Chapter 2

IBM Testarossa

Since its introduction in 1995, the Java programming language has been used in a wide

range of applications. Part of its popularity can be attributed to the use of a Virtual

Machine (VM) that allows for greater application portability. As long as a VM is available,

the application can be executed regardless of the underlying architecture.

Java has also been the focus of extensive research in order to deliver improved execution

performance, especially when it comes to the VM implementation and additional techniques

that can accelerate the execution speed of applications. JiT compilation is a technique where

the Java bytecodes are translated to another instruction set that can execute natively instead

of being interpreted. The JiT compiler exploits features in the underlying architecture and,

often, delivers improved execution performance.

In the course of this translation, many code-transformation opportunities arise to further

improve the execution performance of a Java application. Thus, a JiT compiler acts as a full-

fledged compiler. A JiT compiler competes with the application for resources. Therefore,

the conscious use of the resources during compilation is of major importance. Otherwise, all

benefits from advanced JiT compilation could be outweighed by the costs of the compilation.

This chapter introduces the JiT compilation technique in Section 2.1, followed by a

discussion, in Section 2.2, on the compiler used in this research, Testarossa, from IBM.

2.1 Just-in-Time Compilation

A Java application is generated by compiling the source code into Java bytecodes. This byte-

code representation targets a hypothetical architecture, the Java Virtual Machine (JVM) [17].

This virtual machine implements a stack-based execution model, where all operations (in-

structions of the hypothetical architecture) are performed on a stack that represents the

memory. Because Java applications are compiled for a JVM, they are considered portable.

The JVM is a native application that executes Java bytecodes by interpreting this code on

the host platform.

4

Most modern JVMs implement a dual model: (i) a regular bytecode interpreter, and

(ii) an acceleration mechanism based on JiT compilation. The interpretation follows the

semantics defined for the JVM and performs the equivalent bytecode operations that are

intended for a stack-based architecture onto the host platform, which may use a different

architectural model.1 The need for a JiT compilation mechanism arises from the desire

to improve execution performance—especially on portions of the application that are very

computation-intensive (e.g.: cryptography, encoding/decoding of sound, image, and video).

The performance is improved by compiling Java bytecodes into native instructions for direct

execution on the host platform, thus eliminating the bytecode interpretation overhead.

JiT compilers can be broken down into two key components: (a) a profiling mechanism

that identifies portions of the application that are likely to benefit from JiT compilation; and

(b) the JiT compiler itself. Profiling mechanisms keep track of the areas in the application

that are frequently executed. An example of a profiling mechanism is per-method invocation

counters. The JVM uses this profiling information to decide if it is worthwhile to compile a

method to native code, while the JiT compiler also uses the profiling information to decide

how to optimize the method.

2.2 The IBM Testarossa Just-in-Time Compiler

Testarossa is a state-of-the-art JiT compiler employed in the IBM J9TMJava Virtual Ma-

chine, implementing numerous optimization techniques [18, 22]. Because the compilation

comes at a significant cost in terms of overhead, Testarossa implements multiple mechanisms

to identify portions of the Java application that can benefit from JiT compilation. The goal

is to avoid outweighing the benefits of JiT compilation due to the compilation overhead.

Testarossa implements adaptive multi-level compilation of individual methods in the

application, reacting to profiling information dynamically generated from the execution of

the application. Methods can be recompiled multiple times after they are compiled for the

first time. Testarossa implements five optimization levels identified by adjectives related

to temperature: cold (lowest optimization level), warm, hot, very hot, and scorching hot

(highest optimization level). The temperature refers to the estimate of how frequently a

method is executed.2 The hotter a method is, the more compilation effort Testarossa invests

in it in the hopes of generating faster code.

Testarossa uses a combination of invocation counters and time sampling to estimate

the hotness of a method. This combination of counters and samplings enables Testarossa

1Most contemporary computers implement a load-store register-based model, where all computations
are performed on architecture registers and the memory is the storage. The computation requires load-
store cycles, where data is loaded from memory into registers, and then stored back to memory after the
computation is complete.

2In the jargon of developers, instead of talking about the temperature of a method, one talks about the
hotness of the method.

5

IL Generator Code GeneratorOptimizer

Compilation Control Compiled
Methods

.class

Figure 2.1: The four major components in IBM Testarossa. The Intermediate Language (IL)
Generator translates a method from Java bytecodes into the intermediate representation
used by the Optimizer during the compilation. After an optimization phase, the Code
Generator produces a native version of the method that can execute on the host platform
instead of being interpreted. The Compilation Control, in turn, decides when to compile or
recompile a method and at which optimization level.

to anticipate the compilation of methods that spend a significant amount of time in fewer

invocations. The estimation mechanism also allows for recompilations at a higher optimiza-

tion level if a method executes frequently with regard to the pool of methods active in a

Java application.

An overview of the architecture of Testarossa is presented in Figure 2.1. There are four

major components, represented as boxes in the figure. The Intermediate Language

(IL) generator converts Java bytecodes loaded from Java class files into a tree-form

intermediate-language representation. This representation is used as both input and output

by the optimizer. The optimizer performs code transformations on the IL-tree, and the

final tree is fed to the code generator. The code generator translates the IL-tree into

native instructions for the supported platforms (e.g.: Intel x86, MIPS, PowerPC, s390, and

others). The compilation control decides when to compile (or recompile) a method and

which optimization level should be used. These decisions are based on the profiling infor-

mation gathered during the execution of the application. Most of the resources necessary

for compilations are spent in the optimization stage.

The optimization levels implemented by Testarossa are organized as ordered sets of code

transformations (a compilation plan) that are applied on the IL-tree of the method being

compiled. Each transformation can be subject to compilation flags that the optimizer tests

before applying them. These flags consist of characteristics of the method being compiled

(e.g.: whether the method has loops) or if a code transformation is disabled (e.g.: user

request). With this mechanism, Testarossa can save compilation time and resources by

slightly adjusting the compilation plan for the method.

The smallest compilation plan in Testarossa, for the cold optimization level, includes over

20 transformation passes. In contrast, the largest compilation plan (for the scorching hot

optimization level) has more than 170 transformation passes. These figures include code

6

transformations that are applied more than once in the compilation plan. For example,

deadTreesElimination and treeSimplification are applied multiple times as cleanup steps.

In Testarossa, compilations are performed by at least one dedicated thread, running in

the background. Normally, the compilations are asynchronous to the application execution.

In some cases, however, the application must have its execution halted until the compilation

of a method completes. For example, if an application invokes a method that is part of

a class hierarchy which just changed in a non-compatible way (e.g.: a class dynamically

loaded by the application overrides methods from the parent classes), the method must first

complete compilation before the JVM is allowed to continue execution.

In this thesis, the compilation plans included in Testarossa are subject to explorations

with the goal of fine-tuning them on a method-specific basis. This is done in conjunction

with a machine-learned model, Support Vector Machines, discussed in Chapter 3.

7

Chapter 3

Support Vector Machines

Support Vector Machines (SVM) are statistical learning models that work by finding max-

imum separating hyperplanes1 in a training data set composed of data instances and their

respective values [11, 19]. A data instance is a p-dimensional feature vector ~x representing

an i-th observation (e.g.: code size and presence of loops in a method to be compiled). The

value of a data instance is either a label2 (e.g.: a code transformation was applied to the

method) or an output (e.g.: measured speedup of a code transformation).

Support Vector Machiness (SVMs) are trained for either regression or classification.

Regression SVMs3 are used to estimate the output for an unseen feature vector ~X by

measuring the distance from ~X to the separating hyperplane. Regression SVMs are not

discussed further because they are not used in this study. A classifying SVM predicts

the class of ~X by computing the location of ~X relative to separating hyperplanes and by

inspecting the sign of the classification function obtained from this computation.

Section 3.1 discusses SVMs used for classification problems.

3.1 Classifying Support Vector Machines

The simplest classifying SVM deals with a single class, and with a training data set consisting

of N instance pairs (~x1, y1), (~x2, y2), . . . , (~xN , yN), where each ~xi is a p-dimensional vector

~xi ∈ ℜ
p and, yi ∈ {−1, 1}. Training a classifying SVM consists of finding a hyperplane

that maximizes the margin M , as illustrated in Figure 3.1. In the case of linearly separable

data, such as shown in Figure 3.1(a), the margin M is the distance between the separating

hyperplane (solid line) and a point in either class (hollow or filled circles).

The closest instances to the separating hyperplane are the support vectors (dashed

lines). When the data is not linearly separable, as illustrated in Figure 3.1 (b), some amount

of misclassification is inevitable in order to properly place the separating hyperplane. SVMs

1The term Maximum Margin Hyperplane (MMH) is also common in the literature.
2Labels are often called classes.
3Regression SVMs are also referred to as Support Vector Regression (SVR).

8

M
M

(b)(a)

Figure 3.1: Example of hyperplane placement. When the data is linearly separable (a),
the separating hyperplane (solid line) is placed as far as possible from either class (hollow
and filled circles) with a margin of M , and the support vectors (dashed lines) lie at the
instances closest to the hyperplane, from both classes. When the data is overlapping (b),
some amount of misclassification must be allowed (arrows) during hyperplane placement.

can tolerate this condition with soft-margins, by maximizing the margin M at the same

time that the misclassification error is minimized.

A separating hyperplane is defined as a p-dimensional vector ~X that satisfies

~W · ~X + b = 0, (3.1)

where ~W is a p-dimensional vector of weights, b is an additional weight (bias), and · denotes

a dot product operation. If the data is linearly separable, then all elements of the training

set satisfy the following relations:

~W ·xi + b ≥ 1 if yi = 1,

~W ·xi + b ≤ −1 if yi = −1,
(3.2)

for a vector ~W and a scalar b [11]. When ~W ·xi + b = 1, the data instance xi lies at the

support vector. The direction of maximal separation between the two classes is given by
~W

‖ ~W‖
.

The classifying SVM is expressed as the following quadratic program

minimize
W,b

1

2
‖ ~W‖2 + C

N
∑

i=1

ξi

subject to ~W · ~xi + b ≥ 1− ξi, i = 1, . . . , p

ξi ≥ 0, i = 1, . . . , p

(3.3)

The maximum margin between the classes is expressed by 1

2
‖ ~W‖2. To deal with over-

lapping data, the classifying SVM includes the sum of deviations
∑N

i=1
ξi. The parameter C

controls the amount of penalization given to deviations (the cost of accepting a misclassifi-

cation in the model). A small value (e.g.: 0.1 or less) allows more misclassifications, whereas

9

large values (e.g.: 10 or more) amplify the misclassification cost. Values too small produce

poor models, and values too large can cause the model to overfit. The value of C cannot

be computed beforehand, thus it is set to a value suggested by an expert or experimentally

determined by evaluating several classifiers using different values of C.

Multi-class classification SVMs, such as those used in this study, are trained in two

different ways: (i) one-versus-one and (ii) one-versus-all. In a one-versus-one approach,

classifiers are trained for each pair of classes and each classifier casts a vote whether the data

point ~X belongs to that class or not. The class with the majority of votes is selected. The

one-versus-all approach trains one classifier for each class, which computes the confidence

that the data point belongs to a given class, and the class with the highest confidence is

selected. The confidence in the one-versus-all approach is the distance from ~X to the given

classifier boundary.

SVMs can be further extended and adapted to different scenarios with the use of kernel

functions, which are detailed in Section 3.2.

3.2 Kernel Functions

In many applications of SVMs the data is not linearly separable in the original feature space.

In those cases, an SVM can be built using a kernel function that maps the original feature

space into a higher-dimensional space, where the data becomes linearly separable.

A kernel function K is a symmetric function with the form φ : ℜp → ℜP . K maps the

p-dimensional space into a P -dimensional space given by

K(~Xi, ~Xj) = φ(~Xi) ·φ(~Xj), (3.4)

where ~Xi and ~Xj are p-dimensional vectors. The classification function G is updated ac-

cordingly:

G(~X) = w ·φ(~X) + b, (3.5)

where the data point ~X is transformed by φ prior to the application of the classification

function [11]. Table 3.1 presents kernel functions commonly found in the literature.

When the original p-dimensional feature space is transformed into the P -dimensional

space and the separating hyperplanes are computed, often the hyperplanes turn out to

be non-linear when mapped back to the original space. This characteristic gives SVM a

high generalization power, including cases where the data is organized in arbitrary shapes.

Figure 3.2 illustrates a possible scenario. The original p-dimensional feature space on the

left is transformed into a P -dimensional space by a kernel function K(~Xi, ~Xj). In the

transformed space, the data is linearly separable by a hyperplane. The hyperplane (solid

line) and the support vectors (dashed lines) have a non-linear shape when mapped back into

the original space.

10

Table 3.1: Common SVM kernels found in the literature.

Kernel function Definition

d-degree polynomial K(~Xi, ~Xj) = (~Xi · ~Xj + 1)d

Gaussian radial basis function exp
(

−
‖ ~Xi− ~Xj‖

2

2σ2

)

Sigmoid tanh(κ1
~Xi · ~Xj + κ2)

K(X , X)ji

Transformed feature spaceOriginal feature space

Figure 3.2: Example of feature space transformation produced by kernel functions. The
original feature space on the left is transformed with a kernel function K(~Xi, ~Xj), where
the data is linearly separable by a hyperplane, but is non-linear when mapped back to the
original space. The solid line represents the hyperplane, and the dashed lines the support
vectors.

11

The advantages and limitations of using SVMs for classification problems are discussed

in Section 3.3

3.3 Advantages and Limitations of SVMs

The key advantage of SVMs is their flexibility to adapt to many different situations. The

soft-margins allow SVMs to deal with overlapping data, by allowing some level of misclas-

sification in order to optimally place a separating hyperplane. The maximization of the

separating margins provide a high generalization power even with a small set of training

instances. The misclassification cost C allows the training to be tuned by making the model

more or less flexible, while preventing the overfitting of the resulting model. Lastly, the

possibility of using kernel functions, when the training data is not linearly separable in the

original feature space, makes SVMs very versatile, allowing even the use of custom kernels.

SVMs do have drawbacks, however. The selection of an appropriate value for the C

parameter requires multiple training iterations and may increase training times significantly.

Choosing a kernel function (if any) can also be difficult. Often the training data is too

complex to estimate which kernel function is appropriate. In such cases, additional training

experiments must be performed, further increasing training times. Moreover, if a testing

data set is not available the best performing kernel function can only be determined after

deploying the learned model.

The kernel function can be responsible for a large amount of computation overhead,

which can hinder its use with complex or high-dimensional training data. In addition, if

the original feature space is already high-dimensional then mapping the data into a higher-

dimensional space may not improve the quality of the learned model: it only results in

unnecessary computation. When the feature space is high-dimensional, an identity kernel

function may be successful.

The SVM implementation used in this study is discussed in Section 3.4.

3.4 SVM Implementation

The SVM implementation used in this study, LIBLINEAR [13], supports the training of sev-

eral SVM classifiers, including a multi-class SVM. The multi-class classifier implementation

in LIBLINEAR uses a variant of the Sequential Dual Method (SDM) [24], which performs

better on large-scale classification problems than the one-versus-all approach. Large-scale

problems include those that have numerous instances and/or distinct classes, such as the

one presented in this study.

The resulting model learned by LIBLINEAR consists of a p × L matrix. The matrix

contains the contributions of each of the p dimensions of the feature space for separating

12

the L distinct classes present in the training data set. The prediction time is proportional

to the size of the matrix.

Both trainer and classifier are implemented in a mixture of C and C++ languages.

These implementations share components with another SVM implementation from the same

authors, called LIBSVM. Like LIBLINEAR, LIBSVM implements multiple classification

methods, including the multi-class classifier. The main difference is that LIBSVM focuses

on a wider selection of kernel functions, with many non-linear kernels, including those listed

earlier in Table 3.1.

In order to learn a multi-class SVM classifier, a large-scale data-collection process must

be performed. Chapter 4 describes the infrastructure implemented for collecting data that

is then used to generate a training data set.

13

Chapter 4

Data Collection

Data collection is an essential step in generating data that can be used to train a machine-

learned model. The collection process mimics the regular operation of Testarossa, while

performing controlled changes in the compilation plans to explore alternative scenarios on

a per-method basis.

This chapter discusses the workflow when executing Testarossa in data-collection mode,

starting with an overview in Section 4.1. Section 4.2 describes the features that characterize

a method and how these features are collected. Next, Section 4.3 presents how compilation-

plan modifiers are selected and managed during the data-collection process. The profiling

mechanism is described in Section 4.4. The storage approach when data collection is com-

plete is detailed in Section 4.5. Section 4.6 discusses alternatives to the mechanisms used,

especially profiling and storage, and Section 4.7 concludes the Chapter.

4.1 Architecture Overview

The architecture of the framework for data collection is summarized in Figure 4.1. The

individual stages of the data-collection process are detailed in the following sections.

Data collection starts when Testarossa selects a method for compilation (Figure 4.1 (a)).

When Testarossa invokes the optimizer for a given compilation, the method features are com-

puted immediately before the optimization starts (b). Then, a compilation-plan modifier

is retrieved (c) and combined with the original compilation plan, instructing the optimizer

to perform a different set of code transformations (d). As is the case with most produc-

tion compilers, the order of transformations cannot be easily changed without violating

dependencies amongst them (which can either cause compiler malfunction or generation of

invalid code). Thus, transformations are only removed from the original compilation plan.

The method is instrumented in addition to the optimization, enabling it to collect dynamic

information, such as execution time, at each invocation.

When the compilation is complete, the freshly compiled method is inserted in the pool

14

VM

JiT

Compiled MethodsInterpreted Methods

(f)

(e)(d)

(b)

(a)

Queue

(c)

Compilation Plan

Modifier

^

Figure 4.1: Data Collection during training.

of compiled methods (e). It is possible that Testarossa is recompiling a method at a higher

optimization level (f). In such cases the resulting method replaces the old version of the

method in the pool of compiled methods. In addition, the instrumentation mechanism

triggers recompilation requests to the VM, enabling the data-collection process to explore

a large number of compilation-plan modifiers in a single JVM execution.

Section 4.2 discusses how method features are computed.

4.2 Computing Method Features

Method features characterize a method by summarizing it in the form of a feature vector

~F . Ideally, ~F should contain enough information about a method to allow a machine-

learned model to correlate this information to a specific compilation plan that yields higher

performance when the method is compiled.

The information contained in ~F is dynamically extracted from the compiler, just prior

to the optimization stage. This way, the set of features extracted is consistent in both

data-collection and production modes. Not every piece of information made available by

the compiler is useful for the training of the model. Compiler developers are in the most-

favorable position to indicate what portions of the data can be useful to discover better

compilation plans.

In this implementation of method-specific learning, the feature vector ~F is composed of

71 numerical attributes (dimensions). This data can be organized in two sets:

1. Scalar features consist of counters and binary attributes for a given method without

any special relationship;

2. Distributions characterize the actual code of the method by discriminating across

operand types and by aggregating similar operations.

15

Table 4.1: Set of scalar features collected. The features collected are grouped into counters
and attributes, where attributes are simple binary features.

Counters Attrib utes

Exception handlers Contructor? Allocatesdynamic memory?
Arguments Final? Unsafe symbols?
Temporaries Protected? Uses BigDecimal?
Tree nodes Public? Virtual method overridden?

Static?
Synchronized?

Many-iteration loops? Strict floating-point?
May have loops? Usesfloating-point?
May have many-iteration loops?

The two sets of features collected also differ in the way that they are computed, and they

are detailed in Sections 4.2.1 and 4.2.2, respectively.

4.2.1 Scalar Features

Scalar features are a subset of the information normally generated by Testarossa on every

method compilation. The information carried is very diverse, ranging from counters (e.g.:

number of parameters received by the method when invoked) to binary attributes (e.g.:

whether the method is a constructor).

Table 4.1 illustrates the scalar features that are part of the feature vector ~F . In the

table, scalar features are organized as two logical groups: counters and attributes. The first

counter type (Exception handlers) indicates how many exception handlers are present in the

method. The next two counters, Arguments and Temporaries, decompose the total number

of symbols referenced in the method, respectively, into the number of arguments received

by the method when it is invoked, and the number of temporaries used in the method (e.g.:

local variables). In Testarossa, the number of temporaries t is given by t = |{S}| − |{A}|,

where |{S}| is the size of the set of symbols referenced in the method, and |{A}| is the size

of the set of arguments. The last counter, Tree nodes, provides the number of nodes in

the initial tree that represent the method internally in the intermediate language used by

Testarossa.

The second logical group of scalar features are attributes. All attributes are binary

(represented with a ? next to the name of the attribute in Table 4.1). The attributes are

separated into subgroups. In the first subgroup are attributes that are usually made explicit

when the method is implemented, either by the semantics of the programming language

(constructor) or by keywords (final, protected, public, static, synchronized).

The second subgroup contains three attributes related to the presence of loops. After

the method is compiled, loop constructs from the programming language are lost, and the

16

presence of loops is detected by inspecting the instruction stream for backward branches.

When a method has a backward branch in the instruction stream, it is marked as possibly

having a loop (may have loops attribute). Testarossa also employs thresholds to estimate

whether the method has loops with many iterations (many-iteration loops and may have

many-iteration loops attributes), which is sometimes the case with nested loops. Loop

attributes enable Testarossa to apply loop transformations to a method only if it is eligible

(i.e., the method does have loops), saving compilation time otherwise.

The next subgroup contains a diversified set of characteristics about the method. For

example, Testarossa has specific optimizations targeting methods that allocate memory dy-

namically, which can be determined using escape analysis.1 The unsafe symbols attribute

is set on methods that inline a method from the class sun.misc.Unsafe, restricting the ap-

plicability of optimizations such as redundant-load elimination.2 Testarossa detects several

methods and classes that perform computations with arbitrary precision, using the core Java

library java.math.BigDecimal, reflected in the Uses BigDecimal attribute. Computations

using BigDecimal may not be eligible for rematerialization because the code generated can

outweigh the benefits of this optimization.3 The Virtual method overridden attribute refers

to the condition where the class hierarchy of the method changed in ways that Testarossa

could not anticipate. For instance, Java allows classes to be dynamically loaded, and these

classes may contain methods that override parent methods. If the change in the class hierar-

chy invalidates a compiled method, the method is recompiled taking the new class hierarchy

into consideration.

The final subgroup records whether the method performs any floating-point computation

(Uses floating point attribute) and if the JVM should enforce strict compliance of floating-

point computations.

In conjunction with the scalar features described in this Section, distributions complete

the set of data that comprise the feature vector ~F , and are discussed next in Section 4.2.2.

4.2.2 Distributions

Distributions characterize different aspects of the abstract representation of the method in

Testarossa. There are two distinct sets of distributions collected: (i) distribution over types

and (ii) distribution over operations. This separation allows for (a) a simpler implemen-

tation for the collection process, (b) a reduced set of features, and (c) a smaller storage

1Escape analysis is used by the compiler to determine the lifetime of an object. For example, if an object
can be proven to not escape a given context (e.g.: the lifetime of the object is restricted to a method), the
compiler can allocate it on the stack, thereby avoiding the heap.

2Redundant-load elimination is a code transformation that removes a load instruction if it can be proven
that the operand is available on one of the architectural registers. In some cases, the load instruction is
replaced by a register-to-register copy.

3Rematerialization is a code transformation where the compiler emits code that recomputes a value
when the benefits are evident for the compiler. For example, rematerialization can be used to reduce
register pressure.

17

Table 4.2: Types characterized during distribution data collection. Most types are native
to the Java language. Testarossa has internal support for specialized types in addition to
the native types.

Java Native
Scalar Non-scalar

Testarossa Learning-only

byte long Address Longdouble Mixed types
char float Object Packed decimal
short double Zoned decimal
int void

requirement.

Each distribution set has a different counter capacity. “Distribution over types” are 16-

bit counters (ranging from 0 to 65, 535), while “distribution over operations” are 8-bit (0 to

255). The counters used in the distribution over types are larger because a single operation

can increment the counter more than once, depending on the number of operands. Once a

counter reaches its maximum possible value, it is no longer incremented.

Table 4.2 presents all of the 14 types that are counted during data collection. Most types

characterized in this distribution are native types of the Java language, organized as scalars

and non-scalars. Scalars are primitive types that can be either integers (byte, char, short,

int, and long), floating-point (float, and double), or no type as far as the programming

language design is concerned (void). The non-scalars native types can be either an address

(an array with one or more dimensions) or an object.[17]

Testarossa has explicit support for specialized types in addition to native types. “Long

double” is a quadruple-precision 128-bit IEEE-754 floating point type. Both packed and

zoned decimals provide support for Binary-coded Decimal (BCD), which are frequently used

in financial applications. These types are especially useful when dealing with currencies,

where any errors due to data representation would be a liability. In addition, BCD enables

efficient fixed-point, arbitrary-precision computation.

Table 4.3 presents the 38 operations that are characterized when computing distribu-

tions during data collection of a method. The operations can be grouped into several logical

groups, the first one being arithmetic and logic operations (column ALU in the table). Most

operations in the ALU group are requirements of any JVM implementation, but Testarossa

has support for extra operations when the method is converted into the intermediate repre-

sentation, especially compare. Internally, compare is specialized for all types supported by

Testarossa and the common predicates (equal, not equal, less than, greater than or equal,

greater than, less than or equal).

The second column in Table 4.3, Cast, lists the typecast operations that are charac-

terized. As with ALU operations, most types are native to the Java language and those

18

Table 4.3: Operations characterized during distribution data collection. Most operations
are native for the instruction set of the Java language, but Testarossa has internal support
for some specialized operations in addition to the native ones.

ALU Cast Load/Store JVM
add byte load instanceof
sub char loadconst synchronization
mul short store throw
div int
rem long Memory Branch
neg float
shift double new branch
or longdouble new array call
and address new multiarray
xor object
inc packed Array operations
compare zoned

check Mixed operations

typecasts are requirements for any JVM. However, as Testarossa supports additional types

(e.g.: longdouble, packed and zoned decimals), it has additional typecast operations that

are characterized during data collection. The typecast operation makes explicit the intended

type after the conversion (i.e., the int typecast operation converts any valid operand into

int).

Next in the table are load and store operations. The instruction set for the Java language

contains many different opcodes for loading and storing data [17]. In particular, every

primitive type has a general instruction for load, load constant, and store operations, and

an additional set of specialized instructions. The general form of an instruction specifies

the operation and requires an operand indicating the index of the local variable affected by

the operation, whereas the specialized forms embed the operand index in the opcode. For

example, the iload4 instruction requires an operand while iload_15 does not. Testarossa

expresses these operations in the general form when converting a method to its internal

representation, but in a specialized form for all types supported directly by Testarossa.

During data collection, the specialized operations are coalesced into either load, load const,

or store operations because, in practice, only a small subset of type-specialized instructions

are used in a method. The distinction across the operations is reflected in the distribution

of types for the method: each type-specialized form triggers a different type counter.

The group Memory in Table 4.3 refers to the characterization of distinct dynamic

memory-allocation operations. The key difference amongst all three operations is the pur-

pose of each one: (i) new is used to create an instance of a single object; (ii) new array

4An iload is an integer (int) load from variable index specified as operand to the top of the stack.
5An iload_1 is an integer (int) load from variable index #1 to the top of the stack.

19

allocates space for a one-dimensional array of elements of a certain type; and (iii) new

multiarray is used to allocate a multi-dimensional array of elements of a certain type.

The last column in the table starts with the JVM group. The first counter is incremented

when instanceof Java instructions are found, which are used to test whether an object

reference in the stack is of a given type. The second counter, synchronization, counts the

number of serializing Java instructions (monitorenter and monitorexit instructions) in the

method. Lastly, the number of exceptions explicitly thrown (by using the Java instruction

athrow) is reflected in the counter throw.

Next, the Branch group contains counters for branching operations. Testarossa supports

a wide range of fine-grained branching operations, but in practice only a handful is used

in the scope of a single method. Therefore, the majority of the branching operations are

coalesced in a single branch counter. On the other hand, method invocations are handled in

a separate counter, call. The intermediate representation in Testarossa makes the return

type of the method being invoked explicit, triggering the appropriate type counter during

data collection.

Last in Table 4.3 are two groups that are counters on their own. The Array operations

counter is incremented whenever an array-specific operation is performed at the intermedi-

ate representation level in Testarossa. Array operations include bounds check, array copy,

and array comparison. They do not include the modification of an element in an array.

Such operation involves loading an element from the array (thus a Load/Store operation),

performing a computation (an ALU operation), and then storing the result back (another

Load/Store operation).

The approach used for computing the distribution counters is detailed in Section 4.2.3.

4.2.3 Computing Distributions

The 52 distribution counters, split in two groups (types and operations), are computed in a

single pass over the tree-based representation of the method in Testarossa, just prior to the

start of the optimization stage. The implemented function traverses this tree and increments

the appropriate counters by using a lookup table (comprising every possible intermediate

representation node in Testarossa) to decode each node. Nodes that are not relevant for the

computation of the distributions are silently ignored during the traversal.

Algorithm 4.1 presents the pseudo-code for the implementation in use for computing

distributions over both types and operations. Every node of the input tree is touched only

once on a single linear scan (line 1). Each node has its opcode decoded into a pair 〈T,O〉,

where T is the index of the appropriate counter in the types distribution set and O the

index in the operations distribution set (line 2). The decoding function is implemented as a

lookup table, where every intermediate level opcode in Testarossa is mapped to the corre-

20

Algorithm 4.1 Single-scan computation of distributions over types and operations.

Require: Intermediate level representation of the method tree
1: for all node ∈ tree do
2: 〈T,O〉 ← decode(node.opcode)

3: if counting(T) ∧ types[T] < 65, 535 then
4: types[T]← types[T] + 1

5: if counting(O) ∧ operations[O] < 255 then
6: operations[O]← operations[O] + 1

sponding pair of indexes for each set of distributions. Some of these opcodes refer to internal

Testarossa mechanisms (e.g.: nodes that mark where a specific instrumentation hook is to

be inserted by the code generator), and thus are not of interest for learning a model. In

these cases, the respective entry in the lookup table is set to an invalid index, signaling

that the opcode should not be counted. During the computation of the distributions, both

indexes are tested to confirm that they should be counted and, if so, whether the respective

counters will not overflow (lines 3 and 5). If the conditions are met, the respective counters

are incremented by one (lines 4 and 6). Otherwise, the counters remain at their maximum

capacity, preventing overflows.

The distributions are computed last during feature collection for the method being com-

piled. The next step in the data collection, which is explained in Section 4.3, is to select a

compilation-plan modifier to be used by the compiler.

4.3 Selecting a Compilation-plan Modifier

After the features for the method were successfully collected, and before the optimizer can

be allowed to start, a compilation-plan modifier must be selected in order to perform a

compilation experiment on the method. Two key factors are taken into consideration when

choosing a compilation plan:

1. Whether a special compilation-plan modifier must be used;

2. Expiring compilation-plan modifiers after they have been used for a sufficient number

of times.

Both factors are detailed in the following sections.

4.3.1 Special Compilation-plan Modifier

One consideration when selecting compilation plans is to include a null modifier, which

is a special compilation-plan modifier that does not change the original compilation plan

in Testarossa in any way. The hypothesis is that the original plan in Testarossa can be,

indeed, the ideal compilation plan for a method being compiled. In practice, the hypothesis

21

is confirmed and a machine-learned model frequently chooses the null modifier for many

computation-intensive methods.

During data collection, the experiment on which the null modifier is used can be de-

fined arbitrarily, depending on the method used to generate the compilation-plan modifiers.

Therefore, the null modifier can be the very first experiment performed, or it may be applied

late in the experimentation process. There are advantages and disadvantages in both cases.

On the one hand, issuing the null modifier ensures that the original compilation plan in

Testarossa is experimented over all methods. If it turns out to be the most advantageous

plan for a large number of methods, it is very likely that the machine-learned model will

recommend it frequently. On the other hand, issuing the null modifier at an arbitrary

later time can be useful for methods that are very infrequent (i.e., a method that is only

occasionally compiled in a few data collection experiments). In such cases, there is a chance

that the full-fledged compilation plan will not compensate the effort invested by optimizing

the method if it is invoked only a few extra times. If this is also true during data collection,

the method may be compiled with different compilation plans, which could provide a better

tradeoff in terms of reduced compilation effort with equivalent execution performance.

The placement of the null-modifier plan during data collection is an exploration set-

ting, which depends on the objectives of the exploration. The exploration approaches are

explained in Chapter 5. For the moment, it suffices to know that the special plan is used

either as the very first plan modifier, to ensure that it is used on all methods, or as the third

one in more aggressive searches, to ensure that other modifiers are always tested but with

a good chance of the null modifier being used as well.

As the exploratory compilation is carried out, it is important to retire compilation-plan

modifiers so that the search for alternate compilation plans can make progress. Section 4.3.2

details the expiration mechanism of compilation-plan modifiers.

4.3.2 Expiring Compilation-plan Modifiers

The second key factor when selecting a compilation-plan modifier is to expire modifiers that

have been used in a number of compilations. The number of times a modifier is used is a

parameter for the exploration. The expiration of modifiers ensures that the exploration pro-

gresses, since each unique method has a full space of compilation-plan modifiers to explore.

When in data-collection mode, the descriptor of a method in Testarossa is augmented to

store the index of the last compilation-plan modifier used. Testarossa is also extended with a

control component, called strategy control, that is responsible for preparing all compilation-

plan modifiers to be explored and for controlling their expiration.

Each time a method compilation starts, a compilation-plan modifier is requested by

means of a token. This token specifies the index of the modifier to be used, or 0 if this

22

is a first-time compilation for the method. The strategy control verifies that the token is

still valid before responding with the modifier. If that modifier is not expired, it is used for

the compilation of the method, and when the compilation is complete the number of times

that this modifier was used is updated. Moreover, the strategy control issues the next token

that the method should use on a future recompilation, which is the next compilation-plan

modifier that has not expired yet.

When a compilation requests a modifier using an expired token, the compilation is auto-

matically assigned a different, unexpired, token and the respective modifier. The expiration

rate of modifiers is a parameter of the exploration approach. In some cases modifiers should

not expire, which is achieved with an expiration rate of zero. For instance, exploration

approaches focusing on fine-tuning the original compilation plans deployed in Testarossa do

not benefit from the expiration of modifiers.

With the compilation-plan modifier selected, the optimizer is allowed to start and the

compilation to progress. Before the code generation, the method is modified by means of

instrumentation, as detailed in Section 4.4.

4.4 Instrumentation of Methods

When Testarossa is operating in data-collection mode, the internal data structure that

represents a compiled method is augmented with fields used by the instrumentation. These

fields collect dynamic information such as the time spent on each invocation of the method.

Throughout this document, these additional fields are referred to as the instrumentation data

block. Methods are instrumented before code generation by modifying the intermediate-level

tree that represents the method throughout the compilation in three ways:

1. The first basic block of the method (its entry point) is modified by inserting a call to

the initial time collection function (TR_jitPTTMethodEnter). This call becomes the

very first operation in the method. This is called the enter hook and it is responsible

for taking an initial timestamp and storing it in the instrumentation data block.

2. Each basic block containing a return operator is also modified by inserting a call to

the exit time collection function (TR_jitPTTMethodExit). This call becomes the last

operation before the method’s return. This is called an exit hook, responsible for

computing the time spent in a given invocation of the method, and also to increment

the invocation counter by one. The difference between the current timestamp and the

one obtained by the entry hook is stored in the instrumentation data block.

3. Basic blocks that throw an exception are instrumented with a call to TR_jitPTTMethodExit.

The time spent in the method is computed and stored in the instrumentation data

block, and the invocation counter incremented.

23

Two time measurements are recorded during data collection: (i) the compilation time

and (ii) the running time of a compiled method. The compilation time is already available

in Testarossa. Thus it is simply polled after the compilation is complete and stored.

In order to measure the time spent in a method, we found it to be necessary to use

an approach tailored for Intel x86 architectures on both Linux and Windows platforms.

The main reasons for this customized approach is to avoid the overhead imposed by the

measurement itself, and to be able to take high-resolution timestamps. The overhead must

be kept as low as possible because data collection usually happens over all invocations of all

compiled methods in the application. A high-resolution mechanism is necessary to enable

the measurement of methods with very short execution time. Methods that perform a very

small set of operations (e.g.: getter/setter methods) are fairly common in programs written

in object-oriented languages. Therefore a high-resolution measuring mechanism is required

to actually capture such events.6

On x86 architectures, the Time Stamp Counter (TSC) was featured in the early Intel

Pentium, becoming widely available shortly after its introduction. TSC is an unsigned

64-bit counter that is incremented at every tick of the processor’s internal clock. The

implementation of the entry and exit hooks samples the processor’s TSC, which on x86

architectures is a 64-bit unsigned integer containing the number of Central Processing Unit

(CPU) clock ticks since it was last reset. The TSC is set to zero during the initialization of

the processor or by request of the system administrator, by issuing a TSC reset routine. At

every CPU clock cycle, the TSC is incremented.

The TSC can be sampled by issuing either of the following instructions: rdtsc7 or

rdtscp8. Both instructions store the current value of the TSC into the registers pair EDX:EAX,

with the high-order 32-bit value of the TSC stored in register EDX, and the low-order in EAX.

The rdtscp also stores the contents of the Model-specific Register (MSR) register TSC_AUX

in the ECX register, which is the processor identifier. This identifier consists of an arbitrary

32-bit identifier, which is normally set by the operating system during startup or by the

system administrator.

The practical difference is that rdtscp is intended to be used on multi-core environments

because each core has its own TSC register. In such environments, it is important to know on

which core the TSC was actually sampled to avoid imprecision due to TSC drift, a frequent

condition where the cores operate at slightly different frequencies, thus incrementing the

respective TSC at different rates. The exit hook implementation verifies whether the TSC

difference is consistent by comparing the processor identifiers. In the case of a mismatch, the

6A common alternative approach is to sample the operating system’s timer; however, such an approach is
only valid when measuring events in the order of milliseconds or microseconds, depending on the resolution
of the timers exported to user space.

7Mnemonic for “read time stamp counter”.
8Mnemonic for “read time stamp counter and processor identifier”.

24

Processor ticks
(TSC)

tin tout

Exit hookEnter hook

returncall foo()

In−method execution

T

Figure 4.2: Measuring time spent in a method by means of instrumentation. When the
method foo() is called, it triggers the entry hook that takes an initial timestamp tin of
the processor’s TSC. When the method returns to the callee, it triggers the exit hook that
takes a second timestamp, tout, and the time spent in the method T is updated in its
instrumentation data block.

measurement is discarded and the invocation count is not incremented. While it is possible

to synchronize the TSCs across multiple cores, this is not practical and the overhead of

doing so is significant, mostly because of the frequency that such synchronization must be

repeated. Moreover, it is not uncommon for the operating system to rely on the TSC as a

time source, thus synchronization can be disruptive.

The rate at which core-switching occurs depends on the load-balancing policies of the

operating system. In Linux, the load balancer can migrate threads roughly once every

200 ms.[28] In practice, load balancing may occur once every few seconds (≤ 10 s). Without

the core identifier, the instrumentation code can only detect a core switch if the measurement

reports a negative time spent in the method.9

Figure 4.2 illustrates how the time measurement takes place. When the method foo() is

invoked, it triggers the enter hook which takes an initial timestamp (tin). After the method

completes execution, any of the exit hooks are triggered when the method returns to the

callee, taking the final timestamp tout. The execution time T = tout− tin for this invocation

is updated in the instrumentation data block of the method, and the invocation counter is

incremented. In multi-core environments, the exit hook verifies whether tout was taken in the

same core as tin. The core identifier for timestamp tin is also saved in the instrumentation

data block. If they differ, the measurement T is discarded and the invocation counter of

method foo() is not updated, avoiding an inconsistent sample.

The instrumentation mechanism performs an additional type of work: sending recompi-

lation requests of the instrumented method to the JVM in order to quickly explore different

compilation-plan modifiers. A recompilation threshold is computed during the first eight

invocations of the method when it is compiled for the first time. This threshold, which

can vary between 50 and 50, 000, determines how many method invocations will take place

9If the measured time spent in the method is positive, the clock frequency on the core that executed
the exit hook is higher than the clock of the core that executed the enter hook. However, in this case the
instrumentation code cannot detect that the measurement is incorrect.

25

����
����
����
����

Header

#1 #2 #n

String tableCompilation experiments

Figure 4.3: Organization of the binary archives. Every archive contains a header (hatched
area) containing identification information such as revision and size of internal records,
followed by a series of n experiment records. The archive is terminated by a string table
(grayed area), that spans after the last experiment record to the end of the file.

between two consecutive compilations of a given method.

The objective is to allow the method to accumulate the equivalent of 10 ms of running

time between compilations. Short-running methods tend to get a recompilation threshold

close to 50, 000 invocations, while longer-running methods tend to get a threshold closer

to 50. With this mechanism, methods quickly explore a large number of compilation-plan

modifiers.

When the data collection is completed (i.e., the application being executed under data-

collection mode finishes), the collected data is stored in an archive, as detailed in Section 4.5.

4.5 Storing Collected Data

When Testarossa is executed in data-collection mode, it stores all collected data in temporary

data structures during its execution to avoid the interference that would be otherwise caused

by I/O operations (e.g.: updating logs as each compilation completes). After the application

completes its execution, the data collected is stored in a binary archive for future use when

training a machine-learned model.

The internal organization of these binary archives is illustrated in Figure 4.3. At the

beginning of every archive lies a header (hatched area) containing a diverse set of information

regarding the archive. The header includes details of the archive, such as format revision

and the number of records. The header is especially important for reader applications, in

order to verify whether they can decode the archive correctly. A series of the n compilation

experiments recorded follows the header. A compilation experiment records the features

of a method, the compilation-plan modifier used, and the associated measurements (i.e.,

compilation time, execution time, and invocation count). After the last record, a string table

spans until the end of the file, storing the signatures of the methods for the experiments

recorded.

The components of the archive are detailed in the following sections, starting with the

header in Section 4.5.1.

26

0x930x93 0x04 0x21 0x80

Byte position

36

32

28

20

24

16

12

8

4

0

Offset of string table

Offset of first record

Number of records

Number of strings

Record length (bytes)

Record format

Endianess check

Header revision

Magic number

<byte position>

<byte position>

n

s

144

2

0x11223344

0x20091001

32 bits

Figure 4.4: Binary archive header format. The header lies in the very first byte of the archive
file, and consists of nine 32-bit words. The rightmost part of the figure briefly describe each
of the words in the header, with the leftmost number detailing the respective byte position
in the file.

4.5.1 Archive Header

Binary archives generated after data collection contain a header that provides reader appli-

cations that the information needed to verify that they will be able to continue decoding

the archive. The header always starts at the very first byte of the file.

Figure 4.4 illustrates the format of the header. The header consists of nine 32-bit words,

shown in the central part of the figure. The only exception is the magic number, which is

laid out as a sequence of bytes to avoid endianess issues.10 A brief description of each of

those words appears on the right side of the figure; the left side contains the byte position

of each word in the header. The purpose of each word in the header is detailed as follows:

Magic number An arbitrary numerical identifier, defined as the bytes 0x93, 0x04, 0x21,

and 0x80 in succession, forming the hexadecimal value 0x93042180. They are laid at

the very first byte in the file as individual bytes, for an endian-neutral representation.

Header revision The revision date of the header format, encoded as a hexadecimal value

in the form 0xYYYYMMDD, where YYYY corresponds to the year, MM to the month, and DD

the day of the revision. It is only changed when the header format changes, allowing

applications to either support loading archives in an older format or to detect the case

where they cannot properly decode the archive, requiring an update. At the time of

10Endianess is the order in which the underlying architecture represents multi-byte values: big-endian

architectures (e.g.: MIPS, PowerPC) store the most significant byte first in a multi-byte word; little-endian

architectures (e.g.: Intel) store the least significant byte first. Some architectures are considered bi-endian

(e.g.: ARM), allowing the endianess to be changed while an application is executing. Other conventions are
referred to as either mixed-endian or middle-endian. Network byte-order is a synonym for big-endian.

27

this writing, the revision is 0x20091001, meaning that the format was last updated

on October 1, 2009.

Endianess check An arbitrary numerical identifier allowing the application handling the

archive to detect an endianess mismatch. It is defined as the hexadecimal value

0x11223344. If an endianess mismatch occurs, the reader application can continue

decoding the archive if it can convert the byte order of the records to the appropriate

format.

Record format The numerical revision of the format for the records storing compilation

experiments. It is incremented by one each time the format changes, allowing appli-

cations to either handle archives with data in previous format or to detect when they

are not able to decode the archive, requiring an update. At the time of this writing,

the latest format revision is 2. The records are detailed in Section 4.5.2

Record length The length of each individual record, in bytes.

Number of records The number of records present in the archive.

Number of strings The number of textual strings in the string table that stores method

names.

Offset of first record The byte position in the file where the first experiment record is

located.

Offset of string table The byte position in the file where the string table for method

names is located. From its starting location, the string table extends to the end of the

file.

The sequence of records follows the archive header. Section 4.5.2 describes the format

of such records.

4.5.2 Experiment Records

Every experiment performed in Testarossa is stored in data structures in memory until

the application terminates. When the application terminates, the records generated by the

experiment are written to disk in the same format as the structures stored in memory. The

simplicity of this design allows for a very straightforward implementation and keeps the

binary archives small. Each record has a fixed length of 144 bytes. These records store all

information collected by a single compilation experiment.

Figure 4.5 illustrates the format of the data structure for each experiment record. Around

the figure there is a byte legend. Each row is 8-bytes wide, with a marking for every 8-th

byte boundary in the legends on the left and right sides of the figure. Within each row, byte

28

Compilation−plan modifier

Experiment ID Experiment sequence

Method−name indexMethod address

Accumulated running time

Fastest invocation

Slowest invocation

Invocation counter

Compilation time

+2 +3 +4 +6 +7+1 +5+0

0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

136

144

0

8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

136

144+2 +3 +4 +6 +7+1 +5+0

Byte offset

B
as

e
by

te
 p

os
iti

on

Attributes...

Distribution over types

Distribution over operations

Exception handlers

Arguments Temporaries

Tree nodes

Hotness

Figure 4.5: Binary archive record format. Each record carry information regarding a single
experiment (white area) and the feature vector ~F for the method (gray area). To avoid
alignment issues, the record is padded out to a 64-bit boundary (dark area).

29

offsets are highlighted at each byte boundary and marked in the upper and lower legends.

For example, the field “Node count” lies at the 64-th byte row with a byte offset of +4,

meaning that it is located at byte 64 + 4 = 68 in the data structure, spanning bytes 68–71.

The data structure is composed of (a) information pertinent to a compilation experiment

(white area), which contains the compilation-plan modifier used and the running time mea-

sured, and (b) the feature vector ~F for the method used in the experiment (gray area). The

format also contains padding (dark area) to ensure data alignment at 64-bit boundaries.

This padding ensures that the same data structure can be used either for memory-based

(during data collection) or disk-based operations (when storing/loading records from an

archive).

Each field of the data format is detailed as follows.

Compilation-plan modifier Stores the compilation-plan modifier used in the experiment

as a stream of N bits, where N is the number of transformations that can be selectively

disabled. The i-th bit in the stream controls the i-th transformation supported. The

transformations controlled are detailed in Chapter 5.

Method address For debugging purposes, the record contains the starting address of the

method while Testarossa was executing, so that it can be cross-referenced from other

logs if necessary.

Method-name index Indicates the index for the method signature in the string table.

Experiment ID Stores the identifier for a set of experiments E, allowing reader applica-

tions to locate experiments performed on the same method.

Experiment sequence The sequence number for the experiment described in the record,

within the set of experiments E.

Accumulated running time The accumulated running time
∑I

i=1
Ti, where i is the i-th

invocation of the method from a total of I invocations recorded, and Ti is the running

time of the i-th invocation.

Fastest invocation The amount of CPU cycles spent in the fastest invocation of the

method.

Slowest invocation The amount of CPU cycles spent in the slowest invocation of the

method.

Invocation counter The number of invocations recorded for the version of the method in

the experiment record.

Compilation time The compilation time for the experiment, in microseconds.

30

I a s s . M e t h o d 2 (l
I) F a s s . M e h o dl t

(3 I c k a g e .L p a a sC l
s ; D

s s . M e t h o d 1 (Fl)C a
C

C

)

Byte Offset

B
yt

e
P

os
iti

on

+0 +2 +4 +6 +8 +10 +12 +14

0

16

32

48

64

String #2: Class.Method3(ILpackage.Class;)D

String #1: Class.Method2(I)F

String #0: Class.Method1(F)I

Figure 4.6: String table format. The string table stores a total of S unique method signatures
as null-terminated strings (the null character is displayed as a darkened box). The index of
the first string is 0, and the last string is S − 1. The strings are stored in arbitrary order.

Hotness The optimization level (hotness) as decided by Testarossa.

Exception handlers The number of exception handlers in the method.

Node count The number of nodes in the intermediate representation tree for the method

during compilation, used by Testarossa.

Arguments The number of arguments that the method receives when invoked.

Temporaries The number of temporaries used in the method.

Distribution over types The counters comprising the distribution over types (detailed

in Section 4.2.2).

Distribution over operations The counters comprising the distribution over operations

(also detailed in Section 4.2.2).

Attributes The set of 15 binary attributes for the method (detailed in Section 4.2.1).

In the archives, a string table containing the signatures of the methods is placed after

the last recorded experiment, and is detailed in Section 4.5.3.

4.5.3 String Table for Method Names

The last data block in a binary archive is the string table, containing the signatures of

the methods with recorded experiments in the archive. The string table is useful when

diagnosing issues or when cross-referencing compilations across different logs. It has no

effect on the machine-learned models currently in use.

Figure 4.6 illustrates the format of the string table. A string table contains S unique

31

java/lang/String.indexOf(Ljava/lang/String;I)I

Class hierarchy Method Parameters Return type

Figure 4.7: Signature of Java methods, composed of a class hierarchy, a method name, zero
or more parameters expected by the method, and a return type.

Table 4.4: Signature of Java methods, composed of a class hierarchy, a method name, zero
or more parameters expected by the method, and a return type.

Character Java type Remarks

B byte

C char

D double

F float

I int

J long

S short

Z boolean

V void Only valid for return types
Lclass; Class Parameter or return type is an instance of class
[type Array Array of type type

strings, where each string has an associated index. The first string in the table has index

0, while the last one has index S − 1. During data collection, the string table is updated

dynamically as index lookups are performed. A lookup returns either a fresh index if the

signature is unique, or an existing index if a same signature was inserted in the table

previously. When the application under data collection completes execution, the string

table is saved, with the strings in the order in which they were inserted in the table.

Strings in the string table represent method signatures in accordance to the Java Virtual

Machine Specification [17]. A typical method signature is illustrated in Figure 4.7. A method

signature starts with the fully-qualified class hierarchy, followed by the method name. The

usual dot-delimited syntax for programs in Java syntax is replaced by slashes, and a dot

separates the hierarchy from the method name in the signature. After the method name,

the parameters expected by the method are specified in a character-based format, followed

by the return type of the method using the same convention. The specification is left blank

for the parameters part if the method does not expect parameters, but the parentheses must

be included regardless.

The character-based encoding for specifying parameters and return types is illustrated

in Table 4.4. The primitive types are all represented by single, different characters (e.g.:

character B for a boolean parameter or return type). If the parameter or return type is

a class, the class is specified as a class hierarchy enclosed by characters L and ; (e.g.:

Ljava/lang/String; for a parameter or return type of java.lang.String).

32

Arrays are specified using the [character, depending on the number of dimensions of the

array. For instance, the double-dimensional array int arr[][] becomes [[I when specified

with the character-based encoding. If the method does not return a value, its specification

is V (after void).

Section 4.6 presents the motivation for a customized infrastructure in Testarossa, from

profiling to binary archiving format.

4.6 Motivation for a Customized Infrastructure

The main reason for using a customized profiling infrastructure is the failure of the available

solutions to completely fulfill all requirements of the data-collection process, namely:

1. Low execution overhead, to reduce JVM execution time, which can limit the number

of experiments that can be performed within a time budget.

2. Sensible storage requirements, because a very large number of compilation plans must

be tested.

3. High-resolution measurements, because, in practice, many method invocations execute

for a very short amount of time.

Most available solutions tackle either #1 and/or #3. The number of compilation exper-

iments that must be performed to generate sufficient data tends to be very large, especially

because the many experiments are performed in a single JVM execution. Thus, developing

a customized profiling infrastructure that meets all three requirements is a must.

Profiling alternatives are discussed in Section 4.6.1.

4.6.1 Alternatives for Measuring Time

Time measurement based on TSC is an attractive solution. These counters are widely

available, being supported even on some non-x86 architectures, and combine high-resolution

measurements with simple usage and low execution overhead. Measuring events with TSC

as a reference is a matter of issuing the appropriate instruction to read from the TSC.

Existing solutions were analyzed in the early stages of the project, and did not meet

the requirements, either due to excessive overhead, complexity, or reduced availability. Two

prominent alternatives were evaluated: system timers and profiling suites.

System Timers

The simplest approach to measuring time is to use the facilities provided by the underlying

operating system. On UNIX-like operating systems, such as GNU/Linux, gettimeofday()

is the common choice. The advantages of using gettimeofday() are twofold: (a) issues

33

related to multi-core environments are handled by the operating system; and (b) the extra

time imposed by each call is often less than 250 CPU cycles on recent versions of the Linux

kernel.

The resolution provided by gettimeofday() is, however, too coarse, being limited to

the microsecond scale. In practice, method invocations accounting for 2, 000 CPU cycles

or less are very frequent. On processors clocked at 2 GHz, 2, 000 CPU cycles translate to

1 µs, and any invocation consuming less than 2, 000 CPU cycles on those system cannot be

reliably measured by gettimeofday().

A more elaborate approach is to offload the event measuring to the hardware, if this

feature is supported. Performance Monitoring Counters (PMCs) were introduced in the

Intel Pentium architecture, and provide a diverse range of performance events that can be

monitored directly by the underlying hardware, without much of the overhead.

The main drawback is that PMCs are not always available. Either they are not supported

by the processor, or their use is not allowed by system administrators. In addition, PMCs

contain processor-specific events that may be supported in one platform but not be available

on another. Often the operating system does not grant access to PMC infrastructure by

default, requiring the system administrator to explicitly enable it on a system-wide basis or

for specific applications.

The workflow when using PMCs is to select the events of interest and signal the processor

by writing the request to a MSR to start collecting data for the events selected [2]. After

the operation is complete (e.g.: a method invocation completes), the processor is signaled

to stop collecting data, or to provide a snapshot of the events being monitored. The actual

implementation and the limits on the number of parallel events that can be offloaded to

hardware are processor-specific.

As PMCs become more widely available and standardized across different platforms, a

PMC-based approach will be very effective. The next section presents a software-based

alternative that provides simple-to-use high-resolution counters.

Dpiperf

Dpiperf [23] is part of a suite of performance-monitoring tools from IBM. Dpiperf offers

off-the-shelf solutions for most performance-tracking tasks and it has special support for

Java and C/C++ languages.

The suite offers high-resolution timers and very fine-grained control over events. The

high-resolution timers use a kernel driver (supported in both Linux and Windows envi-

ronments), allowing applications to capture time events on a per-thread basis. Dpiperf

integrates with the Java Virtual Machine, allowing events to be generated from within the

JVM without disrupting the execution of the application.

34

Despite providing the desired high-resolution measurements and a detailed picture of

the application runtime behavior, Dpiperf induced an overwhelming overhead during exper-

imental profiling attempts. The overhead is two-fold: (i) execution overhead, resulting in

execution slowdowns in the application being profiled of 500× on average; and (ii) storage

overhead, generating logs that are several gigabytes long.

Measuring method-execution times using Dpiperf generates a considerable amount of

communication between the JVM and the kernel driver (which ultimately sets up the events

of interest and reports the results when an event completes). The native format of the

logs generated by Dpiperf is text-based and requires a post-processing stage to extract

information equivalent to that available in the experiment records discussed in the previous

section. Text-based logs are often bulkier than binary logs and grow very quickly because

most applications make thousands of method calls during their lifetime.11

During the evaluation of Dpiperf, an additional layer was implemented in Dpiperf to

intercept the log generation and provide on-the-fly compression based on zlib [29], which

is available on most operating systems. The extension achieved compression rates in the

order of 90–95% and reduced the execution slowdown to 50×, on average.

While the level of detail and timing resolution were suitable, the overhead both in terms

of execution time and storage was not and a Dpiperf-based approach was abandoned in

favor of a leaner solution.

As was the case with profiling, alternatives for storage of collected data were evaluated

and are discussed in Section 4.6.2.

4.6.2 Alternatives for Storing Collected Data

The main reason for a customized storage format comes from the need to generate a large

amount of data for the learning process, and to avoid creating unnecessary dependencies

in Testarossa. To do so, applications used for data collection must be executed for long

periods and repeated numerous times. Each execution generates thousands of compilation

experiments, depending on the application.

The simplest alternative is to output the data in a text-based format, possibly formatted

in a structured format such as Extensible Markup Language (XML). The advantage of

such an approach is that the output is, to some extent, human-friendly. However, due

to the amount of data collected, the resulting logs can easily grow to several megabytes.

For example, the feature vector alone formatted in the textual format required by the

machine-learned models consumes from 500 to 1, 000 characters. A regular data-collection

execution generates from 4, 000 to 15, 000 compilation experiments, resulting in 500+1,000
2

×

11During the evaluation, logs frequently grew past 4 GiB in size, demanding considerable time for com-
pression and post-processing.

35

4,000+15,000
2

≈ 6.8 MiB worth of data, only for the feature vectors, and for a single data

collection.

Alternatives based on databases are attractive because they provide a wide selection

of features, especially Berkeley DB12 and equivalent implementations (GNU DBM). These

databases support advanced features such as efficient locking mechanisms, concurrent access,

and large storage capacity.

The disadvantages of using such databases include both portability and licensing is-

sues. Because they add external dependencies to the data-collection process attached to

Testarossa, they can limit the platforms to those that are supported by the databases.

Moreover, Testarossa would then be bound by the licensing conditions of these databases.

4.7 Concluding Remarks

The data-collection process changes the usual behavior of Testarossa, with the goal of explor-

ing different compilation plans. The hypothesis is that, for a number of methods, alternative

compilation plans may perform better than the original compilation plans in Testarossa. The

ability to efficiently store collected data, either while the compiler is running or after the

data-collection process is complete, is a requirement for large-scale data collection.

The key component of data collection is the generation of compilation-plan modifiers.

Chapter 5 details the compilation-plan modifiers and the approaches used to generate them.

12Berkeley DB is an embeddable database system with only local access (no networking support) by means
of Application Programming Interface (API), currently maintained by Oracle Corporation.

36

Chapter 5

Compilation-plan Modifiers

The generation of compilation-plan modifiers is a key operation for data collection. The

approach used to generate such modifiers guides the compilation experiments in different

ways. Currently, the two methods implemented are: (i) a pure randomized search, that

explores different compilation-plans very aggressively (detailed in Section 5.3); and (ii) a

progressive randomized search, that generate modifiers that gradually diverge from the

original optimization plan used by Testarossa (Section 5.4).

Before detailing the generation approaches, the compilation-plan modifier itself is de-

scribed in Section 5.1.

5.1 A Compilation-plan Modifier

A compilation-plan modifier is a stream of bits that either enables or disables a specific

transformation in Testarossa, as illustrated in Figure 5.1. The plan is L-bits wide, where

L is the total number of transformations controlled by the machine-learned model, with

L = 58 at the time of this writing. Thus, the i-th transformation is either enabled or

disabled depending on the value of the i-th bit in the compilation-plan modifier. The bit

assignments are zero-based, therefore the first transformation is assigned bit 0, and the

2 31 L−4 L−3 L−2 L−10

L
32 ×4 bytes

L bits

Figure 5.1: Representation of a compilation-plan modifier, as a stream of L bits. The i-th bit
in the stream corresponds to the i-th transformation that can be controlled by the machine-
learned model in Testarossa. When stored, a compilation-plan modifier uses ⌈ L

32
⌉ × 4 bytes

to avoid alignment issues.

37

(L − 1)-th bit controls the last transformation. When stored in memory or archives, the

modifier takes ⌈ L
32
⌉ × 4 bytes to avoid alignment issues (8 bytes for L = 58).

A compilation-plan modifier is used during the optimization stage of Testarossa. When

Testarossa makes a decision to apply or not apply a transformation, it takes an additional

vote that is cast by the strategy control module. This module is discussed in detail later,

in Chapter 7. For now it suffices to know that this module is queried with a transformation

identifier internally used in Testarossa. This identifier is translated to the appropriate bit

position, and returns the recommended action (to apply the transformation or not). If the

transformation is not controlled by the module, the module casts a blank vote that does

not affect the decision made by Testarossa.

The vote cast by the module is not a final decision. Testarossa has an intricate mechanism

to decide not only whether or not to apply a transformation, but also if it is possible to

apply it. For example, if for some reason the strategy control module casts a positive

vote on a loop transformation but the method does not have loops (as determined by

Testarossa), Testarossa will not apply the transformation. Forcing Testarossa to apply such

a transformation in this case would lead the compiler to crash.

A compilation-plan modifier does not change the order in which the transformations are

applied. When Testarossa is running in production mode with support from the machine-

learned model, it still selects the optimization level for a method being compiled. The

modifier only disables certain transformations in the optimization plan.

There are multiple approaches for generating compilation-plan modifiers. Section 5.2

discusses the characteristics common to these approaches.

5.2 Overview of the Exploration of Compilation Plan

Modifiers

When Testarossa executes in data collection mode, M compilation plan modifiers are pre-

computed, for each of the optimization levels in Testarossa. This pre-computation happens

before data collection starts. The value of M depends on the expected number of compila-

tions and on the expiration rate of the compilation-plan modifiers. For example, the value

used in data collection for this study was set to 2, 000 compilation-plan modifiers.

The value of M needs to strike a balance and has to be set by the developer prior to the

start of the data collection process. On one hand, a large M produces more than enough

compilation-plan modifiers, allowing frequent methods to be recompiled several times and for

the exploration of alternative plans. On the other hand, a pool of compilation-plan modifiers

much larger than necessary delays the beginning of the data collection process. In practice,

the value can be quickly determined by experimentation across the set of applications to be

used for data collection.

38

The expiration rate of compilation-plan modifiers defines an upper bound on the num-

ber of compilations that are performed using a modifier, and is a tuning parameter for the

strategy control, depending on the aggressiveness of the exploration desired. After a mod-

ifier is expired, it is no longer used. A high expiration rate means that a modifier is used

to compile only a few methods before it is no longer used during the same JVM run. If

the expiration rate is sufficiently high, a data collection experiment may exhaust the pool

of pre-computed compilation-plan modifiers. At that moment, the methods in the applica-

tion gradually reach a “no recompilation” state and eventually the application progresses

normally.

Another characteristic that is common across the approaches of generating compilation

plan modifiers is to reserve a special modifier. The null modifier, as it is called, is special

for two reasons: (i) it never expires and (ii) it does not change the original compilation plan

in any way (thus its designation). This special modifier is encoded with all bits set to 1.

Depending on the approach of generate modifiers, the null modifier may be used very early

in compilation experiments for each method, or later.

The advantage of using the null modifier early (i.e., as the first modifier) is to ensure

that all methods will be compiled using the original plan in Testarossa. This plan has been

hand-tuned over the course of many years by expert developers. However, for infrequently

compiled methods it could be the only plan used, even across multiple JVM runs. On

the other hand, having the null modifier later in the data collection process can also be

advantageous. If a method is infrequently compiled across multiple JVM runs and does not

account for a significant portion of the execution time of the application, it is possible that

such a method will not benefit from the original compilation plan in Testarossa.

Section 5.3 discusses the first approach to generate compilation-plan modifiers, which is

randomized search.

5.3 Randomized Search

The generation of compilation-plan modifiers using randomized search is the simplest form

of exploration. In this approach, M modifiers are generated using the random number

generator available in the operating system, for each optimization level supported by Tes-

tarossa.

Randomized search can be considered aggressive in the sense that the effective compilation-

plan (after the modifier is applied) is very different from the original plan (i.e., on average,

those plans will have more bits disabled than plans generated with approaches that start

with the null plan and modifies it slowly). Thus, the random-search approach can quickly

sample the compilation-plan modifier space, which can be advantageous if the goal is to find

plans that are much cheaper in terms of compilation cost.

39

The null modifier is the third modifier used. The hypothesis is that some of the methods

that are not recompiled multiple times during data collection are infrequent and, thus,

might not benefit from the original compilation plan used by Testarossa. Conversely, a

frequent method is more likely to benefit from the original optimization plan and thus will

be recompiled enough times to eventually use the null modifier.

The expiration rate of the randomized search is set to 50 compilations of distinct meth-

ods. This rate produces a slower expiration rate than the other generation approaches

currently implemented. This slower rate is intentional because the modifiers generated by

the randomized search are very different from each other.

An alternative approach to generate modifiers complementary to the randomized search

just discussed, is presented in Section 5.4.

5.4 Progressive Randomized Search

A progressive randomized search can generate compilation-plans in a random fashion, but

with a strong, controlled bias. The idea is that each transformation starts with a null initial

chance of being disabled, but at each round this chance grows by a small rate (mutation)

defined by

Di = i×
0.25

L
, 0 ≤ i ≤ L. (5.1)

The first round (i = 0) generates the null modifier. Moreover, any subsequent i-th round

(i > 0) is guaranteed to disable at least one transformation because every modifier must be

unique. A method being compiled for the i-th time (where i = 0 is a first-time compilation)

uses the i-th modifier.

In Equation 5.1, Di is the probability that any transformation will be disabled in the i-th

round of modifier generation, i.e., each transformation is individually evaluated to decide

whether it will or will not be disabled. In the first round (i = 0), the chance is D0 = 0.

This chance grows until DL = 0.25 (25%). The probability Di increases by 0.000125 at each

subsequent round.

L was experimentally set to 2000 to generate enough modifiers for all the applications

submitted to data collection with only a small excess of modifiers. If an application executes

long enough for a method to be recompiled more than L times, that method is no longer

recompiled while still allowing other methods to be recompiled. If all methods eligible to

be compiled reach L recompilations, the data collection is gracefully terminated, and the

application is allowed to execute normally, without further recompilations.

The increase rate of 0.000125 per round makes the search gradually (and, to some extent,

slowly) diverge from the original compilation-plan in Testarossa. In this approach, the search

for alternative compilation-plans is likely to be concentrated over plans similar to the original

40

ones in Testarossa. The premise is that the compilation-plans included in Testarossa should

be ideal for many cases, with a number of other cases requiring small tune-ups that can

benefit from a method-specific approach. In practice, modifiers that diverge too much from

the original compilation plan (e.g.: 50% or more transformations disabled) tend to exhibit

poor performance.

5.5 Considerations on Exploration Approaches

Theoretically, each distinct feature vector representing a distinct method1 has a space of

2L = 258 ≈ 2.88 × 1017 possible modifiers to explore. In practice, most of these modifiers

will not create better optimization plans. This observation suggests a more elaborate search

based on heuristics. Such heuristic-based search requires feedback during the data-collection

process, allowing it to focus the search on regions within the space of possible modifiers.

The randomized search can sample the full space of modifiers quickly, whereas the pro-

gressive randomized search focuses on alternatives similar to the original compilation plan in

Testarossa. If an alternative plan for a method diverges considerably from the original plan

in Testarossa, the randomized search has better chances of finding it than the progressive

approach. Conversely, the progressive search has better chances of finding modifiers that

tune the original plan in Testarossa to better suit a method.

Fortunately, one does not have to choose between these exploration approaches unless

the time available is too restricted. The outcomes of both exploration approaches can be

combined to increase the chances that an alternative optimization plan is found. In any case,

it is important to include the original compilation plan from Testarossa, represented by the

null modifier. If the compilation plans explored are of inferior quality, the machine-learned

model will still be able to use the original plan when it is the best one.

When creating a final data set from several data collections, one has to rank these sets

to retain the modifiers that performed better during the exploration. The ranking process

used in this study is detailed in Chapter 6.

1In this study, methods are as distinct as their respective feature vectors.

41

Chapter 6

Learning a Model

Training a machine-learned model involves processing the data collected from applications

when running Testarossa in data collection mode, and selecting appropriate parameters for

the SVM.

The data processing is broken into two phases: (i) processing itself, by unarchiving the

data and ranking it to produce a data set; and (ii) fine-tuning the resulting data set to meet

training requirements. For example, the data set size must match the resources available

for training. This balance is also achieved by selecting parameters for the SVM, such as the

misclassification cost and the kernel function to be used.

The initial step, the preparation of data sets, is discussed in Section 6.1.

6.1 Preparing Data Sets

The preparation of a data set involves several processes: (i) unarchiving collected data into

intermediate data sets; (ii) optional merging of intermediate data sets; (iii) ranking the

data, and then generating a final data set.

While archived data is very compact, unarchiving it into an intermediate format brings

the advantages of using tools that are usually shipped with the machine-learning algorithm

implementations. In the case where these tools are not sufficient, customized tools can be

implemented to handle the data and even interface with some of these third-party tools.

This was initially the case in this study, until the performance became a concern when

creating large data sets from an even larger pool of data.

The merging of intermediate data sets, while optional, is also important in the train-

ing of machine-learned models. The key advantage is being able to prepare independent

intermediate data sets, and then selectively merging the data sets of interest. One common

technique for evaluating machine-learned models, cross-validation, can be easily carried out

with this approach. Cross-validation consists on setting aside portions of the available data,

training the model and testing it on the data set aside.

42

A variation of this technique is called leave-one-out cross-validation. In this variation, a

pool of P applications are used for data collection. When creating the training data sets, P

data sets are created, each using data from P − 1 applications, and the test is performed on

the application whose data had been set aside. Data sets for leave-one-out cross-validation

are easily produced by merging the appropriate intermediate data sets.

Finally, the final data set is created by ranking the intermediate data set (or merged

intermediate data sets). The ranking process evaluates the quality of the compilation-plan

modifiers used in experiments, and allows for the selection of the best-performing plans

under different policies.

The first process, unarchiving of data, is detailed in Section 6.1.1.

6.1.1 Unarchiving Data

The first step in preparing training data sets is to extract the information from the binary

archives, which were generated during data collection, and to organize them in the format

required by the subsequent tools. For this, a reader application was implemented, reusing

the code that is built into Testarossa for data collection, specifically the code to handle

compilation experiment records and binary archives. The result is saved as an intermediate

data set, because it requires further processing before it can be used for the training of a

model.

The reader application takes a binary archive as input, validates it, and extracts the

data. During the validation, the reader verifies that it can actually decode the archive (by

inspecting the main header in the archive and testing for endianess issues). If the validation

passes, the reader will process each of the available records.

Data extraction is straight-forward, but requires collaboration with the subsequent

tools. The reader application extracts the running and compilation times for a method,

the compilation-plan modifier used for the compilation, and the associated feature vector,

generating an intermediate data file. Figure 6.1 illustrates the intermediate format of such

files. The column Execution Time contains the total running time for the respective method,

in CPU cycles. The column Compilation Time has the compilation time for that exper-

iment in microseconds, followed by the invocation count in the column Invocations. The

column Modifier contains the compilation plan modifier in decimal representation. Lastly,

the column Feature Vector represents the feature vector for the method. The feature vec-

tor in the figure is only included symbolically because it is very long when represented as

text, but it suffices to know that each component is represented in decimal representation,

and separated by a single space character. In the figure there are only two distinct meth-

ods exemplified; one appearing in two records and the other in three records. Each record

represents a different compilation of the method.

43

Execution Time Compilation Time Numberof Compilation-plan Feature
(CPU cycles) (µs) Inv ocations Modifier Vector

21,491 207,018 8 0x03ffffffffffffff
→
Fmethod A

31,345 324,192 62 0x03fdffffffbffdff
→
Fmethod A

10,271,285 131,366 4,822 0x03edffbfedfffff7
→
Fmethod B

12,636,564 128,734 25,296 0x03fdffffedfffffd
→
Fmethod B

29,814 324,950 912 0x03ffffffffffffff
→
Fmethod C

Figure 6.1: Contents of an intermediate data set. The first column contains the total running
time for a method after a given compilation in CPU cycles, followed by the compilation time
in microseconds and the invocation counter. Next are shown the compilation plan modifier
in hexadecimal representation and the feature vector for the method. The intermediate data
set is in text format, and each line of the file represents a compilation experiment record.

The format of the file is a textual tabular representation, with one record for each line

of the file. This allows for easy inspection of the data, as well as for manipulation with a

wide range of text-manipulation tools (grep, awk, and others). In addition, the intermediate

format permits partial data sets to be merged in arbitrary combinations, for example, by

having one partial data set for each application submitted to data collection and merging

data from applications of interest.

With the intermediate data set generated, its data can be ranked, as detailed in Sec-

tion 6.1.2.

6.1.2 Ranking Data

The ranking process takes a number of intermediate data sets as input and generates a final

data set that can be used to train a machine-learned model. A customized application was

implemented to perform the ranking over reasonably large amounts of data. The applica-

tion is called feat2svm, named after the process “feature vectors to SVM format”, and is

implemented in the C++ programming language.

Figure 6.2 illustrates the ranking workflow which is very simple, but CPU-intensive.

Intermediate data sets are loaded and progressively sorted in lexicographical order, based

on the feature vector of each experiment. This sorting aggregates all experiments performed

on the same feature vector. For each i-th record in the intermediate data sets, the objective

ranking function

Vi =
Ri

Ii

+
Ci

Th

(6.1)

is computed, and the resulting value Vi is included with the respective compilation-plan

modifier for the corresponding feature vector ~Fi. Vi is the normalized cost for the i-th record,

where a compilation plan with smaller values of Vi is better for a method characterized by

the features in the record.

44

Intermediate
Data Sets

Lexicographical
Sorting

Ranking

Plan
Selection

Normalization
Final

Data Set

Figure 6.2: Intermediate data sets are combined and sorted lexicographically, aggregating
compilation experiments performed on the same feature vector. The experiments are ranked
to determine their relative quality, and the associated compilation plan modifiers from a
subset of the experiments are selected. The results are normalized to improve numerical
stability for the learning process, and a final data set is created.

In Equation 6.1, Ri is the total running time of the compilation using the respective

modifier, Ii the invocation counter, Ci the compilation time, and Th the triggering value

used by Testarossa for recompiling at compilation level h (h is used to reflect the hotness

or optimization level). So, Ri

Ii
is the average running time per invocation which should

be minimized, and Ci

Th
is the weighted compilation cost that also should be minimized. For

each optimization level, Testarossa uses three distinct compilation triggers: one for methods

without loops, a second one for methods likely to have loops, and a third one for methods

containing many-iteration loops. The default setting in Testarossa is to compile methods

that contain loops sooner than those methods without loops, and even sooner if the method

is thought to contain many-iteration loops.

At the end of the ranking, each unique feature vector will have a set of pairs 〈Mi, Vi〉,

where Mi is the modifier used in the i-th experiment, and Vi is the associated value as

computed in Equation 6.1. The set of sorted experiments will have at least one of such pairs

per unique feature vector.

The plan selection is specialized in three different ranking approaches to select compilation-

plan modifiers for the final data set:

1. Single-best performing modifier

2. Top-N best performing modifiers

3. Top-M% best performing modifiers

The simplest approach is to select a single best performing compilation plan modifier for

each unique feature vector, i.e., the modifier associated with the lowest normalized cost V

computed during the lexicographical sorting. It also results in smaller data sets since most

of the experiments are rejected in favor of a single compilation plan modifier per unique

feature vector.

45

The Top-N and Top-M% approaches are very similar. The former selects the N best

performing modifiers for each unique feature vector. The latter, instead, selects all modifiers

for each unique feature vector with a value V equal, or at most M% higher, than the best-

performing modifier. For example, a Top-5% plan selection policy selects all modifiers where

V0 ≤ Vi ≤ (V0 × 1.05). The range is recomputed for every feature vector. In addition, both

Top-N and Top-M% approaches can be combined, resulting in a policy that selects at most

N modifiers from the group of Top-M% performing modifiers for each unique feature vector.

After the modifiers are selected through the plan selection process, each component of

the corresponding feature vector is normalized to the [0, 1] range using

Cnorm =
Cj − Cmin

∆C
0 ≤ Cnorm ≤ 1, (6.2)

where Cj is the j-th component of the feature vector, Cmin is the minimum value seen during

data processing, and ∆C is the difference Cmax −Cmin (where Cmax is the maximum value

of the j-th component).

The normalization is not a mandatory step, but it greatly improves the learned models

by eliminating the dominant effect of larger numerical ranges over smaller ones [24]. Besides,

kernels, such as the d-degree polynomial kernel, can be affected by storage limitations when

performing computations (e.g.: overflowing floating-point variables when raising large num-

bers to the d-th power). In practice, the collected data has significantly different numerical

ranges over each component of the feature vector.

At the end of the normalization process a final data set is created. This data set is used

to train a model, and its format is detailed in Section 6.1.3.

6.1.3 Data Set Format

The format of the final data obeys the rules required by LIBLINEAR, which is the format

inherited from LIBSVM. The data sets use a textual sparse-matrix format, where each line

is a data instance used as input when training the machine-learned model.

Figure 6.3 illustrates the format symbolically. The data set is composed of N data

instances, each on a single line of the file. Each i-th data instance is described starting with

the respective class label, followed by n components of the feature vector. If a component

of the feature vector is zero, it can be omitted and the machine-learned model assumes it

is zero. All non-zero components of the feature vector must be preceded by its component

index, for example, 10:0.5625 denotes the value 0.5625 as the 10-th component of the

feature vector for an arbitrary data instance.

Due to limitations imposed by the format, the class label can only express integer num-

bers in the range [1, 231−1]. Because the range used to represent modifiers is much larger, an

alternative representation is used to generate the final data set. For now, it suffices to know

46

Class label Feature vector components

Li 1:Fi,1 2:Fi,2 . . . n:Fi,n

Li+1 1:Fi+1,1 2:Fi+1,2 . . . n:Fi+1,n

...
...

...
. . .

...
LN 1:Fi+1,1 2:Fi+1,2 . . . n:FN,n

Figure 6.3: Data set format used by LIBLINEAR, where each line of the file is a data
instance. Data instances are declared starting with the class label, followed by up to n com-
ponents of the respective feature vector. Non-zero components must be explicitly prefixed
with the component index, whereas zero-valued components can be omitted from the data
set.

that the compilation plan modifier space is remapped into this smaller space supported by

LIBLINEAR, without any adverse effects to the learning process. The remapping process

is detailed in Chapter 7, including the procedure to map a class label back to a modifier.

At this point in the data-set preparation, the data set can be considered a final one

and training of the machine-learned model can begin. However, if the size of the data set

becomes a concern, an additional step, discussed in Section 6.2, can be added to the data-set

generation phase to reduce its size.

6.2 Trimming

It is often the case that a final data set is too large for the timely training of a machine-

learned model. In such cases, an additional application, trimmer, is used to remove data

instances based on the frequency of the class labels. The application processes a final data

set and, given a trimming factor C, outputs only classes with a frequency greater than or

equal to C. For example, a trimming factor of 10 removes all data samples associated with

classes that have 9 or less data samples in the data set.

Table 6.1 exemplifies the effects of different trimming factors in the size of a data set.

Trimming a data set reduces its overall size by removing data samples with infrequent

classes, which allows for more manageable training times if the data set is too large. A

data set is considered too large if the training process demands so many resources that it

interferes with itself and the rest of the system. For example, if the training application

requests the majority of the available memory in the system, it will cause the operating

system to swap pages excessively and, thus, will take much longer to complete.

In addition, the learning process may benefit from a smaller class-to-instances ratio

and from a less-dominant presence of infrequent classes. Infrequent classes can overshadow

more frequent classes due to their large overall number, with a possible negative effect in

the learning process.

Figure 6.4 plots the effect of trimming on data-set sizes. The horizontal axis represents

47

Tr imming Data Unique Class-to-instance
Factor Instances Classes Ratio

0 154,097 23,371 1:6.59
2 145,738 18,031 1:8.08
4 124,476 11,817 1:10.53
6 105,907 8,404 1:12.60
8 88,968 6,136 1:14.50

10 73,025 4,453 1:16.40
12 57,920 3,134 1:18.48
14 45,053 2,177 1:20.70
16 35,726 1,573 1:22.71
18 28,330 1,149 1:24.66
20 22,427 846 1:26.51

Table 6.1: Effect of different trimming factors in data sets. By removing infrequent classes
(according to the trimming factor), the overall size of the data set decreases. In addition,
removing infrequent classes helps rebalance the data set.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20

%
 o

rig
in

al
 s

iz
e

Trimming factor

Effects of Trimming in Data Set Size

Data samples
Unique classes

Figure 6.4: Trimming as a noise-filtering step. Even small trimming factors can remove a
large amount of infrequent classes; at the same time the overall data set size is reduced.

48

the trimming factor, ranging from 0 (no trimming) to 20, in steps of 2. The vertical axis

represents the relative size of the data set after the trimming. In the figure, the largest

reductions in the number of unique classes are achieved with trimming factors of 2 and 4,

while the number of data samples does not follow the same trend. This can be seen as a

noise-filtering step for the learning process.

With the final data set ready, the training of a machine-learned model can begin, as

detailed in Section 6.3.

6.3 Training Models

In order to train a machine-learned model based on SVMs, two parameters must be defined:

(a) the weighting used by the model to deal with (inevitable) misclassifications, and (b) the

SVM kernel that will be used.

The misclassification cost provides a balance to learn a model that generalizes the train-

ing data well enough without overfitting, at the same time that it is flexible enough to deal

with non-separable data caused by overlapping classes without underfitting. In either case,

the resulting model will perform poorly. When selecting a kernel, there is a trade-off on the

ability of the model to adapt to the correlations within the data and its capability to both

train and perform predictions in a timely fashion.

The misclassification cost is discussed in Section 6.3.1, followed by the kernel selection

in Section 6.3.2.

6.3.1 Cost Parameter for SVMs

The C cost parameter for SVMs defines the penalty of misclassifying a data instance when

training a machine-learned model. Penalties too small may lead to a poor model, in the

sense that the separating hyperplanes can be placed in a sloppy way. On the other hand,

large misclassification costs can force the model to overfit to a specific training scenario

which can be unrealistic. In this case, the model can also perform poorly.

It is normally the case that the ideal penalty is computed from cross-validation, i.e.,

many models are created using different penalty values, so that a balanced cost can be

inferred from the experimental results. The cross-validation is often performed with C

ranging from 10−5 to 105, where C is enlarged by a factor of 10 on each iteration. The

drawback is that when a test data set cannot be used to quickly evaluate the learned model,

this process becomes prohibitive in terms of the time budget. In addition, larger values

of C tend to extend the time for training a model since it becomes more difficult to find

separating hyperplanes that do not violate the tighter constraints.

For example, when cross-validating C over 5 models, this process requires the training

and evaluation of 55 models in order to identify the optimal C. If the data sets change,

49

the process must be repeated because C is only optimal in the context of the data sets

used for training. A common recommendation is to use C = 1, which does not artificially

bias the learning process towards under or overfitting. In this study, the value C = 10

was experimentally determined to balance the quality of the learned model with practical

training times. Values of C larger than 10 results in increasingly longer training times.

The next parameter when training an SVM, selecting a kernel function, is discussed in

Section 6.3.2.

6.3.2 Kernel Selection

When selecting an SVM kernel to be used in a time-sensitive problem such as recommenda-

tions for a Just-in-Time compiler for Testarossa, there are two important factors to consider:

(a) the dimensionality of the feature space, and (b) the time budgets, especially the time

constraints when performing a prediction. These factors are tightly correlated.

The first factor considered is the dimensionality of the feature space. Lower dimension-

alities usually benefit from non-linear kernels which map the original feature space into a

higher-dimensional space. Conversely, high-dimensional spaces benefit less from the higher-

dimensional mapping, which may not improve the learned model, but have an added com-

putational cost. In some cases, non-linear kernels are too computationally intensive for

high-dimensional problems, especially during the computation of a prediction.

In terms of performance, a linear kernel is very attractive due to the simpler nature of

the computations performed. In some cases, as with LIBLINEAR, the implementation of

the model is oriented to this specific kernel and tailored for larger data sets, giving better

performance with equivalent accuracy to a regular SVM implementation [13].

It is often the case that there are special limitations on the time budget. Long training

times reduce the possibility of investigating ideal parameters (e.g.: limiting the possible

iterations for cross-validation), whereas long prediction times may hinder its applicability.

A linear kernel, for example, is not guaranteed to train faster than a non-linear kernel, since

a non-linear kernel is more flexible. On the other hand, a linear kernel such as LIBLINEAR

delivers the fastest prediction-time responses regardless of the size of the training data set,

making it very attractive for the time constraints found in Testarossa.

This study experimentally found that a non-linear kernel such as Radial Basis Function

(RBF) (implemented by LIBSVM) has the lowest training times, but its prediction speed

strongly depends on the size of the training input, and the resulting model can be very

large. It was observed that LIBSVM trains a model in about 20% of the time used by

LIBLINEAR for the same data set. However, prediction times for LIBSVM are much

larger than LIBLINEAR. In some cases, a learned RBF model can take up to 660 ms to

50

compute a prediction1, which is usually many times longer than the time spent by Testarossa

when compiling in the highest optimization level.2 On the other hand, the same data set

takes considerably longer to learn a model using LIBLINEAR, but the time to compute a

prediction can be as low as 48 µs (4 orders of magnitude faster).

The next step, after training machine-learned models, is to deploy them with Testarossa

so that it can perform method-specific compilations. The integration of such models with

Testarossa is discussed in Chapter 7.

1The time spent computing a prediction is platform-dependent.
2In the experimental platform used in this study, Testarossa can compile a method in the highest opti-

mization level in about 100 ms to 220 ms. The compilation time is highly dependent on the method being
compiled, so these figures are illustrative.

51

Chapter 7

Integrating Compiler and Model

The learning-enabled Testarossa architecture is presented in Figure 7.1. In essence, its op-

eration is similar to the data collection process. The initial decision to compile a method

remains entirely up the the policies already in place in Testarossa (a). When such a deci-

sion is made, the VM instructs the JiT to compile the chosen method (b). Next, the JiT

selects the appropriate optimization level (c). When the compilation is about to start the

optimization stage, the Strategy Control extension computes the features for the method

being compiled and transmits them to the learning model (d). The details of this communi-

cation are discussed in Section 7.3. The model computes the classification for the features

received, and sends back the result to the Strategy Control extension (e). As can be seen

in the Figure, the arrow (d) is purposely thicker than (e), to illustrate that the outbound

communication of the features is larger than the response (the encoded compilation plan

modifier).

The Strategy Control extension installs the compilation plan modifier (f) in the same

way as during data collection. In fact, most of the framework used for data collection is

reused for the learning-enabled approach, with the components relevant only to data col-

lection removed. With the compilation plan modifier in place, the optimizer is allowed to

start. As happens during data collection, the optimizer is instructed to disable some of the

transformations in the compilation plan that would be otherwise applied in its entirety (g).

When the compilation finishes, the newly compiled method is installed in the pool of com-

piled methods (h). As the application executes, the JiT eventually decides to recompile

methods (i), repeating the process and, in the end, replacing the existing image of the

method with the newly compiled version.

The communication steps and underlying pre-computation inside the machine-learned

model is progressively described as follows. First, Section 7.1 discusses the normalization

of the data prior to the model performing the prediction. Next the mapping from ma-

chine learning classes into compilation plan modifiers is discussed in Section 7.2. Finally,

Section 7.3 consolidates all of the components to describe the communication protocol.

52

Modifier

^

Compilation Plan

LIBLINEARTestarossa

Interpreted Methods Compiled Methods
(a)

(d)

(e)

(c)

(f)

(i)

(g)
JiT

Control Model

VM

(b)

(h)

Figure 7.1: Architecture of the learning-enabled Testarossa. The modifier architecture is
activated when the optimizer is ready to start. The strategy control extension computes
the features of the method and sends them to the machine-learned model through a socket-
based communication (d), that responds with a compilation plan modifier (e) that modifies
the compilation strategy performed (g).

73

3 100000 353 0 0 15 0 0 1 0 0 ...

0 0 0.00636943 0 0.05 0.00157233 0 0 0.166667 0.1 0 ...

Figure 7.2: Format of a scaling file. The first line indicates the number of components in
the feature vector, followed by the scaling parameters in a separate line each. The second
line contains the shifting values that are subtracted from the feature vector, and the third
line contains the scaling values used to multiply the shifted feature vector. Both sets of
operations are performed in an element-wise fashion.

7.1 Normalization

When a training data set is generated, a set of normalization parameters are saved in a

scaling file to be used by the model. Figure 7.2 illustrates the contents of a scaling file. The

first line indicates how many components there are in the feature vector. The second and

third lines contains the actual shifting and scaling parameters. The normalization is carried

out using the linear transformation presented in Equation 7.1.

~N =
(

~F − ~O
)

◦ ~S (7.1)

In the equation, ~F is the feature vector of the method being compiled, containing raw

values as collected by Testarossa; ~O is the shifting vector; and ~S is the scaling vector.

The operator ◦ denotes element-wise vector multiplication. The result is assigned to the

normalized feature vector ~N .

The shift-scaling operation uses the same parameters that produced the training dataset,

so all training instances are normalized to the range [0, 1]. It is possible, however, that ~N

contains values outside the range [0, 1], but this is expected and the learned SVMs are able to

53

7275

4201 2438974982267015

5821 2622099574323670

5334 3623932176363988

2249 5531996405099509

5160 6257789759115178

623 8007126159813822

...

Figure 7.3: Format of an index file. The first line indicates how many mappings exist in the
index file. Every following line is a pair in the form 〈l, L〉, where l is the class in the smaller
space (required by LIBLINEAR/LIBSVM), and L is the actual encoding of the compilation
plan modifier that is used in Testarossa.

handle this situation. The resulting ~N is then used by the model to predict the compilation

plan modifier.

7.2 Class-to-modifier Mapping

The prediction on the normalized feature vector ~N produces an output class identifier G

in the range [1, 231 − 1]. Because this range is specific to the model implementation (both

LIBSVM and LIBLINEAR use this range), and since it is not large enough to hold an

encoded compilation plan modifier, the extensions to the model have to map it back to a

meaningful compilation plan before responding to Testarossa.

The scheme in use is a lookup table, where each known class identifier is associated with

a compilation plan modifier. This look-up table is prepared during the initialization of the

model, and is loaded from an index file created during data set generation, as illustrated in

Figure 7.3. The first line of the file indicates the number of entries in the lookup table, which

is equal to the number of unique classes found during data set generation. Every following

line contains a mapping from a class identifier (first column) to a compilation plan modifier

(second column). The i-th element in the lookup table is then assigned the corresponding

compilation plan.

When the model predicts G, the lookup table is consulted at the G-th index and the

associated compilation plan modifier is sent back to Testarossa.

7.3 Socket-based Communication

The communication between Testarossa and the machine-learned model (illustrated in Fig-

ure 7.1 (d) and (e)) is carried out using named pipes [37], which in UNIX or UNIX-like

environments are a form of Inter-process Communication (IPC) by means of a file-system-

based pipe. A named pipe is a special file in the file system hierarchy in the sense that its

contents are dynamically generated by another process, but it is attached to the file system.

54

Response

Request

Testarossa Model

(d)

(a) (b)

(c)

File system

Figure 7.4: Socket-based communication between Testarossa and the model. ...

The data is transferred in a first-in first out (FIFO), producer-consumer fashion, with the

producer opening the pipe for writing and the consumer opening the same pipe for reading.

The consumer locks on reading the pipe until data is available; the producer usually does not

lock on writes except when the in-kernel IPC buffer is full. Because pipes are byte streams,

neither of the applications communicating can perform seeks, so they need to agree on a

protocol for exchanging messages.

The communication is illustrated in Figure 7.4. A request is sent by Testarossa to

the model by writing the feature vector ~F of the method being compiled to the model on

the requests pipe (a). The message is composed of 71 32-bit unsigned integers, resulting

in fixed-length messages of 284 bytes. All method features are thus converted from their

native types, even though some of the features are smaller than 32 bits. This procedure

avoids alignment issues1 without adding complexity to either the sender or receiver at the

cost of additional bytes transmitted.

The receiver attached to a machine-learned model (in this study, receivers have been

incorporated into LIBSVM and LIBLINEAR) reads exactly 284 bytes from the requests

pipe (b), and converts to the data format of the model. In both LIBSVM and LIBLINEAR

cases, the unsigned integers are converted to double-precision floating-point, which is the

base type used in those models. Before the model computes its prediction, the data received

is normalized as detailed earlier in Section 7.1. When the prediction is ready, the output

is converted to a compilation plan modifier as required by learning-enabled Testarossa (de-

scribed earlier in Section 7.2), and written to the responses pipe (c). This write unblocks

Testarossa, that was waiting for a response in the pipe (d).

The compilation plan modifier is installed and the optimizer is allowed to continue its

execution.

1Most architectures require that the address of a memory data access be a multiple of its word size
(often multiples of 4-byte), and thus aligned [2]. Unaligned accesses are possible but they incur in a
significant overhead that must be either handled by the processor (if supported) or by software. Under some
circumstances, an unaligned access can trigger a processor exception.

55

7.4 Trade-offs

The integration of learning-enabled Testarossa and machine-learned models by means of

named pipes incurs an additional overhead when compared to the regular library- or linking-

based approach. In the library-based approach, the machine-learned model is implemented

as an external dynamic library that is loaded by Testarossa explicitly, whereas the linking-

based approach embeds the compiled units of the model into Testarossa. There are, however,

advantages in the communication approach used.

Complexity Embedding a machine-learned model implementation into Testarossa demands

significant changes to the model implementation, so that it can properly make use of

Testarossa’s infrastructure (especially, the customized memory management mecha-

nism in Testarossa).

Compatibility To integrate with Testarossa, the model must be implemented in a com-

patible programming language (C or C++), or there must exist language bindings

that allow Testarossa to invoke the model.

Interchangeability As long as the implementation of the machine-learned model is prop-

erly augmented with the communication protocol, changing models does not require

any change to the compiler, making it trivial to experiment with different models.

If the model is embedded into Testarossa, changing models requires modifying and

recompiling Testarossa, something that is not always possible (e.g.: a third-party that

is not allowed access to Testarossa source code).

In practice, the overhead incurred by the extra communication is negligible, and often

it is dominated by the computation cost of the model performing a prediction. The actual

overhead depends on the platform. In the platform used for this study, the communication

cost is approximately 230 µs per request.

The methodology used to evaluate the learned models is detailed in Chapter 8, including

the performance results obtained.

56

Chapter 8

Experimental Evaluation

The learned models were deployed with Testarossa to evaluate whether they were able to

capture patterns in the training data that lead to either (a) reductions in the compilation

effort, and/or (b) improvements in the running time of the application.

The performance experiments were carried out in a multi-core cluster environment, which

is detailed in Section 8.1. The method used to create the training data sets to perform leave-

one-out cross-validation is detailed in Section 8.2, followed by the training times obtained

when using LIBLINEAR, in Section 8.3. The methodology used to perform the performance

experiments is detailed in Section 8.4. Next, the results obtained in the performance evalu-

ation are discussed in Section 8.5. Finally, concluding remarks are presented in Section 8.6.

8.1 Experimental Setup

The platform used both for data collection and for tests consisted of a blade server with

16 nodes, each featuring two Quad-Core AMD Opteron processors (model 2350) clocked at

2 GHz, with 8 GiB of RAM and 20 GiB of swap space. The CentOS GNU/Linux version 5.2

operating system was used. One of the nodes in the server acts as a management node, and

was not used in any part of the experiments.

When performing data collection or a test, the respective node in the server had no

other application competing for resources, besides the operating system and the regular set

of system applications (for example, secure remote shell (SSH) and the system logger).

8.2 Model Training

In the experimental evaluation, five machine-learned models were trained with the data

collected from the SPECjvm98 suite [34]. SPECjvm98, consists of the eight applications

listed in Table 8.1. The first column of the table contains the benchmark name. The second

column contains the abbreviated name for the benchmark, which is used in the tables and

figures. The last column provides a brief description of the purpose of each benchmark

57

Table 8.1: Benchmarks included in the SPECjvm98 suite.

Benchmark Name Short Description

_201_compress co Compressor implementing the Lempel-Ziv method (LZW)

_209_db db Memory-based database application

_228_jack jk Java parser generator, an ancient version of JavaCC

_213_javac ja Java compiler from JDK 1.0.2

_202_jess je Java Expert Shell System, based on CLIPS expert shell system from NASA

_227_mtrt mt Threaded version of _205_raytrace, using two threads

_222_mpegaudio mp MPEG layer-3 audio decompressor

_205_raytrace rt Ray tracing application

Table 8.2: Benchmarks used for each training data set. The data sets used for training are
uniquely identified, as indicated in the first column. The benchmarks that contributed with
data collected for a given data set are marked with the symbol • in the respective column.

Collected application data merged
co db mp mt rt

Data set

1 • • • •
2 • • • •
3 • • • •
4 • • • •
5 • • • •

application. The SPECjvm98 suite actually includes a nineth application, _200_check,

that is only used to determine if the JVM at hand is capable of executing the benchmark

suite. Therefore, _200_check is not used for either data collection or model testing.

The data-collection process was not successful on all benchmark applications. Data

collection for _213_javac and _228_jack generated compilation inconsistencies in a large

number of trials. On the other hand, _202_jess succeeded for the randomized search, but

faced instrumentation errors when using the progressive search. To ensure fairness in the

evaluation, _202_jess was not used to create training data sets.

The data sets created using the data collected from the five successful SPECjvm98

benchmarks are listed in Table 8.2. The first column in the table contains a unique identifier

assigned to each training data set. The remaining columns indicate whether data from a

given benchmark was included or not in the respective data set. If the column contains the

symbol •, data from the benchmark was used in the respective data set. For example, data

set 1 used data from benchmarks co (compress), db, mp (mpegaudio), and mt (mtrt).

Each training data set merges data collected from five distinct benchmarks, leaving the

fifth one aside. This way, the resulting models can be evaluated using leave-one-out cross-

validation, where one of the applications will not contribute to the training data set so that

58

the data is not used in computing that model.

Data sets are created using data collected using different searching approaches. Data

sets prefixed with the letter R use data collected using the randomized search (e.g.: R2

contains data from benchmarks co, db, mp, and rt). The data sets prefixed with P, in turn,

use data collected using the progressive search. A third set of models, prefixed with the

letter H, uses data from both approaches. For example, data set H2 contains data from co,

db, mp, and rt benchmarks, for both randomized search and progressive search approaches.

In total, there are 15 data sets, 5 for each exploration approach alone and another 5 where

their data is merged.

The data collected for the benchmarks is detailed in Table 8.3. The table is divided into

three groups, where each group refers to a different approach used to generate compilation-

plan modifiers. Across all three groups in the table, the first column contains the name of

the benchmark application used to collect data. The second column contains the number of

data instances produced. Each data instance describes a compilation experiment performed.

The third column contains the number of unique classes in the set of data instances. A class

is a compilation-plan modifier that was mapped into a smaller integer range ([1, 231 − 1])

as a requirement for the machine-learned model implementation, LIBLINEAR. The fourth

column contains the number of unique feature vectors in the set of data instances. As far as

the model is concerned, unique feature vectors refer to distinct methods. However, because

feature vectors summarize a method using a limited number of features, distinct methods

can still be treated as one if their feature vectors are identical. The last column in the table

contains the class-to-instances ratio, computed from the data collected (i.e., the average

number of instances for each unique class in the data).

The third group in Table 8.3 refers to training data produced by merging both ap-

proaches used to generate compilation-plan modifiers, thus called hybrid. Both the number

of data instances and unique classes are, roughly, twice as large, while the number of unique

feature vectors is only slightly larger. The reason for such a small increase is because the

set of methods compiled across multiple JVM executions tends to be similar. However, be-

cause Testarossa uses dynamic information from the application executing to decide which

methods to compile, the set of methods compiled is different across distinct runs.

The parameters used to generate the data sets were progressively tuned during the course

of many data set generations. In this scenario, a maximum of 3 compilation-plan modifiers

were selected during the ranking process, for each unique feature vector. In addition to

the maximum of 3 modifiers, the Top-M% cut-off value was set to 5%. This cut-off of 5%

restricts the modifiers selected to those having at least 95% of the ranking value of the best

modifier for a given feature vector. For the learning process, selecting up to 3 modifiers

allows the model to better aggregate neighboring classes in the feature space, while the

59

Table 8.3: Characterization of the training data. The benchmark applications are used
during data collection, with the two distinct approaches to generate compilation-plan mod-
ifiers. The size of the training data is given by the number of data instances. The modifiers
(classes) are reused in different compilations so the number of unique classes is smaller than
the number of data instances. A distinct set of methods are compiled for each benchmark,
and the number is approximated in the column containing the number of unique feature
vectors. The last column contains the ratio of data instances for each unique class in the
data set.

Progressive Randomized Search
Unique Class-to-instances

Feature Vectors Ratio
Benchmark Data Instances Unique Classes

compress 76,109 14,732 508 1:5.17

db 51,118 12,475 499 1:4.10

mpegaudio 250,951 24,456 760 1:10.26

mtrt 121,461 14,457 828 1:8.40

raytrace 116,159 14,768 922 1:7.87

Randomized Search
Unique Class-to-instances

Feature Vectors Ratio
Benchmark Data Instances Unique Classes

compress 111,046 14,587 508 1:7.61

db 147,892 14,617 485 1:10.12

mpegaudio 278,838 11,134 662 1:25.04

mtrt 172,541 11,154 694 1:15.47

raytrace 152,296 11,135 654 1:13.68

Hybrid: Randomized and Progressive Randomized Search
Unique Class-to-instances

Feature Vectors Ratio
Benchmark Data Instances Unique Classes

compress 187,155 29,319 628 1:6.38

db 199,010 27,092 611 1:7.35

mpegaudio 529,789 35,590 867 1:14.89

mtrt 294,002 25,611 973 1:11.48

raytrace 268,455 25,903 1,022 1:10.36

60

5% cut-off removes modifiers that underperform the best modifier. The hypothesis is that

the model will be able to achieve a better agreement on densely-populated regions of the

feature space. In this case, it is possible that a modifier located on the centroid of such a

dense region in the feature space might becomes a support vector when, in fact, a better

compromise is to select a more representative class in that region for a support vector.

The final data sets are detailed in Table 8.4. Each row in the table presents information

for a final data set, identified, in the first column of the table. The table is divided into three

groups, one for each approach used to generate compilation-plan modifiers. In turn, each of

the groups is divided into collected data and ranked data. The collected data refers to the

data collected from the benchmarks and merged into a intermediate data set. When the

intermediate data set is processed with the ranking tools, a final data set consisting of ranked

data is produced. The final data sets are then used to learn the respective machine-learned

models.

The column Data Instances, across all three groups of data sets, contains the number of

data instances after merging the data collected from the benchmarks, that are used in the

respective data set. The column Unique Classes contains the number of unique classes in

the merged data. A class is a compilation-plan modifier mapped into the range accepted by

the model implementation. The column Unique Feature Vectors approximates the number

of unique methods compiled during data collection. The next column, Ratio, presents the

average ratio of data instances for each unique class in the data, computed for every unique

class in the data set.

Across all groups of data sets in the table, the columns under Ranked Data present the

information analogous to the Collected Data. The size of the final data set is presented in

the column Training Instances. The column Training Classes contains the resulting number

of unique training classes for the respective data set. Next, the column Training Feature

Vectors presents the number of unique feature vectors in the ranked data. Finally, the

column Ratio contains the ratio of training instances for each unique training class.

The first ranking parameter, limiting the number of selected compilation-plan modifiers

to a maximum of 3 for each unique feature vector, implies an upper bound limit on the

ratio of 1:3. However, the second ranking parameter selects only those modifiers that have

at least 95% of the ranking value of the best modifier for each unique feature vector. This

cut-off makes the effective ratio smaller than the upper bound, if the modifiers used in the

data-collection compilations have a ranking value smaller than 95% of the best modifier, for

each unique feature vector.

The optional operation on a training data set, trimming, is only necessary if the data set

is too large. For the data sets described in Table 8.4, this is not the case, thus no trimming

was required. The maximum data set size depends on the available resources for training. In

61

Table 8.4: Characterization of the final data sets. Each row in the table represents a data
set, identified by a letter and a number. The letter indicates the approach used to generate
compilation-plan modifiers. The number indicates which of the benchmark applications
contributed with training data. The size of the data sets are reported in the Data Instances
and Training Instances columns, before and after the ranking process, respectively. The
number of unique classes, which encode modifiers, is displayed in the same form, under
Unique Classes and Training Classes columns. The number of unique feature vectors is
displayed in the following columns, Unique Feature Vectors and Training Feature Vectors.
Finally, both Ratio both report the ratio of instances for each unique class, before and after
the ranking process, respectively.

Data Sets using Progressive Randomized Search

Collected Data Ranked Data

Data Unique Unique Training Training Training

Instances Classes Feature Vectors Instances Classes Feature Vectors
Ratio Ratio

Data Set

P1 499,639 63,657 1,412 1:7.87 2,065 1,074 1,412 1:1.92

P2 494,337 63,960 1,513 1:7.85 2,184 1,101 1,513 1:1.98

P3 364,847 54,009 1,250 1:7.73 1,752 854 1,250 1:2.05

P4 564,680 65,897 1,480 1:6.75 2,135 1,101 1,480 1:1.94

P5 539,689 63,762 1,492 1:8.57 2,160 1,108 1,492 1:1.95

Data Sets using Randomized Search

Collected Data Ranked Data

Data Unique Unique Training Training Training

Instances Classes Feature Vectors Instances Classes Feature Vectors
Ratio Ratio

Data Set

R1 710,317 51,489 1,200 1:13.80 2,323 1,428 1,200 1:1.63

R2 690,072 51,470 1,178 1:13.41 2,302 1,380 1,178 1:1.67

R3 583,775 51,490 1,000 1:11.34 1,884 1,164 1,000 1:1.62

R4 714,721 48,007 1,155 1:14.89 2,254 1,400 1,155 1:1.61

R5 751,567 48,037 1,148 1:15.65 2,224 1,413 1,148 1:1.57

Data Sets using both Randomized and Progressive Randomized Search (Hybrid)

Collected Data Ranked Data

Data Unique Unique Training Training Training

Instances Classes Feature Vectors Instances Classes Feature Vectors
Ratio Ratio

Data Set

H1 1,209,956 115,146 1,592 1:10.51 2,712 1,649 1,592 1:1.64

H2 1,184,409 115,430 1,651 1:10.26 2,780 1,628 1,651 1:1.71

H3 948,622 105,499 1,395 1:8.99 2,295 1,363 1,395 1:1.68

H4 1,279,401 113,904 1,625 1:11.23 2,733 1,635 1,625 1:1.67

H5 1,291,256 111,799 1,618 1:11.55 2,720 1,641 1,618 1:1.66

62

Tr aining Times for Different Misclassification Costs
C = 1 C = 10 C = 100

Time Iterations Time Iterations Time Iterations

Model

P1 23" 32 1’19" 359 5’17" 3,330

P2 27" 53 1’25" 313 6’21" 3,382

P3 15" 33 53" 409 2’52" 2,984

P4 24" 35 1’21" 336 5’02" 2,964

P5 28" 41 1’24" 396 5’28" 3,180

R1 49" 39 3’24" 410 15’56" 5,239

R2 50" 42 3’25" 524 15’01" 4,291

R3 33" 43 2’24" 557 8’55" 4,625

R4 49" 46 3’07" 396 16’12" 4,646

R5 49" 39 2’55" 403 13’24" 3,922

H1 1’07" 58 4’39" 784 17’38" 6,644

H2 1’12" 76 3’51" 541 18’37" 6,539

H3 47" 64 3’01" 667 11’42" 6,540

H4 1’03" 63 3’36" 526 16’02" 5,664

H5 1’02" 55 4’32" 613 19’39" 7,975

Figure 8.1: Model training times using LIBLINEAR. The training times reported are in
minutes and seconds. Multiple models are trained, varying the misclassification cost from
C = 1 to C = 100. The number of iterations required by the model to optimize the quadratic
optimization is also presented.

the experimental platform used, data sets with 80, 000 data instances or larger demand more

resources than those available, causing the training application to become I/O-dominated

due to excessive paging of the operating system.

The final data sets are then used to train machine-learned models using LIBLINEAR.

The details are discusses in Section 8.3.

8.3 LIBLINEAR Training

With the final data sets ready, multi-class machine-learned models are trained using LIB-

LINEAR [13]. The classification model used is the multi-class classifier using the SDM [24]

algorithm. Previous experiments revealed that, for this study, misclassification costs of

C = 0.1 or less produce poor models. Thus, models are trained only for C = 1 and higher

misclassification costs. All other training parameters used are the default ones in LIBLIN-

EAR.

Table 8.1 illustrates the training times obtained with LIBLINEAR for each model. The

column Model identifies all machine-learned models trained, with the letter indicating the

approach used to generate compilation-plan modifiers, and the number indicating the set

of SPECjvm98 benchmarks that contributed with data collected. Multiple models are gen-

63

erated from each training data set, with a misclassification cost varying from C = 1 to

C = 100. As the misclassification cost is increased, the training process takes longer be-

cause it requires additional iterations to find the maximum separating hyperplanes.

The training process was tuned over several months to ensure timely learning of models.

The set of features collected has the largest influence in the training times, thus being

the focus of the tuning process. A larger set of features requires more computation by

the training application, and more resources. In addition, a larger set of features can,

unwillingly, produce distinct feature vectors for the same method. The effects are twofold:

(i) the ranking process cannot operate optimally since the same method is represented with

multiple feature vectors; and (ii) the training process is significantly extended, because the

training data sets are larger.

In previous attempts, the resulting data sets used for training were much larger, requiring

the trimming process (detailed in Section 6.2). The trimming kept data sets under 80, 000

training instances, which is the practical limit for training data sets in the setup used. Such

training data sets resulted in training times spanning from 2 to 35 days, using C = 1. Worse,

training times with misclassification costs higher than C = 1 were not feasible for most of

the data sets.

The initial set of features, which included 118 numerical features, was reworked over

the course of many iterations, in collaboration with IBM engineers working on Testarossa.

While some machine-learning algorithms are able to discover useful features on their own1,

current SVM implementations are not able to do so.

The learned models are then used in conjunction with Testarossa to evaluate their effec-

tiveness. The evaluation approach is described in Section 8.4.

8.4 Experimental Methodology

In order to verify the prediction performance of the learned models, the SPECjvm98 bench-

marks were executed in a batch session, for each of the learned models, using the largest

inputs for each benchmark. The benchmarks were executed 30 times in succession, and the

total running time was recorded. The repeated execution is important to account for both

internal (e.g.: garbage collection and set of methods compiled) and external factors (e.g.:

thread scheduling by the operating system and I/O latencies). In addition, the internal

iteration count of each benchmark is set to 10, meaning that the core of the benchmark will

be repeated 10 times, to dilute the startup effects. The main results consider the time to

complete all 10 iterations of each benchmark measured.

1Decision Trees [19], for example, compute the amount of information that each feature adds to the
model, producing a hierarchical decision tree from the most informative feature to the least informative.
The resulting tree is usually pruned to remove less-informative features below a defined threshold, thus
performing feature selection naturally.

64

Both startup performance and long-term execution performance are important. Startup

performance relates to the ability of the JVM to make application progress quickly. In this

case, the tradeoff in compilation time and performance of the code generated is more critical:

the more the JVM invests in the compilation, the later the application makes progress (i.e.,

executes). If the application is short-running, the compilation costs can hinder a significant

portion of the benefits.

On the other hand, long-term performance refers to methods that account for a large

portion of the running time of the application. In the compress benchmark, for example,

the method Compressor.compress()V accounts for a large portion of the execution. The

tradeoff, in this case, is different than for startup performance: all code transformations

that improve the execution performance of the method are likely to pay off by reducing the

execution time of the future invocations of the method.

Both the data-collection process and the evaluation use only the hot optimization level.

This is because the learned SVM is not able to distinguish between optimization levels,

requiring multiple SVMs, one for each optimization level. Such a multi-level approach is

necessary because compilation-plan modifiers are ranked considering a specific optimization

level. While the modifier itself is neutral to the optimization level, using a modifier ranked

for a different optimization level is inconsistent, and the outcome is unknown.

The experimental results are discussed in Section 8.5.

8.5 Experimental Results

The results reported are relative to those obtained with Testarossa using only the hot op-

timization level. The results also include the performance of Testarossa operating under

adaptive mode, which is the default mode of operation. The first approach discusses is the

progressive randomized search, in Section 8.5.1.

8.5.1 Progressive Randomized Search Models

The performance results obtained with the models trained using data collected with the

progressive randomized search are presented in Figure 8.2. For each set of benchmarks,

the leftmost bar is the relative performance of the unmodified Testarossa under its regular

adaptive operation. The second bar is the hot compiler that is forced to only use hot

compilation plans which were not modified by the learned models. The remaining five

bars contain the relative performance for each learned model using the progressive search

approach to generate compilation-plan modifiers.

In the results for compress, db, mpegaudio, mtrt, and raytrace only the bars for

models that do not include the benchmark being tested in the training can be used for

cross-validation. For instance, for db only the column corresponding to the fourth models

65

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

 1.80

compress db jack javac jess mpegaudio mtrt raytrace

R
el

at
iv

e
P

er
fo

rm
an

ce

SPECjvm98 − Progressive Randomized Search

Testarossa
Testarossa (hot)
Model P1 (co,db,mp,mt)
Model P2 (co,db,mp,rt)
Model P3 (co,db,mt,rt)
Model P4 (co,mp,mt,rt)
Model P5 (db,mp,mt,rt)

Figure 8.2: Performance results using progressive randomized models. The performance
is relative to Testarossa operating only at the hot optimization level (second bar for each
benchmark).

(X4, where X is the approach used to generate modifiers) should be considered. However,

the measurements for the other models, which include the tested benchmark in the training,

provide evidence that, for these five benchmarks, there is little, if any, change to performance

when the tested benchmark is included in the training.

For five of the benchmarks, the models using progressive randomized search can obtain

equivalent performance as that obtained by Testarossa using only the hot optimization

level. For the other three, compress, jess, and mpegaudio, the learned models actually

hurt the performance. The exception is model P3, which is able to match the performance

of Testarossa hot for all benchmarks.

The performance for compress is the most affected across all benchmarks. The slowdown

can be better understood from the per-iteration samplings, as shown in Figure A.1 on

page 91. In the very first iteration of the benchmark, all models but P3 start with longer

execution time. Because the code generated executes more slowly than the code generated

by Testarossa hot, the performance difference grows larger at each benchmark iteration.

The same behavior can be seen when inspecting the per-iteration execution time for jess,

in Figure A.13 on page 97.

The case for mpegaudio, in Figure A.16 on page 98, is also similar—except for model P3.

Model P3 starts slower than Testarossa under adaptive operation, but the graph suggests

that the compiler using model P3 has a chance of reversing the difference. To determine

whether this is the case, a similar experiment was conducted, but this time using 50 internal

benchmark iterations instead of 10, and measuring only Testarossa under adaptive mode,

Testarossa hot, and Testarossa using model P3. Figure 8.3 presents the results obtained.

66

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35 40 45 50

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: mpegaudio
Increased iteration count

Testarossa (adaptive)
Testarossa (hot)

Model P3

Figure 8.3: Additional experiment on mpegaudio using model P3. The difference in this
experiment is the number of internal benchmark iterations, increased to 50. The graph plots
the accumulated execution time until i-th iteration, averaged across 30 executions of the
benchmark for each compiler.

Each line in the graph corresponds to a compiler and shows the accumulated running (on

average) for each of the 50 iterations. In the modified experiment, Testarossa under adaptive

operation starts slower than both Testarossa hot and Testarossa using model P3. In this case,

Testarossa hot is always faster than the model. Adaptive Testarossa is able to outperform

Testarossa using the model at the 13-th benchmark iteration, and at the 20-th iteration it

outperforms Testarossa hot.

Figure 8.4 presents the compilation times, relative to Testarossa using only the hot op-

timization level. Because the compilation plans resulting from the models using progressive

randomized search are very similar to the original plans included in Testarossa, the compila-

tion times are very similar to Testarossa hot. In the cases where the difference is statistically

significant, for all progressive models expect P3 on jess benchmark, the number of com-

pilations performed is slightly larger. While Testarossa hot performed 366 compilations

(on average), the progressive models performed 378 (on average), except for P3, with 367

compilations. When using the models, the compiler performs less code transformations

on average (since some of the transformations are disabled), and thus is able to perform

additional compilations.

67

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

compress db jack javac jess mpegaudio mtrt raytrace

R
el

at
iv

e
C

om
pi

la
tio

n
T

im
e

SPECjvm98 − Progressive Randomized Search Models

Testarossa
Testarossa (hot)
Model P1 (co,db,mp,mt)
Model P2 (co,db,mp,rt)
Model P3 (co,db,mt,rt)
Model P4 (co,mp,mt,rt)
Model P5 (db,mp,mt,rt)

Figure 8.4: Compilation time using progressive randomized search models, relative to Tes-
tarossa hot. Because the resulting compilation plans are similar to the original plans in-
cluded in Testarossa, the compilation times when using the models are very similar to the
compilation times of Testarossa hot.

Section 8.5.2 discusses the results obtained with the models using randomized search.

8.5.2 Randomized Search Models

Figure 8.5 presents the performance results obtained when using models trained with data

collected using the randomized search approach. The layout of the figure is the same as

for the progressive randomized search models. For most applications (compress, db, jess,

mpegaudio, mtrt), the models using randomized search are not able to outperform Tes-

tarossa, either under adaptive operation or using only the hot optimization level. However,

for jack and raytrace, different models are able to reach the performance of Testarossa

hot (R2 and R3, respectively).

For javac, all models are able to outperform Testarossa hot by a significant factor,

approaching the performance obtained by Testarossa under adaptive operation. This case

can be better understood by inspecting the accumulated running time per-iteration, in

Figure A.11 on page 95. The compiler using the models start with a smaller running time,

but Testarossa is able to reverse the difference and complete the 10-th benchmark iteration

with a smaller accumulated running time.

Figure 8.6 presents the compilation times relative to Testarossa hot. Because the ran-

domized search generates compilation-plan modifiers that disable a larger number of code

transformations, the compilation times are significantly reduced. The compilation times

when using the models are smaller than those obtained by Testarossa under adaptive opera-

tion, and significantly smaller than Testarossa hot. In addition, the number of compilations

performed when using the models is 2% to 11% larger.

68

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

 1.80

compress db jack javac jess mpegaudio mtrt raytrace

R
el

at
iv

e
P

er
fo

rm
an

ce
SPECjvm98 − Randomized Search

Testarossa
Testarossa (hot)
Model R1 (co,db,mp,mt)
Model R2 (co,db,mp,rt)
Model R3 (co,db,mt,rt)
Model R4 (co,mp,mt,rt)
Model R5 (db,mp,mt,rt)

Figure 8.5: Performance results using randomized models. The performance is relative to
Testarossa operating only at the hot optimization level (second bar for each benchmark).

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

compress db jack javac jess mpegaudio mtrt raytrace

R
el

at
iv

e
C

om
pi

la
tio

n
T

im
e

SPECjvm98 − Randomized Search

Testarossa
Testarossa (hot)
Model R1 (co,db,mp,mt)
Model R2 (co,db,mp,rt)
Model R3 (co,db,mt,rt)
Model R4 (co,mp,mt,rt)
Model R5 (db,mp,mt,rt)

Figure 8.6: Compilation time using randomized search models, relative to Testarossa hot.
The resulting compilation plans when using the randomized models are significantly differ-
ent, and the compilation times are considerably smaller.

69

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

 1.80

compress db jack javac jess mpegaudio mtrt raytrace

R
el

at
iv

e
P

er
fo

rm
an

ce

SPECjvm98 − Hybrid Models

Testarossa
Testarossa (hot)
Model H1 (co,db,mp,mt)
Model H2 (co,db,mp,rt)
Model H3 (co,db,mt,rt)
Model H4 (co,mp,mt,rt)
Model H5 (db,mp,mt,rt)

Figure 8.7: Performance results using hybrid models. The performance is relative to Tes-
tarossa operating only at the hot optimization level (second bar for each benchmark).

Section 8.5.3 presents the results obtained when using the hybrid models, using the data

from both approaches that was used to generate compilation-plan modifiers.

8.5.3 Hybrid Models

The performance results obtained with the models using the hybrid approach, that mixes

data from both the progressive randomized search and randomized search approaches, is

presented in Figure 8.7. For most applications, compress, db, jack, javac, and jess, at

least one of the learned models is able to reach the performance of Testarossa hot. In the

case of jess, model H3 is able to outperform Testarossa hot. A similar behavior with javac,

when using the randomized search models, repeats itself with the hybrid models, but with

smaller significance. As detailed in Figure A.12 on page 96, the hot optimization level is

not appropriate for the methods compiled in javac since the compilation effort outweighs

the benefits. The learned models were able to tailor the optimization level on a per-method

basis, but were not able to outperform Testarossa under adaptive operation.

Figure 8.8 presents the compilation times relative to Testarossa hot. For all benchmarks,

the compilation times when using the models are smaller than those obtained with Testarossa

hot. Because the hybrid models merge the data from the two approaches implemented

to generate compilation-plan modifiers, the resulting compilation time is not as high as

that obtained with progressive randomized search, but also not as low as when using the

randomized search. Across jack, javac, mpegaudio, mtrt, and raytrace benchmarks,

the compilation times, for at least one of the models, is smaller than Testarossa under

adaptive operation. In addition, the number of compilations performed when using the

models is always larger (from 1% to 11%) than both Testarossa under adaptive operation

70

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

compress db jack javac jess mpegaudio mtrt raytrace

R
el

at
iv

e
C

om
pi

la
tio

n
T

im
e

SPECjvm98 − Hybrid Models

Testarossa
Testarossa (hot)
Model H1 (co,db,mp,mt)
Model H2 (co,db,mp,rt)
Model H3 (co,db,mt,rt)
Model H4 (co,mp,mt,rt)
Model H5 (db,mp,mt,rt)

Figure 8.8: Compilation time using hybrid models, relative to Testarossa hot.

and Testarossa hot.

Section 8.6 presents final considerations for the chapter.

8.6 Concluding Remarks

The training process of machine-learned models used in this study, after many iterations,

is able to generate learned models in a few minutes. The set of features currently in place

allows the ranking process to generate small data sets from a rather large input of collected

data. The overhead of using such models, in the platform used for the experiments, is about

230 µs per compilation. The total overhead depends on the number of methods compiled,

but frequently accounts for less than 0.2% of the execution time of the application.

In the experiments performed, Testarossa, under its normal mode of operation (adap-

tive, multi-level optimization), consistently outperforms all other versions of the compiler

(including Testarossa using only the hot optimization level, the second highest), across all

benchmarks. A reasonable explanation for the superior performance of the original Tes-

tarossa, which was hand-tuned over many years, is that the execution times of several of

these benchmarks are dominated by a set of methods that must be compiled at the highest

optimization level as soon as possible, while keeping the compilation of less-frequent methods

at lower optimization levels. In order to achieve the same performance as Testarossa under

adaptive mode, multiple machine-learned models must be trained, one for each optimiza-

tion level. The data-collection process must explore alternative compilation-plan modifiers

considering this space enlarged by multiple optimization levels.

The inclusion of machine-learned models into compilers, while not yet common, is not

new. Chapter 9 discusses related work done by other authors.

71

Chapter 9

Related Work

Traditionally, the effectiveness of optimizing compilers is largely due to many person-years

of hand-tuning. Most optimizing compilers have numerous internal parameters, such as

loop-unrolling factors and inlining thresholds, that are set to values that lead to better code

in numerous scenarios. Tuning these parameters is a highly complex task because many code

transformations affect each other in non-obvious ways. In addition, it is not uncommon that

parameters leading to improvements in a set of programs produce poor results in another

set.

The relevancy of this issue has led to extensive research in order to improve optimization

settings in compilers. The techniques proposed in such research have three key attributes:

(a) compilation mode, (b) compilation granularity, and (c) approach used to explore com-

pilation parameters.

The compilation mode can be either static, when code is generated in advance, or dy-

namic, when code is generated (or modified) while the application is running. For example,

JiT compilers employ dynamic compilation. The goal of a static compiler is to spend as

much time as is profitable during the optimization stage because, normally, the code gen-

erated does not change during execution. On the other hand, dynamic compilers have a

limited compilation budget and require a balance between code quality and compilation ef-

fort. The compilation granularity refers to the scope of the proposed technique. Fine-grained

techniques operate at the method (or procedure) level, whereas coarse-grained techniques

consider the program in chunks (compilation units), as a whole, or even a set of programs.

The extensions to Testarossa described in this thesis operate at the method level. Finally,

the exploration approach relates to the core methods used in order to improve optimization

settings. In the context of works related to this thesis, such methods are either based on

machine-learned models or search techniques.

Some research focuses solely on a small set of compilation heuristics because of the

complexity of creating, tuning, and maintaining those heuristics. This type of research

is discussed in Section 9.1. On the other hand, there is a large body of work focusing

72

on multiple code transformations and their interrelation. Works concerning numerous code

transformations, or the complete set of transformations available in a compiler, are discussed

in Section 9.2.

9.1 Individual Heuristics

One common optimization technique for exploiting parallelism at the machine-instruction

level is instruction scheduling, on pipelined architectures. Pipelined architectures decompose

the execution of instructions into micro-operations, which can be efficiently implemented in

hardware—especially when operating at high clock frequencies. With the knowledge about

the target architecture, the compiler can issue instructions with higher latencies earlier in a

trace of code (e.g.: multiplication and division instructions), so that by the time the result

of such an instruction is needed, the instruction has completed its execution and the result

is available. While instruction scheduling is an NP-hard problem, an optimal solution is

feasible when considering small units of code, such as basic blocks.

Moss et al. evaluate the use of supervised machine-learned models to perform instruc-

tion scheduling using a small set of features obtained from basic blocks [31]. The models

are trained with both positive and negative examples of schedulings. In the evaluation,

the models are compared to a hand-tuned instruction scheduler from the chip manufac-

turer and also with available production compilers. The learned models performed well

enough to outperform the production compilers, but were not able to outperform the hand-

tuned instruction scheduler. This work was later extended [8] to the Jikes Research Virtual

Machine (RVM) [38], a Java JiT compiler. A model was trained in order to predict whether

a basic block would benefit from instruction scheduling. Not all basic blocks benefit from

instruction scheduling and instruction scheduling is a time-consuming code transformation.

Therefore, the learned model was able to reduce the compilation effort while retaining most

of the benefits from instruction scheduling on the remaining blocks. These findings are con-

sistent with this thesis. For some applications, compilation-plan modifiers generated with

the randomized search approach are able to reduce compilation time significantly, with low

or no run-time degradation.

Stephenson et al.present a methodology for tuning multiple individual heuristics in a

compiler [36]. Models using genetic programming start with base heuristics, with the goal

of finding attributes that (i) describe the programs being compiled and (ii) are expressive

with regard to the heuristic being tuned. The attributes are expressions derived from the

intermediate representation used by the compiler, and the feedback to the algorithm is the

difference in running time of the program. The algorithm evolves parameters for the set of

programs, but is also able to generalize these parameters, to some extent, for new (unseen)

instances of programs.

73

In a different work, Stephenson et al. describe the use of supervised machine-learned mod-

els used to learn loop-unrolling factors [35]. The authors use two distinct machine-learning

algorithms: SVMs and Nearest Neighbors (NNs).1 Loop unrolling is a code optimization

technique where the body of the loop is replicated a few times by the compiler, in order

to reduce the overhead caused by the code that checks the loop condition. As the authors

report, the ideal loop-unrolling factor depends on the loop, and the models are trained to

predict the best unrolling factor on a per-loop basis. The learned models lead to modest,

but consistent, improvements in the running time of applications.

In an earlier attempt by Monsifrot et al., a loop-unrolling heuristic was built based on a

machine-learned model [30]. Loops are described by a handful of features obtained from the

intermediate representation of the code, associated with a running time value compared to

the original heuristics in the compiler. The model is trained with both positive and nega-

tive examples, and the compiler is modified to use predictions made by the model. Besides

achieving improved performance when compared to the baseline compiler, the heuristics

generated are architecture-specific, i.e., the machine-learned model can be used to automat-

ically generate heuristics appropriate to the platforms supported by the compiler.

In the approach described in this thesis, none of the internal heuristics from Testarossa

are changed, with the exception of the compilation plan, that is tailored for each compiled

method. Thus, whenever a code transformation is applied by Testarossa (for example, any

of the many loop transformations available in Testarossa), it is applied using unmodified

heuristics for the transformation, if any.

Section 9.2 discusses research concerning a larger (or complete) set of code transforma-

tions in a compiler.

9.2 Compiler Optimization Flags

The search for better compiler optimization flags gave rise to a wide range of approaches.

These approaches can be organized into (a) iterative compilation, (b) automatic tuning of

compiler heuristics, and (c) fine-grained compilation. The first approach, iterative compila-

tion, is discussed in Section 9.2.1.

9.2.1 Iterative Compilation

Iterative compilation is the process where a single program is continuously compiled with

different optimization flags, until a stopping criteria is met. The criteria can either be a

speedup factor in comparison to a baseline version of the program (i.e., with a reduced set of

code optimizations applied), or a compilation budget (a deadline to release the application).

1For the models using Nearest Neighbors algorithm, the radius was determined experimentally from the
data.

74

Iterative compilation is more useful for smaller applications (e.g.: for embedded environ-

ments), as well as those with long release cycles. Because iterative compilation can be very

time-consuming, most researchers focus on speeding up the search for ideal compilation flags

for the program.

Agakov et al.describe a methodology to accelerate iterative compilation using machine-

learned models [3]. The model is learned with a set of training programs to explore the

optimization space. The learning instances consist of ordered sets of code transformations.

When an unseen program is submitted to the compiler, the exploration is focused on areas

of the optimization space that are known by the model to yield improvements. The authors

report significant speedups at the second iteration of the compilation. While it is possible

to change the order of code transformations, or even derive a distinct compilation plan,

doing so greatly enlarges the optimization space to search. This enlargement is due to the

non-additivity of code transformations, i.e., the order in which code transformations are

applied affects the code generated. Thus, the original problem of predicting a method-

specific compilation plan becomes, in addition, a phase-ordering problem.[25]

Fursin et al. describe the framework that led to MILEPOST GCC. They initially focused

on evaluating more permutations in the optimization space [15]. Later they described a com-

plete iterative compilation framework, capable of self-adjusting on different platforms [16].

The heuristics in the compiler are adjusted for a set of applications on a target platform,

depending on the goal of the user: improved execution performance or lower power con-

sumption on embedded platforms, for example. The implementation is currently able to

control all aspects of the underlying compiler, GCC, and is able to replace the original

heuristics altogether.

Besides relying on an iterative compilation approach, there two similarities to the ap-

proach described in this thesis. First, because the optimization space is large (GCC also

implements a large number of code transformations), the exploration approach does not

consider the order in which code transformations are applied, but only whether a transfor-

mation is or is not applied. Second, the machine-learned model is deployed externally to the

compiler, as a Matlab server, responding to compilation requests. One key difference is that

the machine-learned models are created on a per-application basis, i.e., they are trained in

the context of an individual application.

Cavazos et al. [7] describe the methodology used to train a program-specific machine-

learned model. The feature space is composed of the 60 performance-monitoring events

available in the architectural Performance Monitoring Counters (PMCs). The learning pro-

cess applies an unordered set of code transformations to a program used as training input,

and samples the performance events. By iterating, the model is exposed to transformations

that have a positive or negative impact as measured by the performance counters. When

75

a new, unseen program is fed to the model, it first samples the performance counters to

make an initial prediction on which code transformations should be enabled. The process

is repeated a few times (depending on the compilation budget set by the user), and the

best set of code transformations is kept. Because this technique by Cavazos et al.relies on

iterative compilation, it is not directly applicable to JiT environments, due to the increased

compilation cost.

In the work by Dubach et al. [12], a machine-learned model based on Artificial Neural-

Networks (ANNs) is trained to speed up the process of searching for better optimization

transformations for a given program. The model is exposed to different combinations of

code transformations and their associated speedups. This way, the iterative process is

accelerated by skipping the execution of several versions of the program. Instead, the learned

model predicts the speedup of applying a set of code transformations. The model is also

capable of predicting the speedup of unseen sets of code transformations. The authors report

success in accelerating the iterative compilation process. While the proposed methodology

is able to skip most of the iterative compilation process, it requires multiple evaluations

using the learned model until the compilation plan is predicted. The cost of these multiple

evaluations (at least 16) can outweigh the benefits of the compiled code, when considering

a JiT compilation scenario.

Another approach is the automatic tuning of compiler heuristics, discussed in Sec-

tion 9.2.2.

9.2.2 Automatic Tuning of Compiler Heuristics

Eeckout et al. [21] propose an automated compilation-plan tuning approach based on multi-

objective evolutionary search that uses Jikes as a testbed. In their approach, Jikes can

be fine-tuned for different (or mixed) scenarios: a specific hardware platform, a set of

applications, or a set of inputs for applications of interest. The tuning is carried out as

a two-step process, starting with the exploration of different compilation plans to identify

those that are Pareto-optimal, and then assigning a subset of them to the JiT during a

fine-tuning step. Compilation plans are ranked in terms of their code-quality output and

compilation rate. Pareto-optimal plans are those that yield the best-performing code and

compilation rate within a set of neighboring plans. The Pareto-optimal plans form a Pareto

frontier, restricting the number of compilation plans evaluated during the fine-tuning step.

In the fine-tuning step, the Pareto-optimal plans are evaluated considering all effects present

in the JiT compiler (e.g.: GC activity, which was avoided in the exploratory step to allow

convergence of the search algorithm) and the adaptive compilation system, so that the final

result is consistent with the expected use in a JVM. This work builds on top of previous

work by the same authors, in [20], but using GCC as the underlying compiler.

76

The key difference between the work of Eeckout et al. and the approach described in this

thesis is that their goal is to adjust the compilation plans in the compiler, which is a coarser

approach when compared to method-specific compilation (discussed next in Section 9.2.3).

Their methodology has the advantage of not incurring the overhead of a machine-learned

model whenever a compilation is carried out. However, once the compilation plans are

tuned and deployed, they are bound to encounter the same issues in the beginning of the

process. For example, if the compilation plans are tuned considering a set of similar appli-

cations, executing applications that are significantly different from the training set can lead

to degraded execution performance.

In [39], Vaswani et al. propose the use of machine-learned models to predict the exe-

cution time of a program given a set of code transformations. The models are built using

experimental data and characteristics of the platform (cache sizes and memory latency,

for example). Their methodology takes into consideration multi-valued heuristics, such as

loop-unrolling and procedure-inlining factors. By including the characteristics of the plat-

form in the learning process, the resulting models are able to perform predictions on a (not

significantly) different platform. The training data is collected using a sampled version of

a cycle-accurate processor simulator, reducing the generation of data to a few hours with

negligible error due to the sampling. The learned model customizes the compiler heuris-

tics for a program or set of programs. GCC was used as the underlying compiler in their

study. The authors claim that this methodology significantly simplifies the search and tun-

ing of compilation heuristics, outperforming the default heuristics. Similarly to the approach

described in this thesis, the methodology of Vaswani et al.focuses on subset of code trans-

formations implemented in GCC. The authors report that the ideal compilation plan varies

from program to program, which is consistent with the findings presented in this thesis.

Section 9.2.3 discusses finer-grained approaches for guiding the compilation.

9.2.3 Fine-grained Compilation

Fine-grained compilation approaches adjust the compilation heuristics to smaller portions

of the code. How large such portions of code are, depends on the specific approach. Some

approaches operate on segments of code, while others consider portions of code at the pro-

cedure level (method-specific). Finer-grained approaches consider even smaller portions of

code, for example, single loops. The approach described in this thesis is method-specific

compilation, where a compilation plan is tailored to the method being compiled. The char-

acteristics of the method are summarized by a feature vector, which is then used by the

trained machine-learned model to predict the compilation-plan modifier that should be used

in the compilation.

Cavazos and O’Boyle [9] trained machine-learned models based on logistic regression

77

to work with the Jikes RVM (Research Virtual Machine), a multi-level adaptive JiT Java

compiler that does not interpret Java bytecode when executing an application. The models

indicate the code transformations that should be applied during the compilation of a method,

on a per-method basis. They use a set of 26 features to describe methods in the form of

counters (e.g.: length of the method in Java bytecodes), attributes, and distribution of

Java bytecodes. In addition, three models are trained, one for each optimization level. For

the lower optimization levels (-O0 and -O1), data is collected for all possible permutations,

respectively 16 and 512 compilation plans. As the transformation space for -O2 would be

impractical to exhaust (there are 220 possible plans), they collect data for 1000 randomly

generated plans. The training datasets are created by ranking data samples on a per-method

basis, selecting those samples within 1% of the best performing method-specific plan. The

authors report improvements both on compilation and running time for the fixed scenarios,

i.e., when the compiler is set to compile methods at a specific optimization level (-O0, -O1,

and -O2). However, they have limited success when comparing with the adaptive strategy

in the Jikes compiler.

Compared to the approach described in this thesis, the work by Cavazos and O’Boyle

is the closest-related work in the literature. However, their work differs from this thesis in

several aspects. First, the number of code transformations available in Jikes is significantly

smaller than the number of code transformations in Testarossa (in the approach described

in this thesis, a subset of 58 code transformations from the available code transformations

in Testarossa are controlled).2 This makes the search for better compilation plans in this

study several orders of magnitude larger (log(258/220) ≈ 11.4), even under the conserva-

tive assumption that no more than 50% of the code transformations in a compilation plan

will be disabled. Second, Testarossa has an additional optimization level.3 Third, the di-

mensionality of the feature vector in this study is considerably larger. On the other hand,

a logistic-regression model is capable of outputting compilation plans not seen during the

training (since it is essentially a regression technique), as opposed to a multi-class SVM.

Pan et al. propose a methodology to divide an input program into segments (tuning

sections) automatically [33]. The infrastructure instruments these segments and explores

different compilation settings. The compilation settings are rated so that the best settings

are retained for each tuning section. The tuning sections are isolated into distinct compi-

lation units that are compiled individually, using source-to-source translation. During the

course of the exploration, each code segment uses a customized set of compilation settings,

and the final binary is generated using the best set of code transformations for each section,

with the instrumentation code removed. This work is a refinement of previous work by the

2The exact number of code transformations implemented in Testarossa is confidential.
3When compared to Jikes, Testarossa has, in fact, two additional optimization levels, but one of those is

a special-purpose optimization level (Ahead-of-Time (AoT) compilation), not used in this thesis.

78

same authors [32]. The scope of that earlier work is, however, enlarged to the complete

program being compiled. Because the technique proposed by Pan et al. relies on source-

to-source translation in order to explore different compilation plans on tuning sections, the

technique is not suitable for JiT compilers.

The works by Wu et al. [41, 40], having GCC as the underlying compiler, tackle the

fact that the highest optimization level frequently leads to suboptimal performance. The

methodology builds a knowledge base from training programs using clustering techniques,

organizing them with respect to code segments. The methodology described is applied

only to loops found in the intermediate representation of the program, even though there

is no limitation to consider other segments of the code. The model is trained considering

optimization settings for similar code segments. The similarity is given by their feature

vectors. When the model is learned, new program inputs are segmented in order to search

for similar segments in the knowledge base, and the associated compilation settings are used.

The authors report consistent speedups over the default heuristics in GCC, including the

highest optimization level.

The key difference to the approach described in this thesis is that the methodology

proposed by Wu et al. is able to determine when the code segment being compiled is signif-

icantly different from those known to the learned model, because it uses a machine-learning

algorithm based on clustering. Therefore, their methodology can quantify the distinctive-

ness of the code portion by computing the distance of the respective feature vector to the

nearest cluster in the feature space. In this case, the conservative approach of relying on the

default heuristics is taken. In the approach described in this thesis, the default heuristics

are chosen only if the learned SVM predicts the class for the null compilation-plan modifier.

Traditionally the application of supervised learning methods to compilation have used

a set of program features specified by compiler developers based on their intuition and ex-

perience. One limitation of this methodology is that what compiler designers consider to

be descriptive features might not be ideal from the machine-learning algorithm perspec-

tive. Leather et al. [27] proposed a methodology to automatically create features based

on grammar evolution. Simple grammar constructs are made available to the evolutionary

algorithm, which creates rules that can be evaluated over the intermediate representation of

a program being compiled. The features are evolved over several generations, and the most

descriptive features are kept to train a machine-learned model. The underlying compiler

used is GCC, and the authors report significant improvements over the default heuristics in

GCC, including the maximum optimization level.

While the automatic methodology to generate program features is effective, the cost

is significant. First, the methodology proposed by Leather et al. requires an additional

data-collection process and experimental evaluation in order to automatically derive a set of

79

features, until the evolutionary algorithms converge to a solution. The methodology evalu-

ates whether a possible set of features improves the accuracy of the model, thus requiring the

training and evaluation of several models. Second, considering that such evolutionary pro-

cess is likely to be performed using smaller-scale data collections, an additional, large-scale

data-collection process is still necessary to generate training data for the machine-learned

model that will be deployed with the compiler. Finally, the evolutionary approach can gen-

erate features that are computationally intensive, up to 2 s of CPU time (if a feature takes

more than 2 s of CPU time to evaluate, it is not included in the next generation). In the

platform used in this thesis, Testarossa rarely takes more than 250 ms to compile a method

at the highest optimization level. Therefore, the automated approach to generate features

proposed by Leather et al., in its current form, is not viable for JiT environments.

80

Chapter 10

Conclusion

This thesis describes the design and implementation of a complete and customized frame-

work that enables the use of machine-learned models for method-specific compilation in

Testarossa, a commercial JiT compiler from IBM. The thesis motivates the need for such a

customized infrastructure, in order to overcome challenges from production environments,

such as large-scale data collection.

The framework is composed of (i) a data collection infrastructure that implements a

lightweight profiling mechanism; (ii) a binary archive format for handling large-scale data

collection; (iii) tools for processing the data collected in order to train machine-learned

models; and (iv) a lightweight communication protocol for integrating the compiler and the

machine-learned models.

The data-collection process described in this thesis can generate a significant amount

of training data in a few hours, and can be performed in parallel on a computer cluster.1

The multiple approaches to generate compilation-plan modifiers are complementary, and

the resulting data can be easily merged in multiple ways. For instance, the leave-one-out

cross-validation process benefits from the ability of merging multiple distinct data sets.

The customized binary archive format enables large-scale data-collection experiments to

be conducted. The archives store approximately 7, 000 compilation records per megabyte,

without compression.2 A reader application was implemented, allowing the data collected

to be easily interfaced with other tools, especially those shipped with the implementation

of machine-learning algorithms, such as LIBLINEAR.

The tools implemented for the ranking process can handle large amounts of data and

generate reasonably-sized training data sets. Currently, the size of the training data set

is proportional to the number of unique methods present in the data processed during the

ranking process. The size of the data sets can be further controlled if necessary, by either

1Data collection for the 5 SPECjvm98 benchmarks, running on a single node of the cluster used in this
study, completes in approximately 20 hours.

2The archives can be compressed, further increasing the storage savings (the compression ratio ranges
from 40% to 80%).

81

using stricter parameters in the ranking process, or using additional trimming tools that were

also implemented. The ranking process was improved during many iterations, and training

times are down from several days to a few minutes, requiring significantly less resources.3

The ranking process can also benefit from multi-processor and/or clustered environments,

if resources are available.

This thesis also describes a simple and low-overhead integration mechanism to interface

with different implementations of machine-learned models. This mechanism enables the use

of different machine-learned models without changes to the compiler. This mechanism also

allows for easy evaluation of different implementations of machine-learned models to find

one that is appropriate for production environments.

The approach proposed in this thesis does not outperform the performance through-

put of Testarossa when operating in its default mode (adaptive, multi-level optimization).

However, the performance results provide evidence that, for some types of benchmarks,

method-specific compilation plans produce code comparable to that generated by the plans

currently used in Testarossa. These plans were developed over many years by expert devel-

opers.

On the other hand, when using the machine-learned models based on data from the

randomized search approach (Section 5.3 on page 39), including the hybrid models, the

compilation times are significantly smaller. In particular, models created using data col-

lected solely from the randomized search approach produce compilation times significantly

smaller than Testarossa operating in adaptive mode, and much smaller than Testarossa

using only the hot optimization level. The models using progressive randomized search

(Section 5.4 on page 40) are not able to significantly reduce compilation time because they

focus their search on plans similar to the original ones included in Testarossa.

Chapter 11 discusses areas for future development of the infrastructure presented in this

thesis.

3The training times of each of the models discussed in this thesis range from 2 to 40 minutes on a 1 GHz

laptop, depending on the value of the misclassification cost parameter C for SVMs.

82

Chapter 11

Future Work

JiT compilers offer a challenging compilation environment. They also offer numerous possi-

bilities for research in order to convert a compilation budget into improved execution time

for an application.

This chapter discusses future work in the context of this thesis, in a logical sequence.

The first of these possible directions is feedback during the data-collection process, discussed

in Section 11.1.

11.1 Active Feedback Exploration

The approaches implemented for generation of compilation-plan modifiers are, by design,

passive in the sense that once they are generated, they do not change in any way. The

main advantage is the reduced complexity because only a few variables unrelated to the

application being executed are taken into consideration. However, there is no guarantee

that the exploration is being focused in the most relevant areas of the feature space for an

arbitrary method.

To improve the search process, modifiers can be generated on-demand after receiving

feedback from the instrumented application. This can be accomplished by computing the

ranking value of a modifier for a method after it executes for a certain number of invocations,

and then deciding what should be the next compilation-plan modifier. The ranked modifier

serves as a hint for generating modifiers, which can focus the future modifiers into specific

areas of the modifier space.

Using this feedback-based approach, modifiers are generated on a per-method basis.

Therefore, the exploration of the optimization space can be focused on areas of the opti-

mization space that are relevant for the method. For example, modifiers for methods con-

taining loops can focus on areas of the optimization space concerning loop transformations,

provided that those transformations are beneficial to the method (i.e., an improvement in

the execution time can be measured).

83

T0

1, 300
T1

2, 700
T2

500
T3

750
T4

760

T2 + T3

650
T2 + T4

1, 700

T2 + T3 + T4

1, 250

Figure 11.1: Heuristic search of compilation plans. The boxes contain a set of code trans-
formations and their respective ranking value, for an arbitrary feature vector. The search
focuses on regions with lower cost (as given by the ranking value), including code transfor-
mations based on their ranking value from the initial state (the uppermost level).

The communication can reuse the socket-based infrastructure in place, which is used to

communicate with the machine-learned model. As far as Testarossa is concerned, there is

no difference between a compilation-plan modifier generated based on runtime feedback and

a modifier predicted by a learned model.

This feedback-based approach can also enable the use of different machine-learning al-

gorithms. In particular, algorithms that incrementally adapt to changes in the learning

scenario, such as Reinforcement Learning (RL) or incremental SVMs [14] might be consid-

ered.

Section 11.2 discusses a pruning approach to be used in conjunction with active feedback

exploration.

11.2 Heuristic-based Search

Due to the size of the optimization space, searching for different compilation plans can be

very time-consuming. Moreover, because of the method-specific approach, the size of the

optimization space to search is enlarged across each distinct feature vector. In order to focus

the search on the portions of the optimization space that are relevant to the feature vector,

a heuristic-based search can be used.

For the heuristic-search algorithm, the state of the search is represented using the ranking

value for a given feature vector and the respective compilation-plan modifier. The initial

step in the search is, therefore, to enable each individual code transformation in order to

assess the sensitivity of the feature vector regarding each of the code transformations.

Figure 11.1 illustrates the state-transition during the search. The transition is based

on the ranking values obtained in the initial state. The heuristic-search algorithm focuses

on the regions of the optimization space with smaller costs, given by the ranking function

84

described in this thesis. As the search progresses, the algorithm generates compilation-plan

modifiers by combining an additional code transformation in a previous state of the search

(i.e., by including a code transformation in a previous compilation-plan modifier). In the

second level of the figure, the algorithm evaluates the inclusion of two code transformations,

generating the distinct sets {T2 + T3} and {T2 + T4}. The transformations T3 and T4 were

chosen because of their low costs as discovered in the initial step, in the uppermost level

of the figure. For the third level, the algorithm evaluates a set of code transformations

combining {T2 + T3 + T4}.

The heuristic-based approach dynamically explores the most yielding regions of the op-

timization space. This process must be performed for every unique feature vector. On the

other hand, the approaches implemented in this thesis to generate compilation-plan mod-

ifiers do not take any additional variables, thus they randomly sample the optimization

space. Depending on the characteristics of the method, such randomized approaches can

evaluate numerous modifiers that are not relevant for a given method.

Section 11.3 discusses a method for accelerating the search (regardless of the approach

used to generate compilation-plan modifiers), taking the similarity of feature vectors into

consideration and the previously modifiers used.

11.3 Accelerated Search based on Similarity

The search for compilation-plan modifiers requires the exploration of a large space of possible

modifiers (258) for each unique feature vector. If feature vectors can be identified during the

data-collection process, and if they are similar enough (i.e., sufficiently close in the feature

space), these similar feature vectors can benefit from the search efforts invested previously.

However, because of the dimensionality of the feature vectors currently in use (71-

dimensional), small differences still result in unique feature vectors. An unsupervised learn-

ing algorithm based on clustering (e.g.: k-Nearest Neighbors) can be used to identify suf-

ficiently similar feature vectors. In this case, distinct methods with highly similar feature

vectors are considered as equal for exploration of the optimization space.

The similarity function used in the clustering algorithm, which measures the difference

between two feature vectors, must take into consideration the contribution of each com-

ponent of the feature vector. For example, two methods that differ only by an attribute

such as has loops cannot be merged together. This is because the performance of a method

containing loops is greatly reduced if no code transformations for loops are used during the

compilation. On the other hand, feature vectors differing only an arbitrary amount in the

number of locals (i.e., variables used in the body of the method) can be safely merged.

This similarity-based approach for accelerated search can enable the effective exploration

of ordered compilation plans, which is discussed in Section 11.4.

85

11.4 Ordered Compilation Plans

The natural step in method-specific compilation is the generation of ordered compilation-

plans. An ordered compilation-plan specifies precisely what code transformations to apply

during the compilation, and in which order. The order in which code transformations are

applied can either create or hinder optimization opportunities during the compilation.

Currently, ordered compilation-plans are manually crafted by expert compiler developers,

and tuned over the course of many years. Maintaining such compilation plans is a daunting

task, especially when considering the diversity of code that is compiled and the fast-paced

changes in supported platforms.

The compilation-plan modifiers described in this thesis only specify what code trans-

formations to apply, without changing the order in which they are applied by Testarossa.

The ability to create ordered compilation-plans can further exploit the benefits of method-

specific compilation. Moreover, distinct methods benefit differently from compilation plans.

For example, for a method that benefits from a compilation plan where many code transfor-

mations are disabled, it is possible that such a compilation plan can be streamlined further.

In practice, it is common for code transformations to be applied more than once during

the compilation, especially clean-up transformations. In such case, the number of clean-up

passes can be reduced, or even removed altogether if the method is not sensitive to them

(e.g.: the method does not have unreachable portions of code, so code transformations for

dead-code elimination are not as effective). On the other hand, computationally-intensive

methods can benefit from longer compilation plans, which are not appropriate for a number

of methods that are not as computationally intensive.

Traditional machine-learning algorithms can be used with ordered compilation-plans by

reusing the mapping approach used to circumvent the class-space limitation in LIBLINEAR.

In this case, each distinctly ordered compilation-plan is assigned an unique identifier, which

is used as a class for the training data set. When used by Testarossa, a predicted class is

mapped back to the original ordered compilation-plan.

86

Bibliography

[1] Ali-Reza Adl-Tabatabai, Michał Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh, and
James M. Stichnoth. Fast, Effective Code Generation in a Just-in-Time Java Compiler.
SIGPLAN Notices, 33(5):280–290, 1998.

[2] Advanced Micro Devices. AMD64 Architecture: Programmer’s Manual Volume 2: Sys-
tem Programming, November 2009.

[3] Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Grigori Fursin, Michael F. P.
O’Boyle, John Thomson, Marc Toussaint, and Christopher K. I. Williams. Using Ma-
chine Learning to Focus Iterative Optimization. In Code Generation and Optimization
(CGO), pages 295–305, Washington, DC, USA, 2006. IEEE Computer Society.

[4] Bowen Alpern, C. Richard Attanasio, John J. Barton, Michael G. Burke, Perry Cheng,
Jong-Deok Choi, Anthony Cocchi, Stephen J. Fink, David Grove, Michael Hind,
Susan Flynn Hummel, Derek Lieber, Vassily Litvinov, Mark F. Mergen, Ton Ngo,
James R. Russell, Vivek Sarkar, Mauricio J. Serrano, Janice C. Shepherd, Stephen E.
Smith, Vugranam C. Sreedhar, Harini Srinivasan, and John Whaley. The Jalapeño
Virtual Machine. IBM Systems Journal, 39(1):211–238, 2000.

[5] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney.
Adaptive Optimization in the Jalapeño JVM. In Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), pages 47–65, New York, NY, USA, 2000.

[6] Matthew Arnold, Michael Hind, and Barbara Ryder. An Empirical Study of Selective
Optimization. Languages and Compilers for Parallel Computing, pages 49–67, 2001.

[7] John Cavazos, Grigori Fursin, Felix V. Agakov, Edwin V. Bonilla, Michael F. P.
O’Boyle, and Olivier Temam. Rapidly Selecting Good Compiler Optimizations using
Performance Counters. In Code Generation and Optimization (CGO), pages 185–197,
San Jose, CA, March 2007.

[8] John Cavazos and J. Eliot B. Moss. Inducing heuristics to decide whether to sched-
ule. In Programming Language Design and Implementation (PLDI), pages 183–194,
Washington, DC, June 2004.

[9] John Cavazos and Michael F. P. O’Boyle. Method-specific dynamic compilation using
logistic regression. In Object-Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA), pages 229–240, Portland, OR, 2006.

[10] Michał Cierniak, Guei-Yuan Lueh, and James M. Stichnoth. Practicing JUDO: JavaTM

Under Dynamic Optimizations. Programming Language Design and Implementation
(PLDI), 35(5):13–26, 2000.

[11] Corinna Cortes and Vladimir Vapnik. Support-vector Networks. Machine Learning,
20:273–297, September 1995.

[12] Christophe Dubach, John Cavazos, Björn Franke, Grigori Fursin, Michael F.P. O’Boyle,
and Olivier Temam. Fast compiler optimisation evaluation using code-feature based
performance prediction. In Proceedings of the 4th International Conference on Com-
puting frontiers (CF’07), pages 131–142, New York, NY, USA, 2007.

[13] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
LIBLINEAR: A library for large linear classification. Journal of Machine Learning
Research, 9:1871–1874, 2008.

87

[14] Glenn Fung and Olvi L. Mangasarian. Incremental Support Vector Machine Classifica-
tion. In Proceedings of the 2nd SIAM International Conference on Data Mining, pages
247–260, 2002.

[15] Grigori Fursin, Albert Cohen, Michael O’Boyle, and Olivier Temam. Quick and Prac-
tical Run-time Evaluation of Multiple Program Optimizations. Transactions on High-
Performance Embedded Architectures and Compilers I, pages 34–53, 2007.

[16] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov,
Ayal Zaks, Bilha Mendelson, Edwin Bonilla, John Thomson, Hugh Leather, Chris
Williams, and Michael O’Boyle. MILEPOST GCC: Machine Learning Based Research
Compiler. In GCC Developer Summit 2008, Ottawa, ON, 2008.

[17] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM Language Speci-
fication. Addison-Wesley Professional, 2005.

[18] Nikola Grcevski, Allan Kielstra, Kevin Stoodley, Mark Stoodley, and Vĳay Sundare-
san. JavaTM Just-In-Time Compiler and Virtual Machine Improvements for Server
and Middleware Applications. In VM’04: Proceedings of the 3rd conference on Virtual
Machine Research And Technology Symposium, pages 12–12, Berkeley, CA, USA, 2004.
USENIX Association.

[19] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Verlag, 2009.

[20] Kenneth Hoste and Lieven Eeckhout. COLE: Compiler optimization level exploration.
In Code Generation and Optimization (CGO), pages 165–174. ACM, 2008.

[21] Kenneth Hoste, A. Georges, and Lieven Eeckhout. Automated just-in-time compiler
tuning. In Code Generation and Optimization (CGO). ACM, 2010.

[22] IBM Corporation. IBM J9TM JavaTM Virtual Machine. http://www.ibm.com/
developerworks/java/jdk/.

[23] IBM Corporation. Performance InspectorTM. http://perfinsp.sourceforge.net/,
July 2010.

[24] S. Sathiya Keerthi, S. Sundararajan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin.
A Sequential Dual Method for Large Scale Multi-class Linear SVMs. In Proceedings
of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD’08), pages 408–416, New York, NY, USA, 2008. ACM.

[25] Prasad A. Kulkarni, Stephen R. Hines, David B. Whalley, Jason D. Hiser, Jack W.
Davidson, and Douglas L. Jones. Fast and efficient searches for effective optimization-
phase sequences. ACM Transactions on Architecture and Code Optimization (TACO),
2(2):165–198, 2005.

[26] Jeremy Lau, Matthew Arnold, Michael Hind, and Brad Calder. Online Performance
Auditing: Using Hot Optimizations Without Getting Burned. Programming Language
Design and Implementation (PLDI), 41(6):239–251, 2006.

[27] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. Automatic feature generation for
machine learning based optimizing compilation. In Code Generation and Optimization
(CGO), pages 81–91, Seattle, WA, USA, 2009.

[28] Robert Love. Linux Kernel Development. Novell Press, 2005.

[29] Jean-loup Gailly Mark Adler. zlib. http://www.zlib.net/, July 2010.

[30] Antoine Monsifrot, François Bodin, and Rene Quiniou. A machine Learning Approach
to Automatic Production of Compiler Heuristics. Artificial Intelligence: Methodology,
Systems, and Applications, pages 389–409, 2002.

[31] J. Eliot B. Moss, Paul E. Utgoff, John Cavazos, Doina Precup, Darko Stefanovic,
Carla E. Brodley, and David T. Scheeff. Learning to Schedule Straight-Line Code. In
Neural Information Processing Systems (NIPS), pages 929–935, Denver, CO, 1997.

88

[32] Zhelong Pan and Rudolf Eigenmann. Fast and effective orchestration of compiler op-
timizations for automatic performance tuning. In Code Generation and Optimization
(CGO), pages 319–332, New York, NY, 2006.

[33] Zhelong Pan and Rudolf Eigenmann. Fast, automatic, procedure-level performance
tuning. In Parallel Architectures and Compilation Techniques (PACT), pages 173–181,
Seattle, Washington, 2006.

[34] Standard Performance Evaluation Corporation (SPEC). SPEC JVM98 benchmarks.
http://www.spec.org/jvm98/.

[35] Mark Stephenson and Saman Amarasinghe. Predicting Unroll Factors Using Supervised
Classification. In Code Generation and Optimization (CGO), pages 123–134, San Jose,
CA, March 2005.

[36] Mark Stephenson, Saman Amarasinghe, Martin C. Martin, and Una-May O’Reilly.
Meta optimization: Improving compiler heuristics with machine learning. In Program-
ming Language Design and Implementation (PLDI), pages 77–90, San Diego, CA, June
2003.

[37] Richard W. Stevens and Stephen A. Rago. Advanced Programming in the UNIX R©
Environment. Addison-Wesley Professional, 2005.

[38] The Jikes RVM Project. Jikes RVM. http://jikesrvm.org/.

[39] Kapil Vaswani, Matthew J. Thazhuthaveetil, Y. N. Srikant, and P. J. Joseph. Microar-
chitecture Sensitive Empirical Models for Compiler Optimizations. Code Generation
and Optimization, IEEE/ACM International Symposium on, 0:131–143, 2007.

[40] Haiping Wu, Eunjung Park, Mihailo Kaplarevic, Yingping Zhang, Murat Bolat, Xi-
aoming Li, and Guang R. Gao. Automatic Program Segment Similarity Detection in
Targeted Program Performance Improvement. International Parallel and Distributed
Processing Symposium, 0:452, 2007.

[41] Haiping Wu, Eunjung Park, Mihailo Kaplarevic, Yingping Zhang, Xiaoming Li, and
Guang R. Gao. Dynamic optimization option search in GCC. In GCC Developers
Summit, pages 165–174, 2007.

89

Appendix A

SPECjvm98 Results

The performance results obtained when using the learned models are constrasted with Tes-

tarossa operating under adaptive mode, and also using only the hot optimization level. The

running time of each benchmark is detailed on a cumulative, per-iteration basis. For each

benchmark application, a set of three graphs are presented, focusing on each of the three

approaches used to generate compilation-plan modifiers.

All running times are reported in seconds. The benchmarks are executed 30 times, and

the average time spent on each of the 10 internal benchmark iterations is plotted.

A.1 compress

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: compress
Progressive search models

Testarossa (adaptive)
Testarossa (hot)

Model P1
Model P2
Model P3
Model P4
Model P5

Figure A.1: Progressive randomized search models on compress.

90

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: compress
Randomized search models

Testarossa (adaptive)
Testarossa (hot)

Model R1
Model R2
Model R3
Model R4
Model R5

Figure A.2: Randomized search models on compress.

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: compress
Hybrid models

Testarossa (adaptive)
Testarossa (hot)

Model H1
Model H2
Model H3
Model H4
Model H5

Figure A.3: Hybrid models on compress.

91

A.2 db

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: db
Progressive search models

Testarossa (adaptive)
Testarossa (hot)

Model P1
Model P2
Model P3
Model P4
Model P5

Figure A.4: Progressive randomized search models on db.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: db
Randomized search models

Testarossa (adaptive)
Testarossa (hot)

Model R1
Model R2
Model R3
Model R4
Model R5

Figure A.5: Randomized search models on db.

92

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: db
Hybrid models

Testarossa (adaptive)
Testarossa (hot)

Model H1
Model H2
Model H3
Model H4
Model H5

Figure A.6: Hybrid models on db.

A.3 jack

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: jack
Progressive search models

Testarossa (adaptive)
Testarossa (hot)

Model P1
Model P2
Model P3
Model P4
Model P5

93

Figure A.7: Progressive randomized search models on jack.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: jack
Randomized search models

Testarossa (adaptive)
Testarossa (hot)

Model R1
Model R2
Model R3
Model R4
Model R5

Figure A.8: Randomized search models on jack.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: jack
Hybrid models

Testarossa (adaptive)
Testarossa (hot)

Model H1
Model H2
Model H3
Model H4
Model H5

Figure A.9: Hybrid models on jack.

94

A.4 javac

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: javac
Progressive search models

Testarossa (adaptive)
Testarossa (hot)

Model P1
Model P2
Model P3
Model P4
Model P5

Figure A.10: Progressive randomized search models on javac.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: javac
Randomized search models

Testarossa (adaptive)
Testarossa (hot)

Model R1
Model R2
Model R3
Model R4
Model R5

Figure A.11: Randomized search models on javac.

95

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: javac
Hybrid models

Testarossa (adaptive)
Testarossa (hot)

Model H1
Model H2
Model H3
Model H4
Model H5

Figure A.12: Hybrid models on javac.

A.5 jess

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: jess
Progressive search models

Testarossa (adaptive)
Testarossa (hot)

Model P1
Model P2
Model P3
Model P4
Model P5

96

Figure A.13: Progressive randomized search models on jess.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: jess
Randomized search models

Testarossa (adaptive)
Testarossa (hot)

Model R1
Model R2
Model R3
Model R4
Model R5

Figure A.14: Randomized search models on jess.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: jess
Hybrid models

Testarossa (adaptive)
Testarossa (hot)

Model H1
Model H2
Model H3
Model H4
Model H5

Figure A.15: Hybrid models on jess.

97

A.6 mpegaudio

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: mpegaudio
Progressive search models

Testarossa (adaptive)
Testarossa (hot)

Model P1
Model P2
Model P3
Model P4
Model P5

Figure A.16: Progressive randomized search models on mpegaudio.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: mpegaudio
Randomized search models

Testarossa (adaptive)
Testarossa (hot)

Model R1
Model R2
Model R3
Model R4
Model R5

Figure A.17: Randomized search models on mpegaudio.

98

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: mpegaudio
Hybrid models

Testarossa (adaptive)
Testarossa (hot)

Model H1
Model H2
Model H3
Model H4
Model H5

Figure A.18: Hybrid models on mpegaudio.

A.7 mtrt

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: mtrt
Progressive search models

Testarossa (adaptive)
Testarossa (hot)

Model P1
Model P2
Model P3
Model P4
Model P5

99

Figure A.19: Progressive randomized search models on mtrt.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: mtrt
Randomized search models

Testarossa (adaptive)
Testarossa (hot)

Model R1
Model R2
Model R3
Model R4
Model R5

Figure A.20: Randomized search models on mtrt.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: mtrt
Hybrid models

Testarossa (adaptive)
Testarossa (hot)

Model H1
Model H2
Model H3
Model H4
Model H5

Figure A.21: Hybrid models on mtrt.

100

A.8 raytrace

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: raytrace
Progressive search models

Testarossa (adaptive)
Testarossa (hot)

Model P1
Model P2
Model P3
Model P4
Model P5

Figure A.22: Progressive randomized search models on raytrace.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: raytrace
Randomized search models

Testarossa (adaptive)
Testarossa (hot)

Model R1
Model R2
Model R3
Model R4
Model R5

Figure A.23: Randomized search models on raytrace.

101

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Benchmark internal iteration

Accumulated running time for SPECjvm98: mpegaudio
Hybrid models

Testarossa (adaptive)
Testarossa (hot)

Model H1
Model H2
Model H3
Model H4
Model H5

Figure A.24: Hybrid models on raytrace.

102

