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Abstract

Many standard approaches for conducting statistical inference on regression

parameters rely heavily on parametric assumptions and asymptotic results.

The wild bootstrap (Mammen, 1993) was developed as a nonparametric means

to estimate a sampling distribution and is particularly useful when conduct-

ing statistical inference for linear models. With wide-reaching applications,

the wild bootstrap can be used in a variety of settings where distributional

assumptions are violated or are di�cult to verify. While the wild bootstrap

has attractive properties, as big-data becomes increasingly prevalent in society

computationally intensive resampling schemes such as bootstrapping become

less appealing and impractical.

In this work, an analytic framework for computing confidence regions and

intervals in a variety of linear models is developed. The use of the concen-

tration of measure phenomenon paired with the appealing properties of the

wild bootstrap leads to a more computationally e�cient, nonparametric way

to perform statistical inference for regression parameters. The methodology

is first introduced for the coe�cients in least squares regression, and is then

adapted to consider the more complex settings of ridge and LASSO regression.

Lastly, this analytic approach is discussed in the context of generalized linear

models, focusing on the case of overdispersion in Poisson regression.
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Chapter 1

Introduction and Overview

1.1 Motivation

When working with linear models, at times estimation and prediction may

be the primary interest of the researcher. However, conducting statistical in-

ference for regression coe�cients such as hypothesis testing and confidence

intervals is often a priority. While many standard, parametric approaches

for inference exist, there are many cases when regression assumptions may

be violated rendering these methods unsuitable. The wild bootstrap (Wu,

1986; Beran, 1986; Liu, 1988) was proposed as a means to estimate a sampling

distribution under non-i.i.d. models. Mammen (1993) illustrates the asymp-

totic properties of the wild bootstrap estimator and shows that it correctly

approximates the large sample distribution of the least squares estimator. Re-

cently, the wild bootstrap has been applied to many regression problems such

as quantile regression (Wang et al., 2018; Hagemann, 2017). Although the

wild bootstrap may yield promising results, it is computationally ine�cient.

The wild bootstrap procedure involves perturbing the residuals by multiply-

ing by a mean zero random variable a large number of times. This process is

computationally costly and, when the sample size is large, can become quite

ine�cient.

This thesis explores nonparametric, analytic approaches to conducting sta-

tistical inference in various regression settings based on the wild bootstrap.

1



This involves analytically bounding the moments of the wild bootstrap esti-

mator by applying a decoupling inequality (Kwapien, 1987; De la Pena and

Giné, 2012). Sub-Gaussian bounds on the tail probability of the estimated

regression parameters can then be established using concentration of measure

(Ledoux, 2001; Boucheron et al., 2013). This approach only requires a small

number of perturbations of the residuals, a fraction of what is demanded by

the wild bootstrap, which saves a lot of computational time. Additionally, in

response to the introduction of universal constants that arise from the decou-

pling inequality, an empirical beta transform Kashlak et al. (2022) is imple-

mented in order to retain statistical power. This approach is primarily applied

to compute confidence regions for regression parameters and linear contrasts,

the latter allowing for the consideration of confidence intervals for individual

regression coe�cients. We explore these ideas in a variety of regression set-

tings, starting with least squares regression, then transitioning into penalized

regression and concluding with the consideration of generalized linear models.

1.2 Outline

The remainder of this thesis is organized as follows.

Chapter 2 discusses a variety of bootstrapping techniques including Mam-

men’s wild bootstrap (Mammen, 1993) and reviews some relevant inequalities

that are a basis for much of this work. As well, this chapter introduces the

analytic wild bootstrap as a nonparametric way to build confidence regions

and intervals for regression parameters. This chapter focuses on least squares

regression and particularly emphasizes the importance of this approach in the

case of heteroscedastic data.

In Chapter 3, we adapt these ideas to the penalized setting of ridge regres-

sion. The double bootstrap is implemented as a response to the problems that

may arise when trying to bootstrap a biased estimator.

Chapter 4 extends our analytic approach to accommodate the coe�cients

in LASSO regression. We use a ridge-approximation to overcome the lack of

closed-form expression available for the coe�cients in LASSO regression.

Chapter 5 investigates applications of the wild bootstrap and ANWB to

2



the class of generalized linear models. The value of these bootstrap approaches

is demonstrated when presented with overdispersed count data.

Finally, Chapter 6 provides a conclusion and a discussion of potential future

work in this area.
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Chapter 2

Bootstrapping in Least Squares

Regression

2.1 Introduction

Heteroscedastic errors are a major challenge that may arise when performing

least squares regression. In particular, non-i.i.d. data poses a problem in the

construction of confidence regions for regression parameters, where the clas-

sical parametric confidence regions derived using the F -distribution may not

be appropriate. While nonparametric alternatives such as the wild bootstrap

exist, they are not computationally e�cient. In this chapter, an alternative,

computationally e�cient approach to constructing confidence regions for the

regression parameters in least squares regression is proposed called the Ana-

lytic Wild Bootstrap (ANWB).

The ANWB is advantageous as it does not require either the assumption

of normality or homogenous variance for the residuals and, in comparison to

the wild bootstrap, is much more computationally e�cient. For example, if we

consider B = 1000 bootstrap replications for the wild bootstrap and B = 10

for the ANWB, using a quad-core processor a data set with dimensions n = 100

and p = 5 takes approximately 0.4 seconds CPU time for the ANWB and 24

seconds CPU time for the wild bootstrap. Moreover, a data set with larger

dimensions like n = 10000 and p = 100 takes roughly 5 minutes CPU time for

4



the ANWB and over 1.5 hours CPU time for the wild bootstrap.

The rest of this chapter is organized as follows. Section 2.2 describes how

parametric confidence regions can be computed using the F-distribution. In

Section 2.3, we review a variety of bootstrapping techniques in the context of

least squares regression including Mammen’s wild bootstrap (Mammen, 1993).

Section 2.4 reviews the concentration of measure phenomenon as well as sev-

eral relevant inequalities. Section 2.5 introduces the analytic wild bootstrap

as a computationally e�cient, nonparametric method for obtaining confidence

regions for regression parameters. Simulation results are presented in Section

2.6, demonstrating the performance of the ANWB along with other meth-

ods for both homoscedastic and heteroscedastic data. Section 2.7 applies the

methodology on a data set concerning the salaries and other aspects of profes-

sors from the Houston College of Medicine (Huang, 2017). A discussion of the

results from the chapter is provided in Section 2.8. The work in this chapter

has been published as Burak and Kashlak (2022).

2.2 Parametric Confidence Regions

Consider the linear model

Y = X� + ",

where Y is an n-dimensional vector of responses, X is the n⇥p design matrix,

� is the p-dimensional parameter vector and " is the n-dimensional error term

assumed to have mean zero and finite second moment. The least squares

estimator �̂ of � is given by

�̂ = (X 0
X)�1

X
0
Y.

In least squares regression where the residuals are i.i.d. from a normal

distribution, it is convenient to consider the classical parametric confidence

regions constructed using the F -distribution. Specifically, as outlined in Nick-

erson (1994), a (1� ↵)100% confidence region for � is defined by

(�̂ � �)0X 0
X(�̂ � �)/pMSE  F↵,

5



where MSE = (Y 0
Y � �̂

0
X

0
Y )/(n � p) and F↵ = F (1 � ↵; p, n � p) is the

(1�↵)100th percentile of the F -distribution. In appropriate settings, this ap-

proach is straightforward and su�cient for constructing confidence regions for

�. However, when presented with heteroscedastic data or non-normal errors,

it may not be suitable to consider this parametric construction that relies on

the fact that "
i.i.d.⇠ N(0, �2

In).

2.3 Bootstrapping

2.3.1 Residual resampling

In regression, a popular approach to bootstrapping is to use residual resam-

pling introduced by Efron (1979). When residual resampling, the bootstrap

model is

Y
⇤ = X�̂ + "

⇤
,

where "
⇤ = ("⇤1, . . . , "

⇤
n)

0 and "
⇤
i is obtained from sampling with replacement

from the centered residuals. It is conventional to sample from the centered

residuals as otherwise the bootstrap may fail (Freedman, 1981). The bootstrap

estimate �̂
⇤ of �̂ is then

�̂
⇤ = (X 0

X)�1
X

0
Y

⇤
.

In the presence of heteroscedastic data, however, residual resampling is not

recommended as it eliminates the dependence between the error term and the

explanatory variables (Freedman, 1981).

2.3.2 Pairs bootstrap

As an alternative to residual resampling, we can consider the pairs bootstrap

(Freedman, 1981). The pairs bootstrap involves resampling vectors from the

data as follows (Sartori, 2011),

1. From the observed data (X, Y ), sample with replacement from the pairs

(x1, y1), . . . , (xn, yn) to get a bootstrap data set (X⇤
, Y

⇤) consisting of

6



rows (x⇤
1, y

⇤
1), . . . , (x

⇤
n, y

⇤
n).

2. Estimate bootstrapped regression coe�cients as

�̂
⇤ = (X⇤0

X
⇤)�1

X
⇤0
Y

⇤
.

3. Repeat steps 1 and 2 B times.

While convenient to use, the pairs bootstrap has some major disadvan-

tages. Conventionally, the regression data (xi, yi) is unbalanced and the pairs

bootstrap does not take this into account (Wu, 1986). Since each bootstrap

sample has a di↵erent design matrix X
⇤, the pairs bootstrap does not typically

produce very accurate results (MacKinnon, 2006).

2.3.3 Wild bootstrap

Flachaire (1999) advises that the wild bootstrap should be used to overcome

the drawbacks of the pairs bootstrap. The wild bootstrap Wu (1986); Beran

(1986); Liu (1988) was introduced in order to accommodate non-i.i.d. models.

The wild bootstrap model is

Y
⇤ = X�̂ + "

⇤
,

where "⇤ = ("⇤1, . . . , "
⇤
n)

0 with "
⇤
i = �i"̂i, where the �is are i.i.d. random variables

with E[�i] = 0 and V ar[�i] = 1 (Mammen, 1993). The wild bootstrap estimator

�̂
⇤ of �̂ is then

�̂
⇤ = (X 0

X)�1
X

0
Y

⇤

= (X 0
X)�1

X
0
X�̂ + (X 0

X)�1
X

0
"
⇤

= �̂ + (X 0
X)�1

X
0
"
⇤
.

To gain more insight into how the wild bootstrap works, the following vi-

sualization is provided. Suppose we are working in the simple linear regression

setting with n = 5 and a model is fit to the data as can be seen Figure 2.1.

7



10
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2 4 6
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y

Figure 2.1: Simple linear regression with n = 5

We can perturb the response variable, Y , by multiplying the residuals by a

Rademacher random variable, for example. These new points are denoted as

Y
⇤ and are highlighted in blue in Figure 2.2. When �i = 1, the original data

point remains unchanged, whereas when �i = �1, the observation is reflected

across the fitted regression line.

δ1 = −1

δ2 = 1
δ3 = 1

δ4 = −1

δ5 = −1

10

15

20

2 4 6
x

y

Figure 2.2: Simple linear regression with perturbed response variable
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Finally, we can estimate the slope of the perturbed data points, �̂⇤, and

are able to fit a new regression model as can be seen by the blue line in Figure

2.3.

10

15

20

2 4 6
x

y

Figure 2.3: Wild bootstrap regression model

This process can be repeated a large number of times to estimate the sam-

pling distribution of �̂. As highlighted in Mammen (1993), the wild bootstrap

estimator �̂⇤ exhibits asymptotic properties that agree with those of the least

squares estimator �̂. In particular, Mammen (1993) proved that, under certain

conditions,

d1

⇣
L⇤
⇣p

nc
0
⇣
�̂
⇤ � �̂

⌘⌘
,L
⇣p

nc
0
⇣
�̂ � �

⌘⌘⌘
p�! 0

for any c 2 IRp such that ||c|| = 1, where d1 is the Kolmogorov distance

and L⇤(. . .) denotes the conditional distribution L(. . . |x1, . . . , xn, y1, . . . , yn).

That is, the wild bootstrap consistently approximates the behaviour of least

squares estimates. Thus, we are able to utilize the wild bootstrap estimator to

construct a (1�↵)100% confidence region for � by taking the (1�↵) quantile

of (�̂⇤ � �̂)0X 0
X(�̂⇤ � �̂).

There are several choices for the distribution of the �is, the only restriction

9



being that they have mean 0 and variance 1. For instance, Mammen (1993)

proposed a distribution based on the golden ratio,

�i =

8
<

:
�(

p
5� 1)/2 with probability (

p
5 + 1)/(2

p
5),

(
p
5 + 1)/2 with probability 1� (

p
5 + 1)/(2

p
5).

Another natural choice would be the standard normal distribution. As it has

been shown to give better results (Flachaire, 2005), in this thesis we will use

the Rademacher distribution, such that

�i =

8
<

:
�1 with probability 1/2,

1 with probability 1/2.

Although the wild bootstrap is appealing from a theoretical standpoint, in

practice, as the dimensions of the data increase, the wild bootstrap becomes

computationally ine�cient as it requires a large number of replications. This

makes it impractical when dealing with big data.

2.4 Overview of Relevant Inequalities

2.4.1 Concentration inequalities

Concentration of measure is a phenomenon that is widely applicable to many

theoretical and applied areas of mathematics. Talagrand (1996) defines con-

centration of measure as the idea that “a random variable that depends (in a

“smooth” way) on the influence of many independent variables (but not too

much on any of them) is essentially constant.” In other words, this means that

although a random variable may take on a large number of possible values,

those likely to be observed are concentrated in a very small range (Dubhashi

and Panconesi, 2009).

Concentration inequalities typically bound the di↵erence between the fluc-

tuations of functions of independent random variables around their expected

values (Boucheron et al., 2013). The law of large numbers is one simple ex-

ample of a concentration inequality. In what follows, some famous results and

10



instances of concentration inequalities are provided as discussed in Boucheron

et al. (2013).

Perhaps one of the most basic concentration inequalities is Markov’s in-

equality.

Theorem 2.4.1 (Markov’s inequality). Let X be a nonnegative random vari-

able. Then for all t > 0,

P (X � t)  E[X]

t
.

Chebyshev’s inequality can then be derived applying Markov’s inequality.

Theorem 2.4.2 (Chebyshev’s inequality). Let X be a real-valued random

variable. Then,

P (|X � E[X]| � t)  Var[X]

t2
.

To get a sharper bound, Markov’s inequality can be applied to derive Cherno↵

bounds. From Markov’s inequality, for every � � 0,

P (X � t)  e
��tE[e�X ].

Selecting � to minimize the upper bound, we have that

P (X � t)  inf
��0

e
��tE[e�X ].

For example, for X ⇠ N (0, �2), this approach can be used to show that

P (X � t)  e
� t2

2�2 .

This notion of exponentially decaying bounds leads us to the idea of sub-

Gaussian random variables. Define  X(�) = log E[e�X ] as the logarithmic

moment generating function of X. A centered random variable X is sub-

Gaussian with variance factor v if

 X(�) 
�
2
v

2
for every � 2 R.

We can characterize sub-Gaussian random variables in terms of their tail

probabilities. Hence, if X is a centered sub-Gaussian random variable with

variance factor v, then for all t > 0,

11



P (X � t)  e
� t2

2v .

Using Cherno↵’s inequality, the case of sums of bounded independent real-

valued random variables can be considered via Hoe↵ding’s inequality.

Theorem 2.4.3 (Hoe↵ding’s inequality). Let X1, . . . , Xn be independent ran-

dom variables such that Xi takes values in [ai, bi] almost surely for all i  n.

Let

S =
nX

i=1

(Xi � E[Xi]).

Then for every t � 0,

P (S � t)  exp

✓
� 2t2Pn

i=1(bi � ai)2

◆
.

Hoe↵ding’s lemma establishes a sub-Gaussian bound on the tail probability

of S, but we may require inequalities with sharper bounds such as Bennett’s

and Bernstein’s inequalities.

Theorem 2.4.4 (Bennett’s inequality). Let X1, . . . , Xn be independent ran-

dom variables with finite variance such that Xi  b for some b � 0 almost

surely for all i  n. Let

S =
nX

i=1

(Xi � E[Xi])

and v =
Pn

i=1 E[X2
i ]. If we write �(u) = e

u � u� 1 for u 2 R, then, for all
� > 0,

 S(�)  nlog

⇣
1 +

v

nb2
�(b�)

⌘
 v

b2
�(b�),

and for any t > 0,

P (S � t)  exp

✓
� v

b2
h

✓
bt

v

◆◆
,

where h(u) = (1 + u)log(1 + u)� u for u > 0.
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Theorem 2.4.5 (Bernstein’s inequality). Under the same settings as Ben-

nett’s inequality,

P (S � t)  exp

✓
� t

2

2(v + bt/3)

◆
.

The type of concentration depends on the relationship between the size of t

in relation to v/b. If v is relatively large, Bennett’s and Bernstein’s inequality

yield a sub-Gaussian concentration. However, if t >> v/b, the result is a

sub-exponential type of inequality.

2.4.2 Decoupling inequalities

The notion of decoupling refers to the idea of comparing a sum of depen-

dent random variables to one of independent random variables, thus “decou-

pling” them by removing the dependence. The study of decoupling inequalities

started emerging in the 1980’s (see Kwapien (1987); McConnell and Taqqu

(1986)), but decoupling still is being applied in more modern works (see Alves

and Sapozhnikov (2019); Makarychev and Sviridenko (2018)). A thorough re-

view of decoupling inequalities can be found in De la Pena and Giné (2012).

The decoupling result primarily applied in this thesis is Corollary 3 from

Kwapien (1987). By introducing some independence to dependent random

variables, decoupling is a technique that can greatly simplify the derivations

of certain mathematical results (De la Pena and Giné, 2012).

2.4.3 Khintchine inequalities

Although the result has been around for a relatively long time, Khintchine’s

inequality (Khintchine, 1923) still has a wide variety of applications in areas

such as mathematics, probability theory and even computer science (De et al.,

2016; Floret and Matos, 1995; Buchholz, 2001; Nguyen et al., 2009). The

Khintchine inequality is useful because it allows for the comparison of Lp

and L2 norms of sums of weighted independent Rademacher random variables

(Spektor, 2016). In particular, Khintchine’s inequality is a pertinent tool when

analyzing decoupling inequalities (De la Pena and Giné, 2012). Khintchine’s

13



inequality is provided below as described in Kashlak et al. (2022) and Garling

(2007).

Theorem 2.4.6 (Khintchine’s inequality). For any p 2 (0,1), there exist

positive finite constants Ap and Bp such that for any sequence x1, . . . , xn 2 R,

A
p
p||x||

p
2  E

�����

nX

i=1

�ixi

�����

p

 B
p
p ||x||

p
2,

where �1, . . . , �n are iid Rademacher random variables, A2p = [(2p)!/2pp!]�1/2p

and B2p = [(2p)!/2pp!]1/2p.

In this thesis, we are primarily interested in the upper bound of Khint-

chine’s inequality. Other variations of Khintchine’s inequality have been in-

vestigated such as the restricted Khintchine inequality which allows for the

consideration of random vectors with dependent coordinates (Spektor, 2016).

2.5 Analytic Wild Bootstrap

2.5.1 Confidence regions

In this section, a nonparametric approach to constructing confidence regions

for � called the Analytic Wild Bootstrap (ANWB) is introduced for both least

squares and ridge regression that is much less computationally expensive than

the wild bootstrap and is still capable of handling heteroscedastic data. Note

that we work under the setting where n > p so that we can consider (X 0
X)�1.

Theorem 2.5.1. For a linear model Y = X�+" with independent, not neces-

sarily identically distributed errors ", denote �̂ as the least squares estimator of

� and the residuals as "̂i = yi� ŷi, where ŷi = �̂xi. Consider the wild bootstrap

model Y
⇤ = X�̂ + "

⇤
, where "

⇤ = ("⇤1, . . . , "
⇤
n)

0
with "

⇤
i = �i"̂i and the �is are

i.i.d. from a symmetric distribution such that E[�i] = 0 and V ar[�i] = 1, we

denote �̂
⇤
as the wild bootstrap estimator of �̂. Furthermore, assume that for
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p � 2 and for a constant Bp,

 
E�

�����

nX

i=1

�i"̂i

�����

p!1/p

 Bp

0

@E�

�����

nX

i=1

�i"̂i

�����

2
1

A
1/2

for each sequence "̂1, . . . , "̂n 2 IR. Then, for B2p / [(2p)!/2pp!]1/2p,

P

0

@(�̂⇤ � �̂)0X 0
X(�̂⇤ � �̂)  � log (↵⇤) 4C

"
nX

i,j=1

h
2
ij "̂

2
i "̂

2
j

#1/21

A � 1� ↵,

where ↵
⇤ = I

⇣
↵ [e/

p
⇡ + e/⇡]

�1
; ✓1, ✓2

⌘
, I(↵; ✓1, ✓2) is the regularized incom-

plete beta function, ✓1 and ✓2 are fixed unknown constants, C is a universal

constant and hij is the (i, j)th element of HX = X(X 0
X)�1

X
0
.

Proof. In order to construct a confidence region for �, consider the following

quadratic form.

(�̂⇤ � �̂)0X 0
X(�̂⇤ � �̂) = "

⇤0
X(X 0

X)�1
X

0
X(X 0

X)�1
X

0
"
⇤

= "
⇤0
HX"

⇤

=
nX

i,j=1

hij"
⇤
i "

⇤
j

=
nX

i,j=1

hij�i�j "̂i"̂j

= T
2
.

This proof follows the work done in Kashlak et al. (2022). As T 2 is a degree

2 polynomial chaos, it follows from Kwapien (1987) that

"
E�

�����

nX

i,j=1

hij�i�j "̂i"̂j

�����

p#1/p
 B

2
pC

2

4E�

�����

nX

i,j=1

hij�i�j "̂i"̂j

�����

2
3

5
1/2

= B
2
pC

"
nX

i,j=1

h
2
ij "̂

2
i "̂

2
j

#1/2
,
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whereB2p is determined by the distribution of the �is. In the case of Rademacher

or Gaussian random variables we take B2p = [(2p)!/2pp!]1/2p. Hence,

E� |T |2p  B
2p
p C

p

"
nX

i,j=1

h
2
ij "̂

2
i "̂

2
j

#p/2
.

Now, let T 0 be an independent copy of T . We adapt the moment bounds

into a tail bound as follows.

E�

⇥
e
�T
⇤
 E�

h
e
�(T�T 0)

i

=
1X

p=0

�
p

p!
E� [T � T

0]p


1X

p=0

�
2p

(2p)!
E� [T � T

0]2p . (2.1)

Note that E� [T � T
0]2p = E� [2T/2� 2T 0

/2]2p  22p�1
�
E� [T ]

2p + E� [T ]
2p�

= 22pE[T ]2p. Updating C, Equation (2.1) becomes

E�

⇥
e
�T
⇤


1X

p=0

�
2p22p

(2p)!
E� [T ]

2p


1X

p=0

�
2p22p

(2p)!
B

2p
p C

p

"
nX

i,j=1

h
2
ij "̂

2
i "̂

2
j

#p/2

=
1X

p=0

�
2p22pCp

hPn
i,j=1 h

2
ij "̂

2
i "̂

2
j

ip/2

(2p)!

 
p!

2p/2(p/2)!

�1/p!2p

=
1X

p=0

�
2p22pCp

hPn
i,j=1 h

2
ij "̂

2
i "̂

2
j

ip/2

(2p)!

(p!)2

2p(p/2)!2

=
1X

p=0

�
2p2pCp

"
nX

i,j=1

h
2
ij "̂

2
i "̂

2
j

#p/2
(p!)2

(2p)!(p/2)!2


⇥
e/
p
⇡ + e/⇡

⇤ 1X

p=0

✓
�
2
C

hPn
i,j=1 h

2
ij "̂

2
i "̂

2
j

i1/2◆p

p!
,
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where the last inequality uses the result that (p!)2

(2p)!(p/2)!2  [e/
p
⇡ + e/⇡] /p!

(Watson, 1959). Thus,

P (T > t) 
⇥
e/
p
⇡ + e/⇡

⇤
e
�t2/4C[

Pn
i,j=1 h

2
ij "̂

2
i "̂

2
j ]

1/2

. (2.2)

From this bound, we can compute a (1 � ↵)100% confidence region for �

as

(�̂⇤ � �̂)0X 0
X(�̂⇤ � �̂)  � log

⇣
↵
⇥
e/
p
⇡ + e/⇡

⇤�1
⌘
4C

"
nX

i,j=1

h
2
ij "̂

2
i "̂

2
j

#1/2
.

Applying the empirical beta transformation (Kashlak et al., 2022) with simu-

lated parameters ✓̂1 and ✓̂2, we construct the confidence region based on the

adjusted level

↵
⇤ = I

⇣
↵
⇥
e/
p
⇡ + e/⇡

⇤�1
; ✓̂1, ✓̂2

⌘
.

Therefore, a (1� ↵)100% confidence region for � can be computed as

(�̂⇤ � �̂)0X 0
X(�̂⇤ � �̂)  � log (↵⇤) 4C

"
nX

i,j=1

h
2
ij "̂

2
i "̂

2
j

#1/2
,

such that

P

0

@(�̂⇤ � �̂)0X 0
X(�̂⇤ � �̂)  � log (↵⇤) 4C

"
nX

i,j=1

h
2
ij "̂

2
i "̂

2
j

#1/21

A � 1� ↵,

as desired.

The calculation of the so-called universal constant, C, introduced by the

decoupling inequality depend on the distribution of the �is. Following Corol-

lary 3 of Kwapien (1987), in the case of Rademacher random variables with

d = 2, C = d
3d
/d! = 26/2! = 25 and is updated to C = 26 as we obtain

a sub-Gaussian bound. The term “updating” refers to the universal con-

stant’s absorption of other constant terms as we compute this bound. If we
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consider the �is to be standard normal random variables, the universal con-

stant can be improved since (�1, . . . , �n) is a 2-stable symmetric random vector

when each �i ⇠ N (0, 1). Hence, with d = p = 2, C can be computed as

C = (dd/p/d!)/dd(1/p�1) = (22/2/2!)/22(1/2�1) = 2, similarly updated as 22 = 4

when obtaining a sub-Gaussian bound.

As noted by Kashlak et al. (2022), the main drawback of the use of decou-

pling inequalities is a loss of statistical power. The universal constants inflate

the bounds of the respective confidence regions, resulting in regions that are

too conservative to be meaningfully interpreted. This is why we consider the

use of the empirical beta transformation (Kashlak et al., 2022) in order to

regain statistical power. As described in Theorem 2.4 of Kashlak et al. (2022),

the bounds on the tail probabilities derived in the proof of Theorem 2.5.1,

⇥
e/
p
⇡ + e/⇡

⇤
e
�t2/4C[

Pn
i,j=1 h

2
ij "̂

2
i "̂

2
j ]

1/2

,

where t
2 is a realization of T 2 = (�̂⇤ � �̂)0X 0

X(�̂⇤ � �̂), follow a Beta(✓1, ✓2)

distribution with unknown parameters ✓1 and ✓2 instead of a Uniform[0,1] dis-

tribution. Consequently, the empirical beta transform allows for the retention

of statistical power by adjusting the bounds on the tail probabilities of T via

the incomplete beta function, where ✓1 and ✓2 are simulated using their re-

spective method of moments estimators as is described in Algorithm 1.

Additionally, as mentioned in the proof of Theorem 2.5.1, B2p is deter-

mined by the choice of distribution for the �is. In the case of a Rademacher

distribution, B2p = [(2p)!/2pp!]1/2p (Garling, 2007). This would also be the

case for the Gaussian distribution as there is an equivalence between the two

distributions (Ledoux and Talagrand, 2013). Other symmetric distributions

satisfying a Khintchine-type inequality could be considered such as symmetric

discrete uniform random variables (Havrilla and Tkocz, 2020), but B2p and

the resulting confidence region would need to be adjusted accordingly.
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Algorithm 1 The Empirical Beta Transform for the ANWB

Choose B > 1, the number of bootstrap replicates to simulate—e.g. B = 10.

Draw �1, . . . , �B uniformly at random.

Compute B tail probabilities from Equation (2.2).

Find the method of moments estimators for ✓1 and ✓2 from the beta distribution.

Estimate first and second central moments of the B tail probabilities by x̄ and s
2,

the sample mean and variance.

Estimate ✓̂1 = x̄
2(1� x̄)/s2 � x̄.

Estimate ✓̂2 = [x̄(1� x̄)/s2 � 1][1� x̄].

Construct confidence region based on the adjusted level

↵
⇤ = I

⇣
↵ [e/

p
⇡ + e/⇡]

�1
; ✓̂1, ✓̂2

⌘
.

2.5.2 Linear contrasts

One may also be interested in deriving analytic confidence intervals for linear

contrasts. Thus, in order to consider the linear contrast c0(�̂⇤��̂), we introduce

the following theorem.

Theorem 2.5.2. Under the same settings as Theorem 2.5.1, let c 2 IRp
be

a fixed contrast vector and v = (v1, . . . , vn)0 = c
0(X 0

X)�1
X

0
. Furthermore,

assume that for a constant Bp,

"
E�

�����

nX

i=1

vi�i"̂i

�����

p#1/p
 B

2
p

"
nX

i=1

v
2
i "̂

2
i

#1/2

for each sequence "̂1, . . . , "̂n 2 IR. Then, for B2p / [(2p)!/2pp!]1/2p,

P

0

B@
���c0(�̂⇤ � �̂)

��� 

2

4� log (↵⇤) 4

"
nX

i=1

v
2
i "̂

2
i

#1/23

5
1/2
1

CA � 1� ↵,
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where ↵
⇤ = I

⇣
↵ [e/

p
⇡ + e/⇡]

�1
; ✓1, ✓2

⌘
, I(↵; ✓1, ✓2) is the regularized incom-

plete beta function and ✓1, ✓2 are fixed unknown constants.

Proof. Consider the linear contrast

c
0(�̂⇤ � �̂) = c

0(X 0
X)�1

X
0
"
⇤

= v
0
"
⇤

=
nX

i=1

vi"
⇤
i

=
nX

i=1

vi�i"̂i

= T,

where v = (v1, . . . , vn)0 = c
0(X 0

X)�1
X

0. As T is a function of the �is, we can

apply the Khintchine inequality (Khintchine, 1923; Garling, 2007) to establish

a bound on the moments of T , such that

"
E�

�����

nX

i=1

vi�i"̂i

�����

p#1/p
 B

2
p

2

4E�

�����

nX

i=1

vi�i"̂i

�����

2
3

5
1/2

= B
2
p

"
nX

i=1

v
2
i "̂

2
i

#1/2
.

Following the proof of Theorem 2.5.1, we adapt the moment bounds into the

following tail bound,

P (|T | > t) 
⇥
e/
p
⇡ + e/⇡

⇤
e
�t2/4[

Pn
i=1 v

2
i "̂

2
i ]

1/2

.

Similarly, we construct a confidence interval based on the adjusted level

↵
⇤ = I

⇣
↵
⇥
e/
p
⇡ + e/⇡

⇤�1
; ✓̂1, ✓̂2

⌘
.
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Therefore, a (1� ↵)100% confidence interval for T can be computed as

���c0(�̂⇤ � �̂)
��� 

2

4� log (↵⇤) 4

"
nX

i=1

v
2
i "̂

2
i

#1/23

5
1/2

,

such that

P

0

B@
���c0(�̂⇤ � �̂)

��� 

2

4� log (↵⇤) 4

"
nX

i=1

v
2
i "̂

2
i

#1/23

5
1/2
1

CA � 1� ↵.

The consideration of linear contrasts enables the construction of individual

confidence intervals for regression coe�cients. For example, to construct a

confidence interval for �j, take c as a vector of zeros with 1 in the j
th entry.

Consequently, we can conduct hypothesis tests for regression coe�cients as

follows. For j = 1, . . . , p, we can test the hypothesis at the level 1� ↵

H0 : �j = 0

Ha : �j 6= 0,

by rejecting H0 when 0 is within the corresponding two-sided (1 � ↵)100%

confidence interval for �j.

2.6 Simulations

In this section, we present simulation results comparing the coverage proba-

bilities of confidence regions generated by the ANWB, the classical parametric

approach based on the F -distribution (denoted as “parametric” in figures and

tables) and the wild bootstrap. All simulations are replicated r = 100 times.
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2.6.1 Least squares regression

We simulated our data from the following linear model

Y = X� + ",

where n 2 {100, 500, 1000}, p = 5, " ⇠ N (0, 3), X is generated from Uni-

form[0,5] and � is generated from Uniform[0,3]. We take the �is to be i.i.d.

Rademacher random variables with P (�i = 1) = P (�i = �1) = 1/2. For

the wild bootstrap, we use B = 1000 bootstrap replications and construct

a (1 � ↵)100% confidence region for � by taking the (1 � ↵) quantile of

(�̂⇤ � �̂)0X 0
X(�̂⇤ � �̂). For the ANWB, we use B = 10 replications as seen

in Kashlak, Myroshnychenko and Spektor (2020). Additionally, we consider

heteroscedastic data simulated with " ⇠ N (0, �2
i ), where �

2
i = x

2
i1 (Flachaire,

2005). Simulation results are presented for ↵ = 0.05.
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Figure 2.4: Coverage of 95% ANWB, parametric and wild bootstrap confidence

regions for homoscedastic data
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Table 2.1: Mean and standard deviation of the coverages of 95% ANWB, para-

metric and wild bootstrap confidence regions for homoscedastic data

Method n = 100 n = 500 n = 1000

ANWB 0.928 (0.028) 0.95 (0.02) 0.95 (0.02)

Parametric 0.951 (0.022) 0.95 (0.02) 0.949 (0.022)

Wild Bootstrap 0.917 (0.028) 0.942 (0.021) 0.945 (0.023)
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Figure 2.5: Coverage of 95% ANWB, parametric and wild bootstrap confidence

regions for heteroscedastic data

Table 2.2: Mean and standard deviation of the coverages of 95% ANWB, para-

metric and wild bootstrap confidence regions for heteroscedastic data

Method n = 100 n = 500 n = 1000

ANWB 0.92 (0.026) 0.945 (0.023) 0.95 (0.02)

Parametric 0.907 (0.03) 0.906 (0.028) 0.912 (0.027)

Wild Bootstrap 0.907 (0.029) 0.94 (0.023) 0.948 (0.021)
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As can be seen in Figure 2.4 and Table 2.1, as n increases the ANWB con-

fidence regions attain the correct coverage. When n is not su�ciently large,

both the ANWB and wild bootstrap confidence regions are slightly too liberal.

As is expected, in the case when the errors are i.i.d. from a normal distribu-

tion, the parametric confidence regions based on the F -distribution attain the

desired coverage of 95%. In the case of heteroscedastic data presented in Fig-

ure 2.5 and Table 2.2, not surprisingly, the classical parametric confidence

regions do not achieve the correct coverage. The ANWB and wild bootstrap

perform well under heteroscedastic conditions as n increases, with the analytic

approach being much more e�cient from a computational standpoint. Ulti-

mately, the ANWB performs optimally in the case of heteroscedastic data,

while taking a fraction of the computational time of the wild bootstrap.

2.6.2 Big data

Simulation results are presented for big data with n = 10000 and p = 100. The

simulation settings are the same as in the previous section, with the exception

of using B = 100 bootstrap replications for the wild bootstrap.

We can see in the case of homoscedastic errors as in Figure 2.6 and Table

2.3, as the dimensions of the data are increased the ANWB and parametric

approaches exhibit quite similar behaviour. However, in both cases, the wild

bootstrap confidence regions are too liberal. Additionally, in Figure 2.7 and

Table 2.4 where the errors are heteroscedastic, the ANWB confidence regions

outperform the other two methods. These results are fairly consistent to what

we found in lower dimensions. As we look at higher-dimensional data, the

computational advantages of the ANWB over the wild bootstrap become in-

creasingly apparent. For larger data sets, the wild bootstrap becomes quite

computationally ine�cient which is why less bootstrap replications are consid-

ered for this simulation, consequently resulting in undercoverage by the wild

bootstrap confidence regions. In order to utilize B = 1000 bootstrap repli-

cations over r = 100 total replications, the simulation for the wild bootstrap

would require approximately 150 hours CPU time for a quad-core processor,

which does not seem feasible. Thus, a researcher may be faced with the choice
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of considering the wild bootstrap with a low number of bootstrap replications

or the ANWB. As using the wild bootstrap with a low number of bootstrap

replications may result in undercoverage, the ANWB is preferable in higher-

dimensional situations.
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Figure 2.6: Coverage of 95% ANWB, parametric and wild bootstrap confidence

regions for homoscedastic data

Table 2.3: Mean and standard deviation of the coverages of 95% ANWB, para-

metric and wild bootstrap confidence regions for homoscedastic data

Method Coverage

ANWB 0.954 (0.023)

Parametric 0.953 (0.022)

Wild Bootstrap 0.931 (0.027)
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Figure 2.7: Coverage of 95% ANWB, parametric and wild bootstrap confidence

regions for heteroscedastic data

Table 2.4: Mean and standard deviation of the coverages of 95% ANWB, para-

metric and wild bootstrap confidence regions for heteroscedastic data

Method Coverage

ANWB 0.95 (0.02)

Parametric 0.942 (0.024)

Wild Bootstrap 0.929 (0.025)
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2.6.3 Linear contrasts

We simulated our data from the following linear model

Y = X� + ",

where n 2 {100, 500, 1000}, p = 10, " ⇠ N (0, 3), X is generated from Uni-

form[0,5] and � is generated from Uniform[0,3]. We take the �is to be i.i.d.

Rademacher random variables with P (�i = 1) = P (�i = �1) = 1/2. Here, we

illustrate the construction of confidence intervals for �1 by using a contrast

vector of c = (1, 0, 0, 0, 0) as is outlined in Theorem 2.5.2. Simulation results

are presented for ↵ = 0.05.

Figure 2.8: Coverage of 95% ANWB, parametric and wild bootstrap confidence

intervals for homoscedastic data
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Table 2.5: Mean and standard deviation of the coverages of 95% ANWB, para-

metric and wild bootstrap confidence intervals for homoscedastic data

Method n = 100 n = 500 n = 1000

ANWB 0.924 (0.028) 0.938 (0.026) 0.943 (0.0246)

Parametric 0.950 (0.022) 0.947 (0.022) 0.950 (0.022)

Wild Bootstrap 0.927 (0.029) 0.942 (0.024) 0.945 (0.024)

2.7 Data Example

In this section, we consider the analysis of a data set concerned with attributes

of professors at the Houston College of Medicine (Huang, 2017). This data

set was collected in order to highlight gender discrimination of female faculty

members regarding wage and faculty position. The data is comprised of n =

261 observations and p = 10 variables. Consider the following model

Y = �1X1 + �2X2 + �3X3 + �4X4 + �5X
2
2 + �6X

2
3 + �7X2 ⇥X3,

where Y represents the scaled faculty member’s salaries in 1995, X1 represents

sex (female or male), X2 represents the publication rate (# publications on

cv)/(# years between CV date and MD date), X3 represents the number of

years since obtaining an MD and X4 represents the board certification status

(not board certified or board certified). Looking at the residual plot in Fig-

ure 2.9, it appears the assumption of homoscedasticity is not satisfied. The

estimated regression equation is

Ŷ = 0.07X1 � 1.77X2 + 0.96X3 + 0.11X4 + 1.35X2
2 � 0.20X2

3 � 0.54X2 ⇥X3,

with a test statistic of 113.7 on 7 and 254 degrees of freedom and corresponding

p-value < 2.2 ⇥ 10�16. For ANWB confidence regions, we take the �is to be

i.i.d. Rademacher random variables and C = 26. ANWB, parametric and wild

bootstrap confidence regions are plotted for 6 regression coe�cients below in

Figure 2.10; all three methods produced similar confidence regions, although

the analytic approach tends to yield more variable regions in practice.
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Figure 2.9: Residuals vs. fitted values for salary data set
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Figure 2.10: 95% ANWB, parametric and wild bootstrap confidence regions for

salary data set
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2.8 Discussion

It was demonstrated that the finite sample performance of the ANWB confi-

dence regions approach the correct level as n becomes su�ciently large. When

the dimensions of the data are relatively high and the errors are i.i.d. from

a normal distribution, the ANWB and parametric confidence regions yield

similar results. In the case of heteroscedastic data where classical parametric

confidence regions may not be appropriate, the ANWB maintains good results

and is much more computationally e�cient than the wild bootstrap, especially

in higher-dimensional settings. The ANWB is a more e�cient, nonparametric

alternative to constructing confidence regions for big data. In Chapters 3 and

4, we investigate the extension of the analytic wild bootstrap to the penalized

regression setting.
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Chapter 3

Analytic Bootstrap for Ridge

Regression

3.1 Introduction

Ridge regression was first introduced by Hoerl and Kennard (1970) and is a

form of penalized regression that was proposed to accommodate data that

exhibits multicollinearity. The ridge regression estimator �̂(�) is a shrinkage

estimator with an L2 penalty such that, as defined in Efron and Hastie (2016),

�̂(�) = argmin
�

�
||Y �X�||2 + � ||�||2

 
.

A researcher may be interested in obtaining confidence regions or intervals

for the coe�cients in ridge regression. However, �̂(�) is biased so typical

parametric approaches may not be suitable. Moreover, as is mentioned in

Section 3.2, applying the bootstrap to ridge regression can be misleading and

although it may appear to work in certain situations, it is not advisable.

In this chapter we discuss a viable approach for bootstrapping in ridge

regression using the double bootstrap and apply the analytic wild bootstrap

in this setting as well. The rest of this chapter is organized as follows. Section

3.2 addresses the single bootstrap applied to ridge regression and discusses why

it is not necessarily appropriate. Section 3.3 introduces the double bootstrap

and fast double bootstrap as feasible alternatives to bootstrapping in ridge

31



regression. Furthermore, in Section 3.4 the AFDB is developed as an analytic

solution to computing confidence regions, drastically reducing computational

time. Simulations are presented in Section 3.5. Section 3.6 highlights the

methodologies on a data set about the energy e�ciency of buildings. In Section

3.7, the various approaches are discussed and summarized.

3.2 The Single Bootstrap

3.2.1 Wild bootstrap

In this section, we will outline the wild bootstrap procedure for ridge regres-

sion. The wild bootstrap ridge regression model is

Y
⇤ = X�̂(�) + "

⇤
,

where "⇤ = ("⇤1, . . . , "
⇤
n)

0 with "
⇤
i = �i"̂i, where the �is are i.i.d. random variables

with E[�i] = 0 and V ar[�i] = 1 (Mammen, 1993). Similar to least squares

regression, the wild bootstrap estimator �̂⇤(�) of �̂(�) is then

�̂
⇤(�) = (X 0

X)�1
X

0
Y

⇤

= (X 0
X)�1

X
0
X�̂(�) + (X 0

X)�1
X

0
"
⇤

= �̂(�) + (X 0
X)�1

X
0
"
⇤
.

We can use the wild bootstrap estimator to construct a (1�↵)100% confi-

dence region by taking the (1�↵) quantile of (�̂⇤(�)��̂(�))0X 0
X(�̂⇤(�)��̂(�)).

This approach su↵ers from the same computational challenges as what was

faced with least squares regression. It should be noted that, in the penalized

regression setting, interpretation of resulting confidence regions and intervals

should be carefully considered due to the biased nature of the estimator.
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3.2.2 Analytic Wild Bootstrap

Confidence regions

We implement a similar approach to construct confidence regions for the pa-

rameters in ridge regression.

Theorem 3.2.1. For a linear model Y = X� + " with independent, not nec-

essarily identically distributed errors ", denote �̂(�) as the ridge regression

estimator of � and the residuals as "̂i = yi � ŷi, where ŷi = �̂(�)xi. Con-

sider the wild bootstrap model Y
⇤ = X�̂(�) + "

⇤
, where "

⇤ = ("⇤1, . . . , "
⇤
n)

0

with "
⇤
i = �i"̂i and the �is are i.i.d. from a symmetric distribution such that

E[�i] = 0 and V ar[�i] = 1, we denote �̂
⇤(�) as the wild bootstrap estimator of

�̂(�). Furthermore, assume that for p � 2 and for a constant Bp,

 
E�

�����

nX

i=1

�i"̂i

�����

p!1/p

 B
2
p

0

@E�

�����

nX

i=1

�i"̂i

�����

2
1

A
1/2

for each sequence "̂1, . . . , "̂n 2 IR. Then, for B2p / [(2p)!/2pp!]1/2p,

P

⇣
(�̂⇤(�)� �̂(�))0(X 0

X + �I)(�̂⇤(�)� �̂(�)) 

� log (↵⇤) 4C

"
nX

i,j=1

h
2
ij,�"̂

2
i "̂

2
j

#1/21

A � 1� ↵,

where ↵
⇤ = I

⇣
↵ [e/

p
⇡ + e/⇡]

�1
; ✓1, ✓2

⌘
, I(↵; ✓1, ✓2) is the regularized incom-

plete beta function, ✓1 and ✓2 are fixed unknown constants, C is a universal

constant and hij,� is the (i, j)th element of H� = X(X 0
X + �I)�1

X
0
.

Proof. Consider the ridge regression estimator

�̂(�) = (X 0
X + �I)�1

X
0
X�̂,

where � � 0 is the shrinkage parameter, I is the p ⇥ p identity matrix and

�̂ = (X 0
X)�1

X
0
Y . It follows that the wild bootstrap ridge regression estimator
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is given by

�̂(�)⇤ = (X 0
X + �I)�1

X
0
X�̂

⇤
,

where �̂
⇤ = �̂ + (X 0

X)�1
X

0
"
⇤. We have that

�̂(�)⇤ � �̂(�) = (X 0
X + �I)�1

X
0
X�̂

⇤ � (X 0
X + �I)�1

X
0
X�̂

= (X 0
X + �I)�1

X
0
X(�̂ + (X 0

X)�1
X

0
"
⇤ � �̂)

= (X 0
X + �I)�1

X
0
X(X 0

X)�1
X

0
"
⇤

= (X 0
X + �I)�1

X
0
"
⇤
.

Thus,

(�̂(�)⇤ � �̂(�))0(X 0
X + �I)(�̂(�)⇤ � �̂(�)) = "

⇤0
X(X 0

X + �I)�1
X

0
"
⇤

= "
⇤0
H�"

⇤

=
nX

i,j=1

hij,�"
⇤
i "

⇤
j

=
nX

i,j=1

hij,��i�j "̂i"̂j

= T
2
.

The proof follows the same procedure as seen in the proof of Theorem 2.5.1.

Linear contrasts

Similarly, as in Section 2.5.2, in order to consider the linear contrast c0(�̂⇤(�)�
�̂(�)), we introduce the following theorem.

Theorem 3.2.2. Under the same settings as Theorem 3.2.1, let c 2 IRp
be a

fixed contrast vector and v� = (v1,�, . . . , vn,�)0 = c
0(X 0

X + �I)�1
X

0
. Further-

more, assume that for a constant Bp,

"
E�

�����

nX

i=1

vi,��i"̂i

�����

p#1/p
 B

2
p

"
nX

i=1

v
2
i,�"̂

2
i

#1/2
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for each sequence "̂1, . . . , "̂n 2 IR. Then, for B2p / [(2p)!/2pp!]1/2p,

P

0

B@
���c0(�̂⇤(�)� �̂(�))

��� 

2

4� log (↵⇤) 4

"
nX

i=1

v
2
i,�"̂

2
i

#1/23

5
1/2
1

CA � 1� ↵,

where ↵
⇤ = I

⇣
↵ [e/

p
⇡ + e/⇡]

�1
; ✓1, ✓2

⌘
, I(↵; ✓1, ✓2) is the regularized incom-

plete beta function and ✓1, ✓2 are fixed unknown constants.

Proof. Consider the linear contrast

c
0(�̂⇤(�)� �̂(�)) = c

0(X 0
X + �I)�1

X
0
"
⇤

= v
0
�"

⇤

=
nX

i=1

vi,�"
⇤
i

=
nX

i=1

vi,��i"̂i

= T,

where v� = (v1,�, . . . , vn,�)0 = c
0(X 0

X + �I)�1
X

0. The proof follows the same

procedure as seen in the proof of Theorem 2.5.2.

3.2.3 Simulations

We simulated data for ridge regression under the same settings outlined in

Section 2.6.1 using the glmnet package to select the optimal value for � via

cross-validation. As can be seen in Figure 3.1 and Table 3.1, the performance

of the methodologies is similar to that of least squares regression.
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Figure 3.1: Coverage of 95% ANWB, parametric and wild bootstrap confidence

regions for homoscedastic data

Table 3.1: Mean and standard deviation of the coverages of 95% ANWB, para-

metric and wild bootstrap confidence regions for homoscedastic data

Method n = 100 n = 500 n = 1000

ANWB 0.929 (0.023) 0.95 (0.022) 0.953 (0.019)

Parametric 0.952 (0.022) 0.95 (0.022) 0.953 (0.019)

Wild Bootstrap 0.915 (0.027) 0.942 (0.022) 0.949 (0.019)

36



3.2.4 Discussion

As can be seen from the simulations, bootstrapping ridge regression estimators

may provide good results in certain situations, but it is a somewhat naive

approach as it ignores a fundamental assumption of bootstrapping in general.

In ridge regression, the estimator is biased which is problematic as it lacks a

pivot (Vinod, 1995). In least squares regression, (�̂ � �) is a pivotal quantity,

meaning that its sampling distribution does not depend on �, so no issues

arise. However, in ridge regression, (�̂(�) � �) is not a pivotal quantity so

it may be dangerous to apply bootstrapping in this scenario. Vinod (1987)

notes that bootstrapping may be a useful tool for providing information about

a sampling distribution if we know that the ridge regression estimator, �̂(�), is

estimating � well (i.e., with little bias). Nevertheless, this is clearly not always

the case so caution should be taken when using this naive approach as it may

not always provide accurate results. In the next section, we introduce Beran

(1987)’s double bootstrap as a means to overcome the lack of pivot problem

in ridge regression.

3.3 The Double Bootstrap

The double bootstrap was developed by Beran (1987) and can be used to

help address the lack of pivot problem that researchers face when dealing

with the estimator in ridge regression. Essentially, by doing two layers of

bootstrapping, we can improve the convergence of the single bootstrap when

working with a biased estimator, such as in ridge regression (McCullough and

Vinod, 1998). Vinod (1995) discusses the application of the double bootstrap

in ridge regression utilizing the residual bootstrap. Without loss of generality,

we adopt two stages of the wild bootstrap as a way to perturb the residuals

instead of the classic residual bootstrap. Applying the double bootstrap gets

us a higher order of accuracy for respective confidence regions (McCullough

and Vinod, 1998).
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3.3.1 Double wild bootstrap

Below is the outline of the double wild bootstrap model for ridge regression.

Note that, going forward, when we use the term double bootstrap we are

referring to the double wild bootstrap.

Algorithm 2 The Double Bootstrap for Ridge Regression

First-stage:

For j = 1, 2, . . . , J compute a vector of perturbed residuals "⇤j
Calculate perturbed responses Y ⇤

j = X�̂(�) + "
⇤
j .

Estimate regression coe�cients

�̂(�)⇤j = (X 0
X + �I)�1

X
0
Y

⇤
j .

Second-stage:

For each first-stage bootstrap sample j, for k = 1, 2, . . . , K compute

"
⇤⇤
jk, where "̂

⇤⇤
jk = "

⇤
j� and � is an n-vector of Rademacher realizations

Recalculate responses Y ⇤⇤
jk = X�̂

⇤
j (�) + "

⇤⇤
jk

Re-estimate coe�cients as

�̂(�)⇤⇤jk = (X 0
X + �I)�1

X
0
Y

⇤⇤
jk .

For each first-stage bootstrap sample j, compute the median of Q,

where Qj is the (1� ↵) quantile of

(�̂(�)⇤⇤jk � �̂(�)⇤j)
0(X 0

X + �I)(�̂(�)⇤⇤jk � �̂(�)⇤j)

We will now look at a small example to further motivate the use of the double

bootstrap in ridge regression. We simulated our data from the following model

Y = X� + ",

where n = 30, p = 3, " ⇠ N (0, 3), X was generated from Uniform[0,5] and � =

(2, 0,�1.5)0. Here, � = 1.17 was selected via cross-validation using the glmnet

package. For the wild bootstrap, we use B = 1000 bootstrap replications and

construct 95% confidence intervals for �1 = 2, comparing the performance of
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the single and double wild bootstrap over r = 100 replications.
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Figure 3.2: Coverage of 95% confidence intervals for the single and double boot-

strap

Table 3.2: Mean and standard deviation of the coverages of 95% confidence inter-

vals for the single and double bootstrap

Method Mean Standard Deviation

Double Bootstrap 0.953 0.021

Single Bootstrap 0.876 0.029

We can see that, due to the biased nature of the estimator, the single bootstrap

is much too liberal in terms of coverage with a mean coverage of 87.6%, grossly

underestimating the desired 95% coverage. The implementation of the double

bootstrap drastically improves the accuracy of the coverage with a mean of

approximately 95.3%. Although there is a chance the single bootstrap could

produce the desired coverage, this is a naive approach and the double boot-

strap confidence intervals better capture the desired confidence level in this

setting.

Much like what was done in least squares regression, we are now able to utilize

the double wild bootstrap estimator to construct more accurate (1 � ↵)100%
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confidence regions by taking the (1� ↵) quantile of (�̂(�)⇤⇤ � �̂(�)⇤)0(X 0
X +

�I)(�̂(�)⇤⇤ � �̂(�)⇤).

3.3.2 Fast double bootstrap

Although the double bootstrap helps us address the lack of pivot problem in

ridge regression, performing two layers of bootstrapping comes at a dramatic

computational cost. For B first-stage bootstrap replications and B
0 second-

stage bootstrap replications, the double bootstrap requires B
00 = BB

0 total

replications, which is quite the computational demand, especially as the di-

mensions of the data increase.

In response to this problem, the fast double bootstrap was developed (David-

son and MacKinnon, 2007). Computationally, the fast double bootstrap is

practically equivalent to the single bootstrap, so it is much more appealing

from that standpoint (Davidson and MacKinnon, 2007). Only one second-

stage bootstrap replication is required for the fast double bootstrap which is

why it requires much less time to implement.

The gain in e�ciency comes with an added assumption of independence. The

fast double bootstrap requires the assumption that, given a test statistic of

interest ⌧ , the distribution of ⌧ ⇤⇤jk is independent of ⌧ ⇤j (Davidson & MacK-

innon, 2007). In our setting, this is equivalent to the assumption that the

distribution of �̂(�)⇤⇤jk is independent of �̂(�)⇤j . Given the data, this assump-

tion holds as we are simply considering a linear transformation of independent

Rademacher random variables. We outline the fast double bootstrap for ridge

regression below in Algorithm 3. Going forward, when mentioning the double

bootstrap it is implied that we are referring to the fast double bootstrap as it

is much more computationally e�cient and exhibits analogous performance to

the double bootstrap.
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Algorithm 3 The Fast Double Bootstrap for Ridge Regression

First-stage:

For j = 1, 2, . . . , J compute a vector of perturbed residuals "⇤j
Calculate perturbed responses Y ⇤

j = X�̂(�) + "
⇤
j .

Estimate regression coe�cients

�̂(�)⇤j = (X 0
X + �I)�1

X
0
Y

⇤
j .

Second-stage:

For each first-stage bootstrap sample j, compute

"
⇤⇤
j , where "

⇤⇤
j = "

⇤
j� and � is an n-vector of Rademacher realizations

Recalculate responses Y ⇤⇤
j = X�̂

⇤
j (�) + "

⇤⇤
j

Re-estimate coe�cients as

�̂(�)⇤⇤j = (X 0
X + �I)�1

X
0
Y

⇤⇤
j .

Compute the (1� ↵) quantile of Q, where

Qj = (�̂(�)⇤⇤j � �̂(�)⇤j)
0(X 0

X + �I)(�̂(�)⇤⇤j � �̂(�)⇤j)

3.4 Analytic Fast Double Bootstrap

3.4.1 Confidence regions

We now adapt our approach discussed in Section 2.5 to construct confidence

regions for the parameters in ridge regression using the analytic fast double

bootstrap (AFDB).

Theorem 3.4.1. For a linear model Y = X� + " with independent, not nec-

essarily identically distributed errors ", denote �̂(�) as the ridge regression

estimator of � and the residuals as "̂i = yi � ŷi, where ŷi = �̂(�)xi. Con-

sider the wild bootstrap model Y
⇤ = X�̂(�) + "

⇤
, where "

⇤ = ("⇤1, . . . , "
⇤
n)

0
with

"
⇤
i = �i,1"̂i and the �i,1s are i.i.d. from a symmetric distribution such that

E[�i,1] = 0 and V ar[�i,1] = 1, we denote �̂
⇤(�) as the wild bootstrap estimator

of �̂(�). Also, consider the double wild bootstrap model Y
⇤⇤ = X�̂(�)⇤ + "

⇤⇤
,
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where "
⇤⇤ = ("⇤⇤1 , . . . , "

⇤⇤
n )0 with "

⇤⇤
i = �i,2"

⇤
i and the �i,2s are i.i.d. from a sym-

metric distribution such that E[�i,2] = 0 and V ar[�i,2] = 1, we denote �̂(�)⇤⇤

as the double wild bootstrap estimator of �̂(�)⇤.Furthermore, assume that for

p � 2 and for a constant Bp,
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for each sequence "̂
⇤
1, . . . , "̂

⇤
n 2 IR. Then, for B2p / [(2p)!/2pp!]1/2p,

P

⇣
(�̂(�)⇤⇤ � �̂(�)⇤)0(X 0

X + �I)(�̂(�)⇤⇤ � �̂(�)⇤) 

� log (↵⇤) 4C

"
nX
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2
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2
i "̂

2
j

#1/21

A � 1� ↵,

where ↵
⇤ = I

⇣
↵ [e/

p
⇡ + e/⇡]

�1
; ✓1, ✓2

⌘
, I(↵; ✓1, ✓2) is the regularized incom-

plete beta function, ✓1 and ✓2 are fixed unknown constants, C is a universal

constant and hij,� is the (i, j)th element of H� = X(X 0
X + �I)�1

X
0
.

Proof. Consider the ridge regression estimator

�̂(�) = (X 0
X + �I)�1

X
0
X�̂,

where � � 0 is the shrinkage parameter, I is the p ⇥ p identity matrix and

�̂ = (X 0
X)�1

X
0
Y . It follows that the wild bootstrap ridge regression estimator

is given by

�̂(�)⇤ = (X 0
X + �I)�1

X
0
X�̂

⇤
,

where �̂
⇤ = �̂ + (X 0

X)�1
X

0
"
⇤. Similarly, the double wild bootstrap ridge

regression estimator is given by

�̂(�)⇤⇤ = (X 0
X + �I)�1

X
0
X�̂

⇤⇤
,
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where �̂
⇤⇤ = �̂

⇤ + (X 0
X)�1

X
0
"
⇤⇤.We have that

�̂(�)⇤⇤ � �̂(�)⇤ = (X 0
X + �I)�1

X
0
X�̂

⇤⇤ � (X 0
X + �I)�1

X
0
X�̂

⇤

= (X 0
X + �I)�1

X
0
X(�̂⇤ + (X 0

X)�1
X

0
"
⇤⇤ � �̂

⇤)

= (X 0
X + �I)�1

X
0
X(X 0

X)�1
X

0
"
⇤⇤

= (X 0
X + �I)�1

X
0
"
⇤⇤
.

Thus,

(�̂(�)⇤⇤ � �̂(�)⇤)0(X 0
X + �I)(�̂(�)⇤⇤ � �̂(�)⇤) = "

⇤⇤0
X(X 0

X + �I)�1
X

0
"
⇤⇤

= "
⇤⇤0
H�"

⇤⇤

=
nX

i,j=1

hij,�"
⇤⇤
i "

⇤⇤
j

=
nX

i,j=1

hij,��i,1�j,1�i,2�j,2"̂i"̂j

= T
2
.

The proof follows the same procedure as seen in the proof of Theorem 2.5.1.

3.4.2 Linear contrasts

As was introduced in Chapter 1, we can similarly consider the linear contrast

c
0(�̂(�)⇤⇤ � �̂(�)⇤) by introducing the following theorem.

Theorem 3.4.2. Under the same settings as Theorem 3.4.1, let c 2 IRp
be a

fixed contrast vector and v� = (v1,�, . . . , vn,�)0 = c
0(X 0

X + �I)�1
X

0
. Further-

more, assume that for a constant Bp,
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for each sequence "̂1, . . . , "̂n 2 IR. Then, for B2p / [(2p)!/2pp!]1/2p,

P

0

B@
���c0(�̂(�)⇤⇤ � �̂(�)⇤)

��� 

2

4� log (↵⇤) 4

"
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v
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i

#1/23

5
1/2
1

CA � 1� ↵,

where ↵
⇤ = I

⇣
↵ [e/

p
⇡ + e/⇡]

�1
; ✓1, ✓2

⌘
, I(↵; ✓1, ✓2) is the regularized incom-

plete beta function and ✓1, ✓2 are fixed unknown constants.

Proof. Consider the linear contrast

c
0(�̂(�)⇤⇤ � �̂(�)⇤) = c

0(X 0
X + �I)�1

X
0
"
⇤⇤

= v
0
�"

⇤⇤

=
nX

i=1

vi,�"
⇤⇤
i

=
nX

i=1

vi,��i,2"
⇤
i

= T,

where v� = (v1,�, . . . , vn,�)0 = c
0(X 0

X + �I)�1
X

0. The proof follows the same

procedure as seen in the proof of Theorem 2.5.2.

3.5 Simulations

We simulated our data from the following linear model

Y = X� + ",

where n 2 {100, 500, 1000}, p = 5, " ⇠ N (0, 3), X is generated from Uni-

form[0,5] and � is generated from Uniform[0,3]. We take the �is to be i.i.d.

Rademacher random variables with P (�i = 1) = P (�i = �1) = 1/2. We also

consider heteroscedastic data simulated with " ⇠ N (0, �2
i ), where �

2
i = x

2
i1

(Flachaire, 2005). Simulation results are presented for ↵ = 0.05.
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Figure 3.3: Coverage of 95% AFDB, parametric and double bootstrap confidence

regions for homoscedastic data

Table 3.3: Mean and standard deviation of the coverages of 95% AFDB, parametric

and double bootstrap confidence regions for homoscedastic data

Method n = 100 n = 500 n = 1000

AFDB 0.931 (0.027) 0.948 (0.023) 0.946 (0.021)

Parametric 0.952 (0.022) 0.951 (0.024) 0.948 (0.02)

Double Bootstrap 0.917 (0.026) 0.942 (0.027) 0.944 (0.021)
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Figure 3.4: Coverage of 95% AFDB, parametric and double bootstrap confidence

regions for heteroscedastic data

Table 3.4: Mean and standard deviation of the coverages of 95% AFDB, parametric

and double bootstrap confidence regions for heteroscedastic data

Method n = 100 n = 500 n = 1000

AFDB 0.921 (0.028) 0.946 (0.021) 0.949 (0.022)

Parametric 0.910 (0.030) 0.905 (0.028) 0.908 (0.029)

Double Bootstrap 0.910 (0.029) 0.941 (0.020) 0.948 (0.021)

46



3.6 Data Example

In this section, we will demonstrate our approach on a real data set focusing

on energy e�ciency of residential buildings. In particular, this data set inves-

tigates the relationship between the shape of a building and its heating load,

the response variable (Tsanas and Xifara, 2012). This data set has 768 ob-

servations and 8 predictor variables: relative compactness (X1), surface area

(X2), wall area (X3), roof area (X4), overall height (X5), orientation (X6),

glazing area (X7) and glazing area distribution (X8). One can imagine that

these variables might be high correlated, leading to the issue of multicollinear-

ity when fitting a linear regression model. For example, relative compactness

and surface area are strongly negatively correlated with r = �0.991, as when

surface area increases, the compactness of the building decreases.

A model was fit to the data using ridge regression with tuning parameter

� = 0.897 selected via cross-validation. After model selection, X4 and X6 were

removed resulting in an estimated coe�cient vector of �̂(�) = (0.70,�1.91,

3.22, 5.13, 2.32, 0.34)0. Below, 95% AFDB, parametric and double bootstrap

confidence regions are plotted for regression coe�cients �3 and �4 in Figure

3.5; all three methods produce similar confidence regions.
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Figure 3.5: 95% confidence regions for energy data set
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3.7 Discussion

This chapter focused on bootstrapping in the ridge regression setting. Ini-

tially, the single wild bootstrap was discussed in this context, and while it

may perform well in certain parameter settings, it is not prudent to use it for

the biased parameters in ridge regression. As a solution, the double bootstrap

was proposed as a better estimate of the sampling distribution for ridge coe�-

cients. However, doing multiple rounds of bootstrapping is highly impractical,

especially with high-dimensional data. Thus, the fast double bootstrap was

proposed, with computational run times on par with the single bootstrap.

While the fast double bootstrap is an improvement over the double boot-

strap in terms of computational time, it is still relatively ine�cient. The

analytic fast double bootstrap (AFDB) was introduced in the context of ridge

regression. Through simulation studies and a real data example, we were

able to establish the similarities in performance between the AFDB and the

fast double bootstrap, noting the benefits of the AFDB from a computational

standpoint.
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Chapter 4

Analytic Bootstrap for LASSO

Regression

4.1 Introduction

The LASSO regression estimator �̂
lasso is a shrinkage estimator with an L1

penalty such that, as defined in Efron and Hastie (2016),

�̂
lasso = argmin

�

�
||Y �X�||22 + � ||�||1

 
.

However, unlike ridge regression, there is no closed form expression for LASSO

coe�cients. Thus, extending the approach of the analytic wild bootstrap to

LASSO is not as straight-forward.

This chapter considers the implementation of the bootstrap, both compu-

tationally and analytically, in LASSO regression. Section 4.2 discusses issues

that arise when bootstrapping in LASSO estimators and introduces the con-

cept of approximate LASSO solutions as a work around to apply to double

bootstrap in this setting. In Section 4.3, we highlight the advantages of using

an iterative scheme rather than the ridge approximation alone to estimate co-

e�cients. Section 4.4 describes the AFDB in the context of LASSO regression

as a means to compute confidence regions. Sections 4.5 and 4.6 demonstrate

the performance of various approaches to constructing confidence regions and

intervals in LASSO regression. Finally, Section 4.7 wraps up with a summary
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and discussion of the findings from this chapter.

4.2 Wild bootstrap

We have shown that the wild bootstrap works well in least squares regression.

Furthermore, in LASSO regression, Chatterjee and Lahiri (2010) show that in

the presence of zero coe�cients, the bootstrap may fail to be consistent. As

a result, they developed a modified bootstrap that, under some assumptions,

is consistent. Alternatively, much work has been done exploring the debiased

LASSO estimator. First introduced by Zhang and Zhang (2014), the debiased

LASSO estimator has become a popular way to conduct statistical inference

in high-dimensional models (Van De Geer, 2019; Javanmard and Montanari,

2018; Li, 2020).

Current approaches for conducting statistical inference in penalized regres-

sion may be complicated to implement as well as computationally expensive.

In this chapter, we adapt the idea of the AFDB to LASSO regression using

approximate LASSO solutions. Sartori (2011) outlines an approach for approx-

imating LASSO solutions which we describe in detail below. First, Tibshirani

(1996) used the fact that we can rewrite the LASSO penalty as

pX

j=1

|�j| =
pX

j=1

�
2
j /|�j|.

This enables us to express the LASSO estimator as

�̂
lasso = argmin

�

�
||Y �X�||2 + � ||�||

 

= argmin
�

nX

i=1

(yi � x
0
i�)

2 + �

pX

j=1

�
2
j /|�j|

= argmin
�

(Y �X�)0(Y �X�) + ��
0⇤��,

where ⇤� = diag(1/|�1|, . . . , 1/|�p|). However, in LASSO regression one or

more of the coe�cients �1, . . . , �p may be zero. To circumvent the problem of
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dividing by zero, we will redefine ⇤� = diag(|�1|, . . . , |�p|) and introduce ⇤�
� :

the generalized inverse of ⇤�. That is, for j = 1, . . . , p,

⇤�
� =

8
<

:
1/|�j|, |�j| > 0

0, |�j| = 0.

Thus, our LASSO estimator becomes

�̂
lasso = argmin

�
(Y �X�)0(Y �X�) + ��

0⇤�
� �.

Consequently, this can be approximated by ridge regression as

�̂
lasso ⇡ (X 0

X + �⇤�
�̂
)�1

X
0
Y,

where ⇤�̂ = diag(|�̂1|, . . . , |�̂p|) and �̂
lasso = (�̂1, . . . , �̂p). It should be noted

that, using this ridge approximation, regression coe�cients cannot be set ex-

actly to zero. Nevertheless, this approach enables us to apply the double wild

bootstrap as a means to construct confidence regions. As was outlined in Sec-

tion 3.2, the single bootstrap may not yield the best results due to the bias

of the ridge regression estimator. Therefore, we continue to adopt the double

bootstrap as a means to estimate the sampling distribution. Thus, we are now

able to utilize the double bootstrap to construct a (1 � ↵)100% confidence

region by taking the (1� ↵) quantile of

(�̂lasso⇤⇤ � �̂
lasso⇤)0(X 0

X + �⇤�
� )(�̂

lasso⇤⇤ � �̂
lasso⇤).

4.3 Iterative Wild Bootstrap for LASSO Re-

gression

In general, the ridge approximation works well for estimating LASSO coe�-

cients. However, the approximation can be improved for the case of the zero
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coe�cients (Sartori, 2011). This can be achieved by considering an iterative

ridge regression algorithm for approximating the LASSO coe�cients (Tibshi-

rani, 1996; Sartori, 2011). Denoted as the ridge-IWLS approximation, we

are able to obtain improved approximations for LASSO coe�cients, especially

those coe�cients that would be otherwise set to zero in LASSO regression.

Described below is the algorithm as seen in (Sartori, 2011).

Algorithm 4 The Ridge-IWLS Approximation

Calculate adjusted responses z(k)i = xi�̂
(k) + yi � ŷ

(k)
i .

Denote W
(k) = diag(1, . . . , 1) and ⇤(k)

�̂
= diag

⇣
|�̂(k)

1 |, . . . , |�̂(k)
1 |
⌘

Update coe�cients

�̂
(k+1) =

⇣
X

0
W

(k)
X + �⇤(k)�

�̂

⌘�1

X
0
W

(k)
z
(k)
.

Repeat until |�̂(k+1) � �̂
(k)| < " for " = 0.0001.

To further motivate the use of the iterative approach, consider the following

simulated example with � = (3, 0,�2, 0.5, 2.5)0 and n = 1000. From table

4.1, although both approaches give good approximations to the estimated

coe�cients from LASSO, in the case of a zero coe�cient, the ridge-IWLS

clearly gives a much better approximation than just the ridge approximation

alone.

Table 4.1: Comparing coe�cient estimates from LASSO, ridge approximation and

ridge-IWLS with the true �

� �̂
lasso

�̂ (ridge approx.) �̂ (ridge-IWLS)
3 2.598604 2.598882 2.598604
0 0.000000 �0.038951 �0.000001
�2 �1.954168 �1.956218 �1.954169
0.5 0.000000 0.075460 0.000127
2.5 2.954878 2.951977 2.954874
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4.4 Analytic Wild Bootstrap for LASSO Re-

gression

In this section, we consider the construction of analytic confidence regions

using the AFDB in an similar manner to what was done for the parameters in

ridge regression in Chapter 3.

Theorem 4.4.1. For a linear model Y = X�+" with independent, not neces-

sarily identically distributed errors ", denote �̂
lasso

as the LASSO estimator of

� and the residuals as "̂i = yi� ŷi, where ŷi = �̂
lasso

xi. Consider the wild boot-

strap model Y
⇤ = X�̂

lasso + "
⇤
, where "

⇤ = ("⇤1, . . . , "
⇤
n)

0
with "

⇤
i = �i"̂i and the

�is are i.i.d. from a symmetric distribution such that E[�i] = 0 and V ar[�i] = 1,

we denote �̂
lasso⇤

as the wild bootstrap estimator of �̂
lasso

. Also, consider the

double wild bootstrap model Y
⇤⇤ = X�̂

lasso⇤ + "
⇤⇤
, where "

⇤⇤ = ("⇤⇤1 , . . . , "
⇤⇤
n )0

with "
⇤⇤
i = �i,2"

⇤
i and the �i,2s are i.i.d. from a symmetric distribution such that

E[�i,2] = 0 and V ar[�i,2] = 1, we denote �̂
lasso⇤⇤

as the double wild bootstrap

estimator of �̂
lasso⇤

. Furthermore, assume that for p � 2 and for a constant

Bp,
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for each sequence "̂1, . . . , "̂n 2 IR. Then, for B2p / [(2p)!/2pp!]1/2p,
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A � 1� ↵,

where ↵
⇤ = I

⇣
↵ [e/

p
⇡ + e/⇡]

�1
; ✓1, ✓2

⌘
, I(↵; ✓1, ✓2) is the regularized incom-

plete beta function, ✓1 and ✓2 are fixed unknown constants, C is a universal

constant and hij,lasso is the (i, j)th element of H� = X(X 0
X + �⇤�

� )
�1
X

0
.

Proof. The proof follows the same procedure as seen in the proof of Theorem

3.4.1.

53



Theorem 4.4.2. Under the same settings as Theorem 4.4.1, let c 2 IRp
be a

fixed contrast vector and v� = (v1,�, . . . , vn,�)0 = c
0(X 0

X + �I)�1
X

0
. Further-

more, assume that for a constant Bp,
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for each sequence "̂1, . . . , "̂n 2 IR. Then, for B2p / [(2p)!/2pp!]1/2p,
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where ↵
⇤ = I

⇣
↵ [e/

p
⇡ + e/⇡]

�1
; ✓1, ✓2

⌘
, I(↵; ✓1, ✓2) is the regularized incom-

plete beta function and ✓1, ✓2 are fixed unknown constants.

Proof. The proof follows the same procedure as seen in the proof of Theorem

3.4.2.

4.5 Simulations

We simulated our data from the following linear model

Y = X� + ",

where n 2 {100, 500, 1000}, p = 5, " ⇠ N (0, 3), X is generated from Uni-

form[0,5] and � is generated from Uniform[0,3]. We take the �is to be i.i.d.

Rademacher random variables with P (�i = 1) = P (�i = �1) = 1/2. We also

consider heteroscedastic data simulated with " ⇠ N (0, �2
i ), where �

2
i = x

2
i1

(Flachaire, 2005). Simulation results are presented for ↵ = 0.05.
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Figure 4.1: Coverage of 95% AFDB ridge approximation, AFDB ridge-IWLS,

parametric and double bootstrap LASSO confidence regions for homoscedastic data

Table 4.2: Mean and standard deviation of the coverages of 95% AFDB ridge

approximation, AFDB ridge-IWLS, parametric and double bootstrap LASSO con-

fidence regions for homoscedastic data

Method n = 100 n = 500 n = 1000
AFDB ridge approx 0.881 (0.032) 0.945 (0.024) 0.949 (0.023)
AFDB ridge-IWLS 0.917 (0.025) 0.947 (0.022) 0.949 (0.023)
Parametric 0.9082 (0.031) 0.947 (0.024) 0.947 (0.021)
Double Bootstrap 0.870 (0.037) 0.941 (0.027) 0.945 (0.021)
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Figure 4.2: Coverage of 95% AFDB ridge approximation, AFDB ridge-IWLS,

parametric and double bootstrap LASSO confidence regions for heteroscedastic data

Table 4.3: Mean and standard deviation of the coverages of 95% AFDB ridge

approximation, AFDB ridge-IWLS, parametric and double bootstrap LASSO con-

fidence regions for heteroscedastic data

Method n = 100 n = 500 n = 1000
AFDB ridge approx 0.917 (0.027) 0.946 (0.023) 0.946 (0.026)
AFDB ridge-IWLS 0.926 (0.024) 0.948 (0.023) 0.950 (0.024)
Parametric 0.8976 (0.031) 0.907 (0.031) 0.9043 (0.031)
Double Bootstrap 0.903 (0.03) 0.94 (0.025) 0.944 (0.023)
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4.6 Example

Recall Table 4.1 in which, for � = (3, 0,�2, 0.5, 2.5)0, we compared the estima-

tion of coe�cients across three approaches: LASSO, the ridge approximation

and ridge-IWLS. In this case, using LASSO regression it was estimated that

�̂
lasso
1 = 2.6. Suppose we wished to obtain a confidence interval for one of the

regression coe�cients, say �1. To do this we can apply Theorem 4.4.2, taking

c to be the contrast vector c = (1, 0, 0, 0, 0). In Figure 4.3 and Table 4.4,

we compare 95% confidence intervals generated by the ridge approximation,

ridge-IWLS and double bootstrap. All confidence intervals are fairly consistent

with each other.

2.2

2.4

2.6

2.8

3.0

Ridge approx. Ridge−IWLS Double Bootstrap
Method

β̂ 1

Figure 4.3: Comparing 95% confidence intervals in LASSO regression for the ridge

approximation, ridge-IWLS and double bootstrap

Table 4.4: Comparing 95% confidence intervals in LASSO regression for the ridge

approximation, ridge-IWLS and double bootstrap

Method Confidence Interval
Ridge Approximation (2.169978, 3.027786)

Ridge-IWLS (2.165282, 3.031926)
Double Bootstrap (2.212433, 2.986302)
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4.7 Discussion

In this chapter, we showed how to approximate LASSO solutions using a ridge

approximation. Alternatively we introduce the ridge-IWLS approximation as

a preferred approach to the ridge approximation alone. Using either of these

methods to estimate LASSO coe�cients, the double bootstrap can then be

applied as a means to estimate the sampling distribution and obtain confidence

regions. To avoid the computational demand of the double bootstrap, the

AFDB is illustrated in the context of LASSO regression. Through simulations,

we can see that the AFDB performs analogously to the double bootstrap in

a much more e�cient manner. The choice of whether to adopt the AFDB or

double bootstrap may depend on the size of the data and other computational

constraints. Although we work in the setting where n > p to avoid rank

deficiency, penalized regression is still of interest in a variety of situations

when n > p like in the case of data that exhibits multicollinearity. For a

discussion on confidence regions in high-dimensional models where p > n see

Van de Geer et al. (2014).
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Chapter 5

Bootstrapping Generalized

Linear Models

5.1 Introduction

This section references McCullagh and Nelder (1989). Generalized linear mod-

els (GLMs) are composed of three main components:

1. A response variable Y whose components share a distribution in the

exponential family.

2. A systematic component ⌘ = X�,

whereX is the n⇥pmatrix of explanatory variables and � = (�1, . . . , �p)0

is the p⇥ 1 vector of parameters.

3. A link function g such that

g(µ) = ⌘,

where µ = E[Y ] and g is a monotonic di↵erentiable function.

A random variable Y belongs to the exponential family if its density func-

tion is of the form

fY (y; ✓,�) = exp {(y✓ � b(✓))/a(�) + c(y,�)}
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for functions a(·), b(·) and c(·). These functions depend on the distribution

of Y . ✓ is called the canonical parameter and � is referred to as the dispersion

parameter.

The log-likelihood function is given by

l(✓,�; y) = (y✓ � b(✓))/a(�) + c(y,�).

The mean and variance of Y are then derived to be

E(Y ) = µ = b
0(✓)

and

Var(Y ) = b
00(✓)a(�) = V (µ)a(�),

respectively. The normal, binomial and Poisson distribution are three com-

monly used distributions in the exponential family. Below is a table provid-

ing some characteristics for these distributions with the canonical link where

✓ = ⌘ = g(µ) = X�.

Table 5.1: Characteristics of the normal, binomial and Poisson Distributions

Normal Binomial Poisson
Notation N (µ, �2) B(m, ⇡)/m P (µ)
Link identity logit log
µ(⌘) ⌘ e

⌘
/(1� e

⌘) e
⌘

⌘ = g(µ) µ log
⇣

µ
1�µ

⌘
log(µ)

V (µ) 1 µ(1� µ) µ

a(�) �
2 1/m 1

For GLMs, we can obtain maximum-likelihood estimates of � by using

an algorithm called iteratively weighted least squares (IWLS). The (k + 1)th

parameter estimate of � can be solved as

�̂
(k+1) = (X 0

W
(k)
X)�1

X
0
W

(k)
z
(k)
,

where W
(k) is the k

th iteration of the diagonal weight matrix W with entries

wii = [Var(Yi)]�1
⇣

@µi

@⌘i

⌘2
and z

(k) is the k
th iteration of the vector of adjusted
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responses z composed of elements zi = ⌘i+(yi�µ̂i)
⇣

@µi

@⌘i

⌘
. The IWLS algorithm

is repeated until parameter convergence.

Typically, inference for the parameters in GLMs is based on quantities such

as the Wald, Score or likelihood-ratio statistics (Dobson and Barnett, 2008).

The Wald statistic is given by

(�̂ � �)0I(�)(�̂ � �),

where I(�) is the information matrix. Asymptotically, the Wald statistic

follows a �
2 distribution with p degrees of freedom. If we are interested in only

one coe�cient, we have

�̂ ⇠ N (�, I�1).

The Wald statistic can then be used to perform hypothesis testing and

obtain confidence intervals and regions for the parameters in a GLM. For in-

stance, a confidence interval for � could be computed as �̂ ± z↵/2 ⇥ SE[�̂].

Of course, to guarantee exact results, we assume that the response variable

is normally distributed which is not always the case (Dobson and Barnett,

2008). While alternative approaches based on quantities such as the Score or

likelihood-ratio statistic require slightly weaker assumptions, they still rely on

asymptotic convergence to achieve optimal results. This is why the consider-

ation of nonparametric ways of conducting statistical inference for GLMs is

important.

The rest of this chapter is organized as follows. Section 5.2 discusses both

the one-step residual and wild bootstrap as nonparametric approaches to esti-

mate a sampling distribution for the coe�cients in GLMs. Simulation results

are presented along with a real data example on data from a blood trans-

fusion centre (Yeh et al., 2009; Dua and Gra↵, 2017). Section 5.3 develops

the Analytic Wild Bootstrap (ANWB) methodology in the context of GLMs.

Similarly, simulation results and a data application are also demonstrated. In

Section 5.4, the case of overdispersed count data is introduced and the advan-

tages of nonparametric approaches are highlighted in simulations and a data

example using data pertaining to measurements on squids (Zuur et al., 2007).

Finally, a discussion summarizing the key findings from the chapter is provided
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in Section 5.5.

5.2 Bootstrapping GLMs

5.2.1 Residual resampling

The bootstrap is a nonparametric method for conducting statistical inference

in GLMs and it is an alternative to parametric options based on quantities

such as the Wald and likelihood-ratio statistic. Moulton and Zeger (1991)

developed a one-step bootstrapping procedure for the coe�cients in GLMs

based on either residual or vector resampling. As noted by Moulton and

Zeger (1991), verifying distributional assumptions may not always be possible

so the consideration of nonparametric approaches is important. The one-step

procedure estimates bootstrap coe�cients by using one iteration of IWLS. This

approach is much more e�cient than the alternative of estimating coe�cients

via IWLS a large number of times.

When implementing residual resampling for GLMs, one must decide on a

choice of residuals. There are numerous types of residuals to consider such

as the deviance, Pearson or standardized Pearson residuals. As described in

McCullagh and Nelder (1989), the deviance, D, is a measure of how well a

model fits the data, so each observation contributes a quantity di such that

D =
Pn

i=1 di. The deviance residuals are then computed as

ri = sgn(yi � µ̂i)
p

di,

where yi is the observed value of the response variable and µ̂i is the pre-

dicted value of the response variable. Alternatively, the Pearson residuals are

defined as

ri =
yi � µ̂ip

vi
,

where vi is the estimated variance. Further standardizing by the diagonal
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entries of the hat matrix, the standardized Pearson residuals are calculated as

ri =
yi � µ̂ip
vi(1� hi)

,

where hi is the leverage of the i
th observation computed from the i

th di-

agonal entry of the hat matrix H = W
1/2

X(X 0
WX)�1

X
0
W

1/2. As suggested

by Moulton and Zeger (1991), we use the standardized Pearson residuals as

they are preferred from the standpoint of exchangeability. The computation

of the hat matrix H may not be desirable from a computation standpoint,

especially as the dimensions of the data become large. Thus, it is possible to

replace the scaling factors 1 � hi with their average 1 � p/n (Friedl, 1997).

These quantities have been shown to perform in an analogous manner through

simulation studies (Friedl and Tilg, 1995). However, in this thesis we scale by

the factor 1� hi.

We describe the one-step residual resampling procedure for GLMs below

as seen in Sartori (2011).

Algorithm 5 One-step Residual Resampling Bootstrap

1. Using IWLS, estimate coe�cients �̂ and predicted responses µ̂i.

2. Compute the standardized Pearson residuals ri and from them

compute the mean-adjusted residuals "̄i = ri � r̄i.

3. Draw a sample with replacement of size n from the mean-adjusted

residuals and call it "⇤.

4. Estimate one-step bootstrap coe�cients

�̂
⇤ = �̂ + (G0

G)�1
G

0
"
⇤
,

where G = W
1/2

X.

5. Repeat steps 3 and 4 B times.
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5.2.2 Wild bootstrap

While work has been done studying residual and vector resampling bootstrap

for GLMs, the wild bootstrap has not been thoroughly explored. As an al-

ternative to the one-step residual resampling bootstrap of Moulton and Zeger

(1991), we will also investigate the one-step wild bootstrap’s performance for

a variety of GLMs.

Algorithm 6 One-step Wild Bootstrap

1. Using IWLS, estimate coe�cients �̂ and predicted responses µ̂i.

2. Compute the standardized Pearson residuals ri.

3. Calculate "
⇤
i = �iri, where �i has E[�i] = 0 and Var[�i] = 1.

4. Estimate one-step bootstrap coe�cients

�̂
⇤ = �̂ + (G0

G)�1
G

0
"
⇤
,

where G = W
1/2

X.

5. Repeat steps 3 and 4 B times.

In Moulton and Zeger (1991), the variance of the bootstrap coe�cient is

derived in the case of residual resampling. We derive the variance of the wild

bootstrap coe�cient for GLMs below.

Proposition 1. The variance of the one-step wild bootstrap coe�cient defined

in Algorithm 6 is

Var[�̂⇤] = (G0
G)�1

G
0
RG(G0

G)�1
,

where R = diag (E[r21], . . . ,E[r2n]) .

Proof. Consider �̂
⇤, the coe�cient vector from the one-step wild bootstrap

defined in Algorithm 6. The variance can be written as

Var[�̂⇤] = (G0
G)�1

G
0Var["⇤]G(G0

G)�1
.
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For diagonal entries where i = j, we have that

Var["⇤i ] = Var[�iri]

= E[(�iri � E[�iri])2]
= E[�2i r2i ]
= E[r2i ].

Here, we used the fact that E[�i] = 0 and E[�2i ] = 1. Also, for i 6= j,

Var["⇤]ij = Cov[�iri, �jrj]

= E[�i�jrirj]
= 0.

Thus,

Var[�̂⇤] = (G0
G)�1

G
0
RG(G0

G)�1
,

where R = diag (E[r21], . . . ,E[r2n]) .

Below is a small simulation demonstrating the similar behaviours of the

one-step residual resampling and wild bootstrap. Consider data with n = 1000,

p = 3 and � = (1.5, 2,�0.5). Suppose we wished to predict a binary response

using logistic regression and we were interested in estimating the distribution of

�1 = 1.5. Using B = 1000 bootstrap replications, we compare the performance

of the one-step residual and wild bootstraps in Figure 5.1.

From the histograms, one can see that the distributions of the estimated

bootstrap coe�cients using the one-step residual resampling and wild boot-

strap are very similar with respective means and standard deviations of 1.507

(0.256) and 1.505 (0.248). The dashed blue line on the histograms represents

the estimated coe�cient of �̂1 = 1.498. To compute 95% confidence intervals

for �1, we could take the 0.025 and 0.975 quantiles of each distribution yielding

confidence intervals of (0.988, 1.963) for the residual resampling bootstrap and

(1.045, 1.996) for the wild bootstrap.
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Figure 5.1: Comparison of the distributions of �̂1 generated by the one-step resid-

ual and wild bootstrap
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5.2.3 Simulations

In this section, we look at simulations for both logistic and Poisson regres-

sion. Both scenarios consider ↵ = 0.05, n = 1000, p = 3 and � selected

from U [�2, 2]. For the bootstrap approaches, we utilize B = 1000 bootstrap

replications. In this simulation, we are investigating the coverage of confi-

dence interval’s for � using four di↵erence approaches: two one-step bootstrap

approaches, residual resampling and the wild bootstrap, and two parametric

approaches based on the Wald statistic and likelihood-ratio statistic. We can

see that all methods achieve the desired coverage level of 95%.
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Figure 5.2: Coverage of various 95% confidence intervals in logistic regression

Table 5.2: Mean and standard deviation of the coverages of 95% confidence inter-

vals for a logistic regression model

Method Coverage

Residual Bootstrap 0.947 (0.021)

Wild Bootstrap 0.946 (0.022)

Likelihood-Ratio 0.947 (0.023)

Wald 0.949 (0.021)
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Figure 5.3: Coverage of various 95% confidence intervals in Poisson regression

Table 5.3: Mean and standard deviation of the coverages of 95% confidence inter-

vals for a Poisson regression model

Method Coverage

Residual Bootstrap 0.948 (0.025)

Wild Bootstrap 0.945 (0.025)

Likelihood-Ratio 0.947 (0.025)

Wald 0.947 (0.024)

R code has been provided in the Appendix to further illustrate the process

of obtaining these confidence intervals in Poisson regression.

5.2.4 Data example

We will now illustrate the process of bootstrapping GLMs on a real data set.

This data set was collected from a study on 748 randomly selected donors from

a donor database of the Blood Transfusion Service Center in Hsin-Chu City

in Taiwan (Yeh et al., 2009; Dua and Gra↵, 2017). The response variable of

the study was a binary variable indicating whether or not the person donated

blood (1-yes, 0-no). Covariates included recency in months since last donation

(X1), total number of donations (X2), total blood donated in c.c. (X3), and
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the time in months since first donation (X4). Unsurprisingly, it was found

that X2 and X3 were perfectly positively correlated with each other so only

X2 was considered in the model. After model selection, all variables were

deemed important and the following logistic model was fit to the data.

ln

✓
pdonate

1� pdonate

◆
= �0.45� 0.10X1 + 0.14X2 � 0.02X4,

where pdonate indicates the probability of a person donating blood. For in-

stance, for every additional donation made, a person is e
0.14 = 1.15 times

more likely to donate blood on average. Reported in Table 5.4 are the 95%

confidence intervals for the coe�cients in the above logistic regression model

obtained by the following four methods: two one-step bootstrap approaches,

residual resampling and the wild bootstrap, and two parametric approaches

based on the Wald statistic and likelihood-ratio statistic.

Table 5.4: 95% confidence intervals for the blood transfusion data set

Coe�cient Method Confidence Interval

Residual Bootstrap (�0.801,�0.097)

�0 Wild Bootstrap (�0.802,�0.109)

Likelihood-Ratio (�0.806,�0.098)

Wald (�0.803,�0.096)

Residual Bootstrap (�0.133,�0.064)

�1 Wild Bootstrap (�0.133,�0.064)

Likelihood-Ratio (�0.134,�0.066)

Wald (�0.133,�0.065)

Residual Bootstrap (0.084, 0.186)

�2 Wild Bootstrap (0.085, 0.191)

Likelihood-Ratio (0.087, 0.188)

Wald (0.085, 0.186)

Residual Bootstrap (�0.035,�0.010)

�3 Wild Bootstrap (�0.035,�0.011)

Likelihood-Ratio (�0.035,�0.012)

Wald (�0.035,�0.011)
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5.3 Analytic Wild Bootstrap for GLMs

5.3.1 Confidence regions

For a generalized linear model, consider wild bootstrap coe�cients

�̂
⇤ = (X 0

WX)�1
X

0
Wz

⇤
,

where z
⇤ = X�̂ + �V 1/2

"
⇤ and �V 1/2 = W

�1/2.

Then we can write

�̂
⇤ = (X 0

WX)�1
X

0
WX�̂ + (x0

WX)�1
X

0
W�V 1/2

"
⇤

= �̂ + (x0
WX)�1

X
0
W�V 1/2

"
⇤

= �̂ + (G0
G)�1

G
0
"
⇤
,

where G = W
1/2

X. Thus, in an analogous manner to the case of least squares

regression, we can write the bootstrap coe�cient as a function of the estimated

coe�cient plus some linear operator applied to the perturbed residuals. Now

we will introduce a theorem detailing an analytic way to consider confidence

regions for generalized linear models.

Theorem 5.3.1. For a generalized linear model g(µ) = X�, denote �̂ as the

IWLS estimator of � and consider the one-step wild bootstrap coe�cients out-

lined in Algorithm 6: �̂
⇤ = �̂+(G0

G)�1
G

0
"
⇤
, where G = W

1/2
X. Furthermore,

assume that for p � 2 and for a constant Bp,

 
E�

�����

nX

i=1

�iri

�����

p!1/p

 Bp

0

@E�

�����

nX

i=1

�iri

�����

2
1

A
1/2

for each sequence "̂1, . . . , "̂n 2 IR where ri are the standardized Pearson resid-

uals and �i is a symmetric random variable with E[�i] = 0 and Var[�i] = 1 .
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Then, for B2p / [(2p)!/2pp!]1/2p,

P

0

@(�̂⇤ � �̂)0X 0
WX(�̂⇤ � �̂)  � log (↵⇤) 4C

"
nX

i,j=1

h
2
ij,GLMr

2
i r

2
j

#1/21

A � 1� ↵,

where ↵
⇤ = I

⇣
↵ [e/

p
⇡ + e/⇡]

�1
; ✓1, ✓2

⌘
, I(↵; ✓1, ✓2) is the regularized incom-

plete beta function, ✓1 and ✓2 are fixed unknown constants, C is a universal

constant and hij,GLM is the (i, j)th element of HX = X(X 0
WX)�1

X
0
.

Proof. Consider the following quadratic form

(�̂⇤ � �̂)0(X 0
WX)(�̂⇤ � �̂) = "

⇤0
G(G0

G)�1(X 0
WX)(G0

G)�1
G

0
"
⇤

= "
⇤0
W

1/2
X(X 0

WX)�1(X 0
WX)(X 0

WX)�1
X

0
W

1/2
"
⇤

= "
⇤0
W

1/2
X(X 0

WX)�1
X

0
W

1/2
"
⇤

= "
⇤0
G(G0

G)�1
G

0
"
⇤

= "
⇤0
HGLM"

⇤

=
X

i,j

hij,GLM"
⇤
i "

⇤
j

=
X

i,j

hij,GLM�i�jrirj

= T
2
.

Thus, the rest of the proof follows from Theorem 2.5.1.

In comparison to other nonparametric approaches such as the bootstrap,

this analytic method is superior from a computational standpoint. For exam-

ple, using a quad-core processor obtaining confidence regions for the coe�-

cients of a logistic glm for a data set with n = 1000, p = 10 and B = 10000

bootstrap replications takes approximately take 24.852 seconds, while using

the analytic approach takes only 0.982 seconds.
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5.3.2 Linear contrasts

In this section, we introduce an extension of Theorem 5.3.1 to derive confidence

regions for the linear contrast c0(�̂⇤(�)� �̂(�)).

Theorem 5.3.2. Under the same settings as Theorem 5.3.1, let c 2 IRp
be a

fixed contrast vector and v� = (v1,�, . . . , vn,�)0 = c
0(X 0

WX)�1
X

0
. Furthermore,

assume that for a constant Bp,

"
E�

�����

nX

i=1

vi,��iri

�����

p#1/p
 B

2
p

"
nX

i=1

v
2
i,�r

2
i

#1/2

for each sequence "̂1, . . . , "̂n 2 IR. Then, for B2p / [(2p)!/2pp!]1/2p,

P

0

B@
���c0(�̂⇤ � �̂)

��� 

2

4� log (↵⇤) 4

"
nX

i=1

v
2
i,�r

2
i

#1/23

5
1/2
1

CA � 1� ↵,

where ↵
⇤ = I

⇣
↵ [e/

p
⇡ + e/⇡]

�1
; ✓1, ✓2

⌘
, I(↵; ✓1, ✓2) is the regularized incom-

plete beta function and ✓1, ✓2 are fixed unknown constants.

Proof. Consider the linear contrast

c
0(�̂⇤ � �̂) = c

0(X 0
WX)�1

X
0
"
⇤

= v
0
�"

⇤

=
nX

i=1

vi,�"
⇤
i

=
nX

i=1

vi,��iri

= T,

where v� = (v1,�, . . . , vn,�)0 = c
0(X 0

WX)�1
X

0. The proof follows the same

procedure as seen in the proof of Theorem 2.5.2.
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5.3.3 Simulations

This section demonstrates simulations for logistic and Poisson regression. Both

scenarios consider ↵ = 0.05, n = 1000, p = 3 and � selected from U [�3, 3].

For the bootstrap approaches we utilized B = 1000 bootstrap replications. We

are exploring the performance of confidence regions of two one-step bootstrap

approaches: the wild bootstrap and the analytic wild bootstrap as well as

confidence regions based on the Wald statistic. While the methods do well

in terms of coverage, the analytic approach takes dramatically less time to

compute.
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Figure 5.4: Coverage of various 95% confidence intervals in logistic regression

Table 5.5: Mean and standard deviation of the coverages of 95% confidence inter-

vals for a logistic regression model

Method Coverage

Wild Bootstrap 0.948 (0.021)

Analytic Wild Bootstrap 0.950 (0.022)

Wald 0.951 (0.022)
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Figure 5.5: Coverage of various 95% confidence regions in Poisson regression

Table 5.6: Mean and standard deviation of the coverages of 95% confidence regions

for a Poisson regression model

Method Coverage

Wild Bootstrap 0.947 (0.024)

Analytic Wild Bootstrap 0.950 (0.025)

Wald 0.949 (0.024)
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5.3.4 Data example

Revisiting the blood transfusion data set from Section 5.2.4, we will demon-

strate the application of the analytic wild bootstrap confidence regions using

logistic regression. Recall that the response variable of the study was a binary

variable indicating whether or not the person donated blood (1-yes, 0-no).

Independent variables recorded included recency in months since last dona-

tion (X1), total number of donations (X2), total blood donated in c.c. (X3),

and the time in months since first donation (X4). After model selection, the

following logistic model was fit

ln

✓
pdonate

1� pdonate

◆
= �0 + �1X1 + �2X2 + �3X4

= �0.45� 0.10X1 + 0.14X2 � 0.02X4.

A plot of confidence regions for �1 and �2 computed using the analytic wild

bootstrap, Wald and wild bootstrap approach are displayed below. All three

methods produced very similar ellipses, with radii of 3.09, 3.05, and 3.08 for

the ANWB, Wald and Wild bootstrap, respectively.
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Figure 5.6: Coverage of various 95% confidence regions for the blood transfusion

data set
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5.4 Overdispersed Count Data

5.4.1 Overdispersion

In Poisson regression, a key assumption is that the mean and variance are

equal. That is, E(Y ) = Var(Y ) = µ. However, there are cases when the vari-

ance is greater than the mean leading to a phenomenon called overdispersion.

For overdispersed count data, the variance is proportional to the mean such

that Var(Y ) = �E(Y ), where � > 1 is the dispersion parameter. When � = 1,

the problem reduces to the Poisson distribution. The issue of underdispersion

where � < 1 can also be considered, but in this thesis we will primarily focus

on the case where � > 1. As described by Zuur et al. (2009), overdispersion

can arise in a variety of settings, such as when the observations are corre-

lated or in the case of zero-inflated responses. On the other hand, they also

note that there can be apparent overdispersion due to model misspecifications

such as the exclusion of certain explanatory variables or interaction terms in

the model, non-linearity and outliers. Figure 5.7 provides a visualization of

overdispersed count data.
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To estimate the overdispersion parameter �, we can take the ratio of the

residual deviance to its degree of freedom (Gail et al., 2007). That is,

�̂ =
D

n� p
,

where D is the residual deviance. Thus, �̂ > 1 could indicate overdispersed

data which requires additional consideration when choosing a model to work

with.

If overdispersion is present in count data, using the Poisson model with-

out accounting for overdispersion can be misleading in terms of the resulting

standard errors. The Poisson model may underestimate the standard errors,

resulting in an erroneous significance of regression coe�cients (Ismail and Je-

main, 2007). A natural question is then how should we account for overdisper-

sion in the model? The negative binomial and quasi-Poisson models are two

common choices that can accommodate overdispersed count data. The key

di↵erence between these two models is the relationship between the variance

and the mean. Using the notation from Zuur et al. (2009), for Y ⇠ NB(µ, k),

the negative binomial model specifies that

E(Y ) = µ

and

Var(Y ) = µ+ µ
2
/k,

where k
�1 is the dispersion parameter. Thus, the variance is a quadratic

function of the mean.

For the quasi-Poisson model, the variance is linearly related to the mean

such that

E(Y ) = µ

and

Var(Y ) = �µ.

Ver Hoef and Boveng (2007) highlight that since both of these models

assume a di↵erent variance, coe�cient estimates will vary as the weights used
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in IWLS are inversely proportional to the variance. They conveniently provide

the following comparison of the weight matrices for the two models. For the

quasi-Poisson model we have that

W = diag

✓
µ1

�
, . . . ,

µn

�

◆
,

while for the negative binomial model the weight matrix is given by

W = diag

✓
µ1

1 + k�1µ1
, . . . ,

µn

1 + k�1µn

◆
.

The advantages of the quasi-Poisson model are that it is a simple adjust-

ment to the mean-variance relationship of the Poisson distribution and param-

eters are still easy to interpret (Ver Hoef and Boveng, 2007). Going forward,

we will be discussing inferential techniques with regards to the quasi-Poisson

model.

5.4.2 Simulations

Using the quasi-Poisson model, we may be interested in obtaining estimated

confidence regions for regression parameters. When we are presented with

overdispersed count data, we can turn to the wild bootstrap or ANWB as a

means to construct confidence regions. In the simulations below, we consider

the coverage of three approaches: the wild bootstrap, ANWB and Wald. We

compare the methods across varying levels of overdispersion where � = 1, 2, 3, 4

and for sample sizes of n = 100 and n = 1000. Setting ↵ = 0.05, the desired

level of coverage is 0.95. We can see that both the wild bootstrap and ANWB

have median coverages close to the target of 0.95, while as � increases it is

apparent that the Wald approach performs progressively worse in terms of

coverage.
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Table 5.7: Mean and standard deviation of the coverages of 95% confidence regions

for an overdispersed Poisson regression model with n = 1000

Dispersion Parameter Method Coverage

Wild Bootstrap 0.949 (0.023)

� = 1 ANWB 0.948 (0.024)

Wald 0.950 (0.023)

Wild Bootstrap 0.948 (0.022)

� = 2 ANWB 0.949 (0.022)

Wald 0.727 (0.049)

Wild Bootstrap 0.949 (0.023)

� = 3 ANWB 0.949 (0.023)

Wald 0.546 (0.049)

Wild Bootstrap 0.946 (0.024)

� = 4 ANWB 0.947 (0.021)

Wald 0.415 (0.050)

Table 5.8: Mean and standard deviation of the coverages of 95% confidence regions

for an overdispersed Poisson regression model with n = 100

Dispersion Parameter Method Coverage

Wild Bootstrap 0.941 (0.024)

� = 1 ANWB 0.943 (0.024)

Wald 0.949 (0.024)

Wild Bootstrap 0.943 (0.024)

� = 2 ANWB 0.945 (0.024)

Wald 0.733 (0.042)

Wild Bootstrap 0.904 (0.031)

� = 3 ANWB 0.900 (0.031)

Wald 0.594 (0.048)

Wild Bootstrap 0.912 (0.030)

� = 4 ANWB 0.910 (0.028)

Wald 0.458 (0.049)
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5.4.3 Data example

This section demonstrates the various approaches discussed to compute con-

fidence regions for overdispersed count data on a real data set. The data set

in question can be found in Zuur et al. (2007) and is concerned with measure-

ments recorded on Dutch coastal areas for the purposes of assessing the impact

climate change has had on local species (Janssen et al., 2007). The response

variable is species richness which is a measure of biodiversity. Explanatory

variables of interest include: NAP, the height of the sampling station relative

to the mean tidal level; exposure, which is a nominal variable with three levels

indicating the varying degrees of exposure to di↵erent coastal elements; and

week, which has four levels corresponding to four weeks in June that samples

were collected. Further details regarding the data set are discussed in Zuur

et al. (2007) and Janssen et al. (2007).

First, we provide an overview of the discussion in Zuur et al. (2007) leading

to the conclusion that the RIKZ data may be overdispersed. We initially

consider a simple regression model with NAP as the only explanatory variable.

> summary(RIKZ_fit1)

Call:

glm(formula = Richness ~ NAP, family = poisson(link = "log"),

data = RIKZ)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.2029 -1.2432 -0.9199 0.3943 4.3256

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.79100 0.06329 28.297 < 2e-16 ***

NAP -0.55597 0.07163 -7.762 8.39e-15 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 179.75 on 44 degrees of freedom

Residual deviance: 113.18 on 43 degrees of freedom

AIC: 259.18

Number of Fisher Scoring iterations: 5

From this output, the ratio of the residual deviance (113.18) and its re-

spective degrees of freedom (43) is clearly greater than 1 which may indicate

overdispersion in the data. The overdispersion can further be seen by looking

at a scatterplot of species richness and NAP in Figure 5.10.
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Figure 5.10: Scatterplot of Richness vs. NAP for RIKZ data

To adjust for the overdispersion in the model, we can use the quasi-Poisson

model.
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> summary(RIKZ_fit2)

Call:

glm(formula = Richness ~ NAP, family = quasipoisson(link = "log"),

data = RIKZ)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.2029 -1.2432 -0.9199 0.3943 4.3256

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.7910 0.1104 16.218 < 2e-16 ***

NAP -0.5560 0.1250 -4.448 6.02e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 3.044178)

Null deviance: 179.75 on 44 degrees of freedom

Residual deviance: 113.18 on 43 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5

From the R output above, we can see that although coe�cient estimates

remain the same, the standard errors have been increased. For instance, al-

though the coe�cient estimates for both models are �0.556, the standard error

for the NAP coe�cient was previously 0.07163 and has been multiplied by the

square root of the estimated dispersion parameter
p
3.044178 to result in a

new standard error of 0.125. Note that in R, the overdispersion parameter is

estimated by dividing Pearson’s chi-square statistic, �2, by n� p.

As described in Zuur et al. (2007), the preferred model when considering

overdispersion includes NAP and week as covariates.
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> summary(RIKZ_fit3)

Call:

glm(formula = Richness ~ NAP + factor(week),

family = quasipoisson(link = "log"), data = RIKZ)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.9727 -0.5757 -0.1865 0.3577 2.7536

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.32603 0.11169 20.826 < 2e-16 ***

NAP -0.44821 0.08288 -5.408 3.20e-06 ***

factor(week)2 -1.21144 0.21331 -5.679 1.33e-06 ***

factor(week)3 -0.80473 0.18091 -4.448 6.74e-05 ***

factor(week)4 -0.11102 0.22404 -0.496 0.623

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 1.284359)

Null deviance: 179.753 on 44 degrees of freedom

Residual deviance: 53.466 on 40 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5

Figure 5.11 provides estimated 95% confidence regions obtained by the

ANWB, Wald statistic and wild bootstrap. As expected from the simulations,

confidence regions based on the Wald statistic are smaller than those obtained

from the nonparametric approaches due to overdispersion in the data.
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Figure 5.11: 95% confidence regions for RIKZ data set

5.5 Discussion

In this chapter, we discussed a variety of methods used to conduct statisti-

cal inference when dealing with generalized linear models. While approaches

based on quantities such as the Wald, likelihood-ratio and Score statistic are

commonly used, they are based on asymptotic results that may be di�cult

to verify. Looking at the simulation results in Section 5.2.3, the coverages of

the confidence intervals computed in logistic and Poisson regression all achieve

comparable results. Similarly, in 5.3.3 the confidence regions based upon the

ANWB, wild bootstrap and Wald statistic all demonstrate similar coverage

probabilities.

However, it is in Section 5.4 where the advantages of the bootstrap ap-

proaches over typical parametric methods are evident. When presented with

overdispersion in Poisson regression, bootstrap methods are considerably bet-

ter in terms of coverage. Moreover, in Figures 5.4 and 5.5, it is shown that

as the dispersion parameter, �, increases, the performance of the Wald confi-

dence regions dramatically declines while the other methods remain relatively

una↵ected. While the ANWB and wild bootstrap approaches exhibit similar

performance in terms of coverage, one should keep in mind that the ANWB

is a more computationally e�cient process.
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Chapter 6

Conclusion

In this chapter, we provide a summary of the thesis and suggest some potential

future directions of research based upon this work.

6.1 Summary

In this thesis, a nonparametric framework for conducting statistical inference

for a variety of linear models is introduced. Unlike many parametric tech-

niques that rely on distributional assumptions and asymptotic results, our an-

alytic method applies the concentration of measure phenomenon to the wild

bootstrap for regression coe�cients. In doing so, we retain the appealing

nonparametric aspects of the bootstrap while overcoming its main criticism:

computational ine�ciency.

In Chapter 1, we provided an introduction and overview of the thesis and

briefly explained the research problem. Chapter 2 first introduced the concept

of concentration of measure and developed the analytic wild bootstrap in the

context of least squares regression. In Chapter 3, we developed the methodol-

ogy for the estimators in ridge regression, where typical bootstrapping is not

necessarily appropriate. Chapter 4 provided extensions to LASSO regression

where the estimated coe�cients have no closed-form solution. In Chapter 5,

we moved into the territory of generalized linear models and discussed a variety

of cases, highlighting the applications on overdispersed Poisson data.

Ultimately, this work has provided an analytic mechanism for the com-
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putation of confidence regions and intervals for various linear models. Hope-

fully this thesis motivates the use of concentration on other computationally-

intensive statistical processes. The following section proposes some possible

prospective ideas to explore in this field of research.

6.2 Future Work

6.2.1 Penalized regression

In least squares regression, we must work in the setting where n > p to avoid

rank deficiency. In Chapter 4, we discuss an analytic solution for estimat-

ing confidence regions in the context of LASSO regression, where it is often

of interest to look at the case where p >> n for feature selection. Imple-

menting penalized regression models is still pertinent in a variety of situations

when n > p (e.g., multicollinear data), but looking into how this methodology

can accommodate high-dimensional data, in terms of the number of variables,

would be a logical next step.

6.2.2 Dependent data

In this thesis, we assume that the errors are independently distributed. When

working with time series data, this is not the case due to the temporal depen-

dency. Block-based techniques for bootstrapping time series data have been

studied such as the Moving Block Bootstrap (MBB) (Kunsch, 1989). With

the MBB, the researcher defines a number of overlapping blocks and bootstrap

samples are obtained for each block, preserving the autocorrelation and time

series structure within the blocks (Radovanov and Marcikić, 2014). Other

methods such as the dependent wild bootstrap (Shao, 2010) have also been

investigated. As is the case with resampling schemes of this nature, they are

typically slow from a computational standpoint. Thus, trying to approach

bootstrapping time series data from an analytic perspective using concentra-

tion techniques could be of interest for future work in this area.
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Appendix

R code for the computation confidence intervals in Poisson regression from

Chapter 5. Note that parametric confidence intervals based on the Wald and

likelihood-ratio statistic were computed using the confint2 function in the

glmtoolbox package.

# initialization

set.seed(40899)

n <- 1000

p <- 3

alpha <- 0.05

betas <- runif(p,-2,2)

X <- matrix(runif(n*p), nrow=n, ncol=p)

Xb <- X%*%betas

lambda <- exp(Xb)

y <- rpois(n, lambda)

# fit model

fit <- glm(y ~ X-1, family = poisson(link = "log"))

beta.hat <- coef(fit)

# compute standardized pearson residuals

mu.hat <- predict(fit, newx=X, type="response") # fitted values

v.hat <- fit$family$variance(mu.hat) # estimate variance

pearson.res <- (y - mu.hat)/sqrt(v.hat) # pearson residuals

hi <- hatvalues(fit) # hat values
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std.res <- pearson.res/sqrt(1 - hi) #standardize

adj.res <- std.res - mean(std.res) # mean-adjusted

# bootstrapping

B = 1000

beta.boot = beta.wild = matrix(0,p,B)

W <- diag(as.numeric(mu.hat))

G <- sqrt(W)%*%X

for(b in 1:B){

eps.boot <- sample(adj.res,n,replace=TRUE) # residual bootstrap

eps.wild <- std.res*rnorm(n) # wild bootstrap

beta.boot[,b] = beta.hat + solve(t(G)%*%G)%*%t(G)%*%eps.boot

beta.wild[,b] = beta.hat + solve(t(G)%*%G)%*%t(G)%*%eps.wild

}

# compute confidence intervals

# install.packages("glmtoolbox")

library(glmtoolbox)

int.boot = t(apply(beta.boot,1,quantile,probs=c(alpha/2,1-alpha/2)))

int.wild = t(apply(beta.wild,1,quantile,probs=c(alpha/2,1-alpha/2)))

int.prof = confint2(fit, level=1-alpha,test="lr")

int.wald = confint2(fit, level=1-alpha,test="wald")

column.names <- c("Lower bound","Upper bound")

row.names <- c("beta_1","beta_2","beta_3")

matrix.names <- c("Residual bootstrap","Wild bootstrap",
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"Likelihood-ratio","Wald")

intervals <- array(c(int.boot,int.wild,int.prof,int.wald),dim=c(3,2,4),

dimnames = list(row.names,column.names, matrix.names))

intervals

, , Residual bootstrap

Lower bound Upper bound

beta_1 1.4464596 1.5891100

beta_2 0.5913953 0.7497315

beta_3 0.8121010 0.9786808

, , Wild bootstrap

Lower bound Upper bound

beta_1 1.4459307 1.5880854

beta_2 0.5937431 0.7418333

beta_3 0.8257604 0.9765748

, , Likelihood-ratio

Lower bound Upper bound

beta_1 1.4452679 1.5919365

beta_2 0.5935432 0.7466844

beta_3 0.8177469 0.9757673

, , Wald

Lower bound Upper bound

beta_1 1.4453670 1.5920353

beta_2 0.5936737 0.7468125

beta_3 0.8178775 0.9758967
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