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Abstract

Cardiovascular diseases are the leading cause of death globally, causing

nearly 17.9 million deaths per year. Early detection and treatment are critical

for improving this situation. Today’s wearable medical devices are becoming

popular because of their price and ease of use. Many manufacturers have de-

veloped products to continuously monitor patients’ heart conditions as they

perform their daily activities. However, one major challenge of collecting and

analyzing heart data using mobile ECG is baseline wander and motion arti-

facts created by the patient’s motion, resulting in false diagnoses. In addition,

very few monitor devices can diagnose complex heart anomalies beyond de-

tecting rhythm fluctuation. The research reported in this thesis proposes an

anomaly detection system that could compensate for the motion noise and give

a reliable diagnosis based on a single lead ECG signal. The noise removal al-

gorithm could automatically remove the baseline wander and suppresses most

motion artifacts in mobile ECG recordings. This algorithm shows a significant

improvement over conventional noise removal methods. Two signal quality

metrics are used to compare a reference ECG with its noisy version: correla-

tion coefficients and mean squared error. For both metrics, the experimental

results demonstrate that the signal filtered by our algorithm can improve the

signal-to-noise ratio by ten.

In addition, this thesis describes a new algorithm that combines a Short-

Time Fourier Transform (STFT) spectrogram of the ECG signal with hand-

crafted features that outperform commercial product capabilities. The new al-
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gorithm can detect 16 different rhythm anomalies with an accuracy of 99.79%

with a 0.15% false alarm rate and a 99.74% sensitivity. In addition, the same

algorithm can also detect 13 heartbeat anomalies achieving 99.18% accuracy,

0.45% false alarm rate, and 98.80% sensitivity.
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Even when walking in a party of no more than three, I can always be certain

of learning from those I am with.

– Confucius, 475–221 BC (Translater: Arthur Waley, 1938)
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular diseases (CVDs) are the number one cause of death glob-

ally. An estimated 17.9 million people died from CVDs in 2019, representing

32% of all global deaths [66]. An electrocardiogram (ECG) device can record a

patient’s heart electrical signals activities over a long period [111] by measuring

voltages from electrodes attached to the patient’s chest, arms, and legs. ECGs

are a quick, safe, and painless way to check for heart rate, heart rhythm, and

signs of potential heart disease. Twelve leads ECG is today’s standard tool

used by cardiologists for detecting various cardiovascular abnormalities. How-

ever, a standard 12-lead ECG recording may not capture the heart problems

in 10 seconds. Therefore, long-term ECG monitoring that tracks the patient’s

heart condition at all times and under any conditions has become possible

with new sensing technologies. Recording devices such as Apple Watch [37],

QardioMD [39], Vivalink [40], and the Astroskin Smart Shirt [38] are revo-

lutionizing cardiac diagnostics by measuring 24/7 patient’s cardiac activities

and transmitting this information to a cloud service to be stored and processed

remotely. In this context, there is a strong need for new automatic and reliable

heart anomalies detection algorithms that can assist doctors in coping with

this massive data set to perform diagnostics.

This thesis aims to develop automated heart anomaly detection algorithms

to analyze a patient’s entire ECG recording, compensate for motion artifacts

and baseline wander during recording, and highlight events that correspond

1



to abnormal heart activities. Using these automated detection algorithms,

cardiologists can then analyze them in context and proceed with their normal

diagnostic process. This thesis makes two main contributions to solving these

problems:

• Reduction of Motion Artifacts and Baseline Wander Using Sensor Fusion

and Adaptive Filtering;

• Novel Neural Network Architecture to Detect Mobile ECG Signal Anoma-

lies.

1.1.1 Reduction of Motion Artifacts and Baseline Wan-
der Using Sensor Fusion and Adaptive Filtering

Personal health care devices possess many advantages, such as ease of use,

long-term body monitoring, and easy access to personal health data. However,

it also has some critical limitations. The massive data set produced by these

sensors contains noise that does not exist when the patient is at rest. Most

mobile healthcare devices use a rubber band to press the sensor electrodes

onto the patient’s chest. Therefore, the sensor is more likely to be affected

by body motion during the patient’s daily activities. These motion noises

have two main categories: baseline wander (Figure 1.1) and motion artifacts

(Figure 1.2). These artifacts distort the ECG signals that have nothing to

do with the heart functions creating false alarms and making it challenging

to automate classifications. In some cases, artifacts could even mimic true

arrhythmia, leading to false diagnostics [32]. This thesis proposes a new noise

removal method that automatically suppresses the baseline wander and motion

artifact. The new algorithm consists of an adaptive empirical mode decompo-

sition and reconstruction algorithm capable of removing baseline wander and

some motion artifacts, followed by an adaptive filter algorithm that uses an

accelerometer to reduce further the motion artifacts (see Figure 1.3). This al-

gorithm shows a significant improvement compared to the conventional noise

removal method. Two signal quality metrics are used to compare a reference

ECG with its noisy version: correlation coefficients and mean squared error.

2



Figure 1.1: Baseline Wander affecting ECG Signal

For both metrics, the experimental results demonstrate that the noisy signal

filtered by our algorithm can improve the signal-to-noise ratio by a factor of

ten without significant signal distortion.

1.1.2 Novel Neural Network Architecture to Detect Mo-
bile ECG Signal Anomalies

One of the main objectives of this thesis is to develop a cardiac monitoring

system that could reduce motion artifacts and baseline wander and classify

heart anomalies accurately during everyday activities (not only at rest). This

patient-specific monitoring system will start by learning the user’s ECG in a

normal cardiac state, creating a neural network-based patient-specific model.

Data acquired and compensated from artifacts created by body motion can

then detect in real-time departures from normality.

The anomaly detection process from ECG signals contains rhythm and

heartbeat classifications. Rhythm classification focuses on finding abnormal

rhythms among normal rhythms. To find a rhythm anomaly, one must process

multiple heartbeats. The heartbeat classification focuses on finding the pattern

of one heartbeat signal [51]. This thesis proposes a new method that combines

a Short-Time Fourier Transform (STFT) spectrogram of the ECG signal with

3



Figure 1.2: Motion artifact affecting ECG Signal

handcrafted features to detect heart anomalies beyond commercial product

capabilities. Using the proposed Convolutional Neural Network, the algorithm

can detect 16 different rhythm anomalies with an accuracy of 99.79% with

0.15% false alarm rate and 99.74% sensitivity. The same algorithm can also

detect 13 heartbeat anomalies with 99.18% accuracy with 0.45% false alarm

rate and 98.80% sensitivity. One can see in Figure 1.4 a block diagram of the

new algorithm.

1.2 Thesis Contributions

This work makes the following novel contributions to the field:

• It proposed a new method to automatically reduce the baseline wander

and suppress some motion artifacts in mobile ECG recording using sensor

fusion and adaptive filtering;

• We demonstrate that an improvement of signal-to-noise-ration of ten is

possible for ECG that is contaminated by motion artifacts;

• It proposed a novel neural network architecture using a Short-term Fourier

Transform spectrogram and handcrafted features to detect mobile ECG

4



Figure 1.3: Block diagram of the proposed motion artifacts reduction algo-
rithm
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Figure 1.4: Block diagram of the proposed anomaly detection algorithm
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signals with an accuracy of 99%;

• It shown the Experimental proof of the efficiency of the algorithms on

real signals from commercial sensors such as Atroskin and VIVALNK.

The work of the thesis was published in top peer-review journals:

• Li, Hongzu, and Pierre Boulanger. ”A survey of heart anomaly detection

using ambulatory Electrocardiogram (ECG).” Sensors 20.5 (2020): 1461.

https://www.mdpi.com/1424-8220/20/5/1461 Impact Factor: 3.576.

• Li, Hongzu, and Pierre Boulanger. An Automatic Method to Reduce

Baseline Wander and Motion Artifacts on Ambulatory Electrocardio-

gram Signals. Sensors. 2021; 21(24):8169. https://www.mdpi.com/1424-

8220/21/24/8169 Impact Factor: 3.576.

• Li, Hongzu, and Pierre Boulanger. Anomaly Detection from Electro-

cardiogram (ECG) with Spectrogram and Handcrafted Features.Sensors

2022, 22(7), 2467. https://www.mdpi.com/1424-8220/22/7/2467 Im-

pact Factor: 3.576.

1.3 Dissertation Outline

Chapters 2 and 3 discuss the background knowledge of the ECG signal

analysis and prior research relevant to this project. Chapter 4 describes and

evaluates the new algorithm to reduce the effects of motion artifact and base-

line wander. Chapter 5 explains and evaluates the heart anomaly detection

algorithm. Finally, chapter 6 summarizes the findings of the thesis, describing

the limitations of the methods, and suggesting paths for further research.
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Chapter 2

Review of ECG Analysis

2.1 Normal ECG Signals

To detect anomalies in ECG signals, one must first know how a normal

heartbeat looks. In [31], a regular rhythm (see Figure 2.1) is defined as the

result of an electrical impulse that starts from the sinoatrial (SA) node that

propagates through the heart muscles and then to the patient’s chest. A nor-

mal rhythm is composed of the following segments: P wave generated by the

atrial depolarization, the QRS complex generated by the ventricular depolar-

ization, T wave and U wave generated by ventricular re-polarization. The P

wave, QRS complex, and T wave should be similar over time at a frequency

ranging from 50 to 100 bpm in normal ECG signals. A normal ECG signal

should have PR intervals within 0.12-0.2 seconds and QT intervals less than

half of the corresponding RR interval. In addition, the variation between the

shortest PP/RR interval and the longest PP/RR interval should be less than

0.04 seconds (see Figure 2.2).

Figure 2.1: Normal Sinus Rhythm (NSR)
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Figure 2.2: Normal ECG signal and corresponding notation

2.2 Abnormal ECG Signals

There are two kinds of anomalies in ECG signals: irregular rhythm and

irregular heartbeat. Irregular heart rate indicates that the PP/RR intervals

are larger than 0.04 seconds, or the PP/RR intervals are too short or too

long. If the heartbeats start from the SA node, but the PP/RR intervals are

too long, this may indicate Sinus Bradycardia (Figure 2.3(a)), which means

that the heart is pumping too slow. And when PP/RR intervals are too

short, this may be the sign of Sinus Tachycardia (Figure 2.3(b)). Moreover, if

the variation between PP/RR intervals are too large, it may indicates Sinus

Arrhythmia, Sinus Block, and Sinus Arrest (Figure 2.3(c,d,e)). These ECG

anomalies may indicate the patient’s current conditions. For instance, Si-

nus Bradycardia may be associated with hypothyroidism, hyperkalemia, sick

sinus syndrome, sleep apnea syndromes, carotid sinus hypersensitivity syn-

drome, and vasovagal reactions. Sinus Tachycardia is commonly associated

with anxiety, excitement, pain, drugs reaction, fever, congestive heart failure,

pulmonary embolism, acute myocardial infarction, hyperthyroidism, pheochro-

mocytoma, intravascular volume loss, and alcohol intoxication or withdrawal.

Sinus Block, and Sinus Arrest can be caused by Hypoxemia, Myocardial is-

chemia or infarction, digitalis toxicity, and Toxic response to drugs [29].

Ectopic rhythms start from a source other than the sinus node. For exam-

ple, Atrial Rhythm begins in the atria, and In this case, the P wave is shaped

differently from the P wave beginning in the SA node. There are several abnor-
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Figure 2.3: Abnormal Sinus Rhythms: (a) Sinus Bradycardia (b) Sinus Tachy-
cardia (c) Sinus Arrhythmia (d) Sinus Block (e) Sinus Arrest

mal rhythms could occurs when the Atria is firing the heartbeat: Premature

Atrial Contraction, Wandering Atrial Pacemaker, Atrial Tachycardia, Atrial

Flutter, Atrial Fibrillation. Examples are shown in Figure 2.4. The Premature

Atrial Contraction is a ubiquitous beat caused by emotional stress, excessive

intake of caffeine, and hyperthyroidism. If Premature Atrial Contraction con-

secutively occurs three or more times, the rhythm is Atrial Tachycardia. It

may cause light-headiness or even fainting. Atrial Flutter and Atrial Fibril-

lation are two distinct but closely related tachyarrhythmias. They could lead

to many symptoms such as palpitations, light-headiness, fainting, angina, and

congestive heart failure.

Junctional Rhythms happens when the atrioventricular (AV) junction paces

the heart. In such a case, the P wave on the ECG signal may disappear or

become negative. There are several anomaly examples showed at Figure 2.5:

Premature Junctional Complex, Junctional Escape Rhythm, Junctional Tachy-

cardia. The Premature Junctional Complex usually has the same cause as the

Premature Atrial Contraction stated above. Junctional Escape Rhythm could

be triggered by sick sinus syndrome, digitalis toxicity, excessive effects of beta-

blockers or calcium channel blockers, acute myocardial infarction, hypoxemia,

and hyperkalemia. One of the most common anomalies in the Junctional

Tachycardia is the Atrioventricular nodal re-entrant tachycardia (AVNRT). It

is an arrhythmia that results from a rapidly recirculating impulse in the nodal
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Figure 2.4: Abnormal Atrial Rhythms: (a) Premature Atrial Contraction
(b) Wandering Atrial Pacemaker (c) Atrial Tachycardia (d) Atrial Flutter (e)
Atrial Fibrillation

Figure 2.5: Abnormal Junctional Rhythms: (a) Premature Junctional Con-
traction (b) Junctional Escaped Rhythm (c) Junctional Tachycardia [92]

part of the AV junction, and it is caused by digitalis toxicity [29].

Ventricular Rhythms occurs when an ectopic site within a ventricle as-

sumes responsibility for pacing the heart. As a result, the ventricular beats

and rhythms usually have QRS complexes with abnormal shapes and longer

lengths. The following are the examples of abnormal ventricular rhythm: Pre-

mature Ventricular Contraction, Ventricular Escaped Rhythm, Accelerated Id-

ioventricular Rhythm, Ventricular Tachycardia, and Ventricular Fibrillation,

Ventricular Asystole. One can see in Figure 2.6 the ECG signals. Individuals

with Premature Ventricular Contraction may be the marker of severe organic

heart disease associated with an increased risk of cardiac arrest and sudden

death from Ventricular Fibrillation. Ventricular Tachycardia consists of three

or more consecutive Premature Ventricular Contraction, and it could lead to
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Figure 2.6: Abnormal Ventricular Rhythms: (a) Premature Ventricular Con-
traction (b) Ventricular Escaped Rhythm (c) Accelerated Idioventricular
Rhythm (d) Ventricular Tachycardia (e) Ventricular Fibrillation (f) Ventricu-
lar Asystole

more life-threatening Ventricular Fibrillation. With Ventricular Fibrillation,

the ventricles do not beat in any coordinated fashion, but instead, they fibril-

late or quiver asynchronously. It will cause the patient to become unconscious

immediately [29].

Since depolarization and re-polarization are slow in the atrioventricular

(AV) node, this area is vulnerable to blocks in conduction. Therefore, when

a delay or interruption happens during impulse conduction from atria to the

ventricle, AV blocks may occurs. AV blocks, also call Heart blocks, is classified

into: First-degree AV blocks ; Second-degree AV blocks(types I and II); Third-

degree AV blocks (complete) see in Figure 2.7. Among the heart blocks, the

lower degree heart blocks could lead to Third-degree AV blocks, also called

Complete Heart block, which is the most severe heart anomaly. With the

Complete Heart block, the atria and ventricle are pacing independently which

could slow down the ventricular rate, and eventually lead to fainting [29].

2.3 Difference Between 12-lead ECG vs 3-lead

ECG

A standard 12-lead electrocardiogram provides views of the heart in both

the frontal and horizontal planes and views the surfaces of the left ventricle
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Figure 2.7: AV Blocks: (a) First-degree AV blocks (b) Second-degree AV
blocks types I (c) Second-degree AV blocks types II (d) Third-degree AV blocks

from 12 different angles. 12 lead ECG have six limb leads: I, II, III, aVF,

aVL, aVR, and six chest leads: V1-V6. The standard 12-lead ECG is used as

a clinical dysrhythmia analysis tool for chest pain or discomfort, electrical in-

juries, electrolyte imbalances, medication overdoses, ventricular failure, stroke,

syncope, and unstable patient. It is widely used in clinics and hospitals for

heart disease diagnosis [31]. However, the 12-lead ECG is impractical when

monitoring the patients continuously for 24 hours since the patient needs to

be attached to 10 electrodes to record a 12-lead ECG. Instead, a 3-lead ECG

system is a replacement for 12-lead ECG in this situation. In addition, many

researchers have shown that 3-lead ECG is useful for making a valid diagno-

sis. Antonicelli et.al [4] was able to validate the accuracy of 3-lead tele-ECG

compared to 12-lead tele-ECG in older population . Their study shows a high

concordance between the ECG diagnosis using a simple home telecardiology

device (3-lead tele-ECG) and more complex instruments like the 12-lead tele-

ECG and the standard 12-lead ECG. The study also demonstrated that a

simple 3-lead tele-ECG could detect cardiac alteration, like arrhythmias, atri-

oventricular blocks, and re-polarization abnormalities with good agreement

with observations measured by 12-lead tele-ECG and the standard 12-lead

ECG. Kristensen et.al [50] also evaluated how well an inexpensive portable

three-lead ECG monitor can detect patients with atrial fibrillation (A.Fib)

compared to a standard 12-lead ECG. Their study shows that the sensitivity

of diagnosing A.Fib using PEM recordings was 86.7% and the specificity was

98.7% compared to a 12-lead ECG. According to cardiologists, the misclas-
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sification of three PEM recordings was due to interpretation errors and not

related to the PEM recording. Their article concluded that portable PEM

devices could be used to diagnose A.Fib.

Furthermore, many researchers have tried to reconstruct a 12-lead ECG

signal from a 3-lead signal. Atoui et.al [5] have introduced a neural network-

based model that could synthesize standard 12-lead ECG from serial 3-lead

ECG. As a result, the synthesized 12-lead ECG from the ANN model has an

average of 0.93 correlation coefficient compared to the actual 12-lead ECG. In

addition, Nelwan et.al [64] and Drew et.al [23][24] have done several studies

that shows it is possible to reconstruct standard 12-lead ECG from reduced

lead set ECG. This research indicates that the reduced ECG lead set, such as

3-lead ECG, could contain enough information to detect most heart anomalies.
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Chapter 3

Review of ECG Processing and
Classification

As mentioned previously, this thesis contains two major parts, one is mo-

tion noise compensation on ECG signal, and the other one is anomaly detec-

tion. Motion artifacts compensation aims to remove the artifacts and baseline

wander generated by body movement on the ECG signal. On the other hand,

anomaly detection on ECG signals involves finding the irregular heart rate,

heartbeat, and rhythm from the motion-compensated ECG signal. This thesis

has separated anomaly detection into heartbeat detection, rhythm classifica-

tion, and heartbeat classification. The heartbeat detection algorithm finds all

heartbeat’s R peak locations on the ECG signal to calculate the RR interval.

Then the heart rate and heart rate variability are calculated using RR inter-

vals. The rhythm classification shows the anomaly type of the heart rhythm.

Heartbeat classification detects all the abnormal heartbeats on the ECG sig-

nal. This chapter reviews and discusses the related research and conventional

methods found in the literature.

Figure 3.1: Typical Heartbeat Anomaly Detection
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3.1 Motion Artifact and Noise Reduction

There are five conventional methods for reducing the effects of baseline

line wander and motion artifacts [51] that one can find in the literature. In

the following sub-sections, we explain each technique and its implementations.

Moreover, we will discuss the advantage and disadvantages of each method.

3.1.1 Digital Filters

Digital filters could remove the unwanted frequency components in signals.

The combination of different digital filters is called a filter bank. It combines

various digital filters such as low-pass filters, high-pass filters, band-pass fil-

ters, notch filters, differentiators and normalizers. The ECG signal frequency

component without noise range from 0.1 to 100 Hz [48]. Therefore, low bound

and high bound filters must be applied according to the based ECG signal’s

frequency range to extract the pure ECG signal information. One of the fil-

ter bank advantages is that it is straightforward to implement and is highly

efficient. However, its drawback is that fixed digital filters could introduce

nonlinear phase distortion and key point displacement, which could cause the

deformation of essential waves of the ECG signal, such as the QRS complex

[55]. Digital filter parameters are explicitly tuned for one dataset. Therefore,

it may not work well for the data collected from other devices. Also, digital

filters do not perform well at removing the noises similar to the ECG signal.

3.1.2 Discrete Wavelet Transform

Mallat first introduced Discrete Wavelet Transform (DWT) in 1989 [59].

It can be used to analyze non-stationary signals, such as ECG [95]. In [74],

Poungponsri combines the DWT with an artificial neural network to remove

a wide range of noise. The commonly used mother wavelet basis functions

are Daubechies filters (Db), Symmlet filters (Sym), Coiflet filters (C), Battle-

Lemarie filters (Bt), Beylkin filters (Bl), and Vaidyanathan filter (Vd)[85].

According to studies in [76][85][54], the Daubechies filters of order 4 and 8

(Figure 3.2), and the Symmlet filters of order 5 and 6 (Figure 3.3) are the best
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Figure 3.2: Daubechies wavelets

Figure 3.3: Symlets wavelets

wavelet functions for ECG signal analysis due to their similar signal structure

to the QRS complex. After decomposing the ECG signal, a threshold method

is applied to the DWT coefficients. A clean ECG signal could be reconstructed

from the thresholded DWT coefficients. DWT decomposes the signal into

detail coefficients to approximate the signal using a wavelet mother function.

Each coefficient corresponds to a different frequency range. Therefore, by

observing the extracted approximation and detail coefficients, one can easily

distinguish the coefficients that contain the ECG signal and the coefficients

that contain the signal noise. One could only apply noise removal methods

such as a digital filter to the noisy coefficients as the coefficients with the ECG

signal will not be affected. Despite the significant advantages of DWT, some

drawbacks make it hard to use in practice. The first DWT requires setting

and selecting the number of coefficients manually. Second, it is hard to find

the most suitable wavelet mother function for different ECG signals. These

limitations make it hard to automate such an algorithm.

3.1.3 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is an adaptive and entirely data-

driven technique that obtains the oscillatory modes present in the data [36].

Huang first introduced it in 1998. Similar to DWT, EMD decomposes the
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ECG signal into many sub-band signals. The high-frequency components of

the EMD decomposition are called Intrinsic Mode Functions (IMF), and the

low-frequency components are called residual. Unlike DWT, which relies on

the mother wavelet functions, EMD does not need to find the best wavelet

function or set the number of IMFs since this method is entirely data-driven.

However, the IMFs must satisfy two conditions:

• The number of extremas and zero-crossings must be equal or differ at

most by one;

• All local maxima and minima must be symmetric to zero.

In 2006, Weng applied the EMD method to the ECG signal to remove high-

frequency noise with minimum signal distortion [96]. In 2008, Blanco proved

that the EMD method could be used for baseline wander reduction [9]. How-

ever, the number of IMFs may differ for different ECG signals, implying that

the IMFs do not have a fixed frequency range. Therefore, human intervention

is often required to separate clean and noisy IMFs for signal reconstruction.

The EMD method decomposes the signal to n IMFs and one residual signal.

Let c(t) be IMFs, we will have c1(t) to cn(t) from higher frequency compo-

nents to lower frequency components. Then digital filters or thresholds are

applied to the IMFs that contain the noise. After processing, the signal is

reconstructed using the following equation:

x(t) =
n∑
i=1

ci(t) + r(t) (3.1)

where x(t) is the reconstructed signal, c(t) is the IMFs, r(t) is the residual. In

[96] [9] [12], the authors performed EMD on MIT-BIH database to suppress

the high frequency noise and the baseline wander. Ensemble Empirical Mode

Decomposition (EEMD) [100] fixed EMD’s shortcoming of mode mixing. The

mode mixing can cause serious aliasing in the time-frequency distribution and

make the physical meaning of individual IMF unclear. The EEMD adds one

extra step compared to the EMD. By adding white noise to the original signal

before decomposing the signal into IMFs using EMD. Many noise removal

works can be found using the EEMD, such as [43] [107] [86].
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3.1.4 Variational Mode Decomposition

Dragoniretskiy and Zosso proposed the Variational Mode Decomposition

(VMD) in 2013 [22]. It is an alternative approach to the empirical mode decom-

position. Unlike the EMD method, the VMD method decomposes the signal

from low frequency to high frequency, where the residual contains the highest

frequency component. Therefore, when dealing with the high-frequency noise

in the signal, the VMD method performs better than the EMD method [58].

In 2016, Mohan applied the VMD method to reduce the effects of powerline

interference on the ECG signal. However, since the VMD method is a vari-

ant of the EMD algorithm, human intervention is also required for clean IMF

selection.

3.1.5 Adaptive Filter

Adaptive Filtering (AF) takes the original noisy signal and a reference noise

signal as input. It then automatically adjusts the filter weights based on the

reference noise signal to improve the signal reconstruction. There are three

types of AF: Least Mean Square (LMS) filter, Normalized Least Mean Square

(NLMS) filter, and Recursive Least Squares (RLS) filter. In 1991, Thakor

et al. [89] first introduced the LMS adaptive filter to remove the baseline

wander, 60 Hz power line noise, muscle noise, and motion wander. In their

approach, they proposed two adaptive filter structures. The first one is that

the primary input is s1 + n1, while the reference input is noise n2, which is

recorded from another generator that is correlated with n1. The second one

is that an ECG is recorded from several electrode leads, the primary input is

s1 + n1 from one of the leads, and the reference input is S2 from another lead

that is noise-free. The signal s1 can be extracted by recursively minimizing

the Mean-squared Error (MSE) between the primary and the reference inputs.

The MSE is calculated as:

E[ε2] = E[(s1 − y)2] + E[N2
1 ]. (3.2)
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The LMS algorithm was used to minimize the MSE. The LMS algorithm is

written as:

Wk+1 = Wk + 2µεkXk (3.3)

where Wk is a set of filter weights at time k, Xk is the input vector at time k of

the samples from the reference signal, ε = primary input dk− filter output y,

parameter µ is empirically selected to produce convergence at a desired rate.

The error εk can be calculated as:

εk = dk − yk (3.4)

where dk is the desired primary input from the ECG to be filtered and yk is

the filter output that is the best least-squares estimate of dk.

However, one major drawback of the LMS adaptive filters is that they are

sensitive to the scaling of their input. In order to overcome the drawback, a

power normalized least mean squares(NLMS) was introduced [33]. The NLMS

filter solves this problem by normalizing the input.

Another convention adaptive filter type is the RLS adaptive filter. The

RLS algorithm has excellent performance when working in time-varying en-

vironments but at the cost of increased computational complexity and some

stability issues [90]. Adaptive filters work well when the noise is limited to

a fixed frequency range. However, if the noise’s frequency changes, such as

those created by motion wander, these methods may not work. Using a better

reference noise signal sensitive to motion, we will show that one can design

an adaptive filter that can automatically cancel the noise for different ECG

frequencies. An adaptive filtering approach could remove baseline wander,

motion artifacts, powerline interference, and muscle noise; however, it requires

a reference input correlated to the original noisy input. Obtaining a clean

ECG signal is very difficult to acquire. Due to the added complexity of the

data collection, many researchers have considered using an accelerometer as

the reference noise signal for the adaptive filter. Raya et. al [81] explored the

possibility of using both signal axis and dual-axis accelerometer signal as the

noise reference input to an LMS adaptive filter and an RLS adaptive filter.

The RLS algorithm recursively finds the filter coefficients that minimize the
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Figure 3.4: Block diagram of a generic adaptive filter

input signal’s weighted least-squares cost function. It is known for its excel-

lent performance when working in time-varying environments but at the cost

of increased computational complexity and some stability problems [90]. The

algorithm updates the filter weight vector using the following equations:

w(n) = wT (n− 1) + k(n)en−1(n), (3.5)

u(n) = w−1
λ (n− 1)x(n), (3.6)

k(n) = u(n)/(λ+ xT (n)u(n)), (3.7)

where w(n) is the weights vector of iteration n, x(n) is the input signal, λ is a

small positive constant very close to but smaller than 1.

The filter output yn−1(n) and the error signal en−1 is calculated using the

filter tap weights of the previous iteration and the current input vector as in

the following equations:

yn−1(n) = wT (n− 1)x(n), (3.8)

en−1 = d(n)− yn−1(n). (3.9)

As a result, the RLS adaptive filter outperforms the LMS adaptive filter. Us-

ing an accelerometer signal shows better results than using a dual-axis ac-

celerometer signal. We will demonstrate that using one-axis reference input,

particularly the y-axis, is sufficient to minimize the motion artifacts.

3.1.6 Heartbeat Detection and Segmentation

Heartbeat detection is often related to detecting irregular heart rate and

inconsistent RR-intervals explained in Chapter 2. Heartbeat detection is also
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Figure 3.5: Pan Tompkins Algorithm

critical in extracting the heartbeats from the ECG signal for classification.

Heartbeat detection consists of three main parts: P wave detection, QRS

complex detection, and T wave detection. Therefore, it is usually related to

heartbeat segmentation. Heartbeat segmentation usually means segmenting a

heartbeat from its start point (onsite) of the P wave to its endpoint (offsite)

of the T wave. However, the P wave and T wave may not be detectable

in certain types of abnormal heartbeat, and the QRS complex is the most

apparent waveform. Thus the location of the QRS complex is often used to

locate the origin of the heartbeat. Many algorithms detect the R peak location

in the QRS complex.

The Pan-Tompkins algorithm [69] is one of the most popular and earliest

algorithms implemented (Figure 3.5). It is widely used in many applications

because of its robustness and computational efficiency. The algorithm uses

a filter bank that consists of band-pass filters, differentiator, squaring filter,

and moving window integrator to reduce signal noise so that only R wave

information is present. Inspired by the Pan-Tompkins algorithm, many re-

searchers such as [2] [15] [16] [104] developed their own filter banks to improve

the accuracy of the detection. In order to reduce the false positives, used

predefined amplitude proposed by [15] and [104], and predefined RR interval

length proposed by [16] and [104] are used as the threshold to remove unwanted

detection.

Zidelmal et.al [109] introduced a QRS detection method based on wavelet

decomposition. In the algorithm, the authors decompose the raw ECG signal
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Figure 3.6: SEEHT

using discrete wavelet transform, then reconstruct the signal by selecting only

the ECG information’s sub-signals. A threshold is set to select the large am-

plitude peaks to detect a QRS complex. Similar works could be found in [10].

Manikandan et.al [60] introduces a new algorithm that uses Shannon En-

ergy Envelop and Hilbert-Transform (SEEHT) (see Figure 3.6) to detect the

QRS complex location . A band-pass filter is applied to the raw ECG signal

to remove the baseline wander and high-frequency noise in the preprocessing

stage. Then, a differentiator and normalizer were applied to clean the signal to

highlight the QRS complex components. The Shannon energy of the processed

signal is calculated using the following equation:

s[n] = −d2[n]log(d2[n]), (3.10)

where d[n] is the processed signal. A zero-phase filter then processes the cal-

culated Shannon energy sequence to preserve sharp peaks around the QRS

complex and smooth out the noisy peaks. A Hilbert transform is applied on
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all candidate R peaks in the peak finding algorithm to get the R wave en-

velope. For each R wave envelope, the zero-crossing locations indicate an R

peak. Inspired by SEEHT, [108] introduced PSEE that improves the computa-

tional inefficiency of the Hilbert transform by using both predefined amplitude

threshold and predefined RR interval length threshold. ISEE [80] improved

further the SEEHT and PSEE algorithms by using a filter bank consisting of

a moving average filter, a differentiator, a normalizer and a squaring filter to

eliminate the noisy peaks. The filter bank computational costs are less than

the Hilbert transform and do not use a predefined threshold. Most recently,

Park [70] combined discrete wavelet transform and ISEE to detect R peaks on

the ECG signals.

The P and T waves represent important information, and heartbeat seg-

mentation depends on the P and T wave detection. Therefore, a good detection

of the P and T waves is critical for diagnosis. Pal and Mitra [68] proposed an

algorithm that could detect the PQRST peak points. The algorithm uses dis-

crete wavelet decomposition. It reconstructs the signal from selected wavelet

coefficients related to R, QS, and PT. For example, when the algorithm detects

R peaks, a signal is reconstructed with d3, d4, and d5 coefficients and preserves

the information for R peaks but diminishes other peaks. A few years later,

Banerjee [6] also developed a T wave and QRS complex detection algorithm

based on discrete wavelet decomposition and adaptive thresholding. Karim-

ipour [45] uses discrete wavelet transform and adaptive thresholding to detect

the QRS complex location and give an estimate of the P-wave and T-wave

locations. In practice, many researchers such as [19] [20] used ’ecgpuwave’

detector from PhysioNet for the heartbeat segmentation[27]. However, the P

and T wave detection works well with normal heartbeats but not for many

abnormal heartbeat types. Many researchers choose manual annotation such

as [103] or a fixed window such as [102] [56] [103] [91] [78] for their heart-

beat segmentation. In Table 3.1, one can compare the performance of some

of the heartbeat detection algorithms that have been tested on the MIT-BIH

Arrhythmia database [63]. The metrics used to compare each algorithm are

as following:
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Table 3.1: Heartbeat detection performance on MIT-BIH dataset

Method Year Total heartbeats TP FP FN SEN +P DER ACC
Pan Tompkins [69] 1985 116137 115860 507 277 99.76% 99.56% 0.68% 99.33%

FBBBD [2] 1999 91283 90909 406 374 99.59% 99.56% 0.86% 99.15%
S.W.Chen [15] 2006 102654 102195 529 459 99.55% 99.49% 0.97% 99.04%

DOM [104] 2008 116137 115971 58 166 99.86% 99.95% 0.19% 99.81%
S.Choi [16] 2010 109494 109118 218 376 99.66% 99.80% 0.54% 99.46%

Z.Zidelmal [109] 2012 109494 109101 193 393 99.64% 99.82% 0.54% 99.47%
SEEHT [60] 2012 109496 109417 140 79 99.93% 99.87% 0.2% 99.80%

S.Banerjee [6] 2012 19140 19126 20 20 99.90% 99.90% 0.21% 99.79%
PSEE [108] 2013 109494 109401 91 93 99.92% 99.92% 0.17% 99.83%

F.Bouaziz [10] 2014 109494 109354 232 140 99.87% 99.79% 0.34% 99.66%
A.Karimipour [45] 2014 116137 115945 308 192 99.83% 99.74% 0.43% 99.57%

ISEE [80] 2016 109532 109474 116 58 99.95% 99.89% 0.16% 99.84%
WTSEE [70] 2017 109494 109415 99 79 99.93% 99.91% 0.16% 99.84%

• TP: Number of correctly detected heartbeat;

• FP: Number of incorrectly detected heartbeat;

• FN: Number of missed heartbeat;

• Sensitivity (SEN) = TP / (TP+FN);

• Positive Detection (+P) = TP / (TP+FP);

• Detection Error Rate(DER) = (FP+FN) / TP;

• Accuracy (ACC) = TP / (TP+FP+FN);

3.1.7 Heartbeat Classification

Heartbeat classification takes an ECG signal that only includes one heart-

beat as the input. Therefore, it outputs the heartbeat type such as normal

heartbeat, left/right bundle branch block beats, premature beats, etc. The

heartbeat classification consists of two parts: feature extraction and classifi-

cation tools. The feature extraction aims to extract useful information from

the raw ECG signal and discard the rest, and the classification tools learn the

pattern in the extracted information and predict.

Feature Extraction

According to the literature, there are two main conventional features: de-

rived and morphological [51]. The derived features are calculated from the
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Table 3.2: Conventional Morphological Features of Heartbeat

Features Description Reference

QRS complex duration
The time interval between the onsite of Q wave [17][20][56]
and offsite of S wave [42][106][82]

QRS velociy left
QRS slope velocity calculated for the time-interval [17][42]
between the QRS complex onset and the first peak

QRS velociy right
QRS slope velocity calculated for the time-interval [17][42]
between the first peak and the second peaks

QRS complex area The sum of positive area and absolute negative area in QRS complex [17][42]
QRS complex morphology Sample points from the QRS onsite to the QRS offsite [20]
QRS complex AC power The total power content of the QRS complex signal [91]
QRS complex Kurtosis The kurtosis indicates the peakedness of the QRS complex [91]
QRS complex Skewness The skewness measure the symmetry of the distribution of the QRS complex [91]
Q wave valley The valley value of Q wave [82]
S wave valley The valley value of S wave [82]
T wave peak The peak value of T wave [82]
T wave duration The duration from QRS offsite to T wave offsite [20]
T wave morphology Sample points from the QRS offsite to the T wave offsite [20]
P wave flag A Boolean value indicates the presence or absence of the P wave [20]
P wave duration The duration from P wave onsite to P wave offsite [106]
P wave morphology Sample points from P wave onsite to P wave offsite [106][87]
PR interval duration The duration from P wave onsite to QRS complex onsite [106]
PR interval morphology Sample points from P wave onsite to QRS complex onsite [87]
QT interval duration The duration from QRS complex onsite to T wave offsite [106]
QT interval morphology Sample points from QRS complex onsite to T wave offsite [87][82]
ST interval morphology Sample points from S wave valley to T wave offsite [82]
Max peak(R peak) value The maximum amplitude of the heartbeat [17][42][82]
Min peak value The minimum amplitude of the heartbeat [17][42]
Positive QRS complex area The area of positive sample points in QRS complex [17][42][106]
Negative QRS complex area The area of negative sample points in QRS complex [17][42][106]
Positive P wave area The area of positive sample points in P wave [106]
Negative P wave area The area of negative sample points in P wave [106]
Positive T wave area The area of positive sample points in T wave [106]
Negative T wave area The area of negative sample points in T wave [106]
Absolute velocity sum Sum of the absolute velocities in the pattern interval [17][42]
Ima Time-interval from the QRS complex onset to the maximal peak [17][42]
Imi Time-interval from the QRS complex onset to the minimal peak [17][42]
Pre-RR interval The RR interval between the heartbeat and its previous heartbeat [20][103][106]
Post-RR interval The RR interval between the heartbeat and its following heartbeat [20][103][106]
Post-PP interval The PP interval between the heartbeat and its following heartbeat [106]

Average-RR interval
The average value of all valid RR intervals in the ECG record [20][103][106]

[91] [82]
Local Average-RR interval The average value of ten valid RR intervals surrounding the heartbeat [20][103][106]

Normalized signal
The heartbeat sample points are normalized and down-sampled [18][53][52]
to have mean of zero and standard deviation of one

Raw/downsampled ECG signal The unprocessed ECG signal or the only processing on the signal is downsampling [14][48]

ECG signal using feature detectors. The common derived features found in

the literature are: Auto-regressive (AR) coefficients [26]; Discrete Wavelet

Transform (DWT) coefficients [67] [82]; Eigen Vectors [93]; Dual-Tree Complex

Wavelet-Transform coefficients [91]; Intrinsic Mode Functions from Empirical

Mode Decomposition [78]. The other morphological features deal with the

morphological information found in the ECG signal. The most used morpho-

logical features are: QRS complex duration and peak values, P wave duration

and peak value, T wave duration and peak value, PR interval length, QT in-

terval length, and so on [106] [103]. In [51] one can see a detailed list of the

most common morphological features used for ECG signal processing. There

are many morphological features (see in Table. ??) that can be found in vari-

ous research. Other features that are calculated directly from the ECG signal

are:
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• Vectorcardiography (VCG) vector;

• DWT coefficients produced by Discrete Wavelet Transform (DWT);

• Independent components from Independent Component Analysis (ICA);

• PCA components generated from Principal Component Analysis (PCA);

• IMFs from Empirical Mode Decomposition(EMD)/Ensemble EMD (EEMD);

• DTCWT coefficients from Dual Tree Complex Wavelet Transform;

• Eigenvector methods;

• Dynamic Time Warping (DTW) distance.

Vectorcardiography (VCG) is a part of the ECG analysis tools. It displays

the various complexes of the ECG. In addition, it provides the possibility to

use vector analysis on the cardiac electric potentials [11].

DWT decomposed the signal into many sub-signals(detail coefficients) with

different frequency ranges than the one used for noise removal. The DWT

method could remove unwanted noises and find features for the heartbeats

since the heartbeat waves are much clearer in specific detail coefficients such

as D4 and D5. Therefore, much research, such as [56] and [103], uses features

from the detail coefficients to classify the heartbeat.

The conventional DWT technique lacks shift-invariance property due to

the downsampling operation at each stage. Hence, the energy of the wavelet

coefficient changes significantly for a small-time shift in the input pattern. The

Dual-Tree Complex Wavelet Transform(DTCWT) [47] is a simple technique

that overcomes the DWT shortcomings. The DTCWT uses two filters: one

for level 1 decomposition and the other for the higher levels. In the first level

decomposition, the original signal is decomposed into two trees, and each tree

contains two sub-band signals. One tree could be interpreted as the real part

of a complex wavelet, and the other three could be the imaginary part. For

each tree, the conventional DWT is applied for further decomposition [91].
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Thomas used the DTCWT method to extract heartbeat features to classify

heartbeat variations [91].

Like DWT and DWCWT, the ICA, PCA, and EMD/EEMD decompose

the signal into many sub-signals. The difference is that the ICA and PCA aim

to reduce the input size to minimize the computation speed. EMD/EEMD

features do not require knowledge of the level of scale and the basic function

needed in DWT. The ICA method has been used in [103] to produce the

independent components to be part of the heartbeat feature set. The PCA

method used in [97] reduces the input size for higher efficiency. Rajesh et.

al [78] computed heartbeat features from IMFs by applying the EMD/EEMD

method to the ECG signal.

Eigenvector methods could estimate frequencies and powers of noise-corrupted

signals. These methods used the eigen-decomposition of the correlation matrix

of the noise-corrupted signal [93]. Ubeyli et.al [93] used three kinds of eigen-

vector methods to generate the feature set: Pisarenko uses Multiple Signal

Classification (MUSIC), and Minimum-Norm (MN). The Pisarenko method is

useful for estimating PSD, which contains sharp peaks at the expected fre-

quencies. The MUSIC method is a noise subspace frequency estimator and

could eliminate the effects of spurious zero on the noise subspace. The MN

method aims to differentiate spurious zeros from real zeros, and it uses a linear

combination of all noise subspace eigenvectors.

Dynamic Time Warping (DTW) measures the similarity between two heart-

beat segments and computes the distance between these two heartbeat seg-

ments. Therefore, if one of the heartbeat segments is the sample heartbeat of

a specific type and the other is the test heartbeat. DTW distance indicates the

similarity score between the test and sample heartbeat. The similarity score

could represent the heartbeat waveform features, such as in[106] and [18]. A

detailed description of the features of each method can be seen in Table 3.3.

There are some advantages and drawbacks to both features. The derived

features usually represent the ECG signal in the frequency domain. Therefore

the noisy components in the ECG signal can be easily discarded during the

process even though it may lose some essential information in the time domain,
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Table 3.3: Conventional Derived Features of Heartbeat

Features Method Description Reference
VCG amplitude VCG Maximal amplitude of the VCG vector [17][56]
VCG sine angle VCG Sine component of the angle of the maximal amplitude vector [17][56]
VCG cosine angle VCG Cosine component of the angle of the maximal amplitude vector [17][56]

DTW distance
DTW The Dynamic Time Warping distance between a heartbeat segment [106] [18]

and the median heartbeat segment of the recording

Positive peak of QRS complex
DWT The positive peak amplitude of QRS complex [56]

on the 4th scale of the DWT

Negative peak of QRS complex
DWT The absolute negative peak amplitude of QRS complex [56]

on the 4th scale of the DWT

Positive peak of T wave
DWT The positive peak amplitude of T wave [56]

on the 4th scale of the DWT

Absolute T wave offsite
DWT The absolute amplitude of T wave offsite [56]

on the 4th scale of the DWT

R-S interval distance
DWT The relative distance between R peak and S valley [56]

on the 4th scale of the DWT

S-T interval distance 1
DWT The relative distance between S valley to the T wave peak [56]

on the 4th scale of the DWT

S-T interval distance 2
DWT The relative distance between S valley to the T wave offsite [56]

on the 4th scale of the DWT

Absolute maximum
DWT The absolute maximum value and location [56]

on the 4th scale of DWT signal

Zero crossing
DWT The zero crossing location [56]

on the 4th scale of DWT signal
Wavelet scale DWT Calculate which scale the QRS complex is centered on [56]

DWT coefficients
DWT The down-sampled 3rd and 4th detail coefficients [103]

and the 4th approximation coefficients
Independent Components ICA Independent components calculated with a fast fixed point algorithm [103]

Fourier spectrum
DTCWT Compute the absolute value of 4th and 5th scale DTCWT detail coefficients(dc). [91]

Then 1D FFT is applied to the selected dc to get the Fourier spectrum.
And then take logarithm value of the Fourier spectrum

IMF sample entropy
EMD/EEMD The sample entropy is measured of regularity of a time series [78]

used to quantify the complexity of heartbeat dynamics
IMF variation coefficient EMD/EEMD The coefficient of variation is a statistical parameter defined as σ2/µ2.1 [78]
IMF singular values EMD/EEMD The singular value decomposition [78]
IMF band power values EMD/EEMD The band power is the average power of each IMF [78]
PCA components PCA PCA components for size reduction [97]

Pisarenko PSD
Eigenvector Power spectral density estimates [93]

generated with Pisarenko method

MUSCI PSD
Eigenvector Power spectral density estimates [93]

generated with Multiple signal classification method

Minimum-Norm PSD
Eigenvector Power spectral density estimates [93]

generated with Minimum-Norm methods
1 σ is the standard variation of the selected IMF, µ is the mean of the selected IMF
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such as peak values, interval duration, etc. Moreover, the derived features

may not distinguish between different rhythms or heartbeats. On the other

hand, morphological features focus on the time domain even though they are

easily contaminated by noise. They also represent the same information that

cardiologists use to interpret ECG recordings.

Other than the standard derived and morphological features, the use of

spectrogram of the ECG signal was proposed by [110] [84] for rhythm and

heartbeat classification. A spectrogram contains more information from the

time and frequency domains than the standard features. The drawback is

that the spectrogram is a 2-D image and requires more complex classification

algorithms.

Classification Tool

Once the feature vectors are extracted from the ECG signal, a classification

algorithm is needed to detect each anomaly. The Euclidean distance is one

of the most popular metrics to compare two vectors’ similarities. It computes

the distance between two same length vectors, and one could cluster the input

vectors based on the calculated distance. Chuah [18] shows an example of

using Euclidean distance for anomaly heartbeat detection. K-means cluster-

ing is the most common method of using Euclidean distance to cluster data

entries. In [94], the K-means clustering method is used to classify heartbeat

into normal and abnormal classes. The Euclidean distance and corresponding

clustering method are fast and straightforward in distinguishing different cate-

gories. However, it has a high requirement on the extract features sufficiently.

The difference between feature vectors must be significant to be assigned to

other clusters. In addition, it is easily affected by data outliers and noise.

Clustering aims to find the similarity between the two groups (heartbeat

segments) by computing the distance between the two groups. The conven-

tional distance for ECG signal are Euclidean and DTW Distance [7]. Euclidean

distance is the most common when comparing two groups with the same di-

mension. An example of using Euclidean distance for abnormal heartbeat

detection can be found in Chuah and Fu’s [18]. They introduce an Adaptive
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Window Discord Discovery (AWDD) algorithm to detect the anomaly in ECG

recordings. It was developed from a Brute Force Discord Discovery (BFDD)

algorithm [73]. When comparing the heartbeats, the algorithm finds candi-

dates’ abnormal heartbeats by selecting the largest Euclidean distance. Also,

they have set a threshold for the Euclidean distance to reduce the false alarm

rate. The Euclidean distance only works when both heartbeat segments are

the same length.

K-mean clustering is a popular clustering method that uses Euclidean dis-

tance. The K-mean clustering could cluster the heartbeat segments into many

different clusters. Veeravalli et.al [94] developed an algorithm for real-time and

personalized anomaly detection from wearable health care ECG devices. Then

the K-means cluster algorithm is used to cluster all the heartbeat classes. To

avoid calibration of the technique for individual users, they assigned the most

frequent heartbeat segments as normal. The authors tested their algorithm

on the MIT-BIH and European ST-T databases. They were able to achieve

97.1% sensitivity and 99.5% specificity.

Sivarake and Ratanamahatana [87] proposed a robust and accurate anomaly

detection (RAAD) algorithm that reduced the false alarm detection rate on

ECG anomaly detection. They extracted heartbeat morphological features to

be their input feature vectors. Then, they calculated the dynamic time warping

distance to measure the similarity between two variable-length heartbeats. In

their experiment, they have tested their algorithm on INCARTDB01-05 [28],

MIT-BIH arrhythmia database [63] [28], and MIT-BIH long term database

[28]. Overall, their algorithm can achieve 94.35% accuracy.

Another primary method is traditional machine learning classification algo-

rithms: Kth Nearest Neighbour (KNN), Linear Discriminant Analysis (LDA),

Quadratic Discriminant Functions (QDF), Support Vector Machine (SVM),

and Multilayer Perceptron Neural Network (MLPNN). These algorithms build

a mathematical model based on the provided training data, and the trained

model can correlate the input data with its corresponding label.

Ivaylo Christov et. al [17] used both the ECG morphology and VCG fea-

tures to represent the heartbeat and then trained the feature vectors and their
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labels with Kth nearest neighbour. As a result, the classification performance

on both feature sets is over 96% for five heartbeat types (N, PVC, LBBB,

RBBB, P).

Philip de Chazal et. al [20] used Linear Discriminant Analysis as a classifi-

cation algorithm. The input feature vectors are ECG morphology features. As

a result, this algorithm could perform around 97% accuracy on the MIT-BIH

database with five heartbeat types (N, S, V, F, Q) classification.

Mariano Llamedo et. al [56] validated a heartbeat classification method for

Normal, Supra-ventricular, and Ventricular heartbeats based on ECG interval

features, morphological features, and DWT features. The feature vectors are

trained with quadratic discriminant functions. The model had a 94% overall

classification accuracy on the test dataset.

Li et al. [52] uses the concept of transductive transfer learning to detect

the abnormal instance on an ECG signal. They trained a model to learn from

labelled data sets to detect irregular heartbeat. Then they use a kernel mean

matching (KMM) algorithm [30] to enable knowledge transfer between labelled

data set and unlabeled data set. The model they used was a weighted trans-

ductive one-class support vector machine, which could solve the imbalanced

data set problem. The authors performed experiment on records 100, 101,

103, 105, 109, 115, 121, 210, 215, 232 from the MIT-BIH database. They have

achieved 87.89% average accuracy.

Ye et. al [103] classified 16 heartbeat types by using both morphologi-

cal and dynamic features of ECG signals. Then, the support vector machine

trained both morphological and dynamic features for the classification. Two

channels of the ECG signal in the database were trained separately and gen-

erated two models. Both models contribute to the final classification part.

Finally, the authors introduced two ways of making a final decision: one is re-

jection, which requires both models to make the same decision, and the other

is Bayesian, which fuses the results of both models.

Zhang et.al [106] built 46 feature vectors to represent the heartbeat to clas-

sify the abnormal heartbeat shape on the MIT-BIH database. In the study, the

authors apply the ecgpuwave tool from PhysioNet [27] to detect the boundaries
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of P wave, QRS complex, ST waves. Then they collected five types of features:

five inter-heartbeat intervals, five intra-heartbeat intervals, 29 morphological

amplitudes, six morphological areas, and morphological distance. The five fea-

tures could generate a feature vector with 46 morphological features. In the

classification step, the author used the support vector machine to learn the

patterns of the feature vectors. Both channels of the ECG signal were trained

using a support vector machine model. The results of both models contribute

to the final classification results. The result table of the paper shows that

the algorithm has nearly 90% accuracy for four heartbeat types(N, F, V, S)

classification.

Thomas et. al [91] introduced an automatic ECG arrhythmia classification

idea using dual-tree complex wavelet-based features to detect normal, paced,

RBBB, LBBB, PVC heartbeats. The authors proposed a feature extraction

technique based on a Dual-Tree Complex Wavelet Transform (DTCWT) algo-

rithm. Then the feature vectors were input to a multilayer perceptron neural

network for abnormal heartbeats detection. The experiment result of this

research is compared in Table 3.4.

Kandala Rajesh et.al [78] used Ensemble Empirical Mode Decomposition

(EEMD) features to classify normal PVC, PAC, LBBB, RBBB heartbeats. As

for the classification tool, a sequential minimal optimization SVM is used to

train and classify the different heartbeat types. The experiment result of this

research is compared in Table 3.4.

Wess et.al [97] implemented a multi-layer perceptron (MLP) classifier to

detect anomalies in ECG signal . To reduce the size of feature vectors, the

author applied PCA to the extracted heartbeat. Finally, the processed feature

vectors are used to train an MLP neural network. Furthermore, the trained

model could be used for classifying the anomalies in the ECG signal. The

authors were able to test their model on the MIT-BIH database with an overall

accuracy of 99.82%.

Most researchers have used traditional methods to solve the problem. Tra-

ditional machine learning classification methods do not require a considerable

amount of training data, and they do not need much computational power.
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Figure 3.7: Long-Short Term Memory Layer

Due to the development of GPUs, deep learning has been proven reliable and

fast for classification problems. Compared to traditional algorithms, deep

learning does not require cardiology experts to extract features since the net-

work can extract the features automatically. Instead, a deep learning model

needs many labelled data for training. Luckily, public data sets can be easily

found on the Internet. Therefore, many algorithms using various deep learning

architectures have been published to classify heartbeats.

Ubeyli’s algorithm [93] uses Eigenvector as the feature vectors and recur-

rent neural network as the classification tool. Normal, congestive heart failure,

VT, and AFIB rhythms were trained and tested in the experiment. The ex-

periment result of this research is compared in Table 3.4.

Chauhan and Vig [14] developed a predictive algorithm that could de-

tect normal, PVC, PAC, paced heartbeats via a deep LSTM (Long-Short

Term Memory) neural network (Figure 3.7). However, the feature extrac-

tion/selection step is neglected in their algorithm. Instead, raw ECG data

and corresponding labels are used as inputs to the stacked (2-layer) LSTM

neural network. In the experiment, they split the MIT-BIH database into four

sets: non-anomalous training set (SN), non-anomalous validation set (VN), a

mixture of both abnormal and normal validation sets (SN+A) and the test sets

(tN+A). First, the LSTM network was trained on SN , and used VN for early

stopping. The trained LSTM network was then applied to SN+A to find the

threshold for detecting abnormal heartbeats. Finally, the chosen threshold is

used on tN+A to discriminate between regular and anomalous heartbeat while

predicting. The presented model achieved a 97.5% precision with a 46.47%
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recall on the test set.

Kiranyaz et. al [48] presented a fast and accurate patient-specific ECG

classification and monitoring system. Their experiment setup has picked five

heartbeat types, N, V, S, F, Q, from 20 ECG records (100-124) from the

MIT-BIH database as the training samples. The raw heartbeat segments were

submitted to a 1-D adaptive CNN for pattern recognition. The 1-D convo-

lutional neural network acts as a feature extraction tool and a classification

tool. The classification times for this model are 0.58 and 0.74 msec for 64 and

128 sample heartbeat resolutions, respectively. The speed is more than 1000x

faster than the real-time requirement. The experiment result of this research

is compared in Table 3.4.

Sahoo et. al [82] improved Rai’s algorithm [77] by using multi-resolution

wavelet transform and machine learning to detect Normal, LBBB, RBBB,

and Paced heartbeats. The authors used Q-peak, R-peak, S-peak, T-peak,

QR-interval, ST-interval, RR-interval, and QRS duration as the input feature

vector and used an MLP and an SVM classifier as the classification tool. In

their experiment result, the overall classification accuracy of normal, LBBB,

RBBB, and Paced heartbeats is 96.67% and 98.39%, respectively. The algo-

rithm was tested on the MIT-BIH database [63].

In addition to training with a public data set, some researchers used a

patient-specific approach to train the model. The first step of a patient-specific

approach is to train an initial classifier with the public data set. Then the sec-

ond step requires a local cardiologist to review and correct the produced labels

by the initial classifier. The final step consists of training the initial classifier

with corrected labels to produce the final classifier for this specific patient.

The patient-specific approach could eliminate the inter-patient variations of

the ECG signals. Biel et al. [8] shows that the variance in different human

heartbeats can be very high. A number of research works [35], [20], [44], [41],

[49], and [57] has proven that by using a patient-specific model, detection

algorithms have a higher accuracy than the traditional system in practical

cases.

35



3.1.8 Rhythm Classification

Rhythm classification determines the type of the rhythm anomalies such

as Normal Sinus Rhythm (NSR), Atrial Fibrillation (AF), Ventricular Flutter

(VF), etc. The ECG segments for rhythm classification are usually contained

in several heartbeats, which could be normal or abnormal.

Similar to the heartbeat classification, the rhythm classification also could

be divided into feature extraction and classification. However, the features

and classification techniques used in heartbeat and rhythm classifications are

very similar. The difference is that the algorithm needs to process more than

one heartbeat to find a rhythm anomaly.

Ge et.al [26] use an auto-regressive (AR) modeling technique to classify

the Normal, PAC, PVC, SVT, VT, VF rhythms. The algorithm uses Burg’s

algorithm to compute the AR coefficients X. The authors have tied two ways to

classify the AR coefficients X: Generalized Linear Model (GLM) and multilayer

feed-forward neural network. GLM equation is:

Y = Xβ + ε, (3.11)

where Y = [y1, y2, ..., yN ] is an N-dimensional vector of observed responses,

X is N * P matrix of AR coefficients, β is a P-dimensional vector, ε is an N-

dimensional error vector. The GLM outputs, y1 to yN , compared to predefined

conditions to classify various heartbeat types. An artificial neural network with

the AR coefficients as inputs was used for training and classification. Their

experimental results show that artificial neural networks perform better than

GLM.

Ozbay et.al [67] integrate a type-2 fuzzy clustering and discrete wavelet

transform in order to build a neural network-based ECG classifier to detect

Normal, Br, VT, SA, PAC, P, RBBB, LBBB, AF, AFI. The proposed di-

agnostic algorithm can distinguish ten different rhythm types. The system

contains a fuzzy clustering layer, a feature extraction layer, and a classifier.

The fuzzy clustering layer select segments represent the arrhythmia class in the

ECG. A wavelet transformation was applied to the ECG segments to gener-

ate features. The authors have trained three Type-2 Fuzzy Clustering Neural
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Network models (T2FCWNN-1, T2FCWNN-2, and T2FCWNN-3) with three

different training data sets. The three training data sets have the same amount

of ECG segments. However, the length of each ECG segment is 101 sample

points, 52 sample points, and 27 sample points correspondingly. As a result,

the T2FCWNN-3 had the lowest training time, 4.86 seconds, and the test error

rate, which was 0.23% among all three models.

Patel et.al [71] used a thresholding technique to detect arrhythmia on ECG

collected from a mobile platform. In the paper, the first uses the Pan Tomp-

kins [69] algorithm to detect R peaks on the ECG recordings. Then they

characterized SB, ST, PVC, PAC, and Sleep Apnea using a predefined thresh-

old to classify different rhythms. Their system could reach a 97.3% detection

accuracy.

Rajpurkar et.al [79] have developed an algorithm that could out-perform

board-certified cardiologist in detection of 12 types of arrhythmia using a 34-

layer CNN. The network took a 30-second raw ECG signal recording as input,

and the output was a sequence of label predictions. The model output a new

prediction every second. The training data set contains 64121 ECG records

from 29163 patients, and the testing data set contains 336 records from 328

patients. The model performs at 80.9% precision, 82.7% sensitivity, and 0.809

F1-score.

Acharya et.al [1] use two 11-layers CNN to detect AFIB, AFL, VF(VFL)

from normal heartbeat rhythm. The two networks, Net A and Net B used

a 2-second raw ECG recording and a 5-second raw ECG recording as input,

and the output is its corresponding label. The ECG segments are Z-sored

normalized and then submitted to the 1-D deep CNN. The result of Net A

and Net B are compared in Table 3.5.

3.1.9 Heartbeat/Rhythm Classification Algorithm Com-
parison

In the previous sections, we reviewed many algorithms that classify ECG

in various categories. One can see in Table 3.4 the classification results per-

formed using the MIT-BIH database. In addition, some algorithms’ perfor-
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Table 3.4: Heartbeats classification performance on MIT-BIH dataset

Method
Year Abnormal/ Heartbeat TP FP TN FN Sensitivity False Alarm Accuracy

Normal types
Christov et.al [17]-morphology 2006 18378/47239 5 18042 1604 45635 336 98.17% 3.40% 97.04%
Christov et.al [17]-frequency 2006 18378/47239 5 17590 1459 45780 788 95.71% 3.09% 96.58%
Chazal et.al [20]-frequency 2006 4317/34394 5 4108 1962 32432 209 95.16% 5.70% 94.39%

Ubeyli et.al [93] 2009 269/90 4 268 2 88 2 99.26% 2.22% 99.89%
Llamedo et.al [56] 2010 5441/44188 3 4752 2238 41950 689 87.34% 5.06% 94.10%

Ye et.al [103]-rejection 2012 19913/64042 16 19815 93 63949 98 99.51% 0.15% 99.77%
Ye et.al [103]-bayesian 2012 20745/65264 16 20557 286 64978 188 99.09% 0.44% 99.45%

Zhang et.al [106] 2014 5653/44011 4 5248 4869 39142 405 92.84% 11.06% 89.38%
Thomas et.al [91] 2015 26626/67268 5 22900 1300 65968 3726 86.01% 1.93% 94.65%
Kiranyaz et.al [48] 2015 7366/42191 5 6539 1228 40963 827 88.77% 2.97% 95.85%
Rajesh et.al [78] 2017 8000/2000 5 7677 33 1967 323 95.96% 1.65% 96.44%
Sahoo et.al [82] 2017 807/244 4 798 5 239 9 98.88% 2.04% 98.67%

Table 3.5: Rhythm classification performance on MIT-BIH dataset

Method
Year Abnormal/ Rhythm Rhythm TP FP TN FN Sensitivity False Alarm Accuracy

Normal types Length
Ge et.al [26] 2002 713/143 6 1.2 s 706 10 133 7 88.77% 6.99% 98.01%

U. Acharya Net A[1] 2017 20807/902 4 2 s 19160 62 840 1647 92.08% 6.87% 92.13%
U. Acharya Net B[1] 2017 8322/361 4 5 s 7946 376 294 67 95.48% 18.56% 94.9%

mance metrics were converted to binary classification to detect normal and

abnormal heartbeats. The reason is that computer diagnoses are not 100%

accurate. We still need doctors to make the final diagnosis as they only know

the context. Therefore, the methods should focus on a binary classification

that classifies all abnormal heartbeats.

Similarly, Table 3.5 compares all methods that classify the rhythms on the

MIT-BIH database. In addition, the Table has only shown the algorithms that

have provided enough information to compute our metrics.

3.2 Discussion

3.2.1 Challenges for Heart Anomaly Detection on Am-
bulatory Electrocardiogram

There are still several challenges in heart anomaly detection:

• ECG signals may be contaminated with motion artifacts since the patient

is constantly moving. The noisy signal may have similar morphology to

abnormal cardiac signals resulting in a false positive. It is easy for the

human eye to identify these conditions; however, it is much harder for

computers to separate noise from the signal;

• The model training requires a labelled ECG signal. Trained personnel
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is required to label the ECG data set. In addition, the labelling process

is very time-consuming. For example, a 10-second ECG signal has 2500

data points, and continuous monitoring usually takes 24-48 hours;

• The ECG heartbeat data is highly imbalanced. Over 99% of the heart-

beat data is the typical case, and only 1% of the heartbeat data present

16 abnormal points. Therefore, the highly imbalanced dataset makes

it more challenging to adjust the learning step. Several options could

be explored to reduce the effect of imbalanced data, such as database

re-sampling or using a cost-sensitive method, kernel-based method, or

active learning; [34].

3.2.2 Conclusion

This chapter introduces the definition of anomaly detection on ambulatory

electrocardiograms (ECG) and its importance. In addition, since the ECG

signal collected from a wearable device is frequently contaminated with elec-

trical noise and motion artifacts, noise reduction (Section 3.1) is critical for

anomaly detection. Furthermore, most electrocardiogram anomalies fall into

two major categories: irregular heart rate and irregular heart rhythm. The

irregular heart rate on ECG could indicate bradycardia, tachycardia, heart

block, arrhythmia, etc. The irregular heart rhythm could be ectopic heart-

beat when checking a period of ECG signal. Therefore, based on the different

irregularities on the ECG, anomaly detection could be divided into several cat-

egories: heartbeat detection (Section 3.1.6) for detecting the location of each

heartbeat; heartbeat segmentation (Section 3.1.6) for segmenting the heart-

beats from the entire ECG signal; heartbeat classification (Section 3.1.7) for

classifying the type of one heartbeat; rhythm classification (Section 3.1.8) for

classifying the type of a period of ECG signal.

From the literature, we have reviewed the conventional methods for each

part. Many researchers have used fixed digital filters, discrete wavelet trans-

form, empirical mode decomposition, and adaptive filters been used by many

researchers. For heartbeat detection, much research used fixed digital filters,
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discrete wavelet transform, and Shannon energy envelope to remove the noise

and unwanted waves while preserving R peak information. They then use the

R peak location to compute the heartbeat. For heartbeat segmentation, the

most common method is to use a predefined window to segment the heart-

beat signal from the entire signal. The authors used morphological features

and derived features to represent the heartbeat signal for the literature on

heartbeat classification. The morphological features are calculated from the

ECG signal, and derived features are computed using other methods such as

discrete wavelet transform, independent component analysis, empirical mode

decomposition, etc. Both morphological and derived features are then used for

training to generate a mathematical model of the heartbeat signal. The most

popular model uses k nearest neighbour, linear discriminant analysis, support

vector machine, multilayer perceptron neural network, and deep neural net-

works such as CNN and RNN. Similarly, algorithms take a period of ECG

signal as the input to the model for the rhythm classification.

There are three significant challenges that this thesis addresses:

• The reduction of motion artifacts on the ECG signal interference with

anomaly detection.

• Model training needs a massive amount of labelled data that are hard

to come by.

• ECG databases have very imbalanced data making it difficult for Deep

Learning model training.
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Chapter 4

An Automatic Method to
Reduce the Effects of Baseline
Wander and Motion Artifact on
Ambulatory Electrocardiogram

4.1 Introduction

Commercial heart monitoring devices possess many advantages, such as

ease of use, long-term body monitoring, and easy access to personal health

data. However, it also has some important limitations. One major limita-

tion is that the collected ECG is frequently contaminated with noise, making

the ECG interpretation impossible. For example, the standard 12-lead ECG

device in clinics requires measuring the patient at rest, but most mobile health-

care devices use a rubber band to press the sensor onto the patient’s chest;

therefore, the sensor is more likely to be affected by body motion. In addition,

body motion introduces two major noise types: baseline wanders and motion

artifacts. ECG signals are easily distorted by artifacts that have nothing to do

with heart functions. In some cases, artifacts could even mimic true arrhyth-

mia, leading to false diagnostics [32]. Therefore, noise removal is necessary

for any ambulatory ECG monitoring applications. This thesis proposes a new

noise removal method that automatically suppresses the baseline wander and

motion artifact. The new algorithm consists of an adaptive empirical mode de-

composition and reconstruction algorithm capable of removing baseline wander
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and some motion artifacts, followed by an adaptive filter algorithm that uses

an accelerometer to reduce further the motion artifacts. Section 4.2 describes

the proposed algorithm. Then in Section 4.3 the experimental testing setup

and the results. We then conclude in Section 4.5 by reviewing the advantages

of our approach.

4.2 Proposed Algorithm

We have developed a new algorithm to reduce the baseline wander and

motion artifact automatically. The new algorithm consists of a preprocessing

step and a filter step. The preprocessing step contains ECG signal preprocess-

ing and unusable ECG signal detection. The filter step consists of an adaptive

empirical mode decomposition and reconstruction step that could automat-

ically decompose the signal without human input to reduce motion wander,

a motion-sensitive adaptive filter that uses a 3-Axis accelerometer that auto-

matically selects the best reference noise signal to remove motion artifacts,

and a variational mode decomposition and reconstruction method to remove

high-frequency noise. The complete block diagram of the algorithm can be

seen in Figure 4.1.

Data Acquisition

In this research, we have used the Astroskin Smart Shirt [38] and VIVALNK

wearable ECG device [40] for ECG collection. The Astroskin Smart Shirt can

collect a 3-lead ECG at 250 Hz and 3-Axis accelerometer data at 50 Hz. The

VIVALNK wearable ECG device can collect a single lead ECG at 128 Hz and 3-

Axis accelerometer data at 5 Hz. The ECG signals collected by the VIVALNK

ECG device are up-sampled to 250 Hz. The devices are shown at Figure 4.2 and

Figure 4.3. Both devices collect lead II ECG signals and accelerometer signals.

The test subject was a healthy male adult age 32 with no heart problem. Each

device was worn by the subject for one hour consecutively. During the one

hour, the test subject was free to do his daily activities, including resting,

sitting, walking, and cycling. During resting time, the subject was sitting but
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Figure 4.1: Block diagram of the proposed algorithm
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Figure 4.2: Astroskin smart shirt bio-signals sensors [38]

not moving his upper body for 5 minutes during the resting time. The resting

signals were used as the reference signal.

Since the device could not record the noise source or a clean signal for

the algorithm to compare, the reference signal is used as the ground truth

signal to compare the ECG signal before and after applying the proposed

noise reduction algorithm. Figure 4.4 is the reference signal collected from

the Astroskin Smart Vest. And Figure 4.5 is the reference signal collected

from Vivalnk patch. The reference signal in Figure 4.4 is 10 second long. It

contains 12 heartbeats, and its average RR interval is 0.824 seconds. The

reference signal in Figure 4.5 is 10 seconds long with 11 heartbeats. The

average RR interval is 0.922 seconds. The sitting time mainly includes working

with computers and eating during the data collection. Active time includes

walking on flat ground, going up and downstairs, and cycling on a stationary

bike. The total sitting time was around 25 minutes, the total walking time

was 15 minutes, and the total cycling time was 15 minutes.

4.2.1 ECG Signal Preprocessing

Once the data is collected, a preprocessing step is needed. First, the ECG

signal is normalized using the z-score normalization method [72], and the 3-

axis accelerometer is also normalized using a min-max normalization method.
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Figure 4.3: VIVALNK wearable ECG device [40]

Figure 4.4: The reference signal from Astroskin Smart Skirt
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Figure 4.5: The reference signal from Vivalnk ECG device

The z-score normalization method transforms the original data x relative to

its mean value µ and standard deviation σ using the following equation:

x̂ =
x− µ
σ

. (4.1)

The min-max normalization method normalized the signal between [0, 1]

using the following equation:

x̂ =
x−Min(x)

Max(x)−Min(x)
(4.2)

where x̂ is the normalized signal, x is the original signal, Min(x) is the min-

imum value of the signal, and Max(x) is the maximum value of the signal.

After the normalization step, the accelerometer signal is over-sampled using

the following algorithm.

• The process first inserts p (for example p = 250) zeros to up-sample the

signal.;

• Then, the new signal is filtered by an FIR anti-aliasing filter to match

the shape of the original signal. In this part, a Kaiser window method

was used to approximate the ideal anti-aliasing filter;
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• Finally, q (for example, q = 50) samples in the up-sampled signal are

discarded to get the final signal.

The p is the target sample frequency, and the q is the original sample fre-

quency. Then with the same length for the ECG signal and the accelerometer

signal, they are segmented into 10-second segments where the noise reduction

algorithm is applied.

4.2.2 Detection of Unusable Signal with Support Vector
Machine

Following the preprocessing step, some sections of the signals were unus-

able. This may be because the patient’s movement was too pronounced during

the ECG collection step, resulting in lost heartbeat information. Therefore,

this step aims to detect if the signal segments are too noisy. The standard

to distinguish a usable and unusable signal is to find if the number of QRS

complexes on the ECG signal is the same as the expected number of QRS com-

plexes. If the number of QRS complexes on the ECG signal is less than 60%

of the expected number, the segments will be considered unusable. A Support

Vector Machine (SVM) model was trained using eight features to achieve this

objective. SVM is a computer algorithm that learns a classifier function from

labelled data that can then be used to classify new unlabeled data [65]. The

SVM algorithm has been proven to be very accurate, and efficient for binary

classification in many applications such as [65] [98] [25]. Another major reason

for using SVM is that the SVM does not require a lot of training data. During

the training, the kernel function used for the SVM is the Gaussian function:

G(xj, xk) = exp(−||xj − xk||2) (4.3)

where G(xj, xk) is element (j, k) of the Gram matrix, and xj, xk are the vectors

representing observations j and k in x.

In Figure 4.6 and Figure 4.7, the frequency plots show the frequency range

for a usable 10-second long ECG signal segment and an unusable 10-second

long ECG signal segment. By comparison, one can see that the difference
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Figure 4.6: Time and frequency form of an usable ECG signal and its IMFs

Figure 4.7: Time and frequency form of an unusable ECG signal and its IMFs
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Table 4.1: Confusion matrix and performance

TP FP TN FN SEN SPC ACC
99 2 48 1 99% 96% 98%

between the two ECG signals is significant. The EMD algorithm was used for

the ECG signal to extract features from the ECG signal. During the EMD

algorithm, the signal is decomposed into many IMFs, and the first three IMFs

contain the most information on the ECG signal. Based on the frequency spec-

trum, 90% of the frequency components were chosen to represent each signal.

These frequency components count from 0 to a frequency i are performed by

summation of each frequency power component (power0 to poweri) until they

correspond to 90% of the total signal power. The 90% frequency concentra-

tion of the original signal (f0) and its corresponding IMF1 (f1), IMF2 (f2),and

IMF3 (f3) were calculated. In addition, the 90% frequency components of the

reconstructed signal (rf0) get from Adaptive Empirical Mode Decomposition

and Reconstruction (AEMDR) described in Section 4.2.3 and its correspond-

ing IMF1 (rf1), IMF2 (rf2),and IMF3 (rf3) were calculated. Finally, the

following feature vector f0, f1, f2, f3, rf0, rf1, rf2, rf3 is used to represent

the ECG signal and to train the SVM model. Figure 4.8 describes in detail of

the feature extraction and training process.

The data for training and testing were collected from both the Astroskin

Smart Shirt and the VIVALNK wearable device. There were 81 unusable ECG

segments and 162 usable ECG segments in the training data set. There were

100 unusable ECG segments and 50 usable ECG segments in the testing data

set. All ECG signal segments were randomly picked from the 1-hour-long

ECG record. The confusion matrix and the performance are shown in Table

4.1. The TP and FP are the corresponding numbers of correctly detected

unusable signals and usable signals.
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Figure 4.8: Block diagram of feature extraction and SVM model training
process

50



4.2.3 Adaptive Empirical Mode Decomposition and Re-
construction

The first step of the processing algorithm is the Adaptive Empirical Mode

Decomposition and Reconstruction (AEMDR). This step aims to remove as

much low-frequency noise as possible. Still, in the meantime, the algorithm is

also trying to preserve the QRS complex. The AEMDR is divided into two

parts. The first part deals with signal decomposition, and the second part

deals with signal reconstruction. A standard Empirical Mode Decomposition

(EMD) algorithm is used for the signal decomposition part. The IMF and the

lowest frequency component are decomposed using the following rules:

• The number of extremes and zero-crossings must be equal or differ at

most by one;

• All local maxima and minima must be symmetric to zero.

After signal decomposition, one wants to reconstruct the high-frequency com-

ponents as the clean signal and the low-frequency as an estimate of the signal

noise. The original EMD algorithm decomposes the signal into x IMFs, but the

x is not fixed. Thus, human intervention is often needed to separate clean from

noisy IMFs. We propose an automatic method to select the clean and noisy

IMFs for signal and noise reconstruction to solve this problem. To achieve our

goal, we used the Pan-Tompkins algorithm [69] to detect the QRS complex’s

number on the original signal and all the IMFs. The Pan-Tompkins algorithm

uses a filter bank that consists of a band-pass filter, a differentiator, a squaring

filter, and a moving window integrator to reduce the signal noise so that only

R wave information is present [51].

The statistical terms are explained as follows:

• The total QRS complex is the number of QRS complexes detected from

the original signal with the Pan-Tompkins algorithm;

• The true positive (TP) is the number of QRS complexes detected on the

IMFs and the original signal;
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Figure 4.9: The original signal, clean IMFs, noisy IMFs and residual

• The false positive (FP) is the number of QRS complexes detected on the

IMFs, but not on the original signal;

Then, we have applied the following rules to all IMFs to select the clean ones:

• The IMF is selected when its TP is larger than 50% of the total QRS

complex;

• The IMF that satisfies the first condition but has FP that is larger than

50% of the total QRS complex will be applied to the AEMDR method

again;

• For the signal reconstruction, if the IMF’s meet two conditions: TP is

larger than 50% of the total QRS complex; FP is less than 50% of the

total QRS complex, then it is considered a clean IMF, or otherwise it is

considered as a noisy IMF.

Once the clean IMFs and noisy IMFs are selected, the algorithm will pro-

ceed with the reconstruction. The decomposition and the IMF selection result

can be seen in Figure 4.9. In the figure, the green IMFs are selected on the clean

signals, and the red IMFs are the noise signals, where the x-axis and y-axis

are sample numbers and normalized voltage correspondingly. This algorithm

produces a clean signal and a noise signal using the following equations:
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x(n) =
k∑
i=1

ci(n), (4.4)

s(n) =
k∑
j=1

cj(n) + r(n) (4.5)

where x(n) is the clean signal, s(n) is the noise signal, ci(n) and cj(n) the clean

IMFs and the noisy IMFs respectively, m is the number of clean IMFs, and

the k is the number of noisy IMFs, r(n) is the residual signal. The acquired

clean and noise signals are the desired input and reference input processed by

the adaptive filter.

4.2.4 Motion Sensitive Noise Signal Generation

The motion-sensitive noise signal generation step is a preparation step for

the following adaptive filter described in section 4.2.5. Finding the best ref-

erence noise input is always the most challenging task for an adaptive filter

application. Removing baseline wander and motion artifact is harder since it is

almost impossible to get the noise source from body motion. Some researchers

[81] [101] explore the possibility of using accelerometer data as the reference

noise signal. The accelerometer is standard equipment for many new commer-

cial mobile healthcare devices. It can capture the user’s body movement and

is used mainly for fall detection. Even though the accelerometer data is re-

lated to the motion artifact, it does not perform well when directly applied to

the adaptive filter. Therefore, we have proposed an algorithm to combine the

noise signal extracted from AEMDR analysis with the collected accelerometer

signals. We could simulate the actual noise on the ECG signal by doing so.

The motion noise consists of baseline wander and motion artifacts. The

baseline wanders noise is a low-frequency noise that is caused by respiration

and body motion. The motion artifacts are in the same frequency range as

the ECG waves and are caused by the movement of the ECG leads. Our

Adaptive EMD decomposition and reconstruction algorithm preserves the high

frequency of the original ECG signal and discards the low-frequency noise

signal. The discarded noise signal contains the baseline wander information.
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Then by using the low-frequency noise signal from the AEMDR analysis, the

motion artifacts, and the activity signal collected by the accelerometer, one

can create a reference signal that the adaptive filter can use.

The next step is to select the activity signal with the highest positive corre-

lation coefficient and the lowest negative correlation coefficient to discriminate

against unrelated activity signals that interfere with the adaptive filter. The

reason for choosing the highest positive correlation coefficient and the lowest

negative correlation coefficient is that the two signals are unrelated when the

correlation coefficients are closer to zero. Therefore, we want the reference

noise signal to be correlated to the original signal as much as possible. The

correlation coefficient is computed using the following equation:

ρ(A,B) =
1

N − 1

N∑
i=1

(
Ai − µA
σA

)(
Bi − µB
σB

) (4.6)

where A and B represent the two signals, and µ and σ are the mean and

standard deviation of the corresponding signals, N is the total number of

sample of the signal.

The activity signals consist of an activity signal on the x-axis (Ax), an

activity signal on the y-axis (Ay) and an activity signal on the z-axis (Az). The

3-axis combined activity signal Axyz is calculated using the following equation:

Axyz =
√
A2
x + A2

y + A2
z. (4.7)

The selected activity signals are combined with the noise signal generated

by the EMD algorithm to generate a new noise signal as follows:

X(n) = s(n) + Axyz/x/y/z(n) (4.8)

where X(n) is the final reference noise signal, s(n) is the noise generated by

the EMD algorithm, and Axyz/x/y/z(n) is the activity signals in the x, y, and

z direction, and the combined activity signal Axyz. One can see in Figure 4.10

an example of the combined noise signal.
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Figure 4.10: Activity signals, EMD noise signal, and the motion sensitive
reference signal

4.2.5 Adaptive Filter

Once the motion-sensitive noise signal is generated, we can proceed to the

next step. This step processes the original signal using an adaptive filter.

This step aims to suppress the noise that has a similar frequency as the QRS

complex. An adaptive filter is a linear filter where the transfer function is

controlled by variable weights that are adjusted according to an optimization

algorithm. The closed-loop nature of an adaptive filter uses feedback as an

error signal to refine its transfer function, in our case, the combination of

the reference noise signal that is sensitive to motion. Generally speaking,

the closed-loop adaptive process involves using a cost function, which is a

criterion for optimum performance of the filter. One can see in Figure 4.11

the architecture of our adaptive filter. The measured ECG signal m(n) is

composed of the desired signal d(n), which is contaminated by an additive

noise ŷ(n) and is defined by:

m(n) = d(n) + ŷ(n). (4.9)

The main goal of the adaptive filter is to find a noise signal y(n) from a modified

reference noise signal X(n) that can minimize the effect of the additive noise
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ŷ(n) is expressed by:

m̂(n) = d(n) + ŷ(n)− y(n). (4.10)

Taking expectation on both sides and realizing that the measured ECG m(n)

is uncorrelated with ŷ(n) and y(n) is expressed by:

E[m̂2] = E[d2] + E[(ŷ − y)2] + 2E[d(ŷ − y)] (4.11)

where E[d(ŷ − y)] = 0. The signal power E[d2] is unaffected as the filter is

adjusted to minimize E[m̂2]:

min[m̂2] = E[d2] + minE[(ŷ − y)2]. (4.12)

When the filter is adjusted to minimize the output noise power E[m̂2], the out-

put noise power E[(ŷ−y)2] is also minimized. Since the output signal remains

constant, minimizing the total output power maximizes the output signal-to-

noise ratio. In our implementation, we used the well-known LMS algorithm

[99] to optimize the filter parameters for the following reasons. Compared

to LMS, NLMS solves the limitation of the LMS with input scaling. In our

experiment, all signals are scaled, and therefore, the limitations of the LMS

filter will not affect the result. We will also compare the performance of LMS

and RLS algorithms. Both produced a similar result, but because the LMS

algorithm complexity 2N + 1 is much lower than the RLS algorithm 4N2 [21],

and the fact that the LMS algorithm converges much faster than the RLS

algorithm, we decided to use the LMS algorithm [99]. The LMS algorithm is

based on the steepest descent algorithm that adapts the coefficient sample by

sample toward the optimum vector on the performance surface [13]. The LMS

algorithm [99] can be described as:

W(k + 1) = W(k) + 2µX(k)[m(k)−X(k)TW(k)] (4.13)

where W(k) is the weights of the filter of size M at iteration k, where M

is the filter order. X(k) is an input vector of size M at iteration k of the

corresponding samples from the reference noise signal X(n), m(k) is the value
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Figure 4.11: Block diagram of our noise removal adaptive filter

of the input signal at iteration k, the parameter µ is the learning rate (step

size). Since m̂(n)−d(n) = ŷ(n)−y(n) this is equivalent to causing the output

m̂(n) to be a best least squares estimate of the signal d(n).

The LMS update algorithm will update the filter weights by minimizing

the power of the error signal (m(n)−y(n))2. Using the LMS algorithm, the ad-

justable filter learns the noise signatures from the original ECG signal. Then,

it converts the input noise signal to a new noise signal that can be subtracted

from the original ECG signal.

An adaptive filter needs to set two main parameters: learning rate (step

size) and the filter order. We have done a series of experiments to test the

best value or range for these two parameters. The learning rate we have tested

ranges from 0.005 to 0.05, and the filter order range from 1 to 28. Based on

the result of our experiments, the learning rate (step size) is set to 0.01, and

the filter order is set to 10.
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Figure 4.12: The original signal, IMFs, and residual signal by VMD method

4.2.6 Variational Mode Decomposition and Reconstruc-
tion

Finally, the last step of the proposed algorithm is the Variational Mode

Decomposition and Reconstruction (VMDR) [22]. The objective of this pro-

cess is to remove the high-frequency noise on the filtered signal to make the

signal smoother. The variational mode decomposition and reconstruction are

divided into two parts: standard variational mode decomposition and the other

is selecting clean IMFs for reconstruction. In the decomposition part, the stan-

dard VMD method is applied. The Variational Mode Decomposition (VMD)

method is similar to the EMD method. It decomposes the signal into K differ-

ent IMFs. The second part is finding the clean IMFs for reconstruction. The

VMD method produces a high-frequency residual signal. This is also proven

in our experiment shown in Figure 4.12. The x-axis is the sample number in

the figures, and the y-axis is the normalized voltage. Therefore, for the signal

reconstruction, the high-frequency residual signal was discarded.

The reason for choosing this method to filter out the high-frequency noise

is that, unlike the EMD method, the VMD method is more sensitive toward

the high-frequency components [58].
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Figure 4.13: (a) Original signal (b) Signal after AEMDR step (c) Signal after
adaptive filter step (d) Signal after VMD step

4.2.7 Example results of the algorithm

In Figure 4.13, one can view the result after each step. Figure 4.13(a)

shows the original signal. The signal contains baseline wander and motion

artifacts. Figure 4.13(b) is the filter result after the AEMDR step. One can

see that the baseline wander was significantly reduced, and almost all QRS

complexes were in the same baseline. But the motion artifacts remain in the

signal. Then, after applying the adaptive filter step, int the 4.13(c), most of

the motion artifacts were compensated. Finally, the VMD method removes

the high frequency noise components in Figure 4.13(c), and produces the final

result 4.13(d).

4.3 Experimental Results

As described in Section 4.2, the data used in this experiment were collected

using Astroskin Smart Shirt and VIVALNK wearable devices. The raw 3-lead

ECG signal and its corresponding 3-axis accelerometer signal were acquired

for 8-hours. However, the ECG signals are split into 10-second segments dur-

ing the noise removal process. There were 372 10-second segments obtained

from the Astroskin Smark Vest and 330 10-second segments acquired from the
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VivaLnk. After the prediction of the SVM model, 328 segments from the As-

troksin and 320 segments from VivaLnk were labelled as usable. There were

many unusable ECG segments from Astroskin Smart Vest because its sensors

were not attached to the human body resulting in a loss of contact. There

was a total of 648 ECG segments of 10-second to be analyzed. However, it is

unrealistic to present all of them in this paper. Therefore, we have selected

one clean segment and three noisy segments from both devices. The following

sections will explain the metrics we used to show how the proposed algorithm

improves signal quality. We use three metrics to illustrate how the signal was

enhanced objectively. These are the histogram of the difference, the correla-

tion coefficients, and the mean square error between the test signal and the

reference signal. To compare the proposed algorithm to the conventional al-

gorithm for motion artifact removal, we have also implemented several noise

removal algorithms based on [3] [81]. The reference noise removal algorithms

are: a zero-filtering Butterworth high pass filter (IIR) with a cut-off frequency

of 0.5 Hz and a filter order of 2, a moving average filter (MA) with window

length set as samplefrequency
2∗0.5 , a DWT with Daubechies wavelet of order 8 and

9 levels decomposition, and the last detail coefficient was discarded, an EMD

with the previous two intrinsic mode functions discarded, a variational mode

composition with k equals to the number of IMFs from the EMD method and

with the last two IMF discarded as well, and an adaptive filter with using only

activity signal.

4.3.1 Visual Result and the Bivariate Histogram

This section compares the visual result and the bivariate histogram of the

original and filtered ECG signals. The visual result shows the ECG signal after

all the noise removal steps. And the bivariate histogram shows the difference

between the reference signal and the test signal.

To set a standard for the bivariate histogram, we have chosen another

clean signal as an example shown in Figure 4.14(1). And the Figure 4.14(2)

demonstrates the bivariate histogram between two clean signals. One can see

that the shared bin values form a diagonal line. With this, one can compare
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Figure 4.14: (1) clean example signal (2) bivariate histogram between test and
reference signal

the histograms of all denoised signals to the figure. If the histogram is denser

on a diagonal line, it shows a better denoising result; otherwise, it will show a

divergent pattern.

During the testing, to make the test signal aligned with the reference signal,

we have annotated all R peaks on both the reference signal and the test signal.

And then, all RR intervals on the test signal were re-sampled to have the same

length as the RR intervals in the reference signal.

Figure 4.15 to 4.20 compares 6 examples of the original signal and the

filter result using the proposed algorithm. In all six examples, the bivariate

histogram of the filtered ECG signal shows a more dense pattern than the orig-

inal signal. To compare our algorithm to other traditional algorithms, Figures

A.1 to Figure A.36 in the Appendix shows the filter result using the Butter-

worth high pass filter, the moving average filter, the discrete wavelet transform,

the empirical mode decomposition, the variational mode decomposition and

the adaptive filter with accelerometer data.

4.3.2 Correlation Coefficient

In addition to visual results and signal-to-noise ratio, we have introduced

another metric to validate the algorithms. This metric computes the corre-
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(a) Original signal (b) Filtered signal

Figure 4.15: Example 1: (1) test signal (2) bivariate histogram

(a) Original signal (b) Filtered signal

Figure 4.16: Example 2: (1) test signal (2) bivariate histogram

(a) Original signal (b) Filtered signal

Figure 4.17: Example 3: (1) test signal (2) bivariate histogram

(a) Original signal (b) Filtered signal

Figure 4.18: Example 4: (1) test signal (2) bivariate histogram
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(a) Original signal (b) Filtered signal

Figure 4.19: Example 5: (1) test signal (2) bivariate histogram

(a) Original signal (b) Filtered signal

Figure 4.20: Example 6: (1) test signal (2) bivariate histogram

lation coefficient between the reference and the test signal. The correlation

coefficient ranges from -1 to 1. As the coefficient is closer to 1, the two sig-

nals are more similar. On the other hand, as the coefficient is close to -1, the

two signals have a negative relationship. If the coefficient is closer to 0, the

two signals are not similar. The correlation coefficient is calculated using the

following equation:

ρ(R, T ) =
1

N − 1

N∑
i=1

Ri − µR
σR

Ti − µT
σT

(4.14)

where R, T refer to reference signal and test signal,N is the number of

samples of the signal (the two signal have the same length), µ is the mean of

the signal, and σ is the standard deviation of the signal.

4.3.3 Mean Squared Error

Another metric we have used to compare the algorithms is the mean

squared error which measures the difference between two vectors. If the two
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Table 4.2: Comparison between different noise removal methods

Figure Metric Original IIR MA DWT EMD VMD AF Proposed
4.15 CORR -0.0337 0.2962 0.3169 0.3303 0.4540 0.4395 0.4594 0.5369
4.15 MSE 0.0419 0.0326 0.0307 0.1357 0.0090 0.0260 0.0086 0.0047
4.16 CORR 0.0651 0.3072 0.3442 0.2507 0.4981 0.4712 0.4988 0.5902
4.16 MSE 0.0163 0.0129 0.0123 0.3053 0.0066 0.0092 0.0065 0.0040
4.17 CORR 0.1316 0.1846 0.2186 0.1307 0.2719 0.3047 0.3660 0.4243
4.17 MSE 0.1091 0.0425 0.0369 0.1000 0.0412 0.0302 0.0092 0.0054
4.18 CORR 0.1557 0.3438 0.3181 0.1638 0.1881 0.3031 0.2929 0.4409
4.18 MSE 11.1281 1.3549 10.2285 8.403 3.0299 0.9603 0.5916 0.1647
4.19 CORR 0.2992 0.4227 0.4393 0.3129 0.4220 0.4759 0.4867 0.6011
4.19 MSE 4.0803 0.7239 0.7073 3.7537 0.9917 0.3016 0.3188 0.1144
4.20 CORR 0.2875 0.4844 0.4523 0.051 0.3839 0.5292 0.4867 0.5242
4.20 MSE 5.8771 0.3676 0.4371 5.6547 0.3931 0.4822 0.3188 0.1304

vectors are more similar, the value is close to 0. The mean squared error can

be calculated using this equation:

MSE =
1

n

N∑
i=1

(R− T )2 (4.15)

where R, T refer to reference signal and test signal and N is the number of

samples of the signal.

4.4 Result Discussion

In Table 4.2, the first column refers to the figures shown in Section 4.3.1.

The remaining columns show the corresponding mean square error (MSE) and

the correlation values between the reference and filtered noisy signals.

According to Sections 4.3.1, 4.3.2 and 4.3.3, both visual results and metrics

in Table 4.2 show that the proposed algorithm can reduce the baseline wan-

der and suppress motion artifacts to a limit. The histogram of the proposed

algorithm always shows a normal Gaussian distribution which is more similar

to the clean signal example in Figure 4.14.

Therefore, the proposed algorithm can preserve the QRS complex informa-

tion and perform best when the QRS complex is complete in the ECG signal.

The algorithm may not reconstruct the P wave and T wave completely when

the noise signal contaminates these two waves, such as in Figure 4.15. How-

ever, if the body motion causes the entire heartbeat to move, this algorithm

can put the moved heartbeat back to its location, such as the result examples
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shown in Section 4.3.1. According to Table 4.2, one can see that the signal

filtered by the proposed algorithm has a lower MSE and a higher correlation

coefficient compared to the algorithms found in the literature. Moreover, based

on over 600 segments of 10 seconds each, the average processing time is 1.5201

seconds per segment using an average computer programmed in Matlab.

4.5 Conclusion

This chapter presents a new method that can automatically remove the

baseline wander and reduce the motion artifacts. The algorithm contains five

major steps. The first one is the usable ECG signal detection step (Section

4.2.2). This step keeps the ECG signal that can be read and discards un-

readable signals using a trained SVM model. The second step is an adaptive

empirical mode decomposition and reconstruction algorithm (AEMDR) (Sec-

tion 4.2.3). It can separate the signal components that contain QRS complex

and the components that include low-frequency noise, such as baseline wan-

der. This step produces an ECG signal and a noise signal. The third is the

motion-sensitive signal generation, which combines accelerometer signals and

AEMDR extracted noise signals together to form a motion-sensitive signal

(Section 4.2.4). This signal is used as the reference signal for the adaptive

filter in the fourth step (Section 4.2.5). This step removes motion artifacts

with a similar frequency range as the QRS complex and produces a cleaned

signal. The last step is the variational mode decomposition and reconstruc-

tion (VMDR). The method can remove the high-frequency components that

are left in the ECG signal to produce a smoother signal (Section 4.2.6). The

results in Sections 4.3.1–4.3.3 clearly show improvements in the quality of the

test ECG signals compared to various algorithms found in the literature. In

addition, the ECG recordings were collected from two different ECG devices:

Astroskin Smart Vest and the VivaLnk ECG device. Therefore, the proposed

noise removal method is robust and can be used for various medical-grade

sensors.

65



Chapter 5

Anomaly Detection from
Electrocardiogram(ECG) Using
Spectrogram and Handcrafted
Features

5.1 Training Dataset and Methodology

The following section describe the public ECG dataset used to test and

train the proposed algorithm (see Table 5.1 and 5.2 third columns).

5.1.1 Data Description

The test ECG datasets are from the MIT-BIH database [63] and the Eu-

ropean ST-T database [88] both located in the PhysioNet database [28]. The

MIT-BIH data contains 48 half-hour excerpts of two-channel ambulatory ECG

recordings obtained from 47 subjects. The data is fully annotated with 15 dif-

ferent rhythm classifications. The European ST-T database consists of 92

annotated 2 hours excerpts of two-channel ambulatory ECG recordings from

79 subjects with ten different rhythm classifications, and a complete descrip-

tion of the rhythms is shown in Table 5.1. Similarly, a complete description

of the heartbeat is shown in Table 5.2. In these tables, M is short for the

MIT-BIH database, and E is short for the European ST-T Database.
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Table 5.1: Complete Description of Rhythms Types

Symbol Meaning Database
NSR Normal sinus rhythm M, E
AB Atrial bigeminy M, E

AFIB Atrial fibrillation M, E
AFL Atrial flutter M

B Ventricular bigeminy M, E
BII 2° heart block M
B3 3° heart block E

IVR Idioventricular rhythm M
NOD Nodal (A-V junctional) rhythm M

P Paced rhythm M
PREX Pre-excitation (WPW) M
SAB Sino-atrial block E
SBR Sinus bradycardia M, E

SVTA Supraventricular tachyarrhythmia M, E
T Ventricular trigeminy M, E

VFL Ventricular flutter M
VT Ventricular tachycardia M, E

5.1.2 Methodology

As described previously, anomaly detection can be divided into an abnor-

mal rhythm and heartbeat detection. First, abnormal rhythm detection will

find the abnormal rhythms in the ECG record and label them. However, some

rhythms may be labelled as normal rhythms, and they could contain irregular

heartbeat (An example one can see in Figure 5.1). Therefore, the second part

of the algorithm will go through all heartbeats in the normal rhythm and label

the irregular heartbeats. This section describes the steps of the algorithm and

the features used to model the rhythms and heartbeat signal.

Signal Pre-processing

The signal pre-processing steps consist of re-sampling, normalization, data

extraction, and balancing. The ECG signals in the MIH-BIH arrhythmia

dataset have a 360 Hz sampling frequency, and the signals in the European ST-

T dataset have a 250 Hz sampling frequency. To make the sampling frequency
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Table 5.2: Complete Description of Heartbeat Types

Symbol Meaning Database
N Normal M, E

LBBB Left bundle branch block beat M
RBBB Right bundle branch block beat M
PAC Atrial premature beat M

a Aberrated atrial rremature beat M, E
J Nodal(junctional) premature beat M, E
S Supraventricular premature beat M, E

PVC Premature ventricular contraction M, E
F Fusion of ventricular and normal beat M, E
e Atrial escape beat M
j Nodal (junctional) escape beat M, E
E Ventricular escape beat M, E
P Paced beat M
f Fusion of paced and normal beat M, E
Q Unclassified beat M

at the same sampling rate, both signals were down-sampled at a rate of 250

Hz, with an antialiasing lowpass Filter provided by Matlab[61]. The algorithm

starts by inserting 250 zeros to the original signal S(t)orig to get the up-sampled

signal S(t)up. Then S(t)up is filtered by an FIR antialiasing filter that uses a

Kaiser window method to maintain the original shape of S(t)orig. Finally, 250

samples in the S(t)up are discarded to get the down-sampled signal S(t)down.

Next, the signals S(t) from both datasets are normalized between 0 and 1

using the min-max normalization formula.

Rhythm and Heartbeat Signal Extraction

The ECG signal is split into 3-second segments using a sliding window

method to extract the rhythm data. The window size is chosen to be 3 ×

sample frequency, and the step size is chosen to be 1× sample frequency. The

heartbeat data are extracted using the provided heartbeat annotation location.

The R peak locations of the last heartbeat and the following R peak will be

the beginning and ending points of the current heartbeat. After rhythm and

heartbeat extraction, the extracted data is used to compute the spectrogram
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Figure 5.1: Normal rhythm contains abnormal heartbeat

and features for data modelling.

Spectrogram Using Short-Time Fourier Transform (STFT)

Traditional signal processing approaches assume that the signal is station-

ary, which is not true, especially for ECG. Hence, time or frequency descrip-

tions alone are insufficient to provide a comprehensive analysis of the ECG

signals [83]. Like speech analysis, time-frequency analysis is much more suit-

able for non-stationary signals. Using STFT, one can determine the fre-

quency and phase content of local sections of a signal as it changes over

time [83]. STFT is a sequence of Fourier transforms of a windowed sig-

nal. The STFT matrix is the combination of the Discrete Fourier Trans-

form (DFT) of each windowed segments which can be expressed as X(f) =

[X1(f), X2(f), X3(f), ..., Xm(f), ..., Xk(f)] [62], where k is the number columns

of the spectrogram.

To compute the STFT spectrum, one must choose the window function and

size. The window function selected must be adapted to the signal frequencies.

The window size affects the time and frequency of information presented in

the spectrogram. If the spectrogram is computed using a long window, then

the spectrogram has higher frequency accuracy but less time resolution. On

the other hand, if the spectrogram is calculated using a short window, then
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Figure 5.2: Hanning window function in the time domain and the frequency
domain

the spectrogram has lower frequency accuracy but better time resolution. The

window size from 0.1 seconds to 1 second was tested to find a balance between

frequency and time resolutions. In this search, based on many experiments,

a window length L of 167 samples was chosen for the rhythm data, and 28

samples were chosen for the heartbeat data, which is 0.668 seconds and 0.11

seconds correspondingly. The best window function for the STFT is the Han-

ning window for both data (shown in Figure 5.2). The Hanning window was

selected because it ranged from 0 to 1 in amplitude, matching the normalized

ECG signal range. And the shape of the Hanning window function is similar

to the waves of the ECG signal.

Examples of the spectrogram and its corresponding ECG rhythm and

heartbeat can be seen in Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6.

The y axis for the ECG signal were set to normalized voltage.

Handcrafted Features Rhythm Classification

Sometimes, humans can quickly identify relationships between two objects

where a computer cannot. In the proposed research, in addition to the ex-

tracted features from the Convolutional Neural Network, nine extra hand-

crafted features were added to improve the recognition performance. The fea-

ture vector for rhythm classification contains the number of R peaks detected

from two algorithms, skewness, kurtosis, variance, average interval length,

average QRS complex length, average PR interval length, and average QT

interval length. The features will be explained in the following sections.
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(a) abnormal rhythm plot

(b) abnormal rhythm spectrogram

Figure 5.3: Abnormal ECG rhythm and its corresponding spectrogram
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(a) Normal rhythm plot

(b) Normal rhythm spectrogram

Figure 5.4: Normal ECG rhythm and its corresponding spectrogram
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(a) Normal heartbeat plot

(b) Normal heartbeat spectrogram

Figure 5.5: The normal heartbeat plot and spectrogram
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(a) Abnormal heartbeat plot

(b) Abnormal heartbeat spectrogram

Figure 5.6: The abnormal heartbeat plot and spectrogram
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Detecting the Number of R Peaks

For this feature, two algorithms were used to detect the R peaks. One

is the Pan-Tompkins algorithm [69], and the other one is the Shannon En-

ergy Envelope Hilbert transform (SEEHT) [60]. The detected R peaks were

included in the final feature vectors. The reason for using two R peaks de-

tection algorithms is that they perform differently for different ECG signals.

The Pan-Tompkins uses a filter bank that only keeps the R peaks on the

ECG signal. The SEEHT algorithm calculates the Shannon energy envelope

of each heartbeat on the ECG signal and then applies Hilbert transform to

the Shannon energy signal. By finding the zero-crossing of the converted sig-

nal, one can detect the R peak locations. By comparison, the SEEHT has

higher overall detection accuracy, and the Pan-Tompkins has higher abnormal

heartbeat detection accuracy. For example, if one selects a record from the

MIT-BIH database with 472 ventricular flutter (VF) beats, the Pan-Tompkins

algorithm will detect 363 VF beats, and the SEEHT will only detect 177 VF

beats. Therefore, using both algorithms as features can improve detection

accuracy.

Statistical Features

Another handcrafted is a skewness measurement that computes the asym-

metry of the ECG signal about its mean. Negative skewness indicates the

signal is leaning right, and positive skewness indicates the signal is leaning

left. The skewness estimate can be computed using the following equation:

skewness =
µ3

σ3
, (5.1)

where the µ is the mean, and the σ is the standard deviation.

The kurtosis describes the ’peak’ of a signal. The kurtosis should be zero for

a perfectly normal distribution. A signal with positive excess kurtosis indicates

a high peak, and a signal with negative kurtosis indicates a flat-topped curve

[46]. The kurtosis can be computed using the following equation:
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kurtosis =
µ4

σ4
, (5.2)

where the µ is the mean, and the σ is the standard deviation.

The variance of a signal computes how far the sample points are away from

their mean. It can be computed using the following equation:

V ariance =
1

N − 1

N∑
i=1

|Xi − µ|2, (5.3)

where Xi is the signal, N is the length of the signal, and µ is the mean of the

signal.

ECG Intervals Measurement

Four ECG interval measurements are also used as features. They are av-

erage RR interval length, average QRS complex length, average PR interval

length, and average QT interval length. The detection tool used for detecting

the Q wave and T wave is the ’ecgpuwave’ program, which is provided by

PhysioNet [28]. The ’ecgpuwave’ uses Pan-Tompkins algorithm [69] to detect

the QRS complex. Then the detector detects the P peak and T peak based

on the detected R peaks. For P and T peak detection, the detector defined

search windows before and after the R peak. The detector searches the max-

imum and the minimum values in the defined window. The P and T wave

peak is assumed to occur at the zero-crossing between the maximum and the

minimum values in the search windows. Figure 5.7 (a) and Figure 5.7 (b)

show the examples of the P-QRS-T detection using the ’ecgpuwave’ detector.

These two examples represent the most common situation for detecting the P,

R and T peaks on the heartbeats with the ’ecgpuwave’ detector, which are the

peaks on abnormal heartbeats that cannot be fully detected and the detection

on normal heartbeats are perfectly detected. Therefore, for undetected peaks,

their corresponding interval length and peak value will be set to 0.
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(a) P,R,T peak detection on normal heartbeat

(b) P,R,T peak detection on abnormal heartbeat

Figure 5.7: The P,R,T peak detection on both normal and abnormal heartbeat
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Handcrafted Features for Heartbeat Classification

The previous statistical features for the rhythm are also used for the heart-

beat signal: skewness, kurtosis, and variance. But there are still some features

that are different from the rhythm. Since there is only one heartbeat in the

heartbeat signal, the number of R peaks, average RR interval length, average

QRS complex length, average PR interval length, and average QT interval

length no longer exists. They are replaced with normalized R peak value,

left RR interval length, right RR interval length, PR interval length, QRS

complex length, QT interval length, In addition, as shown in Figure 5.7, the

’ecgpuwave’ detector could detect the peak location of the heartbeat signal,

and the P wave and T wave peak value could also be retrieved. Therefore, the

final two features added to the feature vector are normalized P wave peak and

T wave peak values.

To sum up, there are a total of 11 features in the handcrafted feature

vector, which are normalized R peak value, left RR interval length, right RR

interval length, skewness, kurtosis, variance, QRS complex length, PR interval

length, QR interval length, normalized P wave peak value, and normalized T

wave peak value.

Network Architecture

The proposed neural network architecture consists of a feature extraction

layer, a normalization layer, a CNN block, and a feature merging layer. The

proposed CNN structure is shown in Figure 5.8. According to the figure, the

original input is the raw ECG signal. From the original input, the program

could produce the STFT spectrogram and the handcrafted features in Section

5.1.2. Once the handcrafted features are obtained, the normalization layer

will normalize those features to a range between [0,1] so that each feature

contributes the same weight to the classification. The STFT spectrogram is

sent to the CNN block and a sigmoid layer. The CNN block could be any

popular CNN structure such as VGG-19 CNN, plain 34 layers CNN, 34-layers

Residual Net(shown in Figure 5.9). The primary purpose of the CNN block
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Figure 5.8: The proposed CNN
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was to extract the features from the spectrogram using convolutional layers.

The sigmoid layer acts as a normalization layer converting CNN features to

be in the range [0,1] so that the CNN features will have the same weight as

the handcrafted features at the final layer. Once the CNN and handcrafted

features are obtained, the feature merging layer then combines the normalized

handcrafted features with the extracted features from the spectrogram. Fi-

nally, the merged feature vector will input a fully connected layer to produce

the final classification. The output value of the fully connected layer is in the

range of 0 and 1 where the value of the last classification label will be decided

by:

label =

{
normal if x <= 0.5

abnormal if x > 0.5
(5.4)

where x is the output value of the fully connected layer.

5.2 Experimental Setup and Result Discussion

5.2.1 Dataset Setup

As described previously, there are 17 different rhythm types in the data

sets. However, in the experiment, the data were classified as 1 for abnormal

and 0 for normal.

There are 26,532 abnormal ECG rhythms for the rhythm dataset and

1,199,065 normal ECG rhythms. Since there were much more normal rhythm

data than anomalous rhythm data, dataset balancing was necessary. The

normal rhythm dataset was constructed by randomly selecting 26,532 sam-

ples from the original normal rhythm dataset. As a result, the reconstructed

dataset has 26,532 abnormal ECG rhythms and 26,532 normal rhythms. For

the final dataset, 53,064 ECG rhythms were generated. A total of 90% of

the data were used as the training dataset, and 10% were used as the testing

dataset. Therefore, the training set contains 47,758 ECG rhythms, and the

testing dataset contains 5,306 ECG rhythms.

For generating the heartbeat dataset, there is a slight difference. According
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Figure 5.9: VGG-19 CNN, 34-layer plain CNN, 34-layer ResNet
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to Section 5.1.2, the only abnormal heartbeats that occur in normal rhythm

are used for training and testing. There are no Right Bundle Block Beat in

these two databases, and Pace Beat occurs in the normal rhythm. Therefore,

there were 14 heartbeat types in the training and testing dataset. Similar to

the generation of the rhythm dataset, the training and testing dataset split

follows a 9:1 ratio. Finally, the generated training dataset contains 43,516

heartbeats, and the testing dataset contains 4,850 heartbeats. Moreover, the

normal and abnormal heartbeats in both datasets are 50-50 split so that the

testing result will be non-biased.

The spectrograms were generated using STFT described in Section 5.1.2.

The dimension of the output RGB spectrograms is 875 × 656 × 3. The

spectrogram power values are encoded as an RGB colour image to emphasize

the difference in one version. The power spectrum power values are coded as

a greyscale image where an integer represents each pixel in a second version.

5.2.2 Model Training and Testing

A total of 80% data is used as training during the training step, and 20%

data is used as validation. The learning rate decay technique is used during

the training to determine the best learning rate. The learning rate decay

adopts an initially large learning rate and then decays it by a certain factor

after pre-defined epochs. According to You’s study, an initially large learning

rate suppresses the memorization of noisy data while decaying the learning

rate improves the learning of complex patterns [105]. In the experiment, the

start learning rate is 0.1, and the decay rate is 50%. The neural network

architectures used in the CNN block are VGG-16, VGG19, ResNet-18 and

ResNet-34. The ResNet-50, ResNet-101 and ResNet-150 architectures are not

tested here because these two models have too many layers, so the models’

prediction speed will be slow. Therefore the models won’t be able to give

a diagnosis in real-time. Moreover, to show how the feature merging layer

could increase the prediction accuracy, regular VGG 16,19 and Residual Neural

Network 18 and 34 were trained as well (Figure 5.9). The results are compared

in Table 5.3.
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Multi-lead Utilization

As described in Section 5.1.1, the MIT-BIH database and the European

ST database are both collected with two-channel ECG devices. Therefore, a

DNN model for each lead signal was trained to utilize the multi-lead signal.

The models for each lead were all used for the final classification. As a result,

the final prediction is calculated using the following equations:

Y = Y1 + Y2 − 0.5 (5.5)

where Y1 is the prediction from lead one model and Y2 is the prediction from

lead two model. The label is determined using the following conditions:

Y =

{
1, if Y ≥ 0.5

0, otherwise
(5.6)

The models could also be used for individual prediction for another dataset

with lead-II channel data. Therefore, the models can be used for further

learning with other ECG datasets such as 12-lead ECG database.

Over-fitting Prevention

Most deep neural network architectures are prone to over-fitting, meaning

that if the accuracy of the network on the training set is increased, the accu-

racy of the network on the actual test set may not improve. This situation

indicates that the model is overfitting the training set and cannot generalize

all data. During the training of the CNN model, the following two methods

were used to prevent over-fitting. The first one consists of adding a dropout

layer after the fully connected layer, and the second consists of using an early

stopping technique, as shown by [75]. After each training epoch, the model

predicts a validation set to determine accuracy. The training process stops if

the validation accuracy drops two times in two consecutive epochs. The train-

ing and testing were computed on a workstation with Intel Core i5-8400 CPU

and Nvidia Geforce GTX 1080 GPU. One can see in Figure 5.10 the training

and validation of rhythm classification loss function value vs. epochs. Both

training loss and validating loss converge around 20 epochs.
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Figure 5.10: Training and validation loss curve for rhythm classification

5.2.3 Evaluation Metrics

The evaluation metrics used for comparison with ground truth are the

following:

• TP: The number of successfully detected abnormal rhythms/heartbeats;

• FP: The number of wrongly detected abnormal rhythms/heartbeats;

• TN: The number of successfully detected normal rhythms/heartbeats;

• FN: The number of wrongly detected normal rhythms/heartbeats;

• Sensitivity(SEN) = TP/(TP+FN);

• False Alarm Rate(FAR)= 1 - Specificity = FP/(FP+TN);

• Positive Predictive Value(PPV) = TP/(TP+FP);

• Accuracy(ACC) = (TP+TN)/(TP+FP+TN+FN).

The main goal is to find the most abnormal rhythms and heartbeats on the

ECG signal. The chosen metrics could show whether the algorithm detects
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abnormal cases. The sensitivity is also called the true positive rate, which

shows the detection rate among all abnormal cases. The false alarm shows how

many normal cases are detected as abnormal cases. The positive predictive

value indicates the number of real abnormal cases among all detected abnormal

cases. The accuracy is the overall accuracy for both normal and abnormal

detection.

5.2.4 Comparison Results and Discussion

Rhythm Classification Result Discussion

In Table 5.3, one can compare the result of the proposed algorithm and

its comparison to the state-of-arts. In the Table, ’RGB’ indicates that the

model was trained with an RGB spectrogram which contains three channels,

and ’Gray’ suggests that the model was trained with a grayscale spectrogram

which only includes one channel. Regular ResNet corresponds to the results

obtained by the typical Residual neutral network, shown in Figure 5.9, that

are trained with only the spectrograms. Proposed ResNet corresponds to the

new Residual Neural Network architecture, shown in Figure 5.8. The ’Time(s)’

column shows how many seconds the models used to predict the test dataset.

Compared to results shown in the Table 5.3, the proposed models achieved

better accuracy and could detect more various rhythm types. Furthermore,

the proposed model with feature merging layers performs better than the reg-

ular ResNet models. In addition, when comparing the proposed model to

Zihlmann’s model [110] which is only trained with a spectrogram, one can see

that our approach had much higher accuracy. This demonstrates that prior

knowledge like handcrafted features can increase the accuracy of heart rhythm

classification.

The accuracy difference between the RGB and Grayscale spectrogram

trained models should be minimal. Since the RGB spectrogram uses differ-

ent colours to express power density, the grayscale spectrogram expresses the

power density using its pixel intensities. However, as the effect of model train-

ing, the RGB spectrograms increase the learning capacity of the model since it
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contains more channels. The result in Table 5.3 supports this finding as well.

The average accuracy difference between VGG networks is around 3%. The

accuracy difference between regular ResNet is around 1%. In addition, the

accuracy difference between ResNet and with feature merging layer is none.

For a regular residual neural network, the models trained with RGB spectro-

grams have a lower prediction accuracy (about 1%) than those trained with

Grayscale spectrograms. This indicates that the model could be overwhelmed

by irrelevant information containing three RGB spectrogram channels. How-

ever, there is no significant difference between the models trained with RGB

spectrogram and those trained with grayscale spectrogram after adding the

feature merging layer to the regular residual neural network. This shows that

the handcrafted features have a heavier weight than the CNN layer extracted

features for modelling the rhythm signal. From the time aspect, the Grayscale

spectrogram trained models took about half the time as the RGB spectrogram

trained models.

For the VGG Neural Network architecture, the models trained with grayscale

spectrograms are better than those trained with RGB spectrograms. The ac-

curacy for models trained with both spectrogram and handcrafted features is

slightly better than those trained with spectrograms only. The VGG19 models

have the best overall accuracy compared to the VGG16 models. For the Resid-

ual Neural Network architecture, the ResNet18, ResNet34, and ResNet50 have

different layers, where the ResNet18 has the least layers, and the ResNet50 has

the most layers. The number of layers also indicates the number of trainable

variables. More trainable variables mean that the model is harder to learn, in

other words, the model takes a long time to converge. Also, during the pre-

diction step, the larger network takes a longer time than the smaller network.

The ’Time’ column in the Table also shows that the ResNet18 models used less

time than ResNet34 and ResNet50 models. In addition, the ResNet50 models

did not have the best performance in the experiment. The reason could be that

more trainable variables in the network caused the model to be easier to overfit

to the training dataset than the other models; therefore, it performed worse

on the test dataset. By comparing the VGG and ResNet architectures, it is
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clear that the ResNet architecture performs better than the VGG architecture

on accuracy and takes less time for a prediction.

The proposed ResNet18-Gray held the highest accuracy with the third-

lowest false alarm rate by comparing all the models. The other proposed

ResNet-18 and ResNet-34 network models also have similar performances.

However, between these models, the proposed ResNet-18 Gray only took 55

seconds to complete the prediction of the test dataset, which is the fastest

model compared to other models. Therefore, the system should produce a

high anomaly detection accuracy and low false alarm rate in clinical heart

anomaly detection. Also, the abnormality detection system should predict as

fast as possible. Therefore the proposed ResNet18-Gray model should be the

best choice for clinical applications.

Table 5.3: Classification Result of Rhythms

Method A/N Types TP FP TN FN SEN FAR PPV ACC Time(s)
AR modeling[26] 713/143 6 706 10 133 7 99.02% 6.99% 98.60% 98.01% N/A
Acharya Net A[1] 20807/902 4 19160 62 840 1647 92.08% 6.87% 99.68% 92.13% N/A
Acharya Net B[1] 8322/361 4 7946 376 294 67 99.16% 56.12% 95.48% 94.90% N/A

Zihlmann[110] - 4 - - - - - - - 82.3% N/A
Regular VGG16-RGB 2653/2653 17 2522 185 2468 131 95.06% 6.97% 93.17% 94.04% 433
Regular VGG19-RGB 2653/2653 17 2436 235 2418 217 91.82% 8.86% 91.20% 91.48% 452
Regular VGG16-Gray 2653/2653 17 2554 215 2438 99 96.27% 8.10% 92.24% 94.08% 332
Regular VGG19-Gray 2653/2653 17 2544 116 2537 109 95.89% 4.37% 95.64% 95.76% 349

Regular ResNet18-RGB 2653/2653 17 2536 121 2532 117 95.59% 4.56% 95.45% 95.51% 117
Regular ResNet34-RGB 2653/2653 17 2550 131 2522 103 96.12% 4.94% 95.11% 95.59% 152
Regular ResNet18-Gray 2653/2653 17 2599 155 2498 54 97.96% 5.84% 94.37% 96.06% 61
Regular ResNet34-Gray 2653/2653 17 2635 150 2503 18 99.32% 5.65% 94.61% 96.83% 96
Proposed VGG16-RGB 2653/2653 17 2433 173 2480 220 91.71% 6.52% 93.36% 92.59% 425
Proposed VGG19-RGB 2653/2653 17 2476 199 2454 177 93.33% 7.50% 92.56% 92.91% 446
Proposed VGG16-Gray 2653/2653 17 2567 172 2481 86 96.76% 6.48% 93.72% 95.14% 319
Proposed VGG19-Gray 2653/2653 17 2572 134 2519 81 96.95% 5.05% 95.05% 95.95% 345

Proposed ResNet18-RGB 2653/2653 17 2648 15 2638 5 99.81% 0.57% 99.44% 99.62% 110
Proposed ResNet34-RGB 2653/2653 17 2646 10 2643 7 99.74% 0.38% 99.62% 99.68% 144
Proposed ResNet18-Gray 2653/2653 17 2646 4 2649 7 99.74% 0.15% 99.85% 99.79% 55
Proposed ResNet34-Gray 2653/2653 17 2649 8 2645 4 99.85% 0.30% 99.70% 99.77% 90

Heartbeat Classification Result Comparison

In Table 5.4, one can compare the result of the proposed method with

state-of-art algorithms. The naming of the proposed model is similar to the

one described in Section 5.2.4.

Similar to the rhythm classification, three different datasets were tested

using both proposed ResNet and regular ResNet. As one can see in Table
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5.4, the proposed ResNet models are better than the standard ResNet models

in all metrics. Moreover, the proposed ResNet Models also performed better

than Sen’s algorirhm [84] which is only using spectrogram and CNN. Sen’s

algorithm achieved 99.57% sensitivity, 2.99% false alarm rate, 96.72% posi-

tive predictive value and 98.21% accuracy in detecting three heartbeats. The

performance metrics were very similar to the regular ResNet-34 model and

are 1% less accurate than the proposed ResNet-34 model. This shows that

the handcrafted feature could increase the accuracy of ECG heartbeat sig-

nal recognition. The overall performance between the models that used the

Grayscale spectrogram dataset and the RGB spectrogram dataset is similar

for the rhythm classification. The accuracy difference for all metrics was about

1%. However, the 34-layers ResNet models had better performance than the

18-layers ResNet models on the heartbeat datasets for the number of ResNet

layers. This is caused by the fact that there is less information on the heart-

beat spectrogram since there is only one heartbeat. In addition, as shown in

Table 5.4, the ResNet models were faster and more accurate than the VGG

models. This result indicates that the residual convolutional neural network

architecture is more suitable for processing the ECG STFT spectrogram.

Compared to results found in the literature, the proposed models gener-

ally performed better except when compared to Ubeyli’s and Ye’s algorithms.

However, Ubeyli’s model has only been tested on 359 heartbeats. Therefore

the result may not be suitable for all different heartbeat types. Compared to

Ye’s algorithm, the performance is quite similar. Ye’s algorithm is 0.18% bet-

ter overall accuracy, but the proposed model has a better positive predictive

value, which means the proposed algorithm could detect anomalies in ECG

signals more accurately. One possible reason for this situation may be caused

by Ye’s test data sets containing more normal heartbeats than abnormal heart-

beats. Therefore, correctly detecting a normal heartbeat could increase the

overall detection accuracy. Another factor that could affect the model accu-

racy performance is that the training and testing data sets for the proposed

model only contain the abnormal heartbeat found in normal rhythms. There-

fore, the sample is less than the irregular heartbeat on all ECG signals. Still,
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Table 5.4: Classification Result of Heartbeats

Method A/N Types TP FP TN FN SEN FAR PPV Accuracy Time(s)
Christov [17]-morphology 18378/47239 5 18042 1604 45635 336 98.17% 3.40% 91.84% 97.04% N/A
Christov [17]-frequency 18378/47239 5 17590 1459 45780 788 95.71% 3.09% 92.34% 96.58% N/A
Chazal [20]-frequency 4317/34394 4 4108 1962 32432 209 95.16% 5.70% 67.68% 94.39% N/A

Ubeyli [93] 269/90 4 268 2 88 2 99.26% 2.22% 99.26% 99.89% N/A
Llamedo [56] 5441/44188 3 4752 2238 41950 689 87.34% 5.06% 67.98% 94.10% N/A

Ye [103] 20745/65264 16 20557 286 64978 188 99.09% 0.44% 98.63% 99.32% N/A
Zhang [106] 5653/44011 4 5248 4869 39142 405 92.84% 11.06% 51.87% 89.38% N/A
Thomas [91] 26626/67268 5 22900 1300 65968 3726 86.01% 1.93% 94.63% 94.65% N/A
Kiranyaz [48] 7366/42191 5 6539 1228 40963 827 88.77% 2.97% 84.19% 95.85% N/A
Rajesh [78] 8000/2000 5 7677 33 1967 323 95.96% 1.65% 99.57% 96.44% N/A
Sahoo [82] 807/244 4 798 5 239 9 98.88% 2.04% 99.38% 98.67% N/A
Sen [84] 1154/1305 3 1149 39 1266 5 99.57% 2.99% 96.72% 98.21% N/A

Regular VGG16-RGB 2425/2425 14 2196 75 2350 229 90.56% 3.09% 96.70% 93.73% 784
Regular VGG19-RGB 2425/2425 14 2171 58 2367 254 89.53% 2.39% 97.40% 93.57% 862
Regular VGG16-Gray 2425/2425 14 2276 45 2380 149 93.86% 1.86% 98.06% 96% 613
Regular VGG19-Gray 2425/2425 14 2359 22 2403 66 97.28% 0.91% 99.08% 98.19% 701

Proposed VGG16-RGB 2425/2425 14 2324 49 2376 101 95.84% 2.02% 97.94% 96.91% 774
Proposed VGG19-RGB 2425/2425 14 2188 57 2368 237 90.23% 2.35% 97.46% 93.94% 861
Proposed VGG16-Gray 2425/2425 14 2366 28 2397 59 97.57% 1.15% 98.83% 98.21% 612
Proposed VGG19-Gray 2425/2425 14 2367 28 2397 58 97.61% 1.15% 98.83% 98.23% 707
Regular ResNet18-RGB 2425/2425 14 2338 53 2372 87 96.41% 2.19% 97.78% 97.11% 388
Regular ResNet34-RGB 2425/2425 14 2354 60 2365 71 97.07% 2.47% 97.51% 97.30% 453
Regular ResNet18-Gray 2425/2425 14 2373 22 2403 52 97.66% 0.91% 98.47% 99.08% 212
Regular ResNet34-Gray 2425/2425 14 2377 19 2406 48 98.02% 0.78% 99.21% 98.62% 272

Proposed ResNet18-RGB 2425/2425 14 2390 26 2399 35 98.56% 1.07% 98.92% 98.74% 381
Proposed ResNet34-RGB 2425/2425 14 2394 32 2393 31 98.72% 1.32% 98.68% 98.70% 444
Proposed ResNet18-Gray 2425/2425 14 2402 18 2407 23 99.05% 0.74% 99.26% 99.15% 209
Proposed ResNet34-Gray 2425/2425 14 2396 11 2414 29 98.80% 0.45% 99.54% 99.18% 279

some rhythm classes are harder to classify since some heartbeat types are easy

to detect but do not exist on normal rhythms, such as paced and Right Bundle

block beats.

By comparison, the proposed ResNet34-Gray performs the best on the

heartbeat classification. It has 98.80% sensitivity, 0.45% false alarm rate,

99.54% positive prediction value, and 99.18% accuracy. It took 279 seconds

to complete the prediction on the test dataset, which is very fast compared to

other models. Compared to the existing state-of-art algorithm, the proposed

algorithm has a better predictive value which is higher by 0.9%, and the other

three metrics are only lower from 0.01% to 0.3%. Therefore, the proposed

algorithm has better performance in detecting ECG signal anomalies.

Discussion

Based on the comparison in Section 5.2.4 and Section 5.2.4, The proposed

neural network models perform better than other algorithms in the Table 5.3

and 5.4. The novelty of the proposed neural network structure is that it

combines the features extracted from the STFT spectrogram using the CNN

layer with handcrafted features. Therefore, it utilizes information from both
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time and frequency domains. In addition, the proposed algorithm can be

easily adapted to different ECG databases with variable ECG signal lengths

and detect both abnormal rhythms and abnormal heartbeats from the ECG

signal. Most detection algorithms found in the literature are designed only to

detect abnormal rhythms or heartbeats.

5.3 Conclusion

This chapter proposes a new CNN architecture that uses STFT spectro-

gram and handcrafted features to model the ECG signals. The proposed

architecture could adapt the latest CNN architectures to process the ECG

spectrogram and combine the extracted features with handcrafted features.

The proposed algorithm could be used on rhythm and heartbeat classifica-

tions with corresponding handcrafted features. The ResNet architecture is

the best architecture for ECG spectrogram. The proposed ResNet contains a

feature merging layer that combines the CNN extract features from spectro-

grams and handcrafted features. A series of experiments have been conducted

to show that the feature merging layers can improve the ResNet model’s ac-

curacy. According to the experimental result, the new algorithm has superior

performance to the current stat-of-arts algorithms. The best model for rhythm

classification in the experiment is the proposed ResNet18-Gray. It can classify

17 different rhythm types into normal and abnormal classes with an exceptional

accuracy of 99.79%, a sensitivity of 99.74%, a false alarm rate of 0.15%, and a

positive predictive value of 99.85% which makes this new algorithm the most

practical algorithm for rhythm classification in the literature. The heartbeat

classification is used only on normal rhythms to detect abnormal heartbeats

in the proposed anomaly detection algorithm. Therefore, the proposed algo-

rithm is better at detecting state-of-art heartbeat classification algorithms.

However, the proposed algorithm has a decent detection rate. The best model

for heartbeat classification in the experiment is the ResNet34-Gray. It could

classify 14 different heartbeat types into normal and abnormal classes with

an accuracy of 99.18%, a sensitivity of 98.80%, a false alarm rate of 0.45%,
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and a 99.54% positive predictive value. The result shows that the proposed

model has the best detection rate for abnormal heartbeat compared to other

algorithms found in the literature. The proposed approach also illustrates that

in some situations, the introduction of handcrafted features can significantly

improve the performance of neural networks.
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Chapter 6

Conclusion

6.1 Result Discussion

In this research, an automatic ECG anomaly detection system was pro-

posed. The detection system was designed for processing ECG signals from

wearable devices. The ECG signal collected by wearable devices can be easily

contaminated with noises generated by the patient’s body movement. There-

fore, the proposed system must compensate for the artifacts created by the

motion. Moreover, the proposed method uses deep learning models to detect

abnormal rhythms and heartbeats to detect the anomaly in ECG signals.

The proposed noise removal algorithm could automatically reduce the ef-

fects of the baseline wander and reduce the motion artifacts. It contains five

significant steps. The first one is the usable ECG signal detection which classi-

fies the noise level of the signals using a trained SVM model. The second step

is the AEMDR algorithm. It separates the signal components that contain

QRS complex and the components that include low-frequency noise, such as

baseline wander. This step produces an ECG signal and a noise signal. The

third is the motion-sensitive signal generation, which combines accelerometer

signals and AEMDR extracted noise signals to form a motion-sensitive noise

signal. The adaptive filter used the noise signal as the reference input in the

fourth step. The filter removes motion artifacts with a similar frequency range

as the QRS complex and produces a cleaned signal. The last step is the VMDR

algorithm. The method can remove the high-frequency components left in the

ECG signal to produce a smoother signal. The results clearly show improve-
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ments in the quality of the test ECG signals compared to various algorithms

found in the literature. In addition, the ECG recordings were collected from

two different ECG devices: the Astroskin Smart vest and the VivaLnk ECG

device. Therefore, the proposed noise removal method is robust and suitable

for various medical-grade sensors.

The proposed abnormality detection model is an improved Convolutional

Neural Network(CNN) architecture. The model could process the Short-time

Fourier Transform spectrogram of the ECG signal and handcrafted features

derived from the ECG signal with a feature merging layer. Several famous

CNN architectures are tested during the study, and the ResNet models have

the highest anomaly detection rate in the experiments. In addition, based

on the tested results, the feature merging layers could improve the accuracy

of the CNN models. Moreover, according to the experimental results, the

proposed algorithm had superior performance to the current stat-of-arts al-

gorithms. The best model for rhythm classification in the experiment is the

proposed ResNet18-Gray. It could classify 17 different rhythm types into nor-

mal and abnormal classes with an exceptional accuracy of 99.79%, a sensi-

tivity of 99.74%, a false alarm rate of 0.15%, and a positive predictive value

of 99.85% which makes this new algorithm the most practical algorithm for

rhythm classification in the literature. The heartbeat classification is used only

on normal rhythms to detect abnormal heartbeats in the proposed anomaly

detection algorithm. Therefore, the proposed algorithm is better at detecting

state-of-art heartbeat classification algorithms. The best model for heartbeat

classification in the experiment is the ResNet34-Gray. It could classify 14 dif-

ferent heartbeat types into normal and abnormal classes with an accuracy of

99.18%, a sensitivity of 98.80%, a false alarm rate of 0.45%, and a 99.54%

positive predictive value. The result shows that the proposed algorithm has

the best detection rate for abnormal heartbeat compared to other algorithms

found in the literature. The proposed approach also illustrates that in some

situations, the introduction of handcrafted features can significantly improve

the performance of neural networks.
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6.2 Future Work

In this research, the interference that affects the ECG signals measurement

and anomaly detection is not discussed since the MIT-BIH and European ST

databases reduced noise. However, high noise levels could affect the ECG

signal measurement and anomaly detection. We built a dataset with noise-

contaminated ECG signals from actual cardiac patients in the original plan.

However, due to the consequence of the COVID, we could not conduct any

medical research. With everything back to normal, we are currently working

with Dr. Becher to collect the initially planned database. The study can be

expanded to research how noise will affect anomaly detection on ECG signals

and how well the accuracy is after applying our noise reduction algorithm.
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Appendix A

Conventional methods noise
reduction result
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Figure A.1: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.2: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.3: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.4: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.5: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.6: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.7: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.8: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.9: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.10: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.11: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.12: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.13: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.14: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.15: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.16: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.17: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.18: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.19: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.20: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.21: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.22: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.23: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.24: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.25: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.26: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.27: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.28: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.29: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.30: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.31: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.32: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.33: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.34: (1) Test signal (2) bivariate histogram between test and reference
signal
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Figure A.35: (1) Test signal (2) bivariate histogram between test and reference
signal

Figure A.36: (1) Test signal (2) bivariate histogram between test and reference
signal
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