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Oh, how incomprelénsible everything was, and actually sad, although

it was also beautiful. One ki®w nothing. One lived and ran about the earth and
rode through fores}s, and certain things Alooked so challenging and promising and
nostalgic: a stgr in the evening, a blue ha.reb;ll, a reed-green pond, the eye of
a person or of a cow. And sometimes it seemed that something never seen yet
long desired was about to happen, that a veil would drop from it all; but then it
passed, nothing happerned, the nidzdle remained unsoféed, the secret spell remained
unbroken, and in the end one gre;v old and looked cumfing........ or wike........ , and
still one knew nothing perhaps, was still waiting and listening.

. .
(from Narcissus and Goldmund by Hemmann Hesse)
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" "ABSTRACT
e a
) The initial stages of a quantitative analysis of the vibrational (}ynami‘(‘:s
of the bifluoride ion, [FHF]~, are presented in this thesis. The eventual goal is to
understand the richly structured KHF3(s) IR spectrum with an isolated ion model.

710 ab initio data poix/lts are ﬁéted, with a r.m.s. deviation of 65.6 cn™!,
to a potential surface model for the [FHF] ion using the proléte spheroidal coor-
dinates (£, 7, #) and the inter-fluorine dlgtance, R. The solutions of the vibrational
Schrodinger equation are represented in : basis set of adiabatic protonic states.
The self-consistent field (SCF) method approximates each protonic state (at fixed
R) by a product of single-coordinate functions and leads to SCF equations in the ¢-
coordinate (bending motion) and the 7- coordinat;:}’(protonic stretching motion).

The quantal momentum method is used to solve these two equations
numeri(gal}y. ‘The qga.nta.l momen;:um computed from the application of the ‘clas-
sical’ initial conditions to the integration of the appropriate Riccati equation is
smooth and non-os:cillatory. Complications posed by the singularity at the origin
in the £- equation are overcome with a Langer transformation.

27 protonic SCF states are calculated at R = 3.80 — 6.40 a.u. The re-
sultant SCF energy vs. R curves give insight into the dynamical behavi:)ur of
[FHM~. Excitation in the a.nti-syrmneiric stretching mode (14) should expand R-
while excitation of the bending mode (1) should lead to a contraction. IR tran-
sition frequencies are estimated, giving for example, v3=1536 cm~'and 1,=1341
" em™L Is?fo;’)e effects a.rercomputed for the systems [FDF]"and [FuF]~.

The completion of the vibrational analysis is discussed in broad outline
\ : ’ e

form. Limited configuration interaction (CI) calculations are performed for the ,

states. The results seem to validate a ‘modal’ description for the lower states. The

vi
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t
adiabatic approximation may fail at ‘avoided crossings’, necessitating solution of
dynamically coupled equations for the heavy particle motion. Possible extensions

of this method to other problems are also discussed.
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I. INTRODUCTION

A\
A. Hydrogen-Bonded Systems and Vibrational Dynamics

Hydrogen (H-) bonds have been of much interest to theoreticians and
experimentalists alike for many vears, with the first paper on the subject being
generally attributed to Latimer and Rodebush {1] 11 1920. In a H-bond the proton,
normally linked by a covalent bond to one other atom, plays a bridging role linking
that atom to a second atom or anion, usually a spécies more electronegative than
H. From the standpoint of chemical theory, H-bonds are significant i several
respects:

(1). Hydrogen and its isotopic variants seem to be almost unique i forming
s'uch links, possibly due to the lack of an inner shell of electrons.

(2). In contrast to the formation of normal covalent bonds, there appears to be
a decrease of electron density around the hydrogen during H-bond formation.

(3). H-bond strengths are intermediate between ‘normal’ chemical bonds (with
binding energies greater 'than 100 kcal/mole) and the very weak intermolecular
attractions such as those produced by Van der Waals forces (with binding energies
less than 1-2 kcal/mole).

(4). Effects associated with the light mass of hydrogen (such as zero-point
energies) play a large role in the resultir{chemistry.

These features are responsible for the characteristic effects commonly
interpreted as evidence of intermolecular H-bond formation in the behaviour and
properties of many systems, i.e. increase in melting points and boiling points, heats
of vapourization, viscosities, dielectric constants, etc. The unusual properties of
water as a solvent, the key role of the aqueous medium in both chemical and

biological processes, and the crucial part played by hydrogen bonds in all living
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organisms through H-bond linkages in the macrostructure of proteins and nucleic
acids are only some of the morev obvious topics to which a deeper understanding
of the nature of hydrogen;t-)onded species 1s relevant, and even a superficial survey
reveals a vast literature bearing on H-bonds and their properties in widely different
areas of chemistry, physicg, and biology.

Many review volumes and articles focus more specifically on the nature
and structure of H-bonds from the perspective of theoretical and experimental
physical chemistry, the most notable among them being those by Pimentel (2],
Vinogradov and Linnell [3], Joesten and Schaad [4], Schuster, Zundel, and San-
dorfy [5], Coulson [6], Emsley (7], Hadzi and Thompson [8], Kollman and Allen (9],
and Boschke [10)¢ Barlier studies on H-bonded systems concentrated mainly on
static properties such as crystal structures and bond enthalpies, but later more
emphasis‘has been placed on dynamical behaviour as the key to undt;:xstanding mi-
croscopic molecular properties and the function of H-bonds in kinetics as well as
equilibrium states., Changes in spectroscopic and other molecular properties that
accoméany H-bond formation, as seen in UV /Visible, Infrared, Raman, NMR and
Fluorescence spectx’a, Inelastic Electron Tunnelling Spectroscopy (IETS), and In-

’ )

*elastic Neutron Scattering (INS), give more direct information about the nature

of H-bonding. These changes are quite dramatic ‘and in some cases have been

.summarized phenomenologically in qualitative or semi-quantitative relationships.

This is especially true of infrared (IR) spectra, which have been studied
extensively for gaseous as well as condensed phase systems. In éssentially all
cases formation of a H-bond (A-H...B) between A-H and B is a:ccompanied by a
decrease in frequenc;:, exceptional broadening, and increased intensity of the IR
spectral band associated with the H- stretching mode v(A-H). At the same time,

the freqﬁencim of the deformation modes of the system A-H...B increase as the

o
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H-bond strength increases (cf. the reviews by Schuster et al. [5], Boschke [10], and
Marechal [28]). .

The most general of these phenomena are now understood in qualitative
terms: the decrease in the A-H stretching frequency is due to weakening and
anharm(;nic-deformation of the original A-H covalent bond on H-bond formation
[5,10], changes in intensity are due to pronounced chaﬁges in the derivatives of the
bond dipole moment [5], while the broadening and the structure of the v(A-H)
band has as its primary source the anharmonic coupling [28-40] between the A...B
stretching mode and A-H stretching and deformation vibrational modes. (Fermi
resonances [41-43] as well as electrostatic interactions between adjacent species in
a crystal [44] may also contribute in some cases.)

The earlier literature on theoretical analysis of H-bonded systems as-
sumed that the main featu;es of the problem can be understood by one-dimensional
models where the A-H stretching motion infelracts (at most) weakly with the other
degrees of freedom, and the anharmonicity can be introduced as a perturbation
to the essentially harmonic motion. In weak H-bonds these assumptions may
be roughly valid, and since in many cases the spectra for such systems contain
(relatively) poorly defined structure with broad bands, the observations to be ac-
counted for usually do not justify a more detailed description. In systems wifh
stronger hydrogen bonding however there is a wealtf:of spectral information which
makes it clear that an one-dimensional description based on a model of the A-H
‘effective potential’ is not adequate and that in any case the features seen do not
fit @ harmonic model even in zero—or&er. Attempts to describe the complex struc-
ture seen in crystalline spectra have appealed to a variety of quite different ideas;

for example, an important question in some cases is whether the main features

of the spectrum arise from local vibrational dynamics or from coupling between
<

neighbouring H-bonds. \



Important progress in understanding vibrational spectra in moderate to
strong H-bond systems has come from the ideajﬁrst\ proposed by Stepanov [103] in
1945, that major features of these spectra ca%be understood in tt;rms of an adia-
batic éepara,tion of the.proton: m%tions-from-otherndegrees of freedom, rather than
harmonic separa;tion. Numerous workers (for example, Marechal, Witkowski,:nd
co-workers [31-35,41-42], Sokolov and Savelev [40], Goulson and Robertson (38-39};
Singh and Wood {96-97), Barton and Thorson [29], Sajtom [92]) subsequently
investigated this concept and applied it quaﬁt'atively and later more quantita:tively
in models of vibrational dynamics for specific systerlr:).

From a theoretical standpoint the problemf of vibrational dynamics in

moderate to strong H-bond systems is interesting because it involves systems with
a few degrees of freedom which are fundamentally non-harmonic and are also non-
seéarable to some degree. Nevertheless it may be possiBle to obtain an essentially
quantitative description of the mechanics of such systems, with a systematjc inter-
pretation of the resulting vibrational sp?ctra in terms of model potential-surfaces.
To demonstrate clearly tha;t this is the case in at least one rea.sonably complex
strongly I-bonded system, and to develop techniques and experience relemntfo
extensions to other problems, is a major overall goal of this work. .
For this purpose we have selected the bifluoride ion system, [FHF]~ .
Starting from an ab initio calculation of the electronic potential energy sufface of
an isolated [FHF]~ ion, we carry out the initial stages of a systematic analysis of
the vibrational dynamics of the gystem and the ;ésuliing vibrational transitions;
work compléting the analysis is in progress in this laboratory, and is outlined in
this thesis as a plan for further research. Based upon appréximate descriptions
whose validity we can justify, we ::an ‘sh(v)w that the dynamics can 'in fact be

understood within a suitable ‘mode description’, even though these ‘modes’ are
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far from harmonic and the several degrees of freedom are not exactly separaple.
Success of the approach for this sysfem offers hope that the methods develoffed
can lead to understanding of systems which are less clearl); eharacterized either
experimentally or theoretically, and thus offer a powerful new interpretive tool for
discussing H-bonded systems. |

We now discuss the bifluoride H-bond system and the reasons for its use

. )
as a model problem.

B. The Bifluoride Hydrogen-Bond System

Most ‘ordinary’ H-bond energies range from 3 to 8 kcal/mole [2] for wa-
ter, aliphatic alcohols, carboxylic acid dimers etc. (weak H-bond) to 14 kcal/mole
[104] for the bichlor%de ion (moderately strong H-bond). Examples of very strong
H-bonds are the diacetate ion (30 kcal/mole) [106], H;OF (37 kcal/mole) [105],
and the [FHF] system we consider here. A class of ‘H-bonded’ .systems for which
thermochemical measurements cannot give direct estimajgp of the enthalpy of H-
bonding are those in which a proton initially on a cation is partially bonded to
an anion; an example is the system triethylammonium chloride where there is no
doubt based on the spectral evidence (2] that a very strong disturbance of tf;e Hin
the tti;:thyla.mmonium cation is present, but the ‘H-bond _energ};cannoﬂe sepa-
rated from the dominant lattice energy term in the thermochemical information.

The bifluoride ion has one of the strongest known H-bonds. Experimen-
tal estimates of the H-bond energy for [FHF]™, i.e. the absolute enthalpy change

i
5

for the reaction

HF(g) + Fg) — HFy



- range from 37 keal/mole by Harrell and McDaniel [11] to 58 + 5 keal/mole by
Waddington [12], and 60 kcal/mole by.Dixon et al. {13]. (See also review by
Tuck [14].) Heni and Illenberger [15] obtain a lower bound of 34.5 keal/mole for
(FHF)~ formed by dissociative attachment of monoenergetic electrons to CH;F;.

The ab initio electronic structure calculations for [FHF]~which form the

basis for the model potential surface used in this work (see Chapter 2) yield a

'lva.lue of 46.5 kcal/mole for the H-bond energy. This agrees with the more recent

b initio calculations by Sannigrahi and Peyerimhoff [16] giving 40 + 1 kcal/mole, )

and by Frisch et al. [17] giving 46.4 kcal/mole. (See Schuster et al. [5] for a review

of earlier électronic structure calculations.) i

kv

Numerous X-ray diffraction and neutron diffraction experiments [18-25]

on solid salts containing the [FHF]ion (mostly alkali metal-salts MHF2() ), sﬁart-

ing with Bozorth [26], in 1923 have shown conclusively that the bifluoride ion has

a linear, symmetrical equilibrium geometry (point group symmetry D}) . (The _

sole exception is the anion in p-toluidinium bifluoride which has an asymmetric

configuration due to its crystal environment) [27]. These studies on the bifluoride

salts give a value of 2.26 A for the bond length F...F in [FHF]~, 0.54 A less than the B

sum of the Van der Waals radii of the F atoms. This compares with 2.29 A for the
equilibrium F...F distance determined By calculations in this work. 1(See Chapter
5.) In crysta.lhne KHF;, each ca,txon is surrounded by 8 [FHF] closest neighbour
a.mons, with adjacent [FHF| ions 11 a horizontal plane onented perpendxcular to
each other. (See Figure 1.1). '
Considerable experimental work has been done in the past on the infraf-
red [45-61,142] as well as the Ra.man [48,50] and the INS [62] “spectra of the
[FHF] ion in various envu-onm?nts More recently. Kawaguchx and Hirota [63 141}
reported observations of the funda.mentals of the free [FHF] ~ion in the’gas phiise.
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(The large black sphere represents the K* ion, while the smaller black spheres

denote the positions of the nuclei in each [FHF|~ ion).



Figure 1.2 shows the IR transmission spectrum of 2 at 90 K ob-
tained by Coté and Thompson [64]. This spectrum shows the Broadened and
complex band structure characteristic of H-bonded systems. The four vibrational
degrees of freedom of this linear, symmetric triatomic system correspond essen-
tially to the F...F symmetric stretching motion, the (doubly degenerate) ‘pro-
tonic’ bending motion, and the ‘protonic’ asymmetric stretching motion [ 7).
In the usual spectroscopic notation, the corresponding frequencies are denoted
by v, v», and v3, respectively. (Under the harmonic approximation these four
degrees of freedom correspond to the normal modes shown in Figure 1.3). Coté
and Thompson assigned values of 600, 1250, and 1450 cm ™! for these three funda-
mentals, respectively. They also assigned most of the remaining absorption peaks
at higher freqﬁencies (using harmonic zero-order approximation) as combinations
and overtones of these frequencies. Many of the assignments they made are not
fundamentally in question; the problem to be solved is to account quantitatively
for the observed frgquencies and relative intensities (and perhaps fine structure of
bands in some céses) over the. whole rggjt';n from 600 to 6000 cm™1-

. In this research project, tﬁe primary goal is to ca.rr& out a complete
quantitative analysis of the vibrz').tional dynamics of the isolated [FHF] ion system,
based on an ab initio electroﬁic-potentid.l surface. Progress made towards such an
objective is reported in this thesis. A secondary goal would be to improve the
quantitative agreement of such a theory with the IR spectrum of crystalline KHF, .
by minor adjusfments of the poteintia.l surface pa.rémiatefé. An important long-terﬁx ’
motivation of the work is to use for this analysis physical arguments that can be
easily generalized so.that one can utilize them to understand th;: non-separable,
non-harmonic viBration_a.l dynamics of H-bonded syite_mu of all kinds within a
simple, physically transparent conceptual framework. By ‘physicﬂy transparent’ |
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Figure 1.3  Normal Vibrational Modes of [FHF|~
(Displacements are not to scale.)
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we mean that we prefer to retain (at least in an approximate sense) a mode-type

description of the vibrational motion: that is, although we may have to abandon

-
~

concepts such as motion in one vibrational mode being totally independent of
wotion in other modes and results of such concepts such as the overtones being
exact integer multiples of the fundamentals, a theory which still enables us to

1

assign at least approximately ‘good’ quantum numbers to components of the total
vibrational motion is by far the most helpful in understanding spectroséopic data.
It is a fundamental assumption of this work that mo§bt of the spectral

features seen in crystal bifluoride spectra can be attributed to tiie isolated ion

11 -

1

with relatively simple effects from the crystal environment as a ‘background’ per-

turbation. . A

The assumption that the species which produces the IR‘ spectrum of

KHF3() is [FHF] in a£ leést some broad, chemical sense is strongly supported

- by the fact that essentially the same spectrum can be seen in many other envi-
ronments, such as other crysta.lliné bifluorides and to a leéser extent in matrix
_isolation spectra. Studies in such environments all lead to the conclusions that
“the absorbing species has Dy, symmetry, and that the fundamentals are v2=1200
- 1300 em~'and 3 £1400 - 1550 cm~. Moreover X-ray crystallographic data
all show that thei; variation in the F...F equilibrium spacing .is very small and the
conclusion that‘ the H occupies the geometric center is nearly always drawn. (The

sole exception is p;toluidinium bifluoride.) Alsb, the faét that the H-bond in this

system is so s'trong means that it is likely that the integrity of the [FHF] ion is .

preseémwed in most environments. -

Therefore one may justifiably argue that the IR spectra’observed in

KHFz are attributable to localized vibrational transitions of a specieé which con-

-sists of [FHF]~in a chemical sense (not however in the sense that it is identical

St~
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to the gas phase free ion [FHF|™), and expect that a model based on the isolate;i’
ion might offer understanding of the vibrational dynamics of the ion as it is found

1&? various environments. Then it is reasonable to use ab initio quantum chemical
calculations (without any adjustable parameters) on the free ion in vacuum to
generate model potential surfaces which we expect to, resemble the tr;xe surface in
a crystalline envimnihent, at least in their main features.

The abundance of experimental data and the several theoretical works
(although none of them analysed the vibrational dynamics in the comprehensive
scale we attempt to do in this theoretical work) makes [FHF]‘a good .choice for
our study.

Furthermore, the linear, symmetric geometry of ;his ion leads to some
mathematical and computational simplifications, without invalidating the general

applicability of the physical arguments.

C. Previous Theoretical Work on [FHF]~
The Schr6dirlger equation describing the total vibrational dynamics in
the [FHF]"ion is given by (see Chapter 3),
o AL N |
——— i e F - r, =0 1.
T B~ a0t V(r,R)} E|%(7,R) = (1.1)

where:R is the F..F distancé\and T is the position veetor of the proton ( measured

‘_ from the geometric center of the F\..F axis).  The R-motion corrésponds qualita-:
tively to the symmetricAstretch'ing vibration.with fréquency 1)1, and the ‘pro!;&nic,

' motiogs to the vii)ratibga.l modes w_ith freduencies vy and v3. pand m, are the
associated reduced;a;ses A,- is thé‘Laplacia,n for ¥ 'b and V(i’, R) is the pofen- -—



”

tial surface for the vibrational motion, which 15 a non separagble function of the
vibrational coordinates.

The theoretical studies on [FHF] endeavour to obtain the solution of
cquation (1.1) for given V calculated by ab initio or cmipirical methods. Reduc-
tion of equation (1.1) to a 3-dimensional equation i1s trivial because of the cylin-
drical symmetry of the system. (See Chapter 3). Previous theoretical treatments
summarized herc have applied a number of methods to the solution or partial so-

lution of this problem for two or more of these degrees of freedom, using potential
n

~surface models of varying complexity and quality. Earlier work mostly employed

expansions in suitably chosen basis functions (usually products of harmonic oscil-
lator functions) to solve the eigenvalue problem, while later efforts have directed
attention to the use of adiabatic approximation or the selj"«conautcnt freld (SCF)
approximation to achieve separation of the degrees of freedom (see Chapters 3 and
4 for more detailed discussions of these separation schemes).

The earliest papers on the subject cofgsgered only the two stretching
motions: z, the protonic displacement along the‘f‘-...F axis (corresponding to the

asymmetric stretching frequency v3 ), and R. The emphasis in Ibers’ study [98]

was to obtain a potential function describing the stretching vibrations of the non-

bending [FHF] ion. The potential constants of his simple 4-term model (contain-
ing z¢, z'» R?, and z?R) were adjusted so that the vca.lculated frequencies would
fit the experimental results; the vibrational eigenvalues were determined using
expansions in products of harmonic oscillator (HO) functions. His study showed
that the two stretching motions are coupled.

Singh and Wood [96-97] used Ibers’ potential model to expiore the va-
lidity of the adiabatic approximatioh as a scheme for separating the v3 and v

modes for an O-H...O model system: they compared the adiabatic method with

-
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the method of direct solution by expansion in products of HO functions, and
concluded that the two methods give very close agreement, within 1% for the
lpwer eigenvalues. They also determined that in the case of [FHF|~, the adiabatic
method gave a reasonably accurate value for the 1sotopic shift in the equilibrium
F...F distance.

Almlof [94] performed an ab initio electronic calculation at th(: SCF ievel
and the data was fitted with an 9-term polynomial in (z,R). The vibrationz: eigen-
value problem was solved by expansion in a basis set of 160 HO product functions,
(both the mixing coefficients and the Hermite exponents of the HO basis tunctions
were variationally optimized) and the transition frequencies v3 + nv| were com-
puted for [FHF] and [FDF]~ . Values of v} = 660 cin~! and v3 = 1497 cm™! were
obtained for [FHF]™. A major source of the discrepancies between his computed
frequencies (especially the upper ones) and the experimental values is the fact that
the polynomial model used to fi{ his ab initio sgrface behaves unphysically when
extrapolated to higher coordingte values (i.e: outside the domain of cor'nputed
points). Also, his SCF level ab initio potential surface may not be very accurate
at higher energies due to the neglect of electron correlation effects. Almlof points
out that with his method, (i.e. solution of the total Schrodinger equation with a
bas‘lis set of HO functions) labelling the vibrational levels (in terms of v and v;
modes) can be done only for the lowest-lying state.s, for higher states tfxe mixing
between the basis func'tions being cornplete; Almlof also estimated the isotopic
shift in the equilibrium F...F distance, AR, to be -0.0058 A.

Jiang and Anderson [95] fitted Almlof’s ab initio surf;s,ce“(a.nd some em-
pirical datz;.) to a phy.{im model constructed by modifying the Lippincott and
Schroder form [100-101]. This model has the correct dissociation characteristics.

Jiang and Anderson used the adiabatic approximation to calculate a few low-lying
L L4
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proton eigenvalue curves for the non-bending [FHF] ion. The fundamentals 15
and v; for the [FHF] and [FDF]™ as well as the isotopic shift AR.; were com-
puted. (v3 was estimated from the vertical transition frequency at equilibrijum,
and v, was calculated from the curvature of the protonic ground state curve using
the harmonic oscillator approximation). They found values of vy = 694 cm~! and
v3 = 1490 cm™ ! They did not examine the validity of the adiabatic separation of
R- and 2- motions.

Of the studies on [FHF] using the adiabatic method, that of Barton
and Thorson [29] is the most relevant. The major objective of their study is an
examination of the validity of the adiabatic approximation for the non-bending
[FHF] ion. In their work, the 2-dimensional @b initio potential surface due to
Almlof (mentioned above) is used, and fitted to a globally realistic model potential
of a form similar to that of Jiang and Anderson (valid in the H-bond dissociation
region). They show that using the ‘molecular’ coordinate system (z,R), the non-
adiabatic coupling matrix elements (i.e. the non-diagonal matrix elements of the
operator (0/0R),) do not behave physically— i.e. they do not vanish at the dis-
sociation limit. This is overcome by defining a new heavy particle coordinate (by
means of a non-linear coordinate transformation due to Thorson-and Delos {99] )

which is forced to have (approximately) the correct limiting properties. The pro-

tonic eigenvalue equation is solved by numerical integration of the one-dimensional

Schrédinger equation for each R. The total wave function is expanded in a basis
set of adiabatic protonic states and the resultant set of coupled equations is solved

to obtain the exact energies.
t

Barton and Thorson find that compared with these exact results, the

7

15

adiabatic approximation gives transition frequencies within 1% and IR relative -

4
intensities within 10%, provided that the protonic levels are not degenerate. Fre-
ke

quencies computed for various overtones and combinations of v3 and vy show



reasonable agreement with experimental results. (They obtain v, = 677 cm™!}
and v3 = 1520 cm™! ). The major shortcoming of this work (and indeed of the
all the other studies on a non-bending ion) is their assumption of separability of
the protonic bending mode. As will be seen in Chapter 2, the.re 1s significant
anharmonic coupling between the bending and anti-symmetric st'retching modes.
i.e. contrary to their assumption, V(r,R) # Vi(z,R) + Vy(x,y; R), (where x and
y are the Cartesian displacements perpendicular to the F...F axis ).

The work of Lohr and Sloboda [93] directed attention to the problem of
coupling between the protonic stretching motion v3 and the bending motion v,
(corresponding to z and p, respectively, in cylindrical polar coordinates). They
solved the proton dynamics at the fixed value of Req = 4.3313 a.u. (the minimum
according to their ab initio data). The potential surface data calculations were

made at the Gaussian 70 SCF 4-31G level, and were fitted to an 8-term polynomial

16

expansion in z and p (the displacements of the proton along, and perpendicular to, -

the F...F axis respectively), and the vibrational wave function was expanded in a{

basis set of binary prf)ducts of one-di}iensioina.l and two-dimensional HO functions.
The mixing coefficients were variationally optimized leading to the diagonalization
of the Hamiltonian matrix (of order 144 in this case). Associated with these meth-
ods of direct solution of the Schrodinger equation are the problems of convergence
(necessitating large basis sets), and of physical interpretation of results (because
of extensivg mixing between basis functions). Lohr and Sloboda did not solve the
F...F motion problem. They computed the transition frequencies of 17 and v3 (1378
and 1669 cm™!, respectively), their overtones, and combinations between them.
Because-théy used ‘vertical’ transitions, their results for‘transitions involving v
or an overtone of v3 are in considerable error (see Chapter 5).They do demon-

strate the significant coupling which exists between anti-symmetric stretching and
bending modes.



‘Apart from the global 3-dimensional surface V(r,R) employed in this
work, the only other work on [FHF]-using a 3-dimensional surface is that re-
ported recently by Janssen et al. [71]. However, their aim was not the detailed
analysis of the [FHF| vibrational sp;:ctrum, but to demonstrate the sensitivity
of the calculated vibrational. frequencies to the level of theory in the ab initio
potential surface calculation. In the vibrational calculations, the total wave func-
tion was written as a product of three one-dimensional functigns of the normal
coordinates of each mode. Each of these ‘modal’ functions was expanded in a
HO function basis set, which linear combination was then variationally optimized.
Vibrational modal correlation was taken into account by performing Configura-
tion Interaction (CI) calculations using the SCF states as the basis. (See Chapter
6 for a discussion of the vibrational CI method). These vibrational calculations
were done for ab instio potential surfaces calculated at different levels of theory
(SCF, CISD, CISDT, CIDVD) and with different basis sets (from ‘Double Zeta +
Polarization’— DZP — to ‘Triple Zeta +3 Polarization + R}"dberg (or diffuse) +
~don H' — TZ3P+R+d ).

Their results show signiﬁia.nt variation among the fundamentals calcu-
lated w}th each ab initio potential. For example, at DZP-CISD level (this calcu-
lation will be denoted by JASBL1 in later chapters) , 12 = 1449 cm™! and 1/3\ =
1698 cm™! awhile at TZ3P+R+d-CIDVD level (calculation denoted by JASB2) ,
vy = 1363 cm™! and v3 = 1427 cm™~!. Their work shows that firstly, the inclusion
of electron correlation at double excitation level is crucial for an accurate descrip-
tion of [FHF]™( while even more exhaustive treatment of electron correlation is

not necessary ), and secondly, there is a significant dependence of the vibrational

frequencie%fx the size of the basis set used for the electronic calculations. Janssen

17

et al. do not compute the overtones or combination tones (apart from vy + v3 ). %



course, the quartic force field with which their potential surface is fitted cannot be
extrapolated far and breaks down in the dissociation region. Furthermore, using
the SCF approximation to separate the F...F stretching vibration from the pro-

tonic vibrations does not explain the Franck-Condon progressions such as v; + ny;

P

~

observed in the sbectrum as well as the adiabatic method does.
» .
In the present work we have used a CID level calculation (see Chapter 2)
for computing the global electronic surface we take as the basis for our potential

V(T,R). In general the level of sophistication and the size of the basis used are not

as complex as some of those considered by Janssen et al. but the domain covered

18

is essentially complete and includes the dissociation region behaviour. While the .

point made by Janssen et al. that the vibrational frequencies do vary significantly
with the Wvel of quantum chemical computation done is an important one, (and
the vibrational frequencies computed by Almlof, Jiang and Anderson, Barton and
Thorson, Lohr and Sloboda may all have significant quantitative errors in th:m
because their ab initio electronic calculations did not take into account correlation
effects), the focus of this work is much more directly on the question whether a
reasonable global model surface is able to explain more oriless completely the full

system of vibrational transitions (overtones, combination torfes, etc.) observed ih

the crystalline bifluoride system.

D. A Brief Outline of This Thesis _

In Chapter 2, the focus of our attentvion will be on the ab im'tia‘po-,
tential energy surface of ’[FHF]'(on which all the nuclear motions occur). The
quaiitative natur;a and the resultant gﬁysii:al implications of this (&dxmenmonal)
potential surface will be discussed. It will be shown that the prolate spheroidal



coordinate system, (£, 7, ¢), is appropriate to describe the proton vibrational dy-
namics. These three coordinates along with R, the F...F distance will comprise the
four vibrational degrees of freedom of the linear [F HF]‘ion.. An analytical model
for this potential surface will be presented which we claim is both physically rea-
sonable and computationally simple. It is constructed such that the H-bond will
dissociate correctly into HF + F~ fragments. The model is based solely on vthe ab
initio data, and has no empirical constants whatsoever.

In Chaﬁter 3, the adiabatic-SCF scheme is applied to the fotz:l Schrédin-
ger equation in order to separate the vibrational\modes. First, the adiabatic ap-
proximation will be used to separate the motion along the R-coordinate (essentially
a F atom vibration), from the protonic vibrations. This approximation was shown
conclusively to be valid for the separation of the proton stretch motion from the
F...F motion by Barton and Thorson, so we are justified in using it here, at least
as a zero-order basis for describing the dynamics. (However, unlike Barton and
Thorson, we are now treating the bending as well as the stretching modes, and we
shall see in Chapter 6 that there are situations in which this approximation does
break down.) The protonic stretching motion (i.e. along the n coordinate) will be
separated from the bending motion (along the £ coordinate) using the SCF approx-
imation. The underlying i)hysica.l concepts and the mathematical development of
the SCF method will be presented in Cha‘,pter 3. )

T}ié numerical solution of the resultant one-dimensional différential equa-
tions for the £- and n- motions are described in Chapter 4. The ﬁsual ?rocedure
in most of the previous solutions of the vibrational SCF equations has been to
expand the SCF wave function in a basis set of HO functions. Such a procedure is
not very efficient computationally. A‘method ﬁrst proposed by W.E. Milne [102]
g! be used to solve the differential equations and determine the SCF énergies.

19



The main advantage of this method is that we will be numerically integrating a
function that is (unlike the wave function itself) non-oscillatory. Two methods
are proposed to overcome the technical problem of the singularity in the ‘effective
potential’ in the {-differential equation. Chapter 4 closes with an account of the
iterative solution of the SCF equations. The resulting SCF protonic states provide

a zero-order basis for a more accurate solution of the protonic motion problem.

;
FARES

Chapter 5 consists of the presentation and the analysis ;:)fi‘the results of
the protonic vibrational dynamics (at the SCF level). SCF energy vs. R curves will
be presented for 27 different levels labelled with both the nodal quantum numbers
(ng,ny,m) and the ‘spectroscopic’ q.ua.ntum numbers (n,,, nyy). | The complexity
of these curves leads to much insight into the vibrational motion of the proton.
Some of the many crossings among these SCF curves will be removed (i.e. become

‘avoided crossings’ ) when modal correlation is included (i.e. when a CI calculatidn

is done). Vibrational frequencies will be estimated for the allowed IR transis
avy + bvz and compared with previous theoretical and experimental data. The
reasonably good agreement with previous results show that the adiabatic-SCF
framework provides a good description of the coupled vibrational dynamics of
our system. As expected, the proton (anti-symmetric) stretching mode is much
more a.nha.rmonic than the bending mode. Another noteworthy effect is that the
*%xcitation of the proton stretch tends to increaseﬁhe equiﬁbﬁum F...F separation,
while excitation of the bending motion has the opposite effect a.nd is somewhat
less pronounced. Comparing with the systertis [I‘;DF]' and [Fﬁf‘]", several isotope
effects will be also computed. _ | B

Cha;itm‘s‘ 2, 3, 4, and 5 constitute the core of this thesis. In contrast to

20

the préceding chapters, Chapter 6 contains only a limited amount of numerical .

calculations. The major emphasis of thxslast chaptér» is on laying out a stritggy

~»
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for completing the analysis of the total vibrational dynamics of the [FHF] ion.
The first step in this process is obtaining the exact proton eigenvalues, 1.e. doing
a CI calculation among the SCF states already determined. In this chapter, the
concepts behind a CI calculation and the CI technology will be discussed, and the
results of limited CI among m, states will be presented. These results indicate that
the adiabatic-SCF separation scheme is a valid procedure for the vibrational anal-
ysis of [FHF]~, and that the prolate spheroidal coordinates describe the protonic
motion quite well.

The final phase in the vibrational analysis is the solution of the heavy
particle dynamics (i.e. that associated with the symmetric stretching motion—
fundamental v). This will be discussed for both isolated adiabatic protonic energy
level curves as well as for protonic curves with avoided crossings. The situation
where the adiabatic approximation breaks down will be examined. Fir.xally, some

extensions of this research problem will be considered.
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2. THE POTENTIAL ENERGY SURFAbE

~N

A. Calculation of the ‘ab initio’ Potential Surface

Neglecting translational degrees of freedom of the center of mass (for an

isolated ion), the Schrédinger equation for the complete [FHF] system is,
[TV + A9, ) = BV, ) (2.1)

where ™

are the nuclear coordinates, and t* ;re the electronic coordinates mea-
sured from the rotating molecular frame; T™isa smt,a.bly defined kinetic energy
operator for the nuclear motion a.nd He is the electronic Hamxltoman For our pur-
poses the ®electronic Ha.miltonian’ is adequately.defined as the sum of electronic

kinetic energies and the electrostatic potential energy of the electrons and nuclei

(including the inter-nuclear repulsion energy),
He(F, T )_Z-——V2+U(F‘,?”) : (22

where mg ii the rest mass of the electron. Effects of an electronic reduced mass dif-
fering from myg, mass polarization effects, and various additional terms appearing in
a more rigourous formﬁlatioﬁ of the complete Hamiltonian are neglected as unim-
portant for the vibrational dynamics problem we consider here. The ‘usual’ Born-
Oppenheimer. approxixﬁation J[68] assumes th#t the total wa\;e function (7%, ) '

has the form 4

| o, ) = ") ey

where the electronic wave function $°(i%; i) is the solution of the electronic eigen-

value problem

e ) = EEw ) . @29
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for each nuclear configuration {f"}, and the nuclear motion (including the vibra-

tion) wave function $N(fN) also satisfies a Schrodinger equation
L S

[TV + BN (7)) = BV 7Yy (2.5)

in which the electronic eigenvalue ES(fN) plays the role of a potential energy sur-
face for the nuclear motion. We make this hpproximation at the outset; there is
no réason to believe that the very small errors resulting from this approximate
separation of electronic and nuclear motions have any relevance to the vibrational
dynamics of H-bonded systems. For clarity we should emphasize now that later
discussion of ‘the validity of an adiabatic separation’ is not at all concerned with
this approximation, but with a similar approximate separation of the proton vi-
brational motions from motions of the heavier fluorine nuciei.

Thus the first step in an ab initio study of vibrational dynamics in
[FHF]"is calculation of the potential energy surface ES(fV) for the ground elec-
tronic state. Such a calculation was performed in 1981-82 by Dr. M. Klobukowski,
who is associated with Prof. S. Huzinaga’s quantum chemistry research group in
this Department. The calculations at each configuration ™ were carried out at
two main levels:

(). SCE (Self-Consistent Field) , A
(2). SCF-CID (Self-Consistent Field +Configuration Interaction with Double re-
placement). 4

The' SCF-CID level includes important electron correlation effects. For
both levels a Huzinaga—Dum;ing [140,107] double-zeta' basis set which consists of
(9s,5p,1d*/3s,2p,1d*) basis functions on each F atom and (4s,1p*/2s,1p*) basis
functions on the H atom were used. The SCF calculations were pe?for?ned with the

GAUSSIAN 80 program. Electron correlation was included by taking into account

¢
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Coordinate Ranges for the ab initio Electronic Energy Calculations

Table 2.1

€

0.0 - 1.2

R (a.u.) range in z (a.u.) range in p (a.u.)

3.60 0.0-0.4 0.0-0.9

3.80 0.0-06 0.0- 1.4

4.00 0.0- 1.0 0.0-1.6

4.20 0.0- 1.1 0.0- 1.6

4.40 0.0- 1.2 0.0- 1.6

4.60 0.0-14 00-16

4.80 00-14 . 0.0- 1.6

5.00 0.1-1.5 0.0-16 e
520 0.0- 1.6 0.0 - 1.6

5.40 00-17 0.0- 1.6

5.60 0.4-18 0.0 - 1.6

5.80 0.7- 1.9 0.0 - 1.6

6.00 108-20 0.0- 1.4

6.20 11-22 0.0 - 16
. 6.40 11-21, 0.0- 14

6.60 13-2.2 0.0- 1.4

6.80 1.2-23 0.0-14

7.00 15-24 00- 1.4

7.20 16-24
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all configurations with double replacement in the CI calculation. Computations
were done for 710 different nuclear conﬁgurations, with F...F separations R ranging
from 3.60 a.u. to 7.20 a.u., and for a variety of proton positions (z,p) (c.f. Figur<e
. 2.1) at each R. Tabl.e 2.1l gives at each R the ranges of z and p within which
(at increments of 0.2 a.u.) ab initio potential points were calculated. The points
selected were staggered; for example, at R=4.40 a.u., electronic energies were
computed at (0.0,0.0), (0.0,0.2), (0.0,0.4), (0.2,0.1), (9.2,0.3), (0.4,0.0), (0.4,0.2),
(0.4,0.4), but not at (0.2,0.0) or at (0.4,0.1). In this work we have taken the SCF-
CID results as the basis for our model potential surface, although a parallel study
for a model surface based on the much easier SCF calculations would be interesting
for comparison and will be carried out in further work in this laboratory.

We may denote the resulting ground state potential energy surface by
V(V) = E§(fN); in terms of the cylindrical coordinates (z,p,R) shown in Figure
2.1, the equilibrium configuration of [FHF]:(minimum of the fuﬁction V) occurs

at

Req = 4.290513 a.u. = 2.27 a.u,,

Zeq = 0.0,

peq = 0.0,
with a total energy  Eg; = —199.886713 a.u. (Hartrees).

Thus as expected, [FHF]"has a linear, symmetric geometry at the equi-
librium con'ﬁgura,t;ion.0 _ A

Ab snitio computa;tibns at the SCF-CID: level with the same basis set
w:are.a.lso carried out by Dr. Klobukowski for the separated sub-systems HF and
F“, with the results | |

reg T = 1.756088 a.u. = 0.93 A,

“«
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Figure 2.1  Cartesian and Polar Coordinates of the [FHF-‘]" ion.




)

E(H  F) = 100223838 au.,  for HF,

q

and for F~, Ec (F ) = ~99 588695 a.u.
The calculated hydrogen-bond energy for [FHF] ", i.c. the energy re-
quired for the process

[FHF]" -+ HF + F°

18 therefore AEy, = 0.074180 a.u. ="16280 cm™! = 46.55 k(‘nl/u\mlv. The estimated
error of this value i1s £5 kcal/mole. This result ageees well with the recent calcu-
lated values of AEy, = 40 £ 5 kcal/mole  and  AEy, = 46.4 kcal/mole reported
by Peyerimhoft {16] and by Frisch et al. {17], respectively. As noted in Chapter 1,

experimental estimates of AEy, range from 37 to 60 kcal/mole.

B. Properties of the Potential Surface and Prolate Spheroidal Co-
.o
- . ] (/ .
ordinates g 0
\ Using the cylindrical coordinates of Figure 2.1, let us now examine sec-

tions of the ab initio potential surface V(z, p;R) for fixed values of the F...F dis-
tance R. These will provide physical insight into the vibrational dynamics. In
i particular, the selection of a set of dynamical coo‘rdinates' adapted to the shape of
“the potential surface is a crucial step in the solution of thé dynamics. As mentioned
in Chapter 1, we plan t; use the Self-Consistent Field (SCF) approximation as a
zero-order separation of the proten ‘bend’ and ‘stretch’ modes. The SCF scheme
.vis ezact if the potential is exactly separable in the coordinates used; by considering
Q ﬁhe potential surface we may be able to choose coordinates which make the SCF

v

approximation more accurate as a zero-order description.

o
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Figure 2.2 Contour diagram of the [FHF|~ ab snitio Potential Energy
Surface at R = 4.40 a.u.

Innermost contour: -199.885 a.u. Interval size: 4+0.010 a.u.



Figure 2.2 shows a contour diagram of V(z, p; R) for R=4.40 a.u_, slightly
larger than the equilibrium value 4.29 a.u. The two fluorine nuclei are symmet-
rically placed at z=4220 au. (In thi$ figure, maximum z-displacement is 0.4
a.u. while the maximum p- displacement i1s 0.6 a.u.) The change in potential
(increasing outward) 1s 0.01 a.u. (Hartrees) for each contour from the minimum
at (z,p)——:(0,0). This surface is closely similar to that used by Lohr and Sloboda
(93] for their study of the proton motions at the equilibrium F...F distance. The
potential 1s strongly anharmonic in the z- direction. The potential well is con-
siderably steeper for the z- motion (fundamental v3) than it is for the py motion
(fundamental v;); this is to be expected since v3 has a larger magnitude than v;.

Note also the ‘square’ contours, which imply a significant interaction of
the two displacements; it is easier to bend the proton away from the F axis
if we simultaneously displace it towards one of the F atoms than it is 'to move it
in purely bending or stretching displacements. These sloping, narrow potential
‘valleys’ will become more pronounced as R increases.

L .
We fitted tue values of the potential function V(z,p;R=4.40) to a poly-

nomial of the form

V(z,p; R = 4.40) = Za.'jz'pj , , (2.5)

1

using the same types and number of terms as Lohr and Sloboda did for their surfa;ce
at R=4.3313 a.u. Thirty ab instio data points from the SCF-CID calculation were
used to fit the potential in (2.5) relative to the minimum at (0,0) by the least
squares method, with a r.m.s. deviation of 3.71 x 10™* a.u. (= 81.4 cm“l).
Table 2.2 lists these coefficients (TW) and for a rough comparison includes the
values used by Lohr and Sloboda (LS) to fit their ab initio surface. The negative

coupling term aj222p? obviously has a large effect and is mainly responsible for

the lowering of the potential curvature in the ‘corners’ of the durface. The greater
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Table 2.2

Fitting V(z, p; R = 4.40) with a Polynomial in (z,p)

1

—
] aj( TW) aij(LS)
2 0 0.04413 0.07636
4 W 2.69665 2.86352
0 2 0.14894 0.13913
0 4 0.00033 0.01891
2 2 -1.23100 -1.33371
2 4 2.37450 2.22633
4 2 -10.50960 -10.28376




anharmonicity of the potential for stretching than for bending is also evident.
These and other feature; of this surface are qualitatively like t}i)je of Lohr and
Sloboda, although their surface is somewhat more anharmonic for p displacements
and less anharmonic for z displacements than ours.

As R is further increased the potential minimum is further flattened in
the z- direction until, in the range R=4.60-4.80 a.u., two minin.la symimnetrically
placed about_z=0.0 and a potential maximum at z=0.0 appear. This barrier
increases in height as R increases and the minima move away from the origin,
following the F atoms. At the same time the features evident at the ‘corners’ of
the potential surface at R=4.40 a.u. now develop into well-defined curved valleys
swrrounding each F atom. For example, Figure 2.3 shows the contour map for
V(z,p;R=5.80). :I'he contour spacing and coordinate scale is the same as for Figure
2.2. (Maximum z- displacement is 0.9 a.u., while the maximum p- displacement is
0.75 a.u.) The proton now spends most of its time near one of the F atoms, and
the bending motion is turning into a libration of HF about an equilibrium linear
orientation towards F~, which will éventua.lly become a hindered rotation.

It follows that the cylindrical coordinates (z,p, ¢), which might be ap-
propriate to treat the proton dynamics at near-equilibrium values of R such as
4.40, are not suitable for a description at a larger value like 5.80 a.u. Instead we
need a curvilinear coordinate system whose parametric lines more nearly follow
the actual potential surface contours. Ideally we would like a; global choice which
can be used at all F...F distances.

For th;s purpose we have selected the prolate 3phero;‘dal coordinate sys-
tem) (£, 1, ¢) (sometimes called the confocal elliptic system). The parametric sur-

faces of this system are ellipsoids whose foci are at the F atoms (surfaces of constant

€) and hyperboloids of the same foci (surfaces of constant 7). In Figure 2.4 the

Y

~
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grid lines of these curves are shown in a section for a fixed azimuthal angle ¢. The
coordinates (£,n) are most conveniently defined in terms of the radii r; and 1

measured from the two foci and the distance R:

£=(—rl—i—”—) , T TS < o0 (2.6a)
R |
=(rl;r‘r2) , —1<n<+1 (2.6b)

The remaining proton coordinate is the (cyclic) azimuthal angle, 0 < ¢ < 2.

Comparison of Figure 2.4 with Figures 2.2 and 2.3 shows that this system
of coordinates is reasonably appropriate for both small and large F...F separations
R, since the parametric curves do roughly follow the shape of the potential valleys
in both types of situation. For smaller R, where the potential has a minimum at
the origin, the curves of constant { and constant 7 do not deviate much from lines
of constant p and constant z, respectively, of the cylindrical system. On the other
hand, the increased curvature of ellipses and hyperbolas nearer to the foci more
closely follows the surface at larger»R-va.lues where the double-minimum potential
with valleys curving about the F atoms develops. An additional advantage of
this coordinate system is its preservation of the central symmetry inherent in the
problem.

The prolate spheroidal coordinates are probably best kndwn as the sys-
tem used to separate the equations of motion for the two-center, one-electron
Coulomb problem {e.g. by Burrau [108] for H). It may be helpful therefore to
point out that while we normally thin]rt of the degrees of freedom associated with
" coordinates (7, 4) in that problem as ‘angular’, and that associated with ¢ as ‘ra-
dial’ motions, the physical situation here is somewhat different. The coordinates
(€, 4) are those associated with the two-dimensional ‘bending’ mode and its asso-

ciated axial angular momentum, while the coordinate n corresponds to the proton

\
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‘stretching’ mode. We are not aware of any previous instances of these coordinates
being used for the vibrational analysis of any system or indeed even for'a. model
representation of an ab initio potential function. .

Of course the definitive test of the utility of this coordinate system will be
the results of the SCF and SCF-CI calculations of proton vibrational energy levels.
If a modal description as implied in the SCF separation of the problem proves to
be a good approximation to exact behaviour, the choice will be vindicated. We
shall see that this is very nearly the case, even though the model potential function
we will use is not clearly separable in these coordinates. 0

A minor drawback of the prolate spheroidal system is the relatively
greater complexity of the one-dimensional Schrédinger equations to be solved in

these curvilinear coordinates. However, as we show in the chapters following this

is not really much of an obstacle.

C. N Potential Surface Modelling
We now construct an analytical, global potential surface of the form
V(&,n,R) for use i the dynamical calculations. This should provide a good fit to
the 710 SCF-CID ab initio calculated points; in addition, we want this surface to
meet the following criteria:
(1). It should provide a smooth interpolation between calculated points.

(2). It should give a physically realistic extrapolation of the surface beyond the

35

range of the calculated points; this has an important effect on the upper vibrational

levels.

(3). The number of parameters in the fit should be reasonable with respect to
3

the number of data points fitted.



(4). Ideally, the model should be conceptually simple, and offer some under-
standing of the relation of the H-bond system to its constituerit species HF' and
F-.

We will refer the ab initio potential values to the dissociation limit (HF
"+ F7) as the zero of energy (see Figure 2.5); that is, if CIDR denote values of the

ab initio potential, then CIDR—0 when the H-bond is dissociated,
i.e. when [FHF]” — F~ + [HF]eq.

It seems reasonable to represent the main skeleton of our model, denoted by SK1,
as the sum of two potential wells for the limiting HF molecules; these are func-
tions respectively of the radii r; and r; from the F atom to the proton, (see
Figure 2.1) and should asymptotically represent the behaviour of isolated HF . To
construct these potentials we fitted a Morse potential function to the calculated
ab initio points for the HF mole,cule (see Figure 2.6); a least squares fit with r.m.s.
deviation of 5.51 x 10~3 a.u. was obtained. Although better fits could have been
obtained— especially at H...F distances smaller than the equilibrium distance—

by using more complicafed forms, we selected the Morse function in the interests

of computational simplicity. The forms we introduce can then be written

VHF1 = D{1 <ezp[-a(r; —r.)}}}, = ~ - (2.7a)
' VHF2 = D{1 - ezp[—a(r; — r.)]}?, (2.7b)

with SK1=VHF1+4+VHF2-D. " (2.8)

-

The parameters appearing in equations (2.7 a,b) are-
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Energy A
\
+D \ \\ F+ H+F-
5’ 146.67 kcal
0.0 3 ‘ [F - Hjo + F-

/
N,

) } 46.55 kcal
. [FHF|;,

Figure 2.5 Reference Energy Levels for the [FHF|™ system.

Energy

T v r(H-F)

rcq

Figure 2.6 The Morse Potential Function

37



and the least-squares fitting parameters

D = 0.246419 a.u. = 54083 cm ™!,

i
a = 1.197991.

-

In prolate spheroidal coordinates,

R 2
VHF1(2)=D [1 — eap{~a[Z (€ £ m) —r.]}] . (2.9)

SK1 has the limiting values of zero and +D in the dissociation limits
HFq + F~ and F+ H+ F~, respectively.
" We found that the main skeleton function SK1 provides a fairly realistic

mimic of the qualitative behavic;’ﬁr observed in CIDR; the difference, given by
VP = CIDR - SK1, (2.10)

proves to be a fairly slowly-varying function in comparison with either CIDR or
SK1. We then vused a lpast-squares procedure to fit all 710 ab initio data points
for the function \}P to the form | |
: 2 2 3 ' : o
VP=eapl-f(R-RI{3. D Y a6~ V¥ (R-Ro)*}.  (21D)

1=0 =0 k=0

The decaying exponential factor ensures that VP— 0 at large R so that CIDR ‘
still tends correctly to zero.in the dissociation limit [HF]eq + F~ (and tends to
+D in the dissociation limit F + H 4+ F~). For a range of Vaiu of 5, t}ze 36
coefficients {aj;x} were determined by least squares fitting, and the value = 1.10
. was then chosen as optimal on the basxs of minimum r.m.s. deviation. Table 2.3 -

gives the 36 coefficients obtained by this procedure. . . ’

/



Table 2.3 ’

2 2 3
VP = crpl—B(R - Reg)] 3. 3. 3 ai(€ = 1)'n™ (R — Reg)t

i=0 ;=0 k=0

i j ok | ag i k| e

0 0 0] 0104098E+00 |~ 2 0 0| 0.254922E+00
0 0 1] -0.230561E-01 | 2 0 1| 0.467485E+860,
0 0 2| -0.3999012E-01 2 0 2 | 0.506124E-01
0 1 0| -0338661E+00| 2 1 0| -0.376342E-+01
0 1 17| 0.197601E+00 | 2 1 '1| -0.323951E+01
0.1 2| 0331007E+00 | 2 1 2“%\0.202\667E+01
0 2 0| 0207155E+00 | 2 0 0.97076§1E+01“
0 2 1| -0.118442E+0] 2 1 -0‘;949928E\+01
0 2 2| -0448898E+00| 2 2 2 0.388667E}01
100 0.257944E+00| ©0 0 3| -0.198637E-01
1 0 1| -0.205501E+00| ©0 1 3| 0.460766E-01
1 0 2| 0610017E-01 0 2 3| 0.140848E-01
1 1 0| 022919E+01 | 1 0 3| 0.822902E-0L
1 1 1| 0102346E+01 | 1 1 3| -0.184929E-01
1 1 2| -0.130658E+01| 1 2 3| -0.580361E-01
1 2 0| -0.387012E+01| 2 0 3| -0.139133E+00
1 2 1| 0564683E+01 | 2 1 3| -0.901666E+00
1-2 2| 0233770E+01 | 2 2 3| 0.161069E+01

7



The resulting analytical model surface V(£,7,R) ﬁl‘ts the 710 ab initio
points from the SCF-CID calculation with a r.m.s. deviation of 65.6 cm~}. The
fit is actually better than this in the most important regions because the largest
deviations occur at points on the CIDR surface which have high potential ener-
gies. For the 650 points on the potential energy surface below 20000 cm™!, the
r.m.s. deviation is 46.5 cm™! while for the 484 data points below 15000 cm™!
it is only 26.3 cm~!. We therefore believe that the analytical function we have
determined is an accurate representation of the ab tnitio calculated surface; that
is, the fundamental uncertainties associated with the relevance or accuracy of the
ab initio results themseives, and with correction effects not included in the vibra-

tional dynamics, are more important as sources of error in the results than the

40

discrepancies between CIDR and the function V(¢,n,R) we have constructed to -

model it.

Figures 2.7-2.10 show perspective topographies using the fitted potential

surfaces, denoted by CIDRg;, for R=4.20, 4.40, 4.80, and 5.80 a.u. (In Figures 2.7-

2.9 the maximum z- and y-(p-) displacements are 1.0 a.u., while in Figure 2.10
they are 1.5 a.u.). These again display the features descnbed previously in Fxgures
2.2 and 2.3. Note that in Figure 2.7 (R=4.20 a.u.) the curvature of the surfa.ce

for the stretchmg motion has increased relative to that near Req= 429 a.y., while,

the curvature for the bending jnotion has decreased. The features which produce
the square contours in Figure 2.2 are visible in Figure 2.8 (R=4.40 a.u.) and their

development into potential valleys in the double minimum regime is evident in

Figure 2.9 (R=4. 80 a.u. ). (Note that the surfa.ces in Figures 2.9 'and 2.10 have

been rotated clock-wme by 60° for better v1ew1ng ) At R=5. 80 a.u. (Figure 2.10)

the bamer between the mmxma is a.lready about’ 10000 cm” 1. at thxgg.nd_ larger‘ I

F..F separa.txons the system is/well on the way to d;asoqatxon into its cbns_titugnt
fragments. o | L
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D. Summary

This chapter discusscd construction of the model potential surface used
for vibrational dynamics calculations. The Born-Oppenheimer separation of elec-
tronic and nuclear motions was assumed @ priors, so that potential energy surface
for the vibrational motion is the electronic energy, ES(fN). Ab initio calculations
of the energy of the electronic ground state were carried out for a large number
of points on a 3-dimensional surface (for vibrational coordinates corresponding
to proton stretching and bending and F...F stretching motions). The properties
of this surface, including behaviour in the dissociati(;n region, suggest that pro-
late spheroidal coordinates offer an approprate global choice for describing the
vibrational dynamics. The model potential surface that we have constructed has

the correct dissociation characteristics, and fits the calculated ab initio electronic

energies with a r.m.s. deviation of 65.6 cm™?.
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3. VIBRATIONAL SCF THEORY
/

A. The Vibrational Schrodinger Equation (

N

In the preceding chapter we discussed the electronic potential surface and
constructed an analytical model to describe it. As vibrational coordinates for the

problem, we used the F...F separation R and the vector coordinate 7 of the proton,

medgured from the center of mass of the two F atoms. The explicit form of the
potential V(7,R) employs the prolate spheroidal coor(iinates, V=V({,n,R). Some
furtBer discussion of these vibrational coordinates and the form of the vibrational~
Hamiltonian seems appropriate.

Six coordinates are required to fix the relative configuration of the three
atoms in [FHF|™; of these, two degrees of freedom describe the orientation of
the system in space. Our model of the [FHF] system assumes that the electronic
potential surface does not depend on the orientation of the system, but only on the
four vibrational coordinates. (In the énvironment of a crystalline bifluoride, the
orientational degrees of freedom correspond to lattice modes, and the assumption
that the electronic potential surface dc.>es not depend on them really means we
assume the vibrational dynamics can be understood with a local model.)

We can describe the [FHF) system with relative coordinates 7" and R,
where R is the vector from one of ‘the F atoms to the other, and 7 is the protox;
@r&nate measured from the center of mass of the F atoms. Both coordinates are
referred to a space-fixed frame. Then the kinematic Hamiltonian for the relative

\
motion in these six degrees of freedom is rigourously given by

D ).
Ty = e — A
rel 2 " 2# (3 )
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where p and P are the momenta conjugate to 7 and R, respectively, and the
reduced masses m,, u are given in terms of the nuclear masses mp,mg by

(my +2mpF) 2

T

We wish to extract the two rotational degrees of freedom associated with the
orientstion of the R axis (angles 0r, #r). After suppressing the rotational motion

associated with the coordinates 0y, ¢ g the effective Hamiltonian for the vibrational

motion is given approximately by

ma ()% () en e

and we need to solve the Schrodinger equation

HyayUo(7, R) = E*¥ (7, R) (3.4)

4
for the total vibrational eigenvalues EX* and eigenfunctions ¥,(7, R).

B. Adiabatic Description of the Proton Motion

Our analysis of the vibrational dynamics in the [FHF] ion follows the

approach taken by Barton and Thorson [29], who showed in their two-dimensional

" study that in most cases the proton stretching motion (associated with a reduced

mass m, ) can be separated very accurately from the F...F motion (associated with
a reduced mass u) by an adiabatic appraximation. We define adiabatic ‘protonic’

states xn,(£,7, ¢; R) as the eigenfunctions of the protonic Schrodinger equation

-1 - '
{92+ V(&1 B) ) xap (6,1, 6 R) = Eny (R)xn,(6,1,8:R)  (3.5)

2m,
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i

at each fixed F...F separation R. The protonic eigenvalues E, (R) and the eigen-
functions xn,({,7, ¢; R) depend parametrically on R. (n, designates the set of
quantum numbers specifying a protonic state.) At each R we may assume that
they form a complete orthonormal set of basis states spanning th‘e protonic Hilbert
space, and that they can be continued analytically in an unique manner as func-

tions of R. Hence {xn,(£,7, ¢; R)} may be used as an expansion basis for solutions

to equation (3.4) of the form

V(7 R) = 3 @uny(R)xnp (6,1 6 R) . (3.6)

np

Such an expansion is an ediabatic representation of the solutions to equation (3.4).

In general, the substitution of (3.6) into the Schrodinger equation (3.4)
leads tc a system of coupled second-order differential equations for the amplitude
coefficient functions {®,,(R)}. (See for example Chapter 6.) However, Barton
and Thorson showed in their study of the two-dimensional problem involving only
the stretching modes that inbeésentia.lly every case solutions to equation (3.4) can

/
be accurately approximated by a single term in the sum, i.e.

(7, R) ~ \I’:,D n,( 1,6, R) = q’nyl,n,(R)Xn,,(f, n, ¢; R) . (3.7

This is called the adiabatic approzimation. (n,, denotes the quantum number for
motion in the coordinate R.) .‘

If the adiabatic approximation (3.7) is valid a simple interpretation of the
" vibrational dynamics follows from it, bec\t_;/use to good approximation it may then

be shown that the function-®,, ,a,(R) is simply a solution to the one-dimensional

48

Schrodinger equation
-1 & | S
{ 2u dRZ + E,.'(R)} ’lul.ﬂp(R) E:::,t:‘u,‘bnul,u,(R) . (3.8)



That is, the protonic eigenvalue curve E, (R) plays the part of an ef-
fective potential f;mction for the F...F vibration, in complete z;nalogy to the role
played by the elect!ronic eigenvalue surface as an effective potential for molecular
vibrations (section A of Chapter 2). (Thus the F...F stretching mode frequency

depends on the protonic eigenstate, and this mode is described by the function

(R).) It follows that the frequencies and intensities of combination bands

-
of the type v3 + nvy or v + nuy; n = 0,1,2..etc. which appear strongly in many
H-bond IR spectra can be understood very simply by analogy with the Franck-
Condon interpretation of progressions of vibrational bands in the electronic spectra
of a diatomic molecule, as was noted by Sheppard [8] for H-bonds in general.

The rationalization usually offered for an adiabatic separation of protonic

motion in these systems is the significant disparity in the ‘proton’ and ‘heavy

49

particle’ masses m,, y; in the case of [FHF] the ratio (m,/u)= 0.1033 . That is,

because of this difference in masses, the proton goes through many cycles of motion

during the time in which the heavy particle configuration changes appreciably. In

other words, the proton eigenfunction adjusts itself instantaneously to any change -

in the heavy mass conﬁgﬁration. Therefore it should be valid to quantize the
proton dynamics for a ﬁxed heavy particle geometry (i.e. a fixed value of R).
However, there may be criteria other than the mass in determining the success
of the adiabatic approximation. It is noteworthy that studies by Ezra [110] and
by Caswell and Danos [111] showed that for model coupled oscillator systems the
adiabatic approximation is able to give accurate eigenvalues for a very wide range

~—

of characteristic frequency ratios of the coupled modes.

It is evident that the protonic eigenvalue curves E,, (R) have physical -

significance and offer fundamental insight into the vibrational dynamics of [FHF]~.

In the rest of this Chapter, as well as in the further discussion of Chapter 4, we

°



restrict our attention entirely to the solution of the protonic Schrédinger equation

(3.5).

C. SCF Mode Separation of Proton Dynamics

Since the azimuthal angle ¢ is a cyclic coordinate, the corresponding
angular momentum (associated with the bending mode) is a constant of of the

motion with values m=0,+1,+2,..; the solutions x,.p(fd 1, ¢; R) have the form
Xy (67,83 R) = X (€, m; R)[(27) ™ ?eap(img)] . (3.9)
Substituting (3.9) in equation (3.5) we have, since

2 _
Ve = B )

. ) a1 8 0 ik
; {?[(fz—l)a—f]"L%[(l"’z)%]+(€2—61)(177—’72)3"’2}

)

(3.10)

2 2

-1y (- 712)]

+ V(E,1 ) Xy = Eny(R)Xop
(3.11)

_a (8., 0, 9. 20
{@2-172)[ € =Dl + 51— )5 ]

' where a= R;ri,

Thei‘%fiwe l;ave to solve equation (3.11) for En,(R) and X,,(§,m; R). To
solve equation (3.11) we again seek methods whi(:.h offer conceptual undemtahding
and simple physical interpretation of the dynamics. In principle, an.’,expansion in
any complete basis (e.g. products of harmonic oscillator functions) would provide

a solution; however, such methods offer little insight and in addition may converge

on the correct solution only slowly unless the basis is selected in a way reﬁéd:ing.

the physical solution.

/



As a basis for solving the proton dynamics we have selected the Self-
Consistent Field (SCF) method, which again permits a mode separation of the
bending (along the {- coordinate) and stretching (along the 7- coordinate) motions.
In the SCF method the eigenfunctions of (3.11) are approximated by a simple

product of two single-coordinate functions, ane'm(f; R) and Bn, m(n; R):

e Xny (6,7, R) = x5 mem(€,1, &; R) = anf.m(é R)Buy m(m; R)[(21) 2™

(3.12)
and the equations for the two ‘modal’ wave functions a and § are determined
by the requirement that the expectation value of the protonic Hamiltonian is
stationary with respect to variations in a and . This leads to one-dimensional
Schrédinger equations for the modal wave functions in (3.12) which are coupled,
in that the effective potential determining one modal function is an average of the
potential over a distribution determined by the other and the two equations are
solved self-consistently. Explicit derivation of the SCF equations for this case is
given below.

The SCF approximate solutions given by equation (3.12) are character-
ized by three quantum numbers (n¢,n,, m); for given m, ng and n, specify the
number of nodes in the functions a and §, and may be directly related to assign-
ments of excitation levels for the v, and v3 vibrational rnodeé, respectively (see
Chapter 5). If the SCF approximation were ezact, it would then be possible to
identify each protonic level uniquely in terms of the corresponding mode excitation
quantum numbers n,.,, n,y,{(m), and, even though the system is far from harmonic
and the quantitative level spacings predicted by harmonic models would not occur,
such an approach would obviously offer the best conceptual grasp of the proble‘

Although we have chosen the prolate spheroidal coordina.té éystem be-

.cause it is more nearly able to provide such a quantitative mode separation, th

>
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potential V(£,7;R) is not in fact exactly separable in these coordinates and the
SCF wave functions given by (3.12) are only appraximate solutions to equation
(3.11). However, it is reasonable to assume they can still provide a useful and com-
putationally efficient representation as an expansion basis for the coﬁect solutions
(see Chapter 6). ‘

Although the SCF method in vibrational dynamics is a fairly recent de-
velopmenf, considerable attention has been given to it [71-92] since the first formu-«
lations by Carney et al. [69] and Bowman [70]. Some studies considered abstract
model éystems of coupled oscillators [74,75,79,82] while other work has been con-
cerned with applications to specific molecular systems such as H,0 (73, 77], SO,
HCN [91], HCHO [73,78], HNO, HOF, HOCI [90], and [FHF]~[71]. Work by '
Ratner et al. and Farrelly et al. (83-87] has focused on semi-classical formulations
of the SCF method. In vibrational problems the SCF method is simpler than it
is for a many-electron system because the permutation symmetry requirements of*
Hartree-Fock theory are not present [73].

The general experience rosulting from these studies has been that the
SCF method usually gives rather good results, especially for levels which are low-
lying and non-degenerate. For example io H20 , Bowman et al. showed that
the average error of the SCF energy for levels up to 13000 cm"‘abovo the ground

. :;!’” state was 117 cm™1; in the six-mode system HCHO, Bowman (73] found an av-
e erage error as low as 33 cm™". As a rule, errors in the SCF énergies xm:rease as
vibrational energies and amplitudes of motxon increase, but serious faxlures bf the

SCF approximation occur only in cases of Ferxm resonance (degeneracies or near-
degeneracies of SCF levels of the same symmetry). Even in such cases, Thompson

and Truhlar [82] showed that by mixing in just the degenerate SCF states they

could recover 99% of the exact result. Tho;son and Choi [139] reached similar con-




clusions in their application of the SCF approximation in Cartegan coordinates

to the two-dimensional quartic oscillator, i.e. the potential V = ar? .

D. Self-Consistent Field Equations

In order to find the best functions a and g satisfying the fotm (3.12)
we apply the variation principle. i.e. we require that the energy E be stationary
w.r.t. a small variation in the wave function, 8y, (with x expressed as a product

of the two modal functions as in (3.12)) leading to the condition
<6x|fI—E|x>=0 | (3.13)

where the usual Dirac bra-ket notation has been adopted and the integration is

over the coordinates &, 7, ¢; the volume element is
(R\3 '
dr = \5) (€% — n?)dEdndé . (3.14)
We normalize the individual modal wave functions,

+o00 :
/ el m(GRP =1 (3.150)
+1

©

/_ :1 dnlfng m(m; B =1 (3.15b)
Consider a small arbitrary variation da of the function «; thfe corresponding vari-
ation in Mx is:
6x = (8a)B
Then from equation (3.13) we obtain (assuming ;z, B to be real),

+00 ‘ +1 R
[ aesa{ [ dnte - )81E - Blap} =0, (3.16)

+1 -1
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(dropping the labels for the purpose of this derivation).
kA

Now, from (3.12), (€ - nz)fl = i‘f + ft,, +U(&,n, R) (3.17a)

where = a—(f l)a—é (3.17b)
hy = agr]—(l - nz)gr; — (3.17¢)
and U, R) = (& - ")V (3.17d)

For relationship (3.16) to be true for arbitrary éa,

+1 )
| ane ~ it - Elap =0

-1

Thus equation (3.16) reads
A +1 +1 +1 X
[hg + / 1 dnUﬂz]a = [ng _E / 1 dnn?B? ~ / 1 dnﬂh,gﬂ]a (3.18)

Next, we make the substitutions

a6 R) = (€2 - 1)7Y%f(&; R) ' (3.19)
and B(n; R) = (1 - %)~V %9(m; R) (3.20)
| . & 1
Then,  hea = a(¢? - 1)‘/2;57f + %—Wf '
o N & a(l-mz) 9

and  Bhgf = a9 39 + = ¢

" Therefore equation (3.18) becomes,

¢E

(1 -m?) 1 (ef2 2
{dc2+<s2-1)2+(e=-1> (1 V”}f“"” {aw R

. +l +1- (1 m2) Y ire, '
a(é‘*’—l)/ - n’) T@- 1)/ ang [w* a=mnlf sHER)

e
R e



or,

d* (1 - Hll) A t1 ((‘Z - 7;:) ) 2 (g
T - -2 -1 El Ry =
lie ¥ ot @ n/_l et e HHER
(3.21)
where f({v R) = fn(,m(i; R) .‘/(7/; R) = g"q,"‘("l-‘lf)‘
4= J _ {f_‘)'m,
a 2
: ./+1 ; [ d* ( - ‘Hl ) (3.22)
arc €, = dr 4 ——————yg . 22
S

Likewise, considering a small arbitrary change in J, 4 —+ 3 + o, we

obtain,

. 4+ 0 ) ) 4+ o0 ) ] + 0 . L N
[h,’ + / de(y‘)] ﬂ = [1}1}: — E/ « dE{Z(IJ — / (1£(lh€(l} ,’j (323)
+ + +1

1 1

And after making the substitutions (3.19), (3.20),

& (1-m? A /+°° (;2_,,2 e
— - - , d€ = V-F = g(n. R) =0
{dn2 +(1 nZ)Z (1—7]2) l {(5 [ ]f +(1 77~)}g(] )
)} (3.24)
B +o00 (1 _mz) ’ 5
here, e/—/H d{f[d£2 oo 1)2]f- (3.25)

The on® dimensional equations (3.21) and (3.24) are the SCF equations
of motion in the - and n— coordinates, respectively. The new functions f(¢{; R)
and ¢(n; R) were introduced in order to obtain the differential equations in the

‘normal’ form (which are more convenient from the computational point of view).

These two equations are coupled through the ‘SCF interaction potential’ terms

A f“ dqii—;;',l[v Eﬁ and A [ g—,—'l—‘ V — E|f?, and the ‘coupling con-

stants’ ¢y and €;. Thus they are solved iteratively until convergence is reached.

(4]

&h



This iterative procedure is initiated by forming a suitable estimate of the
coupling constant and the SCF interaction potential in one of the two SCF equa-
tions. The solution of this equation is used to compute the coupling constant and
SCF interaction potential in the other equation. Then the solution of this second
equation is in turn used to calculate the coupling constant and potential necessary
to solve the first equation in a new iterative cycle. The iteration is continued until
consistency in the eigenvalue E(5F) from both equations is adﬁ/iev'ed. A detailed
description of this process can be found in Section E of Chapter 4.

The SCF energies E(( . )m and modal eigenfunctions Qg m(&; R), and
Bn,.m(n; R) which result, as well as the SCF potentials and coupling constants
€9, €f, are characterized by the quantum ﬂumbers (ng,ny,m). Since the SCF
potentials and parameters of equations (3.21) and (3.24) each depend on both
quantum numnbers, modal ei‘genfunctions for different nodal quantum numbers are

not orthogonal:

+1
/ 0B m(m: R)mm(m R) £0, 1’ #n

1

+00
| deawm(& Ranml& R £0, o' £

+1

although these overlap integrals are usually fairly small compared to 1.

The expectation value of the kinetic energy of a protonic SCF state

(SCF) )
Xng,ng,m 1s given by, .
< (SCF) T (SCF) >
- he ﬂ(,"q ,m I I ’l( p, M

(3.26)

F
(XS0 1 x5,

v T e € )+ 50z
' {2 - '72 F;
GRS

+

’

(3.27)
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and < (¢ F) | \(SC” > = constant —=s_  say. (3.28)

\n(_n.,,m ng.ng.m

Using equations (3.22), (3.25), (3.27), and (3.28) m (3.26),

R
~>((, Fey) (3.29)

4m, s

() = -(

1.e. The sum of the coupling }consta.nts gives, apart from a negative
u;ultiplicative constant, the expectagf)/nrx"alue of the kinetic energy of the protonic
state. So we should expect the vanation in — (€5 + ¢;) to parallel that of the total
SCF energy among protonic states calculated at a particular R value.

Multiplying equation (3.24) by ¢(n; R) and integrating over 7 (using
(3.17), (3.28) and (3.22)) yields the explicit expression for energy,

= - )L w3 St

(3.30)

A rough interpretation of the individual parameters ¢, and €5 as scaled
kinetic energies associated with the other degree of freedom in equations (3.21) and
(3.24) respectively is qualitatively useful, and these quantities are found to vary
with the various quantum numbers in a f'}).shion which renders this interpretation

plausible. No rigourous interpretation of these parameters as ‘modal energies’ as

possible, however; this is in contrast to the situation in the Hartree-
equations for a many-electron system, where Koopmans’ theorem {112
a physical significance to the one-electron eigenvalues or ‘orbitgl€nergies’.
Finally, note that the SCF equations (3.21) and {3°24) contain the ‘az-
imuthal angular momentum’ term (1 — m?)/(62 = 1)?, and (1 — m?)/(1 — n?)?,"

respectively. However, since these terms become significant only when § — 1

and 7 — %1, they play a much more important role in the - equgtion (3.21),
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than in the 7- équation (3.24). This 1s because while the regian n = k‘il (cor-
responding to the straight lines obtained by extending F,..F, to the left of F,;
and to the right of F3) is physically inaccessible to the proton, the region ¢ ; +1
(1.e. the straight line joining F; and F3) is very much accessible. Thus the kinetic

energy associated with angular momentum m appears primarly in the ‘bending’

mode dynamics, rather than in the ‘stretching’ mode.

E. Summary

The solutions 4o the yibrational Schrédinger equation can, in general,
be expa.nded in a basi of adiabatic ‘prdtonic’ stafes.” Earlier work has shown
that the adiabatic approximation is valid in the case of [FHF|™. i.e. the total
vibrational wave function may be written as a simple product of the protonic
eigenfunction x,,(£, 7, #; R) and the v- mode function, (p"v;-"p(R)' Then the self-
consistent field approximation is used to separate the motion in the ¢- coordinate
(bending mode) from that in the 5- coordinate (anti-symmetric stretching mode).
Application of the SCF approximation to the protonic vibrational dynamics results
in two one-dimensional Schrédinger equations in the modal functions an, m(; R)
and fn, m(7; R). Since these equations are coupled through the SCF interaction
potentials, they have to be solved iteratively until convergence in the SCF energy
eigenvalue is reached. The numerical technology used to solve the SCF equations
will be described in Chapter 4.
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4. NUMERICAL SOLUTION OF THE SCF EQUATIONS

A. General Discussion of Mil?e"s (Quantal Momentum) Method

The SCF equations (3.21) and (3.24) have the form of the one-dimensional
Schrodinger equation
2

(3 B) + K (s ROy R) = 0 (4.1)
Yy

where the function k?(y; R), which we may interpret roughly as the square of a clas-
sical momentum function, has positive values in some domain of the independent
variable y. In general, k?(y; R)'depends upon some effective poteatial function as
well as on an energy E; for the cases we consider, the effective potential and the
energy E are such that the ‘classically allowed’ domain(s) for which k%(y; R) > 0
is bounded, and acceptable solutions exist only for discrete eigenvalues E, with
correspoﬁding bound-state eigenfunctions h,(y; R). In the applications made here,
the nodal quantum number n is specified and we seek only the solution for that

n. Several cases have to be considered, as follows:

(1). In equation (3.21), the domain of the variabley =z = 6 -1is0< z < +oo
and either

(a). k*(z;R) is positive in a domain bounded by two zeroes z,, z, (classical
turning points), or

(b). k*(z; R) has only a single (outer) zero z, and is positive in the domain
0<z<z,
In case (1b) certain computational complexities arise which we discuss in Section
B.

(2). Inequation (3.24), the domain of the variabley = nis =1 < 7 < +1 ,k*(n; R)
is an even finction of 1, and either '
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(a). k*(m; R) i positive in a (iorna.in —7o <1 ¥ +1,(‘no barner’), or
(b). k%(n; R) is positive in two symmetrically placed wells bounded by 7, <
n < 1o and —n, <7 < —7;, separated by a ‘barrier’ region where k*(7; R) < 0.
In either case the outer turning points are well inside the limits n = +1. Case (2b)
poses sonie additional computational complexity which we discuss in Section C.
For clarity, the discussion of this Section considers the simplest case
where k%(y; R) > 0 in a single region y; < y < y, within the domain of y (a <
y < b). The method discussed is readily extendeé to the more complicated/cases
(1b) and (2b).
Milne [102] showed in 1930 that bound-state eigenfunctions of (4.1) can
bé expressed

h(y; R) = Cw(y; R) sin 8(y; R) . (4.2a)

/

where  6(y; R) - /ydy'[w(y';R)]'f . | (4.2b)

and C is the normalization constant, when the energy E in (4.1) satisfies the

quantization condition,

b
/ dy[HJ(y;R)]—2 =(n+1)r;n=0,1,2..., (4.3)

with w(y; R) any particular solutiog\of the second-order non-linear differential:

equation (the so-called ‘Milne’s equation’),
d2 2 -3 .
a7 v Wi B) + Ky Rw(y; B) = [w(y; B) ™ - (4.4)

- Since Milne'd formulation, this approach to the one-dimensional Schrédinger
equation has been modified and applied to specific problems by various workers
[113-132). |

. [
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Sometimes it 1s convenient to express these equations and solve them in

their complex forms. We write,
: y ! !
mwiR) = epi [ ' R) dy (45)

where ¢(y; R) is the so-called ‘quantal momentum’ (in general, a complex quantity)
in the y coordinate (and i2 = —1). ~

Substituting (4.5) in the equation (4.1), we have the Riccati equation
L i R) - *(y: R) + K(y; R) = 6
W ) -y R) + Ky R) = 0 (4.6)

Let  q(y; R) = qgr.(y; R) + 1q;,,(y; R) (4.7)

Substituting (4.7) in equation (4.6),

]
Wi R) [ch(y; R)J (4.80)
Um(ys R) = 5———5+ .8a
! 2qp.(y; R)
and - q%zc + q?m — (IIm, +k2=0 . (4.8b)

(The 7 and #/ denotes first and second differentiation w.r.t. y). From relationships
(4.8a) and (4.8b) we obtain,

o B+ R B [ar i B = [arewi 7] 9)

Comparing equatio.n (4.9) with (4.4) we see that there is an one-to-one correspon-
' dence between the solutions w(y; R) of equation (4.4) and solutions gqp (y; R) of
equation (4.6):

w(y; R) — [gr(yi R)?], forally.

Thus the eigenfunction h(y; R) may be written as,

-1)2
h(y;R) =C [m(y; R)] sin[f(y; R)]
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and the Milne quantization condition is,

b
/ dyqpe(y; R) =(n+ 1) ;n=0,1,2, ... (4.12)

The relations stated still do not define either the Milne's function w(y; R)
or the quantal momentum ¢(y; R) uniquely; to do so it is necessary to impose an
initiai condition defining ¢p,(y; R) and q;,,.(y; R) (or w(y; R) and its first deriva-
tive) at some suitable point y = y;. Milne proved that the above results hold for
any solution w(y; R); in general hov;rever, an arbitrary choice for thé initial condi-
tions on ¢(y; R) leads to a solution gg,(y; R) which exhibits oscillatory behavieur
in regions where k%(y; R) > 0. ,

A major concern of much of the later literature on this method has
been the establishment of an unique choice of initial conditions which render the
function gp,(y; R) computationally convenient (i.e. smooth and non-oscillatory).
Newman and Thorson [119] devised an algorithm vfor generating initial values
4g.(y1; R) and q;,.(v1; R) leading to a qp,(y; R) with the' desired properties by
iterative solution of equation (4.6), with qg,(v1; R) =~ k(y1; R) as the zero-order
approximation.

Studies by Korsch and Laurent [130-132] show that the zero-order ap-

proximation is already quite satisfactory for most purposes (i.e. gives a very

62

‘smooth and non-oscillatory soltition over the entire domain of interest), provided

that the point y .is taken to be at @ minimum of the function —k?(y; R). i.e. They

propose the ‘classical’ initiaMconditions
4r.(¥ = y1; R) = k(y = y1; R) (4.13a)

and  gp(y=y;R)=0 - (4.13b)



¥

with the integration initiated at y = y;, the minimum of —k%*(y; R), i.e.
20, ! _
[_k (y7 R)] y=y1 0 (413C)
In terms of the Milne’s function w(y; R) the classical conditions are,
—1/2
w(yy; R) = [k(y1; R)) , (4.14a)

and  [w(y;; R)) =0 (4.14b)

where y = y; is the minimum of —k?(y; R).
It should be noted that these classical initial conditions guarantee (from

(4.4))
y [w(y =vi; R)" =0, (4.15q)

and also (from differentiating (4.4))
[w(y =yi; R =0 (4.15b)

Thus the Milne’s function (and the real part of the quantal momeu-
tum ‘function) is quite smooth and flat at the minimum of —k?(y; R). The non-
oscillatory behaviour of w(y; R) (and g (y; R)) enables us to obtain greater nu-
merical accuracy with a much larger step size (compared with the numerical inte-
gration of the Schrodinger equation (4.1) itself). This increased efficiency in the
computation as weli as in storage and retrieval of the computed function and the
easy generation of the initial conditions makes this method attractive.

This behaviour is illustrated by Figures (4.1) and (4.2), which show the
quantal momentum (real part) function gp,(%; R), and the corresponding eigen-
function, u(Z%; R) (in a coordinate z = In(£ — 1) which will be explained later) for

the protonic state (3,0, 1) g=q.40-

¢
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In principle, numerical integration of the Riccati equation (4.6) (or equiv-
alently integration of Milne's equation (4.4)), with specified initjal conditions
4r.(v1; R) and q;..(y1; R) at some suitable.point y = y1, leads to lgeneration of
a global function g, (y; R) over the entire domain a < y < b. In situations where

k%(y; R) has a single classically allowed region with two bounding zeroes y; and y,,
this is in fact the case. The problem is more complicated for the case (1b) cited
above for equation (3.21), because in such cases the function k%*(z; R) is unbounded

at the origin (z — 0), the quantal momentum ¢, (z; R) increases rapidly and may
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also exhibit an integrable singularity at z = 0; as a result direct numerical integra- .

tion cannot give sufficiently accurate values for g (z; R) and the phase function
6(z; R) in the neighbourhood of the origin. We discuss the technical solutions to

double well

these problems in detail in Section B. Another problem arises in t

situation encountered in case (2b) for equation (3.24), and we digelss the required

modifications of the method for that case in Section C.
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B. Numerical Solution of the Differential Equation for (- Motion

Using the transformation z = { — 1; 0 < £ < 400 equation (3.21) reads,

A

(& + PR R =0 (416)

where
k(g (m? — o= + 1)2 ) €&
k*(z; R) = (:(x+2))2 x($+2)/ 7 [V - Elg* z(z +2)
(4.17)

The limiting behaviour of k?(z; R) as :r: — 400 is governed by the SCF

interaction potential term

1 (@ + 1))V - B] — :
z(x+2)/ d T—n?) g2 (i.e. V +00).

This term guarantees that for sufficiently large z and all energies of interest to us
here —k?(z; R) >> 0. Hence there is always an outer turning point z,.
The behaviour of ~k?(z; R) at £ — 0 is controlled (except when m = 1)

“
by the angular momentum term,

(z—;n:_-{-—zl))_?- ("'—_'2+ooform>1)

Thus for m > 1, this ensures the existence of an inner turning point z; as well.

Hence k*(z; R) > 0 in a simple domain bounded by these two zeroes, and Milne’s
method as described in Section A ca.n be applied- directly. |

’I:he numerical integration of equation (4.6) is initiated (initial conditions

(4.13)) at the minimum of ~k*(z; R), z = z1, and carried out in both diteqfions:

to the left towards z = 0, and to the right ‘1_mtil qpe(z; R) becomes st'naller than a

certain threshold criterion (usually, 1.0x10~%). The quantization condition (4.12)
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(witha =0, b = +00, n = ng) is applied to obtain the eigenvalue E. For example,
Figures 4.3, 4.4, and 4.5 show the functions —k*(z; R), 6(z; R), and,qg, (z;R),
respectively in the z coordinate for tho‘grotonic SCF state (ng = 0,n, = 0,
m = 2)p=4.40- (In this example, V = SK1 only; but the general behaviour is just

the same fdr the complete potential.) Note that in these simple cases (m > 1),
9

dre(z; R) — 0 as z — 0 and as z — +o0.

Note also that (see Figures 4.2 and 4.5) the qualitative characteristics of the func-
t.ion gp.(z; R) for the states (3,0,1)gr=4.40 and (0,0, 2) p=4 40 are the same, despite
the difference of three nodes in their corresponding wave functions. Likewise, the
phase function 6(z; R) shows the same smooth behaviour for both states.

However, the numerical computation becomes more complicated when
states with m = 0 and m = 1 are considered. In these cases, —k?(z; R) has a
singularity at the origin z = 0: For the m = 0 cases the denominator of the
angular momentum term, and for the m = 1 .cases the denominator of the SCF
interaction potential term (the numerator tends to a finite valueat z =0 or £ = 1)
ensures that

z—0 :
- ~k*(z; R) — — .

For example, Figure 4.6 depicts —k?(z; R) vs. =z for the state (0,0,0)p—q40.
(V = SK1 only). The nature of the resultant gp (z; R) function (for the state
(0,0,0)3;4_40) is shown in Figure 4.7 ¢

i.e. for m =0,

w(z; R) =, 0, (4.18a)
and qp.(z; R) —z——.o—».+oo‘; (4186)
for m'=1, ] .
w(z; R) =, non — zero constant , (4-19a) ~
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and qr.(z; R) large constant . (4.19b)

In both cases, the real part of the quantal momentum increases very
sharply in the vicinity of the origin. This makes stable, accurate numerical in-
tegration of the quantity g (z; R) near the origin difficult. At the same time,
high numerical accuracy in the integration of ¢4 (r; R) in this region is extremely
important in the m = 1, and particularly the m = 0 cases because relatively
large amounts of the quantum number function %f:oo dzqgp,(r; R), come from
the neighbourhood of the singularity.

For example, for a model calculation with V = SK'1 (which approxi-
mation makes no significant change in the qualitative nature of the problem) the
values of the integral I = -1- (;)0002 dzgg, (z; R) for the states (0,0,m)g=q 40 Were
as follows:

For m = 2, I = 0.0006

Form =1, I =0.0177

Form=0, = I= 0.i493 (i.e. almost 15% of the t:)tal value of the quantum
number function.) .

Clearly, we need some more accurate technique for computing the quan-
tal momentum and phase functions for m = 0; 1. In this work, we have investigated
two different schemes for this purpose: |

(1) M,(:thod of series solutions.

(31) Langer transformation method.

1. ‘ Method of serles solutions

If it is assumed that the SCF interaction potential in (4. 17) can be ex-
panded in a conlérgent Taylor series about z =0, then the differential equation
(4.16) may be solved in terms of power series expansions abothe regular sip-
gular pomt‘zﬁ‘e The cha.racfenstxc behaviour of these solut:ons near r ==/0 is

7 ;’. : -

» | .
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controlled by the value of m; the solution regular at the origin is given by

filzi RY =) a, t/Etmiaer (4.20)

r=0

while tl&e irregular solution has the form

[ o) o0
fZ(I; R) -~ Klnzr Zarrl/2+vn/2+r + stxl/'l-vn/2+~a i (421)
r=0 s=0
where the series coeflicients {a,;1 = 1,2,...00}, {b,;7 = 1,2, ...00}, and the con-

stant K are determined by certain recursion relations derivable from the differen-
tial equation and the known series expansion for the SCF interaction potential (see
the Appendix). The series are constructed such that the Wronskian of f)(z; R)
and fp(z; F) is given by,

W(fi.f2) =1 (4.22)

The general solution of Milne'’s equation
[w(z; R)]" + ¥*(2; Ryw(z; R) = [w(z; R)|

can be written in terms of the linearly independent series solutions f; and f, (and

constants A, B,C) by, -
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w(z; R) = [(02 +AOfl+ B 2 + 2ABf1fg] e (4.23) -

with  BC = [W( f1, fg)] o (4.24)

Therefore, given the constants A, B, and C, the quantal momentum and

the phase function near the origin may be calculated from the fortnulae
’ »

dre(z; R) = (02‘+ AZ)f? + 32f22 + 2ABf1f2] - , (4.25q)

< v

3



ChHiz: R)
Afi(z; R) + Bfa(z; R)

and 0(z; R) = / dr'qp (z'; R) = tan™! (4.25b)
0

Solution of the £- motion equation for m = 0 and m = 1 can then b!
carried out as follows:

(a). At some suitable point z = z; in the classically allowed region
0 < z < z,, initial values are determined for qg,(z; R) and q;,_(z; R). Since the
function —k?(z; R) has no minimum in these cases, instead of the classical initial
conditions (4.13) we use the algorithm of Newman and Thorson [119] to generate
an iterative solution to the Riccati equation (4.6) at z = z,. N

(b). With these initial values, equation (4.6) is integrated numerically
outward to \generate 9p.(z; R) in the domain z; < z < oo, until, as usual,
qp.(z; R) — 0.

~(c). Equation (4.6) is integrated inward from z = z; to some (pre-

determined) point £ = Zmgach- At that point, the constants B, A, and C can
be found from the formulae obtained by matching the Milne function (and its

derivative) from the integrated solution with that constructed from the series

solutions (generated at £ = Ty,4¢ch) 88 in (4.23):

B =|flar + flz_L i _‘Ilm_fxf_] " (4.26a)
qRe qRe
) . ’
1 dIm b
y A-gloms flqm] -5 [fl] (4.260)
and C= -;—‘, . " (4.26¢)

With the éoristé.ntsv A, B, and C détermined from the equations (4.26)
(evaluated at z = zmaich), we now know the Milne’s function w(z; R) (or the

;q)nta.l momentum ¢(z; R)) to the left of zpaech (up to the origin)-in terms of
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the series solutions, and of course to the right of Zmatca in terms of the integrated
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-

p
f,

...

-
numerical solution. We can now accurately evaluate the quantum rmamber function
and the eigenfunctions over the entiredomain of z without any difficulty.
However, we found here that to minimize numerical errors in the inte-
gration of equation (4.6) it is necessary to choose values z,,,¢.4 Which are not too
close to the origin; however, when this is done, the number of terms required in the
power series solutions to obtain adcurate convergence increases sharply. Since the
recursion relations needed to generate higher coefficients in these series increase
rapidly in complexity as the index ix}éreases, this technique was found to be not
sufficiently efficient, and instead\th/e second method, described below, was used.
Howe;rer, it must be noted that even though it is not the most efficient way of
solving the differential equation, the series solution method is significant for the

information it gives on the limiting behaviour of the solutions at the origin.

2. Langer transformation method

Apply the transformation

z =log,z = log, (¢ — 1) . (4.28)

{
)

’

with a new eigenfunction defined,

u(# R) = %/2& (4.29)

* to the differential equation (4.1). The result is,

-

d?
. { 2 + K2(3; R)}u(z; R) =0, - (4.30)
with
YR et VIR M (G- Bl g
CER = et +2)/ a7 (eéz)
31)

~
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This coordinate transformation was first proposed by R.E. Langer (133}
in 1937 when it was applied in a Coulomb potential case. More recently, it has
been applied by Lee and Light [134] in a Thomas-Fermi type calculation of the
electron density in the Kr atom.

The result is a transformation from a semi-infinite coordinate space
(0 < £ < +400) to an infinite coordinate space (—oo < Z < +oor). And there

are no singularities in the new differential equation (4.30). -

The fugction —k*(z; R) has the boundary properties, - i ,

’ i——0b (z—0) 2.1 1
~“k*(%;R) , +(m 1 ) +1  (4.3¢0)

$—+00 (z—+00)

and - k*(%; R) » 400 , for all m (4.32b)
This means that —k?(z; R) will have a minimum for all m values, and
while there are two ‘classical turning points’ for all m >0 states, for m = 0 there

will only be an outer turning point. (—k3(%; R) — 0 as # — —oo for m ="0).

Furthermore, the eigenfunction has the boundary properties,

——00

u(%; R) ——— non — Zero constant; for m =0 (4.33a)
S ’ e S
while #(%; R) = 0 ; for m >0 ) (4.33b) e
Also u(5 R) — Oy forallm (4.4

"The Milne’s equation corresponding to (4.30) is

-
~

E%w(iiR)+k2(z?gk}w(f;R)=lw(i';R)l“'_,. ~ (4.35)

And the éiéeﬁfunétion ‘u(E'; R) is expresged in terms of the Milne’s function by,

u(3; R) = Cw(%; B) sib[4(%; R)| o ('«‘t.36).



where C is the normalization constant, and

o(z;}z)z/_ dé[w(fx;R)j_Z:/ dzqg.(z; R) (4.37)

oo — QOO

r

The eigenvalue condition is,

[+w dz[w(z; R‘jf—z _ /j‘” dzqp(z; R) = (ng + I)m (4.38)

oo

where ng = 0,1,2,3,.....
' * )
Since [e(z;R)] = [w(3 R)?, (4.39)

and w(z; R) is a geal quantity, the phase function #(z; R)'is a monotonically in-
creasing function. As the bound-state eigenfunction u(z; R) cannot have infinitely
many nodes, this means that §(z; R) must approach some finite constant values in

L}
the limits 2 — too.
* ' ‘

5

ie. lim [0(2; R)] =0 (4.40)
*' Therefore from (4.39), ‘
S, )
N i lirin w(z; R) = +o00, for all m ‘ (4.41)
\ ) T+ T OO .
’ lim gg. (2, R) =0, for all m (4.42)
f—*ioo .

- The procedure to be followed in solving our differential equation (4.35)
(or the corresponding Riccati equation for ¢(%; R)) is now clear: First, locate

the minimum of the function —-k*(%; R), # = %, and apply the classical initial

cbnditions ‘ ; ) “ 7 L/

: gz=2;R) =k(z=3;R). - (4.43)

5
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¢

Then carry out the numerical intggratiox_x to the left of z; towards —oo, and to
the right of z; towards +oo, until gz, (%; R) vanishes (in practice, becomes less‘
than 1.0 x 1071%). For computatioﬁal convenience we found it easiest to compute
solutions for all n},values using the Langer transformation method, although it is
necessary to do so only for m < 1. d

While for states with m > 0, w(z; R) grows very fast in the limit z —
—00, it may be shown that for m = 0 cases, w(z; R) grows only as || (as z — —00).
Therefore in the m = 0 cases one has to integrate leftwards to very large distances
before ¢ Rc(‘é;»R) decays below ax} acceptable threshold value. For this reason, in
the numerical integration of the z- differential equation for m = 0 states, a vﬁ.riable
step-size integrator based on the rational extrapolation method of Bulirsch and
Stoer [135] was used. (A somewhat more sophisticated ve;sion of this algorithm
can be found in the IMSL routine ‘DREBS’ [136]). -

*Figures 4.8 and 4.9 show the behaviour of the functions -k%(z; R) and

4g.(2; R) in the Langer coordinate Z for the protonic state (0,0,0)r=4.40. It is

evident that the transformed representation of the problem offers a much more

conventional-looking depiction of the solutions than the original one (compare
with Figures 4.6 and 4.7). S
The method of Langer transformation has the following advantages over

the first method:

o (1) The Langer transfo;mation always produc&; a minimum in —k%(%; R) fowr
bound states of all m values. Therefore, the classical .initial conditions (which

are known to result in a’ very well-behaved Milne’s function) can al lys be non-’

[+

arbitrarily applied at this ‘lzvel,l-_deﬁned“ point. ,-,

(2). The absence of any singularities in the djﬁ'eréﬁtial equation in the % coordi-

, "' ' v i j ‘u(_‘,v
N . S ( N .-" ‘
- ' oo N e

(3

nate means that the eigenvalu‘e_s and the eigenfunctions can be calculated eﬂdently -
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Figure 4.8 -k%(z; R) vs. for (0,0,0)r=q.40
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Figure 4.9  qre(2; R) vs. z for (0,0, O)'Rguo

77



and accurately by numerical integration alone, without any need for techniques
such as generation of series solutions, etc. |

(3). Application of the Langer transformation has the effect of ‘expanding’ (in
the new z- coordinate) the physically significant region very' close to the origin
z = 0. As a result, numerical calculations can be done much more accurately,
particularly for the m =0 and m = 1 cases, where this region is quite important.
(Despite this ‘expansion’, because one can use a step-size that is considerably
larger (by 1-2 magnitudes) than was the case during integration inA the old z— (or
£—) coordinate, there is no significant increase in the number of éteps with a fixed
step-size int'egrator.)

-

2
NOW’ 4= R mye
! 2
1 1 1
for [FHF]", —=-—+
! m, my mpr+mpg
' 18.993466m g
19 = e ———
for the isdtope °F,  mp = 1.007276
37.986932m
Therefore,  m, ~  38.986932
Also, mp =1836.152375m, (m, = electronic mass)

Thus, m, =1788.733927 a.u.  or,

A = (894.527882)R? ; (R in Bohrs.)

For the isotopic system [FDF},

(. _2013553my
~ T T 1007276

4

m, = 3485.717482 2.6, or,

;o | A= (1742.858741)R?

-

18



For the ‘isotopic’ system [FuF]™, (where the H atom has been replaced by the

Muonium ute™),

m,+ = 0.112610m g,
m, = 206.152937 a.u., or,

A = (103.076468) R® ,

-
AN

C. Numegrical Solution of the Differential Equation for - motion

The differential equation is,

%22—9(71; R) + k*(n; R)g(n; R) = 0 (4:44a)
.
with - .
2 (M1 A T -V —E] 5. o &g
K (n; B) = (1-n?)? + (1-19?% /+1 « (€2 -1) f (& R) (1-17?)

{ (4.44b)

Once again we use Milne’s method to solve this equation. The relevant Milne’s
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equation is - , e

d?
Wt_ﬂ(fl; R) + F*(n; Ryw(n; R) = [w(n; R~ (4:45a) .

and the correspondirig equation for the quantal momentum is

| . | |
o i R - ¢ R+ EmR) =0, . (4.450)

Using the fact that -k%(n; R) (like the ab initio potentia.l~funct.ion V itself) is )

, ' .
symmetric w.r.t. 7, the quantization condition is given by,

, 0 _ _
2/ dngge(n; R) = (ng + 1)7; ny =0,1,2,..2 -~ (4.46)
-1 > . . B

1 ! : L3
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The procedure for states at R < 4.60 a.u. is quite straightforward: i.e. simply

[}
apply the classical initial conditions

.‘ ' a(n =0;R) = k(n = 0; R) . (447)

. By

£

at the rmhxmum of —k?(n; R), n = 0.0, and integrate leftwards untd qRe(n,R)

{
vanishes. (Thm holds rega.rdless of the value of m). The SCF interaction potential - -

is such that the smgula.ntles in —k*(n; R) at n = %1 play no real part in the
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physical behaviour of the system (these regions are not physically accessible to

the proton); effectively they are at ‘too’, and the eigenfﬁnction§ g(n; R) always
decay to ‘zero well before .the regions\where t?e sgngular terms affect the equation
are reached. Figures 4. iO 4.12, and 4.14 show the functions —k?(n; R), ap.(m R),

a.nd 0(1;, R), respect1ver for the protonic SCF state (0 0, 2) R=4.40-
However, at larger F...F dxsta.nces the situation is more - comphcated

(This generally applies to most-state‘s at R > 4.60 auy In such instances,

—k2(n; R) (like V) consists of two minima symmetrically placed about 5 = 0.0. In

each well there are outer.and inner turning points, .a.t‘; £ and-im, rgspectively

Then we are unable to find a..gmgle q Rc(q, R) functlon that is slowly varying (x e

non'-osc:lla.tory) in the entire domain, —1 < n < +1. For example, applymg« the

classical initial conditions at one minimum would result in a qua,ntal momentum'

that is well-beH.ved inshat potentxa.l wﬂl but would osc1lla.te ‘n the other well

Omthe other ha.nd initiation of m.tegrahon mth the classical condmons at the
“central barner maximum (r] 0.0) would nge q R,(n, R) that is oscillatory i both
swells [130}. - . = - »

_ Thxs difficulty has been overcome by a modxﬁcatxon of Mxlne s method' '
by Lee a.nd Light [124] Integration of the dlﬂ'erentxal equatxon is xmtxat.ed thh the -
classlca.l conditions at both minima M A and the resultant wave' functxons '

f

» L) N Ty . » . N A
. . R .

- : LN
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(and their derivatives) are matched at the central barrier maximum, n = 0.0. This

leads to the following eigenvalue conditions:

For protonic states symmetric w.r.t. 7 = 0.0 (from the vanishing of the
derivative of the wave function at 7 = 0.0),

o 1 lagem R 1
dngg.(n; R) — cot™ | RE T 7 = (4.48q)
/—1 _[2[qgc(n;R)]2 =0 -

where n =1,2,3,...,and n, =2n - 2. _ .

For protonic states anti-symmetric w.rit. 7 = 0.0 (from the vanishing of

* the wave function at n = 0.0), '
0 s \
‘ / dngg.(n; R) = nr | ) (4.48b)
-1 :

whebe n = 1,2.3, ... and np=2n-1.

‘ This procedure is valid regardless of the value of m. Figures 4.11, 4.1.:3,
a.nd 4.15, for example, illustrate —k2(n, R), qp.(n; R), and 8(n; R), respectively for
‘the SCF state (0,0, 2)re.0. ‘

4

. . ! 3
" D. Calculation of the Protonic States : 2l

The iterative solution of the two SCF equations for motion in the {- and

T

n- coordinates may be broken down into the following consecutive steps:

(1). Start the procedure with a guess function for g(n; R), the corre-

sponding value of €g, and the energy. (We prefer to’start the 1terat10n by solving

the §- equation ﬁrst since guessing g(n; R) with its mherent symmetry is easier than
it would be for f(¢; R)). For the very ﬁrst SCF staté ca.lculated i.e. (0,0,1)p=4.40,
‘the guess function g(n; R) = Cns(1 - 2) was chosen. The normalization con-
stant Cg = 1.045825. This gives ¢; = —2.666667. '
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(2). Solwe the Milne equation (or the corresponding equation for the

complex quantal momentum) for £~ motion. (As fentioned earlier, this 1s done
e

aftep first transfornung into the Langer coordinate z ). For states m > 1, the

fiumerical integration is done by the familiar fourth order Runge-Kutta algorithm
)
?

with a step-size of 0.01. States with m = 0 are intégrated with the variable

step-size integrator due to Bulirsch and Stoer [135]. .

Convergence to the desired quantum number ng 1s done by means of a

-

Newton-Raphson iterative Mgorithm. If E¢~Y and E{") are the eigenvalues on the

(2 — 1)th and ith Newton-Raphson iterations, then the eigenvalue on the (2 + 1)th

k)

iteration is given by,

(v)
EG+YD) _ pl) _ N . (4.49a)
(NG = NG=1)/(EW) = E0-1)

o
1 <00 .
where N(E) = —/ dzgp.(Z; R) —(ng + 1) (4.49b)
Lo N
This iteration is started by choosing two values for E(*) and EC-Y (generally
1.0 x 107% Hartrees apart) and converges to better than 1.0 x 10713 Hartrees.
(3). The &- Milne equation is solved with E now equal to the eigenvalue

found in step (2), followed by calculation of the eigenfunction f(£; R), normaliza-

tion, and finally evaluation of ¢;. This coupling constant ¢ is easily calculated

from

+00 = :
o= [ aere m [ + L) 1)3]1« R) (423)

+1

+oo A [T (@-PV-E, g
= dEf(&; R)| 75— d - R
[, wenles [, vt - glen
‘ (4.50)
i.e. -evaluate the integral in (4.50) instead of the one in '(4.23). All quadratures

were computed using Simpson’s rulé or the trapezoidal rule.



(4). Next, with these values of E| f(f, R), and €5, solve the 5- Milne
equation. The numerical integration of the differvntial‘ equation (for all m) was
performed by the fourth ()rde’r Runge-Kutta algorithin with a step-size of 0.001.
Once more, the Newton-Raphson iterative ‘prorednre 1s used to co‘uverg(‘ on the
required quantum numb‘er, ng. |

(5). Solve the n— Milne equation again with substitution of the eigen
value calculated in s.tep (4) for E. Calculate the wavefunction g(n; R), normalize;
and dalculate €g by,

o A teo (EE-pH)V - E] , s '
€g = d VR /< d c - > n, R
d /,1 K )[(1—712)/“ ey L (1—n~>]9(’~ )
: (4.51)

With this new value of E, g(7; R), and ¢4, go back to step (2). (/

The SCF equations age solved in this iteratjve manner until convergence
is achieved. This ()ccufiw;hen the value of E in two consecutive SCF cycles agrees
to l‘)etter than 1.0 x 1078 Hartrees (~ 0.002 cm™!). At this point the solution (E)
from the £- equation has converged to within 1.0 x 10~° Hartrees of that from the
n- equation. For most of the protonic states calculated so far, SEF convergence
occurs in 2-6 iteration cycles. (In general, the higher energy states meed more

cycles to converge than the low energy ones.) -

Once a SCF‘A state is evaluated, this can be used as the initial guess
for subsequent calculation of SCF states. For example, suppose that the state
(ng,ny, m)p has been calculated. Then the g(7; R) from this state may be used to
initiate the calculation of (ng¢ + l,n,;,\m)R (or the state (ng - 1,ny,m)g, for that
matter), while the f({; R) from this state can be used to compute (ng,np+1,m)p
(or (ng,ny —1,m)g). On the\other hand, either the g(n; R) or the f(&; R) may be
used to evaluate (ng,n,, m')g as well as (ne,ny,m)p. All the necessary protonic

states of [FHF| were calculated in this mannet. Of course, two different initial
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guesses should lead to the same final converged solution. This was used to confinn
b ‘ L4

the precision of Ehe states evaluated (precise to better than 0.001 cn'~!). SCF

states were also calculated in this thesis for the isotopic systems {FDF|~ and

[FuF]™- X )

E. Summary

In this Chapter, the numerical solution of the SbF equations fbr anotion
in the £ and n coordinates is discussed. Each equation is solved using Milne’s
method, which involves converting them into the corresponding Milne’s equations.
The success of this method is based upon the fact that the Milhe’s function,
unlike the wave function, exhibits smooth, non—oﬂscillatory behaviour, when the
classical initial conditions are used for the numerical integration. Two methods
are proposed to overcome the problems posed by the singularity'in the £- equation
for m = 0 and m = 1 cases. The first method is the generation of series solutions
near the origin and matching them with the numerically integrated solutions. The
second method (the one that was actually used) is transforming to the Langer
coordinate, 3 = In(£ — 1). The SCF iteration cycle converges to better than 1072

Hartrees. The SCF converged wave functions from one SCF state are.used as the

guesses to initiate the iteration for another state. o

©
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5. DISCUSSION OF SELF-CONSISTENT FIELD RESULTS

/ ,
A. SCF Energy vs. R Curves

\ As was stated in the preceding Chapter, the protonic SCF states are

designated by the nodal quantum numbers (ng, n,,m) at each given R value.
»~ -

Using the technology described'in Chapter 4, 27 SCF states with naodal ingices

ng=0-3, n,=0-6, and m =0 — 2 were calculated. They were computed at

: \ _
values of R rangingfrom 3.80 a.u. up to 6.40 a.u., usually at 0.20 a.u. intervals-

(approximately 300 SCF calculations in t‘ota.l). !

Since the system has D), symmetry, béth the exact protonic states and

the approximate SCF states described here can be labelled by the irreducible repre-

-sentations of Dy, to §vhich they belong. These are denoted by o4, o, (m = 0), 7y,
Ty (m = £1), &, 6, (m = £2), etc. For the SCF states the inversionl‘syrn’metry

(g or u) is given by the joint parity of m and the n- motion nodal quantum'm;mber

ng, i.e. a state is gerade or ungerade according a,s (ng + m) is even or odd.

T%SCF protonic energy levels (ng, n,,m) can also be labelled accord-

‘ing to the ‘spectroscopic’ designation, (n,,,n,,). The ‘quantum numbers’ n,,
and n,, refer to the degree of e;citation in the bending, and the anti-symmetric

stretching modes, respectively. Conversion from the nodal quantum numbers to

the spectroscopic quantum numbers is defined by,
r

.

. ‘l
‘3 , 2ne+ | m|=n,, , (5.1a)

land, Ny = Ny , (5.1b)

This definition comes from the analogy between the mode description

given by the SCF descrip?on here and that offered by the harmonic oscillator

&

v
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‘model in cylindrical coordinates which is used to describe vibrations in a normal
" lix}ea.r triato‘mic molecule like CO;. The coordinate 5 correspon‘ds to the asymmet-
ric stre&ghing coordinate z, and the coordinate £ corresponds to the bending coordi-
nate p. (For the cylindri‘cally syr\nmetric'ha.rmonic oscillator, the ene?gy of the mo-
tiod corresponding to the doubly degenerate bending modes is (2n,+ | m | +1)hw
while the energy of the motion corresponding to the anti-symmetric stretching
smode is (n, + 1/2)hw' [109]). .

Figure 5.1 s};ows the SCF energy level curves for (1,0,0), (1,1,0), (0,0,2),
and (0,1,2). The components of the pairs {(1,0,0), (0,«6, 2)} and {(1,1,0),(0,1,2)}
are nearly degenerate throughout the entire range of R values. (At R ~ 4.60'a.u.,
-the levels (1,0,0) and (0,0,2) are only 9 cm~'apart.) Note that in each case both kN
components of the nearly-degenerate pair hav'ek thé same spectroscopic notation:
le. (n,, =2, ny;, = 0) for the first pair and (n,, = 2,n,, = 1) for the second. This
confirms the validity of the relationship between the nodal quaﬁtum numbers aﬁd
the spectrosébpic quantum numbers given in equations (5.1). Likewise, the SCF +
energy levels (2,Mnd (1,0,2), and also (2,1,0) and (1,1,2) are neagly degenerate
at all R. |

Table 5.1 lists repreéentative SCF energies at R values of 3.80, 4.40, and
5.80 a.u. |

It is important to understand that the protonic energy eigenvalues (for

exact p‘rotonic eigenstates, as well as the SCF states computed here) can be ;)ositz'vc
with respect to the reference zero for the systex\n corresponding to the dissociation
limit F~ + [HF]eq (see the definition of the pqtential sur‘fac_e‘ model in Chapter g)
The situation is completely analogous to that of excited electronic state potential i
curves for a diatomic molecule which lje above the dissociation limit for the ground
electzonic state; such states remain bound electronically even -though the?' lie for-
mally in the dissociation continuum. In the same way, SCF (or exact) protonic

3
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Table 5.1

Some SCF Energies of Protonic States

State Energy | in Hartrees
{ne,ny,m)| R=3.80 au-4 R=440au. | R=580 a.u.
10,0,0 -0.037272 -0.063431 -0.022999
1,00 -0.028723 -0.050539 -0.013592
0,20 -0.006468 0.047387 -0.008849
1,20 -0.000172 -0.036809 | +0.000554
2,0,0 20018313 -0.037435 -0.003970
0,1,0 -0.021842 -0.056427 -0.022999
1,10 -0.015001 0.044754 /%)413592 .
0,3,0 +0.007653 | -0.037105 /008848
2,1,0 -0.606006 -0.032638 -0.003970
130" |+0015178 | 0027715 | +0.000554
0,1,1 -0.019560 -0.050705 -0.018382
1,1,1 -0.010997 -0.038770 -0.‘008865
0,3,1 +0.008189 -0.032704' -0.004206
2,1,1 -0.001179 -0.026507- | +0.000860
1,3, +0016555 | -0.022674 | +0.005246
0,0,1 -0.033624 -0.057045 -0.01,8,.'}82
10,1  \p|-0.023814 -0.044022 -0.008866
0,2',1 -0.005363- -0.042288 * -

-0.004206

-
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(Table 5.1 continued)

—_

State Energy in Hartrees
(nc,n,,,m) R=380 au. | R=4.40a.u. | R=580 a.u.
1,2,1° +0.002641 | -0.031276 +0.005246
2,0,1 -0.012818 |- -0.030855 4+0.000860
0,4,1 | +0.020665 | -0.022256 +0.008448
2,2,1 +0.011475 | -0.019721 +0.014823
3,0,1 -0.001135 -0.017649 +0.010757
0,0,2 -0.029433 -0.050612 -0.013829
1,0,2 -0.018755 | -0.037492 -0.004199
0,1,2 -0.016465 -0.044904 -0.013829
1,1,2 -0.006809 -0.032762 -0.004199
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states whose energies lie above the reference zero corresponding to ground state

dissociation remain bound protonically.

At a more elementary level of discussion , we note that each protonic

state is computed in a particular electronic potential well CIDRg, (¢, 7; R) in which
there is no freedom to‘varﬁ 'R, and thus the reference level of F~ + [HF]q (corre-
sponding to R — o0) has no direct relevance as far as this particular configuration
at finite R is concerned. At eagh R value the surface C,IIDRm(.f ,7; R) does have
a dissociation limit— 1.e. energy. plateau — corresponding to the hypothetical
conﬁguratfion [F..F]~ +H, Bgt this lies at a positive energy far above the zero
reference level of our potential model or any positive energy level computed here.

As can be seen from Table 5.1, protonig SCF states with positive energies
are found at high values of the quantum numbers, and also at very low and very
large values of R. As far as the interpretation of the IR spectrum is concerned, such
states have no direct importance. However, they may be useful as basis functions
in obtaining more exact energies for the lower protonic states (see Chapter 6).

Figures 5.2-5.6 illust‘rate the variation of the SCF energy level curves
with R for o4, oy, 7y, 7y, and 6 states, respectively. -

The many crossings among the SCF energy level curves seen in Figures
5.2:5.6 all obey the no.n-cro.s;sing rule given by J. D. Power [137], who derived
it in the context of the separable two-center Coulomb problem. Since the SCF

approximation artificially makes our problem separable, this non-crossing rule will

. 03

apply. That is, ‘for a crossing to occur between two energy level curves (ng,ng, m).

and (n's, n;,m'), at least two of the three nodal quantum numbers between the two

levels must be different’. It should be notéd, hbweiier, that not all of these crossings
/\

remain crossings when the ezact states corresponding to these SCF approximations

are calculated. For the non-separable potential the only symmefry is that of Deop,

- &
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hence no pair of exact states with the same syminetry under D () will cross. (This

will be discussed in more detail in Chapter 6.)

We noted in Chapter 2 that near the equilibrium configuration at

99

Req = 4.290513 a.u. the potential surface CIDR§, behaves differently for the stretch.

ing and bending motions. The curvature of the surface for stretching displacements
(coordinate z or 1) decreases as R incréaua fron the equilibrium value, while the
curvature for bending displacements (coordinate p or £) decreases as R decreases.
The magnitude of this variation with R is markedly greater for stretclung than
for bending. These characteristics of the surface have interesting consequences for
the SCF ;)Otentia.l curves: In general, the zero-point energy and the size of the
vibrational (;Q&lta for the stretching mode decrease as R increases, while those
for the bending mode decrease as R-de_crea.sca (the decrease of the curvature of the
potential well has the effect of pulling down the energy levels of the bound states),
and the effects for stretching are larger than those for bending.

This results in the minimum of the SCF potential curve for the ground
state (0,0,0) being shifted by —\F0.035 a.u. (o;' 0.018 A) from the true minimum
of the potential itself at Req = 4.290513 a.u. Furthermore, the SCF energy level
curves {(n,, = n',n,y = 0);n' =1,2,3,..} have their minima displaced to the left
of R? (see Figure 5.7) while the SCF energy curves {(n,, = ‘O,n.,a =n")n" =
1,2,3,..} have their minima displaced to the right of R (see Figure 5.8). As the
degree of excitation in one mode becomes greater inna SCF state it is affected to
a greater degree by the nature of the potential surface in the direction of that
particular vibrational motion. Therefore the curves {(n’,0)} and {6, n")} would
have their minima shifted progressively further away -f'rorn R? (to the left and right,
respectively) as n’ and n" are increa%g. '

From the figures we also note that (as expected) the displacements in

the mifima for the {(0,n")} curves are much larger than they are for the {(n',0)}
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curves. For example, vibrational excitation in the anti-symmetric stretching mode
to the (0,3) state leads to ARmum of +0.207 a.u. while it is ~0.038 a.u. when
excited-in the bending mode to the (3,0) state.

The plots of SCF engrgy vs. R also show that SCF levels (ng,n, = ny,m)
and (ng,ny = ny + 1,-m), where n; is even, become asymptotically degenerate at
large R. For example (0,0,2) and (0,1,2) become degenerate at R ~ 5.0 a.u. (see
Figure 5.6) while (0,0,0) and (0,1,0) become degenerate at R ~ 5.35 a.u. (see
Figure 5.8). This (g,u) pair-wise degeneracy 15 caused by the potential surface
" CIDRg, progressing from a single minimum to double minimum well as R increases.
As the two minima move apart and the ‘interaction’ between them decreases, the
(g,u) pair become more closely degenerate.

.

o . ‘
Figures 5.9 and 5.10 illustrate the effect change in R has on the - motion

wave functions g(n; R) for the gerade state (0,2,0), and ungerade state (0,3,0),

respectively. In each case, as'the potential energy surface G\I‘DRﬁt(f, uR R) changes:
. . v

fromy a single minimum (at R=4.00 a.u.) to a fairly well-separated double minimum
(at R=6.00 and 6.20 a.u.), g(n; R) changes from a wave function localised around

1Y

n = 0, to one that is almost completely localised within the two potential wells.

Figure 5.11 shows the SCF wave function for - motion, f(“?), for

102

the states (0,0, m), m=0,1,2, at R=4.4G-a.u. (Shape of the SCF potential for this

motion shows no drastic change vs. R.) As m increases, the effect of the centrifugal
potential term (m? — 1)/(€% — 1)? on this bénding mode wave function is cléarly
seen. The concentration of the amplitude close to the origin, especially for m;= 0,
makes the advantages of the Langer transformation that we used to solve the ¢-
equation quite clear (see Chapter 4) since the region at the origin is then greatly

]

expanded.
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B. Frequencies of Infra-Red Spectral Transitions

At this point we may estimate roughly the frequencies of the allowed IR

transitions of our model of the isolated [FHF] ion. .
\

Since the [FHF| ion belongs to the D), point symmetry group, (and

under normal conditions all transitions initiate from the ground vibrational state
/ \ .
of o4 symmetry), for the non-vanishing oflhe IR transition moment,
\(1) only ¢ — u transitions are allowed,
~(2). only transitions with Am = 0 or j:‘.l‘are‘ allowed.

I
These two selection rules mean that the allowed transitions are of the

L. .

type avy + buy + cvy (a,b, c integers), where either a or b but not both rﬁay be
even (including zero) and ¢ = 0,1,2, ... . - |

What we have at this stage are only the résults of S&E calculations
of the proton dynamics so that we cannot compute the values for transitions
involving vy (symmetric stretching of F...F) mode. Instead, we limit ourselves to
the computation of av; + bvs (on which framework Franck-Condon progressions of
Cv] can occur.)

It must also be pointed out that the SCF states are not the exact protonic
states which will be known only after we perform Configuration Interaction (CI)
calculations (see Chapter 6). Thus the theoretical vibrational frequencies that are
given below will be mocified somewhat when the exact protonic (CI) states are
calculated. It is expected that the CI correction would be the smallest for the
ground protonic state (of the order of 10 cm™!) and would progressively increase
for the higher excited states. (T}/)?,ESCF approximation becomes poor at high
energies with the interaction betwe%ﬁ the SCF states growing both in number and

magiitude.) Furthermore, in the cases of ‘avoided crossings’ of protonic energy
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level curves (see the next Chapter) the vy dynamics may yield results qt,xite different
from the predictions of the adiabatic approximation.

Since all the experimental IR spectra obtained to date have frequencies
no higher fhan 5000-6000 cm ™!, th: only transitions 6f\the form ary + br; that we
would be interested in from a spectroscopic p?){nt of view are v3, vq,.3vs, 3v2, 2u3+1a,
vy + 2u,. “

For a precise evaluation of the transition energy for av; + bv3 ,. we need to
know the initial and final total vibrational energies. That is, AFE for the transition

avy t+ buj 1s given by,
E'Otal(ﬂv-, =a,n,, =bn, =0)- E'M"l(n,,,, =0,n,, =0,n,, = 0) -

However, sinice we have not analysed the vy dynamics, the AE’s have to be deter-
i
mined (approximately) in sofne other fashion, using the SCF energy level curves.

Clearly, an@®tempt to estimate the AE by a vertical transition from

i

the minimum of the (0,0,0) ground state curve, R, would lead to erroneous values

for the frequencies (especially for any transitions involving the anti-symmetric

stretching mode). This follows from the significant displacemgr:ts of the minima of

the higher energy level curves. Instead we determine the AE for the transition by

the difference in energy between the two SCF levels, evaluated at their respective

) "

minima. i.g. for the transition avy + bvs; .
AE = ECCF(n,, = a,nuy = b)gop, — E€D(nsy = 0,110 = 0)pops

T -

where R, and R? are the minima of the SCF energy level curves (a, b) and (0,0),
respectively. This would give a reasonably agcurate estimate for thé transition if
“at the same time we also make a correction for the difference in zero-point energies

of the lowest total vibrational state in each SCF level curve (i.e. the difference

~

——



EF

'

between (E**(n,, = a,n,, = b,n,, = 0) - EGSCH)(q, b)r,) and (l;?“"‘“(n,,; =

0,n,y = 0,n,, = 0) — E(SCF)(O,O)RS). ) This zero-point energy is estimated
here for tra.ns\itions involving a = 0 by using the values calculated by Bz.xrton apd
Thorson [29] in their work on non-bending [FHF]L For transitions with b = 0,
the zero-point enei'}gy differences are taken to. be half as much as those for a = 0,
and for combination tones (a # 0, b # 0) intermediate values are assumed.

It should again be emphasized at this point that our eveMtual goal is to

understand the cystalline KHF; spectrum with a model of the isolated [FHF| ion.

- It is a major assumption of this work that the main spectral features and the

overall structure observed in the IR spectrum are the result of vi‘brational dynamics
within the isolated bifluoride system. Effects of the crystal environ;nent have not
been included in our model. It would be injudicidus at this stage to attempt to
obtain quantitative agreemex}t with the experimental frequencies for the gaseous

phase free ion (let alone the crystalline spectrum) not only because the dynamical

~analysis is incomplete at this stage, but also (as the work by Janssen et al. shows)

the vibrational frequencies are dependent on the level of electronic calculation of
the potential surface. |

The vibrationa.l frequencies evaluated in this work {TW) are listed in
Table 5.2 . Below each TW value, the zero-point energy difference correction is
included in parentheses. Also hsted in Table 5. 2 are the values from previous
theoretical calculations by Lohr and Sloboda (LS) [93], Barton and Thorson (BT)
[29], Almlof (AL) [94], and two sets of values by Janssen et al. (JASBI and
JASB2) [71]. (See Chapter 1 for brief descriptionsvof the methods used i‘n previous

108 -

theoretical calculations.) Exi)é;iﬁlental values by Coté and Thompson (CT) [64]=— ‘

for sohd KHF,— and by Kawaguchi and Hirota (KH) [63,141]— for the free

[FHF] ion in the gaseous sta_te— are also listed . (Note that the values quoted

/
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Table 5.2

Frequencies for the IR-Allowed Lower Transitions in cm™

1

- 3828

V3 vy 3u3 3u; us + v3| vy + 2u3
. (0,1,0) | (0,0,1) ](0,3,0) | (1,0,1) |(1,1,0) | (0,2,1)

TW 1601 1371 5267 4176 4179 | 4578

(—65) [(=30) | (=100)| (-60) | (—80) | (—80)

LS 1669 1378 6159 4118 4122 4897

BT 1520 5103 i

AL 1497 | - C"sﬁ? .

JASB1 1698 1449 -

JASB2 1427 1363 | - -

KH 1331 4286 - . - -

CT 1450 |'1225 | s000 | 3631 | - | -

~1274. -




Table 5.3

Frequegcies for the IR Allowed Higher Transitions in ¢m-

| | Transition Computed value (TW)
40, + Ly {(0,0,0) —-+(2,1,0)} [ 6838
Sus {(0,0,0) -~ (2,0,1)} 7028
3ug + 2us {(0.0.0) —+ (1,2,1)}, 7065
2u5 + 31 {(0.0,0) —» (1,3,0)} 7556
) vy + 4us {(0,0,0) ~— (0.4,1)} 8174 :
Sug + 203 {(0,0,0) — (2,2,1)} 9637
i Tig {(0,0,0) — (3,0,1)} 9910

w7

&£

3
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by K::w;tgm‘hi and Hirota in reference [63] are in error and have been corrected
m reference [141).) Table 5.3 lists frequencies of some of the higher transitions
computed n this work (TW). We see that our value for 14, like all of the previous
theoretical values, 1s higher tham the experimental result in the gas phase EI\'H).
(Except for JASB2, all the theoretical values are also somewhat higher than the
experimental frequency in the solid phinse given by CT))

There 1s.less variation among the theoretical values for vy by T\/V,\LS‘
and JASB2; all of which are about 50-100 cm ™ lhigh(‘r than the experimental values
in both gas and solid phase. .

The recently measured (KH) value of 13=1331 ¢t ~'or the gas phase free
ion [FHF] “shows, reasonably enough, a decrease in the curvature of the potential
surface in the protonic stretching direction (compared to the sohd state KHE,
environment). It is interesting to note ghat this value-is close to vy measured for
[FHF] isolated in an Ar matrix; 1364 m~![56], and 1377 cm™'[142).

The theoretical values for v, and especially v3 should move closer to the
gas phase free 1on frequency with the use of ab initio potential surfaces at high:'r
levels of sophistication (i.e. more extensive basis set). In this regard, although
*Janssen gt al.’s results for v3 do not show convergence with respect to the basis

set, the trend does seem to be in the direction of lower frequencies (i.e. mqving

towards the gas phase frequency of KH.) ,
Almlof as well as Lohr and Sloboda used a local polynomial represen-
tation of their potential surfaces. Such a polynomial m‘odel, because of the un-
physical characte‘rist.ics at high coordinate values, leads to errors in the computed
frequencies for the higher transitions. In comparison, the global potential model
" CIDRg; used in this work behaves physically at higher energies.
ve

A more serious source of error in Lohr and Sloboda'’s results (particularly

for v3, v2 + 2v3, 3v3) is due to evaluation of the frequencies as vertical transition

111
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cnergy diffarences (at R=4.3313 a.u.). As we showed earlier, because of the sigmfi-
cant displacement of the minima of the excited SCF energy level curves, this leads
to overestunation of the frequencies. For example, their value for 3u3 15 about
1000 ¢! higher than the other theoretical or experimenfnl frequencies.

Our estimated values for the transition frequencies give valuable infor-
mation on the anharmonicity mr+he vibrational modes. If the protonie motion
were perfectlv harmonic, then t\he ratio (avy + bry)/(a x 15+ b x 1r3) should be

exactly 1.0 . Consider the following ratios from our results:

3v3/3 X vy :\l.l()
312/3 x 1y = 1.015
502/5 X 1y = 1.025
Tua)T x vz = 1.033
(2v2 + v3)/(2v7) + (v3) = 0.956
(v + 2v3)/(v2) + (2v3) = 0.961

These ratios show that the v3 mode (anti-symmetric stretching) is much
more anharmonic than the v; (bending) mode.- This, of cou{rse, is exactly what we
would have expected, for as our modelling with the potential surface with a Taylor
polynomial in (z, p) showed in Chapter 2, the Juartic term in the z- coordinate is
relatively much la;ger than the quartic term in the p- coogdinate. (See equation
2.5 and Table*2.1.) ‘

We see that the anharmonicity in the v, vibrational mode incgeases with

increasing excitation in that mode. This is because in higher excited states the

112

preton samples a greater range of the coordinate space. As the magnitude of -

- -
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the coordinate value increases, the anharmonic terins in the potential become

relatively more important. .
\

-

We note that the frequency for the transition 2, + 13 1s lower than the
sum of 2v; and v3. The negative biquadratic coupling term z?p? in the Taylor
series representation of the potential surface is the major source of this depression
of the combination tone frequency. This phenomenon is illustrated even more
dramatically by the fact that (2v; + v3) ~ 3u7, despite v3 being 200 cm ™! higher
than v,, and the fact that (4v, 4+ v3) is actually lower than 5v,. Similarly, vy +v3 -
which is a forbidden transition -— is 2870 cm ™~ 'while the sum of v, and vy is more
than 100 cm~! higher at 2972 cm™!. All these observations clearly illustrate the

strong anharmonic coupling which exists between the protonic vibrational modes.

C. Isotope Effects \

V4

Figure 5.12 shows the variation of the SCF energy levels (0,0,0) (i.e.

ground level), (0,1,0) (= v3), and (0,0,1) (= v;) for the isotopic systems [FDF|"and
[FuF]~. These SCF 'states ;avere calculated from the same programs as were the
protonic states, the ohly change made be{ng the value for the reduced mass.

| It can be seen that the SCF energy curves for [FuF|"are situated higher
(and have greater zero-point energies) than the corresponding [FHF] curves. On
the other hand, the SCF energy curves of [FDF] are situated lower (and have
smaller zero-point energies) and alco have narrower inter-curve spacing than the

[FHF] analogues. This is a direct result of the change in the reduced mass of the

light particle, from deuteron, through proton, to muon. (In the example of the

simple harmonic oscillator, the zero-point energy, ah.d the energy level spacing is h

proportional to (reduced mass?)(‘l/ 2)

.
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It should be noted that regardless of the mass, the proton, the deuteron,

and the muon all move on the same potential surface, CIDRg (&, 7., R). As the

isotopic particle becomes lighter it samples a greater region of the potential surface -

and the wave functions extend over a greater range of the coordinate space. This
1s illustrated by Figures 5.13 and 5.14 which show the functions {f(z; R)} and
{g(m; R)} of the state (0,0, 1)g=q.40 for ihe systems [FDF]~, [FHF|~, and [FuF]".
This also means that the degree of anhdarmonicity exhib?ted by these systems will
be in the order, [FuF]~>[FHF|~>([FDF|~. This is confirmed by considering the
vibrational frequencies given in Table 5.4 . (In computing these values the zero-
¥ point energy difference correctians have not been made.)

om these frequencies,

3V3,D/3 Xvy3p= 1.()85, and-

31/2'[)/2)( ve p = 1.012,

while, ’ /7 \

3v3,./3 x v3, = 1.110, and
3V2v,,/,3 X Vg'g1.032,

Comparing these\fati;)s with the corresponding ones for [FHF] we see
that the order of anha.rmonici—ty is indeed as was predicted earlier. Furthermore,
it should be noted that in each case, the anti-symmetric stretching mode is more
anharmonic than the bending mode. ;

We also find (v3,1/v3,p) = 1.412 and (v2,5/v2,p) = 1.392 compared with
(m, (FDF)- /M. (FHF]- )l/ 2 = 1.396, again ;howing the greater anharmonicity in the

v3 mode. In comparison, Barton and Thorson and Ketelaar and Vedder obtain
4

&

9
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Figure 5.13 f(x;R) vs. x for (0,0,1) at R=440a.u.
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g(n;R) vs. n for (0,0,1) at R = 4.40 a.u.

Figure 5.14 -



IR Frequencies for the Isotopic Systems in cm™

(1). [FDF]-

Table 5.4

v3 D v2.D vz p 3v2p
TW 1134 985 3693 2991
BT 1061 3511
AL 1038 4088
JASB2 983 974
DA 995 884
KV 1023 4115

(2). [FuF]™

-~

Ketelaar and Vedder (45-46] on KDF2(s).)

£
ri .
V34 ) Vo, vz, BRI
TW 4697 3884 15582 12030
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(DA and KV refer to the experimental work done by Dawson et al. [47-48] and
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1.43 and 1.42, respectively (for the ratio vs g /v3 p ), while Jaussen et al. obtain
1.45 (from JASB2). Hunt and Andrews [142] observed 1.427 for [FHF] olated
in solid Argon.

Previous workers have observed a small negative shift in the equilib-
rium F..F distance on deuteration. McGaw and Ibers [23] observed a value
of —0.0024 A for KHF; — KDF, while McDonald [21] observed —0.0046 A for
NaHF; — NaDF,. We estimate this difference to be —0.0051 A (from RS,[FDF]- -
RS,[FH
—0.006 A, by Barton and Thorson, Almlaf [94], and Jiang and Anderson [95],

F- ), compared with estimates calculated to be —0.007 A, —0.0058 A, and

respectively.
. On the other hand, we predict an expansion in the F...F equilibriun
distance in going from [FHF) to [FuF] of +0.0325 A (compared with +0.0270 A

estimated by Noakes [138]).

&
D. Summary

In this Chapter, the results of approximately 300 calculations on protonic
SCF states {(ng,ny, m)r} were presented. The SCF energy vs. R curves gives;
insight into the nature of the protonic vibrational dynamics in the [FHF] ion and
are key features of this work.

The protonic SCF states are also labelled according to the ‘épectro-
- scopic’ quantum numbers, (n,,,n,,). These SCF ’energy curves obey a certain
non-crossing rule proposed by J. D. Power. However, configuration interaction
will remove the crossings between states with the same symmetry. Several inter-
esting phenomena are due to the properties of the potential surface on which the

proton moves. The F...F distance will expa.nd when the [FHF] ion is excited in

-
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the anti-symmetric stretchuing mode while it will contract when the ion is excited

in the bending mode.

Vibrational frequenciesia.re calculated at the SCF lg for IR allowed

transitions av, + brs , using estimates of zero-point energy d ce corrections.

\
This gives v3 = 1536 cm~! and v = 1341 cm™! . The e § of the greater
anharmonicity in the v3 mode compared with the v, mode, as we)l as the significant

coupling between these modes were observed. Several isotope effects were also

computed using the systems [FDF]~and [FuF]~.
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6. AN OUTLINE OF FURTHER WORK

In this Chapter, we survey in broad terms the work necessary to complete

.
~

the analysis of the vibrational dynamics. In Section A, the discussion will be on
the Configuration Interaction (CI) method as applied to our problem, followed by
the mathematical formulation of this scheme. Section B will lay out the results
of limited CI calculations performed in this thesis. In Section C we will turn
our attention to the treatment of v;- dynamics, considering both cases where the
adiabatic approximation is valid and those cases where it may fail. Finally, irr

Section D, we consider some possible extensions of this work.

\ PO Y
Y ? W

-

A. Configuration Interaction Calculation of Protonic Eigenstates

1. CI Expansions in SCF Functions as Basis States

The protonic eigenfunctions computed by the self-consistent ﬁ;zld ap-
proximation are not the exact eigenstates of the protonic Schrédinger equation
(3.5). They offer important conceptual understa.dding of the prbton dynamics,
since they allov; us to continue the idea of separal%y)le modes associated with the
degrees of freedom of the proton niofion and cha.rlacterized by the nodal quan-
tum numbers (n¢,n,, m) and mode excitation (‘Spectroséopic’) quantum numbers
(yg,nuy); but this approximation ignores any dynamical correlation of proton
motions in the separated degrees of freedom. (The SCF a.ppfoiimation implies
that the dynamics of the protonic vibration in the £- coordinate, for example, is
independent of what its »- coordinate value is at that time.) /

Such correlation arises from the fact that the true potential is not exactly

separable in the coordinate system being used. In the SCF approximation, the

~
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effective (SCF) potential for motion in each degree of freedom is an average" over
the motion in the remaining degrees of freedom. This effective potential is different
for each d;stinct state of motion in the other degrees of freedom, but at best it
i8 still an average; by contrast the true potential depends at each point on the
instantaneous values of all proton coordinates.

We construct more accurate approx'imations to the exact protonic é@gen—
states xn,(£,7,¢; R) at each F...F separation R as expansions in the SCF wave

CF
functions x,,f o, ),,,

xbs (€7, 61 R Zc. e n, 61 R) (6.1)

where {1} = {(ng ny,m)}, and the mixing . coeflicients {C,} are parametrically
dependent on R.

Since the non-separable potential CIDRg, (£, 7; R) can connect any SCF
states which have the same symmetry under D, the summation in (6.1) extends
over all SCF states with a given symmetry. As we have seen in Chapter 4, this
symmetry for the SCF states is specified by the value of the azimthal quantum
number m ’a.?\he (even/odd) parity of the n- motioh nodal quantum numb‘er,
n, = v3. |

This type of expansion for the exact solution is called Configuration In-
teraction (CI) by analogy with a correspondxng scheme used in quanturn cherrnca.l
calculations of electronic eigenstates for many-electron systems However, there
-are certain dxfferences between them: :

Firstly, as mentioned in éhapte} 3, in most quantum she);nical calcu-

lations the SCF equations include the effects of the Pauli principle arising from

the indistinguishability of electrons; the resulting scheme, called the Hartree-Fock
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SCF (HF-SCF) method, yields a set of ‘one-electron orbitals’ which are mutu-
ally orthogonal because they are solutions of the same SCF operator, called the
Hartree-Fock operator. Qur use of the SCF approximation to separate proton vi-
brational degrees of freedom entails no such questions, since of course there is no
equivalence of the - motion and 7- motion SCF operators and their eigenstatés,
and hence no indistinguishabléventities are involved.

Secondly, in many quantum chemical CI calmlatioﬁs, the basis states
used for a CI expansion are ‘SCF states’ in a somewhat different sense than tl‘je
precise one used here. In the construction of a HF-SCF wave function by solving
for the eigenfunctions of the Hatree-Fock operator, a very large number of basis
functions is normally used and as a result a large .numbeg of ‘excited HF-SCF
orbitals’ is obtained which are not ‘occupied’in the actual HF-SCF state itself. In
most quantum chemical CI ca.lcglations the basis states used for CI expansion are
generated by replacing one or more of the orbitals occupied in the lowest HF-SCF
state with ‘unoccupied’ or ‘excited’ orbitals. As a result, these basis states are
mutually orthogonal. - |

By contrast, the SCF states used as the expansion basis in equation
(6.1) are thé true SCF states for each specification of the nodal q;mntum numbers
(e, ng, m); th; self-consistent fields for both £— and n— are different for each state
and hence the SCF states themselves are not quite orthogonal (which introduces
minor computationail complications). In addition they do not formally constitute
a complete set of basis functions. (Howevér, we do not believe that this issue
has any practical relevance, simée the set we actually use is almost as certainly as
cbmplete in practice as'that génera.ted by any alternative schéme.) . V

Of course, thexti is no a priori requirement that the basis set for the CI

expansion be the SCF wave functions. Any convenient and reasonably complete

P,

123



"ot

set of basis states would serve the purpose. Nevertheless, as pointed out also by
Bowman [74], using the SCF states as an expansion basis is a good strategy because
ﬁrﬁ(ly, as stated above they offer very simple conceptual understanding in terms
of traditional ‘mode’ 1deas. and 1t happens that in many cases a single SCF state
will make a dominant contribution to the corresponding protomé state, justifving
thie SCF description in zeroth order; and secondly, 'th(* actual convergence of an
expansion using such solutions may be faster, although this question is not directly
tested here.

In perfornung the CI calculations, in addition to obtainng the states

~ which are the exact (if converged) and adiabatic solutions of the protome Hannl-

tonian, we will also obtain some information on how ‘good’ the apphcation of the
L
SCF approximation is in our case.

There are two indicators on the ‘goodness’ of the SCE approximation.
o

A ) [ R

Firstly, the energy difference | E(C) - E(SCF) | (=‘correlation energy’) will increase
as the SCF description becomes less accurate. Secondly, the amount of mixing in
the CI expansion (6.1) will increase (i.e. more than one coeflicient C, will have
significant and nearly equal magnitude) as the SCF approximation breaks down.
For a mode- type vibrational description to hold, we require that a particular *C;

#ﬁ the expansion (6.1) to be dominant over the others, so that we can continue

»

to lakel the (exact) CI protonic states by the SCF quantum numbers, ie. as
ChH

{ng.nn.m)’

Although in theory the expansion (6.1) could be gf infinite size, in
practice we truncate the basis set at a finite manageable size. How fast this
CI expansion converges (i.e. how few basis functions are needed to achieve this

d;qnvergence) 1s also an indicator of a satisfactory SCF-level description.

We expect that the correlation energy (i.e. the CI correction to the pro-

tonic state energy ) would fhcrease as the energy of the state increases. This is be-

<

cause with increasing énergy, the proton samples a wider range of coordinate space,

)
~



the anharmonic coupling terms in the potential beconre more important, and the
SCF approximation becomes worse. Furthermore, correlation energy would also in
general be larger for protonic states at large R than they are at near-equilibrium
R values.

We would expect the SCF approximation to break down in the case

of degeneragies and near-degeneracies of SCF states of the same symmetry

. . N . . . ‘
i.e  the avoided crossings mentioned in Chapter 5. Provided that there are no

fad
other SCF states nearby (of the same symmetry), including just the two crossing

states in a CIl calculation should give accurate results. (Tixis was demonstrated
by Thompson and Truhlar [80] in cases of ‘Fermi resonances’ of a model coupled
oscillator problem.)

Finally, we also expect that the magnitude of the CI correction to a
particular state at a given R value would, for isotopic systems, increase in the
order [FDF]~ < [FHF] < [FuF]~. This is due to the fact that the lighter particle

has a greater amplitude of vibration, and thus the coupling terms in the potential

play a correspondingly more important role.

2. Mathematical Formulation of the CI Scheme
Within the space spanned by N SCF states {»(s,f(f.f)m} of a given D
symmetry type, the requirement that expansions of the type)(6.1) be eigenstates
of the protonic Schrodinger equation leads directly to the se¢ular equation 3
| Hiy = ESy |= 0—binj = 1,2, .N) | (6.22)

~~where the indices t, j indicate individual SCF basis states in the expansion, and

iy = (0 1+ (35)) () ). (6.25)

>

£
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. (SCFY, (SCF) )
S,y = <\, l \(, > : (6.2¢)
The solutions to the energy obtained by solving (6.2), E("p=)1 S O
< Ey.. are the energies of the Cl ground state, first excited state, ... and g0 on.

For each solution Ey, there will be a vector of NV coethcients, {Cixie = 1,2, NV}
giving the appropriate linear combination of N SCF states for the &** CI state,

and normalized so that
~l 'l .
(e e ) N e ) <1 (6.3)

Therefore the Cl calculation entails evaluating the matnx elements 5, and H,,

between the SCF total wave functions.

Recalling fromﬁxpter 3 that

/
SCFE ‘ —1/2 1y,
» \S ) = Cyra & R)B(1, R)(2m) 1/2 1m0 ’
1 isati (SCF) _ _
where Cy; 1s the normalisation constant for X, (ezcluding the function

(27r)—l/2€—|m.¢)‘

with a (& R) = fi(&; R)(fz - 1)_1/2 and

2

Bum: R) = gu(m; R)(1 = %)~ 1/?

Using normalization condition (3.15) this leads to,

+1 3

Ry? i e R
Sy =(CxiCw(3) [ a2 [ dsgs, v Cnich(5)

(1-7m
’ b g o (6.4)
/ dl‘——’——/ dng.g,
0 (z+2) J_,

where r=§6-1.

. ~ Also, H.J =hL+L+1 - (65)



where

— 1 1" n: o0
py = ZCuaC (B[ g 2 R B ([ g 2

1

41 SCE) . (6.6a)
2 2 . . 12 9j . .
[ e ot = Bl 0 s | [ i ]}
_CniCxs (BN [P FEGRE RN g [ A
L= —r—— |- d d -
N L
® e 2 (SCF) oz S . ,
and,
R 3 Hoo t '»R }R +1 2 . |
L= cwicns(3) [ eSS et mg, o RO}
+ ‘ - -
(6.6¢)

(where A = R*m,/2)
Note that H,, = ECYF) S, =1 H,) = H, and S, # 0 fori #].
The protonic Hamiltonian operator and the identity operator are invari-

ant under the symmetry operations of the [FHF] system. Therefore the matrix

elements H;; @nﬂ”Sﬂill vanish unless xESCF) and X;SCF) are of the same sym-
metry under /booh-

Thus configuration interaction will occur only inside each of the blocks
Ogy Ou, Tg, Ty, 8, by, and never between two of them. (Of course, if we are
interested only in the IR spectroscopic frequencies, the situation can be simplified

still further by }imiting ourselves to the o4, 04, and m, blocks.)

B. ' Some Results from CI Calculations

As was stated in Chapter 1, it is not our intention to perform com-

prehensive CI calculations in this thesis. However, some results of limited CI
Y

8]
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among m, protonic states will be presented. Not only did this set up the algo-

rithins and the computational apparatus that will be needed for more extensive

CI calculations and help us to prepare a strategy for the complete solution of the

(FHF] vibrational dynamics, but also it will give us some information on whether
A\

our application of the SCF approximation using the prolate spheroidal coordinate

syster:x to the protonic vibrational dynamics was satisfactory.

Calculation of the matrix elements S,, and H,, is one of the instances
whem having numerical SCF wave functions 1s computationally more efficient and
convenient than expansions of the SCF wave functions such as a basis set of HO
functions. In our case, the stored wave functions ca.n'Qz used, with no other de-
scription than their range, in a simple procedure such as Simpson’s rule or the
trapezoidal rule to evaluate all the necessary integrals. Standard computational

b4 .
algorithms were used to diagonalize the secular determinant and obtain the eigen-
values {EfCl)}.

In computing. the S, it was observed that for different SCF wave func-

128

tions | ng,ny,m) and | n't.,n',l,m), the value of f:loo déa;a, when n; = n'E' (but .

ny # ny), and the value of [*dng,8; when n, = n!, (but ng # nf), are close
to 1.0 (to which they would be equal if n¢ = n§ and n, = n!). Furthermore,
fj}l dnB;B3, in the first case, and f:loo d€aja; in the second case are quite small.
(See for example, Table 6.1) This may be taken as a rough indicator that the SCF
approximation to separate the vibrational motion is reasonably successful.
Figure '6.1‘Shows the variation with R of the lowest m, SCF (i.e. (0,0,1))
and CI energy levels (in cm™!). It can be seen that the CI correction is very small
for the entire range of R. (Also, the CI mixing coefficients for the (0,0,1) SCF
state is nearly 1.0 for the entire range.) This clearly demonstrates that the SCF

approximation has worked very well in using prolate spheroidal coordinates for

the lowest m, state, at least.
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Table 6.1

SCF Overlap Integrals

e

(neong.m), (n.mp.m) | 2 dnBiB, | [[\7 d€aa,
(0,0,1),(0,0,1) 1.0000 1.0000
(0,0,1),(1,0,1) 0.9984 00310 -
(0,0,1),(2,0,1) 0.9935 0.0021
(0,0,1),(3,0,1) 0.9846 0.0002
(0,0,1),(0,2,1) ~0.005 0.9878
”"‘('o, 0,1).(0,4,1) ~0.001 0.9345
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The difference between the energy at the R,y of the (0,0,1) SCF curve

and that at the Rpn of the lowest m, CI curve is only 3.9 cm™!.

Since one
expects that the lowest o, and o, CI energy level curves have energies at their
Rpmin lowered by approximately the same amount w.r.t. the corresponding SCF
energy level curves (i.e. (0,0,0) and (0,1,0), respectively), this means that the CI
corrections to our values of the fundamentals v, and v3 (calculated in Chapter 5)
would be insignificantly small. Therefore our values v3 = 1341 cm™!and v3 = 1536
cm™!( within the zero-point energy difference corrections) are probably very close
to the final results at the completion of the analysis.

)

/ »
Estimating the IR frequencies for the transitions to mosE lof the higher
states from the CI calculations, éyvever, is not so simple. This is/because in most
of these cases, avoided crossings (ic}ur in the vicinity of the minime-of the energy

’

level curves. This problem will be discussed in more detail in Section C.

Figﬁre ‘6.2 shows the avoided crossing at R ~ 4.46 a.u. between the
first and second excited 7, CI energy level curves (i.e. the crossing between the
corres}onding SCF energy level curves (1,0,1)and “(0,2,1)). Two sets of CI curves
are displayéd: firstly the CI levels constructed with just the two crossing SCF
levels, (1,0,1) and (0,2,1); and secondly, the CI levels obtained from adding six
more SCF states to the basis set. One observes that tilex:é is only a very small
difference between the two sets of CI curves. This shows that, at least in the
absence of any other close-lying SCF states, an adequately accurate representation
of the exact state at an avoided crossing may be obtained by mixing in just the
two crossing SCF states. The energy gap at this avoided crossing is ~ 440 cm™!.
There is a further avoided crossing between the first and second excited 7, CI

energy levels at R ~ 5.29 a.u. where the energy gap is ~ 880 cm™!.
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Table 6.2 !

Composition of the First Excited n, CI State

(1C1) - Clxtfg,f)) + szg‘f‘f)) + 6 other states

R (a.u.) C C.

3.80 0.99 -0.06
4.20 0.9 —0.11
4.40 0.93 -0.36
4.50 , 0.58 —0.81
4.60 0.30 095
5.00 0.28 —0.96
5.40 0.87 ~0.47
5.80 0.93 —0.33
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Representing the first excited =, CI state by,

(scF)

(SCF) + sz((j,’),l) + six others

«cn _
X —' CIX(I‘O,I)

1

at each R value, T?ble 6.2 gives the relative amount of interaction between the
two major component SCF states.

Table&ﬁ.lé §POW$ the effect of increasing the basis set size has on conver-
gence of téb i \ st 7y ClI states at R =4.40 a.u. The SCF states in the basis
set are, (ix; order'of addition to the expansion), (0,0,1), (1,0,1), (0,2,1), (1,2,1),
(2,0,1), (0,4,1), (2,2,1), (3,0,1), (1,4,1), (0,6,1), and (3,2,1). The major components
of the CI states at this R value are, in order of increasing energy, (0,0,1), (1,0,1),
(0,2,1), (1,2,1), and (2,0,1). We see that with an 11-member basis set, the ground
CI state has converged to the order of 0.001 cm ™!, the first and second excited CI
states have converged to the order of 0.1 cmn™!, and the third and fourth excited
CI states have converged upto 5 cm™!. This relatively rapid CI convergence is
again an indication of the success of the SCF approximation.

Finally, Figure 6.3 shows the variation with R of the five lowesz 7y CI

engrgy levels and the six SCF energy levels from which they have been constructed.
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Table 6.3

1
_CI Convergence of the Lowest 5 7, States at R=4.40 a.u.

(AE = change in energy w.r.t. the correspon\'mg SCF state (cm™'))

n, Cl State | Basis Set Size AE (cm™!)

Ground 6 —-4.02
8 —4.29
’ 9 Z430
10 " —4.32
11 —4.32

1%t Excited g —-73.24
8 -82.83
) 9 —86.47
10 ' ~87.49 . \
11 —87.69
ond Excited | 6 - 72.47
8 70.55 ‘
9 . 56.33 -——/
10 55.98

11 - " 55.68




(Table 6.3 continued)

x, CI State | Basis Set Size | AE (cm™!)
’__;"‘ Excited 6 —307.13
‘ 8 ~310.18
9 | -31407
) 10 _322.36
11 - —326.50
4 Excited | 6 237.26
8 237.19
—
9 237.17 N
10 22092 .
11

219.69

136
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C. Treatment of 11- Mode l)ynimics

1. ;- Dynamics in Adiabatic Approximation
/?

As was stated in Chapter 3 the problem of the F..F motion s greatly
stimplified if the adiabatic approximation is valid. The vibrational eigenfunctions
for the entire system, which are solutions to equation (3 1), may then be approx

mated as products of the form (¢.f equation (3.7))

-

Wo(F R) >~ WP (FR) = @, (B, (7 R (6.7)

n, ,np(

\n, (77 R) 1s a single protonic eigenstate, 1€ an eigensolution of the protome
Schrodinger equation (3.5), which we construct here by (‘()nﬁgurat‘mu mteraction
from the protonic SCF states as described in the preceding sections of this chapier.

<
"’The R~ motion wave function ®,, » (R) is then simply an eigenfunction of the

one-dimensional Schrodinger equation (c.f. equation (3.8))

{—l d?

it Euy (R)} 0, n(R) = ENOL @0, 0, (0) (6.)

e

.3

E:“;‘l"‘ip is the total vibrational energy for the [FHF] “system in the (1, 13, 113) state.

The protonic eigenvalue curve E, (R) plays the role of an effective potential for the

v1 — motion. In the discussion of Chapter 5 and the earlier sections of this Chapter,

we have implicitly assumed that the eigeny urves E,(,f” or the SCF eigenvalue
curves E,(.fCF) would eventually play such a role. (More sophisticated analysis

of finer details in the adiabatic separation scheme leads to small corrections to
this effective potential arising from nonh-adiabatic interactions, so that it may be
slightly more accurate to use a corrected effective potential, U, (R) in place of

E, (R) itself; in any case the form of equation (6.8) is the same.)
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Figure 6.4 The Total Vibrational States under the Adiabatic

Approximation
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s

forward. Each effective potential function (U, (R) or E, (R)) then supports a
f
number of v1- mode eigenstates, as depicted in Figure 6.4 . Again, it is convement

Solution of the eigenvalue problem posed by equation (6.8) 1s straight

to use the quantal momentum or Milne's method (see Chapter 4) to solve the

equations. Rewriting equation (6.8) in the form

d* .
[ s KA @ ()0 (6.94)
where
K{(R) = (2;‘)[5,‘;:‘{‘,,? S UL R (6.96)

Milne’s method as outlined in Section A of Chapter 4 can be apphed directly. The

eigenfunctions have the form
®n, ny(R) = Clag (R /*sinb(R) . (6-10a)

where C 15 a normalization constant defined by

' 400 2
CZ/ dR[@,,,l_,.p(R)] -1, (6.10b)
0
and the phase §(R) is given by
R
R) = [ dRqu (R (6.100)
0

The eigenvalues E,',‘:fl“_lnp are determined from the quantization condition

+00
/ dRch(R) = (nvx + 1)”» ;1111 =0,1,2, ... (6110)
0

Integration of the Riccati equation for ¢( R) is initiated at the minimum of —k*(R),

R = Rpmun using the ‘classical’ initial conditions

¢(R = Rmin) = k(R = Rma) (6.11b)

t.-



(Application of Milne’s method to this problem is much casier than for
the appli(‘ation‘ to proton motion treated in Chapter 4, since there are no problemns
associated with the behaviour at the origin or with double minima. )

We may expect that this level of approximation will give accurate vibra-
tional eigenvalues and eigenfunctions for vibrational states associz;ted with clearly
non-degenerate protonic states such as those approximated by the SCF descrip-
tions (0,0,0) (ground protonic level), (0,0,1) (single excitation of vy), (0,1,03 (sin-
gle excitatioo of v3), etc. However, for those cases where two or more protonic
eigenvalue curves are nearly degenerate over some domain of the coordinate R,
exhibiting the effects of configuration interaction in avoided crossings, etc., the
problem of v;- dynamics is not so simple. As"we have seen in earlier sect‘ions of
this chapter, this more complex situation occurs for most of the higher excited
protonic levels in the system (e.g. the mixing of SCF =, levels (1,0,1) (312) and

*(0,2,1) (2v3 + v2). We discuss these cases in the next sub-section.

2. Breakdown of the Adiabatic Separation and Coupled v,- Dynamics

~

As illustrated in Section B of this chapter for protonic states of m, sym-
metry (c.f. Figure 6.3), two or more protonic eigenstates with a give? Doon sym-
metry may be nearly degenerate over some domain of the coordinate R. Usually
" this situation occurs when two SCF eigenvalue curves cross at some point R the
corresponding exact protonic eigenvalue curves (computed in this scheme 1sing
CI) do not cross, but exhibit an avoided crossing as shown. This situation 18 ac-
tually very frequent in the [FHF) system for states involving more than one or two
quanta of proton excitation; as discussed in Section B, it arises from the strongly
non-separable potential surface interactions between the bending and stretching
coordinates. In the qualitative terminology usually employed to describe such

interactions in vibrational spectra, such states exhibit a strong ‘Fermi resonance’.
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The essential point is that because the proton eigenvalue curves are still
very nearly degenerate (splittings as small as 200-400 cmn™}), the adiabatic separa-
tion will break down and the nearly degenerate protonic states will be dynamically
coupled by the F...F motion. (The study by Barton and Thorson (29] justifying
the adiabatic separation did not encounter this situation because they did not
include any treatment of the proton bending mode; the non-adiabatic couplings
that they considered involved stretching mode protonic states which were always
separated by energies greater than 2000 cm™!.)

One way of understanding the situation is as follows: (see Figure 6.5)
Consider an avoided crossing at R = R. between two exact protonic energy curves
E¢(,C1)(R) and EgC”(R). The correspondidng wave functions of these states (at
each value of R) are given by xf,CI)({,n, ¢; R) and xgcn(f,n, ¢; R), respectively.
Assume that throughout the entire range of R the.CI wave functions consist
of just two SCF rcomponents, X(ISCF)(&,U, ¢; R) and X(ZSCF)(&’?’ #; R) of énergies
E{SCF)(R) and Egscn(R), respectively. (i.e. there are no other SCF states of
the same symmetry near enough.) EgSCF)(R) and EgSCF)(R) of course, cross at
R = R.. Interaction of these two SCF states removes this degeneracy at. R. by an
amount AE,,i;. ‘

Let us examine first the upper protonic energy curve, E,(,CI)(R). On this

curve, far to the left of the avoided crossing, x‘(,CI) is essentially X(ISCF) while far to

the right of the avoided crossing, it is essentially ngCF). Thus, as one moves past

R = R., the protonit eigenfunction changes from X(ISCF) to XQSCF)

. These changes
in the protonic wave function take place during a time t, ~ h/AE ;. On the
other hand, we may estimate that the F...F motion will move the system through

such a region in a time tf ~ h/v;. When t, > tp, (i.e. AEp; < v1), it can no

longer be cldimed that the protonic wave function adjusts itself instantaneously to
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any change in the heavy nuclear (F) configuration. That is, the protonic motion
can no longeibe quantized for a fixed F...F configuration. Clearly, the adiabatic

approzimation has broken down.

In the [FHF] systemn vy ~ 600 cin™!; we may therefore assume as a
rough guideline that any protonic energy levels which are separated by an energy
spacing less than or comparable tq ~ 600 cm™!in an accessible domain of the
coordinate R will experience significant dynamical couplings associated with the
vy- motion. |

To determine vibrational eigenvalues and eigenfunctions for equation
(3.4) in such cases, instead of the simple adiabatic approximation (6.7), the wave
function must be written out as an expansion in the relevant (nearly degenerate)

protonic states (c.f. also equation (3.6)):

plotal Zcp w (T R) . (6.12)

Substitution of (6.12) into the vibrational Schrodinger equation (3.4), followed
by closure on the left with x,‘,p(F; R), leads to a system of coupled multi-channel

differential equations for the amplitude coeflicients {@, ,(R)}:

{ (';7}) i’fErzp(R) - Bt }@.,.,,(R)

" N (6.13)
( ) Z[ np.ny, (R In + Bnp,n;,(R)]Qn,n;,(R) =0, .

where the non-adiabatic coupling matrix elements P,‘p‘n;,(R) and Bn,,,n;,(R) are

defined

Pry g (B) = (xoy (72 B) | s | X (55 ) (6.140)

and

By (B) = (o (i B) | 27 x5 D) (6.140)
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The integration in (6.14a,b) are performed over £, 7, ¢ and counect states with
the Smne Dooh symmetry. y

The simple one-ch#nnel description given by the adiabatic approxima-
tion (c.f. Section C.1 above) is recovered if we neglect all the coupling terms in the
summation in the second term in equation (6.13). In the case of a close avoided
crossing such as those slfown in Figure (6.3), for example, such neglect'is not justi-
fied, because these coupling matrix elements exhibit maxima in the neighbourhood
of an avoided crossing, due mainly to the CI mixing or crossover between the two
strongly interacting SCF protonic configurations. v

As was shown by Barton and Thorson [29], the calculation of the non-
adiabatic coupling matrix elements defined in equations (6.14) requires some care;
the difficulties th;zy treat arise from the fact that the ‘molecular’ coordinates (7, R)
used to define the vibrational Hamiltonian (equation (33)) are not appropriate
in the dissociation limit. In the cases of avoided crossing “{hich concern us here,
however, the dominant contributions to the coupling matrix elements arise from
strong CI mixing of two SCF states, and the finer corrections discussed by Barton
and Thorson do not affect these contributions. Further discussion of the details of
these couplings is beyond the scope of this thesis.

In the solution of the coupled multi-channel equations (6.13) discrete

eigenvalues arise when boundary conditions requiring that all the amplitude co-

 efficients {®5 a,(R)} be regular inthe limits R — 0 and R — oo are imposed.

Analysis of the resulting amplitudes associated with each of the coupled protonic

state ‘channels’ can show whether a qualitative interpretation of a particular eigen-

.

state in terms of dominant contributions from a single protonic state is justified
(thus retaining the concept of vibrational ‘modes’.) Convergence of such compu-

tations can be tested by adding more coupled channels to the calculations for a
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particular vibrational level. It may happen that more than tw’)‘ protonic states
may be coupled significantly by the v}- motion; for example, as can be anticipated
froni Figure 6.3 it may happen that the CI 7, states involving the SCF zero-order
state (1,2,1) (= 31, + 2v3), and possibly also (2,0,1) (= Sv2) may play some dy-
namical role in the coupling even though the two lower levels (1,0,1) (= 3v2) and
(0,2,1) (2v3 + v) are those dominantly involve(‘i. At the present‘time it would be
premature to speculate about these questions, although 1t may be that the rather
complex structure of the IR bands seen by Coté and Thompson in the region
3700-4500 cm~'may conceivably have an interpretation in terms of these avoi}ied

crossings or ‘Fermi resonance’ effects. K

D. Future Work
\
1. Frequencies and Relative Intensities of IR Transitions

When the solution of the v;- dynamics is completed one is in a position
to compute the quantitative vibrational frequencies and the relative intensities for
the 1solated bifluoride system.

For a transition n = n — n = n' the frequency is then given simply by
htyw = AE = E'9ta _ glotal - (6.15)

Assuming that only the ground state is populated, the relative (inte-
grated) intensities of two IR transitions 0 — n’ and 0 — n are given by the

ratio

RI(0—n'/0—n)= (l;,,:) [ll ?: Ilj] | (6.16a)
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*> .
where v,0, vao are the frequencies-of the two transitions and the electric dipole

transition matrix elements are defined
Tao = (Wi | fie(F, R) | w67*) (6.16b)

fie(7, R) being the instantaneous electric dipole moment for the vibrational config-
uration (7, R). Since [FHF] has D) symmetry in its equilibrium configuration,
de(7, R) is zero except when the proton displacement 7 is non-zero. Non-vanishing
components of the dipole moment are of two distinct symmetry types: those par-
allelto the F...F axis, which transform like z (o, type), and those perpendicular to
the F...F axis, which transform like (z,y) (74 type). These two distinct types of
moments form two separate families of non-vanishing transition matrix elements,

which can be treated on separate theoretical footings. For the parallel moment we

can write
R
w7 R) = Dy(&n, BY(5€n) (6.17a)

and for the perpendicular moment,

uL(F,R)=DL(E,O,R)(gR[(iz—1)(1—712)]’/2)ezp(i¢) o (6.17)

where the two functions D and D have strictly Doop symmetry. IR transitions
to states of m, symmetry involve only u; while those to states of o, symmetry
involve only puy. As a comparative standard i;or the o, transitions we can use the
v3 fundamental, while for the 7, transitions we can use the v, fundamental.

" Of course we cannot realistically compute either of the functions Dy or
D, from theory. Hence there is no way to relate intensities of the =, series tb those
of the oy series of transitions (except by observation), and it is not a legitimate

exercise to make more than the most primitive possible assumptions about these
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functions. The simplest possible form is that they are just constants Dl(l) and Dol,
respectively. Then, except for the frequency factors, the relative intensities of all
04, and 7, are determined by the relative magnitudes of the sqtla;es of the purely
mechanical matrix elements (\IJ:“:"“I | z | ¥taly and (\I’;"::l | =+ ey | Pl
respectively.

In the study by Barton and Thorson [29] of the non-bending [FHF] system,
the relative intensity was found to be controlled almost completely by the me-
chanical properties of this non-separable, non-harmonic oscillator, and not by any
electrical anharmonicity in the dipole moment function. This claim is important
in relation to the concept of the adiabatic or nearly adiabatic separation of the
v1- motion from the proton degrees of freedom because it implies that the Franck-
Condon principle is fundamental to understanding the intensities of progressions
in the v;- mode aTrTé that the mechanics of the non-harmonic v3- motion controls
relative intensities of the overtones of v3. In view of the success of Barton and
Thorson’s predictions 'of relative intensities for their limited model of this system,
relative intensity calculations are probably well worth doing as a further demon-

stration of the validity of the dynamical analysis of our model.

2. Other Potential Surfaces and H-bonded Systems

Continuing the vibrational analysis in the manner described in the pre-
ceding sections will finally yield the complete quantitative spectrum for our model
of the [FHF] system. We expect that the global structure of this theoretical spec-
trum will agree with the experimental one for KHF3(s). If our completely qb initio
model of the [FHF] ion closely simulates the actual experimental spectrum, it
would then be a legitimate enterprise subsequently to adjust a limited number

of parameters in the potential surface in order to improve quantitative agreement
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with the experimental details (for example, the frequency v3). (By following such
a procedure we would be introducing the effects of the environment indirectly
through the potential surface of the [FHF]‘ion.) If by such empirical processes
one can achieve greater coincidence of the frequency values without altering the
overall structure of the spec’trum, then we would have a high level of confidence

that we do in fact understand the vibrational spectrum of the [FHF] ion in the

. solid state environment using this isolated ion model.

. Apart from understanding the crystal spectrum, the other main value of
this study is its tests of purely theoretical questions regarding the feasibility of such
analyses of vibrational dynamics. We are showing that concepts of separability
can be retained and used in an accurate, quantitative way, and that such methods
offer predictive as well as interpretive power in the understanding-:)f this type of
strongly non-harmonic and non-separable system. The test of such a claim, of
course, lies in the applications to other experimental systems.

Obvious systems to which our theoretical model could be extended are
the other bihalide ions such as [CIHCl]~, [BrHBr|™, and [IHI]~. For these heavy
atom systems calculating ab initio potential surfaces at the CID level could be
quite expensive. Therefore, the quéstion arises as to whether results of ab initio
electronic calculations done at a less sophisticated level may be reliably used. It
may appear that the recent work by Janssen et al. answers th(is question in the
negative (at least as far as quantitative results are concerned). On t?xe"other hand,
these ions, unlike [FHF]", are relatively weak H-bonded (AH ~ 10 — 12 keal/mol)
systems (i.e. are more ‘normal’ strength H-bonds) and it may very well be the case

2
that the vibrational frequencies do not show the same high sensitivity to the level

' of electronic calculation that [FHF] does. Even if they do show high sensitivity,

one mjght still use these less sophisticated ab initio surfaces (at the SCF level,
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say) in order to understand the major spectral features. (There is some support
for such a claim, even for a simple non-bending model of [FHF| itself, from the
work by Almlof, and .Barton and Thorson.)

For this reason, one of the immediate post-thesis projects will be per-
forming vibrational SCF calculations for [FHF]~(using the same Vibrational SCF
and SCF-CI programs that were used to éenera.te the results in this thesis) with
an ab initio surface at the Hartree-Fock level (also calculated by M. Klobukowski).
Comparison of the results with the two different surfaces should make it clearer
what the effect of the quality of the electronic calculation has on the overall vi-
brational spectrum, and augment the information given by Janssen et al.

Our method may also be applied to mixed bihalide ions, [FHX]™; X=DBr,
Cl, I. (These also belong to the category of ‘normal’ H-bonds.) In these examples,
because of the loss of symmetry, the SCF approximation in (£, 7) coordinates may
be less appropriate, and the solution of the SCF equations computationally more
complicated.

Finally, this adiabatic-SCF model (with limited CI) may be applied to
other H-bonded (multi-modg) systems. This scheme may be preferable in certain
cases to the pure SCF-CI method because of the more pl}ysicai nature, and the
more information this model gives, even if at times it may be computationally

less simple. The only major limitation would be the ready availability of full-

dimensional potential surfaces.

150



E. Summary

In this chapter, a strategy for completing the analysis of the vibr#tional
dynamics was outlined.

Results of limited CI computations a.mon-g the 7, SCF states were pre-
sented. The CI correction to the fundamentals is very small. With an 11-member
basis set, the ground protonic state converged up to 0.001 cm™!, and the fourth
excited state converged up to 5 cm™!. The SCF separation scheme in (£, 7) coor-
dinates seems to be working satisfactorily. The SCF approximation‘as expected
breaks down at avoided crossings, where there is extensive mixing between the
two crossing SCF states. |

A computational procedure was outlined for the solution of the v;- dy-l
namics. For those avoided crossings where the adiabatic approximation is not
) valid, coupled multi-channel equations in R-coordinate must be solved. Finally,
some extensions of this study on [FHF] were suggested.

*

151



=1

10.

11.

13.

14.

15.

16.

BIBLIOGRAPHY

W. M. Latimer and W H Rodebush, J. Any. Chem. Soc 42, 1419 (1920)
G. C, Puneatel and A L. McClellan, The Hydrogen Bond (W H. Freeman,

1960)

S N Vinogradov and R. 'nnoll\ Hydrogen Bonding (Van Nostrand Rein

hold, 1972)

M. D. Joesten and L. J Schaad, Hydrogen Bondsng (Maicel Dekker. 1974)

P Schuster. G. Zundel and C. Sandorfy (ed.). The Hydrogen Bond- Recent

~

Developments in Theory and Ezperyments (North Holland,/1976). vols 1.2.3
(esp. cha.s 2,3,6,12,13) )

C. A Coulson, Research, 10, 149 (1957)

J. Emsley, Chem. Soc. Rev., 9, 91 (1980)

D. Hadzi and H. W. Thompson (ed.), Hydrogen Bonding (Pergamon, 1959)
(esp. pg.s 85-106) ‘

P. A. Kollman and L. C. Allen, Chem. Rev., 72 283 (1972)

F. L. Boschke (ed.), Topics 1n Current Chemastry, vol. 120, {Springer Verlag,

1984
S. A. Harrell and D. H. McDaniel, J. ém Chem. Soc., 86, 4497 (1964)

. T. C. Waddington, Trans. Farad. Soc., 54, 25 (1958)

H. P. Dixon, H. D. B. Jenkins, and T. C. Waddington. J. Chem. Phys., 57.
4388 (1972)

D. G. Tuck, Prog. Inorg. Chem., 9, 161 (1968)

M. Heni and E. lllenberger, J. Chem. Phys., 83, 6056 (1985)

A. B. Sannigrahi and S. D. Peyerimhoff. J. Mol. Struct. (THEOCHEM),

A

122,127 (1985)

° 152



26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

38.

- M J. Frisch, J. E. Del Bene, J. S, Binkley, H F Schaeffer 111, J. Chem,

Phys., 84, 2279 (1986)

. S. W. Peterson, and H. A. Levy, J. Chem. Phys., 20, 704 (1952)

. J. A. Ibers, J. Chem. Phys., 40, 402 (1964)

.~ R. Kruh, K. Fuwa, and T. E. McEever, J. Am. Chein. Soc., 78. 4256 (1956)
. T. R. R. McDonald, Acta. Cryst.¢ 13, 113 (1960)

. L. K. Frevel and H. W. Rinn, Acta. C;yst., 15, 286 (1962)

B. L. McGaw and J. A. Ibers, J. Chem. Phys., 39, 2677 (1963)

- W. Van Gool, J. Bruinink, and P. H. Bottelberghs, J. Inorg. Nucl. Chem.,

34, 3631 (1972)

. H. L. Carell and J. Donohue, Israel J. Chem., 10, 195 (1972)

R. M. Bozorth, J. Am. Chem. Soc., 45, 2128 (1923)

J. M. Williams and L. F. Schneemeyer, J. Am. Chem. Soc., 99, 5780 (1973)
Y. Marechal, Mol. Interactions, 1, 231 (1980)

S. A. Barton and W. R. Thorson, J. Chem. Phys., 71, 4263 (1979)

S. Besnainou, Adv. Mol. Relax. Inter. Pro., 16, 81 (1980) .

Y. Marechal, J. Mol. Sruct., 47, 291 (1978)

Y. Marechal, Chem. Phys., 52, 245 (1980)

Y.’Ma.rechal, Chem. Phys., 79, 69 (1983)

G. Auvert and Y. Marechal, J. de Physique, 8, 735 (1979)

Y. Marechal, Chem. Phys., 79, 85 (1983)

L. Soulard and F. Fillaux, Chem. Phys., 100, 355 (19‘85)

C. A. Coulson and G. N. Robertson, Proc. Roy. Soc. Lond., 4337, 167
(1974)

C. A. Coulson and G. N. Robertson, Proc. Roy. Soc. Lond., A342, 289

(1975)

0



39.

40.
41.
42.
43.
44,
45.
46.
47.

48.

49.

50.

395.
56.
o7.

98.

C. A Coulson and G N Robertson, Phil. Trans. Rov. Soc. Lond | A286,

25 (1977)

- D Sokolov and V. A. Savel’ev, Chem. Phys., 22, 383 (1977)

N
Y Marechal and A. Witkowski, J. Chem. Phys., 48, 3697 (1968)
A Witkowski and M. Wojcik, Chem. Phys., 1,9 (1973)
S

. Bratoz and D. Hadzi, J Chem. Phys . 27, 991 (1957)

A. Salthouse and T. C. Waddington, J. Chem. Phys., 48, 5274 (1968)

—

J A. A Ketelaar, Rec. Trav. Chiumn., 60, 523 (1941)

- A. A Ketelaar and W. Vedder, J. Chem. Phys, 19, 654 (1951)

—

P. Dawson, J. Chem. Soc. Farad. Trans. 2, 68, 1448 (1972)

P. Dawson, M. M. Hargreave, and G. R. Wilkinson, Spectrochim. Acta A,
31, 1055 (1975)

Z. Iqbal, J. Chem. Phys., 59. 6183 (1973)

J. J. Rush, L. W. Schroeder, and A. J. Melveger, J. Chem. Phys., 56. 2793

(1972)

. R. Newman and R. M. Badger, J Chem. Phys., 19, 1207 (1951)

L. Couture and J. P. Mathieu, C. R. Acad. Sci., 228, 555 (1949)

J. P. Mathieu and L. Couture, C. R. Acad. Sci., 230, 1054 (1950)

. R. D. Cooke, C. Pastorek, R. E. Carlson, and J. C. Dectus, J. Chem. Phys.,
69, 5 (1978)
G. R. Wilkinson, Nat. Bur. Stand. Spec. Publ., 30, 107 (1969)
B. S. Ault, J. Phys. Chem., 82, 844 (1978) .
J. E. Bertie, D. F. Thomas, and W. R. Thorson, J. Chem. Phys., 73, 5399
(1980) v
O.J. Chunnilall, W. F. Sherman, and G. R. Wilkinson, J. Mol. Struct., 115,

205 (1984)



60.

61.

62.

63.
64.

65.

. 0. J. Chunmlall and W. F. Sherman, J. Mol. Struct: 8Q. 121 (1982)

E. Spinner, Aust. J. Chem., 33, 933 (1980)

K. M. Harmon, and R. R. Lovelace, J. Phys. ‘Chem., 8§, 900 (1982)

T. C. Waddington, J. Howard, K. P. Brierly, and J. Tomkinson, J. Chem.
Phys. 64, 193 (1982)

K. Kawaguchi and E. Hirota, J. Chem. Phys., 84, 2953 (1986)

G. L. Coté and H. W. Thompson, Proc. Roy. Soc. Lond., 4210, 206 (1951)

E. B. Wilson Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations (Dover,

1980 :

66.

67.

68.

69.

70.
71.

72.

73
74
75

L. A. Woodward, Introduction to the Theory of Molecular Vibrations and
Vibrational Spectroscopy (Clarendon Press, Oxford, 1972)

G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Rein-
hold, 1945, 1950) vol.s 1,2

(a) M. Born, and J. R. Oppenheimer, Ann. der Phys., 84, 457 (1927)

(b) M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Claren-
don Preés, Oxford, 1954), pg. 166 ff, 402

G. C. Carney, L. L. Sprandel, and C. W. Kern, Adv. Chem. Phys., 37, 305
(1978) )

J. M. Bowman, J. Chem. Phys., 68, 608 (1978)

C. L. Janssen, W. D. Allen, H. F. Schaeffer III, and J. M. Bowman, Chem.
Phys. Lett., 131, 352 (1986)  ° |

J. M. Bowman, K. M. Christoffel, and F. L. Tobin, J. Phys. Chem., 83, 905
(1979)

J. M. Bowman, Acc. Chem. Res., ]9, 202 (1986)

F. L. Tobin and J. M. Bowman, Chem. Phys., 47, 151 (1980)

K. M. Christoffel and J. M. Bowman, Chem. Phys. Lett., 83, 220 (1982)

J



76. K. M. Chnstoffel and J. M. Bowman, J. Chem. Phys | 74, 5057 (1981)
77. H. Romanowski and J. M. Bowman, Chein. Phys. Lett | 110, 235 (1984)
78. H. Romanowski and J. M. Bowman, and L. B. Harding, J. Chem. Phys., 82,

4155 (1985)

79. M. Cohen, S. Greita, and R. P. McEachran, Chem. I;lxys. Lett., 60, 445

(1979)
80. T. C. Thompson and D. G. Truhlar, J. Chem. Phys., 77, 3031 (1982)
81. N. Moiseyev, Chem. Phys. Lett., 98, 233 (1983)
82. T. C. Thompson and D. G. Truhlar, Chem. Phys. Lett., 75, 87 (1980)
83. R. B. Gerber, R. M. Roth, and M. A. Ratner, Mol. Phys., 44, 1335 (1981)
84. R. B. Gerber and M. A. Ratner, Chem. Phys. Lett., 68, 195 (1979)
85. R. M. Roth and M. A. Ratner, Chem. Phys. Lett., 112, 322 (1984)
86. M. A. Ratner and R. B. Gerber, J. Phys. Chem., 90, 20 (1986)
87. D. Farrelly and A. D. Smith, J. Phys. Chem., 90, 1599 (1986)
88. A. Requena and R. Pena, J. Quant. Spectrosc. Radiat. Transfer, 29, 471
(1983)

89. F. M. Fernandez and E. A. Castro, Chem. Phys., 58, 65 (1981)
90. H. Sellers, J. Mol. Struct. (THEOCHEM), 92, 361 (1983)

91. F. R. Burden and H. M. Quiney, Mol. Phys., 53,917 (1984)

92. T. Saitoh, K. Mori, and R. Itoh, Chem. Phys., 60, 161 (1981)

93. L. L. Lohr and J. R. Sloboda, J. Phys. Chem., 85, 1332 (1981)
94. J. Almlof, Chem. Phys. Lett., 17, 49 (1972)

95. G. J. Jiang and G. R. Anderson, J. Phys. Chem., 77, 1764 (1973)
96. T. R. Singh and J. L. Wood, J. Chem. Phys., 48, 4567 (1968)

97. T. R. Singh and J. L. Wood, J. Chem. Phys., 50, 3572 (1969)

98. J. A. Ibers, J. Chem. Phys., 41, 25 (1964)



99.

100
101

102

103.

104.

105.

106.
107.
108.
109.

110.
111.
112.

113.

114.
115.
116.
17
118.

119.

157

W. R. Thorson and J. B. Delos, Phys. Rev., A18, 135 (1978)

. E. R. Lippincott and R. Schroder, J. Chem. Phys., 23, 1099 (1955)

. E. R. Lippincott and R. Schréder, J. Am. Chem. Soc., 78, 5171 (1956)

. W. E. Milne, Phys. Rev., 35, 863 (1930)

(a) B. L Stepanov, Zh. Fiz. Khim., 19, 507 (1945)

(b) B. L Stepanov, Nature, 157, 808 (1946)

D. H. McDaaniel and R. E. Vallee, Inorg. Chem., 2, 996 (1963)

P. Kebarle, A. Zolla, J. Scarborough, and M. Arshardi, J. Am. Chem. Soc.,
89, 6393 (1967)

R. L. Clair and T. B. McMahon, Can. J. Chem., 57, 473 (1979)

T. H. Dunning, J. Chem. Phys., 53, 2823 (1970) A\

@. Burrau, Det. Kgl. Danske Vid. Selskab., 7, 1.(1927)

L. Pauling and E. B. Wilson, Jr., Introduction to Quantum Mechanics (McGraw-
Hill, 1935), cha. 4

G. S. Ezra, Chem. Phys. Lett., 101, 259 (1983)

R. S. Caswell and M. Danos, J. Math. Phys., 11, 349 (1970)

T. A. Koopmans, Physica, 1, 104 (1934)

(a) L. A. Young, Phys. Rev.,'38, 1612 (1931)

(b) L. A. Young, Phys. Rev., 39, 445 (1932)

J. A. Wheeler, Phys. Rev., 52, 1123 (1937)

R. A. Ballinger and N. H. March, Proc. Phys. Soc., 467, 378 (1954)

C. E. Hecht and J. E. Mayer, Phys. Rev., 106, 1156 (1957)

J. L. Peache:-‘axnd J. G. Wills, J. Chem. Phys., 46, 4809 (1967)

H. Ezawa, K. Nakamura, and Y. Yamamotu, Proc. Jap. Acad., 46, 168
(1970) ‘

(a) W. L. Ngwma.n and W. R. Thorson, Phys. Rev. Lett., 29, 1350 (1972)



(b) W. I. Newman and W. R. Thorson, Can. J. Phys., 50, 2997 (1972)

120. J. G. Wills, Can. J. Phys., 52, 664 (1974)

121, W. R. Thorson, Can. J. Phys., 52, 2504 (1974)

122. J. C. Light and J. M. Yuan, J. Chem. Phys., 58, 660 (1973)

123. J. M. Yuan, S. Y. Lee, and J. C. Light, J. Chem. Phys., 61, 3394 (1974)

124. S. Y. Lee and J. C. Light, Chem. Phys. Lett., 25, 435 (1974)

125. J. Killingbeck, J. Phys. A, 10, L99 (1977)

126. A. Alijah, J. T. Broad, and J. Hinze, J. Phys. B, 19, 2617 (1986)

127. B. Yoo and C. H. Greene, Phys. Rev. A, 34, 1635 (1986)

128. E. A. Solov’ev, JETP Lett.,39, 100 (1984)

129. F. A. Robicheaux, U. Fano, M. Cavagnero, and D. A. Harmin, Phys. Rev.
A, 35, 3619 (1987)

130. H. J. Korsch and H. Laurent, J. Phys. B, 14, 4213 (1981)

131. H. J. Korsch and H. Laurent, J. Phys. B, 15, 1 (1982)

132. H. J. Korsch, Phys. Lett., 1094, 313 (1985)

133. R. E. Langer, Phys. Rev., 51, 669 (1937)

134. J. M. Yuan and J. C. Light, 8, 305 (1974)

135. R. Bulirsch and J. Stoer, Numer. Math., 8, 1 (1966)

136. International Mathematics and Statistical Library Reference Manual, edition
7, vol.2 (IMSL, Houston, Texas, 1979)

137. J. D. Power, Phil. Trans. Roy. Soc., 2744, 663 (1973)

138. D. R. Noakes, private communication.

139. W. R. Thorson and J. H. Choi, unpublished results. '

140. S. Huzinaga

aguchi and E. Hirota, J. Chem. Phys., 87, 6838 (1987) °

unt and L. Andrews, J. Chem. Phys., 87, 6819 (198'7)

. Chem. Phys., 42, 1293 (1965)

141. K. K
142. R. D.



APPENDIX

Series Solutions of the Differential Equation in £- motion

o

Making the substitution r = { — 1 in equation (3.22),

d’ 1-m? 1 * 2 [V — Elg*(n; R)
{d‘ﬁ+x2(1+2)2 Yoz 12 /_, AU A S

+—L}f(1:;R):0

(z + 2)

Expanding the SCF interaction potential term in a power series of z,

1 (€ -V - El?(iR) _ s
a/_x & (1-n%) _,§Vk

where {V}} are constants dependent on the fitting parameters, we have

N
(22 +4z+4)f" +(1 - mz);fi + (—Ij—zlfz Vizt + eg(z+ 2)% =0
* k=0

We seek a series solution of the form,

o0

f(z;R)=12°) a,2",  with ag #0.

=0
.

Using (A.4) in (A.3) we have,

(A.1)

—
>
Q%]

~—

(A.3)

(A.4)

Z[(c +r)(c+ 1 —1)+ ¢glarz®t + 2[4(0 +r)c+r— 1)‘+ 26.!,]0,:5”"—l

r=0 r=0

+ i[4(c +r)c+r—-1)+(1- m?'n)]a,:z:”"'2

r=0
oo N o0 N
+Z a,zc""z szk + 22 a,z°t ! z szk =0
r=0 k=0 : r=0 k=0
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\

(A.5)



Equating the coetlicient of the term 7% in (A.5) to zero, we obtain the indicial

equation,;
4ct —de+ 1 —m? =0, (A.6)
with the solutions,
o = % + % (A.7a)
2 = % - ';—‘ “ (A.7b)

Therefore, one solution of the differential equation (A.3) will be given

-

)y,
) filzi R) = /32N g 0 (A.8)

r=0

To find the recursion relations among the {a,}, we equate the coefficient of z

term in (A.3) to zero:

1
Z[(Zr +m =3)2r +m —5) +4elar—2+ [(2r + m —1)(2r + m — 3) + 2¢4la, -

- N .
+H@2r+m+1)(2r tm—1)+ (1 — m?)a, + Z Vi(2a, k-1 + ar_x_2) =0 (A.9)

k=0
And (A.9) defines all {a,;;i = 1,00} provided that we specify a, = 0 for all

7 < 0. ag(# 0) will remain undefined for the time being.
The second series solution (linearly independent of fi(z; R)) of the dif-

ferential equation will be given by,

fo(z; R) = Kfi(z; R)Inz + z!/2~™/? Z by’ (A.10)

r=0

where K i5 some constant (to be determined later), and by # 0. Using (A.10)

and (A.8) in (A.3) we obtain;

\

’

160

c4+r-2
.



o0
r=0

.+Z4r(r~—rn A +Zb1 ZVI;I +Z°bi’ lX:VI:I

+ Z K(2r + m)a,z"*™ + 241& 2r + m)a,:r””"‘1

[(2r — m)? — 1+ deg]b o’ +Z[2r—m) —1+_fy]br‘

,;;,._.

| (A.11)
+ Z 4K(2r + m)a, 2"t =0
Case (1) : m=0
S
Consider the Wronskiart of f; and  fo,
W(fi,f2)=hH'fa- Afd (A.12)

Since f) and f, are linearly independent, W is a non-zero constant. Evaluating

W at z = 0 for the;n=0case,

W = —Ka} (A.13)
Impose the condition that
Lf)=1 (A.14)
Then, ° —Ka% =
In order to satisfy the above relationship, we set ¢
» K=-1, ‘ . (A.15)
ag=1" (A.16)
, We also set the c<'tant bp=1 (A.17)

. ‘ !
In order to obtain the recursion relations among t]:'Q{ b}, equate the coefficient of

'Y

z"~% in (A.11) to zerp: = _ N

4
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1 . .
Z[(Zr — )2 1 deglby 24 [(2r —2)F — 1+ 2€4)b,

N
+4rib, + g Ve(2br _k_1 + by_k_2) + K(2r — 4)a,_y + 4K (2r —2)a,_, (A.18)
+ 4K (2r)a, =0
(A.12) defines all {b,;; = 1,00} with K = -1, b =1, ag = 1, and

a,;j =1,00} given by (A.9).
)

-

Case (2) : m >0 P

\
Again computing the Wronskian of f; and f; at r =20,

W = magbg (A.19)
We impose once again the condition
W(fi,f2) =1 : (A.20)

Therefore, magby = 1. ‘ §

To satisfy above relation, we select

a =1 ‘ (A.21)

and bp=1/m. (./5;.22)

And equating the coefficient of 2% in (A.11) to zero,



\

1 :
Z[(?r —m —4)? — 1 +4eg)b_2 + [(2r —m —2)2 =1 4+ 2¢,]br_1 + 4r(r — m)b,

N .
+Z Ve(2br k=1 + br_k—2) + K(2r —m —4)a, 2 +4K(2r —m — 2)a, _m_1
k=0
+4K(2r —m)a,_,, =0
(A.23)

(A.23) defines all {b;;¢ = 1,00} (ezcept. for bp,), with the {a,} being given

by (A.9), and a;,b; = 0 for ; < 0.
" We choose bm =0 (m>0) (A.24)
And finally, to fix the value of K, put r = m in (A.23);

L
Z((m - 4)2 =1 4+ 4¢;]bm_2 + [(m — 2)* — 1 4 2¢4)bym—1

“

N ,
+ ) (2bm_k—1 + bp_k—2)Vi = —(4m)K (A.25)
' g : 1 2

Thus, for a given set of potential constants {V;}, the two linearly inde-
pendent series solutions of the differential equation (A.1), fi(z; R) and fa(z; R)
are completely defined. They have a theoretical radius of convergence of 2, within
an annulus centered at the origin, z = 0. C

It is easily seen that PE}) fi(z; R).(€2 = 1)"Y/2 = finite constant while
lig}) fo(z; R).(€2 = 1)"1/2 = 00; so-that the rggula.r (at z = 0) solution is fi(z; R)
while f2(z; R) corresponds to the irregular solution. With these fo\rmg of the series
solutions the limiting properties (at z = 0) of functions such as Milne’s function,
quantal momentum , phase function, etc may be determined using the definitions

given in Chapter 4. -
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