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Abstract

Numerous studies have been devoted to the estimation and inference problems for

functional linear models (FLM). However, few works focus on model checking prob-

lem that ensures the reliability of results. Limited tests in this area do not have

tractable null distributions or asymptotic analysis under alternatives. Also, the func-

tional predictor is usually assumed to be fully observed, which is impractical. To

address these problems, we propose an adaptive model checking test for FLM. It

combines regular moment-based and conditional moment-based tests, and achieves

model adaptivity via the dimension of a residual-based subspace. The advantages

of our test are manifold. First, it has a tractable chi-squared null distribution and

higher powers under the alternatives than its components. Second, asymptotic prop-

erties under different underlying models are developed, including the unvisited local

alternatives. Third, the test statistic is constructed upon finite grid points, which in-

corporates the discrete nature of collected data. We develop the desirable relationship

between sample size and number of grid points to maintain the asymptotic proper-

ties. Besides, we provide a data-driven approach to estimate the dimension leading to

model adaptivity, which is promising in sufficient dimension reduction. We conduct

comprehensive numerical experiments to demonstrate the advantages the test inherits

from its two simple components.
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Chapter 1

Introduction

As an important component of functional data analysis (FDA), FLM is widely adopted

in practice to describe the relationship between a functional predictor and a scalar

response. It has been actively studied and received increasing attention in recent

decades [1–3]. Classical FLM can be formulated as

Y =

∫︂
I
X(t)β(t)dt+ η, (1.1)

where Y ∈ R is a scalar response, X(·) ∈ L2(I) is a real-valued random process over

the interval I = [a, b], β(·) is an unknown slope function in L2(I), and η is a random

noise satisfying E(η | X(·)) = 0. Without loss of generality, let I = [0, 1] and assume

Y and X(·) are centered. Apart from the scalar-on-function model in (2.1), other

forms of FLM include function-on-function regression [4, 5] and function-on-scalar

regression [6–8], and also generalized FLM [9, 10].

There are extensive investigations into estimation [11–14] and inference [10, 15–17]

problems for FLM. However, most of them assume the model is sufficient. A wrongly

specified model could lead to unreliable conclusions, making the model checking pro-

cedure an essential step before fitting the data. Even though much attention has been

paid to this area, few theoretical results on model checking problems for functional

data are developed. Limited tests for FLM include scalar-on-function regression [18]

and function-on-function regression [19], both of which are motivated by the residual-

marked empirical process proposed in [20]. A recent work [21] considers an efficient
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empirical process-based test using random projection for scalar-on-function linear re-

gression. It greatly reduces the complexity of calculating the test statistics but at

the expense of lower power compared to [18]. Nevertheless, resampling techniques

such as wild bootstrap are still required to determine the critical value, which is a

computation burden. In addition, the discrete nature of collected data is usually

disregarded, which can affect the convergence rate of the test statistic and impair its

power. Existing tests considering discretely observed data either lack the theoretical

results under local alternatives or cannot provide a reference relationship between

the sample size and the number of grid points for the asymptotic properties [13, 19,

22]. The demand for reducing the computation complexity, admitting the discretely

observed data and establishing comprehensive theories drives our work.

We propose an adaptive model checking test for FLM and illuminate its asymp-

totic properties in different underlying models to address the challenges. Our test is

motivated by the adaptive-to-model hybrid test proposed in [23]. We are interested

in the incomplete nature of collected data. Assume the functional predictor X(t) is

observed at M grid points on its support. We then study a desired M to maintain

the asymptotic properties rather than assuming X(t) is completely observed as most

existing works, which is more practical and realistic. For notation simplicity, denote

X = X(t), β = β(t) and
∫︁ 1

0
X(t)β(t)dt as ⟨X, β⟩ without confusion. Our objective is

to test the following hypothesis

H0 : Y = ⟨X, β0⟩+ η, for some β0 ∈ L2(I), (1.2)

against

H1 : Y = G(X) + η, (1.3)

where E(η | X) = 0 and G(X) ̸= ⟨X, β⟩ for all β ∈ L2(I). Our test contains

two major components. The first component simply uses a moment-based sum of

weighted residuals as a test statistic. It shares asymptotic behaviors with global
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smoothing methods [24, 25] that can achieve the fastest possible convergence rate

[23, 26] while having a tractable null distribution according to the inference results

in [10]. The second component adjusts the typical conditional moment-based test

proposed by [27] for functional data. It is sensitive to oscillating alternatives and can

handling an omnibus test like other local smoothing methods [26, 28]. We can use an

indicative dimension induced from a residual-based central mean subspace [29–31] as

a bridge to achieve model adaptivity and combine the merits of the two components.

The indicative dimension borrows ideas from sufficient dimension reduction (SDR)

theory [29–31]. It has been applied to building adaptive-to-model tests [23, 26, 32]

which can alleviate the curse of dimensionality. In the past decades, many efforts

have been devoted to functional SDR [33–39], paving the way to build the hybrid

tests for FLM.

Our main contributions are multifold.

1. The hybrid test has a chi-squared null distribution. Therefore, we do not need

a resampling method to obtain the critical value. It reduces the computa-

tional burden for functional data analysis. Our test has a fast convergence rate

and omnibus property against the alternatives simultaneously, achieved by an

adaptive-to-model dimension.

2. We derive the minimum number of grid points to preserve the asymptotic prop-

erties of hybrid test by incorporating the discretely observed functional data.

3. We systematically illuminate the asymptotic properties of the hybrid test under

the null hypothesis, global alternatives, and local alternatives.

4. We also develop a promising data-driven method for estimating the indica-

tive dimension in practice. The results from various numerical studies show

this method is robust to different data generating processes and the underlying

models.
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The rest of this thesis is organized as follows. In Chapter 2, we give a brief intro-

duction on estimation methods in functional linear regression and functional sufficient

dimension reduction. In Chapter 3, we propose the hybrid test statistic for FLM and

introduce the estimation procedure for slope function utilizing eigen-system in Hilbert

space. The estimation of indicative dimension by SDR in functional space is illus-

trated as well. Chapter 4 elaborates the asymptotic properties of the test statistic

under different hypotheses. In Chapter 5, we present the finite sample powerfulness

of the proposed test by various experiments and real data sets.
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Chapter 2

Background

2.1 Functional linear model

As has been mentioned in Chapter 1, functional linear model for scalar responses can

be formulated as

Y =

∫︂
I
X(t)β0(t)dt+ η, (2.1)

where η is a random noise satisfying E(η | X(·)) = 0. Furthermore, let I = [0, 1]

and assume Y and X(·) are centered. The estimation problem is widely concerned.

The main goal is to estimate the slope function β0 based on a set of training data

{Xi(t), Yi}ni=1. There are two popular strategies to retrieve the estimated slope func-

tion β̂(t). One is based on the functional principal component analysis (FPCA) and

the other is to find an optimal solution in the reproducing kernel Hilbert space. The

detailed estimation procedure are illustrated as follows.

2.1.1 Functional principal component analysis

First, we formulate the estimation procedure by FPCA. For a square-integrable

stochastic process X(t), t ∈ [0, 1], let µ(t) = E(X(t)) be the expectation function

and C(s, t) = Cov(X(s), X(t)) = E((X(s) − µ(s))(X(t) − µ(t))) be the covariance

function of X(t). Here C(s, t) is a linear Hilbert-Schmidt operator on L2[0, 1], i.e.

C : L2[0, 1] → L2[0, 1], Cf =

∫︂ 1

0

C(s, t)f(s)ds.

5



Notice that C(s, t) is continuous, symmetric, and square integrable, thus admits the

spectral decomposition C(s, t) =
∑︁∞

k=1 λkφk(s)φk(t), where λ1 ≥ λ2 ≥ . . . ≥ 0 are

the eigenvalues and φ1, φ2, . . . are the corresponding orthonormal eigenfunctions of

C(s, t). By the Karhunen-Loève theorem, one can express the centered process in the

eigenbasis,

X(t)− µ(t) =
∞∑︂
k=1

ξkφk(t)

where

ξk =

∫︂
T
(X(t)− µ(t))φk(t)dt

is the principal component score associated with the k-th eigenfunction φk, with the

properties

E (ξk) = 0,Var (ξk) = λk and E (ξkξl) = 0 for k ̸= l.

A common assumption of FPCA is that β0(t) can be represented by only the first

few eigenfunctions. Now we illustrate how to estimate β0(t) based on a set of training

data {Xi(t), Yi}ni=1 using a principal components approach.

First, note that in our assumption, both X(t) and Y are centered. Therefore, the

mean function µ(t) ≡ 0 and C(s, t) = E(X(s)X(t)). Then empirical versions of the

covariance function C(s, t) and of its spectral decomposition are

ˆ︁C(s, t) ≡ 1

n

n∑︂
i=1

Xi(s)Xi(t) =
∞∑︂
j=1

λ̂jφ̂j(s)φ̂j(t), s, t ∈ [0, 1].

Analogously to the case of C(s, t), (λ̂j, φ̂j) are associated eigenvalue and eigenfunction

pairs for the linear operator with kernel ˆ︁C(s, t), ordered such that λ̂1 ≥ λ̂2 ≥ · · · .

Moreover, λ̂j = 0 for j ≥ n+1. We take (λ̂j, φ̂j) to be our estimator of (λj, φj). The

function β0(t) can be expressed in terms of its Fourier series, as β0(t) =
∑︁

j≥1 bjφj(t),

where bj =
∫︁ 1

0
β(t)φj(t)dt. We estimate β0(t) as

β̂0(t) =
m∑︂
j=1

b̂jφ̂j(t)
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where m, lying in the range 1 ≤ m ≤ n, denotes a ”frequency cut-off” and b̂j is an

estimator of bj.

To construct b̂j we note that bj = λ−1
j gj, where gj denotes the j th Fourier coeffi-

cient of g(t) =
∫︁ 1

0
C(s, t)β(s)ds. Notice that we assume the underlying model to be

Y =
∫︁ 1

0
X(t)β0(t)dt+ η, which can be written as

X(s)Y =

∫︂ 1

0

X(t)X(s)β0(t)dt⇐⇒ E(X(s)Y ) =

∫︂ 1

0

E(X(t)X(s))β0(t)dt

⇐⇒ E(X(s)Y ) =

∫︂ 1

0

C(s, t)β0(t)dt = g(s)

Therefore, a consistent estimator of g is given by its empirical version

ĝ(t) =
1

n

n∑︂
i=1

Xi(t)Yi

and so, for 1 ≤ j ≤ m, we take b̂j = λ̂
−1

j ĝj, where ĝj =
∫︁ 1

0
ĝ(t)φ̂j(t)dt. Then we can

obtain the FPCA-based estimator β̂0(t).

2.1.2 Reproducing kernel Hilbert space

In this subsection, we will illustrate how to estimate the slope function based on

reproducing kernel Hilbert space (RKHS). Suppose Xi(t) are fully observed on the

interval [0, 1]. Furthermore, we assume that the slope function β0(t) resides in a RKHS

H which is a subspace of L2[0, 1]. The canonical example of H is the Sobolev spaces

with well selected norms, which will be used to illustrate the estimation procedure in

the following context. Let β0 ∈ H = Hm[0, 1], the m-order Sobolev space equipped

with the norm ∥ · ∥H given by

∥β∥2H =
m−1∑︂
i=0

(︃∫︂ 1

0

β(i)(t)dt

)︃2

+

∫︂ 1

0

(︁
β(m)(t)

)︁2
dt (2.2)

will form a RKHS. The estimator β̂(t) are defined to be the solution of a minimization

problem over the infinitely dimensional space H. Consider the squared error loss with

a penalty term, which associate with the semi-norm ofH that will be used for inducing
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space decomposition, the regularized estimator of unknown function β(t) is given by

β̂n,λ = argmin
β∈H

{︄
1

n

n∑︂
i=1

[︃
Yi −

∫︂ 1

0

Xi(t)β(t)dt

]︃2
+
λ

2
J(β, β)

}︄
, (2.3)

where J(β, ˜︁β) = ∫︁ 1

0
β(m)(t)˜︁β(m)(t)dt is a roughness penalty and we use λ/2 to simplify

future expressions. The representation theorem in [40] claims that the minimization

problem in (2.3) has an unique solution and an explicit form. We briefly go through

this part.

Let the null space induced by the semi-norm J(β, ˜︁β) on H be

H0 := {β ∈ H : J(β, β) = 0},

which is a finite-dimensional linear subspace of H (polynomials with degree less than

m). Denote by H1 its orthogonal complement in H such that H = H0 ⊕H1, where

H1 also forms a RKHS. Let K(·, ·) be the corresponding reproducing kernel of H1.

The representation theorem guarantees that the solution of (2.3) can be expressed as

β(t) =
m−1∑︂
k=0

dkt
k +

n∑︂
i=1

ci

∫︂ 1

0

Xi(s)K(t, s)ds (2.4)

for some coefficients d0, . . . , dm−1, c1, . . . , cn. See [40] for further details. If the norm

and semi-norm on H are chosen as ∥ ·∥H and J(β, ˜︁β) defined above, then reproducing

kernel K is

K(s, t) =
1

(m!)2
Bm(s)Bm(t)−

1

(2m)!
B2m(|s− t|), s, t ∈ [0, 1], (2.5)

where Bm(·) is the m-th Bernoulli polynomial.

Denote Σ = (Σij) as an n× n matrix and T = (Tij) an n×m with elements

Σij =

∫︂ 1

0

∫︂ 1

0

Xi(s)K(t, s)Xj(t)dsdt, Tij =

∫︂ 1

0

Xi(t)t
j−1dt.

Set y = (Y1, . . . , Yn)
′. Then we can rewrite the minimization problem (2.3) as

β̂n,λ = argmin
d∈Rm, c∈Rn

{︃
1

n
∥y − (Td+ Σc)∥2ℓ2 + λc′Σc

}︃
,
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which is quadratic in c and d, and the explicit form of the solution can be easily

obtained for such a problem. Write W = Σ+nλI, then the coefficient of β̂n,λ is given

by

d = (T ′W−1T )
−1
T ′W−1y,

c = W−1
[︂
I − T (T ′W−1T )

−1
T ′W−1

]︂
y.

2.2 Functional sufficient dimension reduction

Classical sufficient dimension reduction is characterized by the conditional indepen-

dence between the random variables X and the response Y

Y |= X | β⊤X,

where X is a p-dimensional random vector, Y is a random variable, and β is a p×

d matrix (d ≪ p). The goal is to estimate the space spanned by the columns of β,

which is the linear combinations of X that are sufficient to describe the conditional

distribution, see [29, 31]. This problem is linear in the sense that the reduced predictor

takes the linear form β⊤X. For this reason, we refer to it as linear sufficient dimension

reduction (linear SDR).

The theory of linear SDR was extended to functional data by [33, 34], where the

random element X takes values in the Hilbert space H, whose members are functions

defined on an interval, say [0, 1]. The general framework for linear functional sufficient

dimension reduction are developed as

Y |= X | ⟨β1, X⟩HX
, . . . , ⟨βd, X⟩HX

, (2.6)

where β1, . . . , βd are members of HX . It indicates that the conditional distribution

only depends on d projections of the random function X on β1, . . . , βd. We use an

example to illustrate it

Example 1 Let HX = L2[0, 1]. For any f, g ∈ HX , their inner product is defined as

⟨f, g⟩HX
=
∫︁ 1

0
f(t)g(t)dt. Let β1, . . . , βd are elements in L2[0, 1]. Then the following
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model

Y = f
(︁
⟨β1, X⟩HX

, . . . , ⟨βd, X⟩HX
, ϵ
)︁
,

is an example of the model satisfying (2.6), where f is an unknown nonrandom func-

tion and ϵ is a random function in HX which is independent of X.
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Chapter 3

Methodology

Let {Xi, Yi}ni=1 be a sequence of independent and identically distributed (i.i.d.) ran-

dom copies of {X, Y }. Contrary to many other literatures, we assume the functional

predictor X(t) is only observed atM grid points 0 = t1 < t2 < . . . < tM = 1 satisfying

max1≤j≤M−1{tj+1−tj} ≤ C0M
−1 for some constant C0. For simplicity, we consider the

equal distance observations on X = X(t), that is ti = (i−1)/(M−1), i = 1, 2, . . . ,M .

Consider the following hybrid test

Tn = γn,M
⃓⃓
V 2
0 I(q̂ = 0) + V1I(q̂ > 0)

⃓⃓
, (3.1)

where V0 and V1 are two simple tests, γn,M is the standardizing factor, and q̂ is an

estimated indicative dimension, which we will elaborate later.

For the test statistics in (3.1), we suggest the following explicit form. Suppose

β0 be the underlying slope function, which can be consistently estimated by β̂. Let

ϵi = Y − ⟨Xi, β0⟩ and ϵ̂i = Yi − ⟨ ˆ︁Xi, β̂⟩ be the estimation. First, we consider

V0 =
n∑︂

i=1

ϵ̂iw( ˆ︁Xi)/n

where X̂ i is a consistent estimator of Xi and w(·) is a non-linear weight function.

Then we use the conditional moment-based test

V1 =
n∑︂

i=1

n∑︂
j ̸=i,j=1

ϵ̂iϵ̂jKh(⟨ ˆ︁Xi − ˆ︁Xj, ˆ︁β⟩)/(n(n− 1)),

where Kh(·) = K(·/h)/h, K(·) is a one-dimensional kernel function and h is the

bandwidth.
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Here we illuminate how the hybrid test works. Notice that V0 is a weighted sum

of residuals, which is the moment based test statistics. It converges faster than V1

under the null hypothesis, indicating that it requires less samples, but its power is

relatively low in some alternatives. On the other hand, the conditional moment based

test statistics V1 enjoys is more powerful than V0 but converges slower than V0 under

the null hypothesis due to its non-parametric property. Our idea is to combine their

advantages using the indicative dimension to obtain a more powerful test.

In the following, we illustrate how to estimate the slope function and indicative

dimension.

3.1 Two-stage slope function estimation

There are two strategies to estimate the slope function based on discretely observed

functional data. One is to directly use the discrete samples Xi(t) for estimation, see

[8, 13, 19, 22], but it can be complicated to obtain inference results. The other is the

two-stage estimation procedure [13, 35], which will be adopted in this paper. First,

non-parametric methods are used to smooth the observations on each curve. Then the

closed form of the reproducing kernel-based regularized estimator β̂ can be derived

by smoothed curves. Specifically, in the first stage, we apply the spline smoothing

method to {Xi(tj)}Mj=1 in an r-th order Sobolev-Hilbert space to obtain

ˆ︁Xi = argmin
g∈Hr[0,1]

{︄
1

M

M∑︂
j=1

(Xi(tj)− g(tj))
2 + λ1

∫︂ 1

0

[︁
g(r)(t)

]︁2
dt

}︄
,

where λ1 is the smoothness parameter, Hr is the r-order Sobolev space defined by

Hr[0, 1] =
{︁
f : [0, 1] ↦→ R | f (j), j = 0, . . . , r − 1 are absolutely continuous

and f (r) ∈ L2[0, 1]
}︁
,

(3.2)

where f (j) denotes the j-th derivative of f . The smoothed curves { ˆ︁Xi(t)}ni=1 will be

used for reproducing kernel-based estimation in the second stage.

Assume that the slope function β∗ resides in a Reproducing Kernel Hilbert Space

(RKHS) H = Hm[0, 1], the m-order Sobolev space defined by (3.2) equipped with

12



the norm ∥ · ∥H given by ∥β∥H =
∑︁m−1

i=0 (
∫︁ 1

0
β(i)(t)dt)2 +

∫︁ 1

0
(β(m)(t))2dt. We have the

following regularized β̂:

ˆ︁βn,M,λ = argmin
β∈H

{︄
1

n

n∑︂
i=1

[︂
Yi − ⟨ ˆ︁Xi, β⟩

]︂2
+
λ

2
J(β, β)

}︄
, (3.3)

where J(β, ˜︁β) = ∫︁ 1

0
β(m)(t)˜︁β(m)(t)dt is a roughness penalty. The solution of (3.3) has

closed form, see [3, 40] for detailed derivation.

To make valid statistical inference for ˆ︁βn,M,λ, the eigen-system of H needs to be

established. Both [3] and [10] describe the construction procedure. Here we briefly

illustrate it. Let the null space induced by the semi-norm J(β, ˜︁β) on H be H0 :=

{β ∈ H : J(β, β) = 0}, which is a finite-dimensional linear subspace of H. Denote by

H1 its orthogonal complement in H such that H = H0 ⊕H1, where H1 also forms a

RKHS. Let K(s, t) be the corresponding reproducing kernel of H1, and C(s, t) be the

covariance function of random variable X(t). Then we apply spectral decomposition

on both K and C such that

K(s, t) =
∞∑︂
ν=1

ρνψν(s)ψν(t), C(s, t) =
∞∑︂
ν=1

µνϕν(s)ϕν(t),

where ρ1 ≥ ρ2 ≥ . . . are the eigenvalues of K(s, t) and ψν the associated eigenfunc-

tions, µ1 ≥ µ2 ≥ . . . the eigenvalues of C(s, t) and ϕν the associated eigenfunctions.

Define the new norm on H by

∥β∥2˜︁K = ⟨Cβ, β⟩+ J(β, β),

where ˜︁K is the new reproducing kernel on H. Let ˜︁K1/2 be the square-root kernel

of ˜︁K and Ω(s, t) = ( ˜︁K1/2C ˜︁K1/2)(s, t) be the product kernel. Conduct the spectral

decomposition gives Ω(s, t) =
∑︁∞

ν=1 ˜︁ρν ˜︁ψν(s) ˜︁ψν(t). Let φ∗
ν = ˜︁ρ−1/2

ν
˜︁K1/2 ˜︁ψν and ρ∗ν =

˜︁ρ−1
ν − 1, then we obtain the eigen-system (ρ∗ν , φ

∗
ν)

∞
ν=1.

Remark 2 Here we list some properties of eigenvalues shown above. Suppose C(s, t)

satisfies Sacks-Ylvisaker conditions of order s, see [41], then µν ≍ ν−2(s+1). Recall
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that m is the order of sobolev space in the estimation procedure and thus ρν ≍ ν−2m.

Notice that the eigen-system we construct satisfies Assumption A3 in [10], which

implies ρ∗ν ≍ ν2k and k = m + s + 1. These orders will determine the convergence

rate of β̂n,M,λ and the standardizing factor γn,M in test statistics.

3.2 Indicative dimension

In this subsection, we construct the indicative dimension that integrates the com-

ponents in hybrid tests. First, we introduce some basic notations and definitions

about SDR for scalar-on-function model, see [38] for more details. Consider the

random variables X ∈ L2[0, 1] and Y ∈ R. If there exists a functional vector

B = (θ1(t), . . . , θq(t))
T ∈ Hq, such that

Y |= X | ⟨B,X⟩, where ⟨B,X⟩ = (⟨θ1, X⟩, . . . , ⟨θq, X⟩)T

Then the space Span{B} is called a sufficient dimension reduction subspace of Y

with respect to X. The intersection of all the dimension reduction subspaces is called

the central subspace and denoted as SY |X . The dimension of the central subspace

is denoted as dim(SY |X). If Span{B} is the central subspace, then dim(SY |X) =

dim(Span{B}) = q. The definition mentioned above is a generalization of SDR for

finite-dimensional X ∈ Rp [29]. When the conditional independence is replaced by

Y |= E(Y | X) | ⟨B,X⟩, the corresponding subspace SE(Y |X) is called the central mean

subspace with dimension dim(SE(Y |X)). We consider the central mean subspace in this

work.

Recall that ϵi = Yi − ⟨Xi, β
∗⟩ and ϵ̂i = Yi − ⟨ ˆ︁Xi, ˆ︁βn,M,λ⟩ is its estimation. Under

the null hypothesis, ϵ = η and then dim(SE(ϵ|X)) = 0. Under the alternatives, the

remainder ϵ = G(X)+η−⟨X, β0⟩ = ∆(X, η) and dim(SE(ϵ|X)) > 0 since E{∆(X, η) |

X} is a nonconstant function of X. Let q = dim(SE(ϵ|X)) and q̂ be its estimation.

When ˆ︁βn,M,λ is a consistent estimator, q̂ should also be consistent. Under the null

hypothesis, q̂ equals to 0 with a probability going to 1; under the alternatives, it
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converges in probability to a positive q. This expected property will perform as a

bridge to combine two simple tests together and get a more powerful hybrid test. To

ensure the properties mentioned hold, we require some basic assumptions:

A1: E(Y 2) <∞ and E(∥X∥4L2) <∞.

A2: The covariance function C(s, t) of X is continuous on I× I. Furthermore, for

any β ∈ L2(I) satisfying Cβ = 0, we have β = 0.

A3: There is a bounded linear operator PB(C): H ↦→ H such that the linearity

condition E(X | ⟨B,X⟩) = PB(C)X is satisfied.

A4: Var(X | ⟨B,X⟩) is a constant operator on H.

A1 is commonly required for the consistency and asymptotic properties of ˆ︁βn,M,λ.

A2 regularity condition guarantees that ∥ · ∥K̃ is well defined. It also implies that

the dimension of a subspace in H will be preserved after being applied by C. A3

and A4 are usually known as the linearity condition and constant variance condition

under the SDR framework, see [33, 34, 38] for more information and see [23] for finite-

dimensional case. With these assumptions, We imitate the convex combined matrix

proposed in [23] and develop the indicative operator on H as

M cc = E(ϵX)⊗ E (ϵX) +HH,

where H = E (ϵX ⊗X) and X(t) ⊗ Y (t) = X(s)Y (t). The indicative operator can

be regarded as a bivariate function defined on [0, 1] × [0, 1] and M cc(s, t) ≡ 0 under

the null hypothesis. Also, M cc(s, t) is continuous, symmetric, and square integrable,

thus admits the spectral decomposition M cc(s, t) =
∑︁∞

ν=1 λνeν(s)eν(t), where λν is

its eigenvalue and eν is the associated eigenfunction. The lemma below guarantees

that dim(SE(ϵ|X)) can be obtained from M cc.

Lemma 3 Let Assumptions A1 through A4 be satisfied, the indicative operator M cc

satisfies Range(M cc) ⊆ Range(CSE(ϵ|X)), where Range(Γ) = {Γβ : ∀β ∈ H}. If the

number of non-zero eigenvalues ofM cc is q, then we have Range(M cc) = Range(CSE(ϵ|X)),

indicating dim(SE(ϵ|X)) = q.
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The indicative operator is estimated by its sample analogue ˆ︂M cc = Ê(ϵX) ⊗

Ê(ϵX) + ĤĤ, where Ê(ϵX) = (
∑︁n

j=1 ϵ̂j
ˆ︁Xj)/n and Ĥ = (

∑︁n
j=1 ϵ̂j

ˆ︁Xj ⊗ ˆ︁Xj)/n. The

consistency of ˆ︁βn,M,λ induces the consistency of the estimated indicative operator,

which will be discussed in the next section. As the lemma suggests, the key objective

is to determine or estimate the number of non-zero eigenvalues of M cc. The criterion

we use is a slight modification of the thresholding double ridge ratio (TDRR) method

developed by [42].

Define the eigenvalues of ˆ︂M cc to be λ̂1 ≥ · · · ≥ λ̂p ≥ . . . ≥ 0 and let ŝj =

λ̂j/
(︂
λ̂j + 1

)︂
. Define ŝ∗j = (ŝ2j + c1n)/(ŝ

2
j+1 + c1n)− 1 and r̂j = (ŝ∗j+1 + c2n)/(ŝ

∗
j + c2n),

where c1n and c2n are the two ridges that converge to 0 in proper rates to be selected

later. The criterion of determining indicative dimension can be defined as

q̂ =

⎧⎨⎩ 0,

argmaxj {j : r̂j ≤ τ}
if r̂j > τ, ∀j

with a threshold 0 < τ < 1. Based on the rule of thumb in [42], we also set τ = 0.5.

Remark 4 According to the above estimation, the standardizing factor γn,M = n/σ2
n,

where σ2
n =

∑︁∞
ν=1w

2
ν/(1 + λρ∗ν)

2 and wν =
∫︁ 1

0
ˆ︁Xw(t)φ

∗
ν(t)dt. Here (ρ∗ν , φ

∗
ν) is the

eigen-system established on H and ˆ︁Xw = (
∑︁n

i=1
ˆ︁Xiw( ˆ︁Xi))/n.

Remark 5 With the expected asymptotic properties of q̂, Tn reduces to γn,MV
2
0 under

the null hypothesis, which follows the chi-square distribution χ2
1. While under the

alternatives, Tn jumps to γn,M |V1|. It inherits advantages from the two components.

First, it has a tractable null distribution and diverges to infinity faster than using

V1 only. Second, the proposed test can detect local alternatives that converge to the

null at a rate slower than γ
1/2
n,M . Theorefore, it is more powerful than simply using

V0 or V1. This is the unique advantage of the adaptive-to-model hybrid test. We will

elaborate more details about the asymptotic properties of Tn in the next section.
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Chapter 4

Asymptotic Properties

We now investigate the consistency of β̂n,M,λ and q̂ and provide the asymptotic be-

haviors of Tn under null and alternatives. Listed below are the assumptions for the

theorems.

A5: There exist constants c0 ∈ (0, 1) and M0 > 0 such that E(ec0∥X∥L2 ) <∞ and

for any β ∈ H, E(|⟨X, β⟩|4) ≤M0[E(|⟨X, β⟩|2)]2

A6: Assume |wν | ≍ 1, define Ma =
∑︁∞

ν=1(w
2
ν)/(1 + λρ∗ν)

a for a = 1, 2, then

M1 ≍M2.

A7: The bandwidth of the kernel h satisfies h → 0, and also nk/(2k+1)h → ∞,

n1/(2k+1)h→ 0 as n→ ∞.

A5 is the regularity condition on process X, which is usually satisfied for Gaussian

process; see [3, 10] for details. A6 is required for the asymptotic normality property

of our test statistics. This assumption can be easily satisfied according to Proposition

4.2 in [10]. A7 gives the desired order of the bandwidth h for kernel estimation to

guarantee the asymptotic properties.

Now we consider the general form of the underlying model:

Y = ⟨X, β⟩+ δnℓ(X) + η, (4.1)

where E(η | X) = 0 and ℓ(·) is a non-linear function. When δn ≡ 0, (4.1) refers to

models under null hypothesis. It can also represent global and local alternatives when

δn ≡ C ̸= 0 and δn → 0, respectively. The following lemmas and theorems indicate

17



the asymptotic properties of β̂n,M,λ, q̂ and Tn with different underlying models.

4.1 Two-stage estimator

Let β̂n,λ be the regularized estimator based on fully observed functional data

β̂n,λ = argmin
β∈H

{︄
1

n

n∑︂
i=1

[Yi − ⟨Xi, β⟩]2 +
λ

2
J(β, β)

}︄
. (4.2)

As has been proved in [3], if we take λ = n−2k/(2k+1), where k is defined in Remark 2,

then β̂n,λ reaches optimal convergence rate ∥β̂n,λ − β∗∥L2 = Op(n
−k/(2k+1)), where β∗

denotes the limit of β̂ as n andM goes to infinity. With this property, the consistency

of the two-stage estimator under null and global alternatives can be obtained from

the theorem below.

Theorem 6 Let Assumptions A1 through A7 be satisfied, then under null and global

alternatives, we have ∥β̂n,M,λ − β∗∥L2 ≤ Op(n
−k/(2k+1)) +O(n1/2M−r).

The convergence rate of the two-stage estimator consists of two parts. The first

term is related to the estimation procedure, which is proved to be optimal under the

RKHS framework. The second term reflects the smoothing procedure for discretely

observed data. When the number of observationsM on a curve becomes large enough,

its influence on the estimator will decay quickly. This provides theoretical results

for the minimal points we should sample on a curve in practice. We complete this

subsection with the following theorem, which indicates the consistency of β̂n,M,λ under

local alternatives.

Theorem 7 Let Assumptions A1 through A7 be satisfied, under the local alternatives

we have

∥β̂n,M,λ − β∗∥L2 ≤ Op(n
−k/(2k+1)) +O(n1/2M−r) +Op(δn)
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4.2 Indicative dimension

It’s easy to derive the convergence rate of estimated indicative operator ˆ︂M cc under

null and global alternatives.

Theorem 8 Let Assumptions A1 through A7 be satisfied, then ˆ︂M cc satisfies:

(1) under the null hypothesis, ∥ˆ︂M cc −M cc∥ = Op(n
−2k/(2k+1)) +O(nM−2r);

(2) under the global alternatives, ∥ˆ︂M cc −M cc∥ = Op(n
−k/(2k+1)) +O(n1/2M−r).

The convergence rate of estimated indicative operator ˆ︂M cc implies the properties

of its eigenvalues. It paves the way to analyze the asymptotic behavior of q̂ with

TDRR method. The following theorem states the consistency of q̂, which is used to

indicate the underlying model.

Theorem 9 Let Assumptions A1 through A7 be satisfied, we have

(1) if c1n → 0, c2n → 0 and c1nc2n/(n
−2k/(2k+1) + nM−2r)2 → ∞, then under the

null hypothesis, P(q̂ = 0) → 1.

(2) if c1n → 0, c2n → 0 and c1nc2n/(n
−2k/(2k+1) + nM−2r) → ∞, then under the

alternative hypothesis, P(q̂ > 0) → 1.

From Theorem 9, we can see that q̂ indeed has the ability to indicate the type of

underlying model. Our hybrid test statistics Tn will degenerate to V0 and V1 under

null and global alternatives respectively, which means Tn will share their strengths

while avoiding their shortcomings. Also we should be aware that the assumptions

of two ridges c1n and c2n listed in Theorem 9 is for theoretical analysis. In practice,

they will be selected by data-driven approach to be adaptive to different underlying

models. We now give the asymptotic behavior of q̂ under the local alternatives.

Theorem 10 Let Assumptions A1 through A7 be satisfied, then under the local al-

ternatives, suppose that δn = n−α, then we have
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(1) when α ≥ k/(2k+1), let c1n → 0, c2n → 0 and c1nc2n/(n
−2k/(2k+1)+nM−2r)2 →

∞, then P(q̂ = 0) → 1.

(2) when 0 < α < k/(2k + 1), let c1n = o (δ4n), c2n → 0 and c1nc2n/(n
−8k/(2k+1) +

n2M−4r) → ∞, then P(q̂ = q > 0) → 1.

When the order of deviation term δn is close to n−k/(2k+1), the estimation q̂ will

jump from 0 to some positive integer. This property implies that it can detect local

alternatives with a deviation term slower than n−k/(2k+1). Unlike the n−1/2 threshold

shown in [23], there is a shrinkage of critical order of δn for functional data, which is

the price we have to pay to use reproducing kernel based estimator. However, since

k = m+ s+1, we can set a larger m to get the critical order closer to n−1/2. Finally,

we should be aware that these results only have the theoretical meaning, unless we

have prior information on the closeness of local alternatives to the null.

4.3 Test statistics

With the results shown above, we now discuss the asymptotic properties of the pro-

posed test in detail under the null, global alternative and local alternative hypothesis.

Theorem 11 Let Assumptions A1 through A7 be satisfied, if Mn−1/r → ∞, then

(1) under the null hypothesis, Tn
D−→ χ2

1.

(2) under the global alternative hypothesis, Tn/γn,M converges to a constant µ > 0.

Theorem 11 indicates that the hybrid test statistics Tn will converge in distribution

to χ2
1 under the null hypothesis. Therefore, the critical value of the model checking

test can be easily determined without using any resampling techniques, releasing the

computation burden. Under the global alternatives, the proposed test will diverge to

infinity at order γn,M = Op(n
2k/(2k+1)). Suppose all the assumptions mention above

hold, we can conclude that the convergence rate of V 2
0 and V1 under the null hypothesis

20



are n−2k/(2k+1) and n−1h1/2, respectively. In simulation studies, the bandwidth h is

selected as Op(n
−2/5), which is also the choice in [27]. Then the order of V1 is n−4/5

under the null hypothesis. In practice, we usually take the order of Sobolev space

m ≥ 2, and thus k ≥ 3, which means V0 converges faster than V1. Meanwhile, γn,MV1

will diverge faster than nh−1/2V1 under the global alternatives, Therefore, the hybrid

test is more powerful than simply use any one of V0 and V1. We also obtain the

asymptotic distribution of Tn under the local alternatives.

Theorem 12 Let Assumptions A1 through A7 be satisfied, then under the local al-

ternatives, let δn = n−α, if Mn−1/r → ∞, we have

(1) if α > k/(2k + 1), Tn
D−→ χ2

1.

(2) if α = k/(2k + 1), Tn
D−→ χ2

1(µ0), where χ
2
1(µ0) is a chi-squared distribution

with one degree of freedom and noncentrality parameter µ0 ̸= 0.

(3) if 0 < α < k/(2k + 1), and

(a) n1/2h1/4δn → 0, then Tn/h
−1/2 converges in distribution to N(0,Σ), where

Σ = 2

∫︂
K2(u)du

∫︂ {︁
σ2(z)

}︁2
f 2(z)dz,

where Z = ⟨β0, X⟩, σ2(z) = E (ϵ2 | Z = z) and f(z) is the probability den-

sity function of Z.

(b) δn = n−1/2h−1/4, then Tn/h
−1/2 converges in distribution to N(E(ℓ2f),Σ).

(c) n1/2h1/4δn → ∞, then Tn/ (nδ
2
n) converges in probability to E (ℓ2f).

Theorem 12 states that the hybrid test can detect the alternatives with a devia-

tion term slower than or equal to n−k/(2k+1). When δn = n−k/(2k+1), the estimated

indicative dimension q̂ will be zero with probability going to 1 according to Theo-

rem 10, reducing Tn to γn,MV
2
0 . The influence of the deviation term will then be
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reflected in the asymptotic property of γ
1/2
n,MV0, making it a non-central normal dis-

tribution. The third part gives a full picture to show what rate of divergence we

can achieve when δn is slower than n−k/(2k+1). Until now, we have systematically

studied the asymptotic behaviors of Tn with different underlying models. The results

demonstrate the expected merits of the hybrid test inherited from moment-based and

conditional moment-based tests. Finally, we note that the condition Mn−1/r → ∞

shown in above three theorems implies that if M = Cn1/r for some large enough C,

the impact of discrete observations will be eliminated. In practice, we would suggest

that C > 20.
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Chapter 5

Numerical Studies

In this section, we perform simulation studies using nine scenarios defined in [21] and

compare their powers. The different data generating processes are encoded as follows.

For the k-th simulation scenario Sk, with slope function βk, the deviation from H0 is

measured by a deviation coefficient δd, with δ0 = 0 and δd > 0 for d = 1, 2. Then, we

denote Hk,d the data generation from

Y = ⟨X, βk⟩+ δdℓj(X) + η,

where j ∈ {1, 2, 3} and the deviations from the linear model are defined by the non-

linear terms ℓ1(X) := ∥X∥, ℓ2(X) := 25
∫︁ 1

0

∫︁ 1

0
sin(2πts)s(1− s)t(1− t)X(s)X(t)ds dt,

and ℓ3(X) :=
⟨︁
e−X , X2

⟩︁
. The error term η follows a centered normal distribution

N (0, σ2), where σ2 is chosen such that, underH0, R
2 = Var[⟨X, β⟩]/(Var[⟨X, β⟩] + σ2) =

0.95. The description of the simulation scenarios is given in Table 5.1. We select five

types of functional processes X(t), all of them defined on [0, 1]:

BM. Brownian motion, denoted by B, with eigenfunctions ψj(t) :=
√
2 sin((j −

0.5)πt), j ≥ 1, will be generated by X(t) =
∑︁100

j=1 Zjψj(t)/((j − 0.5)π), where Zj are

i.i.d. standard normal random variables.

HHN. The functional process considered in [35], given by X(t) =
∑︁20

j=1 ξjϕj(t),

where ϕj(t) :=
√
2 cos(jπt) and ξj are i.i.d. random variables distributed asN (0, j−2l),

with l = 1, 2.

BB. Brownian bridge, defined as X(t) = B(t)− tB(1).
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Table 5.1: Simulation scenarios and deviations from the null hypothesis

Scenario Coefficient β(t) Process X Deviation

S1 (2ψ1(t) + 4ψ2(t) + 5ψ3(t))/
√
2 BM ℓ1, δ = (0, 0.25, 0.75)′

S2 (2ψ̃1(t) + 4ψ̃2(t) + 5ψ̃3(t))/
√
2 BB ℓ2, δ = (0,−2,−7.5)′

S3 (2ψ2(t) + 4ψ3(t) + 5ψ7(t))/
√
2 BM ℓ1, δ = (0,−0.2,−0.5)′

S4
∑︁20

j=1 2
3/2(−1)jj−2ϕj(t) HHN(l = 1) ℓ2, δ = (0,−1,−3)′

S5
∑︁20

j=1 2
3/2(−1)jj−2ϕj(t) HHN(l = 2) ℓ2, δ = (0,−1,−3)′

S6 log(15t2 + 10) + cos(4πt) BM ℓ1, δ = (0, 0.2, 1)′

S7 sin(2πt)− cos(2πt) OU ℓ2, δ = (0,−0.25,−1)′

S8 t− (t− 0.75)2 OU ℓ3, δ = (0,−0.01,−0.1)′

S9 π2(t2 − 1/3) GBM ℓ3, δ = (0, 0.5, 2.5)′

OU. Ornstein-Uhlenbeck process, defined as the zero-mean Gaussian process with

covariance given by Cov[X(s), X(t)] = σ2/(2α)e−α(s+t)(e2αmin(s,t) − 1). We con-

sider α = 1/3, σ = 1, and X(0) ∼ N (0, σ2/(2α)). It can be generate by X(t) =

(σ/
√
2α)e−αtB(e2αt).

GBM.Geometric Brownian motion, defined asX(t) = s0 exp{(µ−σ2/2)t+σB(t)}.

We consider σ = 1, µ = 0.5, and s0 = 2

5.1 Data-driven ridge selection

As an important component of hybrid test, indicative dimension needs to be well

estimated so that q̂ has the desired properties. The ridges c1n and c2n in TDRR

method should be carefully selected to satisfy conditions presented in Theorem 9 and

Theorem 10. Existing ridge selection methods [23, 26] usually use pre-determined fix

numbers based on numerical experiences, which is not adaptive to different underlying

models. For instance, the mean and variance of the nine simulation scenarios we
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considered vary a lot. The fixed ridges cannot achieve satisfying performance in all

scenarios, which urges us to develop a data-driven ridge selection method. In the

subsection, we will illustrate the construction of c1n and c2n in a data-driven way.

The art of ridge selection should satisfy two requirements simultaneously, (r1): it

should achieve the asymptotic properties stated in Theorem 9 and Theorem 10; (r2):

it should be adaptive to different process X(t) and slope function β0(t). To satisfy

(r1), one good choice is to set c1n = c2n = 2ŝ1, where ŝ1 = λ̂1/(λ̂1 + 1) and λ̂1 is the

largest eigenvalue of ˆ︂Mcc under null hypothesis. This will guarantee q̂ = 0 under the

null hypothesis using TDRR method and q̂ > 0 under alternatives when the deviation

is large enough. However, we have no prior information on our underlying model, so

we can’t tell whether ˆ︂M cc is estimated from the model under the null hypothesis.

To address this problem, we note that ˆ︂M cc only depends on the smoothed functional

data ˆ︁Xi(t) and remainders ϵ̂i. If we assume our data comes from a FLM with error

term η such that E(η | X) = 0 and Var(η) = σ2, let

ˆ︂Mnull = Ê(ηX)⊗ Ê (ηX) + ĤĤ (5.1)

where Ê(ηX) = (
∑︁n

j=1 ηj
ˆ︁Xj)/n, Ĥ = (

∑︁n
j=1 ηj

ˆ︁Xj⊗ ˆ︁Xj)/n and ηj are drawn i.i.d. from

N(0, σ2). Then the eigenvalues of ˆ︂Mnull should be close to the eigenvalues of ˆ︂Mcc under

the null hypothesis. Replicate calculating (5.1) for B times we get ˆ︂M (1)
null, . . . ,

ˆ︂M (B)
null,

then we average them to mitigate the randomness of sampling ηj by setting ˆ︂M∗ =

(
∑︁B

i=1
ˆ︂M (i)

null)/B. In practice, we take B = 100 and σ2 is estimated by the variance of

residuals ϵ̂i. The ridge will be chosen as c1n = c2n = 2ŝ∗1, where ŝ
∗
1 = λ̂

∗
1/(λ̂

∗
1+1) and λ̂

∗
1

is the largest eigenvalue of ˆ︂M∗. The trick of our approach is to replace the remainders

under the null hypothesis by i.i.d. samples from normal distributed variables with

the same variance. Although we don’t know the exact distribution information of the

error term under null hypothesis, numerical experiments shows that the difference of

ŝ∗1 and ŝ1 under the null hypothesis can be ignored since ηj shares the same mean

and variance with η. Theoretical analysis and discussion of this data-driven selection
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procedure need further study.

In practice, we also suggest setting a support order to deal with small variance

models. When σ2, the variance of the error term, is small, the largest eigenvalues

λ̂
∗
1 would also be small, which makes the TDRR method extremely sensitive to the

deviations. In this case, q̂ can easily jump to a positive value even under the null

hypothesis. To ensure the robustness of our criteria, it is recommended to set c1n =

c2n = max{2ŝ∗1, n−0.5}.

5.2 Simulation results

In this subsection, the numerical experiments are conducted on nine scenarios defined

above using our hybrid test statistics Tn. The results will be compared to the methods

proposed in [18] and [21]. The sample size is chosen to be n = 100, 250. Throughout

the simulations, the stochastic process X(t) is observed atM = 30 equidistant points.

The weight function w(X) is chosen as w(X) = 0.01∥X∥ and the ridge c1n and c2n

are chosen from the data driven way mentioned above. The significance level is

α = 0.05. The bandwidth h is chosen as optimal value n−0.4 according to non-

parametric kernel theory. The penalty parameter λ is selected by the generalized

cross validation (GCV) illustrated in [3]. We replicate the experiments for 1000 times

in each setting to calculate the empirical size or empirical power for our test statistics.

The performances of CvM3, KS3 and PCvM methods are borrowed from [21]. The

results are listed in Table 5.2.

We find that the power of Tn is competitive in all scenarios, especially in S6 and

S8 when n = 250. In these two scenarios, the slope function β0 is not a linear combi-

nation of eigenfunctions of the covariance function C(s, t). Therefore, the functional

principal component analysis based estimation methods used in [21] will perform

badly. Throughout the nine scenarios, our hybrid test Tn has higher powers than

CvM3 and KS3 when the deviation term is relatively small. Specifically, Tn enjoys

highest rejection rate in H1,1, H2,1, H4,1, H5,1 H7,1 and H9,1 among other methods.
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Table 5.2: Empirical sizes and powers in percentages for nine scenarios

n=100 n=250

Hk,δ CvM3 KS3 PCvM Tn CvM3 KS3 PCvM Tn

H1,0 3.9 4.6 4.8 5.4 3.9 4.2 4.9 5.1

H2,0 4.6 5.1 3.6 5.7 4.8 5.4 4.7 4.9

H3,0 4.9 6.0 5.7 3.8 4.1 4.7 5.3 4.4

H4,0 4.4 5.0 4.6 5.4 5.2 5.9 4.9 4.7

H5,0 4.0 4.3 4.9 5.6 4.2 4.0 5.0 4.7

H6,0 4.3 4.9 5.2 5.3 4.3 5.0 4.8 5.2

H7,0 3.9 4.7 5.1 6.1 4.1 4.7 5.2 4.5

H8,0 3.5 3.7 4.9 4.6 3.9 4.3 5.1 5.1

H9,0 4.8 4.7 6.1 6.0 4.4 4.8 5.9 5.4

H1,1 59.4 45.0 69.9 98.5 96.3 90.3 98.4 100

H2,1 98.5 95.7 99.2 99.5 100 100 100 100

H3,1 97.6 93.0 99.2 98.8 100 100 100 100

H4,1 35.7 26.8 43.6 48.9 81.8 67.7 88.6 82.9

H5,1 43.1 31.8 49.9 51.3 87.9 75.3 91.5 89.1

H6,1 22.2 17.0 27.9 23.7 57.0 43.0 66.9 75.6

H7,1 99.9 99.8 99.9 99.9 100 100 100 100

H8,1 74.8 50.3 74.7 74.4 88.3 76.0 87.7 97.3

H9,1 9.2 8.9 12.1 13.4 17.9 16.4 22.3 20.9

H1,2 100 99.9 100 100 100 100 100 100

H2,2 99.8 99.5 99.9 100 100 100 100 100

H3,2 100 100 100 100 100 100 100 100

H4,2 96.4 92.0 98.2 97.8 99.9 99.9 100 99.7

H5,2 98.9 97.0 99.1 98.1 100 100 100 99.6

H6,2 100 99.8 100 99.9 100 100 100 100

H7,2 99.9 99.9 99.9 100 100 100 100 100

H8,2 76.5 45.8 78.2 99.6 88.0 73.0 88.9 100

H9,2 90.5 85.9 93.9 83.1 100 100 100 96.1
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The results indicate that Tn has advantages in detecting local alternatives. For larger

deviations, the rejection rate of Tn also shows its superiority to CvM3 and KS3, and

is comparable to PCvM . All results above are evidences of the fact that Tn shares

the merits from both V0 and V1 and thus become powerful under the local and global

alternatives while having a chi-square distribution under the null hypothesis.

5.2.1 Hybrid effect

In this part, we examine the expected properties of the hybrid tests through com-

parisons of their components. The asymptotic distributions of V0 and V1 under the

null hypothesis and be easily obtained from the proofs of Theorem 11 and Theorem

12. We will demonstrate that the hybrid test Tn is more powerful than simply use

any one of V0 and V1. Let Q0 be the percentage of the indicative dimension that is

estimated to be zero, that is P (q̂ = 0), which will be used to verify the conclusions

in Theorem 9 and illustrate the unique property of Tn.

Consider the model as Y = ⟨X, β0⟩ + δℓ(X) + η, where X is Brownian motion,

β0 =
∑︁20

j=1 4(−1)jj−2 cos(jπt), ℓ(X) = 0.25 sin (⟨X,X⟩) and η ∼ N (0, 0.152). We set

sample size n = 100, number of observations M = 200, order of Sobolev space m = 2

and the shift coefficient δ will change from 0 to 1. The empirical sizes and powers are

shown in Tables 5.3.

Table 5.3: Empirical sizes and powers for components of the hybrid test.

δ CvM3 PCvM Tn V0 V1 Q0

0 4.7 3.8 5.2 5.1 2.3 99.6

0.2 5.6 5.8 9.2 7.4 3.4 95.4

0.4 23.1 23.8 67.4 38.6 10.2 36.4

0.6 48.2 46.7 88.6 60.4 25.2 12.6

0.8 68.2 70.5 97.6 79.3 54.7 3.5

1 77.9 85.3 99.4 87.5 76.1 0.7

It manifests that the hybrid test is more powerful than either V0 or V1 alone. As
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the shift term becomes larger, the percentage Q0 converges to zero as expected, which

implies our data driven estimation procedure performs well. Assume the bandwidth h

satisfies A7, then the convergence rate of V0 is faster than V1. Since the standardizing

factor γn,M of Tn is determined by V0, when the indicative dimension is estimated to

be positive, Tn will be larger than nh1/2V1 and therefore more powerful.

5.2.2 Number of observations

In the subsection, we investigate how the number of observations M on a curve

influences the power of Tn. As has been discussed in the asymptotic property part,

the error from smoothing is vanishing with a scale of M−r when M is large enough.

That is, when M exceeds some threshold, its increase will not help to improve the

performance. On the other hand, if we do not sample enough observations on a curve,

the power of Tn will not increase as simple size n increases. Our theorems provide

guidance to balance these two folds and give an economical and efficient sampling

criterion.

To verity these two patterns, we design the experiments as follows. In the first

experiment, we set M = 2k, k = 3, 4, 5, 6, n = 100, α = 0.05 and select S2, S4, S6, S8

and S9 scenarios (five different stochastic processes X(t)). Other parameters are the

same as previous subsection. The results are shown in Figure 5.1.

From Figure 5.1, we notice thatM = 8 is obviously not enough to describe a curve,

because we can’t control the empirical size to be close to α. This makes the powers

under alternatives not reliable. AsM increases, the empirical size converges to α and

the empirical powers are improved gradually. When M exceeds 32, its effect is not

significant any more, indicating that M = 32 can capture enough information on a

curve with support [0, 1].

In the second experiment, we compare the trends of empirical powers under two

settings M = 16 and M = 32 as sample size n increase from 100 to 300. We still set

α = 0.05 and select S2, S4, S6, S8 and S9 scenarios. The deviation coefficient δ is set
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Figure 5.1: Empirical sizes (a) and powers (b) versus number of observed points.

to be −0.5, −1, 0.2, −0.01 and 2.5 respectively. Other parameters are the same as

above. The results are shown in Figure 5.2.
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Figure 5.2: Empirical powers versus sample size for different number of observations
M in different scenario. Solid line for M = 32 and dash line for M = 16.

It can be concluded from Figure 5.2 that for S2, S6 and S8, solid lines and dash

lines follow nearly the same trends with solid lines a little bit above the dash lines.

In these three scenarios, the number of observations M = 16 may already be enough

to smooth the discrete functional data. If we choose M = 32, it is more powerful in
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detecting alternatives, which coincides with the conclusion in the first experiment. In

contrast, for S4 and S9, the power will gradually reach a bound and stop increasing

even if we set a larger sample size. In this case, the term M−1/2r will dominate the

convergence rate of two-stage estimator β̂n,M,λ no matter how large the sample size

n is. It will influence the order of V0 and V1 and impair the power of the hybrid test.

These two experiments well validate our theoretical analysis for the number of points

observed on a curve, which will provide guidance for us to choose an optimal M that

balances the sample costs as well as the quality of functional data.

5.3 Real Data Application

We apply the hybrid test to three real datasets to examine whether FLM is sufficient

to describe the data. First, we analyze the diffusion tensor imaging (DTI) data in

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study, which has also been

studied in [8]. In this study, there are 217 subjects in total, with four outliers.

The outliers can be identified by the plot and will be eliminated before the test.

The fractional anisotropy (FA), a scalar measure of the degree of anisotropy, along

the corpus callosum (CC) with 83 equally spaced grid points can be regarded as

the discretely observed functional variable X(t) in our model. Other demographic,

clinical and genotype variables, such as gender and ADAS11, can be viewed as the

scalar response Y in our model. See [8] for a detailed explanation and discussion

of the ADNI DTI data. We select gender, age, ADAS11 and ADAS13 as our scalar

response candidates and test them separately. The estimated slope functions β̂(t) for

each response are plotted in Figure 5.3.

The test statistics are 4.46× 10−5, 0.0619, 0.0113 and 0.2133 with p-values 0.9946,

0.8032, 0.9157 and 0.8838, respectively. Therefore, at the significance leverl 0.05, we

do not reject the null hypothesis that FLM can be used to describe the data for the

four responses.

The second and third examples we considered are the same as described in [21].
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Figure 5.3: From (a) to (d): Estimated slope functions of gender, age, ADAS11 and
ADAS13 for the ADNI DTI data.

Both datasets are provided in the R package fda.usc. Our proposed test returns

the same conclusions. The second dataset is the classical Tecator data, a well known

example in FDA for nonlinear regression. The data record the absorbance of light at

some particular wavelengths by 215 spectrometric curves collected from some chopped

meat samples. The fat, water and protein contents of the meat samples are also

included in the data set. We test whether these contents can be modeled by FLM

using the spectrometric curves. Before the test, six outliers are removed using the

Fraiman and Muniz depth. We test the adequacy of FLM for the data with the

proposed Tn. The test statistics are 7.977× 103, 4.998× 104 and 9.563× 103 for fat,

water and protein. We reject the null hypothesis as the correspding p-values are all

very close to 0. At the significance level 0.05, there is strong statistical evidence

against the FLM. The third data we study is the Spanish weather stations data. The

data contain yearly profiles of temperature from 73 weather stations of the AEMET

(Spanish Meteorological Agency; Spanish acronym) network and other meteorological

variables. Our goal is to test whether the mean of the wind speed at each location
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Figure 5.4: (a) Tecator dataset with spectrometric curves; (b) AEMET temperatures
for the 73 Spanish weather stations; and (c) The estimated functional coefficient for
the AEMET data set by random projection method (black) and RKHS method (red).

can be described by FLM using the average yearly temperature curves. We remove

two outliers using the Fraiman and Muniz depth. The test statistics is 1.149 and the

p-value is 0.2856. Therefore, at the level α = 0.05, there is no evidence against the

FLM. The estimated slope functions for the two data sets are plotted in Figure 5.4.
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Chapter 6

Discussion

We propose an adaptive hybrid test for FLM. It is a powerful detector under the local

and global alternatives with a tractable null distribution. To achieve the adaptivity,

we adopt an indicative dimension in an SDR subspace, which combines two simple

but less powerful tests. We develop an entirely data-driven method to determine the

ridges in the ratio methods like TDRR to estimate the indicative dimension. Besides,

we consider the effect of the number of observations on a curve, which provides solid

theoretical guarantees for real data applications. Moreover, extensive numerical ex-

periments demonstrate that our test can detect the local alternatives much better

than existing methods and is competitive to its competitors under the global alter-

natives. The proposed test is feasible to real data sets, and its validity is supported

by the motivating example data set for nonlinear functional model.

We conclude the paper with several directions for future study. First, although our

method is proposed under the assumption of a functional linear model, it is possible

to extend the results to other scenarios like a functional partial linear model or a

nonlinear functional model. For the other models, there have been works on param-

eter estimation. However, many of them lack the study of asymptotic properties.

This results in challenges in deriving the asymptotic behaviours of the corresponding

test statistic. Second, the proposed test can achieve a faster convergence rate under

the null if skipping the smoothing procedure for the discretely observed functional
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data. In the literature, the slope function can be estimated using the discretely ob-

served functional data directly without smoothing them. In this case, the estimator

may have a faster convergence rate, leading to a more powerful test under the al-

ternatives. A thorough investigation of estimation and inference problems based on

discretely observed functional data is needed to achieve this. Third, the data-driven

method proposed for ridge selection is promising as existing approaches tend to un-

derestimate the underlying dimension or rely on some manually determined ridges.

An underestimated dimension results in the weaker ability to detect local and global

alternatives. TDRR is proposed to solve this issue but still needs to select ridges.

Based on our simulation experience, the dimension estimation is related to the data

generating process due to the subspace construction. Therefore, to fully use the data

structure and reduce the possible power loss caused by an underestimated dimension,

we propose the data-driven method.
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Appendix A: Proof of Lemmas and
Theorems

Proof of Lemma 3. Suppose B = (θ1(t), . . . , θq(t)) is a basis of SE(ϵ|X), that is

E(ϵ|X) = E (ϵ|⟨B,X⟩), where ⟨B,X⟩ is defined as (⟨θ1, X⟩, . . . , ⟨θq, X⟩).
Under the linearity condition E (X | ⟨B,X⟩) = PB(C)X, where PB(C) is the con-

stant linear operator on H. Then we have

E(ϵX) = E(E(ϵ | X)X) = E (E (ϵ | ⟨B,X⟩)X) = E (E (ϵ | ⟨B,X⟩)E (X|⟨B,X⟩))

= E (E (ϵ | ⟨B,X⟩)PB(C)X) = PB(C)E (E (ϵ | ⟨B,X⟩)X)

= PB(C)E(ϵX).

That is, E(ϵX) ⊂ Range(CB). For the pHd-matrix, it is sufficient to show that

H ⊂ Range(CSϵ|X). Similar to the pervious analysis, we have

H = E (E(ϵ | X)X ⊗X) = E (ϵE (X ⊗X | ⟨B,X⟩))

= E (ϵVar (X | ⟨B,X⟩)) + E (ϵE (X | ⟨B,X⟩)E (X | ⟨B,X⟩))

= E(ϵ)Var (X | ⟨B,X⟩) + PB(C)E (ϵX ⊗X)PB(C)

= PB(C)HPB(C) ⊂ Range(CB).

Therefore, Range(M cc) ⊂ Range(CSE(ϵ|X)). According to assumption A2, we have

Range(CSE(ϵ|X)) = Range(SE(ϵ|X)). If the number of non-zero eigenvalues of M cc is

q, then we can conclude that dim(M cc) = q = dim(SE(ϵ|X)).

Proof of Theorem 6. The representation theorem guarantees that the solution

of the two stage estimator can be expressed as

β̂n,M,λ(t) =
m−1∑︂
k=0

dkt
k +

n∑︂
i=1

ci

∫︂ 1

0

ˆ︁Xi(s)K(t, s)ds
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for some coefficients d0, . . . , dm−1, c1, . . . , cn. Denote Σ = (Σij) as an n × n matrix

with element Σij =
∫︁ 1

0

∫︁ 1

0
ˆ︁Xi(s)K(t, s) ˆ︁Xj(t)dsdt, and T = (Tij) an n×m with element

Tij =
∫︁ 1

0
ˆ︁Xi(t)t

j−1dt. Set y = (Y1, . . . , Yn)
′. Then we can rewrite the minimization

problem as

β̂n,M,λ = argmin
d∈Rm, c∈Rn

{︃
1

n
∥y − (Td+ Σc)∥2ℓ2 + λc′Σc

}︃
,

which is quadratic in c and d, and the explicit form of the solution can be easily

obtained for such a problem. Write W = Σ + nλI, then the coefficients of β̂n,λ are

given by

d = (T ′W−1T )−1T ′W−1y,

c = W−1[I − T (T ′W−1T )−1T ′W−1]y.

When we ignore the discrete nature of Xi(t), the slope function can be expressed

as

β̂n,λ(t) =
m−1∑︂
k=0

d∗kt
k +

n∑︂
i=1

c∗i

∫︂ 1

0

Xi(s)K(t, s)ds.

Denote Σ∗ = (Σ∗
ij) where Σ∗

ij =
∫︁ 1

0

∫︁ 1

0
Xi(s)K(t, s)Xj(t)dsdt, and T ∗ = (T ∗

ij) where

T ∗
ij =

∫︁ 1

0
Xi(t)t

j−1dt. Set y = (Y1, . . . , Yn)
′. Write W ∗ = Σ∗ + nλI, then the coeffi-

cients of β̂n,λ are given by

d∗ = (T ∗′W ∗−1T ∗)−1T ∗′W ∗−1y,

c∗ = W ∗−1[I − T ∗(T ∗′W ∗−1T ∗)−1T ∗′W ∗−1]y.

The distance between the smoothed function ˆ︁Xi and the true Xi has been well

studied in the numerical approximation theory. It is well known that ∥ ˆ︁Xi −Xi∥2L2 ≤
O(M−2r) for i = 1, 2, . . . , n, see Chapter 12 Theorem 2.4 in [43] for detailed proof.

As has been proved in [3], if we take λ = n−2k/(2k+1), then β̂n,λ satisfies ∥β̂n,λ −
β∗∥L2 = Op(n

−k/(2k+1)). Now we consider the distance between β̂n,λ and β̂n,M,λ.

Since we already have ∥ ˆ︁Xi−Xi∥2L2 ≤ O(M−2r), then a directly application of Hölder’s
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inequality gives

T ∗
ij − Tij =

∫︂ 1

0

(︂ ˆ︁Xi(t)−Xi(t)
)︂
tjdt ≤

(︃∫︂ 1

0

(︂ ˆ︁Xi(t)−Xi(t)
)︂2
dt

)︃1/2(︃∫︂ 1

0

t2jdt

)︃1/2

=
1√

2j + 1
∥ ˆ︁Xi −Xi∥L2 ≤ O(M−r)

Σ∗
ij − Σij =

∫︂ 1

0

∫︂ 1

0

(︂ ˆ︁Xi(s)K(s, t) ˆ︁Xj(t)−Xi(s)K(s, t)Xj(t)
)︂
dtds

≤
(︃∫︂ 1

0

∫︂ 1

0

(︂ ˆ︁Xi(s) ˆ︁Xj(t)−Xi(s)Xj(t)
)︂2
dtds

)︃1/2(︃∫︂ 1

0

∫︂ 1

0

(K(s, t))2 dtds

)︃1/2

≤c0
(︃∫︂ 1

0

∫︂ 1

0

(︂
( ˆ︁Xi(s)−Xi(s))( ˆ︁Xj(t) +Xj(t))

)︂2
dtds

)︃1/2

+ c0

(︃∫︂ 1

0

∫︂ 1

0

(︂
Xi(s)( ˆ︁Xj(t)−Xj(t))−Xj(t)( ˆ︁Xi(s)−Xi(s))

)︂2
dtds

)︃1/2

≤c1∥ ˆ︁Xi −Xi∥L2 + c2∥ ˆ︁Xj −Xj∥L2 + c3∥ ˆ︁Xi −Xi∥L2 ≤ O(M−r).

Therefore, we can get

Σ∗ = Σ+M−rA1, T ∗ = T +M−rA2, W ∗ = W +M−rA1,

where A1 and A2 are two matrices.

According to the matrix perturbation theory, for an arbitrary nonsingular matrix

A and a given presumed small matrix E, we have (A + E)−1 = A−1 + A−1EA−1 +

O(∥E∥2), see [44]. Therefore, we can further get

W ∗−1 = W−1 +M−r(W−1A1W
−1) +O(M−2rA2

1) = W−1 +M−rA3

We can also obtain (T ∗′W ∗−1T ∗)−1 = (T ′W−1T )−1 +M−rA4, and finally we have

d∗ = d+M−rA5y, c∗ = c+M−rA6y.

Therefore we have

∥β̂n,λ − β̂n,M,λ∥2L2 =

∫︂ 1

0

(︄
m−1∑︂
k=0

(d∗k − dk)t
k +

n∑︂
i=1

(︃
c∗i

∫︂ 1

0

Xi(s)K(t, s)ds− ci

∫︂ 1

0

ˆ︁Xi(s)K(t, s)ds

)︃)︄2

dt

≤
m−1∑︂
k=0

(d∗k − dk)
2

∫︂ 1

0

t2kdt+
n∑︂

i=1

(c∗i − ci)
2

∫︂ 1

0

(︃∫︂ 1

0

(Xi(s) + ˆ︁Xi(s))K(t, s)ds

)︃2

dt

+
n∑︂

i=1

ci

∫︂ 1

0

(︃∫︂ 1

0

(Xi(s)− ˆ︁Xi(s))K(t, s)ds

)︃2

dt

+
n∑︂

i=1

(c∗i − ci)
2

∫︂ 1

0

(︃∫︂ 1

0

ˆ︁Xi(s)K(t, s)ds

)︃2

dt

≤mO(M−2r) + nO(M−2r) + nO(M−2r) + nO(M−2r) ≤ O(nM−2r)
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Applying the triangle inequality gives

∥β̂n,M,λ − β∗∥L2 = Op(n
−k/(2k+1)) +O(n1/2M−r).

Proof of Theorem 7.

Let y and ỹ be the response under the null hypothesis and local alternatives

respectively, then it is obvious that ỹ − y = O(δn). Under local alternatives, the

coefficients can be obtained from

d̃ = (T ′W−1T )−1T ′W−1ỹ,

c̃ = W−1[I − T (T ′W−1T )−1T ′W−1]ỹ.

Therefore we have d̃− d = O(δn) and c̃− c = O(δn), which implies

∥β̂n,M,λ − β∗∥L2 = Op(n
−k/(2k+1)) +O(n1/2M−r) +O(δn)

under the local alternatives.

Proof of Theorem 8. For notation simplicity, let an = n−k/(2k+1) and β̂ = β̂n,M,λ

First we have

Ĥ =
1

n

n∑︂
j=1

ϵ̂j ˆ︁Xj ⊗ ˆ︁Xj =
1

n

n∑︂
j=1

(ϵj + ⟨ ˆ︁Xj, β̂⟩ − ⟨Xj, β0⟩) ˆ︁Xj ⊗ ˆ︁Xj

=
1

n

n∑︂
j=1

ϵjXj ⊗Xj +
1

n

n∑︂
j=1

⟨β̂ − β0, Xj⟩Xj ⊗Xj +Op(M
−r)

= E(ϵX ⊗X) +Op(n
−1/2) +Op(n

1/2M−r) +Op(an)

= H +Op(an + n1/2M−r).

Then under the null and the alternatives. We have

ĤĤ = (H +Op(an + n1/2M−r))(H +Op(an + n1/2M−r))

= HH +HOp(an + n1/2M−r) +Op(a
2
n + nM−2r).

Similarly, we have

Ê(ϵX) =
1

n

n∑︂
j=1

ϵ̂j ˆ︁Xj =
1

n

n∑︂
j=1

(ϵj + ⟨ ˆ︁Xj, β̂⟩ − ⟨Xj, β0⟩) ˆ︁Xj

=
1

n

n∑︂
j=1

ϵjXj +
1

n

n∑︂
j=1

⟨β̂ − β0, Xj⟩Xj +Op(n
1/2M−r)

= E(ϵX) +Op(an + n1/2M−r).
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Under the null hypothesis, H = E (ϵX ⊗X) = 0 and E(ϵX) = 0, therefore M̂
cc
=

Op(a
2
n + nM−2r). Under the alternatives, we have H ̸= 0 and M̂

cc
= M + Op(an +

n1/2M−r). Altogether, the proof is finished.

Proof of Theorem 9. For notation simplicity, let an = n−k/(2k+1). Under the

null hypothesis, M̂
cc
= Op(a

2
n + nM−2r). All eigenvalues of the target operator M cc

are λ1 = · · · = λn = . . . = 0. Thus the eigenvalues of M̂
cc
, denoted as λ̂j, j = 1, 2, . . .,

satisfy λ̂j = Op(a
2
n +M−2r). At the population level,

s∗j = 0 and rj = 1, for ∀j

At the sample level, ŝj =
λ̂j

λ̂j+1
= Op(a

2
n + nM−2r),

ŝ∗j =
ŝ2j + c1n

ŝ2j+1 + c1n
− 1 =

ŝ2j − ŝ2j+1

ŝ2j+1 + c1n
=

Op((a
2
n + nM−2r)2)

Op((a2n + nM−2r)2 + c1n
→ 0

if c1n → 0 and c1n/(a
2
n + nM−2r)2) → ∞. Thus ŝ∗j = Op((a

2
n + nM−2r)2)/c1n) for ∀j.

The ratio satisfies

r̂j =
ŝ∗j+1 + c2n

ŝ∗j + c2n
→ 1, for ∀j

if c2n → 0 and c1nc2n/(a
2
n + nM−2r)2) → ∞. Therefore, the estimator q̂ = 0 with a

probability going to 1 as n→ ∞.

Under the alternatives, the dimension q = dim
(︁
Sϵ|X

)︁
> 0 and it is easy to show

that ∥M̂
cc
− M∥ = Op(an + n1/2M−r). The eigenvalues of M cc and M̂

cc
satisfy

λ1 ≥ · · · ≥ λq > 0 = λq+1 = · · · and λ̂i − λi = Op(an + n1/2M−r). Then,

ŝ2j =

⎧⎨⎩ s2j +Op(an + n1/2M−r), for 1 ≤ j ≤ q

Op(a
2
n + nM−2r), for j > q

According to the definition of ŝ∗j , for 1 ≤ j < q

ŝ∗j =
ŝ2j + c1n

ŝ2j+1 + c1n
− 1 =

s2j
s2j+1

− 1 +Op

(︁
max

{︁
an + n1/2M−r, c1n

}︁)︁
For j = q,

ŝ∗j =
ŝ2q + c1n

ŝ2q+1 + c1n
− 1 = Op

(︃
1

c1n

)︃
if c1n/(a

2
n + nM−2r) → ∞.
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For j > q,

ŝ∗j =
ŝ2j + c1n

ŝ2j+1 + c1n
− 1 =

ŝ2j − ŝ2j+1

ŝ2j+1 + c1n
= Op

(︁
(a2n + nM−2r)/c1n

)︁
.

That is,

ŝ∗j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s∗j +Op

(︁
max

{︁
an + n1/2M−r, c1n

}︁)︁
, for 1 ≤ j < q

Op (1/c1n) , for j = q,

Op ((a
2
n + nM−2r)/c1n) , for j > q

with c1n/(a
2
n + nM−2r) → ∞.

For the estimated ratios with c1nc2n/(a
2
n + nM−2r) → ∞ if 1 ≤ j < q − 1,

r̂j =
ŝ∗j+1 + c2n

ŝ∗j + c2n
→ rj,

for j = q − 1,

r̂j =
Op (1/c1n)

ŝ∗q−1 + c2n
→ ∞,

for j = q

r̂j =
Op ((a

2
n + nM−2r)/c1n) + c2n
Op (1/c1n) + c2n

→ 0,

and for j > q,

r̂j =
Op ((a

2
n + nM−2r)/c1n) + c2n
Op (1/nc1n) + c2n

→ 1.

In summary,

lim
n→∞

r̂j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

rj > 0, for 1 ≤ j < q − 1

∞, for j = q − 1

0, for j = q,

1, for j > q.

Therefore, under the alternative hypothesis, under the constraints c1n → 0, c2n → 0

and c1nc2n/(a
2
n + nM−2r) → ∞, the estimated dimension satisfies P(q̂ = q > 0) → 1.

Proof of Theorem 10. According to Theorem 7, we have

∥β̂ − β0∥L2 = Op(an + n1/2M−r + δn).
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under local alternatives, where an = n−k/(2k+1) and β̂ = β̂n,M,λ. Then we have

Ĥ =
1

n

n∑︂
j=1

ϵ̂j ˆ︁Xj ⊗ ˆ︁Xj =
1

n

n∑︂
j=1

(ϵj + ⟨ ˆ︁Xj, β̂⟩)− ⟨Xj, β0⟩)) ˆ︁Xj ⊗ ˆ︁Xj

=
1

n

n∑︂
j=1

ϵjXj ⊗Xj +
1

n

n∑︂
j=1

⟨β̂ − β,Xj⟩Xj ⊗Xj +Op(M
−r)

=
1

n

n∑︂
j=1

ηjXj ⊗Xj + δn
1

n

n∑︂
j=1

Xj ⊗Xj +
1

n

n∑︂
j=1

⟨β̂ − β,Xj⟩Xj ⊗Xj +Op(M
−r)

= E(ηX ⊗X) +Op(δn) +Op(δn + an + n1/2M−r)

= Op(δn + an + n1/2M−r).

Similarly, we can also get Ê(ϵX) = Op(δn + an + n1/2M−r). It follows that ˆ︂M cc =

Op(δ
2
n + a2n + nM−2r). Similar to the proof of Theorem 3.4, when α > k/(2k+ 1), let

c1n → 0, c2n → 0 and c1nc2n/(an + nM−2r)2 → ∞, then P(q̂ = 0) → 1.

When 0 < α < k/(2k + 1), then ∥ˆ︂M cc − δ2n
˜︂Mn∥ = Op(a

2
n + nM−2r) for some

operator ˜︂Mn. Suppose the eigenvalues of ˆ︂M cc and ˜︂Mn are λ̂1 ≥ . . . ≥ λ̂n ≥ . . . and

λ̃1 ≥ . . . ≥ λ̃q ≥ 0 = λ̃q+1 = λ̃q+2 = . . . in descending order. It’s easy to show that

λ̂j − δ2nλ̃j = Op(a
2
n + nM−2r) and thus

ŝj =
λ̂j

λ̂j + 1
=

{︄
OP (δ

2
n), j = 1, . . . , q

Op(a
2
n + nM−2r), j > q

Then if c1n = o(δ4n) and c1n/(a
2
n + nM−2r) → ∞, then

ŝ∗j =
ŝ2j + c1n

ŝ2j+1 + c1n
− 1 =

ŝ2j − ŝ2j+1

ŝ2j+1 + c1n
→

⎧⎪⎨⎪⎩
(λ̃

2

j − λ̃
2

j+1)/λ̃
2

j+1, j = 1, . . . , q − 1

Op(δ
4
n/c1n), j = q

Op(a
4
n + n2M−4r)/c1n), j > q

Let Cj represent some constants that may vary hereafter. We have

lim
n→∞

ŝ∗j =

⎧⎪⎨⎪⎩
Cj, j = 1, . . . , q − 1

∞, j = q

0, j > q

For j = 1, . . . , q − 2, the ratios are

r̂j =
ŝ∗j+1 + c2n

ŝ∗j + c2n
=
Op(1) + c2n
Op(1) + c2n

for j = q − 1,

r̂j =
Op(δ

4
n/c1n) + c2n

Op(1) + c2n
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for j = q,

r̂j =
Op((a

4
n + n2M−4r)/c1n) + c2n
Op(δ4n/c1n) + c2n

for j > q,

r̂j =
Op((a

4
n + n2M−4r)/c1n) + c2n

Op(a4n + n2M−4r)/c1n) + c2n

In summary, with c1n = o(δ4n) and c1nc2n/(a
4
n + n2M−4r) → ∞, we have

lim
n→∞

r̂j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cj, j = 1, . . . , q − 2

∞, j = q − 1

0, j = q;

1, j > q, . . . , p

The proof is done.

Lemma 13 Under the null hypothesis, let assumptions be satisfied and Mn−1/r →
∞, then we have

Wn =
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i

Kh{⟨β̂n,M,λ, Xi −Xj⟩}ϵiM(Xj) = Op(
1√
n
),

where M(·) is continuously differentiable and E{M2(X)|⟨β0, X⟩} ≤ b(⟨β0, X⟩) for

X ∈ L2[0, 1] and E{b(⟨β0, X⟩)} < +∞.

Proof of Lemma 13. For notation simplicity, let β̂ denote β̂n,M,λ. Denote

bij = ⟨β0, Xi −Xj⟩ and b̂ij = ⟨β̂, Xi −Xj⟩. Note that

Wn =
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i

1

h
K(

bij
h
)ϵiM(Xj)

+
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i

1

h
[K(

b̂ij
h
)−K(

bij
h
)]ϵiM(Xj)

=Wn1 +Wn2

Let ti = {Yi, Xi} , then Wn1 can be written in a U-statistic with the kernel

Hn(ti, tj) =
1

2h
K(

bij
h
){ϵiM(Xj) + ϵjM(Xi)}

To apply the theory for non-degenerate U-statistic, we need to show E[H2
n(ti, tj)] =

o(n). Let Z = ⟨β0, X⟩, f(z) be the probability density function of Z and σ2(z) =
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E(ϵ2 | Z = z). It can be verified that

E[H2
n(ti, tj)]

≤2E[
1

2h
K(

bij
h
)ϵiM(Xj)]

2 + 2E[
1

2h
K(

bij
h
)ϵjM(Xi)]

2

=

∫︂
1

h2
σ2(zi)E{M2(Xj) | zj}K2(

zi − zj
h

)f(zi)f(zj)dzidzj

≤
∫︂

1

h
σ2(zi)b(zi − hu)K2(u)f(zi)f(zi − hu)dzidu

=

∫︂
1

h
σ2(z)b(z)f 2(z)dz ·

∫︂
K2(u)du+ o(1/h)

=O(1/h) = o(n)

The last equation holds under the assumption that nh → ∞. Since E(ϵ|X) = 0,

it can be derived that E{Hn(ti, tj)} = 0. Now, consider the conditional expectation

of Hn(ti, tj). Also, it is easy to compute that

rn(ti) = E{Hn(ti, tj) | ti} =
ϵi
2h
E[K(

zi − Z

h
)E{M(Xi) | Z}]

=
ϵi
2

∫︂
E{M(Xi) | zi − hu}f(zi − hu)K(u)du

=
ϵif(zi)E{M(Xi) | zi}

2
+ ln(ti).

The last equation comes from Taylor expansion and it implies that ln (ti) = O(h).

Denote Ŵ n as the projection of the statistic Wn1 as:

√
nŴ n =

2√
n

n∑︂
i=1

rn(ti) =
1√
n

n∑︂
i=1

ϵif(zi)E{M(Xi) | zi}+
2√
n

n∑︂
i=1

ln(ti) = Op(1)

The last equation holds because first term follows the central limit theorem and the

fact that E{l2n(ti)} = O(h2) → 0. As a result, we have Wn1 = Op(Ŵ n) = Op(1/
√
n).

Denote

W ∗
n2 =

1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i

1

h
K ′(

bij
h
)T ϵiM(Xj)

⟨β̂ − β0, Xi −Xj⟩
h

Then for the term Wn2, we have Wn2 = W ∗
n2 + op (W

∗
n2). Notice that here K ′ denote

the gradient of K, and ⟨β̂ − β0, Xi − Xj⟩ is a scalar. Apply Cauchy’s inequality we

have

⟨β̂ − β0, Xi −Xj⟩ ≤ ∥β̂ − β0∥L2 · ∥Xi −Xj∥L2 = Op(n
−k/(2k+1) + n1/2M−r).

Since K(·) is spherically symmetric, similar to Wn1, the following term

1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i

1

h
K ′(

bij
h
)T ϵiM(Xj)∥Xi −Xj∥
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can be rewritten as a U-statistic. Then we can similarly show that this term is

also of order Op(1/
√
n). Thus we can obtain that Wn2 = op(1/

√
n) if (n−k/(2k+1) +

n1/2M−r)/h → 0. Then we can conclude that Wn = Op(1/
√
n). The proof is com-

pleted.

Lemma 14 Under the null hypothesis, let assumptions be satisfied and Mn−1/r →
∞, then we have

nh1/2V1
D−→ N (0,Σ) ,

where

Σ = 2

∫︂
K2(u)du

∫︂ {︁
σ2(z)

}︁2
f 2(z)dz,

in which Z = ⟨β0, X⟩, σ2(z) = E (ϵ2 | Z = z).

Proof of Lemma 14. For notational convenience, denote ⟨β̂−β0, Xi−Xj⟩ as Aij,

⟨β̂−β0, Xi⟩ as Ci and an = n−k/(2k+1)+n1/2M−r. Also denote bij = ⟨β0, Xi−Xj⟩ and
b̂ij = ⟨β̂, Xi −Xj⟩. First, noting the symmetry of Kh(·), then V1 can be decomposed

as

V1 =
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i

Kh(b̂ij)ϵiϵj −
2

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i

Kh(b̂ij)ϵiCj

+
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i

Kh(b̂ij)CiCj + op(V
∗
n )

=:V11 − V12 + V13 + op(V
∗
n )

where V ∗
n denotes the term V11 − V12 + V13.

For V12, a direct application of Lemma 13 and the fact that Ci = Op(an) yield

V12 = Op(an/
√
n). Thus nh1/2V12 = op(1) if

√
nh1/2an → 0. For V13, it’s easy to see

V13 = op(1/n) by the rate of Ci. Thus nh
1/2V13 = op(1).

Finally, for term V11, consider the decomposition

V11 =
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i

Kh(bij)ϵiϵj

+
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i

[Kh(b̂ij)−Kh(bij)]ϵiϵj

=:V11,1 + V11,2

For the term V11,1, using the similar argument can derive the asymptotic normality

nh1/2V11,1
D−→ N (0,Σ). For the term V11,2, an application of Taylor expansion yields

V11,2 = V ∗
11,2 + op(V

∗
11,2),
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where

V ∗
11,2 =

1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i

1

h
K ′(

bij
h
)ϵiϵj ·

Aij

h
,

which can be considered as an U-statistic. Together with Aij = Op(an) and an/h→ 0,

we can conclude that nh1/2V ∗
11,2 = op(1). Combine all the results above conclude the

proof.

Proof of Theorem 11. Part 1): Under the null hypothesis, P(q̂ = 0) → 1, we

only need to work with V0 =
∑︁n

i=1 ϵ̂iw(
ˆ︁Xi) =

∑︁n
i=1 ϵ̂iwi. Based on previous analysis,

β0 coincides with β0. Therefore

V0 =
1

n

n∑︂
i=1

ϵ̂iwi =
1

n

n∑︂
i=1

ϵiwi +
1

n

n∑︂
i=1

(ϵ̂i − ϵi)wi

=
1

n

n∑︂
i=1

ϵiwi +
1

n

n∑︂
i=1

⟨β̂n,M,λ − β0, ˆ︁Xi⟩wi + op(
1√
n
)

=
1

n

n∑︂
i=1

ϵiwi +
1

n

n∑︂
i=1

⟨β̂n,M,λ − β̂n,λ, ˆ︁Xi⟩wi +
1

n

n∑︂
i=1

⟨β̂n,λ − β0, ˆ︁Xi⟩wi + op(
1√
n
)

=
1

n

n∑︂
i=1

ϵiwi +
1

n

n∑︂
i=1

⟨β̂n,λ − β0, ˆ︁Xi⟩wi +Op(n
1/2M−r) + op(

1√
n
)

=
1

n

n∑︂
i=1

ϵiwi + ⟨β̂n,λ − β0, ˆ︁Xw⟩+Op(n
1/2M−r) + op(

1√
n
),

where ˆ︁Xw =
∑︁n

i=1wi
ˆ︁Xi/n. Suppose all assumptions are satisfied, according to The-

orem 5.1 in [10], we can get
√
n⟨β̂n,λ − β0, ˆ︁Xw⟩/σn

D−→ N(0, 1).

Here it’s easy to show that
∑︁∞

ν=1w
2
v/(1 + λρ∗v)

2 ≍ λ−1/(2k) based on the proof of

Proposition 4.2 in [10]. When we take λ = n−k/(2k+1) as in estimation procedure, it

gives σn ≍ n1/(2(2k+1)) and V0 = Op(n
−k/(2k+1)), which coincides with the estimation

convergence rate of β̂n,λ. By central limit theorem,
∑︁n

i=1 ϵiwi/
√
n

D−→ N(0, σ2
0), where

σ2 = E(ϵ2w2). Notice that
√
n/σn = op(

√
n) and M r = Op(1/n). Therefore, we

have
√
n/(σnn

1/2M r) = o(1) under the null hypothesis, which implies
√
nV0/σn

D−→
N(0, 1).

Part 2): Under the global alternative hypothesis, P(q̂ > 0) → 1, then we only

need to deal with V1. Let ∆i = G(Xi) − ⟨β0, Xi⟩, then ϵ̂i = ηi + ∆i + ⟨β0 − β̂, Xi⟩.
For notational convenience, denote ⟨β̂ − β0, Xi −Xj⟩ as Aij, ⟨β̂ − β0, Xi⟩ as Ci and

an = n−k/(2k+1) + n1/2M−r. Denote bij = ⟨β0, Xi −Xj⟩ and b̂ij = ⟨β̂, Xi −Xj⟩. Then
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V1 can be decomposed as

V1 =
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i,j=1

(ηi + Ci +∆i)(ηj + Cj +∆j)Kh(b̂ij)

=
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i,j=1

(ηi + Ci)(ηj + Cj)Kh(b̂ij)

+
2

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i,j=1

(ηi + Ci)∆jKh(b̂ij)

+
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i,j=1

∆i∆jKh(b̂ij) + op(1)

=:V11 + V12 + V13 + op(1).

First, it’s easy to show that V11 = op(1), which is from the proofs in Lemma 14.

For V12, a direct application of U-statistic theory combined with Ci = Op(an) and

an/h → 0 implies that V12 = op(1). Again use the U-statistic theory, we conclude

V13
D−→ µ = E(∆2⟨β0, X⟩), which complete the proof.

Proof of Theorem 12. Under the local alternatives, we have ϵ̂i = ηi+ δnl(Xi)+

⟨β0 − β̂, Xi⟩. If α ≥ k/(2k + 1), q̂ → 0. The working test statistic is reduced to V0.

Then it follows

V0 =
1

n

n∑︂
i=1

ϵ̂iwi =
1

n

n∑︂
i=1

ϵiwi +
1

n

n∑︂
i=1

(ϵ̂i − ϵi)wi

=
1

n

n∑︂
i=1

ϵiwi +
1

n

n∑︂
i=1

⟨β̂n,M,λ − β0, ˆ︁Xi⟩wi + op(
1√
n
)

=
1

n

n∑︂
i=1

ϵiwi +
1

n

n∑︂
i=1

⟨β̂n,M,λ − β̂n,λ, ˆ︁Xi⟩wi +
1

n

n∑︂
i=1

⟨β̂n,λ − β0, ˆ︁Xi⟩wi + op(
1√
n
)

=
1

n

n∑︂
i=1

ϵiwi +
1

n

n∑︂
i=1

⟨β̂n,λ − β0, ˆ︁Xi⟩wi +Op(n
1/2M−r) + op(

1√
n
)

=
1

n

n∑︂
i=1

ϵiwi + ⟨β̂n,λ − β0, ˆ︁Xw⟩+Op(n
1/2M−r) + op(

1√
n
),

=
1

n

n∑︂
i=1

ηiwi +
δn
n

n∑︂
i=1

l(Xi)wi + ⟨β̂n,λ − β0, ˆ︁Xw⟩+Op(n
1/2M−r) + op(

1√
n
).

Thus when α > k/(2k + 1), we have
√
nδn/σn → 0 and Tn

D−→ χ2
1. When α =
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k/(2k+1),
√
nδn/σn = Op(1), then

√
nV0/σn

D−→ N(µ0, 1), where µ = E(l(X)w(X)),

and thus Tn
D−→ χ2

1(µ0).

If 0 < α < k/(2k + 1), q̂ → q > 0. The working test statistic is reduced to V1.

Then it follows

V1 =
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i,j=1

(ηi + Ci + δnli)(ηj + Cj + δnlj)Kh(b̂ij) + op(1)

=
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i,j=1

(ηi + Ci)(ηj + Cj)Kh(b̂ij)

+
2

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i,j=1

(ηi + Ci)δnljKh(b̂ij)

+
1

n(n− 1)

n∑︂
i=1

n∑︂
j ̸=i,j=1

δ2nliljKh(b̂ij) + op(1)

=:˜︁V11 + ˜︁V12 + ˜︁V13 + op(1).

Based on the results of previous lemmas and theorems, it’s easy to conclude that˜︁V11 = Op(n
−1h−1/2), ˜︁V12 = Op(δn/

√
n) and ˜︁V13 = Op(δ

2
n). Therefore, the leading term

of V1 is actually ˜︁V11 and ˜︁V13. Therefore, we can have the following results.

(a) If n1/2h1/4δn → 0, then nh1/2V1
D−→ N (0,Σ), where Σ is defined in Lemma 14.

Then Tn = Op(h
−1/2) and Tn/h

−1/2 converges in distribution to a centered normal

distribution.

(b) If δn = n1/2h1/4, nh1/2˜︁V11 D−→ N (0,Σ) and nh1/2˜︁V13 D−→ E(l2f), then Tn/h
−1/2

converges in distribution to a non-central normal distribution with a shift E(l2f) from

situation (a).

(c) If n1/2h1/4δn → ∞, then V1/δ
2
n converges to E (l2f) in probability, thus Tn/nδ

2
n

converges in probability to E (l2f).
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