
Building a Competitive Associative Classification Model

by

Nitakshi Sood

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Nitakshi Sood, 2020

Abstract

The power of associative classifiers is to determine patterns from the data

and perform classification based on the features that are most indicative for

prediction. Although they have emerged as competitive classification systems,

however, they suffer limitations such as without prior knowledge it would

be cumbersome to state the proper support and confidence threshold values

which vary with the dataset. Most of the existing rule-based classifiers also

suffer from the production of a large number of classification rules, affect-

ing the model readability. This hampers the classification accuracy as noisy

rules might not add any useful information for classification and also lead to

longer classification time. In this study, we further propose SigD2 which uses

a novel, two-stage pruning strategy which prunes most of the noisy, redundant

and uninteresting rules and makes the classification model more accurate and

readable.

Furthermore, deciding a heuristic for associative classification system such

as sum, average, minimum, maximum of confidence of the rules is yet another

challenging task. In our study, we propose BiLevCSS (Bi-Level Classification

using Statistically Significant Rules), a two stage classification model which

implements automatic learning on the rules. In the first stage of learning,

statistically significant classification association rules are derived through as-

sociation rule mining. Further in the second stage of learning, we employ a

machine learning based algorithm which automatically learns the weights of

the rules for classification. We use the p-value obtained from the Fisher’s ex-

ii

act test to determine the statistical significance of rules. The rules obtained

from the first stage form meaningful features to be used in the second stage of

learning. Therefore, in this study, the supervised learning classifiers like Neu-

ral Network, SVM and rule based classifiers like RIPPER help in classifying

the rules automatically in the second stage of learning, instead of forcing the

use of a specific heuristic for the same.

Further, it has been noticed that due to the huge success of deep learning,

other machine learning paradigms have had to take back seat. Yet other mod-

els, particularly rule-based, are more readable and explainable and can even

be competitive when labeled data is not abundant. To make SigDirect more

competitive with the most prevalent but uninterpretable machine learning-

based classifiers like neural networks and support vector machines, we further

propose bagging and boosting on the ensemble of the Sigdirect classifier. The

results of the proposed algorithms are quite promising and we are able to ob-

tain a minimal set of statistically significant rules for classification without

jeopardizing the classification accuracy.

Another challenge faced by associative classifiers is their inability to deal

with very high dimensional data sets. In order to address this problem, we

divide the high dimensional feature space into smaller subspaces, to be given as

an input to the ensemble of SigD2. Our proposed algorithm, Diverse SubSpace

for Ensemble (DSAFE) ensures diversity among each subspace while ensuring

the coverage of the total feature space. This strategy although compensates

on the explainability factor of the complete model, however, each subspace

still remains a white-box and there is a possibility of getting the explanation

of obtained results. We have also tested all our models on the UCI datasets

and were found to outperform various state-of-the-art classifiers not only in

terms of classification accuracy but also in terms of the number of rules. We

have also tested our classification model on the COVID-19 Kaggle dataset for

iii

prediction problem and the results obtained are quite promising. Thus, our

study highlights the fact that the association based classification models can

be quite competitive with various other existing approaches. Lastly, we also

show that designing a multi-layered architecture for feature transformation on

SigD2, like deep neural networks, can potentially give good results.

iv

Preface

The following papers are a part of this manuscript and were accepted in

DaWaK 2020 and DEXA 2020 respectively.

1. Nitakshi Sood, Osmar Zaiane, ”Building a Competitive Associative Clas-

sifier”, accepted for publication in The 22nd International Conference on

Big Data Analytics and Knowledge Discovery - DaWaK2020, Bratislava,

Slovakia, September 14-17, 2020. [48]

2. Nitakshi Sood, Leepakshi Bindra, Osmar Zaiane, ”Bi-Level Associative

Classifier using Automatic Learning on Rules”, accepted for publication

in the 31st International Conference on Database and Expert Systems

Applications - DEXA2020, Bratislava, Slovakia, September 14-17, 2020.

[47]

In the list mentioned above, paper 1 is included in Chapter 3 and 5.

Paper 2 is covered in Chapter 4. I was the primary contributor and my co-

author Leepakshi Bindra helped constructively in completing the experiments

and writing.

Dr. Osmar Zaiane provided critical inputs and was the primary instructor and

co-author for both the publications.

v

To my family

For their constant support and motivation.

vi

Arise, awake, and stop not until the goal is achieved.

–Swami Vivekananda

vii

Acknowledgements

I want to express my profound gratitude to my supervisor, Dr. Osmar Zaiane

for his valuable guidance, stimulating suggestions, constant support and en-

couragement that guided me in exploring this area of research. His valuable

suggestions and time spent in discussions has added greatly to my knowledge.

I am grateful to my supervisory committee for taking out time to review my

research work. I would like to thank Mohammad Hossein Motallebi Shabestari,

for helping me with the original SigDirect code and Parnian Yousefi for intro-

ducing me to the RIPPER’s pruning strategy. I would also like to thank

Leepakshi Bindra for collaborating with us on the topic ‘Bi-level Associative

Classifier using Automatic Learning on Rules’.

Lastly, I would like to express my deepest gratitude to my family and

friends for entrusting me and providing me with their unfailing support and

continuous encouragement all the time. It has been a long journey up until

finishing the thesis and this is just a beginning for more adventure ahead.

Thank you.

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Statement . 9
1.3 Thesis Contribution . 10
1.4 Thesis Outline . 12

2 Related Work 14
2.1 Classification . 14

2.1.1 Associative Classification 16
2.1.2 Statistically Significant Classification 22

2.2 Ensemble Learning Models . 24
2.3 Application of Associative Classifiers 27

3 SigD2 28
3.1 Methodology . 28

3.1.1 Notations and Definitions 28
3.1.2 Rule Generation Phase 30
3.1.3 Rule Pruning Phase 31
3.1.4 Classification Phase . 34

3.2 Experimental Results . 35
3.2.1 Classification Accuracy 35
3.2.2 Number of Rules . 36
3.2.3 Statistical Analysis . 37

4 Bi-Level Associative Classifier using Automatic Learning on
Rules 41
4.1 Methodology . 41

4.1.1 Method 1 . 41
4.1.2 Method 2 . 44

4.2 Experimental Results . 48
4.2.1 Classification Accuracy 48
4.2.2 Statistical Analysis . 52

5 Ensemble Learning on the Associative Classifiers 55
5.1 Bagging and Boosting on wSigDirect 55

5.1.1 Methodology . 55
5.1.2 Experiments . 58

5.2 DSAFE for SigD2 on High Dimensional Data 62
5.2.1 Methodology . 62
5.2.2 Experiments . 68

5.3 Application of Associative Classification model 74

ix

6 Multilayered framework for SigD2 76
6.1 Background . 76
6.2 Methodology . 78
6.3 Experimental Results . 80

7 Conclusion 85
7.1 Summary . 85
7.2 Future Work . 87

References 89

x

List of Tables

3.1 Comparison of classification accuracy of SigD2 with other asso-
ciation and rule-based classifiers and SVM 39

3.2 SigD2 compared with other algorithms on the basis of number
of rules . 40

3.3 Best and runner-up counts comparison from Table 3.1 basis of
classification accuracy . 40

3.4 Statistical analysis of results obtained in Table 3.1 40

4.1 Example for transformed set of features in Class based 43
4.2 Example for transformed set of features in Rule based 43
4.3 Example for Transformed Set of Features for Method 2 47
4.4 Comparison of classification accuracy using Rule-based and Class-

based Features extraction in Method 1 48
4.5 Comparison of classification accuracy of BiLevCSS with other

state-of-the-art classifiers . 53
4.6 BiLevCSS(NN) compared to the rest of the algorithms on 10

UCI datasets . 54

5.1 Comparison of classification accuracy of ACboost with ACbag,
SigD2, SigDirect, ANN and SVM 60

5.2 Best and runner-up counts comparison from Table 5.1 on the
basis of classification accuracy 60

5.3 Statistical analysis of Table 5.1 61
5.4 Comparison of classification accuracy using different values of

overlap rate threshold . 70
5.5 Description of Datasets . 71
5.6 Comparison of classification accuracy using Random Sampling

vs DSAFE for SigD2 . 71
5.7 Comparison of classification accuracy using SigD2, DSAFE for

SigD2, RIPPER, SVM and MLP 75

6.1 Comparison of the proposed multi-layered SigD2 with other
contenders on the basis of the classification accuracy on two
UCI Datasets . 81

xi

List of Figures

2.1 General Approach for Associative Classification 17

3.1 An example illustrating the two stage pruning process 34

4.1 Flowchart Illustration for training and testing phases of 2SARC 44
4.2 Flowchart Illustration for training and testing phases of BiLevCSS

. 46
4.3 Comparison of classification accuracy for BiLevCSS(NN) with

vanilla Neural Network, 2SARC1(NN) and 2SARC2(NN). . . . 51
4.4 Comparison of classification accuracy for BiLevCSS(NN) with

BiLevCSS(RIPPER), BiLevCSS(SVM) and SigDirect. 51

5.1 Bagging on wSigDirect . 57
5.2 Boosting on wSigDirect . 58
5.3 Visual Illustration of the basic approach followed in DSAFE

method . 62
5.4 Comparison of classification accuracy on MLP, SigDirect, Ran-

dom Sampling on Ensemble of SigD2, DSAFE with Bootstrap
Sampling for SigD2, DSAFE for SigD2 on different UCI datasets. 72

5.5 Number of Estimators comparison with/without early stop on
DSAFE for T over= 0.5 and RF=0.5. 73

5.6 Comparison of Classification Accuracy on Different Datasets at
different Overlap Rate. 74

6.1 Multi-Layered framework for SigD2 based Classification Model.
Note - For the purpose of illustration, the window size {10,20,30}
is chosen, it is assumed that their are 3 output classes for the
considered data and each ESigDirect is an ensemble of 100
SigDirects formed using random sampling on data. 84

xii

Acronyms

2SARC Two Stage Associative Classification System.

ANN Artificial Neural Networks.
ARC Association Rule Classification.

BiLevCSS Bi-Level Classification using Statistically Sig-
nificant Rules.

CAR Classification Association Rules.
CBA Classification Based on Associations.
CMAR Classification based on Multiple Association

Rules.
CPAR Classification based on Predictive Association

Rules.
CSARS Cost Sensitive Adaptive Random Subspace

ensemble.

DNN Deep Neural Networks.
DSAFE Diverse SubSpace For Ensemble.

MDL Minimum Description Length.
MLP Multi-Layer Perceptron.

PSS Potentially Statistically Significant.

SVM Support Vector Machines.

xiii

Chapter 1

Introduction

1.1 Motivation

Classification is the process of organizing and categorizing data into distinct

classes. It involves various tasks like building a model based on the distribution

of the data in consideration and further using this model for identification of

the class label of new data. Machine learning is being widely used today

for various classification problems like text categorization, fraud detection,

spam filtering, medical applications etc. The association rule mining is a rule-

based approach that helps in identifying patterns in the data in the form of

association rules, by finding the relationships between the items in the dataset.

The association rules are in the form X →Y, where X is the antecedent and Y

is the consequent [1].

Associative classifiers combine the concept of association rule mining and

classification to build a classification model. In an associative classifier, we

choose the consequent of the rule to be the class label and the antecedent

set is a set of attribute-value pairs for the associated class label. Associative

classification has found its immense usage in market basket analysis, where the

retailers try to analyse the association among the items bought by the buyers

and consequently find patterns among the items frequently brought together.

This helps the retailer in building their vending strategies in order to increase

1

their profitability. The application of the associative classification can also be

extended to text classification, recommendation systems etc.

In the literature, various associative classifiers have been proposed till now

namely, CBA [43], CMAR [41], CPAR [53], ARC[4] etc. Although these clas-

sifiers are easily understandable, flexible and do not assume independence

among the attributes, they require prior knowledge for choosing appropriate

parameter values (support and confidence). Another huge limitation of the

previously proposed association rule based classification models is that, the

rules generated may include noisy and meaningless rules, which might hinder

the classification. A rule is said to be noisy if it does not add any new infor-

mation for prediction and instead misleads the classification model. In other

terms, a noisy rule would participate more often in miss-classifications than in

correct classifications.

The authors in [39] proposed SigDirect, an associative classifier which mines

statistically significant rules without the need for the support and confidence

values. In our study, we first propose SigD2 where we introduce a more effective

two stage pruning strategy to obtain a more accurate classification model.

The proposed method reduces the number of rules to be used for classification

without compromising on the prediction performance. In fact, the performance

is improved. Most of the prevalent supervised classification techniques like

ANN, SVM etc, although provide very high classification accuracy, they act as

a black box. The models produced by such classifiers are not straight forwardly

explainable. However, the proposed associative classifier makes the model

more explainable by producing only a minimal set of classification association

rules CAR. The proposed technique finds its immense usage in various health-

care related applications, where the explanation of proposed models along with

the classification accuracy are highly significant [55]. In health-care, incorrect

predictions may have catastrophic effect, so doctors find it hard to trust AI

2

unless they can validate the obtained results.

Most of the previously proposed associative classification algorithms in lit-

erature have different rule discovery, rule pruning, rule prediction and evalua-

tion methods. However, a predefined weighting scheme is required, for each of

these methods in order to predict the class from the association rules. Heuris-

tics like maximum/minimum of confidence, average of confidence or sum of

confidence of the rules for the classes can be used to decide the predicted

value for the new samples. However, the weighting scheme may differ for var-

ious applications when using associative classifiers. Deciding the heuristics to

select rules to apply during inference and therefore to predict the class from

the derived classification rules is a challenging task, and is typically fixed as

part of the algorithm.

This form of classification offered by associative classifiers is easily un-

derstandable, flexible and does not assume independence between attributes,

however, it requires prior knowledge to choose appropriate support and confi-

dence threshold values for rule mining. Moreover, they contain a large number

of noisy rules which are redundant, uninteresting and lead to longer classifi-

cation time. Various pruning techniques have been designed to deal with this

limitation, for instance, removing the low ranked specialized rules, removing

conflicting rules or using database coverage based pruning strategy. A two

level classification method was initially proposed by Antonie and Zaiane in

[3], where the first stage used Apriori-based approach [1] to generates associa-

tive rule classification model which is followed by a stage of machine learning

classifiers to learn the weights for classification in the second stage. We ex-

tended their work and compare the performance of SVM [16], Neural Networks

[7] and RIPPER [15] in the second stage of learning. Although, this automatic

approach of learning to use the rules is expected to give better classification

results, it suffers with certain limitations. Firstly, the setting up of an optimal

3

support and confidence threshold values to mine the rules in the first stage is

a cumbersome task. Secondly, the rules generated using the former approach

may contain noisy, non statistically significant rules and may not cover all the

important features in the selected rules.

So, in order to address the above given limitations, we propose BiLevCSS

(Bi-Level Classification using Statistically Significant Rules), which uses sta-

tistically significant rules generated from a first stage, to form features that are

made full use of, for classification in the second stage of learning. We follow

the approach proposed by Li and Zaiane in [39] for generation of statistically

significant CARs. We also use Fisher’s exact test to obtain the p-value which

is used to determine the statistical significance of the association rules. We

further extract features from these significant association rules and then train

the supervised learning classifiers like Neural Network, SVM and RIPPER on

them. Finally, the trained model from the second stage is used to find the

class label for a new data point.

Traditional association rules mining methods mostly prune the infrequent

items on the basis of frequency of the itemset and thereafter calculate the

strength of the rule in the form of its confidence values. This also ignores the

statistically significant rules. Although most of the associative classifiers deal

with this limitation by setting up small minimum threshold values, however,

this leads to the generation of a huge number of insignificant rules. Therefore,

in our proposed model, we use the instance-centric pruning strategy as used

in SigDirect[39] to find globally optimal CAR (Class Association Rules) for

each instance in the training dataset without compromising the classification

accuracy.

Furthermore, we use Neural Networks [7] and Support Vector Machines

[16] in our approach as they are strong machine learning classifiers, that have

proved their worth in various applications. With the aim to build an efficient

4

classification strategy, we train them using meaningful features obtained from

the first stage of learning. However, many real time applications specifically

in healthcare and medicine require explainable models in order to interpret

the results post classification. In our proposed strategy, although the statis-

tically significant rules and derived features obtained in the first stage form

an explainable model, Neural Network and SVM used in the second stage

for classification might make the results un-explainable for such applications.

Therefore, in order to make our approach interpretable, we explored the ap-

plicability of a rule-based classifier like RIPPER in the second stage for clas-

sification of derived features. Ripper [15] is a rule-based classifier which was

found to produce a minimal set of explainable classification rules when given

meaningful features in the second stage of our proposed approach, without

compromising on the classification accuracy.

Therefore, in our study we propose a novel bi-level classification model,

which uses the association rule mining to produce statistically significant rules.

Further these rules are used to form more meaningful and non redundant fea-

tures to be given as input in the second stage of learning comprised of a second

classifier. The proposed algorithm helps in automatic learning of non noisy,

statistically significant rules and further, it leads to a higher classification

accuracy. The above proposed BiLevCSS classification model, overcomes the

limitation of various associative classifiers described in literature for setting up

the appropriate parameter values for support and confidence and also don’t

require any predefined weighting scheme for classification.

Due to the immense success of ensemble learning models in past, we further

explore ensemble learning on associative classifiers. Therefore, we propose

ACboost algorithm, which uses an ensemble of classification models obtained

from the weak version of SigDirect, for boosting. Our goal is to strengthen the

classifier using less number of rules for prediction. Since, SigDirect is a strong

5

learner and produces already a lesser number of rules for prediction, we form

a weak version of SigDirect called wSigDirect, by further reducing the number

of rules to be used for classification as explained later in Chapter 6. Moreover,

in the proposed approach we use Adaboost [23] based boosting strategy over

the ensemble of wSigDirect. The wSigDirect’s classification model is learnt

by running it multiple times on a re-weighted data, thereafter performs voting

over the learned classifiers. We also propose ACbag which is defined as bagging

on an ensemble of wSigDirect classifiers. Motivated by the approach proposed

by Breiman in [8], we use an ensemble model of wSigDirect classifiers trained

in parallel over different training datasets, and perform a majority voting over

the ensemble for prediction. With the use of this strategy of combining weak

learners, the goal is to decrease the variance in the prediction and improve the

classification performance henceforth.

It was found that, ACboost performs better for most of the datasets than

SigD2, ACbag, SVM, ANN which performs similar to deep neural network on

these reasonably sized datasets. Deep learning has garnered all the attention

lately, but their inability to produce transparent explanations for the decisions

motivates us towards the domain of explainable artificial intelligence using

rule-based models which have fallen out of favour of late. The main aim of

this study is to make associative classifiers more competitive and to highlight

their significance as opposed to the other machine learning based classifiers

like neural networks which do not produce interpretable predictions.

However, for most of the association based classification models discussed

before namely, SigD2, ACboost, ACbag and BiLevCSS, handling high dimen-

sional data has been a huge concern. Essentially, handling large datasets has

always been a big challenge for associative classifiers. While on the other hand,

DNNs are generally found to perform better on large datasets.

So, one possible solution to handle a high dimensional dataset, could be,

6

to form an ensemble of feature subspaces in order to make the prediction.

Motivated by the feature sampling strategy called CSARS proposed by Cao et

al. in [11], we define a new strategy called Diverse SubSpace For Ensemble

(DSAFE), to be used to build the ensemble of SigD2 using diverse feature sub-

spaces. In our study, we have made an attempt to optimize the CSARS strat-

egy, by using an efficient approach for searching the diverse feature subspaces

and have been able to achieve encouraging results without doing bootstrap

sampling on each of the sub-datasets so formed. Traditional approaches like

Random Sampling have certain limitations of setting up the hyper-parameter

for number of estimators and doesn’t ensure the complete coverage and di-

versity among different estimators. In the proposed approach, we randomly

select the features to build a feature subspace, while ensuring diversity among

different subspaces. We also ensure that given the total number of features,

there goes no feature that hasn’t been selected at least once in this process,

hence complete coverage of features in the ensemble. Next, these low dimen-

sional feature subspaces are given to the ensemble of SigD2 for classification.

DSAFE feature sampling approach automatically determines the number of

estimators (i.e. different feature subspaces) to be used for classification. Thus,

overcoming the need to determine the number of feature subspaces explicitly

as a parameter while ensuring complete coverage of the total feature subspace

and diversity among each of the subspaces. This makes the classification re-

sults obtained from so formed ensemble model, to be more authentic. It was

found that using DSAFE for SigD2, is faster and gives higher accuracy than

using SigD2 alone or using Random sampling on the ensemble of SigD2. It was

even found to be competitive with MLP classifier on high dimensional dataset

and has proved to be an efficient approach.

We have also tested the application of our model, on one of the classifi-

cation problems related to COVID-19 pandemic. The data contains medical

7

information of some anonymous patients who visited the hospital to get tested.

The goal here is to predict whether the patient should be admitted to intensive

care unit, semi-sensitive ward, general ward or does not require admission to

the hospital at all. This would help the practitioners to predict the number of

hospitalizations that may occur, on the basis of early symptoms and medical

tests. The results obtained are encouraging and highlight the significance of

the explainable nature of associative classifiers.

Further, we also hypothesize that one of the many reasons for the excellent

performance of the neural networks is their layered complex model that has

feature transformation ability. With the aim to achieve high performance like

deep networks, we build a multi-layered architecture for SigDirect, which is

a kind of feed forward network, without back propagation. Therefore, it is a

non differential model and has inherent feature transformation ability. Zhou

et al. proposed the deep forest model in [57], which is a layered architecture

consisting of ensemble of random forests, that transforms features within the

model and has high model complexity to mimic the deep network style of clas-

sification but using lesser hyper-parameters. However, random forests involve

a cumbersome process of tuning the number of trees in the forest as a hyper

parameter for every dataset. Improper tuning of this parameter might overfit

the model. The average probability distribution for each class from each tree

in the forest forms the features to be cascaded in the further layers. Further-

more, our previous results from SigD2 have shown that, performance of SigD2

is competitive to that of random forest both in terms of accuracy and run

time.

Motivated by the deep forest which uses random forests to build a deep

architecture, we use SigD2 which produces statistically significant rules for

classification, as the base classifier in this layered architecture. The parame-

ters used for the proposed classification model are very less and do not require

8

much tuning as compared to the random forests and neural networks. Thus,

avoiding the problem of over-fitting the model. This kind of architecture al-

though compromises the explainability factor, however here we intend to build

a classification model, which provides high classification accuracy irrespective

of the size of data and requires less hyper-parameters for tuning at the same

time.

Therefore, inspired by the deep architecture of neural networks and en-

couraging results from ensemble learning algorithms, we further build a layered

architecture for learning an ensemble of SigD2. This architecture is an amalga-

mation of multi-grained scanning and cascading of information obtained from

each SigD2 model. Initially raw features are given as input to the SigD2 using

a sliding window in the multi-grained scanning step. SigDirect’s classification

model outputs the probability score for each class. Further, these probability

scores are concatenated to form feature vectors for the next phase. These fea-

tures are then transformed layer by layer based on the information obtained

from the classification model of SigD2 at each layer.

We intend to build a system where the number of layers to be used in a

network would be learnt automatically by the model. Hence, the number of

layers would not be a pre-defined parameter and would not require tuning.

This complex layered model is found to give better performance both in terms

of speed and accuracy for large datasets. Furthermore, this architecture can

also be extended to be used for high dimensional image datasets, as model

explainability is not a huge concern in such classification problems.

1.2 Thesis Statement

In this study, we intend to address various challenges encountered with the

use of associative classifiers. And we hypothesize the following statements for

the same.

9

1. The most significant advantage of an associative classifier is its ability

to provide an explanatory classification model. The goal is to obtain an

accurate, readable classification model with minimal rules. We hypoth-

esize that the pruning strategy used in the current associative classifier,

SigDirect, can be optimized further to produce lesser number of rules for

classification without jeopardizing the prediction performance.

2. We believe that statistically significant classification rules can form mean-

ingful features to be used as an input for other machine learning clas-

sifiers. This would overcome the limitation of selecting any weight-

ing scheme for associative classification while using very few hyper-

parameters at the same time.

3. We next hypothesize that the ensemble learning on associative classifiers

can help enhance the prediction performance and make associative clas-

sification models more competitive. A prudent feature subspace selection

approach, can help in building an efficient ensemble model.

4. We hypothesize that one of the many reasons for the success of deep net-

works is their complex, multi-layered model which has ability to perform

complex feature transformations. This idea could also be used to build

a deep multi-layered framework for an associative classifier to make it

more competitive.

1.3 Thesis Contribution

Our contribution in this study is as follows:

1. We propose SigD2, an associative classifier, which uses an effective two

stage pruning strategy for pruning the rules to be used for classification.

Using the proposed approach, the number of rules used for classification

are reduced notably, without compromising on the classification perfor-

10

mance. We evaluate the proposed algorithm, on the UCI datasets and

compare it with other commonly used classifiers which shows that our

classifier gives better classification accuracy than other state-of-the-art

rule-based and associative classifiers.

2. We propose BiLevCSS, (Bi-LevelClassification using Statistically Significant

Rules), which is an effective two stage learning model. In the first stage

of learning, we build an associative rules classifier (ARC) model based

on statistically significant rules, followed by a supervised learning clas-

sifier in the second stage of learning for classification. We evaluate the

performance of machine learning classifier like Neural Network and SVM

against rule based classifier RIPPER to compare their accuracy and suit-

ability for different datasets.

3. We propose ensemble learning on associative classification. We intro-

duce ACbag, an ensemble based classifier founded on wSigDirect and

ACboost, which is boosting the wSigDirect classifier, to improve the

classification accuracy with an explainable base model. Therefore, mak-

ing SigDirect more competitive for classification tasks.

4. We propose Diverse SubSpace for Ensemble for SigD2, to perform predic-

tion over the ensemble of diverse yet complete feature subspaces. The

proposed strategy is found to give promising results for classification

tasks on high dimensional data.

5. We propose multi-layered framework for SigD2, a deep layered architec-

ture with feature transformation ability, for an associative classification

based learning model. The proposed model uses very few parameters for

tuning and gets encouraging results.

11

1.4 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 reviews the work done in literature in the area of associa-

tive classification, statistically significant classification, ensemble learn-

ing model and applications of associative classifiers. Section 2.1.1 pro-

vides detailed explanation on associative classification including the rule

generation phase, rule pruning phase and classification and also discusses

various variants of associative classifiers proposed so far in the literature.

Next, sub section 2.1.2 provides information on work done in past on

statistically significant classification followed by detailed review on the

ensemble learning models in Section 2.2. Finally we review some works

that have applied associative classifiers in various healthcare and fraud

detection systems in Section 2.3.

• Chapter 3 contains describes the novel optimized pruning strategy de-

fined for SigD2. In this chapter, Section 3.1 explains the complete

methodology, including rule generation, rule pruning and classification

phase for SigD2. Further, Section 3.2 contains the contains the promising

experimental results for SigD2 in comparison with other classifiers.

• Chapter 4 addresses some limitations of the prevalent association based

classification models and provides details of the different novel associative

classification models. In this chapter, Section 4.1 discusses the proposed

algorithm BiLevCSS which is a novel Bi-level associative classifier using

the automatic learning on rules. In Section 4.2 we compare the results

obtained using the proposed BiLevCSS algorithm versus the other state

of the art associative based and rule based classifiers, along with some

statistical analysis on the results obtained.

• Chapter 5 contains detailed methodology and evaluation of the proposed

12

ACbag and ACboost ensemble algorithms introduced in Section 5.1. Fur-

ther, Section 5.2 addresses the limitation of high dimensional data on as-

sociative classifiers and contains detailed information and evaluation of

the novel algorithm called DSAFE used for the diverse feature sub-space

selection used to form the ensemble learning model. Lastly, Section 5.3

describes the experimental results obtained from application of proposed

classification models on a COVID-19 dataset.

• Chapter 6 introduces a multi-layered framework for an associative clas-

sifier, so as to make it more competitive with deep networks. Some

background and motivation is described in Section 6.1, further Section

6.2 contains the basic methodology involved and Section 6.3 contains

experimental results.

• Chapter 7 concludes the thesis with a short summary of the proposed

work and the significant conclusions drawn from this study. It also de-

scribes the future work and the possible areas that can be explored based

on the study performed in this thesis.

13

Chapter 2

Related Work

In this section, we describe related work on classification, statistically signif-

icant classification and ensemble learning. We also review some related work

on the applications of associative classifiers.

2.1 Classification

Classification can be is defined as a process of predicting the class label of

new data points, given a set of labeled data points in the training set. It is a

three step process of model construction, model evaluation and finally using

the generated model for classification. There are various techniques of classi-

fication commonly used machine learning namely, Support Vector Machines,

Neural Networks, Decision trees, Logistic regression, Naive bayes classifier,

associative classification etc. We would discuss a few of them below.

Cortes et al. proposed Support Vector Machines in [16]. It is a widely

used linear classification model, that has the ability to classify non-linearly

separable data. They can be applied to both classification and regression tasks.

Given an N-dimensional space, where N is the number of attributes, the goal

here is to find a hyperplane that classifies the data points. In SVM, kernels

play a significant role in separating the non-linearly separable data points. The

SVMs are not found to perform well when dataset is very large and seem to

14

take long time for classification. Also the prediction model produced difficult

to understand and the outcome is not explainable.

Another much prevalent machine learning classifier, Artificial Neural Net-

work was proposed by Beale et al. in [7]. A Neural network is a layered

framework inspired by the architecture and intelligence of the biological brain.

The network consists of many interconnected layers, each of which contains

nodes through which information is passed. The nodes inside the network

emulate the behaviour of the neurons inside the brain. Some non linearity in

the form of activation function, is applied to the cumulative weighted sum of

the inputs, to get the output from that node. The output can thereafter be

given as the input to other nodes. The number of nodes in the input layer are

equal to the number of attributes in the data set. For a classification problem,

the number of nodes in the output layer are as the number of classes of the

target variable. Although neural networks are robust and have been able to

obtain high prediction accuracy, they are difficult to understand. They might

not suffice the requirement of some applications where explainability of results

is expected. Also, they are not found to perform very well when the size of

training data is not very high.

Quinlan proposed Decision trees [44] which are interpretable classification

algorithm which performs tests on the attributes so as to divide the data into

various partitions. Each leaf node would represent the associated class label or

class label distribution. It includes a two step process of tree construction and

tree pruning. Tree construction begins with the root containing all training

examples, and recursively the best attribute for split is found using different

measures like Information gain and Gini index. Further in tree pruning phase

all the noisy tree branches are chopped off that do not increase the accuracy

on validation set. Tree pruning helps in overcoming the problem of over-fitting

in decision trees. Decision trees can work well irrespective of the data type as

15

they can handle all types like numerical, categorical and so on. However, they

are found to be more prone to over fitting and become unstable if not used

properly.

Quinlan proposed the C4.5 algorithm was proposed in [45] to generate

decision trees. Further, Ho et al. proposed the algorithm for Random forests

which is an ensemble of the decision trees in [32].

Another form of explainable and intuitive classifiers in machine learning

are associative classifiers. In the following section, we review some literature

work on associative classification.

2.1.1 Associative Classification

Association rule mining aims to find patterns in the data, in order to deter-

mine the association and the correlation between the items in the transaction

data set. It is widely used in market basket analysis, such that if a customer

buys say product ’A’, then how likely is it for that customer to buy prod-

uct ’B’. This helps the sellers in building their selling strategies to increase

their profit. Other applications of association rule mining could be for cat-

alogue design or cross marketing. In fact, this can further be extended to

any classification task where model analysis is required. For example, in a

mushroom dataset consisting of two classes ’poisonous’ and ’non-poisonous’,

then an obvious question can be, what are the attributes-value pairs that led

to the prediction of a specific instance of a mushroom to be ’poisonous’ or

’non-poisonous’. Associative classification forms association based classifica-

tion rules that help in interpreting answers to such questions. Stemming from

association rule mining, associative classifiers have been extensively studied in

the last three decades.

The idea of associative classifiers was first presented by Liu et al. [43],

while the concept of using association rules as CARs was proposed earlier by

16

value. These frequent items are then used for the generation of rules that help

in the prediction.

In this phase, transaction items are used to form association rules such

that the antecedent form the list of attribute-value pairs while the consequent

is the class label. Different association rule mining strategies have been pro-

posed in past like Apriori [1], FP-growth [29] etc. Aggarwal et al. proposed

Apriori which is one of the most widely algorithm for generation of frequent

itemsets and class association rules(CARs). It majorly involves two steps for

rule generation. In the first step all the frequent itemsets are generated from

the given transaction set and further these frequent itemsets are used to gener-

ate the association rules. This algorithm requires to set the minimum support

and confidence hyper parameter values to it to function well. It uses breadth

first search strategy and requires very large memory due to large number of

candidate itemsets generated in the process. Furthermore, another algorithm

called FP-growth proposed by Han et al. in [29] was used for frequent itemset

and rule generation. It uses the FP-Tree type data structure to obtain the

frequent itemsets and further extracts the association rules. The algorithm

uses depth first search strategy and requires less space comparatively. Most of

the associative classifiers like CBA, ARC [4] use Apriori based rule generation

algorithm while CMAR [41] uses FP-growth based rule generation algorithm,

which would be discussed in detail later in this section.

Rule Pruning

Rules generated so far, may contain noisy rules, which are redundant and

meaningless. Such rules do not help in the process of classification and should

be removed. Liu et al. proposed database coverage based pruning strategy for

CBA [43]. This pruning approach uses the generated CARs, such that each

rule is matched and further evaluated based on the given training dataset. If

18

the rule has the ability of classifying even a single training example, then it

is kept for classification otherwise it is removed. At the same time, all the

transactions that matched the previous rule are removed as well. This process

is repeated until all the rules have been tested similarly, thereafter the set of

non-noisy rules is obtained.

Furthermore, another study done by Zaiane and Antonie in [54] focuses on

the significance of obtaining a minimal set of CAR’s without jeopardising the

performance of the classifier. They propose a pruning strategy to reduce the

number of rules in order to build an effective classification model without se-

riously compromising on the classification accuracy. The authors also propose

heuristics to select rules which obtain high accuracy on the plot of correct/in-

correct classification for each rule on the training set for effective rule pruning

combined with the database coverage technique based on the given dataset.

Rule Selection

Before using this set of rules of classification, it is worth noting that the number

of rules obtained so far are still large enough. The goal of classification is to

select the relevant rule for each transaction in the test dataset. Since, the

number of relevant rules would be more than one, consequently leading to

large number of possible class labels. Therefore, it becomes highly important

to select a heuristics which would lead to high classification accuracy. Among

all the applicable rules, heuristics like maximum of confidence or average of

confidence or sum of confidence of the rules for the classes, can be used to

select the high quality rules. For each test transaction, the rules are selected

on the basis of the chosen heuristics, to determine the class label effectively.

Different associative classifiers [41, 43, 53] have been proposed in literature and

each of them have chosen different heuristics for rule selection which would be

discussed in next section.

19

Associative Classifiers

Liu et al. proposed CBA, an approach to perform classification using the class

association rules in [43]. The proposed work used Apriori based rule gen-

eration algorithm, involving the cumbersome process of tuning support and

confidence values. Furthermore, CBA applies the paradigm of “database cov-

erage” for rule pruning and uses highest ranked matching rules as the heuristic

for classification. This study paved the way for the associative classification.

CPAR proposed by Yin and Han in [53], uses a dynamic programming

based greedy strategy that generates association rules from the training dataset.

It prevents repeated calculation in rule generation and also selects best k rules

in prediction.

Li et al. proposed another associative classifier called CMAR in [41].

CMAR uses FP growth which is a frequent pattern mining based approach

to produce a set of association rules. The authors also use a novel data struc-

ture called CR-tree to store the CARs. Furthermore, CMAR determines the

class label based on the set of matching rules using weighted chi-square mea-

sure, unlike the previous approaches. Antonie and Zaiane propose an asso-

ciative rule-based classifier for automatic text categorization called ARC-BC

[4]. ARC-BC forms association rules grouped by the category for each set of

documents. The ARC model takes all the rules which lie within the confidence

range, then the rules are grouped by the class labels (consequent) and finally

the average confidence is calculated for all the rules in each category. The class

label of the group with the highest value for confidence average is considered

as the predicted category. The proposed algorithm works for both single and

multi class classification.

The CCCS algorithm in [6] is proposed for imbalanced dataset classifica-

tion problems where using support/confidence framework would not be suffi-

20

cient. The classification using complement class support algorithm mines the

positively correlated CARs by using a novel measure called complement class

support(CCS) conjointly with top-down row enumeration algorithm. However,

CCCS does not assure the statistical significance of the mined association rules,

which defeats the purpose we would like to achieve. Moreover, they only com-

pare their approach with the original CBA. Later, Verhein and Chawla also

proposed Significant, Positively Associated and Relatively Class Correlated

Classification (SPARCCC) algorithm [49], which is an amalgamation of the

statistical significance rules with a novel measure called CCR for calculation

of relative class correlation of a rule. The proposed associative classifier does

not use the support confidence threshold framework for classification and is

stated to perform well on imbalanced datasets. Furthermore, the novel CCR

measure helps in using only those rules for classification, where the antecedent

is more positively correlated with the classes they predict as compared to their

correlation with other classes.

Antonie and Zaiane [5] proposed the first associative classifier that uses

both the positive and negative CARs. They use the Pearson’s coefficient as

the interestingness measure to mine positively and negatively correlated CARs.

They were able to prove that a much smaller set of positive and negative CARs

was efficient enough to compete and outperform various other categorization

systems. The classification is made by using average confidence heuristic.

Coenen and Leng have reviewed three case satisfaction mechanisms namely,

Best First Rule, Best K Rules and All Rules in [14] and various alternative

rule ordering strategies. The authors have evaluated these case satisfactions

as they have been commonly used in numerous Classification Association Rule

Mining (CARM) algorithms to use the classifier thus formed, for the prediction

task.

Antonie et al. proposed a two stage classification model called 2SARC in

21

[3] which automatically learns to select appropriate rules for classification. In

the first stage, association rule mining is used to determine the classification

rules. These rules are further used to determine meaningful features to be

used for predicting which rules are to be selected for induction. In the second

stage, these multiple features are given as input to another learning algorithm

that is, a neural network, in order to obtain a more accurate classification

model with high prediction accuracy. However, the model produced by the

proposed approach does not seem to give explainable results. The main aim

of the work proposed by Antonie et al. was to overcome the cumbersome

task of tuning support and confidence values for every dataset. Although, the

results obtained are interesting, however they are not convincing as they tend

to ignore the statistical significance of the rules. Noisy and meaningless rules

produced in the first stage might mislead the classification in the second phase.

This forms the baseline of our work as discussed later.

2.1.2 Statistically Significant Classification

Hamalainen proposed StatApriori algorithm [27, 28] which explores statisti-

cally significant association rules using z-score measure and without using the

frequency threshold framework. The proposed algorithm provides non redun-

dant globally optimal association rules. However, the concept of StatApriori

algorithm was found to be more constrictive than the traditional definition.

Therefore, further in [25, 26], Hamalainen proposed the Kingfisher algorithm.

The algorithm uses Fisher’s exact test and new pruning strategies for searching

the globally optimal dependency association rules. The algorithm performs a

scalable search using branch and bound including the positive or negative de-

pendencies over the attributes. Hamalainen’s work has been a fundamental

input to the statically significant rule mining.

Further, Li and Zaiane presented a novel associative classifier in [40] which

22

is built upon both positive and negative association classification rules. They

improvised the kingfisher algorithm for rule generation, and also proposed a

novel pruning strategy for both positive and negative rules simultaneously.

The authors state that a generated rule can be pruned if it is found to in-

correctly classify at least one training instance. Finally in the classification

stage, they concluded that summing up the confidence values of all matching

rules and accordingly making the class label prediction proves to be the best

classification method.

Moreover, tuning values for support and confidence parameters is an ardu-

ous task as it varies with the change in dataset. Li and Zaiane in [39] overcome

this limitation by proposing SigDirect that tunes only one parameter that is

the p-value, which computes the statistical significance of rules using Fisher’s

exact test. The SigDirect is found to be immune to the problem of missing

data, and handles datasets with the missing information quite efficiently.

The novel associative classifier SigDirect, involves rule generation, rule

pruning and classification phase. First, the authors use Apriori based strat-

egy for rule generation. The tree is enumerated starting from one item in

the antecedent to generate class association rules. These association rules are

further checked, if they are potentially statistically significant(PSS). Only the

PSS rules are then further tested for statistical significance. Next using PSS

1-itemset rules, PSS 2-itemset rules are generated using the property that if a

rule is PSS, then its parent rule would also be PSS. The process is repeated

until no further PSS could be generated at that level. The algorithm also keeps

a check whether the rule is non redundant and minimal or not (Also defined

later in Section 3.1). The tree enumeration is also said to stop when a rule

is marked as minimal as all its children rule would not be able to get a lower

p-value. Further noisy and non statistically significant rules are removed from

the set of generated rules using the proposed instance centric rule pruning

23

strategy. Li et al. have also evaluated various heuristics for the classification

and infer that SigDirect, with a specific heuristic, gives high classification accu-

racy using a minimum set of globally optimal class association rules. Although

SigDirect has proved to be quite competitive in terms of prediction, there are

still noisy rules that can compromise the accuracy and has the potential of

improvement and would be discussed in detail in Chapter 3. We would also

design a multi-layered framework for SigD2 in Chapter 6, motivated by the

architecture of Deep Forest, proposed by Zhou et al in [57], discussed in detail

later in Section 6.1.

2.2 Ensemble Learning Models

Dasarathy and Sheela first presented the concept of composite classifier in [17].

The authors determined an optimality criterion for partitioning the features

space using multiple classifiers. They proved that the composite system leads

to better accuracy and improves the system performance unlike the case when

each component from this composition is considered individually. Hansen et

al. later proposed the idea of ensemble of similarly configured neural networks

in [30], and laid emphasis on the reduction of generalized error using this

ensemble system. The authors obtain the prediction output from each of the

networks in the ensemble and do prediction based on the consensus scheme of

voting. Different ways of creating diverse ensemble models have been used in

literature. Most of them involve various sampling strategies, for example, one

approach is to do bootstrapping and creating bags of data with replacement

called bagging [8]. Another approach can be to split the features using random

sampling without replacement approach [34]. The results from each of these

different subsets are then given to the classifiers and final result is achieved

through majority voting. Another approach can be to use ensemble of different

kinds of classifiers such as MLPs, decision trees, support vector machines etc.

24

performing the classification on the same given dataset, as per the requirement

of the application and later using some combining strategy like majority voting

of the results from each classifier, to give the final prediction [33, 38, 51].

This approach can be slightly computationally expensive as different classifiers

required different hyper-parameter tuning. Yet another less used approach is

to use ensemble of one classifier, but having different parameters for each of

the classification models.

Different approaches for training each member of the ensemble model are

used in bagging [8], boosting [23] and their variants.

Ensemble models are widely used for enhancing the accuracy of the clas-

sification models using a combination of classification models. Freund and

Schapire proposed Adaboost based boosting strategy in [23]. It is one of the

most famous boosting algorithm which works on the principle of learning in

series. Adaboost performs learning over an aggregation of various weak classifi-

cation models. For the defined number of estimators, the weight is maintained

over each training sample and for each base classifiers as well. After each

iteration the miss-classified observations are given more weight after each iter-

ation in the sequential model while lesser weight is given to the ones classified

correctly. The process continues until the preset number of weak estimators

are added or until low training error is achieved. The boosting strategy helps

to reduce bias however, it is susceptible to the problem of overfitting. Later

for the prediction phase, voting is done based on the weight of each classifier.

Promising results obtained by authors in [23] motivated us to apply boosting

over the associative classifier. Furthermore, the SAMME algorithm proposed

by Zhu et al. in [31] is a multi-class extension of the binary Adaboost algo-

rithm. Wolpert proposed the method of stacked generalization in [50], which is

a stacked framework wherein at the first level classification models are trained

on the given input dataset and the predictions from this layer are best blended

25

together to be used in the second layer for better output prediction and also

to reduce the generalization error.

Data selection for creating subspaces to be used for the base models, play

a very significant role in an ensemble system. The goal is to obtain diverse

results from each of the base classifiers in the system, so as to highlight the

significance of their amalgamation.

Brown et al. have presented a study on how negative correlation learning

can be used over the ensemble of neural network [9]. This work describes that

the significance of an ensemble model lies on the fact that the output from the

base classifiers should be diverse enough such that either it is independent or

might be negatively correlated. Brown et al. further present a detailed study

in [10] on diversity in ensemble models with respect to both classification and

regression contexts. The basic intuition here is that, the error rates produced

by the base classifiers in the ensemble system should be diverse enough to

emphasis the significance of the strategic combination of the classifiers in that

system [56].

Cao et al. have proposed a novel Cost Sensitive Adaptive Random Sub-

space ensemble (CSARS) in [11]. In general random sampling method suffers

limitation for imbalanced dataset classification and might lack diversity of

instances in the ensemble model as it might involve overlapping of features

in each subspace. The CSARS provides a cost sensitive framework ensuring

diversity among the ensemble of subspaces and works efficiently with better

accuracy for imbalanced datasets as well. CSARS automatically determines

the number of estimators to be used in the ensemble model for classification.

Finally, there are various approaches in literature, for combining the class

labels of the ensemble system by majority voting [37], weighted majority vot-

ing[42] and Borda count given by Jean-Charles de Borda [21]. In our study we

extensively use ensemble modeling to highlight the significance of associative

26

classifiers.

2.3 Application of Associative Classifiers

Associative classifiers play a very significant role in health-care. Maria et al.

proposed two associative classification strategies namely ARC-AC and ARC-

BC to classify digital mammograms in [2]. Their study also emphasis the

importance of data cleaning when using data mining approaches on image

data. Since mammograms are of the trusted methods of cancer detection, the

authors use the computer aided diagnostic system, which achieves high classi-

fication accuracy and the results are explainable at the same time. Exarchos et

al. in [22] have also used the application of associative classifiers in the domain

of health care. The authors propose the use of association classification rules

for the ECG analysis, moreover the study shows how various classification

tree algorithms can be used to discretize the continuous values features. The

proposed model uses a three stage framework, given a raw ECG recording as

input, the system performs feature extraction, followed by feature discretiza-

tion, rule mining, and finally the best classification. The authors have laid

attention on the ability of their proposed model to provide explanations on

the decisions made, which is highly important in ECG analysis.

Furthermore, Ye et al. have proposed a novel CIDCPF system, to detect

malware in [52]. The authors also use post processing approaches of associative

classification like Chi square testing, use database coverage based rule pruning

strategy on chi-square measure of ranking rules and pessimistic error estima-

tion, and used best first rule heuristic for classification of new data file. The

proposed CIMDS system [52] uses association rules to build CIDCPF classifier

for detection of malware, and it is found to outperform various other antivirus

detection systems like McAfee and Norton AntiVirus.

27

Chapter 3

SigD2

In this section, we first introduce the details about the proposed effective two-

stage pruning technique as used in SigD2. Further, we evaluate the proposed

classifier and compare it with various other associative and rule based classifiers

on the UCI datasets.

3.1 Methodology

SigD2 processes the learning of rules in rule generation and rule pruning

phases. It further uses these rules for prediction in the classification phase.

The aim of an associative classifier is to find knowledge from data in the form

of association rules associating conjunctions of attribute-value pairs with class

labels, and then using these rules for prediction. The next sub section contains

some useful notations and definitions and further we would discuss each of the

phases processed by SigD2 below in detail.

3.1.1 Notations and Definitions

Definition 1. Dependency of a CAR [39]

If a transaction database T consists of a set of items I = {i1, i2, ..., im} and a

set of class labels C = {c1, c2, ..., cL}, a transaction X in T consists of a set of

items A = {a1, a2, ..., an}and a particular class label ck such that A ⊆ I and

28

ck ∈ C. A CAR R in the form of A →ck is called dependent if the antecedent

part and the consequent class label of the CAR satisfy P (A, ck) 6= P (A)P (ck),

where P(A) denotes the probability of occurrence of itemset A.

Definition 2. Fisher’s exact test [40]

Consider a null hypothesis in which A and ck are assumed to be independent

of each other. The dependency of the CAR A →ck is said to be statistically

significant at level α, if the probability p of obtaining an equal or stronger

dependency in a dataset complying with a null hypothesis is not greater than

α. The probability p, i.e., p-value, can be calculated by Fisher’s exact test:

pf (A→ ck) =

min{σ(A,¬ck)σ(¬A,ck)}
∑

i=0

(

σ(A)
σ(A,ck)+i

)(

σ(¬A)
σ(¬A,¬ck)+i

)

(

|T |
σ(ck)

) (3.1)

where σ(A) denotes the support count of A and ck represents the conse-

quent class label. Note that σ(A) and σ(¬A) represent presence and absence

of conjunction of itemsets A in the transaction dataset T, respectively. The

significance level α is usually set to be 0.05.

Definition 3. Potentially Statistically Significant [39]

The CAR A →ck is defined as ”Potentially Statistically Significant” (PSS),

if it meets either of the following conditions:

(1) σ(A) ≤ σ(ck) holds, and the lower bound
σ(¬A)!σ(ck)!

|T |!(σ(ck)−σ(A))!
is smaller than or

equal to α;

(2) σ(A) >σ(ck) holds.

where A ⊆ IRemaining and ck ∈ {c1, c2, ..., cL}

If a CAR is PSS, we need to calculate the exact p-value to see if it is indeed

statistically significant.

29

3.1.2 Rule Generation Phase

In this phase, we use the approach proposed by Li and Zäıane for SigDirect

in [39]. SigD2 generates statistically significant CARs, such that the p-value

from Fisher’s exact test [25] of the rule in the form A →ck is small. The

rule generation process includes the enumeration of complete search space

and applying certain pruning approaches to deal with this large space, which

is found to increase exponentially as the number of items in the antecedent

increase. Initially all the impossible antecedent itemsets are removed using

the corollary defined in [39], which states that, the items whose support value

is below γ|T |, where T is the transaction database and γ ≤ 0.5, are termed as

impossible itemsets. It is impossible for such items to occur in any statistically

significant classification association rules and so they are removed.

The remaining items (IRemaining) are sorted and arranged in the ascending

order of their support values. The enumeration tree is built over the remaining

items. For the first level, all the CARs with one antecedent values are listed

and checked if they are potentially statistically significant (PSS) [39]. The

Definition 3 describes two cases to make a rule as PSS. The lower bound for

p(A →ck) is found to give the best-value which is
σ(¬A)!σ(ck)!

|T |!(σ(ck)−σ(A))!
. If the value

of lower bound is found to be smaller than the significance level α , then it is

defined as PSS, otherwise it is called as non PSS.

All the non PSS CARs are pruned from the tree while, for the CARs

which are PSS, exact p-value is calculated to find out if it is statistically

significant. Using 1-itemset PSS CARs from the first level, 2-itemset PSS

CARs are generated and this process is repeated until a certain level is reached

where no PSS CARs can be generated. This is derived from another significant

property considered here that is, a child CAR would be potentially statistically

significant iff all of its parent CARs are PSS as well (Detailed proof can be

30

found in [39]). To ensure this, the algorithm uses the breadth first search

strategy.

Furthermore, it is also checked if the CAR suffice the non redundant and

minimal property [39]. The CAR in the form A→ck is said to be non redundant

if there does not exist any CARs in the form of y →ck, such that p(y→ck)

<p(A→ck) and y is proper subset of A, where p is the p-value of the rule

calculated from Fisher’s exact test, A is the set of items in the database and

Ck is the class label [39]. While a CAR is termed as minimal if A→ck is non

redundant and there does not exist any CARs in the form Z→ck such that A

is a proper subset of Z and p(Z→ck) <p(A→ck). So, if a CAR is found to be

minimal then it is impossible for all its children in the subtree to get a lower

p-value [39]. Therefore, the tree is not enumerated further.

3.1.3 Rule Pruning Phase

The rule generation phase may produce many CARs which are noisy and would

not only slow down the process of classification but also lead to incorrect clas-

sification. Originally, SigDirect only performs instance based rule pruning on

generated rules. It was observed that, although the previous strategy produces

globally best CARs, the rules were still noisy and could be further reduced.

So the question is, how can we prune more rules without actually jeopardising

the accuracy of the associative classifier?

We propose a two stage strategy for pruning, wherein we randomly divide

the training set into train set and prune set in the ratio of 2:1. The rules

are generated in the rule generation phase using the train set. However, for

pruning, only the prune set is used. We arrange the CARs in the order from

highest confidence values to the least. The proposed pruning process, consists

of matching the CAR with highest confidence and scanning over all the trans-

actions in the pruning dataset to see if they match. If the rule applies correctly

31

Algorithm 1: Algorithm for Two-Stage Pruning Strategy used in
SigD2

1 Input: T: Pruning transaction database, R: Initial rule list from rule
generation phase, Rmid: Rule list being formed after pruning the
insignificant rules from R, conf threshold: Confidence threshold
value.
Result: Rnew: Classification association rules to be used for

prediction
2 while rules exist in R do

3 Sort the rules in R in descending order of their confidence values
4 Select the rule ri with highest confidence from R and add to the

Rmid

5 if conf(ri) < conf threshold then

6 break
7 Find all applicable instances in T that match the antecedent of

rule ri
8 if ri correctly classifies a pruning instance in T then

9 Mark ri as a candidate rule in the classifier
10 Remove all instances in T covered by ri
11 Update the confidence values, based on the remaining transactions
12 Remove the rule ri from the R

13 end

14 for each instance t in the original transaction database T do

15 Scan the CARs from Rmid to find the matching CAR ri, with
highest confidence value

16 if ri 6∈ Rnew then

17 Rnew.add(ri)
18 ri.count=1

19 else

20 ri.count+=1
21 end

22 end

on the transactions, it is marked and is selected to be used for classification and

subsequently the matching transactions are removed from the pruning set. We

re-calculate the confidence values of the remaining rules, each time using the

remaining transactions in the pruning set and arrange them in the descending

order. This process is repeated until either the rules or transactions have been

covered or until the confidence threshold is reached. It is assumed that for a

32

rule, if the confidence value in each iteration is less than the threshold, then

that rule can be pruned as it is not able to cover at least few instances in the

prune set.

After this step, we obtain the rules which might be useful for classification.

However, we still need to find the globally best CARs. So, further we apply the

instance based pruning step as proposed in SigDirect [39]. For every instance

in the pruning transaction database, the complete set of CARs generated from

the previous step are scanned. The aim here is to find the matching CARs

with the highest confidence value, such that, the class label of the rule and

the transaction matches and the antecedent of the rule is the subset of the

transaction. Furthermore, the count of how many times the rule has been

selected in the pruning instances is maintained. This is later used in order

to perform weighted classification using the number of times the CAR was

selected in the pruning phase. Using the proposed approach only high quality

rules with high confidence values are kept. High quality rules are the non

noisy rules which do not make mistakes on the pruning set. Figure 3.1 shows

an example of two stage pruning process on the Iris dataset. The first block

in the figure shows all the rules obtained from the rule generation phase. All

the rules highlighted in red, are the ones that are pruned in the first stage of

pruning itself for being noisy and meaningless. Further the rules highlighted

in orange, are the ones that are pruned in the second stage of pruning, for

not being globally optimal. Finally, after pruning out all the noisy CARs, the

remaining rules are the high quality rules, that are highlighted in the green

color and are further used in the classification phase. This pruning strategy

also avoids over-fitting on the data.

33

sification as proposed by Antonie et al. in [3], to learn with a neural network

in a second phase to predict the the classification rules to use.

3.2 Experimental Results

We evaluate our SigD2 associative classifier on 15 UCI datasets [20]. We dis-

cretize the datasets as proposed in [13], so the classification accuracy might be

marginally different from the previously reported results. We report the re-

sults after performing the average over 10 fold cross validation on each dataset.

We use 90% of the total data as the train set and further divide the train set

into train set and prune set in the ratio of 2:1.

3.2.1 Classification Accuracy

We compare the performance of the proposed classifiers on 15 UCI datasets,

with other rule-based classifiers like CBA, CMAR, CPAR, RIPPER, C4.5

and the original SigDirect, in terms of classification accuracy and number

of classification rules in the final model. We also compare performance of

SigD2 with SVM. We use the default parameters as stated by the authors in

original respective papers for most of the contenders. In CBA and CMAR the

parameters are tuned such that the minimum confidence values is set to be

50% , minimum value of support is set as 1%, the maximum number of CARs

are limited to 80,000 and the size of number of antecedent items are limited

to 6. In CPAR, the minimum gain threshold is set to 0.7, decay factor to 2/3

while the threshold for the total weight is set to be 0.05. For RIPPER[15],

we use default JRip from WEKA [35]. The default parameters as stated in

the respective papers, are used for SVM [16] and SigDirect[39]. For C4.5, the

confidence factor (CF) was set to the default value of 25% and the minimum

number of split off cases set equal to 2 [45]. For SigD2, we have performed a

sensitivity analysis on the confidence threshold and it was found that threshold

35

value lower than 30% or higher than 50%, does not lead to best results for all

the considered datasets. Hence, we chose to vary the confidence threshold in

the range of 30-50% depending on the dataset.

Table 3.1 shows that SigD2 performs quite well as compared to other rule-

based and associative classifiers. The average performance over 15 datasets

of SigD2 is better than all the other rule-based classifiers. Although, the dif-

ference between SigDirect and SigD2 on the basis of classification accuracy is

marginal, when we compare the number of rules, we show that SigD2 outper-

forms SigDirect. In order to have a fair comparison, among different algorithms

on various datasets, we analyse how many times did an algorithm win and how

many times it was a runner up as shown in Table 3.3. The proposed prun-

ing strategy is found to give quite promising results as compared to the other

rule-based and associative classifiers. SigD2 outperforms RIPPER on 10 out

of 15 datasets. SigDirect also outperforms SVM for most of the considered

datasets. Please note that, we would also compare SigD2 with classifiers other

than associative and rule based classifier like ANN and DNN later in Section

5.1.2.

3.2.2 Number of Rules

The main advantage of the associative classifiers over the other machine learn-

ing supervised classifiers is its ability to build a model which is human readable.

Noisy, redundant and uninteresting rules lead to longer classification time, re-

duce the performance of the classifier and also make it tedious for humans to

analyse the model. Ideally, we want to achieve maximum accuracy with a min-

imum possible set of rules. Table 3.2 shows the comparison among different

classifiers on the basis of number of rules generated. The two stage pruning

technique is found to give a minimum number of rules without compromising

the classification performance. Table 3.4 clearly shows that out of 15 datasets,

36

on average SigD2 outperforms most of the other rule-based and associative

classifiers for at least 10 datasets with some ties in few cases as well.

SigD2 gets a smaller number of rules on 9 datasets when compared with

CBA. Although, CBA is found to have less rules for some datasets, it is unable

to provide a high accuracy in such cases. Our proposed strategy outperforms

CMAR on all datasets, the original SigDirect on all but one dataset and CPAR,

C4.5 on 8 datasets. The number of rules is found to be appropriate enough to

provide information about the classification model without compromising on

the performance. In Table 3.2, we take the difference of the average of number

of rules over all the other classifiers and the proposed classifier in the last col-

umn. It is found that the difference is substantial which essentially shows the

significance of the proposed pruning strategy. We also compute the percentage

decrease of the number of rules on average in Table 3.2. Furthermore, SigD2

is found to outperform RIPPER in terms of accuracy for most of the datasets,

however, RIPPER obtains less rules comparatively. This is majorly because

RIPPER greedily modifies the generated rules using the Minimum Discription

Length MDL principle. RIPPER produces a kind of superset of rules cover-

ing all information required for classification in the form of intervals. This

indicates that there is potential for further improvements.

3.2.3 Statistical Analysis

For better understanding the performance over various datasets, we use Dem-

sar’s method [18] to perform statistical tests in order to compare different

algorithms over different datasets. We perform non parametric Friedman’s

test for comparing the contenders with the proposed approaches. Friedman’s

test is generally used to compare more than two samples that are related.

The default assumption is that the samples have the same distribution. The

assumption is rejected if the probability of observing the data samples given

37

the base assumption(p-value) exceeds the significance threshold value (alpha).

The Friedman’s test is said to give significant results when the p-value is less

than alpha. After analysis of Friedman’s test with algorithms in Table 1, we

obtained a p-value which is less than alpha (=0.05), which shows that at least

one of the samples is significantly different from other samples. Hence, the

results are found to be statistically significant.

Furthermore, we also perform Wilcoxon’s signed-ranks test which is an-

other non-parametric statistical hypothesis test to compare the performances

of proposed algorithms and the contenders in a pairwise manner. In this test,

initially the differences in the results obtained from the considered pair of al-

gorithms is evaluated for all the datasets to calculate the absolute differences

and further to sign each rank. For all the cases where tie in ranks occurs,

the average rank is calculated. All the cases with the difference value of zero

are ignored. If the original difference is positive then the rank remains posi-

tive, however, if the difference is found to be less than zero, then the rank is

multiplied by -1. Further, the sum of positive and negative ranks are used to

calculate the z-score values as defined in [18]. With the z-score value smaller

than -1.96, the corresponding p-value is less than 0.05 which leads to the re-

jection of the null hypothesis. The results in Table 3.4 show that, SigD2 is

significantly better than C4.5, CBA, CMAR, CPAR and SVM. However, the

performance when compared with the original SigDirect seems to be quite

similar and the p-value comes out to be greater than 0.05. We assume that,

although there might not be difference in terms of classification accuracy, how-

ever, the new pruning strategy of SigD2 is more substantial and promising as

it has reduced the number of rules to a small number as compared to the

original SigDirect. SigD2’s performance is found to be as good as RIPPER,

however, with more wins and a p-value of 0.07.

38

T
ab

le
3.
1:

C
om

p
ar
is
on

of
cl
as
si
fi
ca
ti
on

ac
cu
ra
cy

of
S
ig
D
2
w
it
h
ot
h
er

as
so
ci
at
io
n
an

d
ru
le
-b
as
ed

cl
as
si
fi
er
s
an

d
S
V
M

D
a
ta

se
ts

#
c
ls

#
r
e
c

C
4
.5

C
B
A

C
M

A
R

C
P
A
R

R
IP

P
E
R

S
V
M

S
ig
D
ir
e
c
t

S
ig
D
2

A
d
u
lt

2
4
8
8
4
2

7
8
.8

8
4
.2

8
1
.3

7
7
.3

8
4
.1

7
5
.8

8
4
.1

8
3
.5
9

A
n
n
ea

l
6

8
9
8

7
6
.7

9
4
.5

9
0
.7

9
5
.1

9
8
.3
2

8
5

9
6
.9
9

9
7
.2
1

B
re
a
st

2
6
9
9

9
1
.5

9
4
.1

8
9
.9

9
3

9
5
.4
2

9
5
.7

9
1
.7

9
2
.7

F
la
re

9
1
3
8
9

8
2
.1

8
4
.2

8
4
.3

6
3
.9

7
2
.1
3

7
3
.8

8
4
.2
3

8
4
.3

G
la
ss

7
2
1
4

6
5
.9

6
8
.4

7
1
.1

6
4
.9

6
8
.6
9

6
8
.6

7
0
.5
6

6
9
.1
7

H
ea

rt
5

3
0
3

6
1
.5

5
7
.8

5
6
.2

5
3
.8

5
3
.9
7

5
5
.4

5
8
.4
9

5
9
.8
1

H
ep

a
ti
ti
s

2
1
5
5

8
4
.1

4
2
.2

7
9
.6

7
5
.5

7
8
.0
6

7
9
.3

8
5
.8
3

8
6

H
o
rs
e

2
3
6
8

7
0
.9

7
8
.8

8
2
.3

8
1
.2

8
4
.2
3

7
2
.5

8
1
.2
3

8
5
.0
3

Ir
is

3
1
5
0

9
1
.3

9
3
.3

9
4

9
4
.7

9
5
.3
3

9
4
.6

9
4

9
6

L
ed

7
1
0

3
2
0
0

7
3
.9

7
3
.1

7
3
.2

7
1
.3

6
9
.1
5

7
3
.6

7
3
.7
8

7
3
.8
1

M
u
sh

ro
o
m

2
8
1
2
4

9
2
.5

4
6
.5

1
0
0

9
8
.5

1
0
0

9
9
.8

1
0
0

1
0
0

P
a
g
eB

lo
ck

s
5

5
4
7
3

9
2

9
0
.9

9
0
.1

9
2
.5

9
6
.8
3

9
1
.2

9
1
.2
1

9
2
.1
8

P
im

a
2

7
6
8

7
0
.5

7
4
.6

7
4
.4

7
4

6
6
.3
6

7
4

7
5
.2
5

7
4
.8
6

W
in
e

3
1
7
8

7
1
.7

4
9
.6

9
2
.7

8
8
.2

9
1
.5
7

9
4
.9

9
2
.7
1

9
3
.2

Z
o
o

7
1
0
1

9
1

4
0
.7

9
3

9
4
.1

8
7
.1
2

9
2
.2

9
1

8
9
.1
8

A
v
er
a
g
e

7
9
.6
2

7
1
.5
2

8
3
.5
2

8
1
.2

8
2
.7
5

8
1
.7
6

8
4
.7
3

8
5
.1
3

N
ot
e-

#
cl
s
in
d
ic
at
es

n
u
m
b
er

of
cl
as
s
la
b
el
s
an

d
#
re
c
in
d
ic
at
e
th
e
n
u
m
b
er

of
re
co
rd
s
in

d
at
as
et
.

39

Table 3.2: SigD2 compared with other algorithms on the basis of number of
rules
Datasets C4.5 CBA CMAR CPAR SigDirect SigD2 Difference with

Average # of
rules

Adult 1176.5 691.8 2982.5 84.6 91.2 53.62 951.7 (94.67%)
Anneal 17 27.3 208.4 25.2 41.7 29.2 34.72 (54.31%)
Breast 8.8 13.5 69.4 6 10.9 7 14.72 (67.65%)
Flare 54.4 115.1 347.1 48.1 75.8 25.7 102.4 (79.93%)
Glass 14.8 63.7 274.5 34.8 55.6 23.1 65.58 (73.9%)
Heart 23.9 78.4 464.2 44 80.2 27.7 110.44 (77.3%)
Hepatitis 8.1 2.3 165.7 14.3 33.3 16 28.74 (64.23%)
Horse 25.6 116.4 499.9 19 90.4 41.5 108.76 (72.38%)
Iris 8.4 12.3 63.4 7.4 6.2 4.8 14.74 (75.43%)
Led7 63.2 71.2 206.3 31.7 104.3 54.4 40.94 (42.94%)
Mushroom 121.2 2 102.6 11.1 106.4 48.9 19.76 (28.77%)
PageBlocks 16.3 7.6 80.6 29.9 31.1 13.2 19.9 (60.12%)
Pima 24.4 43.2 203.3 21.7 36.6 11.3 54.54 (82.83%)
Wine 12.8 4.7 122.7 15.2 29.3 16.3 20.64 (55.87%)
Zoo 5.3 2 35 16.9 16.2 9 6.08 (40.31%)

Table 3.3: Best and runner-up counts comparison from Table 3.1 basis of
classification accuracy

Classifiers Best Runner-up
C4.5 2 0

RIPPER 3 4
SVM 2 0
CBA 1 0

CMAR 3 1
CPAR 1 2

SigDirect 2 4
SigD2 5 5

Table 3.4: Statistical analysis of results obtained in Table 3.1

Classifiers Wins Losses Ties p-value
SigD2 vs C4.5* 12 3 0 0.005

SigD2 vs RIPPER 10 4 1 0.074
SigD2 vs CBA* 13 2 0 0.005

SigD2 vs CMAR* 11 2 2 0.033
SigD2 vs CPAR* 12 3 0 0.008
SigD2 vs SigDirect 10 4 1 0.272
SigD2 vs SVM* 12 3 0 0.041

(*) indicates statistically significant results with a p-value of 0.05.

40

Chapter 4

Bi-Level Associative Classifier

using Automatic Learning on

Rules

In this section, we introduce the details about the proposed Bi-Level classifica-

tion technique. We initially describe Method 1, which is the baseline technique

of developing a two level classifier by using the Apriori algorithm for building

the ARC model in the first level. However, this technique was found to suf-

fer limitations with regard to selecting the optimum support and confidence

threshold values for different datasets. Therefore, we extended our baseline to

include the approach proposed by Li et al. [39] in Method 2. In our proposed

method we use statistically significant CARs to obtain rule features that are

used in the second stage of learning.

4.1 Methodology

4.1.1 Method 1

The aim of associative classification is to find knowledge from data in the form

of association rules associating features and class labels. During inference one

or a set of rules are selected and used to predict the class label. This selection

is typically based on heuristics for ranking rules.

Using the proposed approach of two stage classification in [3], we have im-

41

plemented the same technique for building a model which would learn to select

and use the discovered rules automatically rather than relying on heuristics

to select them. The Figure 4.1 shows the flowchart illustration of Method

1. In brief, the first stage is to learn an associative classifier and the second

stage is to extract features from the learned rules to learn a second predic-

tor predicting which rule is best to use during inference. The initial training

dataset is split into two parts, one used to derive rules with association rule

mining and the second part to extract features for the second training level.

These two sets are disjoint in order to avoid overfitting. On the TrainSet 1,

the first stage of learning is performed. Here, our algorithm uses a constrained

form of Apriori[1] to perform association rule mining to obtain a set of rules

that have features on the left and class labels on the right side of the rule

and that are above the minimum threshold values for support and confidence.

This ARC Model is used to collect a set of features from the samples present

in TrainSet 2. As proposed in by Antonie et al. in [3], we have used two

approaches namely, the class based (2SARC1) and the rules based (2SARC2)

feature extraction , to get the set of features and class labels from the ARC

model.

Class Based Features

For the class based feature extraction technique, we derive rules from TrainSet

1 and we match the features from our TrainSet 2 with the antecedents of the

rules in the ARC Model. A rule is said to be applicable to a new instance

of TrainSet2 if the antecedent of the rule is a subset of the features of the

instance. Using the set of rules that apply to the instances in TrainSet 2, we

count the number of rules that match for each class. Using this approach we

derive a transformed feature set as shown in Table 4.1, where we state the

average confidence and the count of all the matching rules for an example of

42

three given class labels. This dataset of class-based features is given to the

next level of learning in order to train a classification model that selects rules.

Table 4.1: Example for transformed set of features in Class based
Class1 Class2 Class3

Avg Conf #Rules Avg Conf #Rules Avg Conf #Rules
85 1 81.6 3 80 2

Table 4.2: Example for transformed set of features in Rule based
R1 R2 R3

Conf Sup Match Conf Sup Match Conf Sup Match
80 10 0 90 10 1 85 15 1

Rule Based Features

For the rule based approach, we use the characteristics of the rules derived

from TrainSet 1 to create a new feature space. For each instance in the dataset

TrainSet 2, we check if each of the rules in the ARC model apply or not, that is

we match the features from the sample with the antecedents of the rule. This

feature is denoted by a boolean value 1 to represent a match, 0 for absent.

Along with this, information of support and confidence is added as features in

the new set. An example is shown in Table 4.2, where one row in the dataset

is taken and a new feature is generated for 3 rules of the ARC Model.

The features derived using the ARC model are further given as a training

input to the next level, consisting of the classifier, which learns how to use the

rules in the prediction process. In the second level, machine learning based

classifiers like Neural network (NN) and Support Vector Machine(SVM) or

rule based classifier like RIPPER, are used to automatically learn on rules to

determine the weighting scheme for classification and obtain the final model.

For testing, we use the ARC model to derive the set of features for the

Test dataset. Further, these features are given to the trained model of Neural

network, SVM or RIPPER to classify the new samples. The ARC model and

43

Algorithm 2: Algorithm for BiLevCSS

Data: Train Dataset: Initial training dataset. Test Dataset: Initial
testing dataset. TransformedTestSet: Testing dataset for
classification model. TrainSet1: Training set used to build the
ARC Model. TrainSet2: Training set used to build features using
the ARC model and train the classication model.

Result: Predict class label of each instance in TestSet.
1 Use TrainSet1 to generate all statistically significant CARs A →ck. ;

. Follow the Algorithm 1 and 2 in [39]

2 classLabelsSet ←− Unique set of class labels in dataset
3 ARC Model = { CARs A →ck | ck ∈ classLabelSet}
4 for each instance T in TrainSet2 do

5 NewFeature=[]
6 for each rule R in ARC model do
7 match(T, R) ; . Determine if instance T matched the

antecedent of rule R.

8 if match(T, R)==True then

9 NewFeature.append(Conf(R), Support(R), log(P-value(R)),
1);

10 else

11 NewFeature.append(Conf(R), Support(R), log(P-value(R)),
0);

12 end

13 end

14 TransformedTrainSet.append(NewFeature);

15 end

16 Train a supervised learning model using TransformedTrainSet dataset
for classification.

17 Repeat steps 4 to 15, to extract features from Test Dataset using ARC
model to build TransformedTestSet for second stage of learning.

18 Derive the accuracy of the classification model using the Test dataset.

used to extract the transformed feature set from the TrainSet 2. We used rule-

based approach as described in Method 1 to extract features for this classifier

as well. This is because the rule-based features in Method 1 showed better

results than class-based features, as will be discussed in Section 4.2.

As proposed in [39], initially, all the impossible items are removed. An item

is termed as impossible to appear in a statistically significant CAR if it has

support value below γ|T |, where γ ≤ 0.5 and T is the transaction database.

45

Figure 4.2: Flowchart Illustration for training and testing phases of BiLevCSS

These items are removed and thereafter all the left over items are sorted in

the ascending order of their support values. Further the tree is enumerated to

generate class association rules and only those with one antecedent are listed.

These rules are then checked for their PSS value (Definition 3 described in

Section 3.1.1). Rules that do not satisfy either of the PSS conditions are

pruned and the other rules are checked for statistical significance. From PSS

1-itemset rules, PSS 2-itemset rules are generated considering the property

that if a rule is PSS, then its parent rule will also be PSS, i.e. if CAR A

→ck is PSS, then any of its parent rule B →ck is also PSS, where B (A

and |B| = |A| − 1. The process repeats until no PSS rules are generated at

a certain level. Also, if a rule is marked as minimal, the expansion from this

rule is stopped because all of its children rules can not get a lower p-value.

The number of rules generated by the above approach may be large and

might contain some unnecessary rules as well. In order to make the classifi-

cation efficient and to obtain globally best rules from the training dataset, we

use the proposed instance-centric rule pruning approach [39]. These pruned

rules form the ARC model for this method. It should be noted here that,

we only use instance based pruning strategy instead of two-level pruning ap-

46

proach proposed in the previous chapter. This is because the latter was found

to reduce the number of rules by a large number. This does not suffice the

requirement of BiLevCSS as it requires more rules to generate more data for

machine learning classifier in the stage2.

We further apply the rule based approach to extract the features for the

TrainSet 2 using this ARC model. An example for rule-based feature extrac-

tion for Method 2 is shown in Table 4.3 with just two rules. For each sample in

TrainSet 2, we take the boolean value representing whether the rule matches

the sample or not. Along with this, we take the characteristics of the rule as

features in the transformed feature set. These include support value of the

rule, its confidence and the log of the p-value. The lower the p-value, the

better the rule, and summing up the p-value is not a suitable heuristic for a

set of rules. Hence, we take the log value of p-value in order to generalize

the process for rule-based and class based feature extraction. The features are

extracted for each row in the testing dataset using the ARC model and the

learnt classification model predicts the class label for each data point.

Table 4.3: Example for Transformed Set of Features for Method 2
R1 R2

Conf Sup ln(p-value) Match Conf Sup ln(p-value) Match
80 10 -10.6 0 90 10 -5.1 1

We also evaluate the BiLevCSS with SigDirect associative classifier in the

second level. However, SigDirect is found to have a limitation of not being

able to work well with very high dimensional datasets. For some datasets

when using BiLevCSS, the features extracted for the second phase are found

to have a large dimensionality due to a sizeable number of generated rules.

This greatly increases the runtime of the SigDirect algorithm when used in

the second phase. Therefore, we do not report the results of SigDirect as a

predictor in the second stage.

47

4.2 Experimental Results

We have evaluated our algorithm on 10 UCI datasets to compare the classifi-

cation accuracy with other rule based and machine learning based algorithms

that exist in the literature. We report the average of the results obtained

for every dataset on the 10 fold cross validation in our experiments. We com-

pare the performance with common machine learning techniques like SVM and

Neural networks, rule-based classifiers like C4.5 and RIPPER and previously

proposed associative classifiers like CBA, CMAR and CPAR. We also com-

pare our baseline approaches 2SARC1 (NN) [3], 2SARC2 (NN) [3], 2SARC1

(SVM), 2SARC2 (SVM), 2SARC1 (RIPPER) and 2SARC2 (RIPPER) with

these classifiers.

Table 4.4: Comparison of classification accuracy using Rule-based and Class-
based Features extraction in Method 1
Datasets #cls #rec 2SARC2

(NN)
2SARC2
(SVM)

2SARC2
(RIPPER)

2SARC1
(NN)

2SARC1
(SVM)

2SARC1
(RIPPER)

Iris 3 150 93.74 89.74 94.28 94.11 89.3 90.94
Glass 7 214 48.9 52.2 69.17 50 52.2 51.74
Heart 5 303 63.5 54.34 54.95 62.34 57.14 54.02
Hepati 2 155 85 81.25 79.97 70 75 80.48
Pima 2 768 66.45 65.2 72.74 64.39 67.53 70.93
Flare 9 1389 74.5 70.58 84.35 74.39 70.6 83.96
Anneal 6 989 77 82 96.41 79.5 78.04 83.74
Horse 2 368 67.6 63.3 81.40 72.97 70.96 63.75
Breast 2 699 89.7 93 93.14 93.75 98.6 93.78
Wine 3 178 97.18 77.97 85.15 94.92 72.02 53.84

Average 76.35 72.95 81.15 75.63 73.13 72.71

4.2.1 Classification Accuracy

We compare our proposed model BiLevCSS with the above stated contenders

on the basis of classification accuracy. We evaluate the performance of BiLevCSS

model with three different classifiers in the second level; Neural Network at

the second stage (regarded as BiLevCSS (NN)), RIPPER in the second stage

(regarded as BiLevCSS (RIPPER)) and SVM in the second stage (regarded

as BiLevCSS (SVM)).

48

We follow the default parameter values for SVM [16], C4.5[45], CBA[43],

CMAR[41], CPAR[53] as stated in the original papers. For RIPPER as a

standalone rule based classifier, we have used default parameters from Weka

[35] which are also stated to be the best by the authors in [15]. For vanilla

Neural Network, we use a single hidden layer with the number of nodes to be

the average of the number of input and output nodes and we also tune ReLU

or sigmoid activation functions with a learning rate of 0.1.

For our baseline Method 1, we perform experiments using Apriori [1] based

rule generation in the first level learning. Further, we test the accuracy of

the rule-based feature extraction approach to build the bi-level classifier with

Neural Network, SVM or RIPPER in the second stage. Similarly, we also

measure the accuracy, of the bi-level classifier, which uses class-based features.

For Apriori, we use a range of support values from 5% to 30% depending

on the size of the dataset. The threshold value for confidence is set around

50%. In Table 4.4, we report the accuracy obtained for the 10 UCI datasets

using our baseline approach. Along with the classification accuracy values, the

name of the dataset and the number of records have also been reported. As

can be seen from Table 4.4, the overall accuracy does not follow a pattern and

nothing conclusive could be derived from the results aforementioned. However,

the results from Method 1 showed that, for most of the UCI datasets, the rule-

based feature extraction approach is found to give altogether a better average

accuracy over the class-based feature extraction approach.

Therefore, in the second method, we adapt the rule-based feature extrac-

tion approach to build the bi-level classification model with statistically sig-

nificant rules. For the following experiments, we discretize the numerical at-

tributes of the datasets as stated in [13]. All the results reported in this section

have been performed on the same discretized dataset for fair comparison.

Moreover, as suggested by Li et al. in [39], we use the Fisher exact test to

49

analyse the statistical significance of the class association rules. The threshold

for p-value is set to be 0.05. The use of only statistically significant rules and

the addition of p-value value along with support and confidence as a feature in

the rule-based classification gives us much better results for Method 2 than the

baseline Method 1. For the second layer of both the methods, we use Neural

Network with single hidden layer, with ’ReLU’ or ’sigmoid’ as the activation

functions and a learning rate of 0.1. We also tune the hyper parameter values

of gamma, kernel and regularization parameters for the SVM classifier. We

have performed 5 fold internal cross validation for SVM and NN to tune their

respective hyper parameter values. For RIPPER at the second stage of learn-

ing, we use the default best parameters from Weka. It can be observed that,

in Table 4.5, the BiLevCSS model gives the best overall classification accuracy

for the considered datasets. Our algorithm BiLevCSS(NN) outperforms all

the other classification algorithms in the 10 UCI datasets with highest average

accuracy.

We further perform a comparison between BiLevCSS with Neural Network

at the second level against the vanilla Neural Network with 1 hidden layer,

to validate the efficiency of the model. The results show that the proposed

algorithm outperforms the vanilla NN. Similarly, BiLevCSS(SVM) was found

to outperform vanilla SVM and BiLevCSS(RIPPER) outperformed the vanilla

RIPPER algorithm. Figure 4.3 illustrates the comparison of results given by

the best model BiLevCSS(NN) with vanilla Neural Network.

The results shown in Table 4.5 highlight that the BiLevCSS model out-

performs other rule based and associative classifiers on comparison. Next, we

compared the three proposed strategies namely, BilevCSS (Ripper), BiLevCSS

(NN) and BiLevCSS (SVM) with SigDirect. The results of this comparison

are summarized graphically in Figure 4.4. The graph shows that BiLevCSS

(NN) performs better than the rest, which proves that, when meaningful,

50

Figure 4.3: Comparison of classification accuracy for BiLevCSS(NN) with
vanilla Neural Network, 2SARC1(NN) and 2SARC2(NN).

statistically significant and non-noisy rules are given to Neural Network, the

classification accuracy of the classifier improves. The results obtained from

BiLevCSS (Ripper) are motivating, however do not beat BiLevCSS (NN) in

performance. Therefore, in the future we aim to evaluate more explanatory

classification models in the second phase of learning, for a more explainable

model since Neural Networks are more of a black box compared to Ripper.

Figure 4.4: Comparison of classification accuracy for BiLevCSS(NN) with
BiLevCSS(RIPPER), BiLevCSS(SVM) and SigDirect.

51

4.2.2 Statistical Analysis

The accuracy values report that BiLevCSS performs better for most of the

datasets. To confirm this statement, we perform statistical analysis as shown

in Table 4.6. We follow Demsar’s study [18] and use Friedman’s test to compare

the statistical significance of the results obtained from the comparison of all the

algorithms on the basis of classification accuracy. Since the p-value obtained

from this test was less than the critical value (alpha) which is equal to 0.05,

it proves that the results are statistically significant and the algorithms are

significantly different from one another.

Furthermore, to investigate the statistical significant of the proposed al-

gorithm with other contenders pair-wise, we perform another non-parametric

test called Wilcoxon signed ranked test [18]. In this test, for every pair of

algorithm in consideration, the difference of their classification accuracy, Di

is calculated to analyse the ranks based on the absolute values of these differ-

ences, |Di|. Further, positive ranks R+
i and negative ranks R−

i are calculated

based on the original values of Di for two algorithms. Adding up all the values

of R+
i and R−

i , Wstat is calculated as min(
∑

R+
i ,

∑

R−
i) which gives us the

critical value Z. For alpha value equal to 0.05, the corresponding Z-value is

-1.96, therefore, the null hypothesis is rejected if the obtained critical value Z

is less than -1.96. Table 4.6 reports the p-values obtained by comparing the

most accurate model, BiLevCSS(NN) against other classifiers using Wilcoxon

test. We also compare the number of times the different algorithms win or

lose against BiLevCSS(NN) and if there is a tie between them. The p-values

obtained are less than 0.05 which show that BiLevCSS(NN) is statistically sig-

nificantly better than all the contenders. The results show that the proposed

BiLevCSS algorithm with Neural Network at the second stage of learning out-

performs the rest of the algorithms by winning in at least 8 out of 10 instances.

52

T
ab

le
4.
5:

C
om

p
ar
is
on

of
cl
as
si
fi
ca
ti
on

ac
cu
ra
cy

of
B
iL
ev
C
S
S
w
it
h
ot
h
er

st
at
e-
of
-t
h
e-
ar
t
cl
as
si
fi
er
s

D
a
ta

se
ts

B
il
e
v
C
S
S

(R
IP

P
E
R
)

B
il
e
v
C
S
S

(N
N
)

B
il
e
v
C
S
S

(S
V
M

)
R
IP

P
E
R

N
N

S
V
M

C
4
.5

C
B
A

C
M

A
R

C
P
A
R

Ir
is

9
5
.7
2

1
0
0

9
8
.6
6

9
4

9
8
.0
9

9
4
.6

9
4

9
4
.6
7

9
4

9
4
.7

g
la
ss

6
9
.2
7

8
6
.6
0

5
9
.5
2

6
8
.6
9

7
0
.1
4

6
8
.6

7
1
.4
7

7
3
.9

7
0
.1

7
4
.4

H
ea

rt
5
6
.5
1

7
8
.6
4

5
2
.8
4

5
3
.9
7

5
6
.7
2

5
5
.4

6
1
.5

5
7
.8

5
6
.2

5
3
.8

H
ep

a
ti

8
2
.5
7

8
4
.9
5

8
8
.4
1

7
8
.0
6

8
2
.8
9

7
9
.3

7
9
.2
5

8
1
.8
2

8
0
.5

7
9
.4

P
im

a
7
3
.6
4

8
1
.2
4

7
3
.2

6
6
.3
6

7
5
.9
5

7
4

7
3
.7

7
2
.9

7
5
.1

7
3
.8

F
la
re

8
4
.2
7

9
6
.1

8
3
.1

7
2
.1
3

8
4
.6
1

7
3
.8

8
2
.1

8
4
.2

8
4
.3

6
3
.9

A
n
n
ea

l
9
6
.9
3

9
6
.9
6

9
6
.2
5

9
5
.8

9
3
.9
6

8
5

8
9
.8
7

9
7
.9
1

9
7
.3

9
8
.4

H
o
rs
e

8
3
.3
4

8
7
.7
8

7
7
.2
7

8
4
.2
3

8
1
.3
2
1

7
2
.5

8
5
.0
4

8
2
.3
6

8
2
.6

8
4
.2

B
re
a
st

9
3
.0
5

9
4
.2
6

9
2
.8
0

9
5
.4
2

9
6
.8
3

9
5
.7

9
4
.7
1

9
6
.2
8

9
6
.4

9
6

W
in
e

8
9

9
4
.9
4

8
4
.2
0

9
1
.5
7

9
1
.6
6

9
4
.9

7
1
.7

4
9
.6

9
2
.7

8
8
.2

A
v
e
r
a
g
e

8
2
.4
3

9
0
.1
4

8
0
.6
2

8
0
.0
2

8
3
.2
1

7
9
.3
8

8
0
.3
3

7
9
.1
4

8
2
.9
2

8
0
.6
8

53

Table 4.6: BiLevCSS(NN) compared to the rest of the algorithms on 10 UCI
datasets

Classifiers Wins Losses Ties P-value
BiLevCSS(NN) vs BiLevCSS(SVM) 9 1 0 0.017

BiLevCSS(NN) vs RIPPER 9 1 0 0.007
BiLevCSS(NN) vs NN 9 1 0 0.013
BiLevCSS(NN) vs SVM 9 1 0 0.009

BiLevCSS(NN) vs 2SARC2(NN) 8 2 0 0.013
BiLevCSS(NN) vs 2SARC2(SVM) 10 0 0 0.005

BiLevCSS(NN) vs 2SARC2(RIPPER) 10 0 0 0.005
BiLevCSS(NN) vs 2SARC1(NN) 10 0 0 0.005
BiLevCSS(NN) vs 2SARC1(SVM) 9 1 0 0.007

BiLevCSS(NN) vs 2SARC1(RIPPER) 10 0 0 0.005
BiLevCSS(NN) vs BiLevCSS(RIPPER) 10 0 0 0.05

BiLevCSS(NN) vs C4.5 9 1 0 0.007
BiLevCSS(NN) vs CBA 8 2 0 0.013
BiLevCSS(NN) vs CPAR 8 2 0 0.013
BiLevCSS(NN) vs CMAR 8 2 0 0.013

54

Chapter 5

Ensemble Learning on the

Associative Classifiers

In this section, we introduce the ensemble learning on the associative classifiers.

Initially we describe the basic approach of bagging and boosting on wSigDirect

and perform experiments to evaluate it. Further we introduce a novel Diverse

SubSpace For Ensemble (DSAFE) approach to form a more efficient ensemble

model with SigD2. Finally, we evaluate our approach and compare with other

classifiers using the UCI datasets.

5.1 Bagging and Boosting on wSigDirect

5.1.1 Methodology

We perform bagging and boosting on the weak version of SigDirect, we call

wSigDirect. While SigDirect is already a strong learner, we chose it over CBA

as it gives a smaller number of rules. But we need to make it weaker to be

used for ACbag and ACboost. We do this by further reducing the number

of rules to be used for classification. The strategy for rule generation and

rule pruning stays similar to that of the original SigDirect. However, for all

the association rules obtained from the pruning phase for classification, we

divide these rules as per the class label. Further, we chose the top η rules

on the basis of highest confidence values from each class label group. The

55

classification model thus obtained is called weak as it does not involve all the

significant rules. We perform bagging and boosting on the ensemble model of

wSigDirect over different trained datasets for prediction.

Bagging:

ACbag is motivated by the approach proposed in [8]. The weak classifiers are

learnt in parallel by picking instances randomly with replacement from the

training data. Each wSigDirect model is learnt independent of each other. In

bootstrap sampling, every observation has equal probability of appearing in the

training dataset. Finally, we perform a majority voting over the results of the

weak learners and predict the class label for each testing sample. The complete

process has been shown in Figure 5.1. This approach helps in avoiding the

problem of overfitting. Since, the base models are explainable, the ACbag can

explain the responses of each learner, and the explanation of the ensemble

would be the set of rules that were voted on by the ensemble. Furthermore, it

was observed that the results obtained after performing bagging on wSigDirect

are very comparable or slightly better than those achieved by bagging on the

original SigDirect. Therefore, later in Section 5.1.2, we report the results of

bagging on wSigDirect.

Boosting:

Boosting is a process of improving the performance of a weak learning algo-

rithm. It is done under the assumption that, the performance of the weak

learner is at least slightly better than random guessing on different observa-

tions. In this phase, we propose ACboost, which iteratively calls wSigDirect.

This weak learner is converted to a strong learner either by weighted average of

the predictions from weak learners or by considering prediction with majority

voting. Given a training set, with features and class labels, we initialize the

56

Figure 5.1: Bagging on wSigDirect

weights of our samples as one divided by the number of training instances. For

the number of weak learners to be used sequentially, we train the first base

learner using wSigDirect and obtain the misclassification error of the model.

Further, the weight of the classifier is calculated based on its performance on

the training data. Finally, the weight of each sample is updated, such that

samples that were correctly classified are given less weights whereas the sam-

ples which were incorrectly predicted are given more weights. This would force

the learner to pay more attention towards the incorrect predictions done by

the previous learner. The iteration is continued till the maximum number of

estimators (pre-set number of weak learners) are reached or a low training

error is achieved. Finally, the prediction is done by using the weights of each

classifier calculated previously to perform weighted prediction. This sequen-

tial learning of models helps in reducing the training error. Figure 5.2, shows

the visual illustration of the followed process. We have used the methodology

proposed for multi-class classification in SAMME algorithm [31], an extension

of adaboost, which adds up a log term to the weight of the classifier making

the boosting algorithm applicable for both two-class and multi-class classifi-

57

output nodes. The architecture may vary slightly with dataset, but we use

ReLU (Rectified Linear Units) or sigmoid functions for activation and around

200 training epochs with a learning rate of 0.1. For ACboost and ACbag,

the value of η is tuned in the range of 5-15 for every dataset. The number

of estimators are varied in the range of 15-100 for each fold in every dataset

and we report the best results. The value for parameters η and the number

of estimators have been concluded after performing a sensitivity analysis on

each of them.

Table 5.1 shows that ACboost outperforms all the classifiers including

SigDirect, SigD2, ANN and SVM. Further, the performance of ACbag is bet-

ter than SVM on 12 datasets with 3 loses, out of 15 datasets. However, in

comparison with ANN, the ACbag wins 9 times with 1 tie out of 15 datasets.

We have also tried to compare our approach with deep neural network (DNN)

with 5 hidden layers. ACboost was found to perform better than DNN in 10

with 1 tie out of 15 datasets. However, since most of the considered datasets

are not big enough to be used for DNN, the results might not be conclusive.

Here we have also compared SigD2 with ANN and DNN and they are found to

be at par with 7 wins and 7 loses with each of them on the basis of classifica-

tion accuracy. This shows that associative classifiers can be quite competitive

with the neural networks.

Number of Rules

As described in Section 3.2.2, SigD2 is found to obtain less number of rules for

classification as compared to other state-of-the-art machine learning classifiers.

On the similar lines, ACboost is said to be explainable as the base model called

wSigDirect produces meaningful and readable rules. This leaves a room for the

interpretability of the ensemble classification model. The ensemble model helps

in determining the attributes which are of most indicative to determine a class.

59

Table 5.1: Comparison of classification accuracy of ACboost with ACbag,
SigD2, SigDirect, ANN and SVM
Datasets SVM ANN DNN SigDirect SigD2 ACbag ACboost
Adult 75.8 75.66 85.35 84.1 83.59 84.74 85.23
Anneal 85 93.964 97.6 96.99 97.21 97.43 97.31
Breast 95.7 96.83 96.48 91.7 92.7 93.86 92.62
Flare 73.8 84.61 70.3 84.23 84.3 84.31 85.35
Glass 68.6 70.148 66.9 70.56 69.17 72.01 76.96
Heart 55.4 56.72 55.6 58.49 59.81 61.33 63.74
Hepatitis 79.3 82.89 83.07 85.83 86 85.18 90.89
Horse 72.5 81.321 80.9 81.23 85.03 85.3 85.7
Iris 94.6 98.09 95.8 94 96 94.66 97.33
Led7 73.6 69.64 68.63 73.78 73.81 74.84 75.21
Mushroom 99.8 100 100 100 100 100 100
PageBlocks 91.2 95.42 95.08 91.21 92.18 91.24 92.13
Pima 74 75.95 75.15 75.25 74.86 75.53 75.55
Wine 94.9 91.662 97.62 92.71 93.2 94.04 98.85
Zoo 92.2 93.192 89.94 91 89.18 94.28 98.9

Average 81.76 84.406 83.89 84.738 85.136 85.91 87.71

Table 5.2: Best and runner-up counts comparison from Table 5.1 on the basis
of classification accuracy

Classifiers Best Runner-up
SVM 0 1
ANN 4 1
DNN 3 2

SigDirect 1 0
SigD2 1 2

ACboost 9 3
ACbag 1 6

Consider the example of mushroom dataset, the rule produced will be in the

format -: (habitat = leaves) and (cap-color = white) → (class = poisonous),

where feature name ’habitat’ has value ’leaves’ and feature name ’cap-color’

has value equal to ’white’. This rule along with other similar rules can be

further used in the classification phase to determine whether a mushroom

is poisonous or not. Similarly for ACbag, the readable rules from the base

classifiers can help in interpreting the results.

Statistical Analysis

In order to better evaluate the performance of proposed strategy with different

algorithms over various datasets, we use Demsar’s method [18]. The Demsar’s

method has been explained previously in section 3.2.3 as well. Firstly, we

have performed Friedman’s test to evaluate whether more than two samples

60

Table 5.3: Statistical analysis of Table 5.1

Classifiers Wins Losses Ties p-value

SigD2 vs ANN 7 7 1 0.510
SigD2 vs DNN 7 7 1 0.510

ACbag vs SigD2* 11 3 1 0.064
ACbag vs SVM* 12 3 0 0.005
ACbag vs ANN 9 5 1 0.140
ACbag vs DNN 8 6 1 0.140

ACboost vs SigD2* 12 2 1 0.002
ACboost vs SVM* 14 1 0 0.002
ACboost vs ANN* 10 4 1 0.016
ACboost vs DNN* 10 4 1 0.022

(*) indicates statistically significant results with a p-value of 0.05.

that are related. We obtained a p-value which is less than alpha (=0.05),

for the algorithms mentioned in Table 5.2. This proves that the results are

statistically significant and at least one of the samples is significantly different

from other samples. Second, we have also performed Wilcoxon’s signed-ranks

test to evaluate the performances of proposed algorithms and the contenders

in pairs.

The results in Table 5.3 show that, the results obtained from ACboost are

found to be statistically significant than those of SigD2, ANN, DNN and SVM

as p-value is less than the significance level of 0.05. Moreover, ACbag although

performs better than SVM and SigD2, it has a comparable performance if

not better than ANN, as the p-value is greater than 0.05. Thus, the results

obtained in this section highlight the significance of the explainable models

over the ones that are hard to interpret (ANN, DNN & SVM). Therefore, it

can be concluded that SigD2 and ACboost are almost at par with other strong

learners like neural network in terms of classification accuracy along with its

ability to be interpreted using a limited number of rules.

61

gregated in the end to obtain the prediction accuracy. Although such a model

helps in preventing bias, however suffers limitation of setting up the parameter

for number of estimators (η) to be present in the ensemble for classification.

Even with the pre-defined number of estimators, the ensemble doesn’t ensure

the coverage of the complete dataset, and enough diversity among each of the

sub-feature sample space. Infact, there might be some overlap between each

of the feature sub-spaces which goes neglected, as there is no measure of how

large or small it should be. The CSARS algorithm proposed by Cao over-

comes some of these limitations, but calculates the overlap among the whole

sub-dataset with in a certain subspace formed using bootstrap sampling. Also,

there is scope of making the search of feature subspace more faster and efficient

for large datasets.

We believe that, further careful selection of feature subsets can lead to

better prediction performance both in terms of accuracy and speed. Also, we

intend to use the DSAFE algorithm over the ensemble of SigD2.

Therefore, for a given large dimensional dataset, we split the data in a

parallel manner, by randomly generating diverse feature subsets as described

in Algorithm 4. DSAFE algorithm helps in overcoming the need of setting up

the number of estimators to be given as a hyper parameter. In the proposed

framework, space S randomly selects the sub features, based on the Rf (ratio

of feature subspace), to form a new subspace FSk, where k varies from 1 to

the number of possible estimators. As shown in Figure 5.3, each feature sub

space has a set of features selected randomly without internal repetition from

the total available feature space. However, the attributes can be repeated ex-

ternally in different sub-spaces. For the illustration purpose, only few features

have been shown in each sub space, however in reality, this can be extended

based on the required size of each sub space. Next, to determine whether the

generated feature subsample is diverse enough or not, we use the threshold

63

T over (Overlapping region threshold), whose value lies between 0 to 1 and

is given as a hyper-parameter to the algorithm. The overlap rate of the each

of the given feature subsample, can be determined using the equation given

below, where FSi and FSj are feature subspaces and Nfea is the size of feature

vector.

OverlapRate =
FSi ∩ FSj

Nfea

(5.1)

The hyper-parameter T over, is a crucial parameter deciding the perfor-

mance of the ensemble, if the value of T over is too small, then the number of

estimators produced would be too low, which kills the purpose of using the en-

semble model. While if the T over is too large then the feature subsets would

lack diversity. Further as shown in Algorithm 6, if the overlap rate is greater

than the overlapping threshold, then the feature subsample is not considered

to be diverse enough, and hence is not considered for classification. On the

other hand if the overlap rate is less than the overlapping threshold for all the

subsamples in DiverseFeatureSets then, we add the subsample to the list of

samples and is considered further for classification.

We find the overlap only between the each of the feature set in the sub-

space, meaning only the overlap of the attributes to be selected and not the

whole sub-dataset in a certain subspace.

Furthermore, in order to reduce the search space for feature subsamples,

in DSAFE, we introduce a novel method called FSGen for generation of each

subsample. As determined in Algorithm 5, given overlapping threshold T over

and length Nfea of subspace feature vector (say, FSk, where k is a variable)

determined using the ratio of the feature subspace, we randomly generate

attributes to be added to the feature subspace up to length equal to Nfea ∗

T over, after this until the length of Nfea is obtained, we take two samples at

a time and add them to the feature vector subset. The algorithm continues

to add two samples to the feature subset and keeps checking for diversity up

64

till the complete feature subset FSk is obtained. The motivation behind this

approach is that, if the feature subset constructed up till the current length

(which is greater Nfea ∗T over but less than Nfea), is not found to be diverse,

then the possibility of this feature vector being diverse on reaching the desired

size of Nfea is very low, so we stop the search here itself. We keep checking

for diversity every time we add two random attributes to our feature vector in

order to reduce the searching time.

Next, we also perform an experiment to explore if using bagging on each

sub dataset would help in classification process. So, we use the generated

feature subsamples and create a bootstrap sample dataset with replacement

FSn, based on the RS (Ratio of bootstrap sample).

Further as described in Algorithm 6 , we introduce sr as another hyper-

parameter called as the stagnation rate. Stagnation is said to occur, when

feature space has been covered completely by the generated feature subsam-

ples and no more diverse subsample of features can be created. This forms the

breaking condition of our algorithm. Till all the diverse sets are generated,

with maximum coverage on the given number of feature and while the stagna-

tion has not occurred, this process continues. Further as shown in Algorithm

3 after the stagnation occurs, all the generated diverse sets are given to SigD2

for classification. For each diverse feature subset FSk obtained from Algorithm

4, training sub-dataset FStrain
k is formed, and similarly for testing sub-dataset

FStest
k is generated. It is worth noting that the number of estimators for the

ensemble of SigDirect are determined automatically by the above explained

approach. Using the predictions from different estimators, we perform major-

ity voting on them to aggregate the results. In the end, classification accuracy

is determined using the results obtained from the majority of the models in

the ensemble of SigD2.

The rudimentary principle involved in the above proposed framework that

65

is the wisdom of crowds, helps in building a strong and efficient classifica-

tion model. Furthermore, we have also performed some experiments by using

bootstrap sampling while forming the sub-datasets after the sub feature set

has been defined.

Algorithm 3: Algorithm for DSAFE for SigDirect

Data: Train Dataset: Initial training dataset. Test Dataset: Initial
testing dataset. Rf: Ratio of the feature subspace. T over:
Threshold for the Overlapping region. sr: Stagnation Rate=100

Result: Predict class label of each instance in Test Dataset.
1 DiverseFeatureSets = GenerateDiverseFeatureSets(Train

Dataset,Rf,T over,sr);
2 for each feature subset FSk in DiverseFeatureSets do

3 A training sample FStrain
k is created from the Train Dataset over

feature subSpace FSk.
4 Create subsample FStest

k for TestSet using feature subspace FSk.
5 ARCModel = SigD2(FStrain

k)
6 Perform prediction on FStest

k using the association rules in
ARCModel

7 end

8 Generate the class label of each instance in Test Dataset by
performing majority voting on the set of predictions, to aggregate
the results from all the estimators.

66

Algorithm 4: Algorithm GenerateDiverseFeatureSets

Data: Train Dataset: Initial training dataset. Rf: Ratio of the feature
subspace. T over: Threshold for the Overlapping region. sr:
Stagnation Rate

Result: DiverseFeatureSets
1 change=0;
2 DiverseFeatureSets= {};
3 FTotal ←− Set of all features in the dataset.
4 while change<sr do

5 FSk = FS Gen(FTotal, RF, T over, DiverseFeatureSets) ;
. Generate a feature subset FSk, using Rf, the given

ratio of feature subspace.

6 if IsDiverse(FSk,DiverseFeatureSets, T over)==True then

7 Add FSk to DiverseFeatureSets ;
8 change = 0 ;

9 else

10 change+=1 ;
11 end

12 end

67

Algorithm 5: FSGen - Algorithm for Feature subset generation

Data: FTotal: Total feature space. Rf: Ratio of the feature subspace.
T over: Threshold for the Overlapping region.

Result: Returns FSk - a feature vector subset.
1 Nfea = len(FTotal) * Rf

; . Nfea is the desired length of the FSk feature subset.

2 FSk=[]
3 while len(FSk) != Nfea do

4 if len(FSk) < (Nfea ∗ T over) then

5 Randomly select a feature from the available feature space
FTotal and add it to the FSk feature subset.

6 else

7 Randomly select two features, Fi and Fj from FTotal.
8 Check if adding these two features to FSk would lead to a

diverse feature subset or not. ; . One can keep the

remaining feature values as dummy.

9 if IsDiverse(FSk, DiverseFeatureSets, T over)==True then

10 Append Fi and Fj it to the desired feature vector
11 else

12 return [] ; . This step is done to reduce the search

space, as it is not worth adding elements to the

feature subset which is not diverse enough after

the length of N fea ∗ T over have been

discovered.

13 end

14 end

15 end

5.2.2 Experiments

In this section, we evaluate the performance of the cost adaptive feature se-

lection for SigDirect, on 6 UCI datasets [20]. It should be noted that, among

these datasets a few are those on which, SigDirect either could not give reason-

able performance or faced time and memory issues. So, we test the proposed

DSAFE for SigD2 on them as well.

As discussed before, we discretize the datasets as proposed in [13], so the

classification accuracy might be marginally different from the previously re-

ported results. We report the results after performing the average over 10 fold

cross validation on each dataset. We use 90% of the total data as the train

68

Algorithm 6: Algorithm IsDiverse

Data: FSj: Feature subsample to be checked if diverse or not.
DiverseFeatureSets: Dictionary containing all the feature
subsets to be considered for classification. T over: Threshold for
the Overlapping region.

Result: Bool :- True or False
1 Nfea = length(FSj)
2 for each feature subset FSi in DiverseFeatureSets do

3

Overlap rate =
FSi ∩ FSj

Nfea

(5.2)

if Overlap rate > T over then

4 return False ; . This means that the overlapping rate

was greater than the threshold for at least one

feature subset in the DiverseFeatureSets, and hence

this should not be considered for classification

5 else

6 Continue
7 end

8 end

9 return True;

set and further divide the train set into train set and prune set in the ratio

of 2:1. The hyper-parameter, such as the ratio of feature subspace RF, has

been varied based on the size of the dataset. Due to the limitation of SigDi-

rect, for not being able to handle very large size of data, we extend it from

30% to 70% of the total feature size, while not extending maximum size of 25

attributes at a time. The maximum size has been concluded after performing

the sensitivity analysis based on the experiments done in the previous sections.

This is essentially done to obtain the maximum benefit out of the proposed

explainable classifier, while accounting the limitation of the associative classi-

fiers. Also, as described in previous section, we vary the confidence threshold

hyper-parameter value for the pruning stage of SigD2, in the range of 30-50%

selected after performing the sensitivity analysis.

Next, the overlapping region threshold defined as T over, is varied in the

69

range of [0.10, 0.80], the stagnation rate is set to 100 in the algorithm. For

this set of experiments, we conclude that the maximum of estimators are

100, we assume that a maximum of 100 estimators are reasonable enough

to conclude the prediction. In order to perform a fair comparison, we use

100 estimators while using random sampling approach for the selection of

feature subset for the ensemble of SigD2. Furthermore, we have explored two

approaches, one without bootstrapping the samples, i.e we only split using

feature selection strategy of DSAFE, without performing bootstrap sampling

over the number of samples, while for the other one we perform experiments

with feature selection and performing bootstrap sampling with replacements

on the samples used to form the sub-datasets corresponding to those feature

samples.

Table 5.4: Comparison of classification accuracy using different values of over-
lap rate threshold
T OVER IONOSPHERE CYLBANDS SOYABEAN ADULT MUSHROOM
0.1 88.05 84.63 69.07 78.5 98.19
0.2 89.16 79.42 67.78 79.3 95.91
0.3 89.72 81.88 62.77 79.2 97.6
0.4 91.11 87.1 68.88 79.3 97.78
0.5 91.66 90.44 78.7 82.76 100
0.6 92.58 87.31 83.83 81.07 99
0.7 93.05 91.3 82.59 81.52 98.73
0.8 91.94 84.6 83.7 80.75 98.67

Based on the results obtained from the considered UCI datasets and as

shown in the graph 5.6, we hypothesize that the proposed approach leads to

the best prediction performance, when T over is in the range of [0.5,0.7]. It

can be concluded that a very small value of T over would produce very less

number of estimators, while very large value of T over would lead to lack of

diversity among the large set of estimators produced.

Therefore, we use another UCI dataset, which is PenDigits, to evaluate its

classification performance in the given range. It was found that, we obtain

classification accuracy of 82.63%, which is greater than the original SigDirect.

70

Table 5.5: Description of Datasets

Dataset Name #Attributes #Instances #Class
Soyabean 35 307 19
Ionosphere 34 351 2
Cylbands 39 512 2
Mushroom 22 8124 2

Adult 14 48842 2
PenDigits 16 10992 10
Arrhythmia 279 452 16

Also, it is worth noting that the given approach is well scalable on the large

sized datasets such that the classification time has reduced a lot as compared

to the original SigDirect, which is not found to perform very well on the large

sized datasets in terms of runtime of the algorithm. We have also performed

a sanity check to confirm our claim that, all the features would be covered at

least once in the ensemble model. As described in Figure 5.5, it was found

that, if we perform early stop on our algorithm once all the features in Ftotal

are covered at least once, then the prediction performance is much less, hence

proving the efficacy of our proposed approach.

Table 5.6: Comparison of classification accuracy using Random Sampling vs
DSAFE for SigD2

Datasets Random Sampling DSAFE
Soyabean 87.75 91.3
Ionosphere 91.66 93.05
Cylbands 77.77 83.3
Mushroom 92.3 100
Adult 81.29 82.76

PenDigits 81.45 82.59

We further extend our approach and perform bootstrap sampling with re-

placement on FStrain
k on each FSk obtained fromGenerateDiverseFeatureSets

function. The results are as described in the Table 5.4. Next, we have also

compared our approach DSAFE with the original SigDirect, MLP , SigD2 us-

ing Random Sampling, DSAFE for SigD2 with Booststrap sampling. It was

found that, out of 6 datasets, there was 1 tie and 3 wins of DSAFE for SigD2

and 2 wins of MLP. The new sampling approach not only gives better accuracy

than SigD2 but is also faster in terms of run time.

71

used SMOTE [12] to increase the samples and balance the dataset. Next, we

apply our two classification models: SigD2 and DSAFE algorithm on SigD2

to perform the prediction task. The results as shown in Table 5.7 describes

Table 5.7: Comparison of classification accuracy using SigD2, DSAFE for
SigD2, RIPPER, SVM and MLP

Classifier Accuracy
SigD2 76.85
DSAFE for SigD2 84.52
Ripper 78.65
SVM 78.75
MLP 76.88

that our proposed strategies are quite competitive with the state-of-the-art

classifiers. DSAFE for SigD2 gives 84.52% classification accuracy which the

best among all the contenders. Promising results have proved that, associa-

tive classification is highly competitive with the deep learning models and also

provides explanation of the obtained results at the same time. Association

based classification models find their immense usage in medical applications.

Note - Based on the community interest, for the greater good, the COVID-19

dataset was presented in Kaggle for embarking information to the interested

research groups and not as any competition. However, based on one of the

posted notebooks (as of 29 June 2020), our results were found to be very com-

petitive and in fact better than the ones that claimed to obtain 80% accuracy

using Grid Search Stratified KFold Cross Validation on SVM Classifier [36].

75

Chapter 6

Multilayered framework for

SigD2

DNNs have introduced the world to the sophisticated deep layered architec-

tures, that generally obtain good results. Researchers conjecture that repli-

cating the idea of performing representation learning from neural networks

and processing the raw features, layer by layer in a multi-layered architecture

can help in building a deep model for other classifiers like decision trees and

associative classifiers. In this Chapter, we first introduce the background of

the approach used by Zhou et al. for gcForest. Later, in this section, we will

introduce the architecture of multi-layered system for SigD2 and then discuss

a few experimental results that show potential for future research.

6.1 Background

Deep Neural Networks have garnered all the attention due to its highly effi-

cient performance, despite of certain limitations like it requires a cumbersome

process of hyper-parameter tuning. Moreover, it is not found to perform well

when training dataset isn’t large enough and many a times it gets hard to

get the large amount of labelled data. The complex deep networks also re-

quires high computational machines which might not be available always due

to monetary constraints.

76

Zhou et al. came up with a competitive alternative approach of using the

ensemble of decision trees in [57]. They build a deep model called gcForest,

using an ensemble of decision trees as an alternative to neural networks, and

dealing few of the above mentioned limitations. The gcForest is found to have

the key features of neural networks like, representation learning, model com-

plexity and ability to deal with high dimensional data. The authors claim that

the hyper parameters are quite robust and do not require much tuning unlike

neural networks, where classification performance is significantly dependant

on the chosen hyper-parameters. The framework works with a combination

of Cascade Forest and Multi-grained scanning, that manifest representation

learning like DNN. The cascade forest processes the features and transforms

them layer by layer. The gcForest uses four decision forests each of different

type, two completely random tree forest and two random forest. The number

of trees in a forest are varied as a hyper-parameter.

If the size of features vector becomes very large, they use random sampling

to create an ensemble of ensemble and consequently process the task of pre-

diction. Each of the forest outputs the estimate of class distribution, which

are concatenated to the original feature vector and are given as input to the

next level in Cascade phase.

The process of multi-grained scanning is done prior to cascade forests, so as

to determine the relationship among features. This step uses sliding window

of a certain size, moving across the raw feature vector. For the purpose of

experiments, authors have used three different window sizes. Each of the sub

feature space from each of the sliding window are given as input to the ensem-

ble of forests and the class vectors generated in the output are concatenated to

form the transformed feature set. This in turn is used for training in cascade

forest phase. Finally, the class label is determined by taking the maximum of

the aggregated results from all the four forests in the last layer. The number

77

of layers in cascade forest are determined automatically, as training stops only

when there is no improvement in classification performance. This eliminates

the need to pre define the number of layers in Cascade phase, unlike deep

neural networks, where it is pre-defined fixed parameter. There are certain ex-

periments done with and without multi-grained scanning phase, to emphasis

its significance. The authors have tested their approach for image categoriza-

tion, face recognition, audio data classification, sentiment classification and a

few experiments on the UCI-datasets.

The results obtained were found to be quite competitive with deep neural

networks while using very less and robust hyper-parameters that do not require

much tuning. In the following section, we have made an attempt to build a

deep model for associative classifiers in the similar lines.

6.2 Methodology

We hypothesise that few of the many factors that help deep learning achieve

high accuracy, is its complex layered architecture. Therefore, in order to in-

crease the performance of the proposed associative classifier, we mimic the

neural network style in terms of complexity and layered architecture, we have

designed a multi-layered framework for SigD2. This study has been motivated

by the architecture used by Zhou et al. in [57] for Deep Forest which opens the

potential of alternatives to deep neural networks. However, we have modified

the framework with using small number of learning models in the multi-grained

phase and using ensemble of ensemble in the cascade phase. Moreover, we use

an associative classifier instead of random forest in the framework. We be-

lieve that SigD2 would require very low tuning and can be competitive in

performance.

Initially, the given raw input feature vector, is passed into the multi-grained

scanning phase as shown in figure 6.1, where we use three different sliding

78

window to cover the whole high dimensional feature vector. We use three

different windows each of different size wsk, where k is a variable. As shown

in Figure 6.1, sliding window of size wsk generates feature subsets which are

given as an input to the SigD2 classifier, in multi-grained scanning phase. The

probability distribution for each of the class is obtained as the output from

each SigD2 which are further concatenated to form vector FSwsk . Similarly,

the results from different window sizes wsk are finally concatenated to form

FStotal. This FStotal, is further given as an input to Cascade SigDirect phase.

Please note that Figure 6.1 assumes there are three output classes, so therefore

for a total of 100-dim raw input feature vector from a dataset of size m ∗ n,

where m is the number of instances and n is the number of attributes, we

obtain FSwsk of size equal to 273 for n = 100 and window size wsk = 10. This

is calculated as, for a 100 sized vector, a overlapping sliding window moves

one attribute ahead each time, therefore giving, (100− 10 + 1) which is equal

to sliding 91 times. Next, since the number of output classes considered here

are three, therefore the size of transformed vector would be (91 ∗ 3) which

equals to 273 as stated before. Similarly, we get 243-dim vector for wsk = 20

and 213-dim vector for wsk = 30. All the sub-features are concatenated for

form FStotal of size equal to 729. This transformed vector is then given to the

Cascade phase as an input.

Within the Cascade phase there are four ensembles of SigD2. We have

chosen four ensembles to prevent biased results. Moreover, since SigD2 has

the limitation of not being able to work on high dimensional datasets, we

use an ensemble of SigDirects and call it ESigDirect. For the initial set of

experiments, we split the large dimensional data using random sampling on

the features with replacement for the fixed number of estimators to generate

the ensemble. Each ESigDirect is an ensemble of 100 SigD2 based learners.

We use four ESigDirects in the Cascade SigDirect phase, such that the

79

information obtained from the initial multi-grained phase is transformed layer

by layer in the cascade phase. Next, we also perform the bootstrap sampling

with replacement on the samples of each input data used for ESigDirect.

The average of class probabilities obtained from different SigDirect’s in each

of the four ESigDirects in that layer are concatenated with the input feature

FStotal. Please note that each ESigDirect outputs the average of probabilities of

each class, obtained from different SigDirects in the ensemble. As described in

Figure 6.1, the FStotal, is concatenated to the output obtained at each cascade

level. Since there are three output classes and four ESigDirect’s used in the

shown framework, the size of transformed vector turns out to be 729 + 12

which is equal to 741.

The process is repeated for η layers using the validation set, until its perfor-

mance stops improving or the set number of layers η, after which the training

process stops. Now, for the test set, similar operations are performed in multi-

grained scanning and cascade forest phases for η layers, and in the end, the

majority voting is done based on the prediction probabilities obtained in the

last layer. This approach seems promising, however, still needs to be explored

more, especially with very high dimensional data. In future we would also

like to study the possibility of interpreting the results even in a multi-layered

framework.

6.3 Experimental Results

We evaluate the deep multi-layered framework for SigD2, designed so far on

the UCI datasets. The classification accuracy might be slightly different from

the previously reported results as we discretize the datasets [13]. We report

the results after performing the average over 10 fold cross validation on each

dataset. We use 90% of the total data as the train set and further divide the

train set into train set and validation set in the ratio of 2:1.

80

We compare the performance of the proposed classification model with

SigD2 and DNN. We also compare our results with the original gcForest as

proposed by Zhou et al. We use different size of windows varying in the range

of 7 to 30. We have chosen this range after performing the sensitivity analysis

and also higher window size would slow down the performance of SigD2 while

less than 7 might not be fruitful enough for associative classification. This

set of values for ws was also chosen after performing sensitivity analysis and

noting that the size of datasets considered so far are not very large. Please note

that this range has been considered noting the inability of SigD2 to be able

to run on very high datasets. The value of the maximum number of possible

layers η, is set to 5. after performing sensitivity analysis for this experiment.

Further in the cascade SigDirect phase, four ESigDirects are used with 100

SigD2 models in each of them. All the other hyper-parameters for the base

classifier SigD2, remain the same as obtained from Section 3.2. For deep neural

network, we have performed experiments with different architectures having

different number of hidden layers. For DNN5, we use a deep network with

five hidden layers. The number of nodes in the hidden layer are set as the

average of number of input and output nodes. We use ReLU (Rectified Linear

Units) or sigmoid functions for activation and around 200 training epochs with

a learning rate of 0.1. For DNN1, DNN2, similarly we use a deep network with

one and two hidden layers respectively. Please note that the number of hidden

layers can further be extended based on the size of the dataset. The main

aim here is to compare the performance of proposed approach with different

architectures of the deep networks.

Table 6.1: Comparison of the proposed multi-layered SigD2 with other con-
tenders on the basis of the classification accuracy on two UCI Datasets

SigD2 DSAFE for
SigD2

Multi-layered
SigD2

DNN1 DNN2 DNN5

Adult 83.59 82.76 85.29 76.24 77.3 85.35
Ionosphere 90.3 93.05 94.28 92.95 94.36 95.77

81

For comparison with original SigD2 alone, we have performed the sensitiv-

ity analysis on the confidence threshold and have chosen to vary the threshold

value in the range of 30-50% depending on the dataset. The configuration for

gcForest remains the same as stated by Zhou et al. in [57].

We have used two UCI datasets for this set of experiments, which are Adult

and Ionosphere dataset due to the following reasons. Firstly, because Iono-

sphere data set is found to have reasonable amount of attributes and the Adult

dataset has reasonably high number of data instances. Secondly, DSAFE for

SigD2 could not improve the classification performance when compared with

original SigD2 for the Adult dataset and third, it has also been used by Zhou

et al. for testing the performance of the gcForest algorithm.

For ionosphere dataset we obtained 94.28% classification accuracy which

is very competitive to DNN5 which gets 95.77% accuracy. The performance is

in fact found to be better than original SigD2 which obtains 90.3% accuracy.

Furthermore, we have tested on another UCI dataset called the Adult dataset,

and it was found that the proposed classification model gives 85.29% accuracy

in comparison to DNN5 which gives 85.35% and SigD2 gives 83.59% accuracy

on this dataset.

The gcForest achieves 86.40% accuracy for the Adult dataset as stated in

[57], but we do no consider this for comparison with our approach, as the

datasets that we have used are discretized [13], consequently their might be

slight difference in the accuracy obtained. Since we were not able to reproduce

the results for gcForest [24], we only consider the approximate idea from the

results stated by the authors for gcForest in the paper.

In [57], the authors have only used a two layered network for comparison,

which is is not fair as it is a weak contender and our experiments have shown

that, the prediction performance tends to increase up till a certain number

of hidden layers. So the advantage of the approach proposed by gcForest is

82

not as huge as claimed in the paper. In fact, we believe that the difference

of performance of gcForest and DNN would actually be even lesser in reality

as the layers of deep network would increase. Furthermore, the authors have

not stated the number of layers of cascade phase obtained while testing on the

UCI dataset. After working on the framework of multi-layered SigD2 similar

to that proposed for gcForest, it has been observed that, they tend to require

a lot of resources, both in terms of time and computing. Although these

techniques may lead to slight increase in performance, but at the same time,

they are found to require high computation as well. We conjecture that the

architecture still has the scope of improvement.

As shown in Table 6.1, the multi-layered framework is performing better

than both SigD2 and DSAFE for SigD2 and is also found to be quite compet-

itive with the different deep network architectures. Although the results seem

to be interesting for the small datasets, we still need to improve the algorithm

and make it more efficient to be able to deal with very high dimensional data.

As adding up the features in the proposed layer by layer model would increase

the number of features to be transformed in each layer and finally to be used

for classification.

For the purpose of this thesis, we leave the multi-layered framework for

associative classifiers as an open problem. In future, we aim to rank the

features in order of correlation before multi-grained scanning phase and apply

the DSAFE approach to form an ensemble of ensemble on SigDirect in a layered

cascade framework.

83

Chapter 7

Conclusion

7.1 Summary

To summarize, in this study, we first propose an optimized two stage prun-

ing strategy for SigDirect. It was found that the number of rules to be used

for classification could be noisy, and the noisy rules would participate more

often in misclassifications, adversely effecting the classification performance.

Therefore, the proposed competitive associative classifier, SigD2 builds a rule-

based model that is explainable, readable with minimal number of rules. The

classifier initially performs a rule generation step to generate statistically sig-

nificant class association rules. This is followed by a novel two phase rule

pruning strategy used to obtain remove all noisy rules that would otherwise

hamper the classification performance. These rules are further used for clas-

sification purpose. The proposed rule pruning strategy is found to reduce the

rule set to a significantly small number, making it more useful for various ap-

plications especially in the field of bio-medicine where model interpretability is

important. The proposed approaches outperforms other association and rule

based classifiers and it is at par with the other supervised classifiers like ANN

and SVM, which are black boxes and do not provide interpretable classification

models. Unlike them, SigD2 is an explainable classifier.

Further in this study, we have introduced a novel approach BiLevCSS,

85

a two level classifier built on statistically significant dependent CARs. The

proposed classification model consists of four steps of rule generation, rule

pruning, transformed feature extraction for the next phase using the obtained

rules and finally, the prediction on the learned model using Neural Network

in the second stage. Rule generation leads to the generation of all statistically

significant rules which are further used to train a second classification model

to select appropriate rules. Since, these rules might be noisy with some ir-

relevant information, they are pruned using the instance-centric rule pruning

strategy. Furthermore, the features are extracted using rule based or class

based techniques. Finally, the classification is done by using the learned NN,

SVM or RIPPER in the second level. The idea of using statistically significant

rules has made our algorithm more efficient by selecting only valuable CAR

and providing new features for the second stage. The experimental results

obtained are very encouraging.

Furthermore, we also propose ensemble learning on SigDirect. We first in-

troduced ACbag and ACboost which are the bagging and boosting algorithms

on wSigDirect respectively. The ACboost algorithm which uses an ensemble of

wSigDirect, to build a strong learner that boosts the prediction performance.

While ACbag, produces an ensemble of wSigDirect using bootstrap sampling

with replacement on the data points. The results obtained from ACboost

were found to be the promising as compared to ACbag and were found to be

competitive with ANN and DNN on a reasonable size of data.

Another huge challenge dealt in this study, is the inability of associative

classifiers to deal with high dimensional data. We have tried to overcome

this limitation by proposing DSAFE algorithm as a thoughtful approach to

design an ensemble of SigD2. DSAFE sampling algorithm, vertically splits the

feature space into diverse feature subspaces and use this to built an association

based learning model. DSAFE ensures that there is minimum overlap between

86

various subspaces and verifies that the complete feature space is covered until

no other diverse subspace could be generated. The DSAFE algorithm on SigD2

gives high classification performance and is competitive with other prevalent

machine learning classifiers. We have also tried to test the application of our

proposed approaches on the hospital data available in Kaggle for a prediction

task related to the current COVID-19 pandemic. The results obtained seem

very encouraging. The experimental results obtained, have highlighted the

significance of associative classifiers and have proven them to be effective.

We have also tested a multi-layered architecture for an associative classifier

which although compromises on explainability, but can serve as an alternative

approach to deep networks. The results seem to be encouraging, however,

our study concludes that the multi-layered architecture still has some scope of

improvement, in order to make it efficient for high dimensional datasets.

In this era of deep learning, where the models thus produced are black

box, non intuitive and hard to interpret, the rule based association models

can be used to build a more trustable model. The associative classifiers have

an added advantage of being a white-box, such that the results obtained can

be explained. Therefore, the proposed models, find their immense use in the

industry, where practitioners find it hard to trust AI and demand for the

validation of the obtained results.

7.2 Future Work

• In the future, we aim to experiment our algorithm by incorporating

more features other than support, confidence, lift and p-value in Bi-level

classification model. We would also like to evaluate the performance of

our model with explainable associative classifiers in the second stage of

learning. We would also extend our work for multi-label classification.

87

• Since, the results obtained are very encouraging, we would also like to

work on making the SigD2 classifier more efficient in terms of rule gen-

eration phase. Although, we are able to compete with RIPPER in terms

of accuracy, the number of rules for RIPPER are still smaller. In future,

we also intend to identify rules that are noisy and can be potentially

removed.

• In future, we also intend to use our proposed approach on various health-

care related applications where explanation of prediction is required.

Furthermore, since SigD2 produces human readable rules, we would like

to study the possibility of injecting human expert knowledge to the ob-

tained rules in order to further improve the prediction performance.

• The multi-layered architecture of SigD2 can be a potential area of re-

search and explored in future to build an alternative to deep networks.

Finally, we believe that ensemble learning models with explainable base

models have the scope for the explainability of results, which is left as

open problem here and would be dealt future.

88

References

[1] Agrawal, R. and Srikant, R., “Fast algorithms for mining association
rules,” in International conference on very large data bases (VLDB),
1994, pp. 487–499.

[2] Antonie, M. L., Zaiane, O., and Coman, A., “Associative classifiers for
medical images,” in Pacific-Asia Conference on Knowledge Discovery
and Data Mining, Springer, 2002, pp. 68–83.

[3] Antonie, M.L., Zaiane, O., and Holte, R.C., “Learning to use a learned
model: A two-stage approach to classification,” in Sixth International
Conference on Data Mining (ICDM’06), IEEE, 2006, pp. 33–42.

[4] Antonie, M.L. and Zaiane, O.R., “Text document categorization by
term association,” in IEEE International Conference on Data Mining
(ICDM), 2002, pp. 19–26.

[5] Antonie, M.L. and Zäıane, O.R., “An associative classifier based on pos-
itive and negative rules,” in Proceedings of the 9th ACM SIGMOD work-
shop on Research issues in data mining and knowledge discovery, ACM,
2004, pp. 64–69.

[6] Arunasalam, B. and Chawla, S., “CCCS: A top-down associative classi-
fier for imbalanced class distribution,” in ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2006, pp. 517–
522, isbn: 1-59593-339-5.

[7] Beale, H. D., Demuth, H.B., and Hagan, MT, “Neural network design,”
Pws, Boston, 1996.

[8] Breiman, L., “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123–140, 1996.

[9] Brown, G., “Diversity in neural network ensembles,” PhD thesis, 2004.

[10] Brown, G., Wyatt, J., Harris, R., and Yao, X., “Diversity creation meth-
ods: A survey and categorisation,” Information Fusion, vol. 6, no. 1,
pp. 5–20, 2005.

[11] Cao, P., Zhao, D., and Zaiane, O., “Cost sensitive adaptive random
subspace ensemble for computer-aided nodule detection,” in Proceedings
of the 26th IEEE International Symposium on Computer-Based Medical
Systems, 2013, pp. 173–178.

89

[12] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P.,
“Smote: Synthetic minority over-sampling technique,” Journal of artifi-
cial intelligence research, vol. 16, pp. 321–357, 2002.

[13] Coenen, F., The lucs-kdd software library, 2004. [Online]. Available:
http://cgi.csc.liv.ac.uk/$%5Csim$frans/KDD/Software/.

[14] Coenen, F. and Leng, P., “An evaluation of approaches to classifica-
tion rule selection,” in Fourth IEEE International Conference on Data
Mining (ICDM’04), 2004, pp. 359–362.

[15] Cohen, W., “Fast effective rule induction,” in International Conference
on Machine Learning, Elsevier, 1995, pp. 115–123.

[16] Cortes, C. and Vapnik, V., “Support-vector networks,” Machine learn-
ing, vol. 20, no. 3, pp. 273–297, 1995.

[17] Dasarathy, B. V. and Sheela, B. V., “A composite classifier system de-
sign: Concepts and methodology,” Proceedings of the IEEE, vol. 67, no. 5,
pp. 708–713, 1979.

[18] Demšar, J., “Statistical comparisons of classifiers over multiple data
sets,” The Journal of Machine learning research, vol. 7, pp. 1–30, 2006.

[19] Diagnosis of covid-19 and its clinical spectrum. https://www.kaggle.
com/einsteindata4u/covid19.

[20] Dua, D. and Graff, C., UCI machine learning repository, 2017. [Online].
Available: http://archive.ics.uci.edu/ml.

[21] Emerson, P., “The original borda count and partial voting,” Social Choice
and Welfare, vol. 40, no. 2, pp. 353–358, 2013.

[22] Exarchos, T. P., Papaloukas, C., Fotiadis, D. I., and Michalis, L. K.,
“An association rule mining-based methodology for automated detection
of ischemic ecg beats,” IEEE transactions on biomedical engineering,
vol. 53, no. 8, pp. 1531–1540, 2006.

[23] Freund, Y. and Schapire, R.E., “Experiments with a new boosting algo-
rithm,” in International Conference on Machine Learning, vol. 96, 1996,
pp. 148–156.

[24] Gcforest v1.1.1, https://github.com/kingfengji/gcForest.

[25] Hamalainen, W., “Efficient discovery of the top-k optimal dependency
rules with fisher’s exact test of significance,” in 2010 IEEE International
Conference on Data Mining, 2010, pp. 196–205.

[26] Hämäläinen, W., “Kingfisher: An efficient algorithm for searching for
both positive and negative dependency rules with statistical significance
measures,” Knowledge and information systems, vol. 32, no. 2, pp. 383–
414, 2012.

90

[27] Hämäläinen, W. and Nykänen, M., “Efficient discovery of statistically
significant association rules,” in 2008 Eighth IEEE International Con-
ference on Data Mining, 2008, pp. 203–212.

[28] W. Hämäläinen, “Statapriori: An efficient algorithm for searching sta-
tistically significant association rules,” Knowledge and information sys-
tems, vol. 23, no. 3, pp. 373–399, 2010.

[29] Han, J. and Pei, J. and Yin, Y., “Mining frequent patterns without
candidate generation,” In proceedings of ACM SIGMOD International
Conference on Management of Data, vol. 29, pp. 1–12, 2000.

[30] Hansen, L. K. and Salamon, P., “Neural network ensembles,” IEEE
transactions on pattern analysis and machine intelligence, vol. 12, no. 10,
pp. 993–1001, 1990.

[31] Hastie, T., Rosset, S., and Zhu, J. and Zou, H., “Multi-class adaboost,”
Statistics and its Interface, vol. 2, no. 3, pp. 349–360, 2009.

[32] Ho, T. K., “Random decision forests,” in Proceedings of 3rd international
conference on document analysis and recognition, IEEE, vol. 1, 1995,
pp. 278–282.

[33] Ho, T. K., Hull, J., and Srihari, S. N., “Decision combination in multiple
classifier systems,” IEEE transactions on pattern analysis and machine
intelligence, vol. 16, no. 1, pp. 66–75, 1994.

[34] Ho, T.K., “The random subspace method for constructing decision forests,”
IEEE transactions on pattern analysis and machine intelligence, vol. 20,
no. 8, pp. 832–844, 1998.

[35] Holmes, G., Donkin, A., and Witten, I.H., “Weka: A machine learning
workbench,” Proceedings of ANZIIS, 1994.

[36] Kaikewreis - covid-19 solution, https://www.kaggle.com/kaikewreis/
a-second-end-to-end-solution-for-covid-19.

[37] Kuncheva, L. I, Combining pattern classifiers: methods and algorithms.
John Wiley & Sons, 2014.

[38] Lam, L. and Suen, C. Y., “Optimal combinations of pattern classifiers,”
Pattern Recognition Letters, vol. 16, no. 9, pp. 945–954, 1995.

[39] Li, J. and Zaiane, O.R., “Exploiting statistically significant dependent
rules for associative classification,” In Intelligent Data Analysis, vol. 21,
no. 5, pp. 1155–1172, 2017.

[40] Li, J. and Zaiane, O.R., “Associative classification with statistically sig-
nificant positive and negative rules,” in Proceedings of the 24th ACM
international on conference on information and knowledge management,
2015, pp. 633–642.

[41] Li, W. and Han, J. and Pei, J., “CMAR: Accurate and efficient classifi-
cation based on multiple class-association rules,” in IEEE International
Conference on Data Mining, ICDM, 2001, pp. 369–376.

91

[42] Littlestone, N. and Warmuth, M. K. and others, The weighted major-
ity algorithm. University of California, Santa Cruz, Computer Research
Laboratory, 1989.

[43] Liu, B. and Hsu, W. and Y., “Integrating classification and association
rule mining,” in International Conference on Knowledge Discovery and
Data Mining, 1998.

[44] Quinlan, J. Ross, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[45] Quinlan, J.R., “C4.5: Programs for machine learning,” Machine Learn-
ing, vol. 16, no. 3, pp. 235–240, 1994.

[46] Roberto J and Bayardo Jr., “Brute-force mining of high-confidence clas-
sification rules,” in Proceedings of 3rd International Conference on Knowl-
edge Discovery and Data Mining (KDD), 1997, pp. 123–126.

[47] N. Sood, L. Bindra, and O. Zaiane, “Bi-level associative classifier using
automatic learning on rules,” in Intl. Conf. on Database and Expert
Systems Applications, 2020.

[48] N. Sood and O. Zaiane, “Building a competitive associative classifier,”
in Intl. Conf. on Big Data Analytics and Knowledge Discovery, 2020.

[49] Verhein, F and Chawla, S., “Using significant, positively associated and
relatively class correlated rules for associative classification of imbal-
anced datasets,” in Seventh IEEE International Conference on Data
Mining (ICDM 2007), IEEE, 2007, pp. 679–684.

[50] Wolpert, D. H, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241–259, 1992.

[51] Xu, L., Krzyzak, A., and Suen, C. Y., “Methods of combining multi-
ple classifiers and their applications to handwriting recognition,” IEEE
transactions on systems, man, and cybernetics, vol. 22, no. 3, pp. 418–
435, 1992.

[52] Ye, Y., Li, T., Jiang, Q., and Wang, Y., “Cimds: Adapting postprocess-
ing techniques of associative classification for malware detection,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 40, no. 3, pp. 298–307, 2010.

[53] Yin, X. and Han, J., “Cpar: Classification based on predictive associ-
ation rules,” in SIAM International Conference on Data Mining, 2003,
pp. 331–335.

[54] Zaıane, O.R and Antonie, M.L., “On pruning and tuning rules for asso-
ciative classifiers,” in International Conference on Knowledge-Based and
Intelligent Information and Engineering Systems, 2005, pp. 966–973.

[55] Zhang, J., Cao, P., and Gross, D. and Zaıane, O., “On the application
of multi-class classification in physical therapy recommendation,” Health
Information Science and Systems, vol. 1:15, 2013.

92

[56] Zhou, Z. H., “Ensemble learning.,” Encyclopedia of biometrics, vol. 1,
pp. 270–273, 2009.

[57] Zhou, Z. H. and Feng, J., “Deep forest: Towards an alternative to deep
neural networks,” in IJCAI, 2017.

93

	Introduction
	Motivation
	Thesis Statement
	Thesis Contribution
	Thesis Outline

	Related Work
	Classification
	Associative Classification
	Statistically Significant Classification

	Ensemble Learning Models
	Application of Associative Classifiers

	SigD2
	Methodology
	Notations and Definitions
	Rule Generation Phase
	Rule Pruning Phase
	Classification Phase

	Experimental Results
	Classification Accuracy
	Number of Rules
	Statistical Analysis

	Bi-Level Associative Classifier using Automatic Learning on Rules
	Methodology
	Method 1
	Method 2

	Experimental Results
	Classification Accuracy
	Statistical Analysis

	Ensemble Learning on the Associative Classifiers
	Bagging and Boosting on wSigDirect
	Methodology
	Experiments

	DSAFE for SigD2 on High Dimensional Data
	Methodology
	Experiments

	Application of Associative Classification model

	Multilayered framework for SigD2
	Background
	Methodology
	Experimental Results

	Conclusion
	Summary
	Future Work

	References

