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Summary

Two-phase and three-phase equilibria are frequently encountered in a variety of industrial processes, such as carbon dioxide (CO2)
injection for enhanced oil recovery in oil reservoirs, multiphase separation in surface separators, and multiphase flow in wellbores and
pipelines. Simulation and engineering design of these processes using isothermal/isochoric (VT) multiphase equilibrium algorithms are
sometimes more convenient than that using the conventional isothermal/isobaric (PT) algorithms. This work develops a robust algo-
rithm for VT multiphase equilibrium calculations using a nested approach. The proposed algorithm is simple because a robust PT multi-
phase equilibrium algorithm is used in the inner loop without any further modifications, while an effective equation-solving method
(i.e., Brent’s method; Brent 1971) is applied in the outer loop to solve the pressure corresponding to a given volume/temperature specifi-
cation. The robustness of the VT algorithm is safeguarded by using a highly efficient trust-region-method-based PT algorithm. We dem-
onstrate the good performance of the newly developed algorithm by applying it to calculate the isochores of fluid mixtures that exhibit
both two-phase and three-phase equilibria.

Introduction

In addition to two-phase equilibria, three-phase equilibria can be frequently observed in the upstream petroleum industry. For example,
when CO2 injection is applied to low-temperature reservoirs for enhanced oil recovery, gas/liquid/liquid three-phase equilibria can
appear in the porous-media flow (Pan et al. 2015) or pipe flow (Pasqualette et al. 2020). In the steam-injection process for heavy-oil
recovery, a different type of three-phase equilibria (i.e., gas/oil/water three-phase equilibria) can take place in the reservoir over a wide
temperature/pressure range (Gao et al. 2017; Petitfrere et al. 2020). Hence, it is important to consider such three-phase equilibria in the
compositional simulations of these processes (Pang and Li 2017; Connolly et al. 2019; Li and Li 2019; Petitfrere et al. 2020). Normally,
engineers or researchers rely on the PT phase-equilibrium-calculation algorithms to perform the multiphase equilibrium computations
for a given fluid mixture. In such algorithms, pressure, temperature, and feed composition are specified as inputs to the algorithm and
the objective is to determine the number of equilibrium phases and their fractions, compositions, and volumes.

PT algorithms have been extensively studied for decades. Based on the two milestone works of Michelsen (1982a, 1982b), a sequen-
tial calculation framework consisting of stability tests and flash calculations becomes the convention for developing multiphase PT
algorithms (Michelsen and Mollerup 2004; Firoozabadi 2015). For example, a three-phase PT equilibrium calculation starts with testing
the stability of the given overall feed. If the feed composition is not stable, a two-phase flash is implemented. Then stability for one of
the two phases is tested. If instability is observed again, a three-phase flash calculation is performed, and the phase fractions and phase
compositions in the three-phase equilibrium are determined.

Numerous algorithms have been developed for stability tests and flash calculations. The classical algorithm for stability tests and
flash calculations is the so-called successive-substitution (SS) method (Mehra et al. 1983; Li and Nghiem 1986; Ammar and Renon
1987). The SS method is usually used to provide the initial guess for higher-order algorithms such as Newton’s method (Ammar and
Renon 1987; Perschke 1988; Pan and Firoozabadi 2003; Hoteit and Firoozabadi 2006) and the trust-region method (Nghiem et al. 1983;
Lucia and Feng 2003; Lucia et al. 2012; Petitfrere and Nichita 2014; Pan et al. 2019). Newton’s method shows a fast convergence
behavior with a good initial guess from SS, but convergence problems will be encountered under conditions along the stability test limit
locus or in near-critical regions (Petitfrere and Nichita 2014). Petitfrere and Nichita (2014) suggest switching to the trust-region method
when Newton’s method fails. Using this idea, Pan et al. (2019) proposed a new multiphase PT algorithm combining the advantages of
the three mentioned algorithms (i.e., SS, Newton, and trust-region methods). Specifically, the extensive tests performed by Pan et al.
(2019) on nine CO2 reservoir fluids show that there is no single failure encountered during the construction of pressure/composition
(PX) phase diagrams involving both two-phase and three-phase equilibria.

Although algorithms with PT specifications have been extensively developed, the PT specification only represents a typical one
among the specifications for multiple equilibrium calculations (Nagarajan et al. 1991; Michelsen 1999). Another important specification
for working out the multiphase equilibrium problem is to use volume, temperature, and feed composition as the known information,
and determine pressure, the number of equilibrating phases, and their properties (Michelsen 1999).

Such VT phase-equilibrium-calculation algorithms, or VT algorithms, have many practical and theoretical applications. A straight-
forward application is to aid the designing of storage tanks in the petroleum and chemical industry. Isochores and liquid-dropout curves
can guide the design of the separation process (Cismondi et al. 2018). The VT algorithms can be also readily coupled into compositional
reservoir/wellbore-flow simulators that are derived from a VT formulation (Polı́vka and Mikyška 2014). This new formulation in terms
of VT specifications is proved to be robust and convenient. Several recent studies have further developed VT equilibrium calculation
algorithms by taking into account the capillary pressure inside unconventional-rock nanopores (Sandoval et al. 2019; Achour and
Okuno 2020, 2021). These studies show that the phase equilibrium calculations in VT space can be quite advantageous when consider-
ing the capillary pressure. Besides, VT algorithms can be applied to guide phase-behavior experiments in a fixed-volume pressure/
volume/temperature (PVT) cell, as reported by Fontalba et al. (1984) and Kikani and Ratulowski (1998). For instance, a three-phase
VT algorithm can be used to guide the fixed-volume three-phase-equilibrium measurements. In such fixed-volume experiments,
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temperature is either increased or decreased. Then, the resulting pressure and phase volumes at equilibrium are measured. In the case of
three-phase equilibrium tests, before the experiments, we need to design a feed composition that can induce the appearance of three-
phase equilibria in the fixed-volume PVT cell. In such case, preliminary VT calculations can be conducted on a number of candidate
feeds. On the basis of the VT calculation results, we can confidently select the ones that can result in the appearance of three-phase
equilibria. Furthermore, VT algorithms can be potentially applied in the estimation of geological trapping pressures (Roedder and
Bodnar 1980; Liu et al. 2003), thermodynamic equilibrium calculation considering gravity (Espósito et al. 2000), and other theoretical
aspects (Cabral et al. 2005; Castier and Tavares 2005; Velez et al. 2010).

The natural way to solve the VT phase equilibrium problem is to recast it as a minimization of the Helmholtz free energy and solve
the minimization problem using optimization routines. Mikyška and Firoozabadi (2011) defined new thermodynamic functions and
developed a new VT algorithm using the new thermodynamic functions. Later, such an algorithm was successfully extended to three-
phase equilibrium calculations (Jindrová and Mikyška 2013, 2015) and two-phase equilibrium calculations with the consideration of
capillary pressure (Lu et al. 2019). Nichita (2018) developed a new unconstrained Helmholtz-free-energy minimization method used
for conducting robust VT phase equilibrium calculations. At a given iteration level, Nichita (2018) treats volume as a variable depend-
ent on mole numbers and solves such dependence with a nonlinear volume-balance equation. The algorithm is shown to be fast and
robust. Nevertheless, it is not a trivial task to set up the VT algorithm code using the Helmholtz-free-energy minimization approach.

In view of the complexity of the Helmholtz-free-energy minimization approach, Cismondi et al. (2018) developed a simple but effi-
cient VT algorithm for both vapor/liquid and liquid/liquid equilibria. Their VT algorithm is similar to the conventional PT algorithm
framework proposed by Michelsen (1982a, 1982b), and the only difference is that under a guessed pressure, it solves the phase molar
volumes by solving a pressure-equality equation. Cismondi et al. (2018) concluded that the phase equilibrium problem with VT specifi-
cation can be treated as a problem of minimizing the Gibbs free energy with PT specification under a certain pressure-equality con-
straint. However, because the original two-phase PT algorithm is modified to be a VT algorithm, its robustness cannot be guaranteed
when three-phase equilibria are encountered. This is why the VT algorithm by Cismondi et al. (2018) has difficulty in calculating the
isochores that are within the three-phase region.

An alternative method would be approaching the VT phase equilibrium problem using an unaltered PT algorithm. Agarwal et al.
(1991) developed such an algorithm to conduct isenthalpic equilibrium calculations with an embedded PT algorithm. In the Agarwal
et al. (1991) algorithm, the PT algorithm is built in the inner loop, while temperature is solved in the outer loop to satisfy the energy-
balance equation. Michelsen (1999) summarized a formal framework for formulating six specifications (such as pressure/enthalpy and
VT specifications) for phase equilibrium computations. To solve the phase equilibrium problems with different specifications, Michel-
sen (1999) proposed a general solution framework that encompasses a Newton approach and a nested approach. The Newton approach
solves all the unknowns using one loop. In the nested approach, a PT equilibrium is calculated in the inner loop, while the unknown var-
iables are solved in the outer loop. Michelsen (1999) suggested two solution methods for solving the unknown variables in the nested
approach: a second-order maximization method and a root-finding method. However, Michelsen (1999) did not further show how to
numerically implement the root-finding method in the nested approach. Our experience indicates that the choice of the root-finding
method can significantly affect the robustness and efficiency of the nested-approach-based VT algorithm. If the root-finding method is
not properly selected, it can take hundreds of iterations to converge the VT algorithm. Therefore, it is of utmost importance to select a
robust and efficient root-finding method to be used in the nested-approach-based VT algorithm.

The motivation of this work is to develop a robust, derivative-free, and easy-to-implement multiphase (up to three phases) VT equi-
librium calculation algorithm that does not make any changes to the existing multiphase PT algorithm and directly calls the PT algo-
rithm whenever needed. Such VT algorithm can be easily configured by practicing engineers to perform VT computations, provided a
reliable PT algorithm is available. In the section Multiphase VT Algorithm, we introduce the methodology and numerical implementa-
tion of the nested approach for the multiphase VT calculations developed to solve for the isochores of a given fluid mixture. In the sec-
tion Results and Discussion, we first demonstrate the robustness of the algorithm by examining its convergence behavior in the VT
phase equilibrium calculations for two reservoir-fluid mixtures. We then present the isochore calculation results for two reservoir-fluid
mixtures that exhibit single-phase, two-phase (including vapor/liquid and liquid/liquid), and three-phase (i.e., vapor/liquid/liquid) equi-
libria. We finally present the Conclusions section.

Multiphase VT Algorithm

Formulations for the Outer Loop. The VT phase equilibrium problem is a constrained minimization problem given by

min GðP; T; zÞ; ð1Þ

such that

VðP;T; zÞ � Vspec ¼ 0; ð2Þ

where G represents the Gibbs free energy of the system and V and Vspec are the calculated molar volume and the user-specified molar
volume, respectively. As suggested by Michelsen (1999), an easy-to-implement way to solve the problem defined by Eqs. 1 and 2 is to
construct a nested approach where the minimum Gibbs free energy is found in the inner loop with a PT phase equilibrium algorithm.
The calculated volume is updated in the outer loop by a root-finding algorithm to satisfy the equality constraint defined in Eq. 2.

To define the root-finding problem, Eq. 2 is transformed into a continuous function (f ) given by

f ðP;T; zÞ ¼ VðP;T; zÞ � Vspec; PL < P < PU; ð3Þ

where PL and PU are the prespecified lower and upper pressure limits, respectively. The function values corresponding to PL and PU

are represented by f L and f U , respectively. Note that PL and PU should guarantee f L � f U < 0 such that a unique root exists in the inter-
val ½PL;PU�. The zero of the f function is then solved by a root-finding algorithm.

Root-Finding Algorithm. As one derivative-free root-finding algorithm, the secant method has been successfully used in isenthalpic
flash algorithms (Agarwal et al. 1991; Li and Li 2017). One advantage of the secant method is that no derivative calculations are
involved, although its speed is also compromised by this advantage. The secant method is applicable to our study because the isotherms
in the pressure/volume space as described by a cubic equation of state are monotonic for multicomponent fluids (Firoozabadi 2015;
Cismondi et al. 2018). However, the secant method can become unstable in the case of an inferior initial guess. To avoid this problem,
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Dekker (1969) proposed a hybrid root-finding algorithm combining the bisection method and the secant method. Brent (1971) modified
this algorithm to be a more stable and adaptable version. The algorithm proposed by Brent (1971) guarantees convergence in searching
the zero of a function. It is a combination of the bisection method, the secant method, and the inverse quadratic interpolation method. In
this study, we solve the root-finding problem defined in Eqs. 1 and 2 by Brent’s method considering its robustness and efficiency (Brent
1971; Hoteit et al. 2006). Note that Brent’s method was also adopted by Hoteit et al. (2006) for critical point calculations, demonstrating
its superior performance. Appendix A gives a brief description of how to implement Brent’s method in our multiphase VT algorithm.

Multiphase PT Algorithm for the Inner Loop. In this research, the PT algorithm is used to calculate the phase fractions and corre-
sponding phase-compressibility factors in equilibrium. Then the value of f defined in Eq. 3 can be evaluated through Peng-Robinson
equation of state (Robinson and Peng 1978). Petitfrere and Nichita (2014) and Pan et al. (2019) demonstrate that the trust-region-based
optimization method is a highly efficient solution method for stability tests, multiphase flash calculations, and multiphase Rachford-
Rice problems (Rachford and Rice 1952). For this reason, we choose the trust-region-based PT algorithm proposed by Pan et al. (2019)
as the PT algorithm for the inner loop. This algorithm contains four key modules: one-phase stability test, two-phase flash calculation,
two-phase stability test, and three-phase flash calculation modules. Fig. 1 shows the detailed workflow of the PT algorithm proposed by
Pan et al. (2019). Note that when the three-phase flash calculation fails for the first time, we choose the K-values associated with the
second-lowest negative tangent-plane distance (TPD) value that resulted from the one-phase stability test.

For each key module mentioned previously, a sequential strategy (Petitfrere and Nichita 2014; Pan et al. 2019) is well-designed to
ensure that the correct solution can be found for that module. The sequential strategy, which is first established by Petitfrere and Nichita
(2014), is a consecutive execution process of three solvers. The classical SS method solver gives an acceptable initial convergence,
Newton’s solver provides a rapid convergence once the iteration point gets close to the solution, and the trust-region solver handles spe-
cial cases where Newton’s method encounters unfeasible conditions. A detailed coverage of how to apply the trust-region optimization
method (Nocedal and Wright 2006) in the sequential strategy can be found in Petitfrere and Nichita (2014) and Pan et al. (2019).

For both one-phase and two-phase stability tests, the numbers of initial guesses in the algorithm of Pan et al. (2019) are largely
reduced. This is done to accelerate the computational speed as much as possible for low-temperature reservoir fluids. In our applica-
tions, however, because the temperature range will be definitely larger, we use a total of Nc þ 5 initial guesses for the one-phase stabil-
ity test and Nc þ 6 initial guesses for the two-phase stability test. The initial K-value estimations are given by (Michelsen 1982b; Li and
Firoozabadi 2012; Pan et al. 2019)

KWilson
i ; 1=KWilson

i ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KWilson

i
3

q
; 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KWilson

i
3

q
; Kpure�j

i ; Kideal
i ; Kav

i ; ð4Þ

where

KWilson
i ¼ Pc;iexp½5:37ð1þ xiÞð1� Tc;i=TÞ�=P; ð5Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 1—Flow chart of the multiphase PT equilibrium calculation algorithm proposed by Pan et al. (2019).
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Kpure�j
j ¼ 0:9=zj; Kpure�j

i ¼ 0:1=ðNc � 1Þ=zi; ð6Þ

Kideal
i ¼ /̂iðziÞ; ð7Þ

Kav
i ¼ ðxi þ yiÞ=2; ð8Þ

and where i 6¼ j and i; j 2 ð1;2; � � � ;NcÞ and Nc is the total number of components. Note that Kav
i is only used in the two-phase

stability test.

Algorithm Implementation. We develop a MATLABVR (The MathWorks, Inc., Natick, Massachusetts, USA) code for the proposed

VT algorithm. Fig. 2 shows its flow chart. To ensure f L � f U < 0 in the interval ½PL;PU�, PL should be typically small (such as 1 bar)

and PU should be a relatively large value (such as 1,000 bar) so that the fluid is in one-phase condition. Besides, for a specified volume,
one would like to know in advance whether the root exists in the interval. To find out this, we can numerically approximate a lower

limit for the specified volume in the following manner: specify an initial V and check if f L � f U < 0 holds; iteratively set V ¼ V � DV
and check if the inequality still holds. The calculation is terminated after f L � f U > 0 and the approximated lower limit is then found

for the specified volume. Conversely, if an “improper” small V is specified such that f L � f U > 0 holds, we can iteratively set V ¼
V þ DV and check the inequality until f L � f U < 0. The two preceding measures ensure that there is a unique root in the interval

½PL;PU� for the specified volume V.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 2—Flow chart of the developed multiphase VT algorithm based on the multiphase PT algorithm proposed by Pan et al. (2019).

DOI: 10.2118/205499-PA Date: 20-May-21 Stage: Page: 4 Total Pages: 20

ID: jaganm Time: 16:14 I Path: W:/SA-SPE-J###210072

4 2021 SPE Journal

D
ow

nloaded from
 http://onepetro.org/SJ/article-pdf/doi/10.2118/205499-PA/2444792/spe-205499-pa.pdf by U

. of Alberta Library user on 08 June 2021



The following is the corresponding stepwise procedure executed in the multiphase VT algorithm:
1. Enter T, V, feed composition (zÞ, and other fluid properties: critical temperature (Tc), critical pressure (Pc), acentric factors (x),

and binary-interaction parameters (BIPs).
2. Set the lower and upper boundaries of P (such as PL ¼ 1 bar and PU ¼ 1000 bar).
3. Call the PT algorithm to calculate f L and f U .
4. Assuming the fluid remains as one phase, calculate the initial guess P0 using Peng-Robinson equation of state (Robinson and

Peng, 1978).
5. If PL < P0 < PU is true, go to Step 7. If not, two options are available: if P0 < PL, set P0 ¼ ðPL þ PUÞ=2 and go to Step 7;

if P0 > PU , go to Step 6.
6. Set PU ¼ PU þ DP and go back to Step 3. Note that DP is a user-defined increment such as 100 bar.
7. Calculate f 0 using Eq. 3 and check if absðf 0Þ > tol (tol is a user-defined tolerance). If true, go to Step 8; if not, P0 is the solution

and go to Step 11.
8. Check if f 0 � f L < 0. If true, PU ¼ P0 and f U ¼ f 0; if not, PL ¼ P0 and f L ¼ f 0.
9. Set a ¼ PL, b ¼ PU, fa ¼ f L, fb ¼ f U as the input parameters for Brent’s method.

10. Call Brent’s method, and record f and other essential parameters at the converged pressure P ¼ b.
11. Output f , P, phase compositions, phase fractions, and phase-compressibility factors.

Results and Discussion

In this section, we discuss the multiphase-equilibrium-calculation results for four hydrocarbon fluids mixed with injection gases. The
four hydrocarbon fluids are an acid gas (Pan and Firoozabadi 1998; Li and Firoozabadi 2012), Oil G (Khan et al. 1992; Pan et al. 2019),
North Ward Estes (NWE) oil (Khan et al. 1992; Okuno et al. 2010), and JEMA oil (Khan et al. 1992; Okuno et al. 2010). Appendix B
lists the properties of the four hydrocarbon fluids and the injection gases. Appendix C shows the four PX diagrams generated by running
the trust-region-based PT algorithm. No single failure is found during construction of these diagrams.

Next, we examine the convergence behavior of the newly developed VT algorithm. Finally, two detailed case studies are conducted
to calculate the isochores that involve one-phase, two-phase, and three-phase equilibria.

Convergence Behavior. We compare the convergence behavior of three versions of VT algorithms that are generated by using the
three equation-searching methods: Brent’s method, the secant method, and the bisection method. Note that the residual of the function
value is defined as absðf Þ and the termination criterion used in the VT algorithms is abs fð Þ < tol ¼ 1� 10�6. For comparative analysis,
we select several points on the phase boundaries or in the near-critical regions of the PX diagram for the acid gas case (Appendix C,
Fig. C-1), and the PT and PX diagrams for the Oil G case (Fig. 3 and Fig. C-2). Table 1 shows the selected five points and their
corresponding conditions.

No. Fluid Location on Phase Diagram

Pressure

(bar)

Temperature

(K)

Injected CO2

Fraction (mol%)

Estimated

Volume (cm3/mol)

1 Acid gas Three-phase boundary 39.0125 178.80 47.0 40.4546

2 Acid gas Two-phase boundary 13.4375 178.80 92.2 33.5512

3 Oil G Three-phase near-critical region 77.20 307.59 98.6 102.4006

4 Oil G Two-phase near-critical region 307.00 315.50 70.0 76.7663

5 Oil G Three-phase near-critical region 90.40 314.00 70.0 99.6498

Table 1—Selected study points and their corresponding conditions used in the convergence study.

Fig. 3—Two-phase envelope, three-phase envelope, and the isochoric line of 100 cm3/mol calculated for Oil G mixed with 70 mol%
injection gas.
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Figs. 4 through 8 compare the convergence behavior of the three VT algorithms at the selected points. Table 2 shows the corre-
sponding computation time. The calculations are performed in MATLAB using a desktop personal computer with IntelVR Core i7-3770
(Intel Corporation, Santa Clara, California, USA) central processing unit @3.4 GHz and with 12 GB RAM. In general, it can be seen
from Figs. 4 through 8 and Table 2 that Brent’s method appears to be the most robust and efficient method among the three methods.
The bisection method is also robust but computationally more expensive than Brent’s method. The secant method exhibits two different
patterns of convergence behavior. In the first pattern, the secant method can quickly converge to the solution (Figs. 4, 6, and 7). In the
other pattern, the secant method only converges to the solution after an excessive number of iterations (Figs. 5 and 8). We can also con-
clude from Figs. 4 through 8 and Table 2 that Brent’s method strikes a good balance between robustness and efficiency because Brent’s
method is a well-designed hybrid method that could switch to the most suitable method during iteration.

Fig. 9 shows the convergence behavior of the three algorithms along an isochore. This isochore is at 100 cm3/mol in the PT space
for the Oil G sample mixed with 70 mol% of pure CO2. Fig. 3 shows the corresponding phase envelopes calculated by the PT algorithm
and the isochore discussed here. Note that in Fig. 9, there are some points with one PT algorithm call because the values of f 0 at these
one-phase points directly satisfy the termination condition. The number of the PT algorithm calls tends to increase when the number of
equilibrating phases increases from one to two, as well as from two to three. As can be seen from Fig. 9, Brent’s method shows the
smallest average number of PT algorithm calls along the isochore from 250 to 500 K, followed by the bisection method. The two pat-
terns of convergence behavior exhibited by the secant method can also be observed in Fig. 9. Specifically, in the two-phase region at
relatively high temperatures, the number of PT algorithm calls by secant method remains as low as Brent’s method. When the tempera-
ture decreases to 328 K, the average number of PT algorithm calls required by the secant method abruptly jumps to 403.

Isochoric Computations. We show the calculation results for two case studies. The first case study is focused on the three-phase equi-
librium calculations for the NWE oil sample mixed with 70 mol% of an impure CO2 mixture (i.e., CO2/methane mixture), while the
second case study is focused on the three-phase equilibrium calculations for the JEMA oil sample mixed with 75 mol% of pure CO2.
Both mixtures exhibit three-phase vapor/liquid/liquid equilibria at low temperatures (Khan et al. 1992). In this subsection, we only
show the calculation results for the NWE oil, while Appendix D shows the calculation results for the JEMA oil.

Fig. 5—Convergence behavior of Brent’s method, secant method, and bisection method in the VT algorithms at 33.5512 cm3/mol
and 178.8 K for the acid gas case. The VT condition corresponds to a point at 13.4375 bar and 92.2 mol% of injected CO2 on the
two-phase boundary line in Fig. C-1.

Fig. 4—Convergence behavior of Brent’s method, secant method, and bisection method in the VT algorithms at 40.4546 cm3/mol
and 178.8 K for the acid gas case. The VT condition corresponds to a point at 39.0125 bar and 47.0 mol% of injected CO2 on the
three-phase boundary line in Fig. C-1.
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We first calculate the PT phase envelopes for the NWE oil mixed with 70 mol% injection gas using the PT algorithm. Fig. 10 shows
the calculation results. As temperature reduces (see Fig. 10), the bubblepoint curve of the two-phase envelope is uplifted to the
extremely high-pressure side of the phase diagram, instead of showing a downward trend as exhibited by the commonly seen reservoir
fluids. This is reminiscent of a liquid/liquid immiscibility phenomenon (Michelsen 1982b). Because of the liquid/liquid immiscibility,
one tiny three-phase vapor/liquid/liquid equilibrium region appears at the lower-left corner of the diagram. In Fig. 10 are also drawn the

Fig. 7—Convergence behavior of Brent’s method, secant method, and bisection method in the VT algorithms at 76.7663 cm3/mol
and 315.5 K for Oil G. The VT condition corresponds to a point at 307 bar and 315.5 K in the two-phase near-critical region of Fig. 3.

Fig. 6—Convergence behavior of Brent’s method, secant method, and bisection method in the VT algorithms at 102.4006 cm3/mol
and 307.59 K for Oil G. The VT condition corresponds to a point at 77.2 bar and 98.6 mol% of injected CO2 in the three-phase near-
critical region of Fig. C-2.

Fig. 8—Convergence behavior of Brent’s method, secant method, and bisection method in the VT algorithms at 99.6498 cm3/mol
and 314 K for Oil G. The VT condition corresponds to a point at 90.4 bar and 314 K in the three-phase near-critical region of Fig. 3.
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isochoric lines at constant molar volumes (ranging from 80 to 500 cm3/mol) that are computed with the proposed VT algorithm. These
isochoric lines are generated by repetitively performing the VT calculations under a constant molar volume but gradually reducing tem-
perature. Note that no single failure occurs during the VT computations along all the isochores shown in Fig. 10. As a part of Fig. 10,
Fig. 11 shows an enlarged view of the three-phase envelope together with the isochoric lines passing through the three-phase region.
Liquid/liquid equilibria reside above the three-phase envelope, while vapor/liquid equilibria prevail below the three-phase envelope. As
can be seen from Figs. 10 and 11, starting from the one-phase equilibria at higher pressures, all the isochoric lines tend to first encounter
the two-phase envelope and then pass through the three-phase envelope. Another interesting observation from Fig. 11 is that the slope
change of the isochoric lines transitioning from a liquid/liquid equilibrium to a vapor/liquid/liquid equilibrium is much more abrupt
than that exhibited by the isochoric lines transitioning from one vapor/liquid equilibrium to a vapor/liquid/liquid equilibrium.

Fig. 9—Number of PT algorithm calls required by Brent’s method, secant method, and bisection method in the VT algorithms along
an isochore of 100 cm3/mol for the Oil G sample mixed with 70 mol% of pure CO2.

Fig. 10—Two-phase and three-phase envelopes calculated for the NWE oil mixed with 70-mol% injection gas as shown in Appendix
B, Table B-3. The isochoric lines, calculated with the proposed VT algorithm, are also shown.

No. Fluid Location on Phase Diagram

Brent’s Method

(seconds)

Secant Method

(seconds)

Bisection Method

(seconds)

1 Acid gas Three-phase boundary 6.201 4.889 9.973

2 Acid gas Two-phase boundary 2.821 77.610 4.247

3 Oil G Three-phase near-critical region 7.865 6.691 16.710

4 Oil G Two-phase near-critical region 4.614 6.682 11.609

5 Oil G Three-phase near-critical region 5.740 132.013 17.289

Average 5.448 45.577 11.966

Table 2—Computation time at the selected points consumed by the three VT algorithms.
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In addition, one can observe an interesting feature exhibited by Figs. 10 and 11: All the isochores tend to trace back to the three-
phase region. This implies that if one conducts VT phase equilibrium calculations along a given isochore, it is highly likely for one to
sequentially encounter single-phase, two-phase, and three-phase equilibria. This becomes advantageous because one could initialize a
three-phase-envelope construction algorithm by locating the intersection between the isochore and the three-phase boundary. This is
one of the motivations underlying the development of density-based algorithms for constructing phase envelopes, as attempted by
Nichita (2019). Such a method of using a given isochore for initializing three-phase-envelope tracing algorithms is different from the
conventional approach (Michelsen 1980; Lindeloff and Michelsen 2003; Venkatarathnam 2014; Agger and Sørensen 2018; Cismondi
2018). Fig. 12 shows a projection of the two-phase and three-phase envelopes (shown in Fig. 10) in the temperature/molar-volume
space, while Fig. 13 shows the same projection in the temperature/density space. These phase boundaries are tracked using the isochoric
flash results calculated by the VT algorithm developed in this study. Similar charts are displayed in Molina et al. (2019) and Nichita
(2019). Nichita (2019) showed that the density-based calculation method can be readily applied to generate two-phase boundaries in the
temperature/density space.

Isochoric calculations can reveal how the phase fractions vary as a function of temperature in a fixed-volume cell. Fig. 14 illustrates
how the phase fractions vary as temperature reduces along an isochoric line of 80 cm3/mol. Along this isochoric line, the phase
equilibria switch from single liquid-phase equilibria to liquid/liquid two-phase equilibria and, finally, to vapor/liquid/liquid three-phase
equilibria. Note that the dashed curves for two- and three-phase boundaries in Fig. 14 are located at 332 and 276 K, respectively.
Fig. 15 illustrates how the phase fractions vary as temperature reduces along an isochoric line with a much larger molar volume of
120 cm3/mol. In a slightly different way, the phase equilibria switch from single vapor-phase equilibria to vapor/liquid two-phase equi-
libria and, finally, to vapor/liquid/liquid three-phase equilibria. The dashed curves for two- and three-phase boundaries are located at
547 and 297 K, respectively.

Fig. 16 shows the number of PT algorithm calls in the VT algorithm computations along the isochore of 120 cm3/mol. Similar to the
observation in Fig. 9, the number of PT algorithm calls in Fig. 16 increases with the increase in the number of equilibrating phases.
Along the isochore, the maximum number of the PT algorithm calls is 15 from 250 K to 800 K. Fig. 17 further shows a statistical sum-
mary of the number of PT algorithm calls during the VT algorithm computations for all the isochores shown in Fig. 10. Fig. 17 shows
that, on average, approximately 6.1 calls are required to converge the VT algorithm. The average number becomes 9.07 if we exclude
the points with one PT algorithm call. Results in Figs. 16 and 17 demonstrate a good overall efficiency of the proposed VT algorithm.

Fig. 11—Close-up view showing the three-phase boundary with the isochoric lines passing through the three-phase region for the
NWE oil mixed with 70 mol% injection gas.

Fig. 12—Projection of two-phase and three-phase envelopes in the temperature/molar-volume space calculated for the NWE oil
mixed with 70 mol% injection gas.
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Fig. 14—Variation of phase fractions vs. temperature along the isochore of 80 cm3/mol calculated for the NWE oil mixed with
70-mol% injection gas.

Fig. 15—Variation of phase fractions vs. temperature along the isochore of 120 cm3/mol for the NWE oil mixed with 70-mol%
injection gas.

Fig. 13—Projection of two-phase and three-phase envelopes in the temperature/density space calculated for the NWE oil mixed
with 70-mol% injection gas.
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Conclusions

In this work, we develop a robust and simple VT algorithm for conducting multiphase equilibrium calculations, especially for CO2-
inclusive mixtures. We draw the following conclusions from the present study:
1. The multiphase VT algorithm is built using a nested approach. The multiphase PT algorithm is embedded as the inner loop without

any further modifications, while an effective equation-solving algorithm (i.e., Brent’s method) is applied in the outer loop to solve
for the pressure corresponding to a given volume/temperature specification.

2. The robustness of the newly developed VT algorithm is safeguarded with the combined use of the trust-region-method-based PT algo-
rithm and Brent’s method. These two algorithms are shown to be very robust in previous studies as well as in the present study.

3. Our example calculations on several fluid mixtures demonstrate that the new VT algorithm is always able to converge to the correct phase
equilibria, including one-phase equilibria, vapor/liquid or liquid/liquid two-phase equilibria, and vapor/liquid/liquid three-phase equilibria.

4. The new algorithm is shown to be relatively efficient. On average, fewer than 10 times of the PT algorithm calls are required to con-
verge the VT algorithm calculations for two-phase and three-phase equilibria.

5. The potential applications of the developed VT algorithm are multifold. In particular, the VT algorithm presented in this study can
be potentially leveraged to provide reliable initializations in the phase-envelope-construction algorithm. We will try to develop a
new phase-envelope-construction algorithm using the developed multiphase VT algorithm as one of our future works.

Nomenclature

a, b, c, d, e ¼ independent variables; i.e., pressure values for the proposed VT algorithm
eps ¼ machine precision used in Brent’s method

f ¼ continuous function, defined by Eq. 3
fa, fb, fc ¼ function values calculated at a, b, c using Eq. 3

G ¼ Gibbs free energy
Kav ¼ average K-value estimation used in two-phase stability test

Kpure ¼ K-value estimation of corner point corresponding to a near-pure trial phase
Kideal ¼ K-value estimation considering ideal gas law

KWilson ¼ K-value estimation calculated by Wilson correlation
m, p, q, r, s ¼ intermediate variables in Brent’s method

Nc ¼ total number of components

Fig. 16—Number of PT algorithm calls in the implementation of the VT algorithm along the isochore of 120 cm3/mol for the NWE oil
mixed with 70-mol% injection gas.

Fig. 17—Statistical summary of the number of PT algorithm calls in the implementation of the VT algorithm along the isochores
shown in Fig. 10.
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P ¼ pressure, bar
Pc ¼ critical pressure, bar

t ¼ positive tolerance defined in Brent’s method
tol ¼ error tolerance
T ¼ temperature, K

Tc ¼ critical temperature, K
V ¼ molar volume, cm3/mol

Vspec ¼ specified molar volume, cm3/mol
x ¼ liquid-like phase composition
y ¼ vapor-like phase composition
z ¼ feed composition

x ¼ acentric factor
/̂ ¼ fugacity coefficient

Subscript

i, j ¼ component index

Superscripts

j ¼ component index
L ¼ lower limit
U ¼ upper limit
0 ¼ initial guess
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Mikyška, J. and Firoozabadi, A. 2011. A New Thermodynamic Function for Phase-Splitting at Constant Temperature, Moles, and Volume. AIChE J. 57

(7): 1897–1904. https://doi.org/10.1002/aic.12387.

Molina, M. J., Rodriguez-Reartes, S. B., and Zabaloy, M. S. 2019. Computation and Analysis of Binary Multiphase Isochors. Fluid Phase Equilib 500

(15 November): 112227. https://doi.org/10.1016/j.fluid.2019.06.017.

Nagarajan, N. R., Cullick, A. S., and Griewank, A. 1991. New Strategy for Phase Equilibrium and Critical Point Calculations by Thermodynamic

Energy Analysis. Part I. Stability Analysis and Flash. Fluid Phase Equilib 62 (3): 191–210. https://doi.org/10.1016/0378-3812(91)80010-S.

Nghiem, L. X., Aziz, K., and Li, Y. K. 1983. A Robust Iterative Method for Flash Calculations Using the Soave-Redlich-Kwong or the Peng-Robinson

Equation of State. SPE J. 23 (3): 521–530. SPE-8285-PA. https://doi.org/10.2118/8285-PA.

Nichita, D. V. 2018. New Unconstrained Minimization Methods for Robust Flash Calculations at Temperature, Volume and Moles Specifications. Fluid

Phase Equilib 466 (25 June): 31–47. https://doi.org/10.1016/j.fluid.2018.03.

Nichita, D. V. 2019. A Simple Approximate Density-Based Phase Envelope Construction Method. Fluid Phase Equilib 499 (1): 112245. https://doi.org/

10.1016/j.fluid.2019.112245.

Nocedal, J. and Wright, S. J. 2006. Numerical Optimization, second edition. New York, New York, USA: Springer Series in Operations Research,

Springer ScienceþBusiness Media.

Okuno, R., Johns, R., and Sepehrnoori, K. 2010. Three-Phase Flash in Compositional Simulation Using a Reduced Method. SPE J. 15 (3): 689–703.

SPE-125226-PA. https://doi.org/10.2118/125226-PA.

Pan, H., Chen, Y., Sheffield, J. et al. 2015. Phase-Behavior Modeling and Flow Simulation for Low-Temperature CO2 Injection. SPE Res Eval & Eng 18

(2): 250–263. SPE-170903-PA. https://doi.org/10.2118/170903-PA.

Pan, H., Connolly, M., and Tchelepi, H. 2019. Multiphase Equilibrium Calculation Framework for Compositional Simulation of CO2 Injection in Low-

Temperature Reservoirs. Ind. Eng. Chem. Res. 58 (5): 2052–2070. https://doi.org/10.1021/acs.iecr.8b05229.

Pan, H. and Firoozabadi, A. 1998. Complex Multiphase Equilibrium Calculations by Direct Minimization of Gibbs Free Energy by Use of Simulated

Annealing. SPE Res Eval & Eng 1 (1): 36–42. SPE-37689-PA. https://doi.org/10.2118/37689-PA.

Pan, H. and Firoozabadi, A. 2003. Fast and Robust Algorithm for Compositional Modeling: Part II—Two-Phase Flash Computations. SPE J. 8 (4):

380–391. SPE-71603-MS. https://doi.org/10.2118/71603-MS.

Pang, W. and Li, H. 2017. An Augmented Free-Water Three-Phase Flash Algorithm for CO2/Hydrocarbon/Water Mixtures. Fluid Phase Equilib 450 (25

October): 86–98. https://doi.org/10.1016/j.fluid.2017.07.010.

Pasqualette, M. D., Carneiro, J., Johansen, S. T. et al. 2020. A Numerical Assessment of Carbon-Dioxide-Rich Two-Phase Flows with Dense Phases in

Offshore Production Pipelines. SPE J. 25 (2): 712–731. SPE-199876-PA. https://doi.org/10.2118/199876-PA.

Perschke, D. R. 1988. Equation of State Phase Behavior Modeling for Compositional Simulation. PhD dissertation, University of Texas at Austin,

Austin, Texas, USA.

Petitfrere, M. and Nichita, D. V. 2014. Robust and Efficient Trust-Region Based Stability Analysis and Multiphase Flash Calculations. Fluid Phase Equi-

lib 362 (25 January): 51–68. https://doi.org/10.1016/j.fluid.2013.08.039.

Petitfrere, M., Nichita, D. V., Voskov, D. et al. 2020. Full-EoS Based Thermal Multiphase Compositional Simulation of CO2 and Steam Injection Pro-

cesses. J Pet Sci Eng 192 (September): 107241. https://doi.org/10.1016/j.petrol.2020.107241.
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Appendix A—Numerical Implementation of Brent’s Method

Fig. A-1 shows a flow chart of Brent’s method (Brent 1971). In Fig. A-1, the parameters a, b, c, d, and e are values of the independent
variables, which are pressure values in our problem. The parameters fa, fb, and fc are function values calculated at a, b, and c using Eq.
3. The parameters m, p, q, r, and s are intermediate variables. The finally calculated value of b is the solution of our problem. As shown
in Fig. A-1, two error tolerances, namely tol1 and tol2, are defined. In Brent’s definition, tol1 is defined for b as

tol1 ¼ 2� eps� jbj þ t; ðA-1Þ

where t is a positive tolerance and eps is the machine precision. In the implementation, one can pay more attention to the function
value fb, because fb¼0 means we find the root. Herein, we define tol2 as a user-defined tolerance that directly corresponds to the func-
tion value fb. We then set tol1 � tol2 so that the only active termination criterion of the algorithm is absðfbÞ � tol2. In the main text,
tol2 is directly represented instead by tol.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. A-1—Flow chart of Brent’s root-finding method (Brent 1971).
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Appendix B—Properties of Hydrocarbon Fluids and Injected Gases

Please see Tables B-1 through B-4.

Components

Oil Composition

(mol%)

Gas Composition

(mol%)

Molecular

Weight Tc (K) Pc (bar) x
BIP with

CO2*

BIP with

N2*

BIP with

H2S*

CO2 0 100 44 304.211 73.819 0.225 – – –

N2 7.026 0 28 126.2 33.9 0.039 –0.02 – –

H2S 1.966 0 34.1 373.2 89.4 0.081 0.12 0.2 –

C1 6.86 0 16 190.564 45.992 0.01141 0.125 0.031 0.1

C2 10.559 0 30.1 305.322 48.718 0.10574 0.135 0.042 0.08

C3 2.967 0 44.1 369.825 42.462 0.15813 0.15 0.091 0.08

*All the other BIPs are zero.

Table B-1—Fluid properties of acid gas sample and injection gas (Pan and Firoozabadi 1998; Li and Firoozabadi 2012). H2S ¼
hydrogen sulfide; N2 ¼ nitrogen.

Components

Oil Composition

(mol%)

Gas Composition

(mol%)

Molecular

Weight Tc (K) Pc (bar) x
BIP with

CO2*

CO2 1.69 100 44.01 304.2 73.76 0.225 –

C1 17.52 0 16.043 174.44 46 0.008 0.085

C2–3 22.44 0 37.9086 347.26 44.69 0.1331 0.085

C4–6 16.73 0 68.6715 459.74 34.18 0.2358 0.085

C7–14 24.22 0 135.0933 595.14 21.87 0.5977 0.104

C15–25 12.16 0 261.103 729.98 16.04 0.9118 0.104

C26þ 5.24 0 479.6983 910.18 15.21 1.2444 0.104

*All the other BIPs are zero.

Table B-2—Fluid properties of Oil G sample and injection gas (Khan et al. 1992; Pan et al. 2019).

Components

Oil Composition

(mol%)

Gas Composition

(mol%)

Molecular

Weight

Tc

(K) Pc (bar) x
BIP with

CO2*

CO2 0.77 95.0 44.01 304.20 73.76 0.225 –

C1 20.25 5.0 16.04 190.60 46.00 0.008 0.12

C2–3 11.80 0.0 38.4 343.64 45.05 0.130 0.12

C4–6 14.84 0.0 72.82 466.41 33.50 0.244 0.12

C7–14 28.63 0.0 135.82 603.07 24.24 0.600 0.12

C15–24 14.90 0.0 257.75 733.79 18.03 0.903 0.12

C25þ 8.81 0.0 479.95 923.20 17.26 1.229 0.12

*All the other BIPs are zero.

Table B-3—Fluid properties of NWE oil sample and injection gas (Khan et al. 1992; Okuno et al. 2010).

Components

Oil Composition

(mol%)

Gas Composition

(mol%)

Molecular

Weight Tc (K) Pc (bar) x
BIP with

CO2*

CO2 1.92 100.0 44.01 304.20 73.76 0.225 –

C1 6.93 0.0 16.04 166.67 46.00 0.008 0.05

C2–3 17.42 0.0 36.01 338.81 45.53 0.126 0.05

C4–6 19.44 0.0 70.52 466.12 33.68 0.244 0.05

C7–16 31.38 0.0 147.18 611.11 20.95 0.639 0.09

C17–29 15.49 0.0 301.48 777.78 15.88 1.000 0.09

C30þ 7.42 0.0 562.81 972.22 15.84 1.281 0.09

*All the other BIPs are zero.

Table B-4—Fluid properties of JEMA oil sample and injection gas (Khan et al. 1992; Okuno et al. 2010).
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Appendix C—Calculated PX Diagrams for the Four Fluid Mixtures

Figs. C-1 through C-4 show the PX phase diagrams for acid gas, Oil G, NWE oil, and JEMA oil. These diagrams are generated using
the trust-region-optimization-based PT algorithm. Note that the temperatures of the four cases are 178.8, 307.59, 301.48, and 316.48 K,
respectively. For each diagram, a total of 160,000 algorithm runs are involved. No single failure is found during these computations.
Fig. C-1 shows the most complex phase diagram with three single-phase, three two-phase, and one three-phase regions under relatively
low temperatures. For each diagram among Figs. C-2 through C-4, a large three-phase (i.e., three-phase vapor/liquid/liquid equilibria)
region appears in the lower right. In such a three-phase vapor/liquid/liquid equilibrium for CO2/oil mixtures, the first liquid phase is a
lighter phase rich in CO2, whereas the second liquid phase is a heavier phase rich in oil. For Figs. C-1 through C-4, it can be observed
that the phase boundaries have fairly smooth and consistent shapes.

Fig. C-1—PX diagram generated using the multiphase PT algorithm for the acid sample mixed with CO2 at 178.8 K. The graph is
generated by multiphase equilibrium calculations over a mole fraction interval of 0.002 and a pressure interval of 0.1375 bar.
A total of 160,000 equilibrium calculations are involved.

Fig. C-2—PX diagram generated using the multiphase PT algorithm for the Oil G sample mixed with the injection gas at 307.59 K.
The graph is generated by multiphase equilibrium calculations over a mole fraction interval of 0.002 and a pressure interval of
0.1 bar. A total of 160,000 equilibrium calculations are involved.
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Appendix D—Calculation Results for the JEMA Oil Sample and Injection Gas (Khan et al. 1992;
Okuno et al. 2010)

Please see Figs. D-1 through D-8.

Fig. C-3—PX diagram generated using the multiphase PT algorithm for the NWE oil sample mixed with the injection gas at
301.48 K. The graph is generated by multiphase equilibrium calculations over a mole fraction interval of 0.0025 and a pressure
interval of 0.175 bar. A total of 160,000 equilibrium calculations are involved.

Fig. C-4—PX diagram generated using the multiphase PT algorithm for the JEMA oil sample mixed with the injection gas at
316.48 K. The graph is generated by multiphase equilibrium calculations over a mole fraction interval of 0.0025 and a pressure
interval of 0.175 bar. A total of 160,000 equilibrium calculations are involved.

Fig. D-1—Two-phase and three-phase envelopes calculated for the JEMA oil mixed with 75-mol% injection gas as shown in
Table B-4. The isochoric lines are also calculated with the proposed algorithm and drawn.
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Fig. D-2—Close-up view of the three-phase boundary shown in Fig. D-1 with the isochoric lines passing through the three-
phase region.

Fig. D-3—Projection of two-phase and three-phase envelopes in the temperature/volume space calculated for the JEMA oil mixed
with 75-mol% injection gas.

Fig. D-4—Projection of two-phase and three-phase envelopes in the temperature/density space calculated for the JEMA oil mixed
with 75-mol% injection gas.
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Fig. D-5—Variation of phase fractions vs. temperature along the isochore of 77 cm3/mol calculated for the JEMA oil mixed with
75-mol% injection gas.

Fig. D-6—Variation of phase fractions vs. temperature along the isochore of 120 cm3/mol calculated for the JEMA oil mixed with
75-mol% injection gas.

Fig. D-7—Number of PT algorithm calls in the implementation of the VT algorithm along the isochore of 120 cm3/mol for the JEMA
oil mixed with 75-mol% injection gas.
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Fig. D-8—Statistical summary of the number of PT algorithm calls in the implementation of the VT algorithm along the isochores
shown in Fig. D-1.
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