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ABSTRACT The concept of virtual synchronous machine (VSM) was proposed to deal with the shortcom-
ings of low inertia and damping of traditional control strategies for power electronic converters. But what
if all distributed energy resources and controllable loads in a microgrid adopt the VSM control strategy,
and will it present better performance than conventional droop control-based microgrid (DMG)? In this
paper, the VSM-based microgrid (VSMG) is analyzed. The small-signal modeling of the VSMG is studied
at first. Then static stability and dynamic characteristics of the VSMG are analyzed and compared with the
DMG in both frequency-domain and time-domain. With the growing scale of microgrids, their modeling and
simulation are becoming significant computational burdens. Inspired by the participation factor analysis of
the VSMG and the concept of coherency in power systems, the VSMG small-signal model is equivalent to a
modified third-order synchronous generator (SG) model in this paper. The equivalencing involves gray-box
system identification and is realized by estimating equivalent electrical parameters alternately and iteratively.
The equivalent SG (EqSG) model is compared with three representative model order reduction methods to
verify its effectiveness. Simulation results confirm the accuracy of the EqSG model substituting detailed
VSMG model in time-domain simulations.

INDEX TERMS Microgrid modeling, model order reduction, virtual synchronous machine, small-signal
modeling.

I. INTRODUCTION
With high penetration of distributed energy resources (DERs)
and mass access of controllable loads, power systems
are experiencing a paradigm shift from centralized and
rotational generator-dominated systems to distributed and
inverter-dominated systems [1]. In the modern power system,
DERs and controllable loads are often integrated into amicro-
grid, and the hierarchical structure of microgrid - microgrid
groups - active distribution network (ADN) is constructed.
Microgrids not only promote the integration of renewable
resources, but also improve the control flexibility of power
systems [2]. However, the extensive introduction of power
electronic devices reduces the overall inertia level and dam-
ages the frequency stability of power systems [3], which is
more prominent in microgrids. This is because conventional
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control strategies for grid-connected inverters, such as PQ
control and droop control strategies, lack inertia and damping
as synchronous generators (SGs). To deal with this dilemma,
the technology of virtual synchronous machine (VSM) [4]
was proposed to provide inertia support to power systems.
Although control strategies emulating virtual inertia in exist-
ing literatures, such as VSM [5], virtual synchronous gener-
ator [6], [7], synchronverter [8] and demand side VSM [9],
were slightly different from each other, the principles were
similar in the aspect that all of them mimic the inertial
characteristic of the SG by emulating its fundamental swing
equation. Thus, it is widely recognized that control strategies
providing virtual inertia by introducing the swing equation
can be classified as VSM control.

But whether the introduction of VSM technology into
microgrids will improve their dynamic responses and static
stabilities still requires research and verification. VSM con-
trol was compared with frequency droop control in [10], and
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it concluded that both schemes could be regarded as equiva-
lence under certain conditions. But the low-pass filter (LPF)
of themeasured output powerwas ignored in theVSMcontrol
scheme, which was not in accord with the practical applica-
tion. Besides, only the frequency-active power (f-P) response
was analyzed and the coupling interaction between voltage
and active power was dismissed, i.e., a lowR/X ratio was con-
sidered as an implicit assumption, which was not suitable for
the microgrid practice. Comparisons of dynamic characteris-
tics between VSM control and droop control was discussed
in [11], and it demonstrated that VSM control had better
frequency stability than droop control. It was proved in [12]
that frequency resonance between SGs could be suppressed
with the introduction of a VSM. However, only single-VSM
scenario and SG-connected scenario were considered in [11]
and [12], which was too simple to meet the scale of an actual
microgrid. Besides, few researches considered the demand
side VSM in a microgrid.

To analyze dynamic characteristics of a microgrid, the first
step is its small-signal modeling [13]. A practical micro-
grid can be described by numerous nonlinear differen-
tial algebraic equations (DAEs). The small-signal model is
obtained by linearizing the nonlinear DAEs around a set of
steady-state operating points. However, for microgrids, their
small-signal models exhibit multi-time scale characteristics,
which requires small time steps for fast dynamics and a long
simulation time to capture slow dynamics [14]. With the
growing scale of microgrids, their time-domain simulations
are becoming time-consuming and computational burdens.
The necessity of model order reduction (MOR) for micro-
grids has never been more obvious.

According to [15], MOR methods are generally classi-
fied into three categories, i.e., polynomial approximations,
state truncations and parameter optimizations. Polynomial
approximation methods are based on matching moments or
Markov parameters between the original and reduced-order
models, which are applied to transfer function models, e.g.,
Padé approximation (PA). State truncation methods usually
involve transformations of the original state-space model
to reconfigure states according to observability, controlla-
bility or response time, etc., and elimination of ‘‘less sig-
nificant’’ states, e.g., balanced transformation (BT) method
and singular perturbation (SP) method. Parameter optimiza-
tion approaches are based on optimizing parameters of
reduced-order models to minimize errors of response data
between reduced and original models, e.g., gray-box system
identification.

As small-signal models of microgrids are often described
in state-space forms, polynomial approximation methods
were seldom used in microgrids MOR, whereas state trun-
cation methods, especially the SP method, were commonly
used methods. In [16], the SP method was used to obtain
reduced-order models for islanded microgrids by exploiting
different dominant time constants. Stability properties of the
reduced model turned out to be consistent with the original
model, so that the stability analysis of islanded microgrids

could be simplified. In [17], the SP method was used to
obtain the reduced-order small-signal model of a microgrid
in both grid-connected and islanded conditions. Time-domain
dynamic responses of the reduced model presented slight dif-
ference against the full-order model. In [18], the SP method
and Kron reduction were combined to reduce large-signal
dynamic models of islanded microgrids in temporal and spa-
tial aspects, respectively. In [19], a method properly elim-
inating fast states of network dynamics was proposed for
microgrids to predict stable regions of droop coefficients
more accurately than the quasi-stationary reduced model
neglecting all network dynamics. However, the common dis-
advantage of these methods is that the states in reduced-order
models lose their original physical meanings.

The parameter optimization approach can also be inter-
preted as developing the dynamic equivalent model. In [20],
the evolutionary particle swarm optimization based gray-box
system identification was used to obtain an equivalent model
for f-P dynamics of a microgrid. In [21], [22], black-box
models for microgrids using the Pronymethod were proposed
based on measurements of voltage, current and output power
at the point of common coupling (PCC). In [23], a novel
structure gray-box model including basic electrical com-
ponents was proposed for microgrid system identification.
The identification procedure was carried out by four genetic
algorithm-based optimization steps using measurement data
at the PCC. The common disadvantage of these methods is
that the accuracy of reduced models is affected by the scale
of measurement data.

In this paper, the VSM-based microgrid (VSMG) is stud-
ied, in which both DERs (including energy storage systems)
and controllable loads (with rectifiers at their front end) all
adopt VSM control. In the frequency-domain, modal analysis
is applied to the VSMG small-signal model to clarify the
interaction between states and modes in the VSMG. Besides,
bode plots, eigenvalue trajectories and time-domain dynamic
responses of various scenarios are comparatively analyzed
between VSMG and droop control-based microgrid (DMG)
to figure out the influences of VSM control on dynamic
characteristics of microgrids. Inspired by the conclusion of
participation factor analysis and the thought of coherency
in power systems, a new MOR method for VSMG is pro-
posed by equivalencing the detailed small-signal model to
a modified third-order SG model. The proposed equivalent
SG (EqSG) method derives equivalent electrical parameters
for the VSMG and remains certain physical meanings in the
reduced states without relying on measurement data.

The remainder of this paper is organized as follows.
The detailed small-signal model of the VSMG is built in
Section II. Static stability and dynamic characteristics of
the VSMG are analyzed and compared with the DMG in
Section III. Then in Section IV, three representative MOR
methods, i.e., BT, SP and poles clustering-based PA (PCPA)
methods, are reviewed and applied to the VSMG model.
In Section V, the proposed EqSG method is developed and
introduced in detail. In Section VI, four MOR methods
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are compared to summarize their advantages and disad-
vantages, and the effectiveness of the proposed method is
verified through simulation studies. Finally, the conclusions
are drawn in Section VII.

II. SMALL-SIGNAL MODELING OF THE VSMG
In this Section, modeling of the VSMG is analyzed and
expressed in terms of DAEs at first. These equations are non-
linear and need to be linearized around a set of equilibrium
points, i.e., small-signal modeling, to study the system static
stability and dynamic responses. Structure of the studied
VSMG is shown as Fig. 1, where DER1 (SG) at Bus0,
DER2 (VSM) at Bus1 and a controllable load (VSM) at
Bus2 are connected to a local load at Bus3 through three
distribution lines. Thismicrogrid is connected to the upstream
network from Bus3 through a grid-connection line. In view
of existing researches on DMGmodeling [13], [18] and [24],
this Section focuses on the distinctions appeared in VSMG
modeling.

FIGURE 1. Structure of the studied VSMG.

A. MODELING OF A VSM
The block diagram of a VSM is shown in Fig. 2. The power
part consists of a three-leg converter and a LC filter. Since the
dc side of a VSM often contains an energy storage module to
provide inertial energy support and responds fast enough to
maintain dc voltage stable, it can be equivalent to an ideal
dc source. The control part can be divided into three parts,
i.e., VSM control loop, virtual impedance control and voltage
current dual-loop control. The VSMmodel is implemented in
its local rotational reference frame (dq-axis). Subscript d or

FIGURE 2. Block diagram of a VSM.

q appeared in the following voltages and currents represents
corresponding d or q axis component.

1) VSM CONTROL LOOP
VSM control loop generates the virtual internal electromotive
force. The function of this loop is to control the output
power of the converter. Active power control is realized by
mimicking the swing equation:

J ω̇ = (Pm − Pe)/ω − Dp(ω − ωn) (1)

where J and Dp are virtual moment of inertia and virtual
damping factor, respectively; ωn and ω are nominal angular
frequency and VSM’s virtual angular frequency, respectively;
Pm andPe are active power reference and output active power,
respectively. The dq-axis output voltage (vcd , vcq) and current
(iod , ioq) measurements are used to calculate the instanta-
neous output active power, and a first-order LPF with the
corner frequency ωc is used to obtain Pe:

Ṗe = 1.5ωc(vcd iod + vcqioq)− ωcPe (2)

Note that the filtered output power is selected as the feedback
power value, so as to attenuate potential ripples in the instan-
taneous power, which will reflect in frequency andmagnitude
of the voltage reference [7].

Its reactive power control mainly consists of a droop link
and an integral link, so as to mimic voltage-reactive power
(V-Q) droop characteristic and excitation inertia.

KĖ = Qm − Qe − Dq(U − Un) (3)

where E is magnitude of the virtual internal electromotive

force,U =
√
vcd 2 + vcq2 is the output voltage magnitude,Un

denotes the nominal voltage magnitude, K and Dq are virtual
excitation inertia factor andV-Q damping factor, respectively;
Qm and Qe are reactive power reference and output reactive
power, respectively. Similar to Pe, Qe is the filtered instanta-
neous reactive power:

Q̇e = 1.5ωc(vcqiod − vcd ioq)− ωcQe (4)

2) VIRTUAL IMPEDANCE CONTROL
Virtual impedance control generates the virtual stator termi-
nal voltage reference (vcd∗, vcq∗). Its function is to simulate
the stator impedance. It increases the output impedance to
help inhibit harmonic circulation between paralleled VSMs
and help the decoupling of active and reactive power control.{

vcd∗ = E − rviod + ωLvioq
vcq∗ = −rvioq − ωLviod

(5)

where rv and Lv are virtual resistance and virtual inductance,
respectively. Dynamics of the virtual inductance are not con-
sidered to avoid instability or poorly damped oscillations
caused by the introduction of current derivative [25].
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3) VOLTAGE CURRENT DUAL-LOOP CONTROL AND THE
POWER PART
Voltage current dual-loop control generates voltage command
for the space vector pulse width modulation (SVPWM),
in which PI controllers are adopted. Its function is to control
vcd and vcq tracking vcd∗ and vcq∗ promptly and errorlessly.
As the modeling of PI controllers, voltage source convert-
ers and LC filters is identical between VSMs and droop
control-based inverters, equations of this part are listed in
Appendix A.

B. COMPLETE MICROGRID MODEL
Network dynamics are generally neglected in small-signal
modeling of conventional power systems. However, in the
case of microgrids, network dynamics can greatly influence
the slow states associated with inverter power controllers [19]
and further influence the system stability under certain cir-
cumstances [13]. Here, dynamics of the network and the local
load are considered, and corresponding DAEs are presented
in Appendix A.

Modeling of the SG considers dynamics of the prime
mover (pm), excitation (vf ), rotor rotation (ωr ), stator
(ϕd , ϕq), field (ϕfd ) and damper (ϕkd , ϕkq) windings, which
was discussed in detail in [26]. Then, combining all the DAEs
of each component mentioned above, the nonlinear model of
the studied VSMG can be established in the format as (6).{

ẋ = f (x, u)
y = g(x, u)

(6)

where y is the output vector, which is determined accord-
ing to research needs, x and u denote the state vector
and the input vector, respectively. For the islanded VSMG,
u = [ rload Lload ]T , where rload and Lload are resistance
and inductance of the local load, respectively. And for the
grid-connected VSMG, u = [ωg Ug ]T , where ωg and
Ug denote angular frequency and voltage magnitude of the
upstream network at PCC, respectively.

C. SMALL-SIGNAL MODEL OF THE SYSTEM
The small-signal model is obtained by linearizing (6) at a set
of equilibrium points. There are two ways of finding equilib-
rium points. One method is to set the left part of the differ-
ential equations in (6) to zero, as 0 = f (x, u), and then solve
these equations to determine the equilibrium points. The other
is to simulate the nonlinear model and take a snapshot at a cer-
tain time when the system reaches steady-state. Because both
methods yield same results, the simulation-based method
was used in this paper. System parameters of the studied
VSMG are displayed in Appendix A. The small-signal model
represented in the state-space format as (7) can be generated
using MATLAB Symbolic Math Toolbox.{

1ẋ = A1x + B1u
1y = C1x + D1u

(7)

where 1 denotes small disturbance.

As the following dynamic analysis focuses on the influ-
ences introduced by VSM control in a microgrid and the
comparison of dynamic characteristics between VSMG and
DMG, only local control is considered in the microgrid mod-
eling. Besides, the studied DMGmaintains the same network
structure and system parameters as the VSMG except for the
power control loop. In the studied DMG, the power control
loop of DER2 adopts the droop control strategy:

ω = ωn + Kf (Pm − Pe) (8)

E = Un + Kv(Qm − Qe) (9)

where droop coefficients Kf and Kv are determined by realiz-
ing the same steady-state droop effect as Dp and Dq, respec-
tively, according to (10).{

Kf = 1/(ωnDp)
Kv = 1/Dq

(10)

Besides, the controllable load in the VSMG is substituted
by a constant load with the same power consuming in the
DMG.

III. DYNAMIC ANALYSIS OF THE VSMG
A. FREQUENCY-DOMAIN ANALYSIS
Because the islanded operation of microgrids is more prone to
instability, the frequency-domain analysis is mainly focused
on the islanded VSMG. All eigenvalues (λ1−42) of the
islanded VSMG are listed in Appendix B and corresponding
eigenvalue spectrum is shown in Fig. 3. As λ39−42 are far
from the imaginary axis and have little influence on the stabil-
ity and dynamics of the system, they are not shown in Fig. 3.
The eigenvalue spectrum can be divided into three groups
according to its distribution in the s plane. The eigenvalues in
group 1 are close to the imaginary axis and are critical to the
small-signal stability. It is necessary to analyze which states
are sensitive to these eigenvalues.

FIGURE 3. Eigenvalue spectrum of the studied VSMG.

1) PARTICIPATION FACTOR ANALYSIS
Participation factor reflects the degree of each state partic-
ipating in every mode (eigenvalue). Assume wiT and vi are
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respectively the left and right eigenvectors corresponding
to λi of matrix A. The components of vi indicate the relative
activity of each state in the ith mode. The components of wiT

weight the effect of initial conditions in exciting the ith mode.
The normalized participation factor is defined as:

pi =

∣∣wiT ∣∣ |vi|
N∑
k=1

(∣∣wkT ∣∣ |vk |) (11)

where N is the number of eigenvalues.
Using (11), major participants of each mode can be found,

which are listed in Appendix B. Eigenvalues in group 3
are mainly influenced by the states derived from the local
load, LC filters and the network impedance. Eigenvalues
λ29−32,35−38 have relatively high natural frequency, which is
determined by the inherent resonance characteristic of LC fil-
ters. Eigenvalues λ33,34 indicate that dynamics of the network
should not be ignored in the microgrid modeling, because
this pair of conjugate eigenvalues is mainly stimulated by
the interaction of LC filters and the network impedance.
In terms of eigenvalues in group 2, they are mainly affected
by the current controllers of VSMs and the stator inductance
of the SG. Eigenvalues λ21−24 indicate that PI parameters
in the current controllers are well-designed as these modes
are well-damped and have relatively small time constants.
As for eigenvalues in group 1, the states that have relatively
large participation factors are mainly from the SG and VSM
control loop. Thus, these states are crucial in influencing the
small-signal stability. Furthermore, eigenvalues in group 1
have relatively large time constants, which indicates that they
are slow dynamics in the transient process. In other words,
the quality of dynamic responses is mainly influenced by the
states derived from the SG and VSM control loop.

2) FREQUENCY RESPONSE COMPARISON
Fig. 4 compares bode plots of islanded VSMG and DMG.
It can be seen form Fig. 4(a) and (b) that the difference of
frequency characteristics only occurs in the low frequency
band. Besides, the absolute amplitude gain is smaller in the

FIGURE 4. Bode plots of islanded VSMG and DMG: (a) frequency-domain
response from 1rload to voltage frequency of Bus3, (b) frequency-domain
response from 1Lload to voltage magnitude of Bus3.

case of VSMG than that of DMG, which indicates the voltage
frequency and magnitude of VSMG are less disturbed when
the local load changes.

3) SMALL-SIGNAL STABILITY COMPARISON
In order to test small-signal stabilities of islanded VSMG and
DMG, trajectories of dominant eigenvalues are derived by
varying the local load, damping factors (droop coefficients)
and virtual impedance parameters in the small-signal mod-
els, as shown in Fig. 5, where arrows specify increasing of
corresponding parameters. The influence of changing virtual
inertia parameters is not analyzed here as it was discussed
in [6] and [11] and cannot form a comparative analysis with
the DMG.

FIGURE 5. Eigenvalue trajectories of changing the local load, damping
factors (droop coefficients) and virtual impedance parameters:
(a) changing rload from 0.1 to 5, (b) changing Lload from 1e-4 to 1e-2,
(c) changing rv from 0 to 2.8, (d) changing Lv from 2e-3 to 1.4e-2,
(e) changing Dp from 5 to 10, (f) changing Dq from 6.5 to 1e4.

It can be observed form Fig. 5(a) and (b) that the varia-
tion of rload or Lload has little effect on the dominant real
eigenvalues for both microgrids, and their locations are very
close in the s plane. As rload increases, the dominant con-
jugate eigenvalues of both microgrids move toward the left,
indicating increase of small-signal stabilities, whereas the
growing Lload leads to the opposite situation. Besides, with
the same rload or Lload , dominant conjugate eigenvalues in
the VSMG are distinctly farther from the imaginary axis than
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those in the DMG, indicating better damping ratios in the
dominant oscillation modes of VSMG.

Fig. 5(c) and (d) exhibit eigenvalue trajectories with damp-
ing factors Dp and Dq increasing (corresponding droop coef-
ficients Kf and Kv are determined according to (10)). It can
be seen from Fig. 5(c) that small-signal stabilities of both
microgrids gradually increase with Dp growing. Under the
premise of achieving the same steady-state droop effect,Dp in
the VSMG has a larger stable region than Kf in the DMG.
In Fig. 5(d), when Dq = 6.5, the DMG is small-signal unsta-
ble as there exists a pair of conjugate eigenvalues (15± i673)
on the right half of the s plane (which are not shown in the fig-
ure since they are far from the origin), whereas the VSMG is
small-signal stable. Then, asDq increases, the DMG becomes
small-signal stable, and the dominant real eigenvalues in both
systems travel toward the unstable region, which indicates
that small-signal stabilities of both microgrids are degraded.
When Dq = 1e4, the DMG remains small-signal stable,
whereas the VSMG becomes small-signal critical stable.

The reason why VSMG and DMG exhibit different sta-
bility with too small or too large Dq can be explained by
analyzing (3) and (9). According to (3), the reactive power
control of VSM is realized by detecting the terminal volt-
age deviation and adjusting the virtual internal electromotive
force E . Besides, with the additional integral link, its output
reactive power can be accurately controlled as Qe = Qm +
Dq(U − Un). Thus, a relatively large Dq results in a large
adjustment in E and a large deviation in Qe, which is prone
to cause instability, whereas a relatively small Dq can remain
stable for the VSMG. According to (9), the reactive power
control of droop control strategy is realized by detecting the
output reactive power Qe and adjusting the voltage refer-
ence E . A relatively small Dq results in a large adjustment
in E , which is prone to cause instability, whereas a relatively
large Dq can remain stable for the DMG. Even though the
stable regions of Dq and Kv cannot be compared as they
perform opposite stability at both ends of the parameters
interval, the dominant conjugate eigenvalues in the VSMG
have lower natural oscillation frequency and greater damping
ratio compared to the DMG, which indicates the VSMG has
better dynamic performance than the DMG under the same
steady-state reactive power droop.

It can be observed from Fig. 5(e) and (f) that the effects of
increasing rv and Lv are similar. For the DMG, the increasing
of virtual impedance (no matter rv or Lv) introduces addi-
tional voltage drop and is equivalent to increasing Kv [27],
i.e., decreasing Dq, so that eigenvalue trajectories of DMG
are consistent with Fig. 5(d). However, for the VSMG,
the additional voltage drop effect can be alleviated with the
additional integral link in (3) by increasing E , so that the
stability of VSMG is less sensitive to virtual impedance
parameters, as indicated by the real dominant eigenvalues in
Fig. 5(e) and (f). This also confirms that VSMG has wider
stable regions for rv and Lv than DMG. Hence, VSMG is
significantly more robust against parameter variations and
load uncertainties than DMG.

FIGURE 6. Time-domain responses of VSMG and DMG: (a) voltage
frequency responses in the islanded operation, (b) voltage magnitude
responses in the islanded operation, (c) output active power responses in
the grid-connected operation, (d) output reactive power responses in the
grid-connected operation.

B. TIME-DOMAIN ANALYSIS
Time-domain responses (obtained by simulation of nonlinear
DAEs) of both kinds of microgrids are compared in both
islanded and grid-connected operation. In the islanded opera-
tion, dynamic responses of voltage frequency and magnitude
at Bus3 are compared under the local load changing from
25 + j10 kVA to 50 + j10 kVA at time t = 5s, as shown
in Fig. 6(a) and (b). Before the load changes, the voltage
frequency and magnitude in the VSMG are closer to nominal
values, i.e., 50Hz and 311V, respectively. From Fig. 6(a),
it can be seen that the maximum frequency drop of the VSMG
is 1fV ,max = 0.14Hz, while that of the DMG is 1fD,max =

0.21Hz. The steady-state frequency drop of the VSMG is
1fV = 0.07Hz, while that of the DMG is 1fD = 0.08Hz.
The maximum absolute value of the rate of change of fre-
quency (ROCOF) in the case of VSMG is 5.06Hz/s, while that
of the DMG is 6.00Hz/s. From Fig. 6(b), it can be observed
that the maximum voltage drop of the VSMG is 1UV ,max =

23.2V, while that of the DMS is 1UD,max = 28.1V. The
steady-state voltage drop of the VSMG is 1UV = 9.3V,
while that of the DMG is 1UD = 11.7V. The deviations of
voltage frequency and magnitude are smaller in the VSMG
than in the DMG in both dynamic process and steady-state,
which agrees with the frequency-domain analysis.

In the grid-connected operation, dynamic responses of
output active and reactive power are compared under distur-
bances of ωg and Ug. Figure 6(c) depicts dynamic responses
of output active power with ωg dropping 0.2π rad/s from the
nominal value at t = 10s, where negative values mean the
power is absorbed from the upstream network and vice versa.
The variation of output active power in the VSMG (1PoV =
21.0kW) is greater than that in the DMG (1PoD = 10.6kW).
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Note that before ωg drops, the steady-state output active
power of the VSMG is slightly smaller than that of the DMG.
This is because the voltage magnitude at Bus3 is higher in the
case of VSMG, which leads to a larger absorbed active power
by the local load in the VSMG. Figure 6(d) shows dynamic
responses of output reactive power with Ug dropping 0.1p.u.
from the nominal value at t = 10s. The change of output
reactive power in the VSMG (1QoV = 18.8kvar) is greater
than that in the DMG (1QoD = 15.5kvar). It is clear that
the VSMG provides more active and reactive power support
than the DMGwhen voltage frequency and magnitude distur-
bances occur in the upstream network.

Time-domain comparisons indicate that VSMG per-
forms better responses than DMG in both islanded and
grid-connected operation. This is because, firstly, VSM con-
trol can be applied to both the supply side and the demand
side. In the studied VSMG, both DER2 and the control-
lable load applying VSM control can automatically adjust
their output power to reduce fluctuations of local voltage
frequency and magnitude in the islanded operation and sup-
port the upstream network in the grid-connected operation,
whereas only power supplies in the DMG can participate in
the system regulation. Thus, VSMG have more satisfactory
steady-state values than DMG. Secondly, in the case of rea-
sonable design of virtual inertia parameters, the additional
dynamics introduced by VSM control are coordinated with
the inherent inertial dynamics of the SG, so as to reduce
oscillations and smooth fluctuations in the dynamic process.

IV. MODEL ORDER REDUCTION OF THE VSMG
With the growing scale of VSMG, the order of its model will
inevitably increase, so as the computational burdens of its
analysis and simulation. In this Section, three representative
MORmethods, i.e., BT, SP and PCPAmethods are applied to
the VSMG model.

A. MODEL ORDER REDUCTION BASED ON BALANCED
TRANSFORMATION
Generally speaking, BT is a state coordinate transforma-
tion that makes the controllability and observability Gram-
mians of the system identical and diagonal. Consider the
small-signal VSMG model represented as (7), where A is
assumed asymptotically stable, the pair (A, B) is assumed
controllable and the pair (C , A) is assumed observable. The
controllability and observability Grammians, denoted as P
andQ, respectively, can be obtained by solving the Lyapunov
equation: {

AP+ PAT + BBT = 0
ATQ+ QA+ CTC = 0

(12)

It is known that there exists an invertible matrix T to obtain
the balanced realization [28] of (7) as (1 is omitted for simple
expression): {

ẋb = Abxb + Bbu
y = Cbxb + Du

(13)

where xb = Tx, Ab = TAT−1, Bb = TB, Cb = CT , with
corresponding controllability and observability Grammians
Pb and Qb satisfying the following equation:

Pb = Qb = 6 = diag {σ1, σ2, . . . , σN } ,

σ1 ≥ σ2 ≥ . . . ≥ σN > 0 (14)

where σi is the so called Hankel singular value (HSV) and
σi =

√
λi(PQ). λi(PQ) denotes the ith eigenvalue of PQ.

The HSVs are important criteria in system MOR because
theymeasure the contribution of each state to the input-output
behavior. Detailed steps of obtaining T is elaborated in [29].

Assuming that the ratio:

N∑
i=r+1

σi/

N∑
i=1

σi

is less than an acceptable small value, the states in (13)
with indices from r + 1 to N can be regarded having little
contribution to dynamic responses and can be eliminated by
considering corresponding dynamics equal to 0. Then the bal-
anced VSMG model (13) can be rewritten in the partitioned
quasi-steady-state format as:

xb =
[
xb1
xb2

]
,Ab =

[
A11 A12
A21 A22

]
,

Bb =
[
B11
B22

]
,Cb =

[
C11 C22

]
,

ẋb1 = A11xb1 + A12xb2 + B11u
0 = A21xb1 + A22xb2 + B22u
y = C11xb1 + C22xb2 + Du

(15)

whereA11 is of dimension r×r , andA22 is of (N−r)×(N−r),
with remaining matrices having corresponding dimensions
consistent with the system dimensions defined in (13). Even
though the dynamics of xb2 are discarded, its steady-state gain
can be remained by replacing (16) into (15).

xb2 = −A
−1
22 (A21xb1 + B22u) (16)

Thus, the reduced VSMG model can be derived as:{
ẋb1 = Arxb1 + Bru
y = Crxb1 + Dru

(17)

where Ar = A11−A12A
−1
22 A21, Br = B11−A12A

−1
22 B22, Cr =

C11−C22A
−1
22 A21 and Dr = D−C22A

−1
22 B22. Theoretically,

BT method can reduce the system model to arbitrary order.

B. MODEL ORDER REDUCTION BASED ON SINGULAR
PERTURBATION
The SP theory believes that the singular perturbed system
can be decoupled into independent slow and fast subsystems,
and the system reduction can be realized by neglecting the
fast subsystem. For the VSMG with greater inertia than con-
ventional microgrids, where slow dynamics are dominant,
neglecting fast dynamics will have little influence in system
responses. The VSMG model as (7) should be transformed
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into the singularly perturbed format before applying the SP
method. According to the participation factor analysis, rear-
range state vector of (7) such that slow states x1 are placed
at upper rows and fast states x2 are placed at lower rows, and
the singularly perturbed presentation of (7) can be denoted as
(1 is omitted for simple expression):

ẋ1 = A1x1 + A2x2 + B1u
εẋ2 = A3x1 + A4x2 + B2u
y = C1x1 + C2x2 + Du

(18)

where ε is a small positive singular perturbation parameter
that indicates the separation between slow and fast states.
Applying the Chang transformation, (18) can be decoupled
into independent slow and fast subsystems as:

ż1 = Asz1 + Bsu
εż2 = Af z2 + Bf u
y = Csz1 + Cf z2 + Du

(19)

where z1 and z2 are decoupled slow and fast states, respec-
tively; As = A1 − A2L, Bs = B1 − MLB1 − MB2/ε,
Af = LA2+A4/ε, Bf = LB1+B2/ε, Cs = C1−C2L, Cf =
C2 − εC2LM + εC1M , matrices L and M are introduced by
Chang transformation and can be solved by iterations detailed
in [17]. Since small ε is associated with the decoupled fast
subsystem, (19) can be reduced as:{

ż1 = Asz1 + Bsu
y = Csz1 + Du

(20)

The SP method decouples the original system into inde-
pendent fast and slow subsystems by calculating ‘‘boundary
layer’’ corrections in separate time scales [30]. Generally
speaking, this method allows for proper inclusion of possible
effect that fast states have on the slow subsystem. The model
proposed in [19] was essentially the first iteration of L and
M and deriving corresponding reduced microgrid model.
Additionally, SP method can only reduce the VSMG model
to certain orders where the states present distinct separation
of time scales, otherwise matrices L andM cannot be solved.

C. MODEL ORDER REDUCTION BASED ON POLES
CLUSTERING
The PCPA method is suitable to reduce systems represented
by transfer functions. Most MOR methods for transfer func-
tion models simplify denominator and numerator polyno-
mials separately. The traditional approach of denominator
simplification mainly considers preserving stability between
the original and reduced systems [31], such as Mihailov
stability criterion [32], stability equation method [33], Routh
approximation [34], etc. Instead, the poles clustering method
engages all properties of the original system poles by agglom-
erative clustering depending on their distributions in the s
plane. The numerator simplification considers the matching
of time moments or Markov parameters, e.g., PA, or regards
minimizing response errors between the original and reduced
systems by heuristic optimization algorithms.

Since the PCPA method is applied to the transfer func-
tion model, the VSMG model as (7) should be firstly trans-
formed into several single-input single-output (SISO) transfer
functions. The procedure of poles clustering consists of the
following steps:
1) Divide all the left half poles of the original transfer

function into a certain number of clusters by the Euclidean
distance based hierarchical poles clustering algorithm. The
number of possible clusters determines the order of reduced
system. Note that real and complex poles should be clustered
separately.
2) Estimate a cluster-center for each cluster.
3) Improve the cluster-center according to the dominant

pole of this cluster.
The detailed procedure is explained in [35]. Note that poles

on the left half and the right half of the s plane are clustered
separately, whereas poles on the imaginary axis or the origin
should be retained in the reduced model.
After the poles clustering procedure, coefficients for the

numerator are determined through the PA procedure. Expand
the original transfer function G(s) in Taylor series around
s = 0 and s = ∞ respectively as:

G(s) =
∞∑
i=0

(Tmisi), (around s = 0)

=

∞∑
i=0

(Mkis−(i+1)), (around s = ∞) (21)

where Tmi and Mki are the ith time moment and Markov
parameter of G(s), respectively. Consider the r th-order
reduced model as:

Gr (s) =
c0 + c1s+ c2s2 · · · + cr−1sr−1

d0 + d1s+ d2s2 · · · + drsr
(22)

where ci is the ith numerator coefficient of the reduced model
and dj is the jth denominator coefficient obtained by the
poles clustering procedure. The coefficients of the reduced
numerator are evaluated as:

c0 = d0Tm0
c1 = d0Tm1 + d1Tm0
· · ·

cγ−1=d0Tm(γ−1) + d1Tm(γ−2) + . . .+ dγ−1Tm0
cr−β=drMk(β−1)+dr−1Mk(β−2)+. . .+dr−β+1Mk0

· · ·

cr−1 = drMk0

(23)

where γ is the number of time moments and β is the number
ofMarkov parameters. Therefore, all coefficients required for
the reduced model as (22) are known.

V. EQUIVALENT SG MODEL OF THE VSMG
The participation factor analysis confirms that modes in
group 1, which are low frequency oscillation modes with
relatively large time constants and highly influencing the
system stability, are mainly derived from states related to the
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SG and VSM control loop. This inspires us that the VSMG
model can be simplified into the structure of the SG model.
The equivalent SG parameters of the VSMG can be obtained
through the method of dynamic responses matching.

Similarly, in the field of power system model reduction,
one of the most commonly used methods is coherency and
aggregation. Coherency means that some SGs in a wide area
exhibit similar rotor angle swings after a disturbance. Then
the coherent groups of SGs can be aggregated into a single
equivalent SG so as to simplify the system model. As for
the microgrid, voltage angle differences of each node are not
distinct in steady-state or under small disturbances. Besides,
both DERs and controllable loads in the VSMG inherit out-
put characteristics of synchronous machines. Inspired by the
concept of coherency and aggregation, it is supposed that the
VSMG model can be equivalent as an SG model. The EqSG
model can be used in time-domain simulations and dynamic
analysis of ADNs containing multi-VSMGs by substituting
detailed VSMG models.

Dynamic equations of the EqSG model are based on the
modified third-order SG model:

δ̇eq = ωeq − ωg

J eqω̇eq = (Pmg − Peqe )/ωn − Deqp (ωeq − ωg)
K eqĖeq = Qmg − Qeqe − D

eq
q (U eq

− Ug)

(24)

The third-order EqSG model considers the excitation
transient and rotor dynamics, where the superscript eq
denotes corresponding equivalent variable or parameter of the
VSMG, Pmg and Qmg are active and reactive power instruc-
tions derived by the microgrid secondary control, respec-
tively; Peqe and Qeqe are internal active and reactive power
of the EqSG, respectively, which can be calculated by the
following equations:{

Peqe = 1.5[(Eeq)2 cosα − EeqUg cos(δeq + α)]/Z
Qeqe = 1.5[(Eeq)2 sinα − EeqUg sin(δeq + α)]/Z

(25)

where Z is the equivalent impedance from the EqSG to the
upstream network and α is the impedance angle. Note that
each VSM in the VSMG cannot sample the PCC voltage
and its output reactive power is directly influenced by the
capacitor voltage of its LC filter, so the internal sampling
voltage, denoted as U eq in (24), is introduced.

U eq
= (1− rx)Eeq + rxUg, 0 < rx < 1 (26)

The EqSG model is proposed for grid-connected VSMG.
Thus, ωg and Ug are input signals. The output active and
reactive power, denoted as Po and Qo, are defined as output
signals:{

Po = 1.5[EeqUg cos(α − δeq)− Ug2 cosα]/Z
Qo = 1.5[EeqUg sin(α − δeq)− Ug2 sinα]/Z

(27)

The structure of the EqSG model is defined
through (24)-(27), and the complete EqSG model can be
obtained by determining the following 7 equivalent parame-
ters, i.e., J eq, Deqp , K eq, Deqq , Z , α, and rx . In this paper, these

equivalent parameters are determined by matching dynamic
responses of the EqSG model with the complete VSMG
small-signalmodel, which can also be recognized as gray-box
system identification. Since the equivalent model is effective
under small disturbances, the linearized EqSG model is used
in the equivalencing procedure, which can also speed up the
gray-box system identification. The linearized EqSG model
can be presented in the state-space format:{

1xeq = Aeq1xeq + Beq1u
1y = Ceq1xeq + Deq1u

(28)

where 1xeq = [1δeq,1ωeq,1Eeq]T , 1u =
[
1ωg,1Ug

]T ,
1y = [1Po,1Qo]T , state-space matrices Aeq, Beq, Ceq
and Deq are displayed in Appendix C. The equivalencing
procedure is illustrated by the flowchart in Fig. 7.

FIGURE 7. Flowchart of the equivalencing procedure.

1) STEP 1: CREATE ESTIMATION DATA
Since the EqSG model is studied in the small-signal region,
fluctuations in the input signals should satisfy the mean-
ing of small disturbances in power systems. According to
‘‘GB/T12325-2008’’ and ‘‘GB/T15945-2008’’, fluctuations
of voltage magnitude and frequency in power systems should
not exceed ±5% and ±0.2Hz, respectively, which can be
regarded as the range of small disturbances. In order to
improve the applicability of estimated equivalent param-
eters, fluctuations in the input signals of estimation data
reach their extreme values of the small-signal region in the
form of step changes. The output signals of estimation data
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are dynamic responses derived from the small-signal grid-
connected VSMG model according to input signals of esti-
mation data. Thus, the estimation data can be collected into
3 sets as summarized in Table 1.

TABLE 1. Estimation dataset.

2) STEP 2: SET INITIAL VALUES OF EQUIVALENT
PARAMETERS
The System Identification Toolbox in MATLAB was used
to create the linear EqSG gray-box model (28). The initial
values of equivalent parameters are obtained by an once
Levenberg-Marquardt algorithm based parameters estimation
with estimation dataset 1. The goal is to determine proper ini-
tial values of unknown equivalent parameters by minimizing
the sum of squared errors between [1PoV1(t),1QoV1(t)] and
time-domain responses of the gray-box model (28).

3) STEP 3: ESTIMATE EQUIVALENT PARAMETERS
ALTERNATELY AND ITERATIVELY
Due to the coupling of output active and reactive power in the
low-voltage VSMG, the estimated parameters derived from
estimation dataset 1 are only effective within a narrow range
of input signals. For the linearized EqSG model, dynamic
responses of multi-inputs can be dealt with the sum of each
SISO response. Thus, the estimation procedure is subdivided
into two parts, i.e., the voltage-variation response estimation
and the frequency-variation response estimation. These two
subprocesses are executed alternately and iteratively until the
unknown equivalent parameters convergence, so that the esti-
mated parameters will satisfy a wide range of input signals.

In the voltage-variation response estimation, the estimation
dataset 2 is used, in which step changes occur in Ug while
ωg remains unchanged in the input signals. To obtain out-
put responses faster, the gray-box model (28) is separated
into two SISO transfer functions, denoted as TUP(s) and
TUQ(s), respectively. From (24), it’s clear that J eq and Deqp
mainly influence the response of output active power when
ωg changes, whereas K eq, Deqq and rx primarily affect the
response of output reactive power when Ug changes. Thus,
in the voltage-variation response estimation, K eq, Deqq , Z , α,
and rx are allowed to change while other parameters (J eq and
Deqp ) are fixed.

Similarly, in the frequency-variation response estimation,
the estimation dataset 3 is adopted. The gray-box model (28)
is separated as TfP(s) and TfQ(s) where J eq, D

eq
p , Z and α are

able to change while other parameters (K eq, Deqq and rx) are
constant.

In each iteration, parameters allowed to change are
updated by minimizing the objective function JU

(for voltage-variation response estimation) or Jf (for
frequency-variation response estimation) through interior
point algorithm, which can be fulfilled with MATLAB Opti-
mization Toolbox. The objective functions are weighted
square average errors between time-domain responses of the
estimated model and output signals of the estimation data:

JU = wUP

√√√√ 1
Ns

Ns∑
i=1

[1PoV2(ti)− yUP(ti)]2

+wUQ

√√√√ 1
Ns

Ns∑
i=1

[1QoV2(ti)− yUQ(ti)]2 (29)

Jf = wfP

√√√√ 1
Ns

Ns∑
i=1

[1PoV3(ti)− yfP(ti)]2

+wfQ

√√√√ 1
Ns

Ns∑
i=1

[1QoV3(ti)− yfQ(ti)]2 (30)

where yUP(t) and yUQ(t) are time-domain responses of TUP(s)
and TUQ(s) with input signals of estimation dataset 2, respec-
tively; yfP(t) and yfQ(t) are time-domain responses of TfP(s)
and TfQ(s) with input signals of estimation dataset 3, respec-
tively; Ns is the number of sampling points; wUP, wUQ, wfP
and wfQ are weight coefficients and wUP = wfQ = 0.2,
wUQ = wfP = 0.8.
After the parameters convergence, the EqSG model is

obtained by updating the estimated parameters in (28).

VI. CASE STUDIES
Three MOR methods mentioned in Section IV and the pro-
posed EqSG method are compared with each other in the
studied grid-connected VSMG, so as to summarize their
advantages and disadvantages in the application of microgrid
model reduction. The input signals for testing different MOR
methods are described in Table 2, where disturbances occur
in ωg and Ug respectively. The amplitudes of disturbances
are 50% of their extreme values of the small-signal region.
Since the proposed EqSG method fixes the reduced VSMG
model into third-order, reduced models derived from BT and
PCPA are also restricted to third-order for a fair comparison.
Note that the reducedmodel derived from SP is a fourth-order
model as the slow and fast subsystems of the studied VSMG
cannot be decoupled at third-order. Reduced models derived
by three MOR methods and equivalent parameters derived
from the EqSG method are displayed in Appendix C.

TABLE 2. Test input signals.
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Fig. 8 compares frequency-domain characteristics of f-P
responses among the reduced-order models. It can be
observed form Fig. 8(a) that all of the four MOR meth-
ods provide excellent matching with the full-order VSMG
small-signal model in low frequency band (0-10rad/s).
The EqSG method provides the widest frequency band
(0-450rad/s) in properly approximating to the full-order
model among four MOR methods. Both BT and SP methods
exhibit obvious truncation characteristics because they both
eliminate high frequency modes to some extent, but the prop-
erly matched frequency range of BT method (0-305rad/s) is
larger than that of SP method (0-25rad/s). The PCPA method
does not show truncation characteristics. The slope of PCPA
method in high frequency band (>1e4 rad/s) is the same with
that of the full-order model (−20dB/dec), but its amplitude
response presents apparent difference with the original model
from the corner frequency (10rad/s). This is because PCPA
method is able to preserve high frequency poles, but the
clustered high frequency poles are modified according to
the dominant poles to preserve slow dynamics preferably,
which leads to a slope match but amplitude mismatch in the
high frequency domain. Figure 8(b) depicts phase-frequency
characteristics of f-P responses, where BT method performs
a better approximation to the full-order model than other
methods while the SP method exhibits the worst matching.

FIGURE 8. Frequency-domain responses among 4 different MOR
methods: (a) amplitude-frequency characteristics of f-P responses,
(b) phase-frequency characteristics of f-P responses,
(c) amplitude-frequency characteristics of V-Q responses,
(d) phase-frequency characteristics of V-Q responses.

Fig. 8(c) and (d) depict amplitude-frequency and
phase-frequency characteristics of V-Q responses, respec-
tively. It can be observed from Fig. 8(c) that PCPA method
performs better approximation in high frequency band
(>1e3 rad/s) than other MOR methods, because the slope of
PCPA method is the same with the full-order model in high
frequency band while other MOR methods exhibit high fre-
quency truncation characteristics. There are mainly two rea-
sons. Firstly, the V-Q response is generally faster than the f-P
response. The elimination of some high frequency dynamics
caused by BT, SP and EqSG methods will inevitably reduce

the proximity in the V-Q response. Secondly, PCPA method
is based on the transfer function model, which can provide
the reduced model for the V-Q response independently, and
the clustering of poles is not affected by other input-output
responses. But in low-mid frequency band (0-360rad/s),
BT and EqSGmethods perform better approximation than SP
and PCPA methods. From Fig. 8(d), it can be observed that
BT method performs better approximation than other MOR
methods in the phase-frequency characteristic.

Note that, in the f-P response, the full-order model is a min-
imum phase system, reduced models derived by PCPA and
EqSG are also minimum phase systems, while reduced mod-
els derived by BT and SP are non-minimum phase systems.
In the V-Q response, the full-order system is a non-minimum
phase system and all reduced models are also non-minimum
phase systems. This indicates that PCPA and EqSG meth-
ods are better than BT and SP in maintaining the structural
properties of the original system.

Further, a comparison of time-domain dynamic responses
is analyzed and shown in Fig. 9. It can be seen from
Fig. 9(a) and (c) that all methods match well with the
full-order model in the steady-state. Whereas in the transient
process, for the f-P response, PCPA and SP methods show
relatively larger response errors than BT and EqSG meth-
ods, as shown in Fig. 9(b). For the V-Q response, shown as
Fig. 9(d), all methods fail to precisely match with the high
frequency oscillations of the full-order model in the transient
process. But the EqSG method performs better matching
than other three MOR methods. To compare the matching
degrees of different MOR methods in a quantitative way,
the normalized root-mean-square error (NRMSE) is chosen
as the index for evaluation of matching degrees:

NRMSE = (1−

∥∥yo − ŷr∥∥2
‖yo − ȳo‖2

)× 100% (31)

FIGURE 9. Time-domain dynamic responses of 4 different MOR methods:
(a) whole process of f-P responses, (b) transient process f-P responses,
(c) whole process of V-Q responses, (d) transient process of V-Q
responses.
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where yo denotes the dynamic response of the full-order
model, ŷr is the time-domain response derived by the reduced
model and ȳo is the mean of yo. Table 3 lists matching degrees
of different MOR methods with different input signals. It is
clear that EqSG method performs the best matching effect
among four MOR methods.

TABLE 3. Matching degrees of 4 MOR methods.

Table 4 compares different properties of four MOR meth-
ods in VSMG model reduction, where the EqSG method
shows more superiorities than other MOR methods. The
EqSG method is suitable for both state-space model and
transfer function model because it is based on dynamic equiv-
alence of the original model. The EqSG method performs
the best matching in low frequency of amplitude-frequency
characteristics and has the best fitting degree in time-domain
responses. Besides, this method maintains identical type of
phase system with the original model. As for the stability
consistency, BT and SP methods satisfy stability consis-
tency because they require the original model to be asymp-
totically stable and their procedures are essentially linear

TABLE 4. Properties comparison of 4 MOR methods in VSMG model
reduction.

transformations of state matrices which will not change sys-
tem stability. The PCPA method preserves stability consis-
tency because the poles on both sides of the s plane are
clustered separately. The EqSG method also retains stability
consistency because this method correctly fits output signals
of the estimation data which reflects stability of the original
system. Furthermore, the most significant advantage of the
EqSG method is to keep equivalent physical meanings in the
reduced states and provides equivalent electrical parameters
which are instructive in power system analysis.

To further verify the effectiveness of EgSG model sub-
stituting detailed VSMG model in power system simula-
tions, historical PCC frequency and voltage data of an actual
microgrid, shown as Fig. 10 (where nominal values are
subtracted to show fluctuations), is applied to the derived
EqSG model, and corresponding time-domain responses are
compared with simulation responses of the detailed VSMG
(illustrated as Fig. 1) obtained through MATLAB/Simulink.

FIGURE 10. Historical data at PCC of an actual microgrid: (a) frequency
variation waveform, (b) voltage magnitude variation waveform.

In this case study, fluctuations of ωg and Ug are applied
simultaneously to be consistent with the actual situation.
It can be observed from Fig. 11 that responses of the EqSG
model properly match with the detailed VSMG model (out-
put active and reactive power values at nominal ωg and Ug
are subtracted in detailed VSMG’s waveforms). Matching
degrees of the EqSG model calculated according to (31)
are 96.12% for output active power response and 97.93%

FIGURE 11. Responses comparison between the EqSG model and the
detailed VSMG model: (a) output active power response waveform,
(b) output reactive power response waveform.
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for output reactive power response in this case study. Since
step changes seldom occur in ωg and Ug in actual operation,
matching degrees in this case are better than those listed
in Table 3. As the variation of Ug inevitably influences active
power in low-voltage microgrids, output active power of
the EqSG model exhibits slightly error compared with the
detailed VSMG when the variation of Ug is relatively large,
as shown in Fig. 11(a), so that the matching degree of active
power response is slightly lower than the reactive power
response in this case. Note that in order to ensure the accuracy
of the EqSG model, disturbances in the input signals should
not exceed the small-signal region (±0.2Hz in frequency and
±5% in voltage), as the equivalent parameters are obtained
based on the small-signal model of the VSMG.

VII. CONCLUSION
This paper compares dynamic characteristics between
VSMG and DMG. With additional inertia dynamics
and proper inertia parameters, the VSMG exhibits bet-
ter dynamic characteristics than DMG in both islanded
and grid-connected operations. In the islanded operation,
the VSMG is more robust against parameter variations, and
performs less disturbance in transient process and faster
recovery to steady-state when the local load changes. In the
grid-connected operation, the VSMG provides more power
support to the upstream network than DMG when voltage or
frequency fluctuates at PCC.

The participation factor analysis indicates that static sta-
bility and dynamic characteristics of the VSMG are mainly
influenced by states associated with the SG and VSM con-
trol loop. According to this, the third-order EqSG model is
proposed to reduce the VSMG model. The EqSG method
applies gray-box system identification and is effective in
the small-signal region. To speed up the gray-box system
identification, linearized EqSG model is used in the equiv-
alencing procedure. To improve the matching degree of
output responses, the equivalencing is subdivided into differ-
ent input-output responses estimation and estimates equiva-
lent parameters alternately and iteratively. The EqSG model
shows more superiorities than BT, SP and PCPA methods
in both frequency-domain and time-domain. It can be used
in dynamic analysis and time-domain simulations of power
systems containing multi-VSMGs, as its dynamic responses
properly match with the detailed VSMG model. In addition,
the EqSG model preserves equivalent physical meaning in
reduced states and provides equivalent electrical parameters
for power system analysis.

APPENDIX A
Equations for modeling the voltage current dual-loop control
are expressed as:

ẋd = vcd − vcd∗, ẋq = vcq − vcq∗ (32)

ifd∗ = Kpvẋd + Kivxd , ifq∗ = Kpvẋq + Kivxq (33)

yd = ifd − ifd∗, yq = ifq − ifq∗ (34)

{
vd∗ = Kpiẏd + Kiiyd − ωLf ifq
vq∗ = Kpiẏq + Kiiyq + ωLf ifd

(35)

where ifd∗ and ifq∗ are inductor current references of the
LC filter; ifd and ifq are inductor current measurements of
the LC filter; vd∗ and vd∗ are output voltage references of
the converter; Kpv, Kiv, Kpi and Kii are proportional gains
and integral gains of the voltage controller and the current
controller, respectively; xd , xq, yd and yq are states introduced
by integral controllers.

Due to the realization of high switching frequencies,
SVPWM and switching process of the converter can be
neglected, and the converter can be regarded as a proportional
link with gain Kinv. For convenience, a gain Kg = 1/Kinv is
introduced tomake the output voltage of the converter (vd , vq)
equal to its reference.{

vd = KinvKgvd∗ = vd∗

vq = KinvKgvq∗ = vq∗
(36)

The nonlinear model of the LC filter can be represented as:{
i̇fd =

[
(vd − vcd )− rf ifd

]
/Lf + ωifq

i̇fq =
[
(vq − vcq)− rf ifq

]
/Lf − ωifd

(37){
v̇cd = (ifd − iod )/Cf + ωvcq
v̇cq = (ifq − ioq)/Cf − ωvcd

(38)

where rf is the parasitic resistance of inductor Lf , and Cf
denotes the shunt capacitor.

Modeling of the network and the local load is represented
in the common rotational reference frame (DQ-axis) of the
whole microgrid system. For generality, the dq-axis frame of
DER1, whose angular velocity is denoted as ωr , is chosen
as the DQ-axis frame. Subscript D or Q appeared in the
following voltages and currents represents corresponding D
or Q axis component. The transformation equations between
dq-axis frame and DQ-axis frame are expressed as:

δ̇i = ωi − ωr (39){
vbD,i = vcd,i cos δi − vcq,i sin δi
vbQ,i = vcd,i sin δi + vcq,i cos δi

(40){
iod,i = ilineD,ij cos δi + ilineQ,ij sin δi
ioq,i = −ilineD,ij sin δi + ilineQ,ij cos δi

(41)

where the subscript i (or j) denotes the ith (or jth) Bus,
the subscript ij denotes the connection between Busi and
Busj, δi is the angle of Busi’s dq-axis framewith respect to the
DQ-axis frame, vbD,i and vbQ,i are voltages of Busi, ilineD,ij
and ilineQ,ij are currents of Lineij.

The RL branch model is adopted for the network because
the equivalent capacitance to ground of the line can be
ignored in microgrids.

i̇lineD,ij = (vbD,i − vbD,j − rline,ijilineD,ij)/Lline.ij
+ωr ilineQ,ij

i̇lineQ,ij = (vbQ,i − vbQ,j − rline,ijilineQ,ij)/Lline,ij
−ωr ilineD,ij

(42)
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where rline,ij and Lline,ij are resistance and inductance of
Lineij respectively.

The local load is considered as the combination of resistor
rload and inductor Lload so as to reflect the load dynamics.{

i̇loadD = (vbD,i − rload iloadD)/Lload + ωr iloadQ
i̇loadQ = (vbQ,i − rload iloadQ)/Lload − ωr iloadD

(43)

where iloadD and iloadQ are currents of the local load.
Since there is no corresponding output variable to provide

voltage value for the node that is not directly connected to a
capacitor, a virtual resistor rN is assumed between this type
of node and ground to determine the voltage value. The value
of rN should be sufficiently large such that its introduction
has minimum influence on the system stability.

vbD,j = rN

 i6=j∑
i=0

ilineD,ij − iloadD


vbQ,j = rN

 i6=j∑
i=0

ilineQ,ij − iloadQ

 (44)

For the grid-connected VSMG, the input variable Ug
should also be transformed in the DQ-axis frame to integrate
into the microgrid model:

δ̇g = ωg − ωr (45){
vgD = Ug cos δg
vgQ = Ug sin δg

(46)

where δg is the angle of the upstream grid’s rotational refer-
ence frame with respect to the DQ-axis frame, vgD and vgQ
are grid voltages represented in the DQ-axis frame.
Also, dynamics of the grid-connection line with resistance

rg and inductance Lg should be included in the grid-connected
VSMG model.{

i̇gD = (vbD,i − vgD − rgigD)/Lg + ωr igQ
i̇gQ = (vbQ,i − vgQ − rgigQ)/Lg − ωr igD

(47)

where igD and igQ are grid-connected currents of the VSMG.
System parameters of the VSMG are listed in Table 5. For

the convenience of analysis, control parameters of each VSM
are the same.

APPENDIX B
Eigenvalues and corresponding participation factors are listed
in Table 6.

APPENDIX C
The state-space matrices Aeq, Beq, Ceq and Deq are:

Aeq =


0 1 0

−
KPeδ
J eqωn

−
Deqp
J eq

−
KPeE
J eqωn

−K eqKQeδ 0 KA



TABLE 5. System parameters.

Beq =

 −10
0

0

−
KPeU
J eqωn

−K eq(Deqq rx + KQeU )


Ceq =

[
KPoδ 0 KPoE
KQoδ 0 KQoE

]
, Deq =

[
0 KPoU
0 KQoU

]
where

KA = −K eq[Deqq (1− rx)+ KQeE ]

KPeδ = ∂Peqe /∂δ
eq
= 1.5Eeq0 Ug0 sin(δ

eq
0 + α)/Z ,

KPeE = ∂Peqe /∂E
eq

= 1.5[2Eeq0 cosα − Ug0 cos(δ
eq
0 + α)]/Z ,

KPeU = ∂Peqe /∂Ug = −1.5E
eq
0 cos(δeq0 + α)/Z ,

KQeδ = ∂Qeqe /∂δ
eq
= −1.5Eeq0 Ug0 cos(δ

eq
0 + α)/Z ,

KQeE = ∂Qeqe /∂E
eq

= 1.5[2Eeq0 sinα − Ug0 sin(δ
eq
0 + α)]/Z ,

KQeU = ∂Qeqe /∂Ug = −1.5E
eq
0 sin(δeq0 + α)/Z ,

KPoδ = ∂Po/∂δeq = 1.5Eeq0 Ug0 sin(α − δ
eq
0 )/Z ,

KPoE = ∂Po/∂Eeq = 1.5Ug0 cos(α − δ
eq
0 )/Z ,

KPoU = ∂Po/∂Ug
= 1.5[Eeq0 cos(α − δeq0 )− 2Ug0 cosα]/Z ,

KQoδ = ∂Qo/∂δeq = −1.5E
eq
0 Ug0 cos(α − δ

eq
0 )/Z ,

KQoE = ∂Qo/∂Eeq = 1.5Ug0 sin(α − δ
eq
0 )/Z ,

KQoU = ∂Qo/∂Ug
= 1.5[Eeq0 sin(α − δeq0 )− 2Ug0 sinα]/Z

whereUg0 is the measured initial value ofUg, E
eq
0 and δeq0 can

be calculated according to (27) with measured initial values
of output active and reactive power of the VSMG.

Reduced model derived from BT method:

Ar =

−5.403 −0.2736 −0.7535
7.700 −109.9 331.2
−6.607 222.8 −845.4


Br =

 −517.8366.1
−311.8

2.844
−397.5
1.077e3


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TABLE 6. System eigenvalues.

Cr =
[

505.3 111.9 −201.0
−113.5 528.7 1.103e3

]
Dr =

[
760.0 −36.65
−508.5 648.1

]

Reduced model derived from SP method:

As =


−4.992
−0.0026
7.674
−0.0012

−12.04
−5.996
−3.151
−0.6993

−0.1842
0.0146
−11.68
0.0118

27.08
0.0123
1.829e3
−4.759



Bs =


3.818
−0.3425
71.81
1.051

−0.6065
0.0083
11.16
−0.0026


Cs =

[
−57.72
−2.332

8.875e4
−9.723e3

151.6
179.6

−1.535e5
5.111e4

]
Ds =

[
−6.634e3 −376.8
585.7 −654.8

]

Reduced transfer function from1ωg(s) to1PoV (s) derived
from PCPA:

Gr1(s) =
1.003e7s2 − 1.890e8s− 5.220e9
s3 + 589.3s2 + 2.447e4s+ 1.089e5

Reduced transfer function from 1Ug(s) to 1QoV (s)
derived from PCPA:

Gr2 =
7.243s3 − 6.459e5s2 − 1.358e7s− 5.590e7

s3 + 589.3s2 + 2.447e4s+ 1.089e5

Equivalent parameters derived from EqSG method:
J eq = 1.012, Deqp = 149.9, K eq

= 0.0109, Deqq = 915.6,
Z = 1.237, α = 1.275 and rx = 0.3115.
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