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Preface

This thesis represents work performed within the OPAL collaboration while studying
towards a Master of Science degree at the University of Alberta from May 1994 to April
1997. The thesis begins with an overview of the Standard Model of Particles and
Interactions and the theoretical motivation for the existence of a Higgs Boson within this
context. An introduction is then given to the European Laboratory for Particle Physics
(CERN) and the LEP collider and OPAL detector are described in detail.

Next, an introduction to Artificial Neural Networks and their applications in data
classification is given followed by a description of the network used for the Higgs search in
this thesis. The training procedure and generalization performance of this network on
simulated data is presented and optimized. Systematic effects are considered and the
analysis is then applied to 161 GeV data from OPAL taken during the summer of 1996.
The thesis concludes with a comparison of the neural network approach to other analysis
methods and a discussion of the steps necessary to improve the analysis for the higher
energy LEP runs of the near future.



Abstract

A search for a Standard Model Higgs Boson in the four jet final state using data from the
OPAL detector at the Large Electron Positron (LEP) collider is presented. An Artificial
Neural Network technique is used to isolate candidate Higgs events from the background

created in 161 GeV centre of mass energy electron positron collisions.

The Artificial Neural Network method shows a greater sensitivity to the Higgs signal in the
four jet channel than other analysis methods currently used within the OPAL collaboration.
No candidate Higgs events are observed in the 161 GeV data, although a low integrated

luminosity for the 161 GeV run precludes setting a meaningful mass limit on the Higgs.
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THE STANDARD MODEL 1

1. The Standard Model of
Particles and Interactions

he Standard Model of Particles and their Interactions (the Standard Model)

currently describes all observed physical interactions to within the limits of
experimental accuracy. Despite its widespread success, however, there are some
fundamental problems with the Standard Model which indicate that it is perhaps forms only
a subset of a more fundamental theory. The shortcomings of the Standard Model will be
discussed in section 1.3 below. The following sections describe the mathematical
foundation of the Standard Model as well as the particles and forces that comprise the

model.

1.1 Ingredients of the Standard Model

The Standard Model consists of two types of elementary particles: the spin %2 fermions and
the integral spin vector bosons which mediate the interactions amongst the fermions. The
fermions themselves are further subdivided into the quarks and the leptons. The vector
bosons are associated with the local symmetry group SUQ3). x SU)LxU(1l)y in a
manner which will be described below.

There are four fundamental forces in nature: the electromagnetic force, the weak forct;, the
strong force, and the force of gravity. Table 1 shows the forces with their mediating gauge
bosons and relative strengths. The electromagnetic force acts on charged particles and is
mediated by the photon. The weak nuclear force, which is responsible for § decay, is
mediated by the exchange of W and Z bosons which are massive. The strong force acts on
quarks and is mediated by the eight massless gluons. Gravity has not yet been incorporated
into the structure of the Standard Model although it is separately described by the theory of
general relativity.
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Force ActsOn Gauge Boson(s) Relative Range
L (m)
Gravity All Particles Graviton 0.53x10® | =
(massless, spin 2)
Electromagnetism | All Electrically Photon 73x10° ™)
Charged Particles (massless, spin 1)
Weak Interaction | Quarks, Leptons, w2 102x10° | 10® |
Electroweak Gauge (heavy, spin 1)
Strong Interaction | All Coloured Particles | Eight Gluons ~1 <10®
(massless, spin 1)

Table 1: The forces of the standard model with their mediating gauge bosons.

The interactions within the Standard Model are described by quantum field theories. The
electromagnetic force is described by Quantum Electrodynamics (QED). The weak
interaction has been unified with the electromagnetic interaction into a full electro-weak
theory [1]. The strong nuclear force is itself described by Quantum Chromodynamics, or

QCD [2].

The quarks and the leptons can be divided into three families which exhibit identical
properties with respect to the symmetries of the Standard Model. The masses of the
particles in each of three families are different, however.

Quarks carry a colour charge from QCD while leptons carry no such charge. There are six
different quarks and six different leptons, each of which is referred to as a “flavour”.. The
six quarks are referred to as (in increasing order of mass) up (1), down (d), strange (s),
charmed (c), bottom (b), and top (7). The six flavours of leptons are the electron (e), the
electron neutrino (v.), the muon (i), the muon neutrino (v,), the tau (z), and the tau
neutrino (v;). All fermions except for the tau neutrino have been experimentally observed.
While the masses of the neutrinos are currently consistent with zero, it is not generally
expected that they will be equal to zero.
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The three family structure of the fermions is shown below while the particle properties [3]

(<N

()G

Partice | Mass (GeV/c) | Charge () | Hypercharge

d 0.010+0.005 -173 13
u 0.005+0.003 +2/3 13
s 0210.1 -13 13
c 15402 +23 13
b 5.0+03 -13 13
t 171=10 +2/3 13
e 051 -1 0
13 105.6 -1 0
T 1776.9+0.5 -1 0
Ve <8x10° 0 0
Va <025 0 0
Ve <35 0 0

Table 2: Properties of the fermions of the Standard Model.

If the SU(3). x SU(2)L. x U(1)y symmetry which underlies the Standard Model were exact,
all gauge bosons would be massless and the forces which they mediate would therefore
have infinite range. The observed short range of the weak force, however, implies that the
W and Z bosons must be massive. In order for the symmetry to be broken to allow these
masses while still allowing the theory to be free of infinities (renormalizable), the symmetry
of the Standard Model must be broken spontaneously. As will be seen in the next chapter,
this spontaneous symmetry breaking leads to a real scalar particle known as the Higgs
Boson. The theory predicts the coupling strengths of the Higgs boson, but not its mass.
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The Higgs boson is yet to be experimentally observed, but lower limits on its mass have
been set by the LEP experiments. The latest OPAL lower limit [4] on the Standard Model
Higgs boson mass is 59.5 GeV/c? at the 95% confidence level.

1.2 Underlying Symmetries of the Theory

In this section, some of the mathematics which underlies gauge theories such as the
Standard Model is presented. A general gauge invariant Lagrangian may be written as

L(x) = F0)ir D*9(x) - 5 Fo ™ ()

where y(X) is a fermion field. If we define a gauge boson field A (x) then the field strength
tensor F(x) is given by

Fi (%) = 3,A7(x) - 3,A; (%) + gf A, (DA (%)
and the covariant derivative D, is written
D, =4, -igT*’A;(x).

In the above equations, g is the coupling constant of the theory and T are the generators of
the Lie symmetry underlying the theory with structure constants . These generators
satisfy the commutator relation [T‘, T"] = if T°.

The particles of the Standard Model exist as either singlets or as examples of the
fundamental representation of the symmetry group: doublets for SU(2) or triplets for
SU(3). The gauge bosons exist in the adjoint representation of the symmetry group and
hence their number is determined by the number of generators for the group: one for U(1),
three for SU(2), and eight for SU(3). These bosons are the photon for U(1), the three
massive vector gauge bosons W*, W, and Z° for SU(2), and the eight gluons for SU(3).
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In an Abelian theory such as QED, the generators commute and hence vector bosons have
no self interactions. QED is based on the U(1) symmetry and its gauge boson (the photon)
does not carry any charge. Within QED, the fermion fields transform as
y(x) — e*y{x) and the coupling constant g is simply the electron charge e. In order to
allow the theory to be renormalizable, that is to avoid infinities due to perturbative
calculations, the coupling constant must change (or run) with the energy scale. In QED,
the associated coupling constant (Q?=0)~1/137 increases slowly with the energy scale.

An example of a non-abelian theory is QCD. Non-abelian theories are much more
complicated than abelian ones as the kinetic term in the Lagrangian

1
(- ry F, (x)F** (x)) introduces gauge boson self interactions into the theory. QCD has

SU(3) as an underlying symmetry group and hence has eight gauge bosons which are
associated with the gluons. The fermion fields under QCD transform as
w(x) = e*T y(x)with the T° being the Gell-Mann Matrices. A similar transformation
exists for SU(2) with the T° being the Pauli spin matrices. The coupling constant of QCD,
a,, decreases as Q increases which results in the property of asymptotic freedom where
quarks behave as free particles at short distances, but become increasingly bound at large
distances.

As was mentioned previously, the basic theory does not allow for massive gauge bosons.
Attempts to introduce mass terms for the bosons by hand fail as the Lagrangian then
violates the gauge invariance and destroys the renormalization of the theory. The Higgs
mechanism, described in the next chapter, provides a method for allowing mass in the
theory without these problems.
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1.3 Unanswered Questions in the Standard Model

Although the Standard Model has successfully explained the results of every experiment
performed thus far, there are several fundamental problems with the theory that cause
physicists to believe the it is embedded in a more fundamental theory through which further
unification of the forces may be achieved. Some of these problems with the Standard
Model are:

¢ There is no fundamental reason for the theory to be explained by the three independent
symmetry groups U(1), SU(2), and SU(3). It is thought that it should be possible to
unify the theory under one grand symmetry group.

o There are at least 23 free parameters in the theory which must be inserted by hand. It is
thought that a fundamental theory would have far fewer free parameters.

e There is no fundamental reason for the existence of three families of quarks and leptons
or for the symmetry between quark and lepton flavours. It is possible that the quarks
and leptons are composite particles of more fundamental objects.

e There is no fundamental reason in the theory for the fact that the proton and electron
have exactly opposite electric charges.

o The energy scale of the Standard Model varies over many orders of magnitude. It is
considered a difficult problem that the weak unification scale is so much smaller than
the projected grand unification scale.

¢ Correcting for radiative effects on the Higgs boson and gauge boson masses involves
terms many orders of magnitude larger than the masses themselves. This “unnatural”
fine tuning is not considered to be a property of a fundamental theory.

 Gravity has not been explained in a format that is consistent with the rest of the
Standard Model



THE STANDARD MODEL

e The Standard Model does not contain an ideal “dark matter” candidate to explain
certain astrophysical observations regarding the total amount of mass in the universe.

» The Higgs boson has yet to be experimentally discovered.

It is widely thought that the central problem facing the Standard Model today is the
experimental confirmation of the existence of a Higgs boson. The next chapter will explore
the theory of the Higgs mechanism and the experimental signatures of such a particle.



THE HIGGS BOSON 3

2. The Higgs Boson in Theory
and Experiment

he main theme of this thesis is the search for one of the last remaining unobserved

particles in the Standard Model, the Higgs Boson. The Higgs boson is a
theoretical tool invoked to solve the problem of the lack of mass terms in the Standard
Model Lagrangian for fermions and massive gauge bosons. Attempts to explicitly add
mass terms to the Lagrangian result in the breaking of the SU(2) or gauge invariances and
thus cannot be the correct solution. The Higgs mechanism, however, manages to break the
SU(2) and gauge symmetries in a subtle way that manages to allow mass in the theory
while maintaining the gauge invariance. Although the Higgs mechanism is a technically
adequate solution to the mass problem, the physical interpretation of what the Higgs
mechanism implies is somewhat less well understood. It is believed [S] that achieving a
better understanding of the Higgs sector should be considered to be the central problem in
modem particle physics.

The following sections describe the mechanism by which the Higgs boson breaks the gauge
symmetry of the Standard Model in order to allow massive fermions and bosons. Several
examples of this Spontaneous Symmetry Breaking are presented in section 2.1 and then the
entire Standard Model Higgs mechanism is described in section 2.2.

2.1 Spontaneous Symmetry Breaking

As was mentioned above, the Higgs mechanism breaks the gauge symmetry of the theory
in a subtle way that allows for massive fermions and bosons while still maintaining the good
effects of the symmetry. This method of breaking the symmetry is called spontaneous
symmetry breaking and refers to the situation when the symmetry is still valid for the
Lagrangian but not for the ground state solution of the system. In the following sections,
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scenarios of increasing complexity are considered in order to develop the mechanism of
spontaneous symmetry breaking for application to the full Standard Model Lagrangian of

fermions and bosons.

2.1.1 A Simple Case

In order to illustrate the concept of spontaneous symmetry breaking, we first consider a
very simple case. We consider a Lagrangian

1 1 1
= - -= By — | — 252 - 4
L=T-V 26’“¢a¢ (2;141 +4MJ)

where we can require that A>0 in order to bound the potential as ¢ — . In order to find
the spectrum of this Lagrangian, we proceed in the usual quantum mechanical way to find
the classical minimum of the potential in order to find the ground state of the system. The
fields are then expanded around their ground state values in order to determine the
spectrum of solutions. In quantum field theory, the ground state of the system is referred
to as the vacuwm and the excitations around the minimum as particles. The masses of the
particles are then deduced from the self interaction terms for the field in the Lagrangian
near the classical minimum of the potential.

If we suppose that u>>0 for our Lagrangian, there is no symmetry breaking. If w2<0, we
can find the minimum of the potential in our Lagrangian through setting 3V/a¢=0 which
gives the result

#u? + 29?) = 0.

This result, shown in Figure 1, gives a minimum not at ¢=0, but at

! 2
¢ == -: L R
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where v is called the vacuum expectation value of . The field ¢ corresponds to the Higgs
field for this simple case.

*V

Figure 1: Potential energy versus ¢ for a simple example of spontaneous symmetry breaking.

In order to now determine the particle spectrum of our Lagrangian, we must expand the
theory in the region of the minimum. To do this, we expand the Higgs field around n=0 to

give
¢ox) = v +n(x).

We could also have chosen -v as our vacuum, but the reflection symmetry ¢ > -¢
present in our original Lagrangian makes the physics independent of this choice.
Substituting this expansion into our Lagrangian, we obtain the result

L= %(0..770“11)- {%”2[‘02 +2nv +n2]+%}.[vl +4v3n + 6‘021]2 + 41.}7’3 + n‘]}

2

2
- %—(auna“n) - {22—(;12 + %sz) +nu(u? + Av?) + ’7?(”2 +3A0%) + Aun® + i—ln‘}
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which simplifies to

1 2.2 3 l .
L --Z-(a“na“n)—(lv n° +Auvn +4An ) + constant.

Thus, we see that the 1) field has acquired a mass' and therefore describes a particle with
mass m*=2Av* = -2u>. We note that the original reflection symmetry that was present in
our initial Lagrangian is no longer present after we make the choice of vacuum to be

¢ = +v rather than ¢ = -v. Thus, by making the choice of vacuum, we have broken the

symmetry for the ground state while maintaining the reflection symmetry of the original

Lagrangian. As a by product of this procedure, we gained a massive field .

2.1.2 Complex Scalar Field
As the next step in our investigation of spontaneous symmetry breaking, we consider a
complex scalar field¢ = (¢, + i¢, )/ 2 together with the Lagrangian

L = (3,8) (9%¢) - '¢'0 - Al¢e)'.

This Lagrangian is invariant under the global U(1) symmetry ¢ — ¢’ = e*¢ and may be

written in terms of its real components as

L-3(oa) +3(00) -Fue +a)- 0 + 4]

' Mass terms in the Lagrangian are identified as being quadratic in the field variable and opposite in
sign to the kinetic term of the Lagrangian.
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.

Figure 2: Potential energy as a function of the two components of a complex scalar field for u?<0.

Proceeding as before and examining the potential in the Lagrangian for the case 1><0, we
see that the minimum potential energy is along a circle in the ¢,¢> plane (see Figure 2) with
radius

-

fosieTtonr

where we have again defined our vacuum expectation energy. We are free to select any
point along the circle as our vacuum, but in doing so the symmetry of the ground state is
broken. If we choose the point ¢,=v and ¢,=0, we may write (with n(x) and p(x) real
fields)

5o LT +ip()
N7

as the expansion of the Higgs field about the vacuum. When this expansion is substituted
into the Lagrangian, we obtain
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1 1 A A A
L= E(a“p)z + 5(3,‘71)2 +utn? - /lu(np2 + n"’) - Enzp2 - :—n‘ - z—p‘ + constant.

Analyzing this equation, we see that the 1) field has obtained a mass m’=2juf’ but
cancellation of the quadratic terms for the p field implies the existence of a gauge boson of

zero mass. A massless boson produced in this way through spontaneous symmetry
breaking is known as a Goldstone boson. Such a boson arises whenever a continuous
global symmetry is broken while choosing a particular ground state. Intuitively, the
massless Goldstone boson may be regarded as the excitation which corresponds to motion
around the circular minimum in the potential energy. Since there is no resistance to motion
around this circle, the resulting boson is massless.

2.1.3 The Higgs Mechanism for a Local Gauge Theory

As a final approximation to the real Higgs mechanism of the Standard Model, we will
consider the Higgs mechanism where the global gauge invariance of the last section is
changed to a local gauge invariance ¢(x) ~> ¢'(x) = e**¢(x). It is well known that in
order to ensure such an invariance, we must introduce a massless vector field A, as well as

write the Lagrangian in terms of the covariant derivative D.

d, =D, =3d, -igA,
The massless gauge field transforms under the local gauge symmetry as
A, —A =A, -%J”x(x).
Our full Lagrangian for this case, then, is

. . oy 1
L = (D,0) (D*4) - w6'6 - A(#°8)} - F, F™
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with the last term being the kinetic energy term which does not enter into the analysis.
Due to the gauge invariance in this example, ¢ may be written in general as
$(x) = 1(x)e™

where 1 and p are real. In addition, since we are dealing with a local gauge invariance, we
may choose an appropriate transformation which will enable us to write ¢ as an expansion

around the vacuum expectation value v as

It is important to note that such a choice of transformation can only be made in the case of
a local gauge invariance and could not have been performed in the previous case of a global
gauge invariance. Substituting this equation into the Lagrangian, we obtain
1
L= 5[(3“ +igA*fv + h)I(a, ~igA, Jv+ h)]

2
B 2 i 4 l v
-3 (v+h) 4(v+h) e

1 1
- E-(a“th“h) +3 gviA A" - AV - Aul®

A 1 1
-Ih4 + g’uhA*A, + -z-gzth“A" - ZF‘WF""

which gives a mass term of gu for the gauge boson A,.. So, the mass of the gauge boson is
non-zero only when the symmetry is spontaneously broken by the choice of a specific
vacuum. The massive gauge boson which comes out of the spontaneous symmetry
breaking in this case is said to have “eaten” the Goldstone boson of the previous section.
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‘The analysis of this section is essentially the entire Higgs mechanism. In the next section,
the last additional complexities in order to incorporate the Higgs mechanism into the
Standard Model are discussed.

2.2 The Higgs Mechanism and the Origin of Mass

When applied to the Standard Model Lagrangian, the Higgs field is assigned to an SU(2)
doublet made up of two complex scalar fields:

With * ﬂ+i¢2 0 ¢3+i¢4 IS . . -
¢ -Tandcp =5 Since the relationship between the electric charge

Q, the weak isospin value T3, and the U(1) hypercharge Yy is given by Q=T5+Yu/2, the
charge assignment given in the above doublet corresponds to Yy=1. The Lagrangian has

the form
L =(3,6)(0%¢) - w6 - A(6%9)’
with the local gauge transformation invariance
$(x) — ¢'(x) = €5 g(x) \
where t; are the Pauli matrices and o are a set of parameters.
Since the Higgs field is now an SU(2) doublet, we may write
Mo =(o- o )(':;) =479 +47¢"°

which may be re-written in terms of real components only as
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i - (67 + 87 + 97 +47)
2
We now consider the potential of our Lagrangian and observe that, for u’<0, it has a

minimum at

—u: v

TS = -—
o9 24 2°

In order to break the symmetry, we must again choose a specific vacuum. This time, we
must select a specific direction in SU(2) space as our vacuum go.

-30)

Since we again have a local gauge symmetry, we may choose our expansion around the

vacuum to be of the form

o) = 75 (v + Z(x)) '

We may now substitute this result into our Lagrangian to see the effects of spontaneous
symmetry breaking in the Standard Model. In order for our Lagrangian to be invariant
under our local gauge transformation, we must replace the derivatives 3, with the covariant
derivates D,.. Including the gauge boson B, from the U(1) symmetry and the three gauge
bosons W, from the SU(2) symmetry, the covariant derivative in this case is written as

D, =4, -igl-lziB“ -ig, -;—-W’“.

When we substitute our ¢ with a chosen vacuum expectation value into the Lagrangian, we
obtain the extra terms
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Y T =\ Y R
f(lgl EBn +lg2§'W;) (lglEB“ +ig, E‘W“)¢.

If we now set Y=1 as we saw was the case above, write out the Pauli matrices explicity,
and set ¢=dy, the contribution to the Lagrangian becomes

2
1 [ng.. W, g(W! -WV,.’)](O)
8 g (W! +iW?) g.B, -g.W:)\V

-svat((n) + () + gorles, - )
2.2.1 The Boson Masses

The first term in the above equation may be written in terms of the real charge states of the
W boson as

1 2
('i' ‘ugz) ww*

which gives the charged W bosons a mass Mw=vgy/2. The second term in the
contribution of the spontaneous symmetry breaking to the Lagrangian is a linear
gB, +gW,

combination of B and W; forming the field Z, = vk Thus, the Z boson
2 1

acquires a mass M, -%v,/gf + g2 after the symmetry breaking. As expected, no mass

term for A, is found in the Lagrangian after spontaneous symmetry breaking and hence the
photon remains massless.
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2.2.2 The Fermion Masses

Since the Higgs field is now written as an SU(2) doublet, we may consider the interaction
of fermions with the Higgs field. We can add a lepton interaction term to the Lagrangian

g.(Coei + deiL)

Vv,
with L = (ej) . The coupling g. is arbitrary and not determined by the invariance
L

principle. If we replace the Higgs field by its expansion around the vacuum

OH
“( ﬁ]’

and then substitute this into our lepton interaction Lagrangian, we obtain theYukawa terms

i (eLeR + e,eL) + = (e,_e, +epe; )H

The first term is of the form expected for a fermion mass, so the electron mass is given by
m, -g,vlﬁ. Since g. was arbitrary, however, the electron mass has not been
calculated and must still be measured. The theory can now accommodate non-zero
fermion masses. Once the electron mass is measured, the equation for the electron, mass
may be inverted to calculate the coupling constant g.. The second term in the lepton
interaction Lagrangian afier spontaneous symmetry breaking indicates that there is an
interaction between the Higgs and the electron of strength g, /2 =m, V.

A similar calculation to the one performed above for leptons may be made with the quark
interaction Lagrangian. Again, the masses of the quarks are accommodated, but not
predicted, by the theory.
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2.2.3 Higgs Boson Decays

As we saw in the above section, the strength of the coupling between the Higgs boson and
fermion is given by g, = J2_m, / v which may be re-written using our knowledge of the

m
vacuum expectation value in terms of the W mass from section2.2.1 as g, = 2{;2 . We

see that the strength of the coupling is proportional to the mass of the fermion and hence
the Higgs boson will tend to decay into the heaviest fermions available. A similar
interaction strength between the Higgs boson and other gauge bosons may be written as
8w = 8, M, . Higgs couplings to gluons or photons do not exist at the tree level but may

be achieved through loops of fermions or W’s.

Figure 3: The Feynman diagrams for the main Higgs boson decay modes in the LEP2 energy range.

The Feynman diagrams for the main decay modes of the Higgs boson at LEP2 energies [6]
[7] are shown in Figure 3 and consist of:

e quark decays (into b quark pairs and c quark pairs)

lepton decays (primarily into pairs of © leptons)

gluon decay into pairs of gluons

W boson and Z boson decay into pairs of these gauge bosons
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The decay into b quark pairs is by far the most dominant process followed by decays into ©
leptons, charmed quarks, and gluon decays. The last three decay channels contribute at a
level less than 10% to the total number of Higgs boson decays. The branching ratios for
the various decays of the Higgs are shown versus the Higgs mass in Figure 4. The
branching ratios for Higgs decays into bosons is negligible for the range of Higgs masses of
interest in this thesis. It can be clearly seen that decays into b quark pairs are the dominant
process and hence any search for the Higgs boson must employ effective b quark tagging
techniques.

L] n . 0 90 l(.b .uo 120
my, [GeV)

Figure 4: Branching ratios for the decays modes of the Standard Model Higgs Boson versus the Higgs mass.
The shaded bands are the uncertainties in the branching-ratios-due to errors in the quark masses and the

QCD coupling.

2.3 Higgs Boson Production at the Large Electron Positron
Collider

Standard Model Higgs Boson production at LEP2 takes place through the two major
mechanisms shown in Figure 5. The first, Higgs-strahlung, is the dominant process and
results from Higgs bosons being radiated from a virtual Z boson. The second process,
WW fusion, is suppressed by an extra electroweak vertex and therefore is only important in
the region of phase space where the Z boson turns virtual in the Higgs-strahlung process.
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In this region, however, the cross section of both processes is small and the WW fusion
process will not add significantly to the available number of Higgs bosons.

The cross section for the Higgs-strahlung process for three different LEP centre of mass
energies is shown in Figure 6. The cross section drops off rapidly at large Higgs masses.

Figure 5: The two main Higgs production mechanisms at LEP. Higgs-strahlung is shown on the left and
WW fusion on the right.

?a - T T 00 I LELBLIR ! l T el l lvs! 'g‘ 115 ééw:
< V= 192 GeV_
(o) E Vvs= 205 GeV ]
06 E— I

04 :— 3

02 :- 3

. L .

&0 0 80 20 100 110

m, (GeV)

Figure 6: Cross sections for Higgs boson production” through Higgs-strahlung for three representative LEP
energies versus the Higgs mass.
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2.3.1 The Four Jet Final State

The four jet final state of Higgs boson decay arises when the Higgs decays to a pair of
quarks (in about 90% of all cases) while the accompanying Z boson also decays into
quarks (about 70% of the time). These branching ratios make the four jet channel the most
abundant final state of Higgs boson decay at LEP2 as it occurs in about 65% of the cases.

The procedure in searching for such a final state is to tag the heavy b quarks coming from
the Higgs boson while fitting the event to a energy structure which includes a real Z boson.
A more detailed explanation of the methods used to search for the Higgs in this channel
may be found in chapter 5.

The cross section for Higgs production times the branching ratio for the four jet process at
/5 = 161GeV are shown in Table 3 for various Higgs masses. As expected, the cross
sections fall rapidly as the Higgs mass increases.

| Hices Mass (GeV/cY) | Cross Section (ob) __|
55 0.9530

60 07280,

e 06270,

64 0.5170

66 0.3980

68 0.2590

70 0.1170

Table 3: Cross sections for Higgs Boson production at a 161 GeV ceatre of mass energy at LEP.

2.3.2 Background Processes to the Four Jet Signal

The four jet Higgs decay channel is plagued by many background sources which mimic the
four jet structure of the signal events. A large background comes from multi-jet QCD
events from (Z° /v" - qaly )) where the final state quarks radiate gluons to form four

jets. Another large background comes from the production of W*W' pairs each of which
subsequently decay into pairs of jets. The cross sections for the QCD and W pair
backgrounds are shown in Figure 7. In addition, any four fermion final state event which
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can mimic a four jet topology will form a background channel. Some of the Feynman
diagrams which can produce these “four fermion” events are shown in Figure 8 and the

resulting cross-sections are shown in Figure 9 for a centre of mass energy of 175 GeV.

l$ erITT L v l"" fT‘llT"'l L3 L LB
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\ dotted: Z/y-Had. with ISR
104 i
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t ECU=178 GV
08 B fl
‘ £ upper solid: ¥* or ¥~ < Had.
‘é \. PR lower sclid: W° and W~ « Had.
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® 402 - \
~.
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100 Lo o ] .
100
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Figure 7: Cross sections for the hadronic Z decay background and W pair backgrounds versus centre of

mass energy.
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Figure 9: Cross sections for various four fermion processes (in fb) versus a cut on the polar angle of the
fermions. The cut is designed to reject events with fermions close to the beam axis. The cross sections in a
figure are for a centre of mass energy of 175 GeV.
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The cross sections for the major background channels at Js = 161 are shown in Table 4.
The methods used to reduce these background levels in order to allow detection of the
Higgs boson signal are discussed in chapter 5.

Process Cross Section (pb)

(z° /7y = qd(r)) 14
WW 3457
7z 0.458
2e'e 253
Wev 0.68

Table 4: Cross sections for background processes to the four jet Higgs channel at a centre of mass energy of
161 GeV.
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3. The LEP Collider and the
OPAL Experiment

n order to probe the microcosm at the energies necessary to detect ever more

fundamental information about our universe, the complexity and size of the world’s
patticle accelerators have increased greatly over the past forty years. This increase in the
amount of energy available at particle colliders, and the attendant increase in the scope of
accessible physics, has caused a dramatic increase in the expense and complexity of the
detectors designed to observe and record the collisions. In fact, the expense of modemn
particle accelerators and detectors has become so large that only multi-national
collaborations of scientists can pool sufficient resources to build them. The Large Electron
Positron (LEP) collider and the Omni Purpose Apparatus for LEP (OPAL) detector are
perfect examples of this multi-national cooperation in the pursuit of a better understanding
of the fundamental particles and forces of our universe.

3.1 CERN - The European Laboratory for Particle Physics

The European Laboratory for Particle Physics (CERN'), was established in 1954 as a joint
effort of twelve European nations. Situated astride the Franco-Swiss border just west of
the city of Geneva, the laboratory was one of the first examples of international
collaboration in postwar Europe. The laboratory provides research facilities to over 6500
scientists, some 1500 of which come from non-European states including Canada, the
United States, and China. Half of the world’s practicing particle physicists use CERN’s
facilities.

" The acronym CERN comes from the original French name for the laboratory, “Conseil Européen
pour la Recherche Nucléaire™.
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CERN’s main accelerator complex, shown in Figure 10, is centered on the venerable
Proton Synchrotron (PS). Although originally designed as a proton accelerator for fixed
target experiments, the PS has been continuously upgraded since its inception and is now
capable of accelerating electrons, protons, and heavy ions simultaneously in order to feed
the other accelerators in the complex. Several fixed target experiments and test beam
apparatus still benefit from particles accelerated directly by the PS. The Super Proton
Synchrotron (SPS), famous for producing the first W and Z bosons in the UA1 experiment,
now accelerates protons and anti-protons for collider and fixed target experiments as well
as accelerating electrons and positrons for injection into LEP. The complex is crowned by
the 27 km in circumference Large Electron Positron (LEP) collider which now accelerates
electrons and positrons to 172 GeV centre of mass collisions making LEP the most
powerful e'e” collider in the world. Further energy upgrades are planned for LEP in the
near future which will result in an accelerator capable of producing e'e” collisions at centre
of mass energies equal to 192 GeV by 1998.

3.2 The Large Electron Positron (LEP) Collider

The Large Electron Positron (LEP) collider created its first e’e” collisions in 1989 and
immediately began to fulfill its design goal as a factory for Z° bosons. LEP operated at its
original design energy near the Z° peak (~45 GeV per beam) for seven years and at or near
its design luminosity of 16x10* cm?s™ for much of this time. Over the last seven years,
some 160 pb™ of Z° decays were collected by the OPAL detector alone. |

In November of 1995, the first superconducting magnets were added to the LEP ring in
order to boost the accelerator’s energy above the Z° peak. These sixty superconducting
cavities allowed the beam energy to be increased from ~45 GeV to 70 GeV resulting in e'e”
collisions with a centre of mass energy of 140 GeV. A further 84 superconducting cavities
were installed in early 1996 allowing a beam energy of ~81 GeV and consistent collisions

at +fs =161 GeVto be achieved. This centre of mass energy allowed the production of
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W'W™ particle pairs, and thus opened up an entirely new area of research for LEP
physicists. The Higgs boson search presented in this thesis makes use of the data taken by
OPAL at /s =161 GeV in the summer of 1996.

P A VS S

Figure 10: The CERN accelerator complex.
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CERN makes use of all of its older accelerators in order to create highly energetic e’e”
collisions since each machine can only operate over a fixed range of energies. The system
of accelerators which feed the LEP ring are shown schematically in Figure 10. The
electrons are first accelerated to 200 MeV in the electron linac (LIL) and directed onto a
target in order to produce positrons. The positrons are then accelerated to an energy of
600 MeV in the second stage of LIL before being injected into the Electron-Positron
Accumulator (EPA) where they are stored and compressed by synchrotron damping. This
process is repeated until about 2x10"" positrons in eight bunches have been collected in the
EPA, a goal which can take up to 1000 bursts from LIL to achieve. This beam is then
injected into the Proton Synchrotron where it is ramped up to an energy of 3.5 GeV before
being injected into the Super Proton Synchrotron (SPS) and further accelerated to 20 GeV.
At this point, the positron beam is ready to be injected into LEP in a clockwise direction
and ramped up to its final energy of ~81 GeV. The electrons follow the same acceleration
program as the positrons except that the LIL target is removed and the SPS is set to inject
them into LEP in a counter-clockwise direction.

LEP itself is divided into eight straight sections connected by curved sections which
complete the circular shape. The straight sections contain both the experimental halls and
the RF accelerating cavities while the curved sections hold the dipole magnets which direct
the beam around the ring. Quadrupole magnets are situated at various positions
throughout the LEP ring in order to maintain beam focus.

The electron and positron beams collide at four interaction points (IP’s) on the LEP ring
each of which contains a detector. The four detectors are shown at their respective LEP
interaction points in Figure 11. Although the number of bunchlets in the beam allows
collisions at more than the four instrumented interaction points, electrostatic separators at
these potential collision sites keep the beams separated in order to extend the beam life.
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Figure 11: The location of the four LEP experiments at their e'e” interaction points. OPAL is located at
Interaction Point 6.

The parameter of most importance to experimental physicists is the integrated luminosity

(&) which is delivered by the accelerator since the reaction rate, R, for any given physical
process is given by:

R=4Lo

where @ is the cross-section (expressed in units of cm?) of the process of interest. The
luminosity itself is expressed in units of cm?s™ and is dependent on the beam characteristics
through the relation (assuming the two beams overlap entirely):

NN,

L= fn A
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where f is the frequency of revolution of the beams, 7 is the number of bunchlets per beam,
N; and N; are the number of particles per bunchlet for the first and second beams
respectively, and A is the effective cross-sectional area of each beam.

From 1990 to 1995, the period during which LEP was running at the Z° peak, an ever
improving understanding of the characteristics of the accelerator allowed an increase in the
integrated luminosity’ delivered by the machine as shown in Figure 12. With the addition
of the superconducting magnets to the LEP ring and changes in the beam bunch structure,
however, the properties of the accelerator had to be re-learned by the operators and initial
integrated luminosities for the higher energy runs were somewhat low. A total of 10 pb™
of data were collected at a centre of mass energy equal to 161 GeV during the runs
considered in this thesis.

pb-1 15 Nov. 93

Figure 12: The integrated luminosity delivered by LEP from 1990 to 1993. An improved luminocsity was
achieved for each year of running at the Z° peak.

' Integrated luminosity is simply the time integral of the luminosity delivered by the accelerator. Itis
usually expressed in units of inverse picobarns (pb™*) where 1 pb™* = 10 cm®.
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The luminosity observed by each of the experiments is usually determined through
measuring the rate of small-angle Bhabba scattering events with dedicated subdetectors.
This process is chosen for luminosity measurements as it is entirely electroweak in nature
and hence its cross-section can be calculated very precisely. OPAL uses two dedicated
subdetectors to measure the LEP luminosity both of which are described with the rest of
the OPAL detector in the next section.

3.3 The Omni Purpose Apparatus for LEP (OPAL)

The Omni Purpose Apparatus for LEP (OPAL) is one of the four large detectors which are
located at the interaction points of LEP. Each of the four detectors (ALEPH, DELPHI,
L3, and OPAL) was built with different relative strengths in order to maximize the scope of
the physics goals attainable at LEP. The OPAL collaboration (see Appendix A) has over
150 members from ten countries.

OPAL [8], shown in Figure 13, exhibits the traditional cylindrical symmetry of an €'¢’
collision detector. The apparatus is centered axially on the LEP beam pipe and is inclined
at an angle of 13.9 mrad with respect to the horizontal plane following the slight slope of
LEP. The OPAL coordinate system, also shown in Figure 13 is defined so that the z axis
lies along the beam pipe in the direction of the e” beam, the x axis points inward roughly
towards the centre of the LEP ring, and the y axis points nearly vertically upward. The
polar angle 8 s defined as the angle from the +z axis and the azimuthal angle ¢ as the dngle
from the +x axis. In OPAL parlance, the x-y plane of the detector is referred to as the r-¢
plane, and the x-z plane is known as the -z plane.
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Siicon-amgsten forward detacior

Figure 13: A cutaway view of the OPAL detector.

OPAL was designed to incorporate relatively conservative technology in order to provide a
reliable multipurpose detector which would be able to detect, reconstruct, and
unambiguously identify all types of interactions occurring in e'e” collisions. Specifically, the
original detector was required to perform the following tasks over a solid angle of nearly
4r radians.

e Tracking of charged particles within the region of a central solenoidal magnetic coil
thereby measuring their direction and momentum, particle identification through energy
loss, and accurate reconstruction of primary and secondary vertices near the e'e’
interaction point.
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* Accurate identification of electrons and photons and measurement of their energies in
the electromagnetic calorimetry.

e vieasurement of the total hadronic energy of each event using the magnet yoke
instrumented as a calorimeter.

¢ [dentification of muons using position and direction measurements both within and
outside of the hadron absorber.

e Measurement of the absolute LEP luminosity by detecting Bhabba' scattering events
close to the beam line.

OPAL consists of several detector systems each of which fulfills some of the experiment’s
design goals. In order of increasing radial distance from the beam pipe, these systems
consist of the central tracking system used to determine the direction and momentum of
charged particles, the time of flight system which identifies some charged particles and
rejects cosmiic rays, the electromagnetic calorimeter system which measures the energy of
photons and electrons, the hadronic calorimeter system used to measure the energy of
hadronic showers, and the muon detector system which identifies muons at the outer edge
of the detector. In addition to these main detector systems, OPAL also includes detectors
close to the beam pipe in order to measure the LEP absolute luminosity.

Since the commissioning of the detector in 1989, several upgrades have enhanced OPAL’s
ability to satisfy its original specification. These improvements include:

* [nstallation of the Silicon Microvertex Detector close to the beam pipe. This detector
allows even better resolution of the primary and secondary vertices near the e+e-
interaction point. The original single dimensional readout Silicon Microvertex

" A Bhabba event is the electroweak scattering of the electron and the positron in the beam.
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Detector was installed in 1991 and was replaced by an improved two dimensional

readout model in 1993.

 [Installation of the Silicon Tungsten Luminometer in order to provide a more accurate
measurement of the absolute LEP luminosity at the OPAL interaction point.

e Installation of the Time of Flight Endcap detector which enlarged the time of flight
system to cover more of the solid angle of the detector. This increase in coverage was

designed to provide accurate prompt times for triggering in the LEP2 environment.

The hierarchy of the OPAL detector subsystems is summarized in Table 5. Each of the
detector subsystems as well as the triggering and online data acquisition systems are

described in detail in the following sections.

Svstem_ Detector
]| Central Detector Silicon Microvertex Detector
Vertex Chamber
Jet Chamber
Z Chambers
Time of Flight System Time of Flight Barrel Detector
Time of Flight En Detector
Electromagnetic Calorimeter System El etic Barrel Calorimeter
Electromagnetc Endcap Calorimeter
Hadronic Calorimeter System Hadronic Barrel Calorimeter

Hadronic Endcap Calorimeter

Hadronic Poletip Calorimeter

Muon Detection System Muon Barrel Detector
Muon Endcap Detector
Luminosity System Forward Detectors

Silicon Tun% Luminometer

Table 5: Hierarchy of the OPAL subdetectors.

3.3.1 The Beam Pipe and Magnet

Prior to the 1991 run, the OPAL beam pipe consisted of a series of overlapping layers of
carbon fibre epoxied to the outside of a 0.1 mm thick aluminum tube. This original beam
pipe had a total thickness of 1.4 mm and was placed at an inner radius of 78 mm from the
beam. In 1991, however, installation of the Silicon Microvertex Detector (described in
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3.3.2) at an inner radius of 61 mm from the beam necessitated a new beam pipe geometry.
This new pipe consisted of 0.11 mm thickness beryllium and was placed at a radius of
53.5 mm from the beam. The old beam pipe was replaced by a 2.0 mm thick carbon fibre
tube at a radius of 80 mm from the beam. The Silicon Microvertex Detector was then
placed in between the two structures. Beryllium was chosen as the material because of its
long radiation length’ as well as the ease with which it can be machined into a thin layer.
The OPAL beam pipe causes only 0.31% of a radiation length of dead material when
measured in a direction perpendicular to the beam direction.

The OPAL magnet consists of two parts: the solenoidal coil and the return yoke. The
solenoidal coil lies at the interface of the central detector and the calorimetry at a mean
diameter of 4.36 m from the beam. It is constructed of a hollow aluminum conductor
fused together with glass-epoxy. The return yoke is made of iron and forms the absorber
material for the hadron calorimeter. The apparatus operates at a current of about 7000 A
and is water cooled. Within the solenoidal coil, the central detector magnetic field is
maintained at 0.435 T with a uniformity of +0.5%. The magnetic field in the calorimetry
region between the solenoid and the return yoke is only a few tens of gauss which allows
the photomultiplier tubes of the electromagnetic calorimetry (see section 3.3.5) to be
operated without difficulty.

3.3.2 The Silicon Microvertex Detector \

The OPAL silicon microvertex detector was a relative latecomer to the experiment being
installed some two years after the initial commissioning of OPAL. As will be seen in the
sections that follow, the silicon microvertex detector is of particular importance to
searching for the Standard Model Higgs Boson in the four jet final state. For this reason, it

' One radiation length, X, of a given material is defined as the distance over which a high energy
electron travelling in the material loses all but 1/e of its energy due to bremsstrahlung.
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is described in a section of its own instead of being grouped with the rest of the central
detector in section 3.3.3.

The power of the silicon microvertex detector lies in its ability to track particles at a point
so close to the e'e” interaction point that these tracks may be traced back to their origin
with very little error and with an extremely precise position resolution. The process of
extrapolating particle tracks back to a common origin is known as vertex finding and has
important applications in particle lifetime identification.

When a particle has a “long” lifetime (on the order of ct=10 nm), it can travel a
considerable distance (up to the order of mm) from its point of production before decaying.
The point of decay of this long lived particle is therefore well separated from the e’e’
interaction point and is referred to as a secondary vertex. The particles resulting from this
secondary decay can be traced back to the secondary vertex and the long lived particle’s
lifetime deduced from the distance of the secondary vertex from the primary e’e” interaction

point.

Long lived particles of interest include the t lepton and b flavoured hadrons. The lifetimes
of these particles have been measured with great precision by OPAL since the installation
of the microvertex detector. In addition, the secondary vertex finding by the silicon
microvertex detector allows jets originating from b quarks to be efficiently tagged which,
as was seen in section 2.3, is of great importance in separating signal from background in
the four jet final state of HZ production at LEP.

Semiconductor detectors operate in a manner analogous to drift chamber devices in that
ionization caused by passing charged particles is used for detection purposes. In a
semiconductor device, the medium is a solid semiconductor in which passing ionizing
particles produce electron-hole pairs which are then collected by an electric field. A
minimum ionizing particle in a typical silicon detector creates on the order of 10,000
electron-hole pairs. Semiconductor detectors need 10 times less energy to cause an
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electron-hole pair than is required in a typical drift chamber to produce an electron-ion pair.
Thus, they are very sensitive devices for recording the passage of charged particles.

In order to accurately place secondary vertices, a detector must be very close to the beam
interaction point and have excellent spatial resolution qualities. As will be seen below, the
OPAL silicon microvertex detector satisfies both of these requirements well.

History of the OPAL Silicon Microvertex Detector

OPAL did not contain a microvertex detector when it was first used to collect data in
1989. After the first LEP run, however, it was found that background radiation close to
the beam pipe was at a lower level than first expected. This allowed the beam pipe radius
to be reduced and hence left room for a new detector in OPAL between the vertex
chamber and the beam pipe.

The first OPAL silicon microvertex detector [9] was installed and began data collection in
June 1991. This version of the detector was a single sided silicon device and which only
allowed readout in one dimension (¢) at a known radius. Nonetheless, the new detector
allowed a single hit resolution of 8 um and gave OPAL the ability to resolve impact
parameters’ to within 15 um [9]. Prior to 1991, OPAL was only capable of an impact
parameter resolution of 42 um (for a 45 GeV muon) using the jet chamber and the vertex
chamber in concert. This improvement in the resolution of impact parameters, and hence in
the accuracy of secondary vertex finding, directly resulted in the successful precision
measurements of the < lepton and b hadron lifetimes published by OPAL [10].

In 1993, the silicon microvertex team implemented their design for a two coordinate
readout silicon microvertex detector [11]. This device used double sided silicon detectors

' The impact parameter (do) of a track is defined as the distance from the OPAL coordinate origin to
the point of closest approach of the track. The impact parameter may be signed according to the side
of the origin on which the track passes and is used to calculate the position of the track’s origin. A
more detailed description of the impact parameter can be found in section 3.5.1.
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and was capable of readout in both ¢ and z coordinates. In 1995, the detector was
enlarged in order to cover more of the interaction region and to close some gaps in ¢.
Finally, in 1996, the detector was again lengthened along the z axis in order to improve its
coverage of the e*e” collision region. The sections below describe this latest version of the
silicon microvertex detector which was present in OPAL for the 161 GeV LEP run during
the summer of 1996.

Construction and Layout of the Detector

The OPAL silicon microvertex detector is shown in partial cutaway view in Figure 14. The
basic modular unit is a 33 mm x 60 mm wafer which consists of back to back ¢ and z
readout silicon detectors. These wafers are connected end to end to form structures called
ladders. The detector as a whole is made up of two radial layers of these ladders. The
inner detector layer consists of a cylinder formed from 12 two wafer ladders at the -z end
of the detector and 12 three wafer ladders at the +z end of the detector. The inner layer is
placed at a radius of 61 mm from the beam. Similarly, the outer detector layer is a cylinder
formed from 15 two wafer ladders at the -z end and 15 three wafer ladders at the +z end.
This outer cylinder is at a radius of 75 mm from the beam. Thus, each detector layer
consists of a total of five detector wafers longitudinally with the e'e” interaction point
located at the center of the five wafers. As can be seen in Figure 15, the ladders of the two
layers are staggered so as to avoid lining up the small gaps in ¢ which allows a single hit
efficiency of nearly 100%.
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Figure 15: Cross-sectional view of the silicon microvertex detector in the r-¢ plane. The radial overlap of
the detector Iadders is shown in both detector layers.
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The three wafer ladder shown in Figure 16 gives an overview of the active detector layout.
The active detector wafers are single sided AC coupled FoxFET (Field Oxide Field Effect
Transistor) biased silicon strip detectors which were designed by OPAL and manufactured
by Micron Semiconductor Ltd. The wafers are made of high resistivity (>5 k<2 cm) n-type
bulk silicon with n* type doping and metalization on the backplane and p type implant strips
on the front (readout) side. The inner side of the wafer forms the ¢ detectors with implant
strips pointing in the z direction while the outer side makes up the z detectors with implant
strips pointing in the direction of ¢. Each of the active detectors (¢ and z) has a thickness
of 250 um. Above every other implant strip on the ¢ detectors and every fourth strip on
the z detectors, metalized aluminum readout strips are placed with a silicon oxide layer in
between to form an AC coupling capacitor to allow mulitiplexing' of the detector readout.
A p type implant drain runs around the active strip detection area which therefore forms a
p-n-p junction for the entire detector. The implant strip pitch is 25 um for both the ¢ and 2
detectors, but the effective readout pitch is S0 um for the ¢ detectors and 100 um for the z
detectors due to the readout multiplexing.

bonding
between detectors

/A_I“JM —7‘_ { ”-""’"—7/5"”170“" 7/

629 sinps
el

- =  (ocal
sequencer

diode strips in t direction S \
keviur support plate glass adaptor ceramc board

Figure 16: Schematic diagram of a silicon microvertex detector ladder.

The depletion voltage for the detectors lies in the range 15-40 V. The bias voltage applied
between the drain line and the backplane, however, is in the range of 35-60 V. The extra

¥ Multiplexing a detector refers to reading more than one channel out through a single line thus
saving both money and space.



LEP AND OPAL 42

voltage above the depletion voltage compensates for the voltage drop over the strip to
drain channel and guarantees full depletion of the entire detection region for all detectors
on a ladder.

The detector is supported on three support rings one of which carries the water cooling for
the detector. Structural rigidity is supplied to the detector by two semi-cylindrical
beryllium shells which were chosen for their low contribution to the effective radiation
length of the detector. The entire detector fits between the 53.5 mm radius of the beam
pipe and the 80 mm inner radius of the vertex chamber.

An important design consideration for the silicon microvertex detector was that it present
as little material as possible to particles traversing the detector. This goal has been
achieved with the detector only presenting 1.5% of a radiation length at 90" to the beam
direction. The bulk of this amount (1.1% of a radiation length) comes directly from the

silicon wafers.

The Readout Electronics

The ¢ readout strips on the active detector are connected to the front end electronics
located on 300 um thick ceramic circuit boards at the end of each ladder. The z detector
strips are also read out into the front end electronics at the end of each ladder through the
use of a gold printed circuit on a borosilicate glass support which daisy chains the signals of
the z strips to the end of the ladder without placing an unnecessarily large amount of
material in the way of the particles. The front end electronics consist of 5 MX7 Microplex
VLSI readout chips which receive the detector signals and a local sequencer chip to control
them. The local sequencers are controlled through Interconnecting Ring (ICR) card logic
by a Fastbus Master Sequencer module located in the electronics hut. The local sequencers
and MX7 chips also allow calibration pulses to be injected into the front end readout of
each channel.
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The analogue readout signals from the front end electronics exit the detector through the
ICR cards and are processed by Fastbus SIROCCO IV modules in the electronics but
which digitize, store, and process the data.

Online Data Processing

The online processing is performed by 28 Digital Signal Processors (DSP's) in the
SIROCCO modules. The DSP's perform a channel specific pedestal subtraction and then
apply a cluster algorithm to find charge clusters in the SI channels. By only keeping good
clusters, the data volume from the microvertex detector is reduced by a factor of 100. The
clustering algorithm operates by adding the signals of two (or three) neighboring strips and
comparing that value with the quadratically summed noise of the same strips. If the signal
exceeds the noise by a factor ~3, both strips are marked as hits.

The entire triggering and online procedure results in a dead time of 1.6 ms for a nominal
trigger rate of 4-10 Hz. This is very small compared to the overall OPAL deadtime and is
dominated by the analogue readout and digitization sequence in the SIROCCO modules.

Detector Operation Considerations

The environment of the microvertex detector is very important to its stable operation.
Temperature fluctuations are monitored by 14 thermistors which are accurate to £0.05 C
and send wamnings to the operator in case of overheating. Radiation is monitored by
detectors attached to four of the seven ICR cards. These detectors are also connected to
alarms in the control room.

The microvertex is operated in an environment of dry nitrogen. This gas minimizes
humidity effects which could lead to large leakage currents in the detector which would
destroy its data taking ability. Under normal operating conditions, the leakage current in
the microvertex is less than 1 pA.
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Detector Performance within OPAL
The OPAL silicon microvertex detector has proven to be very reliable and has a 99%
working channel rate. The signal to noise ratios are on the order of 20 for both the ¢ and

the z detectors.

The standard measure of resolution performance for the silicon microvertex detector is the
impact parameter (do) resolution for dilepton events. In these events, the process
Z° — u*u"gives two muons which originate at the primary vertex. By plotting the
difference of the impact parameters calculated by the microvertex for these tracks, the

impact parameter resolution is obtained.

Early results with the two coordinate readout silicon microvertex detector reported a
resolution of 21 pm for do in r-¢ and 100 um in z. This has improved [11] to 18 um in r-¢
for all 1995 data while the z resolution has remained the same.

Finally, Figure 17 and Figure 18 compare the impact parameter resolution for dimuons
with and without the silicon microvertex detector respectively. The improvement in

resolution is very clear.



LEP AND OPAL 45

4000 till]r‘lllxllllltillllll‘rtixl[l

d, resolution:

3500
O'(do) = 20.2 M

3000

2500 -

2000 -

1500 -

1000 -

S00 -

SN S BT S i BN I RN bl i ST

o A L hendd
-0.04-0.03-0.02-0.01 0 0.01 0.02 0.03 0.04
Tdo/v2 (cm)

Figure 17: The impact parameter resolution for dimuons using silicon microvertex detector mﬁxmat;on in
conjunction with the central tracking detectors. The data is taken from the 1993 LEP run.
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Figure 18: The impact parameter resolution for dimuons using only central tracking detector information.
The data is taken from the 1993 LEP run.

3.3.3 The Central Detector

The components of the OPAL central detector, which provides all charged particle
tracking information in the detector, may be seen in the cutaway detector view in Figure
13. In order of increasing radial distance from the beam pipe, the central detector consists
of the silicon microvertex detector, the vertex chamber, the jet chamber, and the z
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chambers. Acting in concert, these three detectors track charged particles from the
interaction point until their entry into the calorimetry.

The vertex chamber, jet chamber, and z chambers are all drift chambers and therefore
operate under the principle that a charged particle traversing an active gas volume will
ionize the gas and liberate electrons. These electrons then drift in an applied electric field
to anode wires and produce an avalanche signal which is detected some time after the
passage of the charged particle. With a knowledge of the characteristic drift time for
electrons in the detector gas, the position at which the particle traversed the chamber can
be deduced from the time taken for the electrons to reach the anode wire. The drift
chambers of the central detector use a mixture of gases consisting of 88.2% argon, 9.8%
methane, and 2.0% isobutane in their active volumes.

The central detector drift chambers are located within the pressure bell and are kept at a
pressure of 4bar. The central detector is also within the 0.435 T field of the magnet
solenoid. The curvature in charged particle trajectories due to the magnetic field is used to
determine the momentum of the passing particle. Charged particle trajectories from all
three drift chambers and the silicon microvertex detector are combined to calculate the final
track parameters for each particle. These track parameters and their meanings will be
described in section 3.5.1.

The individual components of the central detector are described below with the exception
of the silicon microvertex detector which was described in section 3.3.2.

The Vertex Chamber

The OPAL vertex chamber [8] [12], pictured in Figure 19, was the closest tracking
detector to the beam pipe prior to the installation of the silicon microvertex detector in
1991. The chamber itself is a 1 m long cylindrical drift chamber with inner and outer radii
of 88 and 235 mm respectively. The main tasks of the vertex chamber are to measure the
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position of secondary vertices from long-lived particles and to improve the overall

.

momentum resolution of the central detector system.
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Figure 19: The OPAL central vertex chamber.

The wiring layout of the vertex chamber is shown in Figure 20. The volume of the
chamber between radii of 90 and 170 mm is divided into 36 axial sectors with 12 anode
wires each stretched parallel to the beam. The spacing of the anode wires is 5.3 mm. The
remaining volume is divided into 36 stereo sectors with 6 anode wires each at a stereo
angle of 4. The spacing of the anode wires in these sectors is 5.0 mm. All anode wires are
made of 20 um diameter tungsten-rhodium alloy.

Each anode wire defines the centre of a readout cell which is bounded by the cathode wires
and potential wires used to maintain the electric field in the chamber. The vertex detector
contains 648 such cells. The potential wires are made of 200 um diameter gold plated
copper-beryllium while the cathode wires are 125 um diameter unplated copper-beryllium.
The cathode wires are spaced 1 mm apart in the r-¢ plane. Since the cells are bidirectional,
that is the electrons drift to the anode wires from either side, a given drift time does not
uniquely specify on which side of the anode wire the track passed. In order to resolve this
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left-right ambiguity, the anode wires are offset from the centre line of the cell by 2 +41 um

alternating stagger. Thus, a given set of drift times will only reconstruct a good track on
the correct side of the anode wire plane.

Cathode planes

Carbon fibre tube

Fail

Axial cells

Field shaping rings

Foit

Gas membrane

Anode (x) - potential (+) wire planes
Figure 20: Wire layout of the vertex detector in the r-¢ plane.
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Each anode wire is connected to a preamplifer at both ends and the resulting signals from
electron avalanches are transferred to constant fraction discriminators. The two outputs
from each wire are then averaged in a mean timer and the average time digitized by a time
to digital converter (TDC) with a bin size of 0.67 ns. This bin size corresponds to a drift
distance of 26 um and therefore is not the limiting performance factor for the detector. In
addition to the mean time used in the drift time measurement, a measurement of the
difference in arrival time of the signal at each end of the anode wire is performed in order
to obtain a crude z position measurement. This measurement is made to an accuracy of

0.1 ns which corresponds to a rough z resolution of 4 cm.

The performance of the vertex chamber is determined by two electrostatic fields: the anode
surface field and the drift field. The anode wires are held at ground and the fields are
established by manipulation of the voltages on the cathode and potential wires. The anode
surface field determines the gas gain and therefore the detection efficiency of the chamber.
When operating with the standard anode surface field of 360 kV/cm, the single hit
efficiency of the vertex chamber is close to 97%. The drift field within the chamber is
2.5 kV/cm which gives rise to a drift velocity of 39.5 um/ns in the standard central detector
gas. Adjustment of the drift field directly affects the spatial resolution of the detector
which is measured to be around 50 um in r-¢ over most of the chamber volume under
standard operating conditions. The z coordinate information contained in the drift times
from the stereo wires is reconstructed in the offline analysis and hence only the end to end
timing z position is available for online triggering. Thema:nmumdnftdlstancemthe
vertex chamber is about 1.5 cm which limits the effects of electron diffusion on the spatial
resolution. A two particle seperation resolution of 2 mm is achieved through reducing the
fall time of the anode wire pulses in the readout electronics to the point where detector
dead time is only 40-50 ns.
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The Jet Chamber

The jet chamber [8] [13] is a 4 m long cylindrical drift chamber with inner and outer radii
of 0.25 m and 1.85 m respectively. The detector is made up of 24 azimuthal sectors each
containing one anode wire plane consisting of 159 wires strung parallel to the beam
direction. The anode wires themselves are grounded and altemnate with potential wires
between radii of 25.5 cm and 183.5 cm. The radial spacing of the anode wires is 1.0 cm.
Like the vertex chamber, the anode wires in the jet chamber are staggered at +100 um
from the potential wire plane in order to resolve the left right ambiguity. The maximum
drift distance in the jet chamber varies from 3 cm for the innermost anode wires to 25 cm
for cells at the outer radius of the chamber.

The jet chamber geometry is arranged such that up to 159 individual points can be
measured along each track in the polar angle range 43’ <8 <137 . At least eight points
can be measured along any track for a solid angle of over 98% of the full 4x radians.

The signal from both ends of a given anode wire are read out into preamplifiers mounted
on the chamber end plates and are then digitized by 100 MHz flash analog to digital
converters (FADC) which measure the charge collected on the anode wire in 1/10°s
intervals. These high frequency FADC's were selected as their sampling speed greatly
improves both the drift time measurement and the two particle separation distance of the
detector. After the pulses have been digitized by the FADC, the data is passed to twenty
dedicated microprocessors where fast online track finding is performed for use i1\1 the

trigger.

The r-¢ position of the track is obtained directly from the drift time. This drift time is
calculated in the dedicated microprocessors by analyzing the shape of the charge
distribution in the FADC's. A crude z measurement with a resolution of a few centimeters
is made possible by a charge division technique. This technique uses the ratio of the
integrated charge collected on one end of an anode wire to that collected from the other
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end to determine the longitudinal position of the hit along the wire. The accuracy of this
technique increases with the magnitude of the drift field in the chamber as a higher gas gain
increases the total amount of charge collected and hence the significance of the charge ratio
between the two ends of the anode wires.

The integrated charge collected in the FADC:'s is also used in conjunction with the track
momentum to perform particle identification. The chamber is therefore operated with a
drift field chosen to optimize both the z coordinate resolution and the dE/dx particle
identification potential. As described above, a high gas gain is necessary in order to
optimize the z position resolution. For the dE/dx, however, high gas gain leads to
saturation effects where the full drift field is screened by ions formed in the avalanche
process thus blocking some charge from reaching the anode wires. The amount of this lost
charge is difficult to cormrect for and hence increases the uncertainty in the dE/dx
measurement. A compromise of 890 V/cm is chosen for the drift field which gives rise to a

spatial resolution of 130 pm in r-¢ and 10 cmin z.

The position resolution of the chamber allows the momentum of particles to be measured
within a resolution determined by the relation:

(0, 7p)" =002% +00015p2
P . xy

in the region |cos@| < 0.7 where p,, is the measured momentum in the x-y plane in GeV/c.
The constant term in this equation does not come from the resolution limitations of the
chamber as one might expect, but rather from the systematic effect of multiple Coulomb
scattering in the jet chamber gas.

One of the strongest attributes of the OPAL detector is its ability to identify particles
through dE/dx in the jet chamber. This procedure [14] is based on the Bethe-Bloch
equation [15] for the energy loss of charged particles in matter. The energy loss of a
charged particle decreases as 1/8° at low values of By until it reaches a minimum at around



LEP AND OPAL 53

By=4. The parameter b is simply the velocity of the particle in units of the speed of light
and y -1/‘/1-7. After this minimum, the energy loss rises logarithmically in what is
called the relativistic rise followed by a saturation which is called the Fermi plateau. Since
the energy loss is a function of By for all particles, the measurement of both the momentum
and the dE/dx (energy loss per unit distance) of the particle determines the particle’s mass.
The curves in Figure 21 show the expected energy loss (dE/dx) for various particle types
versus momentum in the OPAL jet chamber.

< 18

£

2

> 16

X

N’

X

T 14

(1)

©
12
10
8
6

16" 1 10 10

p (Gev/c)

Figure 21: Energy loss per unit distance (dE/dx) versus momentum predicted for pions, muons, electrons,
kaons, and protons in the OPAL jet chamber.
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The particle separation power" of the jet chamber is maximized at a gas pressure between 3
and 4 bar and it is the optimization of the separation power that is one of the main reasons
for operating the OPAL jet chamber at 4 bar. Many individual readings of the dE/dx along
a particle’s track are necessary in order to minimize the uncertainty of the mean dE/dx for
that track when performing particle identification.

The dE/dx resolution for minimum ionizing pions in the OPAL jet chamber has been found
to be 3.8% for tracks with at least 130 individual dE/dx measurements. This value is
sufficient for OPAL to have the distinction of containing one of the most accurate jet
chambers for particle identification in existence today.

The Z Chambers

The z chambers [8] [16] consist of 24 drift chambers each of which is 4 m long, 50 cm
wide, and 59 mm thick. These chambers are mounted on the support structure of the jet
chamber and collectively form a 4 m long barrel with a diameter of 3.85m. A single z
chamber is shown in Figure 22.

" The particle separation power of the jet chamber is defined as the dE/dx resolution divided by the
difference in dE/dx between the two particles types that are to be separated.
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Figure 22: Cross-section of a single z chamber.

Each cell contains six anode wires spaced 4 mm apart at increasing radii. The anode wires
are staggered at 250 pm in order to resolve left-right tracking ambiguities. The chambers
are operated with a drift field of 800 V/cm which allows a resolution of around 150 pm in
z. A charge division technique gives an r-¢ spatial resolution of 1.5 cm from the z
chambers.

3.3.4 The Time of Flight System

The Time of Flight (TOF) systems was designed to allow charged particle identification
through measurement of the time taken for the particle to reach the detector from the
interaction point. Charged particles with energies in the range of 0.6 - 2.5 GeV may be
identified in this way. The TOF counter also serves as an important veto for cosmic ray
events as it protects against the recording of events which are out of time synchronization
with the LEP beam crossings. The TOF detector is also essential for the trigger (described
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in section 3.3.9) to be able to deduce the beam crossing in which an interesting event
occurred.

The Time of Flight Barrel Detector

The barrel section of the TOF detector covers the polar angle range |cos8| <082. It
consists of 160 scintillating counters which form a cylinder 6.84 m long with a radius of
2.36 m. Thus, the TOF barrel is situated just outside of the magnetic coil.

Each scintillating counter which makes up the TOF barrel is 6.84 m long and 4.5 cm thick.
The cross-section of each counter is trapezoidal in shape and increases in width from
8.9 cm at the narrow end to 9.1 cm at the wide end. Light is collected at both ends of each
counter by 30 cm long plexiglass light guides which are directly coupled to phototubes.
The signal from the phototubes is used to both determine the time of arrival of the signal
and the total charge deposited by the passing particle.

The timing resolution of the TOF barrel detector is determined by measuring the time of
flight of muons from the decay Z° — u*u~. This gives a time resolution of 300 - 400 ps
depending on the position in z at which the measurement is taken.

The Scintillating Tile Endcap Detector

The Scintillating Tile Endcap (TE) design is based upon plastic scintillator “tiles” which are
embedded with wave length shifting fibre in order to allow the photemultiplier tubes to
reside outside of the detector. The detector was designed to complement the Time of
Flight Barrel detector and to provide improved triggering information in the forward region
of OPAL. The TE, in conjunction with the Time of Flight Barrel detector, also allows the
accurate determination of the collision time of the LEP bunchlets at the centre of OPAL.
This prompt time information is useful as it allows the correction of cluster energies in the
endcap calorimeters which were recorded with a fixed gate time which is not tuned to the
arrival of individual bunchlets.
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The TE detector, shown in Figure 23, is placed in between the endcap presampler wire
chambers (see section 3.3.5) and the electromagnetic endcap calorimeter in a space that
was originally left as tolerance in the OPAL design. The TE is made up of three radial
subsectors of tiles each of which is divided into 24 bins in ¢. The tiles are constructed
using 10 mm thick Bicron BCA08 scintillaior and are all embedded with 1 mm in diameter
wavelength shifting (WLS) fibres with an emission peak at 500 nm. The geometry of the
WLS fibres within the tiles was chosen to maximize the light collection efficiency while
allowing for the maximum bending radius of 40 mm for the fibres. Each 1/24 sector of the
TE consists of a single tile in the innermost radial layer and two tiles in each of the outer
layers. This granularity of tiles was chosen due to the mechanical constraints of installing
the TE next to the existing wire chambers in the endcap presampler.

The WLS fibre is attached to a 1 mm in diameter clear fibre using a custom connector
immediately upon exiting the tile. The clear fibre then transmits the light an average of
15 m to the photomultiplier tubes.

Initial results from the TE detector indicate that its timing resolution goal of 5% will be met
and perhaps exceeded. Full tests are being performed and the detector should be fully
operational for the 184 GeV LEP run in the summer of 1997.
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1/24 sector

2 WIS fibres per groove
both ends of fibre exit dle.

Figure 23: The Time of Flight Endcap (TE) detector. This figure shows both the location of the TE between
the electromagnetic endcap calorimeter and the endcap presampler chambers as well as the detail of a 1/24
sector of the detector.
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3.3.5 The Electromagnetic Calorimeter

The purpose of the electromagnetic calorimeter [8] is to measure the energy of
electromagnetic showers originating from electrons and photons. This calorimeter is
capable of measuring initial particle energies ranging from tens of MeV to over 100 GeV
and also provides discrimination between hadrons and electrons when used with central
tracking information. The electromagnetic calorimeter covers 98% of the solid angle and is
divided into a barrel section with azimuthal coverage |cosf| <082and two endcap
sections with azimuthal coverage 081 < [cosf| < 098. Both sections measure the energy
deposited in lead glass blocks by Cerenkov* photons which are generated by the particles
entering the lead glass.

The barrel section of the electromagnetic calorimeter is placed just outside of the time of
flight detector with an inner radius of 2.455 m from the beam pipe. It consists of 9440 lead
glass blocks each of which having dimensions of 10cm x10cmx 37cm. These
dimensions correspond to an amount of material equal to about 24.6 radiation lengths in
each block. The blocks point towards the interaction region in an attempt to ensure that
any entering particle does not share its energy between more than one calorimeter block.

The lead glass blocks are directly attached to a magnetic field tolerant phototube which is
capable of operating in the magnetic fields present just outside of the solenoidal coil. In the
absence of intervening material, the intrinsic energy resolution of the electromagnetic laarrel

calorimeter is given by the equation:
o¢ 63%
~——=02% + =
E JE

* Cerenkov radiation of frequency w is emitted when a particle traverses a medium with a velocity
greater than the phase velocity of electromagnetic fields of frequency w in that medium.
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In practice, however, the amount of material in the detector preceding the electromagnetic
calorimeter reduces this energy resolution by as much as a factor of two.

Each of the electromagnetic endcap calorimeters forms a dome shaped structure placed
between the pressure bell and the pole tip hadronic calorimeters which are described in
section 3.3.6. Each endcap consists of 1132 lead glass blocks which present a total depth
of at least 20.5 radiation lengths to incoming particles. The blocks are placed coaxially
with the beam axis and are read out through a single stage photomultiplier called a vacuum
photo-triode which can operate in the full magnetic field of the solenoid. The energy
resolution of the electromagnetic endcap calorimeter has been measured to be

5% / JE for low energy particles.

The presence of material preceding the electromagnetic calorimeter causes many
electromagnetic showers to be initiated prior to the particles entering the calorimeter.
Thus, the installation of presamplers in front of the lead glass was necessary. Presamplers
allow the position of the showers to be more accurately measured as well as the energy
recorded in the calorimeter to be measured with a better resolution. This is possible due to
the fact that the presampler signal is approximately proportional to the multiplicity of
charged particles entering the device which is in tumn proportional to the total energy
deposited by the shower in the material preceding the calorimeter.

The barrel electromagnetic presampler [8] [17] is a 6.623 m long cylinder formed of
tubular streamer chambers at a radius of 2.388 m from the beam pipe. There are two
layers of tubes with each tube having a square cross section of area 9.6 mm’. The
ionization showers in the tubes are located by the induced charge on cathode strips placed
along each side of each layer of tubes. The cathode strips of the inner layer are orthogonal
to those of the outer layer. The position resolution of the barrel presampler is between 4
and 6 mm (depending on the particle energy) in a direction perpendicular to the shower
direction. A position resolution of about 10 cm in z is also made possible through a charge
division technique.



LEP AND OPAL 61

The endcap presampler is made up of thin muitiwire proportional chambers placed between
the pressure bell and the electromagnetic endcap calorimeter. The position of showers in
these chambers is also determined from cathode strips and resuits in a resolution similar to
that obtained for the barrel presampler.

3.3.6 The Hadron Calorimeter

The purpose of the hadronic calorimeter [8] is to determine the energy of showers of
hadrons which exit the electromagnetic calorimeter. The hadronic calorimeter also acts as
the return yoke for the magnet coil and consists of three distinct parts: the barrel, the
endcaps, and the pole tips.

The barrel section of the calorimeter is 10 m long and surrounds the electromagnetic
calorimeter. The inner radius of the barrel is 3.4 m, the outer radius is 4.4 m and it covers
the polar angles |[cosf| < 0.81. The barrel calorimeter is composed of eight slabs of iron
each of which is 10 cm thick. The central 4 m of the barrel is also covered by an additional
two iron slabs in order to increase the number of interaction lengths' presented to particles
passing through this region. The iron slabs are separated by 2.5 cm gaps which are filled
with planes of streamer tubes. The anode wires in adjacent streamer tubes are 1 cm apart
and run parallel to the beam axis. Large area cathode pads on one side of the streamer
tubes read out the signal as do 4 mm wide aluminum strips running parallel to the anode
wires on the opposite side from the cathode pads. Layers of cathode pads are grouped
together to form hadronic calorimeter towers.

The endcap section of the calorimeter consists of seven 10 cm thick iron slabs and covers
the angular region 081 < [cos@| < 0.91. The gaps between the iron slabs are 3.5 cm wide
in the endcaps and are also filled with streamer tubes. The readout of the tubes in the

¥ An interaction length is defined similarly to the radiation length for electromagnetic showers and is
the length scale which is appropriate to describe the evolution of hadronic showers.
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endcap is performed similarly to the barrel readout scheme. When the cathode pad towers
of the endcap are included with those of the barrel, the angular acceptance of the hadronic
calorimeter is divided into 976 equal towers pointing towards the interaction region.

The pole tip hadronic calorimeters [18] cover the region in between the electromagnetic
endcap calorimeter and the hadronic endcap calorimeter in the angular region
0.91 < [cos6| < 0.99. Each pole tip consists of nine 8 cm thick irons slabs with an inter-
slab gap width of 1.0cm. The gaps between the slabs are filled with thin multi-wire
proportional chambers using a mixture of 55% carbon dioxide and 45% n-pentane gas.
The chambers are read out on one side with 500 cm’ cathode pads and by 2.5 cm wide
strips on the other side. The pads from the ten layers of chambers are again grouped to
form calorimeter towers pointing toward the interaction point.

The hadron calorimeter contains enough material to ensure that less than 0.1% of all pions
will pass through the detector and hit the muon detectors. The calorimeter is also thick
enough to reduce the amount of punchthrough (hadronic shower particles leaving the
hadronic calorimeter) to less than 0.8% of all particles at 5 GeV/c. The energy resolution
of the hadronic calorimeter varies from 100% / JE for particles of energy less than

15 GeV to 140% / J/E for energies of 45 GeV.

3.3.7 The Muon Detector

The purpose of the muon detector [8] is to separate muons from the hadronic background
in the OPAL detector. The detector is made up of a barrel section and two endcap
sections and covers over 93% of the total solid angle.

The barrel section of the muon detector is made up of four layers of 10 m long by 1.2 m
wide drift chambers which form a cylinder of radius Sm. All four layers of the barrel
muon detector cover the polar angle region |cosf| < 0.68 while at least one layer covers
the region [cosB| < 0.72. Each chamber contains two drift cells with one anode wire each
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running parallel to the beam axis. The r-¢ coordinate of hits in the chambers is measured
from the drift time while the z position is given by diamond shaped cathode pads [19]
which run the length of each chamber along the anode wire.

The muon endcap detectors consist of 12 m x 12 m panels placed perpendicularly to the
beam axis. Each covers the angular region 0.67 < |cos8| < 098 and is instrumented with
four layers of streamer tubes operating with a gas mixture of 75% isobutane and 25%
argon. Two layers of streamer tubes run vertically and two run horizontally in each
endcap. The anode wires of the streamer tubes are read out using 8 mm wide aluminum
cathode strips which run parallel to the anode wires on one side and perpendicular to the
wires on the other side.

In order to identify muons, tracks seen in the central tracking detectors are extrapolated to
past the hadronic calorimeter and matched with track segments in the muon chambers after
correction for multiple scattering in the inner detector material. The positional accuracy
required to match a muon chamber track segment with a track from the central detector is
determined by the multiple scattering experienced by the highest energy muons of interest.
This requirement gives a positional accuracy of about 2 mm which is made possible by the
positional resolution of 1.5 mm in r-¢ and 2 mm in z in the barrel muon chambers and
1 mm in x and y in the endcap muon chambers.

3.3.8 The Forward Detector and Luminometer

The measurement of the total integrated luminosity delivered to OPAL by LEP is made
possible by the accurate measurement of the Bhabba scattering rate near the OPAL beam
pipe. Two separate detector systems are used to measure this scattering rate: the forward
detectors [8] [20] and the Silicon-Tungsten Calorimeter [21]. The forward detectors were
part of the original OPAL design while the silicon-tungsten calorimeter was installed in
1994.
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The two forward detectors surround the OPAL beam pipe just outside of the pressure bells
and fill the holes at the center of the electromagnetic endcap calorimeters. Each forward
detector is made of tube chambers and drift chambers in front of an independent
electromagnetic calorimeter fitted with its own presampler. The tube and drift chambers
measure the angles and positions of scattered electrons and positrons while the calorimeter
measures their energies. The calorimeter consists of 35 layers of lead separated by layers
of plastic scintillator. The forward detectors can accept incoming particles coming from
the interaction region at angles ranging between 47 and 120 mrad from the beam axis.

The Silicon-Tungsten Calorimeter was designed to improve the luminosity measurement in
OPAL. It consists of two detectors placed at +238.94 cm from the interaction point in .
Each detector is made up of 19 layers of active silicon separated by 18 layers of tungsten.
Each detector has a bare layer of silicon at the end facing the interaction point in order to
detect preshowering.

Each active silicon layer consists of 16 wedge shaped silicon detectors each of which
covers 22.5 in ¢ and radii between 6.2 cm and 14.2 cm. Each wedge is further subdivided
into 64 pads which are read out individually. Adjacent wedges within a given layer are
offset by 800 um in z and consecutive layers are offset by half a wedge in ¢ in order to
eliminate gaps in the detector.

3.3.9 Triggering and Online Data Acquisition System

In order to reduce the amount of data recorded by the detector, only physically interesting
events as defined by trigger conditions are actually read out of OPAL. The OPAL trigger
and the data flow after a trigger is registered are described in the following sections.

The Trigger
Trigger conditions [22] in OPAL may be divided into two general classes: stand-alone
signals such as multiplicity counts and energy sums, and threshold signals from the trigger
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matrix which is divided into 6 bins in 6 and 24 bins in ¢. Signals from the central tracks,
the time of flight counters, the electromagnetic calorimeter, and the muon detector all serve
as inputs to the trigger matrix. Certain geometrical correlations between detector inputs in
the matrix are sufficient to trigger the detector. The list of correlations and stand-alone
signals which are sufficient to trigger the detector are stored in the trigger definition file
which may be updated for any given OPAL run.

OPAL also makes use of a pretrigger which takes into account the bunch crossing signal
from LEP as well as many of the same inputs as the main trigger. The pretrigger matrix,
however, has only 12 bins in ¢ and no segmentation in 6 and thus the pretrigger serves only
as a fast indication of the possibility of a good e'e’ collision in OPAL. Only 1-2% of all
bunch crossings generate a pretrigger signal thus reducing the dead time in the detector
that would be induced by a full readout sequence.

When a trigger is generated, the General Trigger Unit (GTU) sends a trigger interrupt
request to a Local Trigger Unit (LTU) located on each subdetector. The subdetector then
reads the data out while the LTU holds a busy line. Only when the GTU detects that all
subdetectors have read out their data does it resume triggering. The trigger reduces the
data flow to the 10 Hz level necessary for the successful operation of the rest of the online
readout chain.

Online Data Flow

After a trigger, each of the sixteen OPAL subdetectors is read out into its Local System
Crate (LSC) and then assembled in the Event Builder (EVB). The EVB is connected to
each of the eighteen LSC’s (one for each subdetector and one each for the trigger and

track trigger) by high speed memory map links.

After assembly, the event is passed to the filter which compresses the data and performs
some data monitoring. Obviously badly measured events, some 15-20% of all triggers, are
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rejected at this stage. All header information for events reaching the filter, whether they are
rejected or not, are recorded on disk to help in later book-keeping.

Events which pass the filter are written to disk in 20 MB long partitions and then are
copied to the reconstruction farm of Unix workstations where the event parameters
(described in section 3.5.1) are determined. After reconstruction, the completed events are
recorded on data cartridges as a permanent backup as well as being transferred to the
OPAL offline analysis computers on the main CERN site. There, the events are stored on
disk and again backed up to data cartridges. Data taken by OPAL is commonly available
for offline analysis within several hours of its being recorded by the detector.

3.4 The OPAL Simulation Software

In order to examine the response of the OPAL detector to various interesting physics
processes, a full computer simulation of the detector has been developed. This simulation
package, known as GOPAL {23] is based on the CERN detector simulation package
GEANT [24]. The simulation operates by defining the geometry of the OPAL detector
and controlling the tracking of particles through this geometry. The energy loss of the
particles in the various subdetectors is calculated and the output given in the same format
as real OPAL data in order to facilitate analysis by the same offline analysis tools as used
for real data.

Event Generators
Prior to using the OPAL simulation program, physics events must be simulated using an
event generator program. Event generators calculate the cross sections for the requested
physical process and generate the initial particle configuration and kinematics at the
interaction point. The output of these generators can then be used as input to the OPAL
simulation program.
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Several different event generator programs exist for different physics interests. The
generators used in this thesis are described in section S.1. Much work has been invested by
the OPAL collaboration in tuning the output of these event generators to match real OPAL
data [25].

Detector Simulation

GOPAL uses GEANT defined geometrical shapes to specify the location and extent of
each of the OPAL subdetectors. GEANT also allows the properties of the detector
materials to be simulated. Particles arising from the event generators are then traced
through the detector geometry in steps and the probability of an interaction during any step
is calculated. If an interaction occurs, the energy loss of the particle in the subdetector is
recorded as a “hit” and stored. Secondary physics effects such as photon pair production
and particle decays are also accounted for in the GEANT framework.

After all particles in the event have been tracked through the detector, the hit information is
collected for each subdetector and the detector response is determined. The resolution and
inefficiencies of the OPAL subdetectors are simulated at this point. At the end of this
stage, the simulated data is written out in the standard data summary tape (DST) format for
later analysis by the OPAL offline code.

3.5 The OPAL Offline Analysis Software

The OPAL offline analysis software, known as ROPE, processes either raw OPAL data or
simulated data summary tapes and calculates the physical variables which are later used in
physics analysis. Information about the track parameters, the primary and secondary event
vertices, the dE/dx of tracks in the jet chamber, calorimeter cluster energies, and muon
candidates are all generated by ROPE. The ROPE process can be used to create DST
from raw OPAL data or to analyze DST which has been produced previously.

a
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3.5.1 Track Reconstruction

ROPE makes use of a central trackiﬁg (CT) subprocessor to match track segments in each
of the central detectors in order to calculate parameters for each track. A track fit which
includes the effects of multiple scattering in the detector is used to merge segments from
each of the central detectors into a single track. The resulting parameters which are
calculated for each track are:

e The curvature (k) of the track as defined by x=1/2p where p is the radius of curvature
of the track. Since the OPAL magnetic field is directed along the positive z axis, a
positive value of k corresponds to a particle with negative charge.

* ¢y, the azimuthal angle of the tangent to the track direction at the point of closest
approach to the OPAL coordinate origin.

e do (or b), the track impact parameter where |do| is the distance from the origin to the
point of closest approach of the track in the x-y plane. The impact parameter is given a
sign as described in section 5.2.5.

o The dip angle of the track A where tan(A)=cot(6).
e The value of the z coordinate at the point of closest approach to the origin, zo.

With the above track parameters, and a knowledge of the OPAL magnetic field. B in
kilogauss, the total momentum of a track in the r¢ plane is given by
p, =15x10*B /x GeV/c when « is measured in units of cm™. The three components
of the momentum are then given by p, = p,cosé,, p, = p,sin¢,,and p, = p,tani .

3.5.2 Track Quality Selection

OPAL makes use of several quality selections in order to reduce the amount of data which
need be considered for physics analysis. These selections aim to reject events with badly
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reconstructed tracks as well as eveats which are not multihadronic in nature. Without such
quality selections, the amount of computer time necessary to analyze the entire data set
would be prohibitive. The following two sets of quality selection criteria are the most often
used within OPAL as a starting point for physics analysis with further refinement in the
selection being made by each researcher later in his or her analysis.

The Gold Plated Multihadron Selection

The Gold Plated Multihadron (GPMH) selection is performed online and hence is one of
the first indicators of the quality of an event. This selection requires that:

* Electromagnetic calorimeter clusters must have at least a 100 MeV initiating block and
at least one 50 MeV neighbor block in the barrel and at least a 200 MeV initiating
block and at least one 100 MeV neighbor block in the endcap.

e The event must have an energy sum over all good electromagnetic clusters of at least
8 GeV.

e The event must have at least 6 good electromagnetic clusters.

o The sum of the good electromagnetic cluster energies in the hemisphere opposite the
highest energy cluster must be at least 2 GeV.

o The event must pass the halo muon rejection cut.

e If the sum of the electromagnetic barrel cluster energies is greater than 2 GeV and the
number of clusters if greater than or equal to 2, the number of time of flight counter
hits is required to be at least 3.
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The Tokyo Multihadron Selection

The Tokyo Multihadron Flag (TKMH) is set in the ROPE offline processor and is a much
better event quality indicator than the GPMH criterion presented above. In the TKMH
processor, good electromagnetic clusters are defined as having:

e araw energy of at least 100 MeV in the barrel or at least 200 MeV in the endcap.
e at least one constituent block in the barrel and at least two in the endcap.

Good tracks are defined as having:

at least 20 hits in the central detector.

e an impact parameter (|dof) no greater than 2.0 cm.

e avalue of |z no greater than 40.0 cm.

e the radius of the first hit in the central detector no greater than 60.0 cm.
e amomentum in the x-y plane greater than or equal to 0.050 GeV/c.

e avalue of jcos(8)f no greater than 0.995.

e ay’on the r-¢ track fit no greater than 999.

e a+?on the Z track fit no greater than 999.

Using good tracks and clusters selected by these cuts, two ratios are defined:

¢ R.s which is equal to the sum of the raw electromagnetic cluster energies divided by
two times the beam energy, and

e  Eu which is equal to the sum of the raw electromagnetic cluster energies times the
cosine of the azimuthal angle of the cluster.
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With these definitions, an event is selected by the TKMH processor ift
e Ry is greater than or equal to 0.10.

¢ [Ruaf is less than or equal to 0.65.

o There are at least 7 good electromagnetic calorimeter clusters.
 There are at least 5 good tracks.

The High Multiplicity Selection

The High Multiplicity Selection, HIMS, is the data selection used to search for the
Standard Model Higgs Boson at OPAL. In order to be flagged by the HIMS selection, the
event must have passed the GPMH selection described above or it must contain at least
five tracks with the following properties:

e The track momentum in the x-y plane must be at least 100 MeV/c.

o The absolute value of the cosine of the azimuthal angle of the track must be no greater
than 0.996.

* The magnitude of the impact parameter d, must be no greater than 2.5 cm.
e The magnitude of z for the track must be no greater than 50.0 cm.
¢ The number of hits in the jet chamber must be at least 20.

e The number of hits in the jet chamber must comprise at least 50% of the total possible
central detector hits for the track.
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3.5.3 OPAL Offline Analysis Packages

In order to allow efficient physics analysis, several offline analysis packages have been
developed to provide specialized tools for the various OPAL physics working groups.
These offline analysis packages extract useful information from the DST for a particular
purposeandstandaxdizsthedeﬁnﬁionsofvaﬁousanalys’smethodswﬁhinthe
collaboration.

Offline anlaysis packages exist for the identification of leptons in an event, for determining
the primary vertex of an event, for tagging heavy quarks in jets, and for extracting variables
relevant to searches for new particles to name just a few. The offline packages which have
been used in the analysis presented in this thesis are described in section 5.2.

3.6 Personal Contributions to OPAL

A total of almost one year of my tenure as a MSc. student was spent at CERN where I was
involved with several tasks related to the maintenance and operation of the OPAL detector.
These tasks included shifts watching over the detector’s safety equipment as well as
helping to operate the online data analysis system. I was also involved with the early
testing of scintillating tiles and the fabrication of the light guide fibres for the Scintillating
Tile Endcap detector which was installed in OPAL in May 1996. Finally, I contributed to
the OPAL Higgs search effort as a whole by helping to develop the offline analysis
software (the DH [33] package) for the four jet decay channel.
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4. Classification Using Artificial
Neural Networks

n Artificial Neural Network (ANN) consists of a web of interconnected
Aprocusing units known as neurons. Each neuron is capable of combining inputs
from several other neurons in order to determine its output state. Data is presented to a set
of input neurons which process and pass on various features of the data to other layers of
peurons. Several such intermediate layers can process the data before a final output is
presented back to the operator. This output is used to make a classification decision on a
particular piece of data.

The ability of ANN’s to recognize unique features in different classes of data makes them
very well suited to high energy physics analysis which often strives to separate a signal
from a background based on small differences in several variables. Through associative
recognition of complex structures, multi-dimensional features in the signal and background
signatures may be appreciated by the network that would be missed in a conventional
multivariate analysis. ANN’s are also frainable, that is they are designed to self-organize
and to optimize their classification ability. This trait makes ANN’s very efficient in terms of
development time for high energy physics analysis as optimizing a cutting approach for
separating signal from background in several variables can become a very lengthy
procedure. The fault tolerance of ANN’s is also beneficial as a well trained ANN can see
past noisy or incomplete data to the underlying structure and thus complete its
classification task unimpaired. Furthermore, the algorithms which govern the training and
use of ANN’s are inherently parallel and recursive which allows them to be implemented
on widely available digital computing systems.

While Artificial Neural Networks have many beneficial properties when applied to particle
physics analysis, there are some drawbacks to their use. The most important of these is the
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closed nameoftheANNpmmwhemédasiﬁmﬁondec'sion is made directly from the
input variables without any visible intermediate steps. The actual relationships between the
input variables which are being exploited by the ANN are obscured in the inner workings
of the network and thus the evaluation of systematic errors in the analysis is made difficult.
In addition, ANN’s can be overtrained to recognize features which are not indicative of the
general class of data one wishes to isolate, but which belong to a particular subset of that
data. Such a network will therefore be unable to recognize other sets of data from the
same general class and will be of no use for data classification.

These problems have been well documented in the literature and the advent of
customizable ANN software packages, such as JETNET [26], has made the diagnosis and
cure of ANN development problems easier and faster. With careful design,
implementation, and testing, problems can be avoided and the ANN can become a useful

weapon in the analysis arsenal of the high energy physicist.

4.1 A Brief History of Artificial Neural Networks

This section is intended to give a flavour of the history of the development of Artificial
Neural Networks. A comprehensive discussion of this history may be found in reference
[27]. The emergence of the study of Artificial Neural Networks can be traced to the
introduction of the dot product neuron (described in section 4.2 below) by McCulloch and
Pitts in 1943. At the same time, Hebb postulated a learning mechanism for networks of
such neurons which stated that the connection strength between any two neurohs is
reinforced when a high activity in one neuron is correlated to a large reaction in the other.
This is the basis of the delta rule of network learning which will be discussed in more detail
in section 4.5.2 below.

In 1957, an attempt to build the first artificial neuron was undertaken by Resenblatt at
Comell. Named the Perceptron, this neural network consisted of only two layers of
neurons: a single input layer and a single output layer. As will be made clear below, this
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limited the Perceptron to linear separation of data during classification. By 1959 this major
limitation of the Perceptron was being widely criticized in the literature, and resulted in a
loss of funding for many neural network research projects. As a result, work in the field
slowed to a standstill for many years.

In 1982, however, Hopfield of the California Institute of Technology breathed new life into
neural network research by proposing an associative memory model based on a network of
fully connected neurons. This type of network would become the basis of the pattern
recognition networks in use today. The upsurge of interest in neural networks caused by
Hopfield’s developments was strengthened by the development of a Multi-Layer
Perceptron (MLP) by Rumelhart at the Massachusetts Institute of Technology. The MLP
was capable of non-linear separation during classification and hence set the stage for the
wide variety of classification problems accessible to neural network analysis today.

4.2 The Neuron

The basic building block of the Artificial Neural Network is the neuron. This unit emulates
the functional description of the biological neuron found in the brain by replacing electro-
chemical communication processes with the electrical impulses of a computer software or
hardware implementation.

An Atrtificial Neural Network consists of a set of these single neurons connected together
in such a way that they may share information. The connection between any two neurons i
and j has an intrinsic strength characterized by a coupling constant w;. A neuron i is itself
completely described by its activation function f and its current state 5. There are two
basic models of the neuron, both of which share the common features mentioned above.
These two models, the dot product neuron and the distance neuron differ in how the
weights of the connected neurons are combined in order to determine the state of the

neuron.
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4.2.1 The Dot Product Neuron

The most common neuron model, the dot product neuron, is drawn schematically in Figure
24. In this model, a given neuron i performs a dot product of the output states s; of its
input neurons with their associated weights wy;:

The resulting weighted sum, P;, is then used as input to the activation function of neuron i
with the output specifying the state of neuron  through the relation:

s;=f(F)

The activation function f is chosen from several common functions and usually consists of
applying a threshold and some amplification to P The simplest example of an activation
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Figure 24: Schematic diagram of a dot product neuron. There are n input neurons each with state s; and
connection weight w;. The single output state of the neuron, s;, is governed by the activation function f.

function for a dot product neuron is a step function. The most commonly used function,
however, is a non-linear sigmoid characterized by the logistic function:
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a(zl) - 1+e—8'

Both types of activation function are shown in Figure 25.

threshold (step) function sigmoid function

Figure 25: Two common activation functions used in the dot product neuron. The step function is shown on
the left and the logistic function on the right.

The analogous nature of the dot product neuron to its biological cousin is quite clear. The
weighting function between interconnected neurons in the ANN corresponds to the
chemical strength in the synapses between the dendrites and neuron body in the biological
model. Similarly, the output state of the ANN neuron corresponds to the response sent
down the axon of a biological neuron. The magnitude of this output state is related to the

frequency of firing of the biological neuron.

4.2.2 The Distance Neuron

A second type of neuron, known as the distance neuron, differs from the dot product
neuron in the manner in which the incoming signals from connected neurons are processed
and in the choice of activation function used in each neuron. A schematic drawing of the
distance neuron is shown in Figure 26.



ARTIFICIAL NEURAL NETWORKS 8

d;

bell-shaped function
Figure 26: A schematic diagram of the distance neuron. The n input neurons each with state s; are
compared to their respective weights through a euclidean distance norm and this output is used in a bell
shaped activation function.
Instead of the weighted sum of the input neuron states, the distance neuron computes the
“distance” between the vector of input weights W and the actual input state vector S.
This distance can be specified in any metric, but is commonly given by the euclidean norm:

4, = [ - 5]

The activation function for such a neuron then takes on the form of a bell curve. This
implies the notion that the output of a given neuron i is higher if its weight vector and input
vectors are similar thus giving an activation function that peaks at an input of zero and

decreases as ld,l increases.

The distance neuron is commonly used in competitive learning techniques in unsupervised
self-organizing networks. As this type of network is not commonly used for classification



ARTIFICIAL NEURAL NETWORKS 79

purposes in particle physics, it is not discussed further in this thesis. In depth discussions of
self-organizing networks may be found elsewhere [27].

4.2.3 Comparison to the Biological Model

While the basic architecture of an Artificial Neural Network may closely emulate its
biological counterpart, the vast difference between the capability of the human brain and
even the best ANN may be explained as a matter of scale. While the speed of a “neural
operation” (one neuron firing) in the biological neuron is only ~10 ms as compared the
~1 ns speed of a single hardware VLSI' chip network operation, the human brain has on
average 10" neurons each of which is connected to between 10” and 10" other neurons. In
comparison, an average ANN contains only 10? to 10° neurons each of which is connected
to less than 10 other neurons. This vast difference in the number of neurons and
connectivity between the human brain and an ANN accounts for the superlative
classification and pattern recognition capabilities of the brain. It is estimated that the
immense number of neurons in the human brain [27] corresponds to a speed of 10"
operations per second and a total memory capacity of 10° MB!

With these descriptions of the basic function unit of Artificial Neural Networks, we are
now ready to consider the history of the development of ANN's as well as their architecture
and operation.

4.3 The Architecture of Neural Networks

A particular neural network is completely specified by the number of neurons it contains
and the way in which they are interconnected. Two main architectures of ANN's may be

¥ Very Large Scale Integration. These types of microchips can integrate millions of individual
transistors on a single small piece of silicon.
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identified. These are the feed forward network and the recurrent network. These two
different architectures are shown schematically in Figure 27.

Y
—~—
\ X )—
* =
[ )—o
L i

input layer
hidden layer
output layer

Figure 27: A feed forward network is shown on the left where information propagation occurs only in a
specified direction and there are well defined input and output layers. On the right is a recurrent network
where all neurous are bi-directionally connected and a neuron can simultaneously be an input and an output

neuron.

In a feed forward network, each neuron belongs to a well defined layer within the network.
Each layer can be classified as an input layer where raw data is accepted into the network,
a hidden layer where non-linear separation of data classes takes place, or an output layer
where the resulting output of the net is reported.

Neurons are almost always of the dot product type in a feed forward network. In such a
network, no connection between neurons in the same layer is possible as the output of a
particular neuron must feed uni-directionally to a neuron in the next layer. This type of
network is representative of the general class known as Multi-Layer Perceptrons and is the
one most commonly used networks for classification problems in high energy physics. The
remainder of this chapter will concentrate mainly on this type of network.

In contrast, the neurons of a recurrent network may connect to any other neuron in the net
and are capable of both receiving input from and sending output to the same connected
neuron. Thus, any neuron may be both an input and output neuron. In principle, each
neuron is connected to all of the others with the weight between any two neurons
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becoming zero during the learning process if the two neurons in question do not interact
with each other. Neural networks of this type find application in associative memory
models. In such a configuration, the ANN produces an output which is related to the input
configuration but which contains information that may have been lost or obscured by noise
in the original input data. The obvious use of such networks in particle physics is pattern
recognition in tracking detectors with the associative memory filling in the details of tracks
from only a few hits. The possibilities of this type of network for pattern recognition will
not be discussed in the present work. Excellent introductions to recurrent ANN's may be
found in [27] and [28].

4.4 Significance of Hidden Neurons in Classification Tasks

As was mentioned in Section 4.1, a major stumbling block of the first Perceptron, which
consisted of only an input and an output layer, was its inability to isolate sets of data which
were not linearly separable in n-space. As can be seen in Figure 28, the separation of two
classes of data, even in n dimensions, can take place even with the simple Perceptron as
long as the two classes of data are linearly separable in n-space. In the example shown in
Figure 28, the two classes of data, A and & are separable by the line aX +bY +c=0.
Thus, by using the X and Y values as inputs with weights of a and b respectively, a step
activation function ®(aX +bY +¢) in the output neuron will successfully isolate the two
data classes.
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Figure 28: An example of linear separation of two classes of data by a two layer neural network. This is
possible with a two layer network only because the two classes of data, fand &, are linearly separable by the

line aX +bY + ¢ = 0 in 2-space. The right hand section of the figure shows the resulting logic diagram
for the network with the weights clearly marked on the connecting lines. The threshold input always
reports a value of ¢ to the output neuron.

For cases in which linear separation of the two classes is impossible, hidden layers become
necessary in the network. The classic simple example of linearly non-separable classes is
the logical exclusive or (XOR) operation. Figure 29 shows the network diagrams for the
case of A.XOR.B. As can be seen in the diagram, the class of data for which A.XOR.B is
true may not be separated from the class for which A.XOR.B is false by any single line in
the two dimensional plane. This problem is overcome by the introduction of a hidden
layer. Closer examination reveals that the hidden neuron detects whether or not A and B
are both on, thus finding a more complex feature of the data. In more complex networks,
the identification of these features is what gives neural networks their powerful
classification abilities.
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Figure 29: The top portion of the diagram shows the two dimeasional data space for the XOR function.
Clearly no single linear cut can separate the points for which AXOR.B is true from the points for which
AXOR.Bis false. With the addition of a hidden neuron, however, a non-linear separation can be achieved
with the results shown in the table. In the schematic neural net diagram, the thresholds for the various
neurons are marked as are the weights by which their outputs are scaled.

4.5 The Learning Process

In this thesis, we only deal with supervised learning by neural networks. In this type of
learning, an external supervisor trains the network to recognize a certain class of data or

pattern. The network is given a target output vector T and then is fed a set of training

data as input. The output of the network from this training data is compared to T onan
event by event basis and the weights between neurons updated in order to make the output
more like the target vector. The weights in the network therefore change with time

according to the following equation.

w;(t") = w;(2) + Aw;.
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There are several rules which govern this learning process. These are detailed in the
sections below.

4.5.1 Hebbian Learning

This postulate states that the weight between two neurons strengthens in proportion to the
product of the activation status of the two neurons in question. This strengthening of
weights is described by the equation:

Aw; = 1s,s,

When compared to the biological neural network model, Hebbian learning embodies the
notion that a neural pathway strengthens with use. In practical terms within an ANN,
Hebbian learning has the result that only neural connections which are successfully
identifying features in the data will develop appreciable weights.

4.5.2 Delta Rule Learning

The Delta Rule is the mechanism by which the neural net reduces the differences between
its output vector O and the target vector T. At the outset of training, a network begins
with randomly arranged weights between its constituent neurons. A given input event
produces a certain output vector O when passed through the network. A quadratic form
can be assigned to measure the degree of difference between the output and target vectors

for a particular event p.

E, =300, - T[ =3 3[0,0-1,6]
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When summed over a set of m patterns, this function becomes a global error function

E = ) E, and may be minimized to yield the optimal configuration of the weights for the

el

network.

The delta rule itself describes the manner in which the weights are varied in order to
minimize E. Weights are changed in proportion to the effect they have on the minimization
of the global error function. This weight change is called gradient descent and may be
written:

JFE

Aw'.,. = =7 a—w (gradient descent)

i

The parameter 7| in the above equation is known as the learning parameter and is
discussed in more detail below.

We now clarify the learning rules presented above by applying the delta rule to the simple
two layer neural network shown in Figure 30. In this network, a set of p input vectors A »
is presented to the input layer of the ANN and associated output patterns O, are

generated at the output nodes. Note that the dimension of the output vector need not be
the same as the dimension of the input vector; the input and output spaces can be of
different dimensions. It is assumed that a desired target vector f’, is known for each input

pattern. The weight between the input node j and each output node is given by w;.
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Figure 30: A simple two layer ANN. Inputs A(j) are presented at the input node and transferred through
weights w(i,j)=wy; to the output nodes.

Recalling the form of the output of a dot-product neuron from section 4.2.1, we see that
we can write the output vector of our sample ANN for a given input pattern as:

0,® = f[ 3wty ()= s, @]
with the definition s,,(i) = Y w;A,(j) and where f is the activation function. We can
now calculate the gradient of the error function:

JE QIE,

-
aw,.i s 0w,i

dE 40 95,0
Z¢90 as(z) d wy

-3o.0-50) {50} 4.0

Thus, we may write the change in the weighting constants as:

Aw,.,. - 2 prli
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- nX[6,0-To){s0l.o
= -1 8,D)A,(j) (the Widrow-Hoff Formula)

where we have defined:
5,0 =[0,0 - Lo [s,0]

We note that in the Widrow-Hoff formula, the change in the strength of the weights
depends on both the strength of the input contained in A,(j) as well as the strength of the

effect of the input on a given neuron as given by J,({) . This is the effect of Hebbian
learning showing itself within the delta rule.

The fact that the first derivative of the activation function f appears in the expression for
6, ({) and therefore in the expression for Aw; indicates that only continuous activation

functions may be used in the network. This means that the threshold step function neurons
may not be used with the delta leaming rule. More commonly, a continuous sigmoid

function such as f(s) = is used as the activation function.

1+e™

]
Figure 31: A simple three layer ANN with a hidden layer. Weights in the hidden layer are updated by
backpropagation.
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4.5.3 Backpropagation

The simple example of the two layer network in the section above may be expanded to the
case of a multi-layer network with hidden layers through the introduction of
backpropagation. This concept defines the manner in which the weights of hidden neurons
are corrected in order to reduce the global error function. Applying the gradient descent
equation of section 4.5.2 to the three layer network shown in Figure 31, we see that:

JE,
A‘Vll - —112 P "y
/]

with the gradient calculated as:

IE, _
T ao() s 0] 4,0

This is the same equation that was obtained for the two layer ANN. However, in the three

JE,
layer case, we cannot relate the —==- term to the difference between the output and

0G)
target vectors as the hidden neuron i cannot directly see the output layer and target. This
term is instead calculated using an expansion of the errors computed for the output layer.

JE, IE, 380,() 3s,(k)
30,G) 40,k ds,(k) 30,0

- 2 8, (kyw(k, i)

Recalling the definition ofd,from section 4.5.2, we now have an expression for the

evolution of the weights for the hidden neuron i.
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By =3, (f’[s,, ®]- 4,0 [2 5, (k)w(k,i)])

Thus, the generalized error for a hidden neuron in a multi-layer network is calculated from
a weighted sum of the errors in each subsequent layer times the derivative of the activation
function. The fact that the error in downstream layers is used in the calculation of the error
in an upstream layer gives rise to the term backpropogation.

4.5.4 Testing the Success of the Learning Process

The process of learning, or minimization of the global error function, can prove to be
difficult in that many minima may exist for the error function. In order for the neural net to
avoid local minima and settle upon the correct global minimum, the learning parameter 1
encountered earlier may be manipulated to control the “speed” of the gradient descent.
The learning parameter is large at the outset of learning, when the steps between successive
sets of neuron weights are large. When a minimum is neared, the value of 1} is decreased in
order to ensure that the correct minimum is identified within appropriate accuracy. If the
minimum reached is only a local minimum, there should still be a significant deviation in the
error function which will cause the next update of the weights to jump out of the local

..

In addition to the learning parameter, the speed of the gradient descent can be modu!ated
by a momentum term a.. This term provides a “memory” of how quickly the descent was
proceeding at the last iteration and conveys the information that if the last step was large,
the current step cannot slow the descent too much. This allows the minimization to
proceed at a faster rate without slowing for insignificant local effects. The cumulative
effect of these two terms on the weight updating can be written as:

]
d w(i, J)

Anw(i! j) =-n + aAn-lw(i’ j)
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In practice, when training an ANN with backpropogation, one divides the available set of
input patterns into three sets, the training sample, the testing sample, and the validation
sample. The training begins by presenting a number of the training samples to the network
and then performing the gradient descent minimization to optimize the network weights.
At the end of a certain number of epochs of training, the performance of the network is
measured on the events of the testing sample which have not been used in the training
process. This procedure is continued until the deviation of the network output from the
target vector is smaller than some predefined value over the testing sample. The
optimization of the weights is a very time consuming process and can involve iterating
many thousands of times over the input patterns. Once the minimization is complete, the
network is ready for validation.

Validation of the network performance takes place on a separate set of input data (the
validation set) which does not contain any of the same input patterns used in the training or
testing data sets. The success of training can be quantified by measuring the performance
(ie the sum of the difference between output and target vectors) of the neural network on
this validation data set. When the network consistently achieves the desired level of
success on a series of validation data sets, it is ready for general use.

When training a network, it must be noted that the training data set should contain at least
several times as many patterns as there are weights to be optimized in the network. This
constraint has the obvious effect of making the smallest neural network which gives
acceptable results the most attractive for a given application. There is no set rule which
gives the minimum number of nodes (and therefore weights) which a neural network
requires in order to give good performance. In fact, the number of hidden units in an ANN
is usually found as the minimum number which gives a reasonable performance for a given
problem on a trial and error basis.

The network must be guarded against overtraining as well. In this case, the number of
hidden units in the ANN is too large for the problem at hand and the network actually
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“memorizes” the input pattems of the training set. This, of course, results in excellent
performance on the training data, but when tested on a separate set of input patterns, the
network performance degrades drastically. When an ANN is overtrained, it is in essence
looking at the input data so closely that it is no longer able to generalize and pick out
identifying features for a given class of data.

The theoretical limit of the quality of classification by a neural network is given by the
Bayes classifier. In a data set consisting of two classes of data, »# and &, the Bayes
classifier gives the probability of a certain input pattern belonging to either class. To see
this correspondence, we consider a neural network with an output neuron that tends
towards the value 1 if the input pattern is of class 4 and tends towards a value of 0 if the

input pattern is of class &. 'We recall the error function for this type of network:

=330 -1]

with the summation being over the i events in the sample used to update the weights.
Now;, the target vector T can only have a value of 0 or 1 as it corresponds to the desired
network output for the A and & classes of data. If we define @, to be the fraction of

events of type A in the sample and @, to be the fraction of events of type & in the sample
along with P,(i)and P, (i) as the probabilities of an event i belonging to class A or &
respectively, the error function above may be written as:

£ ={a,P.0{0® - 1T +a, P,(YOGY’}

In order to find the minimum of this error function, we differentiate with respect to the
output O() and equate the result to zero. This results in the expression:

a,P,@]0G) - 1] + a, P, ())0G) = 0
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a, P, ()
a,P, (i) +agFe (i)

= O() =

=200() = B
n,+ng
where n, and ng are simply the number of events of type ¢ and & respectively in the training
sample. So, we see that minimizing the error function in this simple example corresponds
to the Bayesian probability of an event being in class £ In multi-layer ANN's, the quality
of classification approximates a Bayes classifier with the degree of accuracy depending on
the number of hidden units.
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5. The Higgs Boson Search
Algorithm

n this chapter, the development of an Artificial Neural Network for use in the search
I for the Standard Model Higgs Boson is presented. Several preliminary tasks were
necessary to prepare for the implementation of a neural network based approach to the
analysis. First, sufficient simulated physics events were generated in order to train the
network to separate the signal HZ events from the background hadronic Z decays and four
fermion final state events. Then, an offline analysis of these events was constructed in
order to extract useful experimental signatures which offered some means of differentiating
the signal and background events. These experimental signatures were then examined in
order to choose input variables for the network which would be of the most benefit to the
analysis. Only then could a network be constructed and trained to search for the Standard
Model Higgs Boson in OPAL data. Finally, an estimation of the effect of systematic
uncertainties on the results of the network was performed in order to set the stage for the
application of the network to real OPAL data. The application of the network to real data
as well as a comparison of the ANN technique to existing search methods for the Higgs
boson comprise the last two sections of this chapter.

5.1 Generation of Simulated Data

The generation of several sets of Monte Carlo data was necessary in order to both train and
test the performance of the neural network analysis presented in this thesis. As was
explained in chapter 4, Artificial Neural Networks require large numbers of template events
during training in order to minimize the error function between the network output and the
desired target output for a given class of data. In fact, ANN training is most effective
when the number of template training events exceeds the number of interconnections in the
network by several orders of magnitude. Thus, large amounts of computer time must be
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invested in creating Monte Carlo events of both the signal and background channels in
order to provide training patterns to the network.

The signal Monte Carlo events used in this thesis were generated using the HZHA [29]
simulation program developed at CERN by P. Janot. This generator was programmed to
specifically simulate both Standard Model and Supersymmetric Higgs Boson production
and takes into account all initial state radiation effects. The background events were
generated using several different Monte Carlo programs. The hadronic Z decay events

(Z° ly" — qc‘l(y)) were generated using the PYTHIA [30]{31] Monte Carlo program.

PYTHIA was also used for the generation of the W'W events used in this analysis.
Finally, the EXCALIBUR [32] Monte Carlo program was used for the generation of the
four fermion final states (including W'W~ and ZZ) background events. After the
generation of the original partons using these Monte Carlo programs, hadronization was
performed using JETSET [30].

The resulting four vectors were passed through the OPAL detector simulation program
GOPAL that was described previously in section 3.4. The version of the simulation
reflected the geometry of the detector actually in place during the data taking at

J5 = 161GeV.

As was described in chapter 4, several sets of data must be generated in order to effectively
train and test an Artificial Neural Network. First, a large set of training data for eath of
the classes which the network is expected to identify must be generated. Secondly, some
amount of data from each class must be reserved in order to monitor the success of the
network during the training process. This data is referred to as the test set. Finally, several
validation sets must be generated which will be presented to the finalized network in order
to measure the actual performance of the ANN after training. With these three types of
data in mind, Monte Carlo data was generated for each of the signal and background
channels.
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5.1.1 The Training and Testing Sets

The first set of Monte Carlo data to be produced was the training and testing set. This set
also had to contain the largest number of events as a portion of it was used as templates for
the ANN during training. The training and testing set consisted of a 4,300 event sample of
HZ signal events, a 150,000 event sample of hadronic Z decays, and a 10,000 event sample
of W'W events which were used to approximate the four fermion final state background.
The accuracy of using W'W" events to approximate the four fermion final state background
is justified since after the precut (see section 5.3), the four fermion final state events consist
mostly of W'W events. When training an Artificial Neural Network, an attempt should be
made to present the network with signal and background training samples in a similar ratio
to that observed in the real data. With this in mind, far more hadronic Z decay background
events were generated than either the signal or the W'W" background channels. Table 6
summarizes the Monte Carlo data generated for the training and testing sets.

Process OPAL R Number Events Generator
e*e - H°Z° —» quq 3432 1 - 4000 HZHA
my = 65 GeV/?

e’e‘—-Z°/y'—.qq(y) 4419 1 - 150000 PYTHIA
e+e- —_ W#w- — anything 442) 40(!)1-5(!)(1) . PYT[-!IA

Table 6: Moate Carlo data produced for the ANN training and testing sets.

After the data in these sets was passed through the precut described in section 5.3 below, it
was split up into events which were used to train the network and events which were used
to monitor the performance of the network after each training epoch. This splitting of the
training and testing sets is described below in section 5.5.
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5.1.2 The Validation Sets

In order to test the final performance of the ANN, several validation Monte Carlo data sets
were produced. HZHA was again used to generate several Higgs samples at different
Higgs boson masses. PYTHIA was used to generate hadronic Z decays to measure the
final response of the network to that background, and the EXCALIBUR generator was
used to create a large bank of true four fermion background events. None of the validation
events were used in either the training or testing sets. The details of the validation set
Monte Carlo data are given in Table 7.

Process OPAL Rum Number Events | Generator

ete —» H°Z° — bsqq 3416 2001 - 2500 HZHA

mg = 55 GeV/?

e#e- — HOzo — be?I 3416 2501 - 3000 HZHA

mg = 60 GeV/?

eoe- - HOzO - bsqq 3416 3001 - 3500 HZHA

my = 62 GeV/?

e¢c- — HOzO - bsqq 3416 3501 - 4000 HZHA

mg=64GeV/c2

ete —» HOzO - b'b'q-q— 3416 4001 - 4500 HZHA

[115':66('&\”('J

ete —» HOzO — bsqq . 3416 4501 - 5000 l'm

mu=6BGeV/c2

ete” —» HOzO — b_b'qq 3416 5001 - 5500 HZHA

mg = 70 GeV/IS?

e¢e— — ZO /y° — qq(y) 4419 150001 - PYTHIA

200000

e*e” — 4fermion final state 4436 1-20000 | EXCALIB

UR

Table 7: Monte Carlo data used as validation sets to measure the final performance of the ANN analysis.
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5.2 Offline Analysis

An offline analysis using the CERN Discover Higgs (DH) software package [33] was used
to extract useful experimental signatures from the Monte Carlo data. The goal of any
offline analysis is to reduce the data to a set of interesting variables which hold some
disciminatory power for the analysis problem at hand. The main features of the offline
analysis used in this thesis are described in the following sections.

5.2.1 Quality Selection of Tracks and Clusters

The initial stage of the offline analysis selected tracks and calorimeter clusters which were
measured with sufficient accuracy by the detector to be considered reliable. Only the
selected tracks and clusters were retained for use in the rest of the offline analysis. The
quality requirements on the tracks and clusters consisted of the following requirements"’.

¢ The total number of hits of a given track in the vertex chamber, the jet chamber, and
the z chambers was required to be greater than 20 for the track to be accepted.

* The minimum transverse momentum of an acceptable track was set at 0.10 GeV/c.
¢ The maximum value for |tan A] for a good track was 100.

e The maximum |zy| for a good track was set at 50 cm.

e The maximum momentum of an acceptable track was set at 100 GeV/c.

¢ The maximum impact parameter (Jdo]) of an accepted track was set to 2.5 cm.

* The maximum  of the r-¢ fit for a track to be good was 100.

' The definitions of the track parameters referred to in these quality cuts may be found in
section 3.5.1.
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The maximum % of the z fit to the track was 100.

The minimum fraction of hits along a track found in the jet chamber was required to be
50%.

The maximum absolute value of cos 0 of a good track was set at 0.98 in order to keep
tracks well measured within the active volume of the detector.

A good electromagnetic barrel calorimeter cluster was required to have a minimum
energy of 0.05 GeV after corrections and a minimum raw energy of 0.1 GeV.

A good electromagnetic endcap calorimeter cluster was required to have a minimum
corrected energy of 0.05 GeV and a minimum raw energy of 0.25 GeV.

A minimum of 1 hit block was required to form a cluster in the electromagnetic barrel
and a minimum of 2 hit blocks was required in the electromagnetic endcap.

The total corrected cluster energy was required to be between 0.25 GeV and 100 GeV.

The energy of a good hadronic calorimeter tower was required to be greater than 0.5
GeV.

A minimum of 1 tower hit was required to form a cluster.

The minimum uncorrected total energy for clusters in the barrel or endcap hadronic
calorimeters was required to be 0.6 GeV.

The minimum uncorrected total energy for clusters in the pole tip was required to be
2.0 GeV.

The energy rescaling factor for the barrel and endcap hadronic calorimeter clusters was
1.05.
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* The energy rescaling factor for the pole tip calorimeter clusters was 1.00.

5.2.2 Jet Finding

The next stage in the analysis identified hadronic jets in each event. This was achieved
using the Durham jet finder [34]. The jet finder used all hits in the central tracking,
electromagnetic calorimeter, and hadronic calorimeter which passed the quality selection
presented in section 5.2.1. The Durham jet finder was constrained to find four jets in each

event.

The Durham jet finder is typical of cluster algorithms used in e’e” environments based on
binary joining. Initially, each final state particle is considered to be an individual cluster.
Using a defined distance measure, the closest two clusters are found and the distance
between them determined. If the distance is less than some cut off value, the two clusters
are joined into one. This process is repeated until all clusters are separated by a distance
larger than the specified cut off. The clusters which remain at the end of the process are
then taken to be the final jets in the event. The Durham jet finder has the result common to
all binary joining methods that each initial cluster or particle belongs, at the end of the
procedure, to only one jet. In the Durham algorithm, the distance measure is given by

_ 2min(E2, E2){1- cos6,)

i~ E?

m \

where E; and E; are the energies of the two clusters being considered, 0; is the angle
between them, and E., is the centre of mass energy of the combination. When an event is
constrained to a certain number of jets using the Durham jet finder, the cut off value of the
distance measure at which the number of jets in the events changes is recorded. For
example, for events constrained to four jets, the reported value of yss would indicate the
distance measure cut off at which the event changes from containing three to containing
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four jets. This variable will be used later in this analysis to help quantify the “four jet

nature” of an event.

5.2.3 Energy Flow Correction

Since the energy of charged particles in the detector is measured both in the central
tracking subdetectors and in the calorimetry, the possibility exists for a given charged
particle to be assigned too high an energy due to double counting of energy loss in the
detector. Several algorithms have been developed to eliminate this possible double
counting. In this thesis, the OPAL Matching (MT) software package [35] was used to
correct the double counting in the energy flow. This package matches tracks in the central
tracking detector by extrapolating the track to the electromagnetic calorimeter and the
hadronic calorimeter and comparing the location of the track intersection at each of the
calorimeters to the cluster centre and boundary. Once an association between a track and a
cluster is made, the expected energy response of that particle in the calorimeters is
calculated from the track momentum.

Since the central tracking has a better momentum and energy resolution than the
calorimetry (except for high energy electrons), the MT package then attempts to reduce the
energy measured in a given cluster which has already been measured in the track associated
with that cluster. Three distinct alternatives are possible at this point.

1. If a cluster has no associated track, both the energy of the cluster and the momex\ltum
measured along the track are kept in the corrected energy and momentum of the event.

2. Ifa cluster is matched to a track and the energy of the cluster is less than the expected
energy response for the given track within a certain tolerance, the cluster energy is
ignored and only the track momentum information is retained.

3. If a cluster is matched to a track and the energy of the cluster exceeds the expected
energy response of the associated track and is outside of the tolerance, the energy of
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the cluster is reduced by an amount equal to the expected energy response of the
associated track. The track momentum and the reduced cluster energy are then both
retained in the corrected energy and momentum of the event.

The MT package has been shown to improve the momentum-energy flow of OPAL events
quite markedly and to bring the final event shape variables closer to those of an ideal
detector [35].

5.2.4 Calculation of Event Shape Variables

After the correction of the momentum-energy flow for double counting, the event shape
variables can be calculated. Some shape variables used in the analysis presented in this
thesis are directly measured such as the total visible mass and energy of an event and the
minimum number of electromagnetic calorimeter clusters associated with a jet. Others,
however, have more involved definitions and are described in the sections below.

The Effective Centre of Mass Energy

The importance of the hadronic Z decay background is reduced by recognizing the fact that
initial state radiation returns the hadronic energy of the event to the Z° pole at 90 GeV
through the decay e*e” —» Z% — qqy in many cases. Thus, by eliminating the energy
of the radiated photon, these events will display an effective centre of mass energy, or
Vs, around the mass of the Z° rather than close to the true centre of mass energy of
161 GeV.

The effective centre of mass energy is calculated by searching for an isolated photon cluster
of energy greater than 3 GeV in the electromagnetic calorimeter. The event is then
subjected to a kinematic fit which assumes that a photon has been missed in the OPAL
beam pipe. The nominal energy of the event is then reduced by the energy of the isolated
photon or the postulated beam pipe photon (whichever is larger) to give the value of

s’ for the event.
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The Thrust

The thrust of an event is used to get an idea of the relative isotropy of the particles in that
event. The magnitude of the thrust [36] is given by the equation

where n is a unit vector. The thrust axis is given by the direction of n for which T is
maximum. The allowed range for the thrust is 0.5<7<1. A two jet event corresponds to a
thrust value of about 1 while a perfectly isotropic event would give a thrust of 0.5.

The Sphericity

The sphericity tensor is also used to measure the relative isotropy of an event. The tensor
is defined [37] by the equation

> pipf
$% - GT

Z IPiI
where both a and § range over the values 1, 2, and 3 which correspond to the x, y, and z
components of the momentum vector. The tensor may be diagonalized to yield three
eigenvalues A;, Az, and A; which are then used to calculate the sphericity S through the
equation

3
S = (% +4,).

The value of the sphericity ranges between 0 and 1 for a given event. A perfect two jet

event corresponds to a sphericity of 0 while a perfectly isotropic event corresponds to a
sphericity of 1.
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5.2.5 Methods of b Quark Tagging

As was mentioned in section 3.3.2, the OPAL silicon microvertex detector makes several
sophisticated methods of tagging the signatures of b quarks possible. The fact that the
Higgs Boson decays to pairs of b quarks 90% of the time makes efficient b quark tagging
extremely desireable for the analysis presented in this thesis. Several algorithms are
provided by the OPAL b quark tagging (BT) software package [38] as tools for the
lifetime tagging of heavy quarks. Some of these tools are described in the following

sections.

Forward and Backward Tracks

The significance of the impact parameter of a given track in the OPAL detector is given by
b/os- In this equation, b is equal to the impact parameter, or the minimum distance in the
r-¢ plane between the track and the primary event vertex and o is the error in this value.
The value of b is signed as follows. If j is the vector passing through the primary vertex
parallel to the momentum vector of the jet containing the track in question, and y is the
vector from the primary vertex to the point of closest approach of the track to the primary
vertex, the sign of b is equal to the sign of j-§. Note that the determination of the
primary vertex with respect to which the value of b for a given track is calculated never
includes the track itself. This avoids an intrinsic difference in the calculation of b for tracks
which actually form part of the primary vertex when compared to the calculation for tracks
which are not part of the primary vertex. |

The denominator in the impact parameter significance equation, o, is the error in b. This
error includes a contribution from the error in the track’s trajectory near the primary vertex
as well as from the error in the position of the primary vertex itself.

The number of forward tracks in a jet is defined as the number of tracks for which b/c; is
greater than some Smia. Swia for the purposes of the present analysis was set at a typical
value of 2.4. Backward tracks are similarly defined as tracks for which b/cs is less than -
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Smn. Forward tracks are associated with long lived hadrons and thus with b quark jets
while backward tracks hold no real lifetime information. Often, the light quark background
in lifetime tagging of b quarks may be reduced by considering the number of forward tracks
minus the number of backward tracks in an event.

Tear Down Vertex Finder

Another b quark tagging tool available in the BT software package is the tear down vertex
finder. This algorithm attempts to fit all tracks in a given jet to a single common vertex
position. The program then evaluates the contribution of each track to the 3¢ of the vertex
fit. Any tracks that contribute more than the cut off value of Wias to the fit are discarded
and the fit is repeated. The procedure is repeated until none of the tracks used to form the
vertex contribute more than Wy to the 3¢ of the vertex fit or there are less than three
tracks remaining, in which case the vertex finder fails. The value of Wy is typically 4.

The significance of the decay length of the newly found secondary vertex from the primary
vertex, I/, is then used to tag heavy quarks. The vertices found in jets arising from b
quarks will generally have a larger decay length significance than those arising from lighter
quarks due to the longer relative lifetime of b hadrons.

The tear down vertex finder has been found [38] to be most effective in finding displaced
secondary vertices in jets arising from b quarks when:

e The b hadron itself travels a large distance before decaying into secondary particles.

 The total charged track multiplicity in the jet arising from the b hadron itself is greater
than the total charged track multiplicity arising from the primary vertex.
Build Up Vertex Finder

The build up vertex finder takes the opposite approach to the tear down vertex finder in an
attempt to find displaced secondary vertices in a jet. The algorithm begins with a small
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number of “seed” tracks consisting of all forward tracks (as defined above) in the jet. The
iniﬁalpmposedsemndmyverﬁasmﬁmd&omthaeseeduacksandmusisdisphwd
from the primary vertex even in light quark events.

Initially, the intersection of each pair of seed tracks is taken as a potential secondary vertex.
Then, other tracks in the jet which have a greater separation significance from the primary
vertex than from the secondary vertex candidate being considered are fitted one at a time to
the seed vertex. The combination of three tracks which gives the best overall probability of
the fit to the seed vertex is then chosen as the revised seed vertex as long as the probability
of the fit is greater than 1%. This process is repeated until either all tracks in the jet are
fitted to a seed vertex, or no more tracks can be fit to the vertex without causing a fit
probability below 1%. This combination of N tracks is then taken as the final vertex for the
given initial pair of seed tracks. This entire procedure is repeated starting with all
combinations of initial seed tracks. All candidate vertices are then considered in order to
determine the best choice of secondary vertex for the jet.

The best vertex among the final vertices is then taken as:
e The candidate with the largest number of seed tracks included in its fit.
If this choice is not unique, then the best vertex is determined by:

 The candidate with the largest decay length significance from the primary vertex, if the
number of seed tracks in the vertex is greater than two, or '

e The candidate with the highest multiplicity of seed tracks fit to it, if the multiplicity is
equal to two.

If there are still two or more candidate vertices, then the final best vertex is taken as:

e The candidate with the largest decay length significance from the primary vertex.
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The build up vertex finder has been shown [38] to give results which are not completely
correlated with the results of the tear down vertex finder. Hence, the inclusion of both the
tear down and build up vertex finders in the analysis is beneficial and does not simply resuit
in two highly correlated variables.

5.3 Precut

A loose precut was applied to the Monte Carlo data in order to rid the data set of events
which obviously did not fit the four jet profile required for the HZ search. This precut rids
the analysis of two jet events from hadronic Z decays, four fermion final states and
hadronic Z decays involving leptons, and a large number of radiative return Z decays.

The precut consisted of three subcuts:

1. The Tokyo Muitihadron Flag (TKMH) as described in section 3.5.2 was required to be

set.

2. The effective centre of mass energy (Js-’) of the event was required to be greater than
or equal to 100 GeV.

3. The value of the Durham jet finder parameter ys4 where the event changes from a three
jet to a four jet topology was required to be greater than or equal to 0.002.

The number of events remaining after the precut and the resulting reduction in the cross
section for each process is shown in Table 8. We see that difference in the cross sections
between the Excalibur four fermion set (which contains all four fermion final state diagrams
including W*W) and the W*'W" set used in training the network is much reduced by the
precut. This indicates that the four fermion final state background after the precut consists
largely of W*W" events and thus justifies the use of W*W" Monte Carlo as training input to
approximate the four fermion final state background. The precut was intentionally kept as
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loose as possible in order to allow the ANN to do most of the work of separating the signal

from the background processes.
Process Initial | Events | Efficlency | Initial Cross
Events | after Cross Section
Precut Section | after
(b) Precut
()
e*e” — H°Z® — bbqg 500| 488 976% | 0517 0.505
my = 64 GeV/S?
ete =2 /7" — qq(y) 50000 | 9150 183% | 1474 26974
e*e” — 4fermion final state| 20000 [ 4055 203% | 1713 347
27189 71.6% 346 247

e'e = W'W~ — anythinj 38000

Table 8: The efficiencies and reduction in cross section for the precut when applied to Moate Carlo of the

signal and background processes.

S.4 Selection of Network Input Variables

The selection of input variables for the Artificial Neural Network proceeded by consid:éring
the experimental signatures of the signal and background processes. As was described in
section 2.3.2, hadronic decays of the Z” boson and four fermion events (in particular W*W"
pairs) are capable of imitating the four energetic hadronic jets which form the main
signature of HZ signal events. The types of variables which may be used to discriminate
bemaenthesigndandeachofﬂmebackgmundtyp&smdmﬂ)edmmepmgraphs

which follow.
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As was described in section 5.2.4, the effective centre of mass energy Js' is useful in
tagginghadronicZdemyshwhichthcemissionofanhitialstatephotonhasrehunedthe
Z boson to its pole. Thus, the inclusion of this variable in the network will allow these
radiative return events to be rejected by the analysis.

After the exclusion of the radiative return events, the remaining hadronic Z decay
background consists mainly of four jet events formed from two quarks and two gluons
which have been radiated from the quarks. Since the two giuon jets are radiated from the
original two quarks coming from the Z' decay, they display properties typical of
bremsstrahlung processes, namely that they are emitted at a small angle with respect to
their parent quark jets, and that they have a relatively soft energy spectrum when compared
to the quark jets. In contrast, the four jets coming from a true signal HZ decay arise
essentially from the independent decays of two heavy particles and as such, a signal event
will be less collinear than a background hadronic Z decay event as well as having a harder
energy spectrum for all four jets. Thus, variables which measure the angles between jets as
well as the energies of jets will be useful in reducing the hadronic Z decay background.

'I‘hetaggingofdisplacedsecondaryverticwaﬁsingﬁombquarkjets forms the most
powerful tool in reducing the hadronic Z decay background. Since only a small fraction
(~15%) of Z° particles decay into bbpairs while H” —» bb in about 85% of all cases,
tagging the signature of b quark production provides a very useful method for separating
signal HZ decays from background. Thus, the use of variables derived from the b quark
tagging methods described in section 5.2 is necessary to combat the hadronic Z decay
background.

The four fermion final state background channels, characterized by W'W" decays, ZZ
decays, and a multitude of other processes as described in section 2.3.2, are much harder to
eliminate from the analysis using only topological variables. While b quark tagging is still
effective in reducing the importance of these channels, the fact that W'W and ZZ decays
are truly the independent decay of two heavy particles makes the topology of these events
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very similar to the signal HZ events in terms of event shape and jet energy profiles. Thus,
with the exception of b tagging, the only variables which can effectively discriminate
between these events and the desired signal make use of the fact that both heavy bosons in
these background events have the same mass. A constrained fit which applies the condition
that each of the two jet pairs in the event comes from a mother particle of equal mass is
used to achieve this goal with the discriminating variable being the probability of such a fit
being true for a given event. Another method of tagging W'W~ events may be applied
which makes use of the fact that the centre of mass energy of 161 GeV is just barely
sufficient to produce such boson pairs. Since the resulting W' and W~ will be produced
almost at rest, the resulting jets from the decay of either boson will be almost back to back.
Thus, by reconstructing the mass of the jet pair with the largest angle between them and the
other pair, events where the masses are almost equal can be tagged as W'W" candidates
and thus rejected from the analysis.

A final consideration is the testing of each event with the hypothesis that it actually is a HZ
decay. In order to do this, another constrained fit which imposed the nominal Z boson
mass on one of the jet pairs was used to calculate the probability of an event containing a Z
boson. The mass of the other jet pair was then taken as the candidate Higgs Boson mass.
This fit was applied to every possible pairing of jets in a given event and the pairing which
resulted in the highest probability for the constrained fit was taken to be the candidate

pairing for the Higgs hypothesis.
\

With the above motivations for the choice of variables in mind, several variables were
chosen as initial input variables for the Artificial Neural Network. In addition to variables
which allowed good separation between the signal and background events, several
variables which did not display a good separation were included in the analysis in order to
observe how they would be incorporated into the network’s learning procedure. The
chosen variables are listed below in three groups: b quark tagging variables, event shape
variables, and kinematic fit variables.
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5.4.1 The b Quark Tagging Variables

The following variables were chosen as inputs involving the b quark tagging methods used
in the offline analysis. Each of the variables is given a short name in bold face by which it is
referred to hereafter in this document. The degree of separation between the spectra of
these variables for 64 GeV/c? Higgs Monte Carlo and hadronic Z decay Monte Carlo is
shown in Figure 32 while the separation between the Higgs Monte Carlo and Excalibur
four fermion Monte Carlo is shown in Figure 33.

1. (tdsum) The sum of the b tagging significance given for each of the “Higgs” jets by the
tear down b tagging method. The “Higgs” jets are determined by the most probable Z
mass constrained fit as was described above.

2. (fbmul) The sum of the forward tracks in each of the “Higgs” jets minus the sum of
the backward tracks in each of the “Higgs” jets. The forward and backward tracks are
defined in terms of their impact parameters as was described in section 5.2 above. The
“Higgs” jets are again determined by the most probable Z mass constrained fit to the

event.

3. (busig) For each of the “Higgs” jets, the significance determined by the build up b
tagging method is multiplied by the square root of the charged track multiplicity for
that jet. The sum of this quantity over the two “Higgs” jets is then taken as the input
variable. The scaling of the vertex significance by the square root of the multiplicity of
the jet reflects the fact that the build up b tagging method provides a stronger result
when more tracks are used in the vertex determination. The “Higgs” jets are again
identified by the most probable Z mass constrained fit to the event.

5.4.2 The Event Shape Variables

The following paragraphs describe the event shape variables which were used as initial
inputs to the Artificial Neural Network. Each variable is again referred to by an
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abbreviated name shown in boldface in each entry. The relative separation between HZ
signal Monte Carlo and hadronic Z decay Monte Carlo for these variables is shown in
Figure 34 while the separation between the HZ Monte Carlo and four fermion Monte

Carlo is shown in Figure 35.

LA LR AL LN LS LN NN LA IL 250

200

175

"lll"lll"lllll!ll

L
5

s
—
e

-

s

s

5

5
p—
5

LARLAN BN BN BELINLBNLIN LN BNL A LB

llllllllllllllllllllllll

&TIII

J
[ 5]
)
»
S
2
8
€
=\

Figure 32: The spectra of the three b tagging variables used as input to the Artificial Neural Network for the
64 GeV/c? signal (solid histograms) and for the hadronic Z decay background (dashed histograms). The
variables are described in section 5.4.1. The distributions are all taken after the precut described in section
5.3 and equal numbers of signal and background eveats are plotted.
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Figure 33: The spectra of the three b tagging variables used as input to the Artificial Neural Network for the
64 GeV/c* signal (solid histograms) and for the four fermion (Excalibur) background (dashed histograms).
The variables are described in section 5.4.1. The distributions are all taken after the precut described in
section 5.3 and equal numbers of signal and background events are plotted.

1. (minct) The minimum number of charged particles per jet in the event.

2. (minem) The minimum number of electromagnetic calorimeter clusters per jet in the

event.
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10.

(spher) The sphericity of the event. Sphericity is defined in section 5.2 above.

(cost) The cosine of the polar angle (8) of the thrust vector of the event. The thrust of
an event is also defined in section 5.2 above. This variable shows little separation
between the signal and background data classes and was included in order to test the
response of the network to a non-discriminating variable.

(evis) The visible energy of the event. The visible energy is simply all the energy
recorded by the detector in a given event after correction for tracker/calorimeter
double counting as was described in section 5.2 above.

(angl) The minimum angle between any pair of jets in the event. This variable is useful
as it discriminates between the relatively small emission angle of the gluon jets in the
hadronic Z decay background when compared to the large angle production of the jets
in the signal events.

(mvis) The visible mass of the event. This variable simply sums all of the mass in a
given event which was detected by OPAL after energy corrections for double counting.

(sprime) The effective centre of mass energy Js' as was calculated in the offline
analysis. This variable is useful in rejection radiative return events in the hadronic Z
decay background channel.

(ntrack) The total number of charged tracks in the event. Although the numl;er of
charged tracks in an event indicates the hadronic content, this variable was included as
a low discimination power variable since the hadronic purity of the data sample is quite
high following the selections of the precut described in section 5.3.

(y34) The Durham jet finder, when constrained to find a certain number of jets reports
this parameter at which the event would change from containing three to containing
four jets if the jet finder was left to its own devices. The higher the value of this
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parameter, the more likely that the event is of four jet nature. This variable was also
expected to be of limited benefit in the neural network since the precut selects four jet
events very efficiently.

11. (y45) This variable is defined in an analogous way to y34 above except that it measures
the threshold between the four jet and five jet nature of an event.

12. (y23) This parameter of the Durham jet finder indicates the threshold between the two
jet and three jet nature of an event and was postulated to be of some use in rejecting
two jet events which had a wide jet profile vulnerable to being interpreted as four
individual jets.

5.4.3 Constrained Fitting Variables

In the paragraphs below, the input variables resulting from constrained fitting on the
kinematics of the events are described. Again, each variable is referred to by an
abbreviation indicated in boldface. The separation between the 64 GeV/c* Higgs Monte
Carlo and the hadronic Z decay Monte Carlo for these variables in shown in Figure 36
while the separation between the HZ and four fermion Monte Carlo is shown in Figure 37.

1. (mdiff) The difference between the reconstructed masses of the jet pair with the largest
angle between them and the other jet pair using the energy and momentum
conservation constrained fit to calculate the masses. This variable is useful as a veto
for W*'W" events which are produced at threshold as their lack of boost will cause each
of them to decay into back-to-back jet pairs.

2. (mlow) The mass of the lowest mass jet pair. This variable is calculated using the
energy and momentum conservation constrained fit. It is useful to reject hadronic Z
decay events because of their softer gluon jets.
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3. (zprob) The probability of the Z mass constrained fit for the jet pairings giving the
highest probability. This tests the quality of the HZ hypothesis.

4. (eqprob) The probability of the equal mass constrained fit for the jet pairings which
give the highest probability. This serves as a veto for W'W" and ZZ background

events.
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Figure 34: The spectra of the twelve event shape variables used as input to the Artificial Neural Network for
the 64 GeV/c? signal (solid histograms) and for the hadronic Z decay background (dashed histograms). The
variables are described in section 5.4.2. The distributions are all taken after the precut described in section
5.3 and equal numbers of signal and background events are plotted.
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Figure 35: The spectra of the twelve event shape variables used as input to the Artificial Neural Network for
the 64 GeV/c* signal (solid histograms) and for the four fermion (Excalibur) background (dashed
histograms). The variables are described in section 5.4.2. The distributions are all taken after the precut
described in section 5.3 and equal numbers of signal and background events are plotted.
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histograms). The variables are described in section 5.4.3. The distributions are all taken after the precut

described in section 5.3 and equal numbers of signal and background eveats are plotted.

Figure 36: The spectra of the four constrained fitting variables used as input to the Artificial Neural
Network for the 64 GeV/c* signal (solid histograms) and for the hadronic Z decay background (dashed
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Figure 37: The spectra of the four constrained fitting variables used as input to the Artificial Neural
Network for the 64 GeV/c? signal (solid histograms) and for the four fermion (Excalibur) background
(dashed histograms). The variables are described in section 5.4.3. The distributions are all taken after the
precut described in section 5.3 and equal numbers of signal and background events are plotted.
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5.4.4 Discriminatory Power of Input Variables

In order to estimate the discriminatory power of the input variables prior to the process of
training the Artificial Neural Network, the degree of separation between the 64 GeV/c* HZ
signal sample and each of the hadronic Z decay and four fermion background Monte Carlo
samples was quantified for each of the nineteen input variables. The separation between
the signal and background samples was defined by A, where:

2
(“1 - ”2)
A 2
0.2

In the preceeding equation, u; and p; are the mean values of the variable for the signal and
background respectively and o, is the rms value for the distribution of both signal and
background together. The larger the value of A5 the greater the separation between the
signal and the background in that particular variable.

Table 9 shows the values of A, for each of the nineteen input variables for both the
separation between the HZ signal and hadronic Z decay background and between the HZ
signal and four fermion background. The table lists the variables in decreasing order of
separation significance for each of the two background types. As expected, the topological
variables top the list for successful discrimination between the signal and the hadronic Z
decay background while the b tagging variables are important for reducing both the
hadronic Z decay and four fermion backgrounds. Surprisingly, the probability of the equal
mass constrained fit does not produce a large separation in the four fermion case, but this is
most likely due to the large spike of zero probability events which skew the results of the As
calculation. It can also be seen in Table 9 that the degree of separation for variables such
as the cosine of the polar angle of the thrust axis is low as expected. The relative utility of
the variables as given by their values of As as compared to their relative values when they
are used to train the Artificial Neural Network will be examined in section 5.6 below.
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Fﬂdmnic Z Decays qq(y) 4 Fermion Background |
| |
[Variable M Variable %
ow 1.27 [busig 0.81
34 1.045 tdsum 0.513}
fntrack 0.99] fomul 0.479
fsprime 0.89 ntrack 0.43}
Eﬁl 0.72 minem 03334
inct 0.698] minct 0323
jminem 0.593} Isprime 0.1924
Eusig 0.57 miow 0.15)
diff 0.50 zprob 0.08224
Ispher 0.489 mvis 0.078]
Zprob 0.475 y45 0.071
kdsum 0416 angl 0.06
y45 0.394) evis 0.056{
; 0.377 y34 0.028]
ifomul 0371 mdiff 0.013}
fmvis 0335 y23 0.01
Etob 0317, |spher 0.005
0.246 cost 0.
fcost 0.0032) egprob 0.0002}

Table 9: The degree of separation between the 64 GeV/c” HZ signal Monte Carlo and the two major
background Moate Carlo distributions for the nineteen input variables. The variables are listed in
decreasing order of separation.

5.5 Initial Network Training

Although some of its input variables were of questionable utility in separating the Higgs
signal from background processes, the initial nineteen input network was trained in order to
evaluate the degree of success that could be expected using an Artificial Neural Network
search technique. The ANN presented in this section was programmed using the JETNET
[26] Atrtificial Neural Network package that was described in chapter 4. The network
consisted of nineteen input neurons, a hidden layer with twenty neurons, and a single
output neuron. Each neuron was of the dot product type with a sigmoidal activation
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function. During training, signal (HZ) events were assigned a target output of 1 while
background events (qq(y) and WW) were assigned a target of 0.

The mean squared error between the network output and the target vectors was used as
the quadratic form for minimization. Standard backpropogation was used as the learning
method and the following parameters were used during the training:

¢ Learning Parameter n=0.001

¢ Momentum a=0.5

e Temperature' T=1.0

»  Weights updated once per every 10 training patterns processed.

The set of Monte Carlo data described in section 5.1.1 was divided into separate training
and testing sets as follows. A training set of 4,000 HZ events, 21,000 hadronic Z decay
(qq(y)) events, and 4,000 WW events was used as input to the network during the
minimization process. At the end of each training epoch, the network performance was
evaluated using a test set of 1,000 HZ, 5,000 qq(y), and 1,000 WW events which were
completely independent of the training events. All events in both the training and testing
sets had already passed the precut described in section 5.3. As was stated in chapter 4, all
input variables to an Artificial Neural Network should range over a similar order of
magnitude in order to avoid a “stiffening” of the weights which results in some neuroﬂs not
learning properly. Thus, before being input to the ANN, all variables were shifted to a
mean of zero and scaled to unit variance across the combination of the training and testing
sets in order to provide a range of inputs over similar orders of magnitude to the network.

* The temperature used during training simply gives the slope of the central portion of the sigmoidal
activation function used in the neurons.
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The petwork was initially trained over 10,000 epochs in order to ascertain the correct
number of epochs to use to achieve a minimal test set error. The mean squared error
between the network output and the target value for the test set is shown versus the
training epoch in Figure 38. The sharp increase in error after about 1,000 training epochs
indicates that the network is becoming overtrained past this point. In order to optimally
train the network, the training process was then repeated and terminated near the error
function minimum at 1,000 epochs.
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the training epoch. The gradual increase in the error after about 1,000 epochs indicates the onset of
overtraining.
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In order to see the if network was “learning” the signature of the HZ events, the number of
known HZ events in the Monte Carlo test set which resulted in a network output greater
than 0.7 was recorded at the end of each training epoch. This efficiency for the signal
events is plotted in Figure 39. The fact that the network is successfully learning is quite
evident as the HZ signal efficiency starts close to 0% in the first training epoch and reaches
a nearly stable value close to 50% after 1000 epochs of training. The corresponding
proportions of qq(y) and WW test set events which resulted in network outputs of greater
than 0.7 are shown in Figure 40. It is quite clear from these plots that the network is
successfully learning to isolate the HZ signal events while not accepting many of the
background events.
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Figure 39: Efficiency for selection of HZ signal events when the output of the network is required to be
greater than 0.7 versus the training epoch.

The successful identification of the HZ events by the network may also be seen in Figure
41. In this figure, the output of the network after 1,000 epochs of training is plotted for the
signal events and for each of the background types. As was expected, the signal test set
events result in an output distribution peaked near a value of 1 while both the qq(y) and
WW background test sets result in an output distribution peaked near 0.
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Figure 40: Percentage of qq(y) events (top) and WW events (bottom) from the test set which are
misidentified as HZ events by causing a network output greater than 0.7. Note that the network selects
much less of both backgrounds than of the signal.
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Figure 41: Network output after 1000 epochs of training for events in the test set. ThemtputforHZ‘signal
events is shown in the upper left, for qq(y) background eveats in the upper right, and for WW background
events in the lower lefi.

In order to finalize the performance of the nineteen input network, the weights were frozen
after 1,000 epochs of training and the network was then applied to the validation sets. The
HZ validation set with a Higgs mass of 64 GeV/c* was used to evaluate the signal
efficiency while the 50,000 event qq(y) sample and the 20,000 event four fermion sample
from the Excalibur generator were used to determine the effect of the network on the
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background. None of these validation events had been used previously in the training or
testing of the network. The following cuts were performed on each of the validation sets in
order to measure their response to the analysis.

1. The precut (described in section 5.3).
2. A cut on the value of the network output.

3. A postcut consisting of the requirement that the probability of the most probable five
parameter Z mass constrained fit to the event be greater than 1%. This cut was applied
to reject events that did not have a jet pair that was likely to have come from a Z decay.
It was not applied prior to the neural network cut as it allowed an independent monitor
of the quality of the events passing through the ANN. The quality of the events
passing the ANN cut is shown by the small effect the precut has on the number of

survivag events.

Table 10 shows the number of remaining events in each of the validation samples after the
sequential application of the precut, several values of network output cut, and the postcut.
It also shows the corresponding efficiencies and the remaining cross section of each data
sample after the cuts. The remaining cross section of the signal set, each of the background
sets, and the sum of the backgrounds calculated using these efficiencies and rejections is
shown versus the value of the network output cut applied in Figure 42. The efficiency for
the 64 GeV/c? Higgs sample and the signal to background (signal to noise) ratio is shown
versus the network output cut in Figure 43. It can be seen that, for network output cuts
greater than 0.7, the remaining amount of signal surpasses the impurity represented by the
total background thus giving signal to noise values greater than 100%.
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129

Signal HZ mg=64 GeV/C

No Cut 500|

Precut 488|

ANN Cut 0.1 0.2 0.3 0.4 0.5 0.6] 0.7 0.8 0.9
Remaining 419| 381 341 311 274 252 225 178 112}
iPostcut 348 316 288 267 241 220] 197 161 102
Efficiency 69.6%| 63.2%| 57.6%| 53.4%| 482%| 44.0%| 394%| 322%| 204%
Hadronic Z Decay qq(y) Background

iNo Cut 50000)

Precut 9150]

ANN Cut 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
Remaining 772 415 247 176| 106 61 35 12 5
Postcut 518 298 176 124 74 39| 27 10} 5
Rejection 98.964% | 99.404% | 99.648%| 99.752%| 99.852% | 99.922%| 99.946%| 99.980%| 99.990%
4 Fermion Final State Background

iNo Cut 20000}

Precut 4055

ANN Cut 0.1 0.2 03 0.4 0.5 0.6 0.7| 0.8 0.9
Remaining 1268 753 498 332 227 147 79 49 1

Postcut 1079| 662 443 302 210] 135 72 47 15
Rejection 94.605%| 96.690% | 97.785% | 98.490% | 98.950% | 99.325%| 99.640%| 99.765% | 99.925%

~ Table 10: The number of remaining eveats in each of the validation sets is shown after sequential
application of the precut, various values of network output cut for the nineteen input ANN, and the postcut.
The efficiency for the signal and rejection for the backgrounds is also given for each cut.
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fermion final state background, and total background after the sequential application of the precut, various
values of network output cut, and the postcut.
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Figure 43: Selection efficiency for 64 GeV/c? Higgs events and signal to noise values after the sequential
application of the precut, various values of the netwark output cut, and the postcut.
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The success of the nineteen input network indicated that the Artificial Neural Network
technique was capable of separating the HZ signal from the major backgrounds, and as
such, further investigation of the possibilities of this method was warranted. The next
section describes the pruning of the original network in order to achieve a minimal network
which was still capable of the same quality of classification.

5.6 Network Pruning

The nineteen input ANN presented in the previous section had a total of 421
interconnections between its constituent neurons. As was alluded to in chapter 4, training
of an ANN is made more efficient if the number of training template events exceeds the
number of interconnections in the network by several orders of magnitude. Thus, it is in
the best interests of an efficient analysis to remove extraneous inputs from the ANN in
order to create the minimal network which will still perform an adequate classification of
the signal and background events.

In order to successfully prune the network inputs without adversely affecting the
classification quality of the network, the following algorithm was devised. The sum of the
weights between a given input node i and each node in the hidden layer was reported at the
end of the training run of 1,000 epochs. This sum S; may be written as:

S, = zw,y
l-

Where ny, is the number of neurons in the hidden layer of the network. Initially, the two
input variables with the lowest two weight sums S were removed from the network and the
ANN was then retrained with the reduced number of inputs and a number of hidden
neurons equal to the number of inputs plus one. The final mean squared test set error
between the network output and the target values of this reduced network was then
compared to the mean squared error for the initial nineteen variable network. If the error
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had increased by an amount less than 5% of the error of the original network, the process
was repeated and the two variables with the lowest two weight sums in the reduced
network were removed. The number of hidden neurons was also reduced by two and the
training process was then repeated again with this further reduced network. Each reduced
network was trained over 1,000 epochs. When the final mean squared test set error of the
reduced network became more than 1.05 times the error of the original network, the
pruning process was stopped and the iteration was taken as the final reduced network.

The final mean squared test set errors of each of the iteratively reduced networks as well as
the input variables that were dropped and the fractional increase in the final mean squared
error are shown in Table 11.

# Remaining | Final Error | Increasein | Dropped Variables
Variables Error

19| 247x10? - | cost, fbmul

17|  252x10? 2.02% | y23, evis

15| 252x10° 2.02% | y4S, minct

13 2.52x10° 2.02% | ntrack, minem

11| 269x10* 891% | -

Table 11: The evolution of the network pruning process. The number of remaining variables, mean squared
test set error after 1,000 epochs of training, increase in the test set error, and variables dropped at the end of
each iteration are shown. The pruning was terminated when the increase in the test set error exceeded 5%.
The thirteen input network was selected as the final pruned network.

The four variables with the highest weight sums remained the same in each iteration of the
pruning process. These variables were (in decreasing order of weight sum), the build up b
quark tagging variable (busig), the tear down b quark tagging variable (tdsum), the
effective centre of mass energy of the event (sprime), and the mass of the lowest mass jet
pair in the event (mlow). We see that the b tagging variables are most important as they
help to tag both the hadronic Z decay and four fermion background and the two shape
variables which identify the radiative Z return events and and the softer gluon jets coming
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from the hadronic Z decays are second most important. The variables which are identified
as being most important in the ANN, however, do not exactly agree with the importance of
the variables as measured by the separation significance As which was determined in section
5.4.4. For example, while the value of y34 was found to be a good variable for separating
hadronic Z decay events from the signal by the separation significance method, it does not
enter into the top four variables identified by the weight sums in the ANN. This indicates
that relationships between the input variables are important in the ANN and that
connections between variables are being used which are not immediately apparent when
each input variable is considered separately.

The pruning process resulted in the thirteen input network being selected as the final
pruned ANN. The remaining input variables consisted of:

1. The minimum number of electromagnetic calorimeter clusters per jet.
2. The sphericity of the event.
3. The minimum jet-jet angle.

4. The mass difference between the jet pair with the largest angle in between them and the
other jet pair.

5. The sum of the tear down significances of the vertices associated with the “Higgs” jets.
6. The visible mass of the event. |

7. The effective centre of mass energy (J? ) of the event.

8. The number of charged tracks in the event.

9. The Durham jet finder parameter yss.

10. The probability of the most probable Z mass constrained fit to the event.
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11. The probability of the most probable equal mass constrained fit to the event.
12. The build up b quark tagging variable as described in section 5.4.1.
13. The mass of the lowest mass jet pair.

This network had only 111 interconnections, a reduction of 74% from the original nineteen
input network. The thirteen variable network was adopted as the ANN for the rest of the

analysis presented in this thesis.

5.7 Final Network Training

The thirteen variable network was subjected to a training procedure similar to the initial
training of the nineteen variable network. This network was again defined using the
JETNET package with the thirteen input variables listed in the previous section, fourteen
hidden neurons in a single layer, and a single output node. Each neuron was of the dot
pmduatypewithasigmoidalaaivaﬁonﬁmcﬁonandmﬂmmecﬁvitytoaﬂneumnsm
directly adjoining layers. Standard backpropagation was used to update the weights during
theuaﬁ:ingandthemeansquaredemrwasagainusedastheglobdemrﬁmcﬁom

The training and testing set of Monte Carlo data described in section 5.1.1 was again
divided into a training set consisting of 4,000 HZ signal events, 21,000 qq(y) background
events, and 4,000 W*W" background events and a testing set consisting of 1,000 HZ signal
events, 5,000 qq(y) events, and 1,000 W'W" events. All of the training and testing events
had passed the precut described in section 5.3.

During the training of the thirteen variable network, several training parameters in the ANN
package were varied to asses the effect of non-standard choices on the learning process.
ﬁemMorkwasﬁrstuamedwkhmefoﬂowmgsmndudchobOSformeuammg

parameters.
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e Learning Parameter n=0.001

e Momentum a=0.5

e Temperature T=1.0

o Weights updated once per every 10 training patterns processed.

e Performance on the test set measured at the end of each training epoch.

The network was trained with these parameters over 10,000 epochs to see where the test
set error function reached a minimum. The evolution of the error function on the test set
error with the training epoch is shown in Figure 44. Again it can be seen that the error
function reaches a minimum at about 1,000 epochs. This plot also shows a less dramatic
increase in the test set error function at the onset of overtraining when compared to the
same plot for the nineteen input network in Figure 38. This reduction in the severity of the
overtraining for the thirteen input network can be explained by the fact that the reduced
pumber of degrees of freedom in the weights of the smaller network provide less
opportunity for the network to «gverlearn” the signatures of the training set.

With the optimum training time set at 1,000 epochs, the learning parameter, momentum,
number of events per weight update, and temperature were all varied in order to observe

their effects on the test set error function as the network was trained.
\

Varying the temperature in the range of 0.5 to 1.5 had no visible effect on the test set error
function except at the extreme high end of the range where the resulting large activation
function caused the sigmoidal function to resemble a step function. At this point, the
petwork did not minimize the error function at all. Varying the learning parameter,
however, created some large differences in the evolution of the error function. Figure 45
shows the test set error function plotted against the training epoch for two different values
of the learning parameter 1. The crosses show the evolution of the error for the default
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leamingpammterof0.00lwhﬂemecirdwshowthesamequanﬁtyforaleaming
parameter of 0.1. We see that a larger value of the leaming parameter causes the test set
error evolution to become flat with a wide variance when compared to the result for the
smaller learning parameter. 'Ih’sreﬂectsthcfaathatalatgelcamingparameterallowsthe
ANNtotakehtgestepshthcweightspacewhenattempﬁngtominhnizetheenor
function. Whﬂethismmthatthemininnnnisreachedinfewerepocls,themlting
vmiancehtheemrmncﬁonfoundhsubsethNepochsmak&smemuhsofmenemmk
less accurate. The learning parameter was also changed to a value of 0.0001, but at this
lowstepsizethetostseterrordidnotpmgr&towardsaminimumatallmthe1,000

training epochs.
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Figure 45: The evolution of the test set error function with the training epoch for two different values 'of the
learning parameter. The crosses correspond to a learning parameter of 0.001 while the circles correspond to
a learning parameter of 0.1.

Next, the momentum parameter a was varied in the range between 0 and 1. Figure 46
shows the evolution of the test set error function for two values of the momentum. The
crosses show the evolution for a momentum of 0.5 while the circles correspond to a
momentum of 0. Momenta closer to 1 resulted in the network not learning at all and the
test set error function therefore did not proceed towards a minimum. These results indicate
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that providing the network with a “memory” of the size of its last minimization step in
weight space allows faster learning up to a certain value of a@. Beyond this value, however,
the network continues to take large steps even as it nears the minimum and hence the
network does not effectively learn.
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Figure 46: The evolution of the test set error function with the training epoch for two different values of the
ANN momentum term. The crosses correspond to a momentum of 0.5 while the circles correspond to a
momeatum of 0.
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The number of event processed before each update of the weights during the training
process was also varied. Figure 47 shows the evolution of the test set error function for 1,
10, and 100 events per weight update. While setting this parameter at 1 event per update
allows the network to reach an error minimum more quickly, the resulting higher variation
in the error function between epochs makes the 10 event per update value more attractive.
When the parameter is set to 100 events per update, the network is much slower to reach a

minimum.
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Figure 47: The evolution of the test set error function versus the training epoch for three different values of
the number of events per weight update. The circles correspond to one event per update, the crosses to ten
events per update, and the dotted line to 100 events per update.
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As a final check on the success of the network training, the saturation of the neurons in the
hidden layer and the output neuron was monitored over the 1000 training epochs. The
saturation of a neuron is a measure of its current location on its activation function sigmoid.
Nodes which have reached activations on the flat tail of the sigmoid are no longer actively
learning and are a warning flag that the network is becoming saturated. A saturation
measure of 1 indicates that this state of affairs exists in a given neuron. Figure 48 shows
both the average saturation of the nodes in the hidden layer and the saturation of the output
node over the 1000 training epochs. It can be clearly seen that at no point during ihe
training is the network becoming saturated and thus all neurons remain active learners

throughout the training process.
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Figure 48: The average saturation of the neurons in the hidden layer (top) and of the output neuron
(bottom). All neurons remain active learners throughout the training process.
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The above considerations indicate that the original choices of the learning parameter,
temperature, momentum, and number of events per weight update were good choices for
the training of the Higgs search ANN. Parameters in the range of those selected for this
analysis have been used in other search analyses [39] [40] [41] with success levels greater
than standard multivariate cutting approaches.

In summary, the thirteen input network was finally trained over 1000 epochs using a
learning parameter of 0.001, a momentum of 0.5, a temperature of 1.0, and updating the
weights once per 10 events. The efficiency of the network on the HZ test set when an
event was required to give an ANN output greater than 0.7 to be tagged as a Higgs event
is shown in Figure 49. As was the case for the nineteen input network, the thirteen input
ANN is again seen to learn with the initial efficiency of near 0% climbing to a pseudo-
stable value near 50% after 1000 epochs of training. Figure 50 shows the corresponding
acceptance for both the qq(y) test set and the W'W test set. Again we see that the
efficiency for the signal events is far greater than the contamination of background events
which are accepted. Finally, Figure 51 shows the network output for the HZ signal of the
test set as well as the output for the qq(y) and W*W test sets. Again it can be seen that the
network gives outputs peaked at one for signal events and at zero for background.
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Figure 49: Efficiency for the selection of HZ signal events when the output of the thirteen input network is
required to be greater than 0.7 versus the training epoch.
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Figure 50: Percentage of qq(y) events (top) and WW events (bottom) from the test set which are
misidentified as HZ events by causing a thirteen input ANN output greater than 0.7. The network again
selects much less of both backgrounds than of the signal.
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Figure 51: Network output after 1000 epochs of training for events in the test set using the thirteen' input
network. The output for HZ signal events is shown in the upper left, for qq(y) events in the upper right, and
for WW background events in the lower left.

5.8 Network Performance

The final performance of the thirteen input network was again evaluated using the
validation sets of Monte Carlo data which were described in section 5.1.2. The final cut
sequence was the same as that applied in the case of the nineteen input network and



THE HIGGS SEARCH ALGORITHM 145

consisted of sequential application of the precut (as described in section 5.3), a cut on the
output of the thirteen input ANN, and the postcut which required that the probability of the
most probable Z mass constrained fit to the event be greater than 1%. This postcut was
again applied in order to provideaﬁnalqualitychéckontheeventand only rejects a small
number of the events after the ANN cut. The number of events remaining in the 64 GeV/c*
HZ signal validation set and the qq(y) and four fermion final state validation sets are shown
in Table 12. The efficiency for the signal and rejection for the background processes is
shown for several cuts on the output of the network. Figure 52 shows the remaining cross
sections of the 64 GeV/c? signal validation set, the qq(y) validation set, the four fermion
final state validation set, and the total background (the sum of the qq(y) and four fermion
final state sets) versus the magnitude of the network output cut. Figure 53 shows the
signal efficiency and signal to noise ratio achieved for various ANN output cuts. It can be
seen from these two figures that the amount of remaining signal again exceeds the
background for ANN cuts greater than 0.7.
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Signal HZ my=64 GeV/c*
No Cut 500}
[Precut 488|
ANN Cut 0.1 0.2| 03 0.4} 0.5 0.6} 0.7 0.8 0.9
Remaining _ 419] 370| 331 301 272 242 222 174
Postcut 349| 310| 280| 258 236 213 196 160 924
Efficiency 69.8%| 620%| 560%| 51.6%| 472%| 42.6%| 392%| 32.0%| 18.4%
Hadronic Z Decay qq(y) Background
No Cut 50000]
Precut 9150}
ANN Cut 0.1 0.2 03 0.4] 0.5 0.6] 0.7 0.8 0.94
Remaining 784 444 284 174 112 87 43 15 1
Postcut 537 306 194 122 72 54 36| 13 1
Rejection 98.926% | 99.388% | 99.612%| 99.756% | 99.856% | 99.892%| 99.928%| 99.974% | 99.998%
4 Fermion Final State Background
No Cut 20000]
Precut 4055
ANN Cut 0.1 0.2 0.3 04| 0.5 0.6] 0.7 0.8 0.94
Remaining 1381 841 536 343 205 146] 92 41 10
Postcut 1172 743 480| 310 185 134 85 40 10
Rejection 94.140%]| 96.285% | 97.600% ] 98.450%| 99.075% ] 99.330%| 99.575%| 99.800% | 99.950%

Table 12: The number of remaining events in each of the validation sets is shown after sequential
application of the precut, various values of network output cut for the thirteen input ANN, and the postcut.
The efficiency for the signal and rejection for the backgrounds is also given for each cut.
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Figure 52: The remaining cross sections of HZ signal for a 64 GeV/¢? Higgs, qq(y) background, four
fermion final state background, and total background after the sequential application of the precut, various
values of thirteen input ANN output cut, and the postcut.
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Figure 53: Selection efficiency for 64 GeV/c? Higgs events and signal to noise values after the sequential
application of the precut, various values of the thirteen input ANN cut, and the postcut.
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In order to keep the efficiency of the analysis at about the 25% level, a final cut of 0.85 on
the output of the thirteen input ANN was decided upon. The rest of the validation sets
were then processed using these final cuts:

1. The precut described in section 5.3.
2. A cut on the output of the thirteen input ANN at 0.85.

3. A postcut requirement that the probability of the most probable Z mass constrained fit
to the event be greater than or equal to 1%.

Table 13 shows the number of remaining events, efficiencies, and remaining cross sections
for the seven different Higgs masses when these cuts were applied. The efficiency (for all
but the 55 GeV/c? point) remain around the 25% level as was expected. The efficiency
remains fairly constant over the range of Higgs masses greater than 60 GeV/c’.
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Events:
Higgs Mass §5 6 | 6 | 64 66 68 | 170
No Cut 500] 500 500] 500 500{ 500 500}
fPrecut 479| 478 489 488 491 492, 488§
fon > 0.85 92 129} 123 13§ 135 133 129]
JPostcut 85 123 118 126 130} 125 126§
Efficiencies:
Higgs Mass 55 60 62 64 66 68 70
fiNo Cut 100.0%] 100.0%| 100.0%| 100.0%| 100.0%| 100.0%{ 100.0%]
fPrecut 95.8% 95.6% 97.8% 97.6% 98.2% 98.4% 97.6%|
fon > 0.85 18.4% 25.8% 24.6% 27.0% 27.0% 26.6% 25.8%]
Postcut 17.0% 24.6% 23.6% 25.2% 26.0% 25.0% 25.2%)
Cross Sections
in pb:
{Higgs Mass [ 60 62 64 66 68 70
fNo Cut 0.95 0.73 0.63 0.52 0.40 0.26 0.12)
Precut 091 0.70| 0.61 050} 039 0.25 0.11
fon > 0.85 0.18 0.19| 0.15 0.14 0.11 0.07 0.03}
§Postcut 0.16 0.18 0.15 0.13 0.10] 0.06 0.03]

Table 13: The number of events remaining, selection efficiency, and cross section remaining for the signal
validation sets after sequential application of the final cuts. All Higgs masses are in GeV/c*.

The remaining number of background events for the qq(y) and four fermion final state
validation sets after application of the cuts as well as the selection efficiencies and
remaining cross sections for these events is shown in Table 14. Finally, the remaining
aumber of signal and background events for 10 pb™ of integrated luminosity (roughly the
amount of data that was recorded by OPAL during the 161 GeV LEP run) and the
resulting signal to noise ratio for each Higgs mass is shown in Table 15. The decrease in
efficiency at lower Higgs masses may be explained by the fact that the ANN was trained to
recognize the jet profiles of my=65 GeV/c? template signal events. Thus, the reduced
magnitude of the mass of the lowest mass jet pair and the reduced energies of the Higgs
jets in lower mass Higgs events would appear to the ANN as not meeting the requirements
for selection.
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With the calculation of these final efficiencies and background rates, the analysis was ready
for application to real OPAL data. Prior to considering the OPAL data, however, an
estimation of the effects of systematic errors on the results of the neural network analysis is

made in the next section.

Table 14: The remaining number of events, selection efficiencies, and remaining cross sections for the qq(y)

|[Events:

[ Channel qq9(y) | Excalibur

[No Cut 50000} 200004
[Precut 9150} 4055]
fon > 0.85 5 28}
JPostcut 5 27}
| |
|Efficiencies: |
[ Channel qq(y) | Excalibur |
INo Cut 100.0%|  100.0%}
{Precut 18.30%|  20.28%(
fon > 0.85 0.0100%| 0.1400%j{
JPostcut 0.0100%| 0.1350%}
i |
[Cross Sections in pb: |
[Channel qq@) __| Excalibur |
[No Cut 1474 17.132
[Precut 26.974 3474
fon > 0.85 0.0147 0.024

fPostcut 0.0147]  0.0231

and four fermion final state (Excalibur) background validation sets after the application of the final cuts.

Iﬁlggs Mass Efficiency | Signal qq(y) |Excalibur | Total BG s/n

(GeV/c?) ‘ \
Iss 17.0% 1.62 0.15 0.23 0.38 4.28)
fo0 24.6% 1.79) 0.15 0.23 0.38 4.73]
162 23.6% 1.48 0.15 0.23 0.38 3.91)
fo4 25.2% 1.30] 0.15 0.23 0.38 3.44)
f66 26.0% 1.03 0.15 0.23 0.38 2.73}
f68 25.0% 0.65 0.15 0.23 0.38 1.71)
70 25.2% 0.29| 0.15 0.23 0.38 0.78]

Table 15: The final selection efficiencies, number of remaining signal and background events, and signal to

noise ratios for each of the Higgs masses for 10 pb™* of integrated luminosity.
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5.9 Estimation of Systematic Errors

An estimation of the systematic errors inherent in the ANN analysis is presented in this
section. Evaluating the systematic behavior of neural network systems is a difficult task as
the non-linear relationships between input variables in the network precludes the possibility
of varying inputs in an independent way.

With these limitations in mind, the estimation of systematic errors presented in this chapter
serves only as a first look at the effects of imperfect modelling of the input variables upon
the output of the network. A list of items to be considered in order to give a more
complete estimation of the systematic errors involved in this analysis is discussed in
chapter 6.

The thirteen input variables to the ANN considered in the last section were compared in the
background Monte Carlo and in the data. The background Monte Carlo was weighted
between the qq(y) events and the four fermion final state events in the expected ratios after
the application of the precut. The mean of each input variable in the data was then
compared to the mean in the background Monte Carlo and the deviation necessary for the
Monte Carlo mean to match the data mean was calculated.

The input variables were divided into three groups: the b quark tagging variables, the event
shape variables, and the constrained fitting variables. Table 16 shows the mean and rms
values of the b quark tagging values in both the background Monte Carlo and in the OPAL
data. The deviation between the Monte Carlo and data means is also shown. Similar
results for the shape and constrained fitting variables are shown in Table 17 and Table 18
respectively. The definitions of the short variable names may be found in section 5.4.

 Variable

| MeanMC | MeanData | Deviation ms MC nns Data
tdsum 1118 1.287 +0.169 447 6.03

5.541 5.000 -0.541 11.74 18.58
—~ R

Table 16: Deviation between the mean values of the b quark tagging input variables in the data and the
background Monte Carlo (MC). The rms values in the data and MC are also shown.
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| Varjable 1 MeanMC ! MeanData | Deviation s MC masData
| sprime 135.6 _1350 0.6 21713 21.12
minem 3.2 342 +0.20 1.60 1.95 |
| mvis 1320 1327 +0.7 31.23 31.34
y34 0.00993 0.01157 +0.00164 0.0113 0.0136 |
[ ang] 0.692 0.735 +0.043 0.318 0323 |
| spher 0.213 0.228 +0.015 0.165 0.164 |
| ntrack 2671 27.72 +1.01 7.10 7.25

Table 17: Devnaumbuweenthemeanvalusoftheevcntshapemputvanablesmthedataandthe
background Monte Carlo (MC). The rms values in the data and MC are also shown.

 Variable | MeanMC | MeanData | Deviation s MC mnsData |
mlow 24.44 2691 +247 8.44 931 |
mdiff 5161 55.77 +4.16 42.04 40.77
[ zprob 0292 0.170 012 0318 0.266 |

0.256 0.109 0.147 0310 0.230_

Table 18: Devnumbaweenthemeanvaluesofthemnedﬁmngmpmvmablsmthedataand the
background Monte Carlo (MC). The rms values in the data and MC are also shown.

The mean values for each input variable in a given group were then shifted to match the
mean in the data in each of the validation sets for the 64 GeV/c* HZ signal, the qq(y)
background and the four fermion final state (Excalibur) background. These shifted
validation sets were then passed through the thirteen variable network and the performance
appraised after application of the same final cuts as in section 5.8. This process was
repeated for each of the three groups of input variables.

Since the change in the number of remaining signal and background events'is positively
correlated when the input variables are shifted, thedlangeintheremainingnumbérof
signal events for a background level equal to that of the nominal analysis and the change in
the remaining number of background events for a signal efficiency equal to that of the
nominal analysis was recorded for each shift of the input variables. Thus, the signal
efficiency after input variable shifting for a background level of 0.38 pb and the remaining
background after input shifting for a signal efficiency of 25.2% were recorded for each of
the three shifts of input variables.
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Table 19 shows the relative percentage error in the signal for a background level of 0.38 pb
and the percentage change in the number of surviving background events for a signal
efficiency of 25.2% when each of the three types of input variables are shifted to their
respective data means individually. The final estimate of systematic error in the signal and
efficiency is taken to be the sum in quadrature of these values, thus giving a relative error
of 7.7% on the signal efficiency and 32.3% on the background rate. The final efficiencies
and background rates for several Higgs masses with statistical (calculated using Poisson
statistics) and systematic errors are shown in Table 20 and Table 21 respectively. It can be
seen from these two tables that the magnitudes of the statistical and systematic errors in
this analysis are very similar.

Variable Type A Signal Efficiency for A Background for

Background = 0.38 pb Signal Efficiency = 25.2%
b Quark Tagging 7.1% 2.9%
Event Shape 24% 31.0%
Constrained !m 1.6% 7.7%

Table 19: The percentage change in the signal efficiency for 64 GeV/c” HZ events at a background level of
0.38 pb and the percentage change in background for a signal efficiency of 25.2% when the input variables
for each of three classes are shifted to their data means.

Imggsm Efficiency | Signal qq(y) | Excalibur | Total BG s/n
(GeV/cd)

55 17.0¢1.3%| 1.6220.12 0.15 0.23] 0.3820.12] 4.28+1.67]
fe0 24.6:1.9%| 1.79:0.14 0.15 0.23] 0.38+0.12] 4.73+1.90
f62 23.6+1.8%| 1.4820.11 0.15 0.23| 0.38+0.12] 3.91+1.54
f64 25.2+¢1.9%| 1.30+0.10 0.15 0.23] 0.3820.12] ‘3.44+1.35
f66 26.0+2.0%| 1.0320.08 0.15 0.23] 0.38+0.12] 2.73+1.07]
I8 25.01.9%| 0.65+0.05 0.15 0.23] 0.3820.12] 1.7120.67]
70 25.2¢:1.9%| 0.29+0.02 0.15 0.23] 0.3820.12] 0.78+0.31

Table 20: Systematic errors on the final number of signal and background events as well as on the signal to
noise ratio for various Higgs masses.



THE HIGGS SEARCH ALGORITHM

Higgs Mass Efficiency | Signal qq@y) | Excalibur | Total BG s/n
(GeV/?)

55 17.0+1.8%| 1.6210.17| 0.15:0.07] 0.2320.04] 0.3820.11] 4.28+1.6
j60 24.622.2%| 1.79:0.16] 0.15:0.07] 0.2320.04] 0.3820.11] 4.7321.79]
62 23.6:2.2%| 1.4820.14] 0.152007] 0.2320.04] 0.3820.11] 3.91=1.50]
f64 25.222.2%| 1.30+0.11] 0.1520.07] 0.2320.04] 0.3820.11] 3.44+1.29
l66 26.0:23%| 1.03:0.09] 0.15:0.07] 0.2320.04] 0.3820.11] 2.7321.03}
f68 25.0:2.2%] 0.6520.06] 0.15:0.07] 0.2320.04] 0.3820.11] 1.71+0.65}
70 25.2+22%| 0.29:0.03| 0.15£0.07| 0.2320.04] 0.38+0.11] 0.7820.31

Table 21: Statistical errors calculated using Poisson statistics for the signal efficiencies and background rates
for several Higgs masses. The statistical error in the signal to noise ratios is also shown.

As a cross check of the systematic errors involved in this analysis, the 64 GeV/c* HZ signal
validation set as well as the qq(y) and four fermion final state validation sets were subjected
to track smearing before being passed through the offline analysis. Track smearing
involves altering the track parameters in the Monte Carlo by some resolution factor in
order to simulate inaccuracies in the reconstruction from the detector. The track
parameters for each of the three validation Monte Carlo data sets mentioned above were
smeared by the maximum amount suggested for systematic studies in OPAL [42] and the
resulting data was passed through the offline analysis and the trained thirteen input ANN.
This resulted in a relative change of 3.2% in the number of HZ signal events accepted and a
change of 15.5% in the number of accepted background events. Since the track smearing
method reconstructs shape variables well when compared to the data but does not
accurately account for emrors in the b quark tagging variables, the systematic etrots
obtained from the method of varying the input variables to the network by their difference
between data and Monte Carlo was retained as the most conservative estimate of
systematic errors for this analysis.
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5.10 Application to OPAL Data

The ANN analysis method presented in the previous sections was applied to the 10 pb™ of
real data recorded at /s = 161 GeV in the summer of 1996. During this period, 1500
events were selected by the Tokyo Multihadron flag described in section 3.5.2. Table 22
shows the comparison of the number of data events passing each of the three final cuts
compared to the number of expected events from the qq(y) and four fermion final state
backgrounds. The final cut sequence consisted of the following:

1. The precut described in section 5.3.
2. A cuton the thirteen input ANN output at 0.85.

3. A postcut requiring that the probability of the most probable Z mass constrained fit to
the event be greater than 1%.

The slight excess of data events after the precut is due to the presence of two photon
events in the real data which are not accounted for in the simulation. No candidate events
were observed in the data. The ANN output for the 366 data events which passed the
precut may be seen in Figure 54. Although no events are observed, a limit cannot be
calculated for the low amount of integrated luminosity collected during this running period.
In order to quote a limit at the 95% confidence level, Poisson statistics require that an
experiment be sensitive to 3 events while observing none [43]. With the limited, data
available (see Table 15), such a sensitivity is not attained in this case.

| Cut Data Expected Backeround |
TKMH 1500 -
Precut 366 317 |
ANN >0.85 0 0387}
Postcut 0 0378

Table 22: Comparison of the number of observed and expected eveats in 10 pb™ of OPAL data after the cuts
used in this analysis.



THE HIGGS SEARCH ALGORITHM 156

Ty ew l LA lITI’Tl rrl L3 ) l L SR IR SRS l L SN § lm‘ﬁ LS l Ty vl l L3 J limr.
i Entries 366
" ' Mean SS87T4E-01 -
RMS 1361
103 3
10

LlllllL

L]
ks

41 0 01 02 03 04 05 06 07 08 09
ANN Output

Figure 54: The thirteen input ANN output for the 366 events of real OPAL data which pass the precut. No
event exceeds the ANN output cut at 0.85.

5.11 Comparison to Other Analysis Methods

In this section, a comparison of the ANN method to two other methods used to search for
the Standard Model Higgs in the four jet channel at OPAL is performed. The first
alternative method is the standard multivariate cutting approach used by the OPAL Higgs
group [44] while the second is a maximum likelihood approach [45].
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The standard cutting approach makes use of a series of kinematic cuts followed by strong
cuts on the decay length significance of the vertices associated with the Higgs jets as
identified by the most probable Z mass constrained fit. The efficiencies and background
rates expected for 10 pb™ of data as well as the resulting signal to noise ratios are shown in
Table 23 and may be compared to the corresponding results for the ANN in Table 24.
Both tables show only statistical errors. The systematic errors on the cutting approach are
estimated at a relative change in signal efficiency of 5.5% and a relative background
systematic error of 24%. This values compare favourably with the systematic errors
calculated for the ANN approach in section 5.9. The cutting analysis was optimized for a
55 GeV/c* Higgs mass and this explains its better performance than the ANN for lower
Higgs masses. At higher masses, however, the ANN approach has both a higher efficiency
and a lower background rate.

lHiggsMass Efficiency | Signal qq(y) | Excalibur | Total BG s/n
(GeV/c?)

55 21.320.8%| 2.0320.08 0.57 0.23| 0.8+0.08] 2.54+0.35
f0 22.420.8%] 1.6320.06 0.57 0.23] 0.8+0.08] 2.04+0.28}
f62 22.821.9%| 1.4320.12 0.57 0.23| 0.820.08] 1.79:0.33]
fe4 23.6=1.9%| 1.22+0.10]| 0.57 0.23] 0.820.08] 1.5320.28)
f66 20.6=1.8%| 0.82+0.07 0.57 0.23] 0.8£0.08] 1.030.20§
fes 16.2+1.6%| 0.4210.04 057 0.23] 0.8:0.08] 0.53+0.10§
70 15.421.6%| 0.18+0.02 057 0.23] 0.820.08] 0.2320.05]

Table 23: Signal selection efficiencies, background rates, and signal to noise ratios for various Higgs masses
using a standard cutting approach. All numbers of events are quoted for 10pb™ and all quoted errors are
from Monte Carlo statistics only.

Higgs Mass Efficiency | Signal qq(y) | Excalibur | Total BG s/n |
(GeV/ch)

55 17.0:1.8%| 1.62+0.17] 0.15:0.07] 0.2320.04] 0.3820.11] 4.28+1.69}
j60 24.6222%| 1.79+0.16] 0.15:0.07] 0.2320.04] 0.3820.11] 4.73=1.79}
l62 23.6:2.2%| 1.4820.14] 0.15:0.07] 0.2320.04] 03820.11] 3.911.50]
fo4 25.2422%| 1.3020.11] 0.15:0.07] 0.23:0.04] 0.3820.11] 3.44=1.29]
f66 26.0:23%| 1032009 0.15:0.07] 0.2320.04] 0.3820.11] 2.731.03]
fe8 25.0+22%| 0.65:0.06] 0.15:0.07] 0.2320.04] 0.380.11] 1.7120.65}
70 25.2222%| 0.29:0.03] 0.15:007] 0.2320.04] 0.3820.11] 0.7820.31}

Table 24: Signal selection efficiencies, background rates, and signal to noise ratios for various Higgs masses
using the ANN approach developed in this thesis. All numbers of events are quoted for 10 pb™* and quoted
errors are from Monte Carlo statistics only.
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The maximum likelihood approach uses a much harder precut than the ANN analysis. The
efficiency of the maximum likelihood precut for a 64 GeV/c® Higgs is 71% while the ANN
precut gives an efficiency of 98%. The likelihood approach is also optimized for a
55 GeV/c2 Higgs mass and hence it obtains better results than the ANN at low Higgs
masses. The signal efficiencies, background levels, and signal to noise ratios for the
likelihood method are shown in Table 25 and indicate that the ANN has a higher sensitivity
at higher Higgs masses.

Higgs Mass Signal qq(y) | Excalibur | Total BG s/n I
(GeV/c)

55 3.1520.11] 0.82+0.09] 0.37+0.06] 1.1910.15 2.65:0.43'
1.5520.13] 0.82:0.09] 0.370.06] 1.19:0.15| 1.30:0.27}
le6 1.0320.09] 0.82:0.09 0.37:0.06] 1.1920.15] 0.87=0.19§

Table 25: Signal selection rates, background rates, and signal to noise ratios for various Higgs masses using
the maximum likelihood approach. All numbers of events are quoted for 10 pb™ and quoted errors are from
Monte Carlo statistics only.
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6. Conclusions

A search for the Standard Model Higgs Boson in +/s = 161 GeV electron positron
collisions was performed using data from the OPAL detector at LEP. The Artificial Neural
Network technique employed resulted in better sensitivity and signal to noise ratios for the
Higgs boson signal as compared to both a standard cutting approach and a maximum
likelihood method.

In preparation for application of the ANN analysis to higher energy LEP runs, several
possible improvements to the training process have been identified. Instead of using a
W'W Monte Carlo data set to approximate the four fermion final state background during
the ANN training, sufficient Excalibur generator events will be produced to allow both
training and validation of the network to take place on Excalibur data. In addition, several
different Higgs masses will be used in the ANN training data in order to lessen the mass
dependence of the selection efficiency for the network.

The systematic errors inherent in the ANN method were estimated and shown to be on a
level comparable to conventional analyses. In future analyses, systematic errors stemming
from uncertainties in the Monte Carlo model such as the hadronic fragmentation functions
and the value of o, will be evaluated for the network. The correlations between the
network input variables will also be investigated in more detail in terms of their effects on
the systematic error of the network.

LEP plans to deliver about 100 pb™ of data to the OPAL detector in the /s = 184 GeV
run which will take place in the summer of 1997. The ANN analysis of the four jet
Standard Model Higgs signature presented in this thesis will be re-optimized for this run
with the improvements suggested above. The sensitivity of the ANN analysis when
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combined with the much improved integrated luminosity of 100 pb? will allow a
meaningful limit to be set on the Higgs boson mass during this run.
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