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ABSTRACT

A simple analytical procedure, based on Bayesian statistical
theory, for use with in-situ test data for predicting the

compressive strength of concrete in existing structures is

presented.

The underlying theory of Bayesian statistics is introduced
and the fundamental theorem is derived. The application of
Bayes' theorem to the problem of updating or improving prior
statistical information is described and highlighted in
examples. Closed form relationships are derivea that permit the
combination of any amount of core strength data and
nondestructive test (NDT) data for predicting the mean in-situ
strength of concrete in a homogeneoué element. A parametric
study of the relationships using data from an extensive
investigation of a concrete highway bridge reveals the relative
significance of the major variables in the analysis.

Two theoretical approaches for optimizing in-situ test

programs are also presented.
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CHAPTER 1

1.1 General

Estimation of the in-situ compressive strength of concrete
in an existing structure can normally occur only after a field
investigation is performed. The field investigation provides an
opportunity to measure directly or indirectly the strength of the
concrete at discrete locations. In order to ensure that a
sufficiently accurate assessment of the strength can be made from
the in-situ measurements, careful consideration must be given to
the amount and type of data obtained and the locations from which
it is obtained. Another major factor that influences the
accuracy of the strength assessment is the method of data
analysis.

Direct measurements of compressive strength can be obtained
from tests on cores taken from the structure. Estimates of
strength can also be obtained from nondestructive tests such as
pulse velocity and rebound number (Malhotra, 1984). Even though
NDTs, like pulse velocity and rebound hammer readings, are
normally less expensive than concrete core strength measurements
(samarin and Dhir 1984) it is always necessary to obtain some
concrete core data so that a regression relationship between the
NDT measurements and concrete strength can be developed. In
addition to economic factors, core removal is usually limited for
other reasons including the desire to minimize damage to the
structure for both structural and architectural reasons and the

difficulty in obtaining specimens from certain locations.



When the strength of more than just one element of a
structure is being investigated it is important to analyse the
data from each element separately. Even if the concrete
specifications were uniform throughout the structure, curing
rates and other factors unique to different elements (eg. columns
and slabs can have tremendously different volume-to-surface-area
ratios) could cause significant variations in strength between
different elements. In some cases it is not clear whether or not
data from different parts of a structure should be combined.
Fortunately there are methods available to address this problem
(see for example Di Leo, Pascale, and Viola 1984).

As with many engineering materials, concrete strength is
variable, even within one localized part of a structure.
Therefore it is necessary to use statisﬁical procedures. to arrive
at a rational estimate of the in-situ strength. Even though the
so-called "classical” relationships for analyzing data are used
most often, such relationships give reliable results only when
large quantities of data are available (Ang and Tang 1975). When
a strength prediction must be made from a small amount of data,
which is often the case, it is better to use relationships baged
on Bayesién statistics (Tang 1971, Rao and Corotis 1982, Viola

1983, Bazant and Chern 1984).

1.2 Objectives and Scope

The objectives of this study are



1.

To present the underlying theory and the fundamental theorem
of the Bayesian statistical approach and to show how the
theorem can be applied to update existing statistical

distributions.

To develop an analytical procedure for combining various types
and quantities of in-situ data for predicting the compressive

strength of concrete in existing structures.

To study the characteristics of the analytical procedure by

evaluating in-situ concrete data obtained during an extensive

structural investigation.

" To present strategies and procedures for optimizing testing

programs used to obtain data for concrete strength prediction.



CHAPTER 2

An Introduction to Bayesian Statistical Theory

2.1 Introduction

In the problem solving process engineers often make use of
statistical procedures to evaluate measured data. When only a
limited guantity of measured data is available the so-called
"classical" statistical relationships, which are most commonly
used, may not provide good solutions because they should be used
only when relatively large quantities of data are available (Ang
and Tang 1975). When the gquantity of data is limited Bayesian
statistics provides a good alternative to the classical
approach. Bayesian relationships can be developed that
systematically combine large or small amounts of new daté with
previous information; previous information can be either
subjective or objective in nature. Because the procedure
facilitates the combination of new data with previous information
it is also an ideal method to use when data become available
intermittently and freguent updating of statistical
characteristics of a random system is necessary.

This chapter gives the development of Bayes' theorem which
is the basis for all Bayesian relationships. A general
presentation is given on how to use the theorem to revise and
update statistical distributions. The presentation given in this
chapter is based upon information from several references
(Schmitt 1969, Winkler 1972, Ang and Tang 1975, and Guttman,

Wilks and Hunter 1982).



2.2 Bayes Theorem

2.2.1 For Discrete Systems

A discrete system is one from which only a finite number of
different events or outcomes can possibly occur. Each of the
events in the system has associated with it a probability of
occurrence and the entire set of possible events has an
associated discrete probability distribution known as a
probability mass function (PMF). The probabilities of all
discrete events in any one system must sum to equal one. An
example of a discrete system is the presence of reinforcing steel
in cores taken from a reinforced concrete wall. This is a
discrete system because only two different outcomes are possible
when taking cores; either steel is or is not present in a given
core. A hypothetical PMF for this system is shown in Figure 2.1.

Bayes' theorem is basically a conditional probability
relationship. Conditional probability is defined as the
probability that one event will occur given that a particular
second event has occurred. The conditional probability of an

event A occurring given that an event B has also occurred 1is

denoted as
P(A|B)

A relationship for calculating conditional probability for
discrete systems can be developed easily with the aid of a Venn

diagram such as the one shown in Figure 2.2. The large



Fig. 2.2 Venn Diagram Representing the Probability of

Two Events



rectangular box shown in this figure, labelled S, represents the
entire discrete system or sample space from which possible events
can be chosen. The squares, A and B, each represent a possible
event in the total sample space. The probabilities of either of
these events occurring independently is represented by the
normalized area of the square representing the event being
considered.

As shown in the Venn diagram the events A and B overlap.
This indicates that both events can occur simultaneously. The
normalized area of the overlap represents the probability of such
a joint event. This condition is referred to as intersection and

the intersection of events A and B is denoted as

ANB

The probability of intersecting events A and B is denoted as

P(AN B)

For the concrete core example intersecting events could occur if
event A represented horizontal steel present in a core and event
B represented vertical steel present in a core. Of course it is
possible that both horizontal and vertical steel could be present
in one core, and this is implied in the Venn diagram.

From the Venn diagram it can be seen that the conditional
probability of event A happening given that event B has also

happened is equal to the probability of the intersection of



events A and B divided by the probability of event B occurring.

The resulting relationship is

[2.1] P(A|B) = Eé—%\)—B—)
Similarly.,
[2.2] P(B|A) = P—lg—%gl

In many discrete conditional probability systems there will
be more than one possible type A and type B events, as depicted
in the Venn diagram of Figure 2.3. The conditional probability
of the kth A event given that the jth B event has also happened

follows directly from [2.1],

P(AkﬂB.)
[2.3] P(Alej) = —5E
]
Similarly,
P(A, NB,)

In order to transform the conditional probability
relationships developed thus far into the Bayesian form, the
concept of total probability must be introduced. Referring again
to the Venn diagram of Figure 2.3 it can be seen that the
probability of event Bj; happening can be calculated by summing

the probabilities of the intersection of event B, with several A
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Fig.

2.3

Venn Diagram Representing the Probability of Multiple
Events



CEP N—

events,

P(Bl) = P(AgﬂBl) + P(AlonBl) + P(AllmBl) +
P(A;3NBy) + P(A14NBy) + P(A)5MNBy) +

P(A17nB1) + P(AlSnBl) + P(AlgnBl)

Since no other A events intersect with event B, it is not

necessary to consider them when calculating P(B;). However, a
generalized expresssion for P(Bj) results if all A events are

considered,
n
[2.5] P(By) = I p(AiﬂBj)

i=1

where n = the total number of A events. Rearranging [2.4] and .

substituting it into [2.5] results in the total probability

theorem,

n™Ms

[2.6] P(By) = P(A;) ° P(Bj|Ai)

i=1

Substituting [2.6] into [2.3] gives

P(Akr\Bj)

[2.7] P(Ag|Bj)

nm~Ms

P(Ai) . P(Bj|Ai)

i=1

Finally, rearranging and then substituting [2.4] into [2.7] gives

the conditional probability relationship for discrete systems



which is commonly known as Bayes' theorem,

P(Ak) . P(Bj|A )

k

[2.8] P(A[Bs) =

nt1s

. P(Ai) . P(BjIAi)

i

where 1 < k < n

the total number of B events.

=]
n

2.2.2 For Continuous Systems

A continuous system is one from which essentially an
infinite number of different events or outcomes can be chosen.
As a conseguence of this any single event has associated with it
a zero probability of occurrence; a probability of occurrence is
associated with any finite sequence or range of the possible
continuous events, however. Probabilty distributions used to
describe the probability of occurrence of events from continuous
systems are known as probability density functions (pdf). The
major requirement of such functions is that the area they enclose
sums to equal one. An example of a continuous system is the
compressive strength of concrete in a structure. This is a
continuous system because a Qery large number of different
strengths are possible when measuring the strength throughout the
structure. A hypothetical pdf for this system is shown in Figure

2. 4.

Bayes' theorem for continuous systems can be developed from



. . , .
N— — i

—

- 13 -

f(x)A

Fig. 2.4 Hypothetical Probability Density Function Showing the
Distribution of Concrete Compressive Strength in a
Structure
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[2.8] (i.e. from Bayes' theorem for discrete systems). First,
however, it is necessary to identify the expressions required for
computing probabilities in continuous systems. As already

indicated the probability of a single event happening in a

continuous system is equal to zero. For a very small seguence of

events centered on a point the probability is given as

>
>

X X
[2.9] P(x, ) = P(xk -5 < x<x F 5—)

|
h
>
~
.
>
»

where

f(xp) = the value of the pdf at xy;

a very small range of possible events.

Ax

From Figure 2.4 it is seen that P(xy) as given by [2.9] is

approximately equal to the area under the curve describing the

pdf in the immediate vicinity of x = Xy.

Conditional probability in a continuous system is computed

in a similar manner,

>4
>

X
[2.10] P(xklyj) = P(x, -3 < x < x + 55 y = yj)

4

£(xy lyg) -

An example of conditional probability in a continuous system is
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predicting in-situ compressive strength of concrete in a certain
location of a structure givén a pulse velocity measurement from
that location. Figure 2.5 shows a series of hypothetical pdfs
from which probabilities could be determined for this example.

Substituting [2.9] and [2.10] into [2.8] gives

f(xk)Ax . f(yjlxk)Ax

[2.11] f(xk|yj)Ax =

ne~s

f(xi)Ax . f(yj[xk)Ax

i=1

In the limit as Ax approaches zero [2.11] becomes Bayes' theorem

for continuous systems,

) = ]
J (-]
[ £(x) - f(yj|x) dx

-0

[2.12] f(xkly

It is possible to adjust [2.12] for cases where more than

one experimental or field observation is available. From

elementary probability theory
[2.13] f(albl, b, «.. bm) = f(albl) . f(albz) r e f(albm)

n £(alb )
= I flal|b
i=1 m

Applying [2.13] to [2.12] results in a more general form of

Bayes' theorem for continuous systems,
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[2.14] f(xk|y1, oo Ym) - ®©

The major difference between Bayes' theorem for discrete
systems and Bayes' theorem for continuous systems is that the
former predicts new probabilities directly whereas the latter
predicts ordinates to a new probability density function. To
predict probabilities for the continuous case subseguent

integration must be done of the area under the new pdf over the

range of interest.

2.3 Bayesian Inference - Revising Statistical Distributions

2.3.1 For Discrete Systems

As seen in Section 2.2 Bayes' theorem is a special form of
conditional probability. However, in this form the concept of
conditional probability can be easily used to update the
probability distributions of random variables. Bayes' theorem
provides for the systematic combination of an existing
probability distribution with new data resulting in an updated
PMF based on all available information.

In [2.8] the set of A events represents all of the different
events that are possible outcomes in the discrete, random system
of interest. The probabilities associated with each A event
constitute the PMF for this system and are together commonly

referred to as the prior distribution. The probability of the



thh A event before any new data are available is given in [2.8]
as P(A. ). Similarly all n A events have an associated
probability of occurrence and all of these probabilities are
required when using [2.8], as seen in the denominator.

Sometimes the prior PMF is based on good statistical or
other information; this, however, is not a prereguisite to using
Bayes' theorem for updating purposes. In cases where no prior
information is available for defining the PMF, it is then
acceptable to assign each possible event an equal probability of
occurrence. As for all PMFs these probabilities must sum to
equal one, and therefore the probability of each event would be
egual to the inverse of the total number of events. A prior
distribution of this type is known as a diffuse prior.

In order to update a prior PMF it is of course necessary to
first obtain experimental, field, or some other type of data to

combine with the prior statistical distribution. 1In [2.8] event

By

probability, observed from the test data, of event Ay

represents the set of new data and P(leAk) represents the

happening. Similarly all n A events have an associated
conditional probability based only on the new data. These
conditional probabilities are known as likelihoods. Although the
likelihoods seem very much like the conditional probability of an
A event occurring given that event Bj has occurred, which is
denoted as P(Alej) for the kth A event in [2.8], it is important
to note the difference. P(AKIBj) is a conditional probability

given both prior information and new data. P(leAk) is a

conditional probability given only the new data. When using
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Bayes' theorem for the current application it is essential not to
confuse these two different types of probabilities. As indicated
by Belz (1973) and by Guttman, Wilks and Hunter (1982), the term

P(leAk) of Bayes' theorem for the current application is

somet imes denoted L(Alej) in order to clearly symbolize the

meaning to be the likelihood of event A, given the data from

event Bj .

Combining the previous or prior distribution of a random
discrete variable with observed data through Bayes' theorem as
given by [2.8] results in an updated distribution based upon both
the existing information and the new data. The resulting PMF is
called the posterior distribution. In [2.8] the posterior
probability associated with the kth event in the discrete system
is given as P(Alej). An example of updating a discrete

statistical system using Bayes' theorem is given in Appendix A.

2.3.2 For Continuous Systems

Bayes' theorem for continuous random variables can be used
to update pdfs just as the discrete form of the theorem can be
used to update PMFs. The probability distribution of the random
variable, which is known as the prior, is represented in general
by f(x) in [2.12]. One ordinate of the prior pdf is given by
f(xk). As in the discrete case if no prior distribution is
available it is acceptable to use a diffuse prior pdf. This
diffuse prior must assign a constant probability density to the
entire range of possible events.

From experimental, field or other observations a new pdf for
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the range of events being considered can be developed. This new
pdf represents the likelihood density of attaining the range of
events based only on the new data. In [2.12] the likelihood

m
function is given by f(yj|xk) and in [2.14] by I f(yi'xk). As

described for the discrete case it is importantlzét to confuse
the likelihood function with the posterior function.

Combining the prior pdf with observed data through [2.12] or
[2.14] results in a posterior pdf represented by f(xk|yj) or
E(xp |yye ooe ¥Yp) respectively. Based on all available
information the posterior pdf gives the best statistical

description of the continuous system. An example of updating a

continuous system using Bayes' theorem is given in Appendix B.
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CHAPTER 3

The Development of Bayesian Relationships for

Estimating Mean Concrete Compressive Strength

3.1 Introduction

In order to predict the in-situ compressive strength of
concrete in an existing structure it is normally necessary to
first remove several core specimens and to take some non-
destructive test (NDT) measurements such as pulse velocities and
rebound hammer readings. Because the data are random, a
statistical method must be employed to estimate the strength of
the concrete based on the data. The analysis of the data must
conside the various errors associated with transforming NDT
méasurements into equivalent compressive strength values. 1In
addition, proper weighting must be given to core data and NDT
data when different amounts of each of these types of in-situ
measurements are used. Furthermore, when predicting concrete
strength based on small amounts of data it is sometimes
beneficial to include subjective information in the analysis and
this must be done rationally. Data analysis of problems which
include any or all of these characteristics can be done using
Bayesian statistics.

In this chapter simple Bayesian relationships are developed
that can be used to consistently and systematically combine
direct core and indirect NDT data with other pertinent subjective

or statistical information to estimate in-situ concrete strength.



3.2 Estimation of Mean Strength when Only Concrete Core

Compressive Strength Data are Available

For any homogeneous section of a reinforced concrete
structure it is common and reasonable (Mirza, Hatzinikolas, and
MacGregor, 1979) to assume a normal or Gaussian distribution for
the compressive strength of the concrete. Therefore the
probability density function for the in-situ strength of the
concrete in a homogeneous section can be expressed as

2”172 1 x -2
[3.1] £(x) = (2n0%) - exp {- 3 (*51) }

where X = random variable, in this example concrete strength;
62 = variance of the random variable;
L = mean or expected value of the random variable.

Following the presentations of Breipohl (1970) and Guttman,
Wilks, and Hunter (1982), in order to use Bayes' theorem for
predicting the mean value, u, based on some core strength data
and any other pertinent information it is first necessary to
assume a value for the variance of the strength, say 602. As
reported by Mirza, Hatzinikolas and MacGregor (1979) the
coefficient of variation for the compressive strength of concrete
in homogeneous elements is usually observed to be 10%, 15%, and
20% for concrete placed with excellent, good, and poor quality
control respectively. (For concrete strengths greater than about
30 MPa the coefficient of variation tends to be less than these

values.) Tso and Zelman (1970) describe one method that can be



used to estimate the quality control attained during the
construction of a concrete structure. By referring to
construction documents, using the method of Tso and Zelman, or by
applying engineering judgement, it is possible to determine a
reasonable value for 002.

Secondly, it is necessary to consider the mean or expected
value of the concrete compressive strength to itself be random,
and distributed normally with a pdf of the form given by ([3.1].
Bayés' theorem is used then to improve or update the pdf of the
mean strength, not of the strength. Although Bayesian statistics
could be used to predict both p and So (see Bazant and Chern 1984
or Guttman, Wilks and Hunter 1982) the procedure is considerably
more difficult and is not presented here.

To proceed, a-prior distribution for the mean strength is
required. Based on engineering judgement the mean and variance
of the mean strength must be assumed. These assumptions might be
based on construction documents or any other information that is
both pertinent and reasonable (see Jones 1977). If the
statistical characteristics of the mean strength are very
difficult to predict it is prudent to assign a relatively large
value to the variance and a relatively small value to the mean.
In extreme cases a diffuse prior may be used; however, when a
diffuse prior is used with continuous Gaussian pdfs the resulting
posterior pdf will be identical to the classical prediction (Ang
and Tang, 1975) and no advantage will result from using the
Bayesian approach. In all cases the prior pdf should give the

best prediction of the mean concrete strength before any new



tests have been taken. In general the prior pdf will be given

as,
[3.2] f(p) = (Zucpr

where “pr = assumed value for the prior mean of the mean
compressive strength of the concrete;
Cpr~ = assumed value for the prior variance of the mean
compressive strength of the concrete;
B = random variable, i.e. the mean compressive

strength of the concrete.

In order to combine core compressive strength data with the

prior estimation of the mean strength of the concrete it is first

necessary to define a likelihood function using the core data.
This likelihood function must give the conditional probability
density of obtaining the test data assuming that the mean value
of the mean concrete strength distribution is p. " Because all

concrete cores come from the same population the variance coz

applies for all data and the likelihood or probability density of

the strength of the ith core is given as,

-1/2 X, = Qb

[3.3] f(xi|u) = (2n002) . exp {- % (—Lg——‘) }

where X; = compressive strength of the ith core.

For the general case where strength data from n different
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cores are available the likelihood pdf is given as

-172 ™ (x, - u)z

2 » exp {- [

(3.4] E £(x; 1w) = {(2n0_2)

s
'—l
[\S)
[
——

Combining [3.4] and [3.2] through Bayes' theorem ([2.14])
gives the posterior pdf, that is the pdf which predicts the most

likely statistical distribution of the mean concrete strength,

as,
-12. " n (x,-u)2 -1/2 pep 2
(3.51  {(2w0?) "} exp{-l T S d}e(2m0 D) T eexnl- 3 (55
i=1 2 pr 0pr
B = 12" ( - )2 /2 2
© ~-1/2 n {(x,-u -1 p-
[ (202 ) expl{ £ —i—-T}e(2m0 ?) T cexpl- 5 (52D @
- °© i=1 20'0 pr 2 opr

To use [3.5] to determine the updated pdf is obviously very
complicated, and fortunately unnecessary. By combining constants
and rearranging variables it is possible to simplify [3.5] so
that simple closed form relationships compleﬁely describing the
posterior pdf can be obtained.

First expanding the numerator and denominator of [3.5]

gives,
-n/2 -1/2
(2n002) + (2n0 2) * exp (Zl)
[3.6] £(u]x) = RL
-n/2 2 -1/2 o
(2r0 “) - (2mo, ) * ] exp (Zl) dp
1 - o 2 2 2
where 2, ={-—=—= [ x,“-22:% x, +mn] - [0 - 20m  +p_“1}
P oxp 2t s 202 pr ~Tpr
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Altering 2 gives,

(-Ls0: %+ n?] [12 2),
7. ={=——= 1| Z x. - 2rpux + mu-] - pe o= 2up +
1 2 % i=1 2% 2 pr  "pr
o) pr
n 1) 2 - 2 2 2up
I R I S bor e vy s
20 i=1 20 20 20 20 20
pr o pr pr

where X = sample mean of the core strength data.

Substituting [3.7] into [3.6] and simplifying gives,

exp (2,)
[3.8] f(p|x) = —
[ exp (2,) au
z 2 2pp - u2
where 2., = {2nux i ¢ PE }
2 2 2 2
c 20
pr
Altering Z5 gives,
= - Lr,2¢ _
S R e 157
- 2 X X
__.lx[ﬁ_zli__MJ,ﬁ_ﬁ]
T2 X X 2 2
X X
2 2
1 Y Y
[3.9] z, =--§X[(|J. -)?) ——-2']
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where X = ( n2 + 2 2)
o o
o pr
- b
_ /nx pr
Y-( 2+ 2)
o
o pr

Substituting [3.9] into [3.8] and simplifying gives,

exp (23)
(3.10]  f(p|x) = —
[ exp (z;) au
1 Y 2
where Zy = - 35X [(n - i) ]

In general (Breipohl, 1970)

[3.11] [ exp {- —13 (A - b)%} @ =/2m + v
- 2v

Using [3.11] to evaluate the denominator of [3.10] gives

1/2
[3.12] £(u|x) = (%;) - exp (-2 x [(p - %) 1}

¢
Comparing [3.12] with [3.1] it is clear that [3.12], the
posterior distribution, is Gaussian and has an expected mean

value given by
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nx pr
(= + =)
- o) pr
n 1
(c 2 " o 2)
o pr
5 2
no upr * cpr2 x
[3.13] p,po = d 5
2 45 2
n pr
and a variance given by
2
[3.14] o =
po n 1
(= + —3)
o o
o) pr
2 2
s 2 _ % opr
po 2 2
no + ©
pr o

[3.13] and {3.14] are the updated mean and variance of the
mean compressive strength of the concrete. Substitution of these

values into [3.1] gives the posterior pdf.

3.3 Estimation of Mean Strength when Ultrasonic Pulse Velocity

Measurements and Concrete Core Strength Data are Available

The procedure for combining indirect test data, like pulse
velocity measurements, with direct test data, like core
compressive strengths, in order to update a prior pdf is
described by Tang (1971). Tang suggests that first the indirect
test data should be combined, using Bayes' theorem, with the
prior pdf. The resulting pdf is then used as a prior

distribution for combination with a likelihood function derived



- 29 -

from the direct data. The second step of this two step procedure
is very similar to the method described in Section 3.2. The
first step, although in general similar to the method given in
Section 3.2 contains some new considerations and will be
described in detail in this section.

As in the case where only core strength data are available
it is first necessary to assume a value for the variance of the
concrete strength, 602. As discussed in Section 3.2 this value
is normally based on the quality of the concrete and can be
reasonably selected using engineering judgement.

Before proceeding it is also necessary to combine all
previous information and/or beliefs about the strength of the
concrete being studied. This prior information must be presented
in the form of a pdf like [3.2];

In order to update any statistical distribution through
Bayes' theorem it is necessary to have the new data in a form
identical to the prior distribution. Therefore raw pulse
velocity data cannot be used directly to update a prior
compressive strength distribution. The pulse velocity data must
first be converted into equivalent compressive streng;% data.
This is normally done by developing a regression relationship
(see Ang and Tang 1975, for example) between the pulse velocity
through the concrete and the concrete compressive strength,
calibrated to thé homogeneous section being studied. 1In general,
‘'where the regression relationship is a power function, an

estimate of the mean strength of the concrete given a pulse

velocity measurement can be determined using



[3.15] E(x|v) = « v

where E(x|v) = expected value of x given v;
v = pulse velocity:
a,B = constants describing shape of regression

relationship.

Because regression relationships are based on random data
they normally provide only a "best fit" relationship between two
variables. The error in prediction is usually described by the
calibration error of the regression curve, which is computed to
be the conditional standard deviation or the conditional variance
of the dependent variable given the independent variable.
Although it is sometimes important to consider the variation in
the calibration error with variation in the independent variable,
for the purposes of this study a constant calibration error will

be assumed using the following eqguation (Ang and Tang 1975):

[3.16] (o )2 — g (x, - E(x.]v.)2
x|v m-2 ., i itV
where (oxlv)z = calibration error or conditional variance of
the regression relationship;
m = total number of test data used in developing
the regression relationship;
X3 = compressive strength of the ith core used in
calibrating the regression relationship;
E(x, |v,) = compressive strength of the ith core
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calculated by substituting the pulse
velocity through the ith core into the

regresssion relationship.

Figure 3.1 shows a regression relationship and the associated
calibration error.

In addition to the conditional variance of the regression
relationship resulting from the randomness of the calibration
data, the pulse velocities of the calibration specimens have
associated statistical properties. Assuming these pulse
velocities are normally distributed, as are the compressive
strengths, it is possible to describe the set of data by its
sample mean, v, and its sample variance (sv)z. These statistical
characteristics of the pulse velocity portion of ﬁhe calibration
data are shown in Figure 3.1.

One further statistical property required before developing
the likelihood function is the variance of the expected value of
concrete strength as given by [3.15]. It is assumed that the
mean value of the concrete strength is itself random and normally
distributed about the estimate E(x|v). The variance of this

parameter is given by Tang (1971) as,

2 - 2
2 _ (oxlv) Vi =V
[3.17] (oEi) = = {1+ (-g;—-) }
where (oEi)z = variance of the expected value of the mean

compressive strength at the pulse velocity vj;

A = pulse velocity measurement for the ith core.
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By applying the theorem of total probability (see [2.6] for

the discrete case) the pdf of the true concrete strength at the
location of the ith pulse velocity measurement, f(xi), is

calculated as,
[3.18] £f(x,) = [ f(xilE.)»- f(Ei) dE;

where £(x |E1)= pdf of the true concrete strength in the
location of the ith pulse velocity

measurement given a mean of Ej;

£(E.) = pdf of the mean of the true concrete strength
at the location of the ith pulse velocity

measurement with a mean given by {3.15].

Substituting the two applicable Gaussian distributions into the

right hand side of [3.18] gives,

e 1/2 X, - B, 2
f(x;) = | ([26(0, )2+ exp [- (—;7'—;-&) ] -
2
-1/2 i - X.|v
[2“(°Ei)2 « exp [- 35 (E °Z(i ll 1)) ]} aEi
i ) 212 o x,” ) Bx, |v;)% =
(3.19] fxy) = L4 XIV) ( E1 : i [2(6x|v)] Z(UEi)z ]'i i



2x,E; - Ej 2E. E(x;|v.) - E,

where I =exp [

2(0xlv

Tang (1971) indicates that the integral term in [3.19], when

evaluated, is

( X; . E(xilvi))2
[3.20] [ 1aEi = { n }1/2- exp {- 1 (cxl")z (og;)° )
2 1 s 1 _ 2 1 s 1 i
(o)) (og;) (og))”  (og;)
Substituting [3.20} into [3.19] gives,
. 1/2
) - (20)172  (2x « 2m(o),)? (05)?)
! {(oEi)z + (ox,v)z}
(og3)% (o))
cexp < L] xi2 . E(xllvi)2 ) [xi(cEi)2 + E(xilvi) (oxlv)]2 .
2 Y(og)? (og)? (oyp) Hogg)? [og)® + (o))
-1/2
[3.21] f(xi) = ézn).l 172 exp (- 3 Z4)
((ogy)? + (o))
where
— xi2 . E(xilvi)2 _ xiz(oEi)4+2xiE(xi|vi)(oEi)z(cxlv)2+E(xi|vi) (GXlV)4
4 (°x|V)2 (GEi)2 (lev)2 (GEi ? [(Gli:i)2 * (°x|v)2] . |
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[3.21] is a Gaussian relationship with a mean equal to the
expected value (as given by [3.15]) and with a variance equal to
the sum of the conditional variance of the regression
relationship and the variance of the expected value of the mean
(that is [3.16] plus [3.17]).

Finally it is possible to develop the likelihood function.
Because direct compressive strength data is not available [3.3]
cannot be used. Instead a likelihood function is required that
giveé the conditional probability density of obtaining the
expected compressive strength (as given by [3.15]) assuming that
the mean value of the mean concrete strength distribution is as
given by the prior. To properly consider the several statistical
errors related to the use of expected compressive strength data
based on indirect pulse velocity data, it is necessary to use the
theorem of total probability in developing the likelihood
function. For the concrete at the location of the ith pulse
velocity measurement the likelihood function is given as,

@

[3.22] £(E(x; v, e) = £((B(xglvy)e)1xg) £(x;) ax,

1
-

where f(E(xilvi)|u) = likelihood pdf of p given the expected

value of concrete strength at the
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location of the ith pulse velocity

measurement;

f((E(xilvi)|u)|xi) = likelihood pdf of p given the true
value of the concrete strength at
the location of the ith pulse

velocity measurement.

Substituting the two applicable Gaussian distributions into the

right hand side of [3.22] gives,

2
© —1/2 X. U 1/2
f(ex; [v,) 1) = [ (2L e exp [ () ] - ——2H
1’1 — (Go) 1/2 2 0’0 ((O_Ei)z + (GXIV)Z)l/z
2
o [ L (x; - E(x;1v;)) 1) ax,
2 (GEl)2 + (cxlv)2 ’
[3.23] £(E(x;|v;)w) = {4n 602 [(GEI)2 (Gle)z]}-l/z
. B(x; |v;)? -
e T e e, ) 4
o Ei x|v
2 2
where I = exp {2xiu —zxi + ZE(XiIZi)xi ~ M
20 Z(GEi) + z(cxlv)

Evaluating the integral term in [3.23] (see Tahg 1971) gives,

[3.24]
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2 2
" R
© _ (2n) / 1. % (cEi) + (lev)
[ Idx, = « exp {5 [ 1}
29 1 1 1/2 2\ 1
(O 2 + (d )2 + (U )2) o 2 (GE.)z + (G I )2
o Ei x|v °© 1 X[V
Substituting [3.24] into [3.23] and simplifying éives,
[3.25]
- 1/2
£(E(x; vy) ) = (zn; 775 * exp (- 3 24)
(5,2 + (o55)2 + (0,1 )?)
(E(x;lv;) - )2
where 2 = { 3 3 2}
o, + (GEi) + (lev)

[3.25] is a Gaussian relationship with a mean equal to the
expected value as given by [3.15] and with a variance equal to
the sum of the conditional variance of the regression
relationship, the variance of the expected value of the mean
concrete strength, and the assumed variance of the true concrete
strength.

For the general case where r different pulse velocity

measurements are available the likelihood pdf is given as,

[3.26] _é f(E(xi|v1)lu) = E (20)” 2 1/2
i=1 i=1 (002 + (cEi)Z + (UX!V)Z)
(E(x,: |v.) - u)?
.« exp (- L] 1 1}
p 2 s + (GEi)Z (Gle)2
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Combining [3.26] and [3.2] through Bayes' theorem ([2.14]1)

gives,
(2n)~ 1/2 Y S 2
| 26 ~ o cexp -5 (—) }
pr pr
[3.27] f(uIE(xi|vi)) = y 5
‘ ® -1/2 b= op
A —— e (-5 (B} @
pr pr
r - 1/2
where 2, =1 (2 )
6 =1 2,172
(o) + (o41)2 + (59)2)
r (B(x;1v;) - #)?
i''i
* exp {-E[E 2 2 2]}
i=1 (cEi) + (°x|v) L
Simplifying and expanding [3.27] gives,
exp (2,)
(3.281  £(u|E(x|v;) = — !
[ exp (2z,) du
2 2
o= r (E(x,|v,) - u)
where Z, = {- % [(——;——IEQ + I 5 L= 2]}
pr i=1 (UEi) (cxlv) T %
altering 24 gives,
2
I r B(x,;|vy)® - 2E(x;lvy)e +
2, ={- 5[ + I
7 2 o 2 i=1 (o )2 (o.1.) o 2
Ei x|v o
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2
[3.29] VA ={-l[u -2upru+§ _w? - 2 E(x; lv,)
' 7 2 2 =1 (0g)?% i=1 (og;)?
opr 1 Ei si
2
n r E(x,|v.)
-3 [ 2 —])
25 2 4= (o )2
pr Si
2 2 2 2
where (csi) = {(oEi) + (dxlv) + (co) }

Substituting [3.29] into [3.28] and simplifying gives,

exp (2Zg)

[3.291  £(ulE(x;lvy)) = <
[ exp (zg) du

2 2u__u r 2 r 2u E(x,]|v.)
where Zg = {- % [-& 5 - pg + = B 5 - I 12
Sor S oy i=1 (osl) i=1 (csi)
Altering Z4 gives
1 \' V2
(3.30)  zg=-Sul(w-9 -%]
U
r
where U = ( 1 7 + I 1 2)
o i=1 (o..)
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b r E(x|v.)
ve(B5+ z )
o i=1 (osi)

Substituting [3.30] into [3.29] and simplifying gives,

exp (2g4)

[3.311  £(plE(x;lv,)) =
[ exp (z4) aw

1 Y
where Z9 =-3 U [(u - 6) ]

Using [3.11] to evaluate the denominator of {3.31] gives,

1/2 2
[3.32] f(PlE(inVi) = (%_'n-) « exp { - % U (p - %) }

Comparing [3.32] with [3.1] it is clear that [3.32] is

Gaussian with a mean value given by,

- v
Ppo = T
[3.33] (x.|v.)
r r El x, [V r
upr/.2 - 2 * [oprz .z - ; / Z : 2
e i=1 (csl) i=1 (csi) i=1 [csi)
po r 1 2
l /2 > + cpr
i=1 (csi)

and a variance given by

21
(cpo) ]



e

r
o 2 / =z 1
pr . 2
2 i=1 (cs.)
[3.34] (6 )¢ = 1
po 2 r 1 -1
Gpr * (.Z 2)
i=1 (osi)

[3.33] and [3.34] are the posterior or updated mean and
variance of the mean compressive strength of the concrete based
on new data being indirect pulse velocity measurements.
Substitution of these values into [3.1] gives the posterior pdf
for the mean compressive strength of the concrete based on prior
information and pulse velocity data. This posterior pdf in turn
serves as a prior pdf for combination with direct core
compressive strength data. In order to combine direct core
strength data with this new pdf simply use [3.33] as upr‘and

[3.34] as (cpr)2 and proceed as outlined in Section 3.2.

3.4 Estimation of Mean Strength when Rebound Numbers, Ultrasonic

Pulse Velocity Measurements, and Concrete Core Strength Data are

Available
The procedure for combining two types of indirect data, like
rebound hammer numbers and pulse velocity measurements, with
direct test data, like core compressive strengths, in order to
update a prior pdf, is described by Tang (1971). Tang suggests
that in the first step of the three step procedure, one of the
two sets of indirect data should be combined, using Bayes'
theorem, with the original prior pdf. The simple closed form

relationships required to do this are developed in Section 3.3.
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The resulting posterior pdf must then be considered as a prior
pdf for the second step of the procedure. The unused set of
indirect data is combined with the new prior pdf developed in
step one. Once again the procedure and Bayesian relationships
developed in Section 3.3 must be used. The resulﬁing posterior
pdf from this second step is then used as a prior pdf for
combination with the direct data. This final step of the

procedure is executed using the relationships developed in

Section 3.2.
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CHAPTER 4

Parametric Study of Bayesian Approach

for Predicting Concrete Strength

4,1 Introduction

The closed form relationships developed in the previous
chapter‘provide a simple, convenient method for combining various
types of data to predict the in-situ compressive strength of
concrete. This analytical procedure is especially attractive
because it can accommodate both core strength data and NDT data,
in any quantity, along with other pertinent information. Even
though the procedure is very flexible it is necessary to select
data with some care in order to ensure reasonable strength
predictions result. With a proper understanding of the relative
significance of the various parameters upon which the Bayesian
relationships are based it is possible to determine realistic
data requirements at the outset of an investigation.

This chapter presents the results of a parametric study of
the Bayesian relationships. The study was performed using data

obtained in a real investigation.

4.2 Description of Study

This study investigates the parametric characteristics of
the Bayesian procedure for evaluating the in-situ compressive
strength of concrete in existing structures. The effects of
varying the prior information, the variance of the sampled

population, and the amount and type of new data are examined.
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Also, a comparison is made between a random and a quasi-random
data selection procedure.

Data used in the study was obtained during a recent
investigation of a reinforced concrete bridge (Mikhailovsky and
Scanlon 1985). The systematic data selection procedure adopted
was intended to simulate as closely as possible the procedure

commonly used in actual in-situ concrete strength investigations.

4.3 Description of Test Data

All test data used in this study are from an investigation
of a 35 year old reinforced concrete highway bridge investigated
by Mikhailovsky and Scanlon (1985). The minimum specified 28 day
compressive strength for the concrete was 20.7 MPa (3000 psi).
The three span bridge is composed of five parallel, continuous,
cast in place.T—girders. Test data were obtained only from
girder stems of the middle span of the bridge. A grid, dividing
each of the girders into 92 regions of approximately equal size,
was marked onto the girder stems for use in identifying the test
locations. Schematic details of the bridge and the grid system
are shown in Figure 4.1.

Three types of data reported by Mikhailovsky and Scanlon
(1985) were used in this study. These are pulse velocity
measurements, minimum rebound hammer numbers, and concrete core
compressive strengths. The minimum rebound hammer number refers
to the lowest reading obtained in a series of 9 readings in the
vicinity of a test location. Mikhailovsky and Scanlon (1985)

found that this value produced better correlation with core
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compressive strengths than did either mean or maximum rebound
hammer readings.

Of the 460 total possible grid locations only 451 locations
afforded field measurements that could be used to determine pulse
velocities. Six of the nine locations not usable for calculating
pulse velocities were also not usable for determining the minimum
rebound hammer number for the concrete in those cells. To
maintain consistency the rebound numbers corresponding to the
three other cells without pulse velocity measurements were not
used. Table Cl in Appendix C summarizes the pulse velocity and
minimum rebound hammer data.

Thirty-two concrete cores were removed from the central
girders at 21 randomly chosen locations. 1In eleven of the
locations two cores were removed, one from each half of the
girder stem. In this study, at these locations, the average
compressive strength of the two cores was used as the actual
strength for the concrete at that location. Since the amount of
core strength data considered in the various analyses was always
equal to a multiple of four, one of the 21 available core
strengths was not used.

Although NDTs were performed on the actual core specimens
this data was not used in this study. Whenever NDT data
corresponding to core specimens were needed, the NDT measurements
performed on the undisturbed concrete (prior to coring) were
used. Table C2 in Appendix C lists the core compressive strength
data and the NDT measurements observed at each core location.

For a detailed description of the sampling and test methods



that were used to obtain the data, see the report by Mikhailovsky

and Scanlon (1985).

4.4 Data Selection Procedure

Two data selection procedures were used in this study. Both
procedures were intended to follow as closely as possible the
selection process usually used in real concrete strength
investigations. The only difference betwen the two procedures
was the manner in which concrete core specimen data were
selected. NDT data were selected in a similar manner in both
procedures.

In a real investigation, after the section of concrete being
studied is sufficiently delineated, the field data usually
obtained first would be a series of nondestructive test (NDT)
measurements taken at random locations. Depending on economics
and other considerations one, two, or, on rare occasions, three
types of NDT measurements would be taken at each test location.
Three types of NDTs commonly used are pulse velocity
measurements, rebound hammer readings, and surface penetration
measurements (Malhotra 1984). In this study only the first of
these types alone, and the first two of these types together are
considered.

Next, at some of the NDT locations, concrete cores are
removed so that the compressive strength of the concrete in-situ
can be méasured. These compressive strength data is then
combined with the NDT data corresponding to the core locations in

order to develop a regression relationship between an NDT
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measurement and concrete compressive strength. This regression
relationship is used to predict the concrete compressive strength
at test locations, where only NDT data are available. In this
study, when two types of NDT measurements were considered at each
test location then two regression relationships were developed,
one for use with each type of NDT data. Furthermore, it was
assumed that the pulse velocity data and the rebound hammer data,
even at identical locations were statistically independent. Thus
when both types of NDT data were considered in analysis two
predictions of concrete strength were made and each prediction
was treated as separate and unique.

The first data selection procedure used simulated the
process just described and ensured that data were selected
coﬁpletely randomly. This was accomplished by first randomly
arranging the NDT data and the concrete core data listed in
Tables Cl and C2. This was done using a random selection
process. The resulting data bases are given in Tables C3 and C4
of Appendix C.

To simulate an investigation in which NDT measurements were
to be taken at n locations and core specimens were to be removed
at m of the n test locations, the first (n-m) data listed in the
random NDT data base (i.e. Table C3) and the first m data listed
in the random concrete core data base (i.e. Table C4) were
selected. In subsequent simulations where larger quantities were
required of either or both direct and indirect data these data

were taken from the unused portions of the data bases in the

order in which it is listed.



It is normally most economical, and certainly less
destructive, to obtain considerably more NDT data than core
compressive strength data. Therefore it is important that the
regression relationship, which is used to convert the NDT data
into concrete strength estimates, be based on data which cover
the complete range of NDT measurements. This is necessary
because regression relationships should be applied only over the
range of indirect data which were used in developing the
relationship (Ang and Tang 1975).

Unfortunately, in some investigations, as few as three or
four cores may be removed. With such a small amount of data, if
it is selected randomly, it is not likely that the range of the
resulting regression relationship will be adequate to process all
of the NDT data. 1In a real investigation this potential problem
can bé avoided if core locations are selected in a systematic way
rather than a random way (Mikhailovsky and Scanlon 1985). A
systematic method that would achieve the desired results would
begin after all NDT measurements were obtained. Before removing
any core specimens the NDT data would be arranged sequéntially,
from the smallest measurements to the largest, and then broken
down into a series of sub-groups equal in number to the number of
cores that are to be removed. The coring locations would then be
selected by choosing randomly one location from each sub-group.
The regression relationship developed using these quasi-random
data will very likely be épplicable over the entire range of NDT

data.

The second data selection process used in this study was
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identical to the first except that the selection of the core data
was intended to simulate the guasi-random process just

described. 1In order to simulate quasi-random data selection
another core data base was developed. 1In developing this new
data base it was first necessary to arrange the 20 core data sets
(as listed in Table C2) in sequential order. Since all analyses
performed in the study used core data quantities in multiples of
four this data was then broken down into four sub-groups. Four
sets of data were then selected, one from each sub-group, and
placed in a new data base in this new order. This procedure was
repeated four more times; all of the data were then in a quasi-
random order as listed in Table C5 of Appendix C. Thus the
second data selection procedure was undertaken exactly as was the
first, except that Tébles C3 and C5 were used instead of Tables
C3 and C4.

One statistical error that occurred when the data bases were
developed was noted at the conclusion of this study. The NDT
measurements at locations corresponding to core specimens were
used twice; these data were used in developing the regression
relationship and it was used again as NDT data to be processed by
the regression relationship. Since the majority of this NDT data
did not come into use until relatively large amounts of NDT data
were being analyzed, this error is considered to be of academic
interest only and likely did not affect the results of any

analyses from a practical standpoint.
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4.5 Effect of Prior Distribution on Posterior Distribution of

Mean Concrete Strength

From prior information an engineer can usually postulate a
reasonable Gaussian distribution for describing the mean of the
compressive strength of a concrete being studied. As discussed
previously the degree of certainty of such an estimate is usually
dependent upon the availability of preliminary test data and/or
construction documents pertaining to concrete placement records
and the original concrete specifications. Generally the less
preliminary information available, the larger will be the
variance and the smaller will be the mean for the prior
distribution. However, regardless of the prior information
available the selection of a prior distribution is always a

subjective exercise.

To evaluate the effect that various prior distributions had
on the prediction of the mean strength of the concrete being
studied a series of 5 groups of analyses were performed. Each of
these 5 groups had a different prior distribution and all of the
analyses combined only direct core strength data with the prior
information. Within each of the 5 groups 10 analyses were
performed; each of these 10 analyses considered a different
amount of core strength data. Random concrete core strength data
(as given in Table C4) were used in each analysis and the
quantity of data used varied in increments of 2 from 2 to 20
measurements.

The 5 prior distributions considered in this study were as

follows:



1. A diffuse prior, which consists of a mean strength equal to
any reasonable value and a variance of the mean strength equal
to infinity. As discussed in Section 3.2 this form of a prior
results in the Bayesian posterior distribution being identical
to the classical prediction. This prior would be used when

statistical predictions are to be based on new data only.

2. Prior mean strength equal to one half of the specified
Lcompressive strength and the prior variance of the mean
strength equal to the variance of the sampled population.
This prior might be used when the in-situ concrete compressive
strength is suspected to be much less than originally

- specified.

3. Prior mean strength equal to the specified strength and the
prior variance of the mean strength equal to the variance of
the sampled population. This prior might be used when the in-
situ concrete strength is considered to be as per specified

and the investigation is taking place soon after construction.

4. Prior mean strength equal to 1.17 times the specified strength
and the prior variance of the mean strength egual to the
variance of the sampled population. This prior might be used
when the concrete being investigated is 10 or more years old
and exhibits a quality which indicates that specifications

were met at construction time. The 1.17 factor is based on
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strength gain predictions over time as given by ACI Committee

209 (1982).

5. Prior mean strength equal to 2 times the specified strength
and the prior variance of the mean strength equal to the
variance of the sampled population. This prior might be used
when the in-situ concrete strength is suspected to be

considerably greater than originally specified.

In ali.of the cases given above, except number 1 in which a
diffuse prior was used, the values of the prior variance of the
mean and the variance of the sampled population were not given.
This information was not necessary because when these two
variances are equal the prediction of the mean strength is not
affected by the magnitudes of the variances. This is easily
verified by referring to [3.13], the relationship which is used
to estimate the mean strength. Although it is not possible for
the variance of the mean strength to be as large as the variance
of the sampled population, this assumption was used for two
reasons. First it represents a limiting condition for the prior
variance. Second it allows the study of the effect of varying

The effect of varying o relative to 0, Was not

just pr

pr’
considered.

Figure 4.2 shows the variation in the estimate of the mean
compressive strength (“po) with sample size for each of the 5
priors. The estimate of the mean strength when only 2 test

measurements are considered varies from 27.7 MPa for bpr
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0.5fgpec to 38.0 MPa for upy = 2.0fgpece The estimate of pp,
when 20 test measurements are considered varies from 35.1 MPa to
36.5 MPa for these two extreme cases.

These results indicate that when relatively small amounts of
test data are available the prior distribution greatly influences
the mean strength prediction. Conversely, when relatively large
amounts of test data are available the influence of the prior
distribution on the prediction of oo is small. The
interpretation of relatively large and relatively small amounts
of test data vary between different problems. Viola (1983) notes

that the prior distribution can affect p o significantly whenever

p
the prior variance is approximately equal to or less than the
sampled population variance divided by the total number of test
measurements. This observation is easily verified by referring
to [3.13]. 1In this study, as seen in Figure 4.2, a relatively
small number of test data appears to be any number less than
about ten.

For the purposes of this study the best prior distribution
for predicting ¥po appears to be either the diffuse prior or the
prior with “pr = 2'0fspec' This conclusion is based on the fact
that the value of bpo varied the least with data sample size for
these 2 cases. The remaining priors would be considered
conservative.,

To evaluate the effect that different prior distributions
had on the prediction of the variance of the mean compressive
strength (cpo) a series of 3 sets of analyses were performed.

The first set of analyses used a diffuse prior. The second set
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used Spr = Op = 0.20fspec = 4,1 MPa. The third set used cpr =

0.15fSpec = 3,1 MPa. 1In all three of these analyses only core

strength data were considered available. As seen from [3.14]

(the relationship required to calculate °po) the magnitudes 6f
the test data were not required; however, the quantity of data
was required and this was varied in each set of analyses from 2

to 20 in increments of 2.
Figure 4.3 shows the variation in the estimate of the
standard deviation of the mean strength with sample size for each

of the three priors. The estimate of ¢ when only 2 test

po
measurements are available is 2.1 MPa for cpr = 3,1 MPa and 2.9

MPa when a diffuse prior is used. When 20 test measurements are

available Opo converges on 0.90 MPa for all three priors.
The form of the prior distribution does not appear to affect

the value of “po when a relatively large amount of data are

available. This observation is consistent with the effect that

the prior has on p However, a relatively large amount of data

po’

for the prediction of o appears to be have a smaller effect

po
than it does for the prediction of ¥ po (see Figure 4.3). The

relative insignificance of ¢ as observed in this study,

pr’
practically will always be the case because Spr < o, is always
true. This observation is easily verified by referring to
[3.14].

Further analyses (not summarized here) were performed in
which a relatively large quantity of nondestructive test data and

a relatively small quantity of core strength data were used. Two

types of priors were considered in these analyses. The first
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consisted of a diffuse prior and the second was characterized by

bor = fgpec and opy = 9o = 0.2fgpec- Essentially identical
posterior distributions resulted in both analyses.

From the observations recorded in this study it is clear
that relatively large quantities of test data should generally be
obtained in order to predict in-situ concrete strength with a
high degree of confidence. However, if very reliable prior

information is available, small quantities of data can be used

also.

4.6 Effect of Sampled Population Variance on Posterior

Distribution of Mean Concrete Strength

As discussed in Section 3.2 the coefficient of variation of
concrete compressive strength within a homogeneous section
usually varies from approximately 10% to 20%. Tﬁese values are
commonly associated with concrete placed under excellent and poor
levels of quality control respectively. Therefore, by reviewing
available construction documents and/or by making a preliminary
investigation of the concrete being studied it is normally
possible to make a good estimate of o.

To evaluate the effect that the population variance has on
the prediction of the mean strength of the concrete, 9 groups of
analyses were performed. The first six of these groups
considered core strength data alone. Three of these six groups
had diffuse priors and three had priors characterized by bpr =
f = 20.7 MPa and o = 0.15 £ = 3,1 MPa. Three different

spec pr spec
standard deviations for the sampled population were considered
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with each of these two groups of three. These were 3.1 MPa, 4.1
MPa and 5.2 MPa. Within each of all 6 groups 10 analyses were
performed; each of these 10 analyses considered a different
amount of concrete core.strength data. The strength measurements
were taken from the random data base (Table C4) and varied from 2
items to 20 items in increments of 2.

The remaining three groups of analyses considered both core
strength data and pulse velocity measurements. All three of
these analyses used a diffuse prior and the first 400 pulse
velocity measurements taken from the data base given in Table
C3. Three different values of o, were considered, one for each
group. These were 3.1 MPa, 4.1 MPa and 5.2 MPa. Within each of
the 3 groups 5 analyses were performed, each analysis considering
a different amount of random core strength data taken from Table
C4. The quantity of core strength data varied from 4 to 20 items
in increments of 4.

Figure 4.4 shows the variation in the estimate of the mean
compressive strength with sample size for the 6 groups of
analyses which considered only core strength data. When a
diffuse prior is used the mean strength (upo) is independent of
0oi this is shown clearly in Figure 4.4 and can be discerned from
{3.13). However, for the three other analyses shown in the
figure it is clear that the value of o, does affect bpoe For
these cases, when only 2 test data are used, the value of bpo

= 5.2 MPa to 31.1 Mpa when o_ = 3.1

varies from 27.4 MPa when o o

(o]

Mpa. When 20 test measurements are used p o varies from 34.4 Mpa

p
to 35.6 MPa for the two extremes.
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Figure 4.5 shows the variation in the estimate of the mean
compressive strength with core strength sample size for the 3
groups of analyses which considered 400 pulse velocity
measurements. When 4 core specimens were used ¥bo varied from
36.4 MPa to 36.3 MPa for o, = 3.1 MPa and o = 5.2 MPa
respectively. When 20 core specimens were used ¥po varied from
34.6 MPa to 34.3 Mpa for the two extremes.

These results indicate that the influence of 6, On b po is
significant when only relatively small amounts of test data are
available. This fact holds true for direct data alone as shown
in Figure 4.4 and direct data combined with indirect data, as
shown in Figure 4.5. The varying effect that o, has on bpo is
However,

similar to that noted in Section 4.5 for o and p

pr pr’

o, appears to influence p_ over a larger range of sample size.

o p

To evaluate the effect that o, had on 9po several of
analyses were performed using identical sets of data as described
previously in this section. Figure 4.6 shows the variation in
the estimate of the standard deviation of the mean strength with
core specimen sample size when only direct data were

considered. When a diffuse prior is used with 2 strength

[}
($%)
.
=

measurements the estimate of op, ranges from 2.2 MPa for o,
MPa to 3.7 MPa for o, = 5.2 MPa. When 20 test measurements are
considered %po ranges from 0.7 MPa to 1.2 MPa for the two

extremes. When o

pr 3.1 Mpa and 2 test data are used Opo ranges

from 1.8 MPa for % 3.1 MPa to 2.4 MPa for o, = 5.2 MPa. When

)

20 test specimens are considered, in this later case, the

estimates for Spo range from about 0.70 MPa to 1.10 MPa for the
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two extremes.

Figure 4.7 shows the variation in the estimate of cpo with

core specimen sample size when both direct and 400 indirect data

were used with a diffuse prior. Wwhen 4 strength measurements

-

estimates ranged from 0.16 MPa for o_ = 3.1

were considered o o

po

MPa to 0.26 MPa for o, = 5.2 Mpa. When 20 strength measurements

o)
were considered %po estimates ranged from 0.29 MPa to 0.36 MPa
for the two extremes.

These results indicate that the effect of Og ON Opg is
significant only when relatively small quantities of data are

available. This is true regardless of the distribution of direct

and indirect data.

4.7 Effect of Type of Data on Posterior Distribution of Mean

Concrete Strength

At the outset of a concrete strength investigation a
decision must normally be made regarding the amount and type of
tests that should be undertaken. Intuitively it seems that in-
situ strength predictions will improve most quickly as the
quantity of core strength data increases. This is of course a
fact and as discussed in Section 3.3 is because nondestructive or
indirect measurements have more error associated with them. To
nullify the greater error more indirect data is required than the
direct data it replaces to ensure equivalent levels of confidence
in strength predictions. Unfortunately economic considerations
coupled with the need to limit destructive testing of a structure

usually results in the need for extensive nondestructive testing.
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To evaluate the effect that various types of data have on
the prediction of the mean strength 4 groups of analyses were
performed. In all of the analyses it was assumed that Mpr = 20.7
MPa, °pr = 5.2 MPa and 0o = 5.2 MPa. 7Two of the four groups of
analyses combined core strength data with just pulse veloéity
measurements. The other two groups combined core strength data
with pulse velocity measurements and minimum rebound numbers.
Within each of the two groups of two analyses one set of analyses

considered 4 direct core measurements and the other set of

analyses considered 20 direct core measurements. The core data

‘were taken from the quasi-random data base given in Table C5. 1In

all four groups of analyses each type of nondestructive test data
used varied in quantity from 10 to 400 elements in 8
increments. These data were taken from Table C3.

Figure 4.8 shows the variation in the estimate of the mean
compressive strength with nondestructive test sample size for the
4 groups analyzed. When only 10 pulse velocity measurements were
combined with core strengths the value of ¥ po varied from 33.2
MPa for 4 core strengths to 35.4 Mpa for 20 core strengths. When
400 pulse velocity measurements were considered the value of b bo
varied from 33.9 MPa to 34.4 Mpa for the two extremes. When 10
pulse velocity measurements and 10 minimum rebound numbers were
combined with core strengths the value of bbo varied from 34.1
MPa for 4 core strengths to 35.6 MPa for 20 core strengths. When
400 pairs of NDT data were used bpo varied from 34.7 MPa to 35.1
Mpa for the two extremes.

These results indicate that within all four hypothetical
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testing programs considered the prediction of b po does not vary
significantly, especially after about 50 NDT measurements were
considered. 1If constancy is the basis for determining the best
method then the superior set of analyses was that which
considered two types of NDT data combined with 20 core

strengths. The value of ¥po is almost constant for this case for
all gquantitites of NDT data considered as shown in Figure 4.8.
Even withput the benefit of the results shown in Figure 4.8 this
method would have intuitively been selected as being best because
it is based upon both types of available NDT data and a
relatively large quantity of direct strength data (i.e. 20 cores
instead of 4).

Although the value of Mpo is almost constant within each of
the four groups of analyses it varies between each of the groups
over the entire range of NDT data. This is caused by the
permanent bias that is introduced into the regression
relationships used in each group of analyses due to the varying
amount and types of data used in each regression analysis. For
this reason it is difficult to know if ¥ po is predicted more
accurately when 20 core measurements are used just with pulse
velocity data or when 4 core measurements are used with both
pulse velocity measurements and minimum rebound numbers.
However, intuitively one would expect the prediction based on 20
core strengths to be most accurafe.

To evaluate the effect that various types of data have on

the prediction of o o 4 groups of analyses were performed

p
applying the data used for investigating the effect on bpo e
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Figure 4.9 shows the variation in the estimate of Spo with
nondestructive test sample size for each of the fouf groups of
analyses. When only 10 pulse velocity measurements were combined
with core strengths the value of “po varied from 1.7 MPa for 4
core strengths to 1.0 MPa for 20 core strengths. When 400 pulse
velocity measurements were considered the value of %bo varied
from 0.41 MPa to 0.36 MPa. When 10 pulse velocity measurements
and 10 minimum rebound numbers were combined with core strengths
the value of °po varied from 1.5 MPa for 4 core strengths to 0.96
MPa for 20 core strengths. When 400 pairs of NDT data were used
bpo varied from .30 MPa to 0.27 MPa for the two extremes.

As shown in Figure 4.9 above a certain threshold quantity of
NDT data (in this study this quantity is about 200 measurements)
theré is no significant change in the.value of Spo* This implies
that the confidence level for predicting b bo does not improve
significantly after 200 NDT measurements are taken. As
intuitively expected the value of %bo is smaller when both types
of NDT data were used from each test location compared to when
just pulse velocities were used, all other things being equal.
When NDT data were taken from fewer than about 60 locations the
value of o was smaller for the case where pulse velocities were

po
combined with 20 core strengths than when both types of NDT data

were combined with 4 core strengths.
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4.8 Effect of Data_Selection Procedure on Posterior Distribution

of Mean Concrete Strength

As discussed in Section 4.4 when small quantities of
randomly selected data are used to develop a regression
relationship there is a high probability that the relationship
will not be strictly valid over the range of NDT measurements for
which it is required. Conseqguently small groups of randomly
selected cores should not be relied upon. A quasi-random data
selection procedure was proposed that appears to compensate for
this potential problem. Although pure statistical data selection
procedures are violated when the quasi-random method is used, its
application may be justified when economic or other factors allow
the removal of only a relatively small number of cores.

To evaluate the effect of the two data selection procedures
on the prediction of ¥po 4 groups of analyses were performed. In
all cases the sampled population standard deviation was
considered to be 5.2 MPa and the prior distribution was described
by “pr = 20.7 MPa and °pr = 5,2 MPa. Two of the four groups of
analyses combined core strength data selected randomly (i.e. from
Table C4) with pulse velocity measurements. The remaining two
groups combined core strength data selected from the quasi-random
data base (i.e. Table C5) with pulse velocity measurements. Four
and twenty core strength measurements were considered for each of
the two data selection procedures. In all four groups of the
analyses the quantity of NDT data considered varied from 10 to

400 measurements in 8 increments. The NDT data were selected

from Table C3.
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Figure 4.10 shows the variation in the estimate of b po with
pulse velocity sample size for the four groups of analyses. When
only 10 pulse velocity measurements were combined with 4 core
strengths the value of “po varied from 35.9 MPa for the random
selection procedure to 33.2 MPa for the quasi-random selection
procedure. When 400 pulse velocity measurements were considered
the value of upobvaried from 36.3 MPa to 33.9 MPa for the two
extremes. When 10 pulse velocity measurements were combined with
20 core strengths the value of “po was approximately 35.5 MPa for
both data selection procedures. When 400 pulse velocities were
considered the value of Pbo was approximately 34.4 MPa for both
procedures.

As seen in Figure 4.10 the value of ¥ po is almost identical
for both core data selection procedures when 20 core strengths
were used. This is because only 1 of the 20 items of core data
varies between the two procedures. However, as seen in the same
figure, when only 4 core strengths were considered the prediction

of p o is noticeably different for the two selection

p
procedures. In this latter case only 1 of the regression
analysis data is the same for both procedures.

The reason that the random procedure predicts “po to be
larger than does the quasi-random procedure, when n = 4, is
easily determined from Figure 4.11. This figure shows that the
random regression relationship predicts concrete strength to be
greater than does the quasi-random regression relationship. 1In

addition the standard error of the random regression relationship

is much smaller than it is for the quasi-random case. Both of
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these factors contribute to the disparity that exists in the
predicted value of bpo e Regression relationships developed from
8, 12, 16, and 20 cores using the two data selection procedures
are shown in Figures 4.12, 4.13, 4.14, and 4.15 respectively.

As seen in Figures 4.11 through 4.15 the quasi-random core
selection procedure generally resulted in a regression
relationship which was more widely applicable than in the random
case. Comparison of the prediction of ¥ po based on the two
different 4 core regression relationships indicates that the
quasi-random case results in more conservative estimates over the
full range of NDT sample size. However one would not expect the
same result for all random core selections. When more than 50
NDT measurements were considered the qguasi-random approach
predicted ¥ po more closely to the 20 core case than did £he
random approach,

The same data used to investigate “po were used to evaluate
the effect of data selection procedure on the value of Spo*

Figure 4.16 shows the variation in the estimate of o with pulse

po
velocity sample size for each of the 4 groups of analyses. When
only 10 pulse velocity measurements were combined with 4 core
strengths the value of Upo varied from 1.36 MPa for randomly
selected cores to 1.74 MPa for the quasi-random selection
procedure. When 400 pulse velocities were considered the value
of %o varied from 0.26 MPa to 0.41 MPa for the two extremes.
When 10 pulse velocities were combined with 20 core strengths the
value of Opo Was approximately equal to 1.00 MPa for both data
selection procedures. When 400 pulse velocities were combined
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with 20 core strengths Opo Was approximately equal to 0.36 MPa
for both data selection procedures.

The major reason why the values of o as predicted using

po
the random procedure were less than the quasi—randém procedure
was because the standard error of the regression relationship was
significantly smaller for the former case. This is easily seen
in Figure 4.11.

The results of the analysis shown in Figure 4.16 imply that
the greatest confidence in the prediction of Gpo was associated
with the case where pulse velocities were combined with 4
randomly selected core strengths., Intuitively the predictions
associated with 20 core strengths would normally be considered
better, however. This paradox did not occur when data were
selected using the quasi-random procedure. For this reason the

quasi-random data selection procedure appears to be superior when

only small quantities of regression analysis data are used.
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CHAPTER 5

Optimizing the Testing Program

5.1 Introduction

There are several approaches that can be adopted for
optimizing a testing program. The best strategy to follow
usually depends on the nature of the project and the purpose of
the testing program. This chapter outlines optimization
techniques for two different cases. The first method presented
can be used when a predetermined fixed sum of money is provided
for the testing program of a project. The second method given
can be used when it is not clear at the outset of a project what

amount of money should be invested in testing.

5.2 Approach I - Minimization of Posterior Variance

In some concrete strength investigations only a relatively
small and limited amount of money is available for the testing
programs from which the in-situ compressive strength prediction
is made. 1In such situations Tang (1971) suggests thatsthe best
strength prediction will result if the testing program is planned
to ensure that the posterior variance of the mean strength is
minimized. Minimization of this variance is achieved by
optimizing the number of core specimens and NDT measurements
obtained during testing.

-Due to the errors associated with transforming NDT
measurements into equivalent concrete strengths a greater

quantity of NDT data is required than core strength measurements



in order to achieve equivalent posterior variances. Normally,
however, the unit cost of NDT measurements is lower than the unit
cost of core strength data. This latter factor normally offsets
the effect of the former concern and makes the use of at least
some NDT data a viable option in most cases. The concept of cost
differences for the two types of test data is shown in Figure 5.1

where the following cost functions are plotted:

[5.1] C.=A_. + exp (n BC)

[5.2] C. =A_ + exp (m BN)

where C, = total cost for core specimen data;
Ac = start up cost for coring;
B~ = coefficient relating sample size to coring costs;
n = core specimen sample size;
Cy = total cost for NDT data;
AN = start up cost for NDTs;
B,. = coefficient relating sample size to NDT costs;

m = NDT sample size.

Since NDT data cannot be used effectively without a proper
calibration relationship it is therefore always necessary to
remove some cores during an investigation. Using the method
outlined by Tang (1971) it is possible to determine if core
strength data alone or in combination with NDT data will result

in the smallest posterior variance for the mean strength. The
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Cost

Concrete Coring Costs
Cc =Ac +exp(n Bg)

NDT Costs
Cy = Ay texp(m By)

0] -
1 Sample Size
n,m

Fig. 5.1 Generalized Cost Functions for Two Concrete Test
Methods
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optimum number of each type of test data is determined by
considering both the costs associated with each type of test and
the effect that each type of test has on the posterior variance.
When only core strength data are used to predict the in-situ
concrete strength then’the relationship between posterior
variance and the cost of testing (assuming a diffuse prior) is
obtained by rearranging [5.1] and combining it with [3.14]. This

relationship is given as

2
Bo (o)
2 C o
[5.3] (o )¢ = —
po ln (CT AC)
where Cr = the total cost of all testing.

When one type of NDT data is used along with core strength

data the posterior variance can be calculated approximately using

(65)% (05)% + (0,1,)°

[5.4] (o )2 - n { m - n }
P (o)%  (0)% + (o)’
e e

Whenever NDT data are used in conjunction with core strength data
the total number of NDT data, m, must be larger than the total
number of core strength measurements, n. This is because n of
the m NDT data are used in developing a calibration curve which
is necessary for processing NDT measurements at locations where
no core strength data are available. It is clear from [5.4] that
if m is not greater than n, (cpo)2 assumes an unacceptable value.

Equation [5.4] is derived from [3.34] and is based on the
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assumptions that the prior distribution is diffuse and that

(oE )2 is negligible compared to (00)2 and (o The first
i
assumption ensures that only the effect of test data on the

x|v) :

posterior variance is considered. The second assumption
simplifies [5.3] and is generally valid unless a relatively small
quantity of data is used to establish the calibration

relationship (see [3.17]).

The total number of NDT measurements that can be taken if a
series of n core specimens are to be removed as well is

determined using the following relationship which is developed by

combining [5.1] and [5.2]:

1

[505] m = BN

Substituting [5.5] into [5.4] and simplifying gives the

relationship between the posterior variance, test costs, and core

sample size as,

(6g)% (o )% + (0,1,)°) By

2
ln{CT - A, - Ag - exp (nBC)} + nBN(oxlv)

[5.6] (o )2

cpo )2

Whenever [5.6] provides a value for (opo)2 which is less
than that given by [5.3], that is,

CRE

(6% 1(,)? + (0,),)%) By .
2 CTn(C; - AJ)

(0,)% Infcy - A - Ay - exp (nBQ)} + nBy(oy o

[5.7]

then both core specimens and NDTs should be taken. There is one

exception to this rule. If m < n as given by [5.5], then there
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is no advantage to taking any NDT measurements. The reason for
this was discussed previously, and whenever this situation occurs

all testing moneys should be used for coring. Simplifying [5.7]
gives

B, {(c,)? + (°x|v)2} In (cy - A.)

1n {cT - A, - By - exp (nBC)} + nB.By (°x|v

<1

[5.8] >
Bc(co)

2

)
Equation [5.8] is a simple relationship that can be used to

plan the testing program for an in-situ concrete strength

investigation. However, in order to use it the following

information must be available at the outset of the investigation:

an estimate of the
(i) cost function for concrete coring,
(ii) cost function for NDTs,
ziii) sampled population variance, (oo)z, and

(iv) calibration relationship variance, (“xlv)z'

The relative success of using [5.8] to plan the testing program
hinges directly on the accuracy of these four items. Therefore,
engineers with previous experience in concrete strength
investigations would benefit most in using [5.8].

Although [5.8] does indicate for a given value of n whether
or not nondestructive testing should proceed, it does not
indicate what value of n is optimum. As indicated in Section 4.8
the number of pairs of test data used in developing a calibration

curve can affect the outcome of results measurably. Therefore n



should be selected carefully following the guidelines set out in

Chapter 4.

5.3 Approach II - Minimization of Potential Losses

During the lifetime of a reinforced concrete structure it is

possible that the design loading will change. If the loading is
increased then the structure will normally need to be upgraded
unless it can be shown that the capacity of the existing
structure is sufficient to resist the new loading. Often
structural capacity is greater than originally designed due to
the in-situ concrete strength being significantly greater than
originally specified. As a consequence of this it is generally
advantageous to perform in-situ strength tests prior to any
renovations that are being considered. If the strength is
determined to be greater than originally specified then the need
for structural improvements may be minimized or negated all

together.

Investigating the in-situ strength of concrete has with it
associated costs. In order to determine whether or not the
strength prediction will be of any value, these costs must be
estimated and compared in some way with anticipated renovation
costs. Since strength prediction costs increase as the accuracy
of the prediction increases it is necessary to determine an
acceptable level of accuracy as well. By applying a systematic

procedure sometimes known as preposterior decision making (as

outlined by Winkler 1972 and by Jones 1977) it is possible to

predetermine the optimum testing program to use before
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renovations proceed. Based on the results of the testing program
it is possible to determine if renovations are required or not.
This procedure is described subsequently.

At the outset of a potential renovation project a primary
decision that must be made is whether or not to proceed with
renovations. (In most projects of this type there are often more
than two possible choices from which to make the decision,
however. This more general case, which is discussed by Winkler
(1972), is not considered here in order to simplify the
presentation.) There is a cost associated with each of these two
possible decisions. If the decision to renovate was made, based
on the assumption that the in-situ concrete strength was as
originally specified, then the cost would be fixed regardless of
what the actual strength was. If the decision was to not
renovate there would be a varying cost depending upon what the
actual in-situ strength was. This cost would be zero if the
actual mean strength was equal to or greater than the new
required mean strength and the cost would increase in some manner
as the value of the in-situ strength decreased. Presumably this
cost function would be based on several factors related to the
cost to society of having an understrength structure. For the
purposes of this study the cost function for not renovating will
be considered linear. (Winkler (1972) discusses the case where
cost functions are non-linear.) The cost functions for the two
primary decisions are shown in Figure 5.2 and are given as

follows:



Fig.

5.2
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'/— Renovation

fp freqd : f;':

Hypothetical Cost Functions for Structural Renovation

Decision Problem
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and
' freqd - £
[5.10] Cur = Pnr (F }

regqd fspec

where CR = cost to renovate;
AR = fixed cost of renovating;
CNR = cost to not renovate;

ANR = cost of not renovating if in-situ concrete

strength equals fspec’

= minimum required mean concrete strength for new

loading conditions.

As indicated in Figure 5.2 there is a value of mean in-situ
strength for which the cost of either decision is identical.
This value of fé is known as the break-even strength, fb' and is

determined by equating [5.9] to [5.10]. The break even strength

is given as
R
' = = - — -
(5.111 £ = £ = £__ .~ 35— (£ 5" foo0)

Except when fé = f,, one of the two decisions is better to

make than the other. As seen in Figure 5.2 when f} < f, the
least expensive decision is to renovate. When f£ > f, the least
expensive decision is to not renovate. The difference in cost

betwen the two decisions is known as the opportunity loss. The
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opportunity loss represents the financial penalty associated with
making the wrong decision. Opportunity loss functions can be
developed for the two possible decisions. The loss functions for

this problem are shown in Figure 5.3 and are given as follows:

= : '
L 0 if fc < fb

[(5.12] {freqd - fé \
L, = A, - A if £' > £
R R NR freqd - fspec c

b

where Lp = opporunity loss when the decision is to renovate;

and

L =2 reqd c } - a

NR NR {f - £ R

if fé < £
reqd spec

b
{5.13]

[
o

L

2 ]
NR if fc > £

b

where Lyp = opportunity loss when the decision is to not

renovate.

If for a potential renovation project it was known for
certain that the mean in-situ concrete strength was fp (see
Figure 5.3) then the opportunity loss or the cost of making the
wrong decision would be Cp; in this example the wrong decision
would be to not renovate. Unfortunately petfect information that
leads to exact in-situ strengfh predictions cannot be
realistically obtained. However, if the exact value of fé could
be obtained for a price it would only be beneficial to purchase

the information if the cost did not exceed Cp. In other words it
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Cost*
$
Decision: No Renovation
/
Cof //
/
7/
7/
A_Decision :
/7  Renovation
/
or-r———— -
+ + =
fapec b fy froqd Spec

Fig. 5.3 Opportunity Loss Functions for Structural Renovation

Problem
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would only be worth purchasing the information describing the
exact value of fé if the cost of this information plus the cost
of renovating together did not exceed the cost of not

renovating. This maximum acceptable cost, C is known as the

p’
value of perfect information (VPI).

In order to determine the maximum amount of money that
should be spent on investigating fé it is necessary to first have
an estimate of the in-situ strength. Without this information it
is impossible to proceed. Using the method described in Section
3.2 it is possible to establish a prior distribution for the mean
in-situ strength. This estimate, which is defined by both a
mean, Hprv and a standard deviation, Spr is then compared with
the two loss functions. Based on this comparison there is
usually a good indication as to which of the two possible
decisions is best. For the example shown in Figure 5.4 the
decision to renovate has the smaller probability of opportunity
loss and is therefore likely the best decision. However, as seen
in the figure, there remains a probability that losses will occur
even if the decision to renovate is taken. The probable losses
associated with the decision to renovate give an upper limit to
the amount of money that should be spent on information to
improve the expected value of fé.

The expected opportunity loss associated with the decision
to renovate is calculated by multiplying the opportunity loss
function for that decision by the prior probability distribution
for £,. Since both the loss function and the prior distribution

are continuous, integration must be used in this calculation as
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Decision: No Renovation

Prior: puoe , opy

£(f5)
A.

5.4

Normal Prior Distribution Superimposed on Opportunity

Loss Functions
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follows:
= . L} |}
[5.14] EL, _e{ Lp f(fc) af !
where ELp = expected opportunity loss if the decision is made
to renovate;
£(£') = normal probability density function for the prior

distribution of the mean in-situ concrete

strength.

Substituting [5.12] into [5.14] gives

£
b © £ - £
e
[5.15) ELp =) o £(£)) dgy + [ {Ap - Ag(E B2E-_—S)} £(£)) ag!
- fb reqd spec ,
From [5.11]
freqd ~ “spec
[5.161 A = A, (3 — )
reqd b
Substituting [5.16] into [5.15] gives
AR ©
[5.17] ELp = T — J (f(': - fb) f(fc':) af’,

reqd fb) fb

The expected opportunity loss given by [5.17] is also equal

to the maximum amount of money that should be spent on improving

the prediction of the mean in-situ concrete strength. This value

is similar to the VPI and is known as the expected value of

perfect information (EVPI).
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A similar relationship to [5.17] can be developed for
predicting expected opportunity loss when the best decision is to

not renovate. This relationship is given as

°x ffb ( ) £(
[5.18] EL, . = £ - £') £(£') af
NR (freqd - £) b c c c

where ELyp = expected opportunity loss if the decision is made

to not renovate.

Equation [5.18] also gives the EVPI when the decision not to
renovate appears best.

Evaluation of [5.17] or [5.18] is simplified when these
equations are put into a form which contains the unit normal loss
integral (LN(D)). Either equation can be expressed by the

following relationship:

A
R
[5.19] EL, = EL = EVPI = (] L.(D)
. R NR (freqd £,) pr N
= ' . ] ]
where L (D) Df (f D) fN(fc) df !
£ -
D = b pr
or

£(£2) = (20)7 /2 exp {- 5 (£2)7)

Reference to a table of values for LN(D) (see for instance Jones
1977 or Winkler 1972) makes it possible to evaluate [5.19] with

ease.



Winkler (1972) has highlighted the following important

characteristics about [5.19]:

1)

2)

3)

The first term in the relationship, ‘ Ap / (freqd - fb) ‘,
represents the slope of the non-zero portion of both loss
functions. As the magnitude of this value increases so too

does the expected loss for an incorrect decision.

Increases in Spr cause increases in the expected loss in two
ways. First there is a direct effect as seen in [5.19].
Second, as Sor increases D decreases and Ly(D) increases. The

effect of increasing o as noted above is intuitively

pr
obvious, because °pr is a measure of error in the estimate of
£ and as this error increases the probability of an incorrect
decision and associated increased potential losses must

increase as well.

As the difference between the breakeven strength, fb' and the

prior estimate of the concrete strength, u increases then

pr’
the value of D increases and Ly(D) decreases resulting in a
decrease in the expected losses. This observation indicates
that the probability of loss decreases as the mean in-situ

strength is located further into the non-zero range of one or

the other loss functions.

Once the upper limit to the value of information is

determined using [5.19] it is possible to develop a strategy for
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determining the optimal in-situ testing program. Normally a
testing program would collect both NDT and concrete core data.
This data would then be combined with the prior distribution
following the procedure outlined in Chapter 3. To simplify the
presentation that follows only core strength data will be
considered.

With minor changes to [5.19] it is possible to predict the
expected value of sample information (EVSI) before tests are
taken. If a sample size of n cores is to be taken and it is
assumed that the prior mean strength remains unchanged then the

EVSI is given as

A
[5.20] EVSI = | R — O u LN(D*)
reqd b
fb = Por
where Dy = ———?;—Jl-
*
2 _ 2 _ 2
Op” = °pr Gpo

Substitution of [3.14] into the expression for o« gives

n o 4
2 pr.
Oy =
62+no 2
o) pr

The value used for the variance in [5.20], o2, represents
the reduction in the variance of the assumed mean in-situ
strength due to sampling. Although the mean strength will likely
change due to sampling it is not possible to predict this change

until sampling has actually occurred. Thus Wpr is used in
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[5.20]. After the testing is performed the new estimate of £,
must be calculated and compared with bor e Further consideration
of this detail will be discussed subseqguently.

As the size of the sample increases the value of the
information gets larger because the error in the estimation of
the mean in-situ strength becomes smaller. With a sufficiently
large number of samples the EVSI is approximately equal to the
EVPI. However, due to the cost of acquiriﬁg the sample
information there is a desirable upper limit to the amount of
money to be spent on testing. As discussed previously testing
costs should not exceed the EVPI. The maximum sample size can be
determined by equating [5.19] and the cost function for testing
([5.11) and solving for npay-

The optimum sample size is determined by maximizing the
difference between the EVSI and the cost of testing. By
calculating the EVSI and the cost of testing for a range of
sample sizes between 1 and np_.. it is possible to determine the
sample size Nopt which results in the largest net value. Figure
5.5 shows the relationship between sample size and the value of
test informaiton for a hypothetical situation.

After taking a sample of size n it is possible to

opt

calculate kpo using [3.13]. If the new value of f. as given by

is separated from p by fb then the original best decision

Y po pr

has changed. When this occurs the testing program should be
continued so that in-situ strength confirmation can be made. The
posterior distribution resulting from the first test sequence

(i.e. b po and o O) are used as the prior distribution for the

p



- 101 -

Cost A

EVPI]

!
|
|
Sample Cost

!
|
|
!
|
|
|
1
|
|
u
|
|
!

—>
' Nopt Nmax Sample Size,n

Fig. 5.5 Hypothetical Comparison of the Expected Value of Sample
Information and the Cost of Testing
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next iteration. Even when the bgst decision does not change due
to testing it is sometimes desirable to continue testing,
especially if the EVPI remains significant after initial tests.
Ideally, preposterior analysis should be carried out until the
optimal sample size Nopt is zero and further testing is of no

value.
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CHAPTER 6

Summary and Conclusions

6.1 Summary

The major goal of this research project was to present and
evaluate the Bayesian statistical method for analyzing test data
to predict the strength of concrete in existing structures.

An introduction to Bayesian theory was first presented.
Bayes' theorem was derived for both discrete and continuous
random systems. Application of the theorem to problems of
updating statistical distributions was described in general terms
for both the discrete and continuous cases. An example problem
for each of the two cases was also given complete with solution.

Simple closed férm equations were derived to evaluate in-
situ test data and other pertinent information for predicting the
concrete strength. Direct (core strength) data or both direct
data and indirect (non-destructive test (NDT)) data can be
evaluated. The errors associated with transforming NDT data into
equivalent compressive strengths were accounted for in the
equations. These equations were developed using Bayes' theorem
for continuous random variables. Concrete strength was
considered to be normally distributed, as is usually the case,
and therefore the equations could be used for other Gaussian type
problems. Another basic assumption used when developing the
equations was that the variance of the concrete population being
sampled was known. Consequently, the equations can only be used

to predict the mean strength of the concrete being studied. It
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was shown that the variance can be reasonably estimated by other
means.

A parametric study was performed to evaluate how four major
variables influence the in-situ strength prediction as given by
the equations. The four variables were the type of prior
information, the variance of the sampled population, the amount
and type of new data, and the data selection procedure. Field
data from an in depth investigation of a concrete bridge was used
in the study. The data included pulse velocity measurements,
rebound hammer readings, and concrete core strengths.

Two procedures for optimizing field testing programs were
also presented in this report. The first method was based
entirely on the Bayesian equations and can be used for projects
in which the testing costs are fixed. The second method was
based in part on Bayesian statistics and in part on decision
theory. This method can be used to determine what the costs of a

testing program should be.

6.2 Conclusions

The Bayesian relationships derived herein form the basis for
a simple approach for evaluating in-situ test data for the
purpose of predicting the mean concrete strength. Although the
procedure allows for the systematic combination of prior
information with any amount of new direct data or direct and
indirect data it appears that some amount of engineering
judgement should be applied when planning testing programs and

when interpreting test results. The following observations,
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based upon the parameter study reported in Chapter 4, are helpful

in this regard:

1.

When only a relatively small amount of test data is available
non-diffuse prior information significantly influences the
mean strength prediction (ppo) and the standard error (cpo) in
this prediction. For large samples of data the effect of the
prior on bpo and 9po disappears. These characteristics are
true regardless of the type(s) of test data being used.
Therefore, relatively small testing programs should be relied
upon only when there is no doubt that the prior information
accurately describes the strength characteristics of the

concrete being studied.

The influence of the sampled population variance (002) on the

prediction of p is significant only when a relatively small

po
quantity of new test data is available. This observation is

true for %bo as well. This characteristic is similar to that
observed for the prior except that the influence of Sy extends

over a larger range of sample size. When no prior information
is available (i.e. a diffuse prior is specified) then o, only

affects the error in the prediction of the mean (i.e. cpo),

not the magnitude of the mean (upo). Although the relative

magnitude of o_ is an insignificant factor when large

o
quantitites of data are available, it should be selected

carefully when only relatively small quantities of new data

are available. As the value of 5o increases the estimation of
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¥ po decreases and Spo increases. These observations are true
for direct data alone and for direct data combined with

indirect data.

When a set of core strength data (4 or more measurements) is
combined with NDT measurements the predicted value of the mean
strength does not vary significantly as the number of NDT
measurements varies from 10 to 400. However, there are
significant reductions in Opo as the NDT sample size varies
from 10 to 100. There is no advantage to taking more than
about 100 NDT measurements for one homogeneous element. Also,
there appears to be no real advantage to taking more than one

type of NDT measurement.

When relatively small amounts of core strength data are being
used to form a regression relationship for processing NDT data
it is best to select the core locations systematically, not
randomly. Systematic core location selection. can ensure that
the resulting regression relationship is applicable over the
full range of NDT measurements. Based on this research,

systematic selection also seems to prevent over-conservative

predictions of bpo*

6.3 Areas of Further Study

1. Bayesian statistics can be used to develop procedures for

predicting two parameters instead of just one (as was done

herein). Application of Bayesian theory in this way would allow
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both ¥ po and o, to be predicted. The implications of assuming

o]

o} as was done in this study, could also be determined.

o’

2. Introductory theory and simple procedures for optimizing
the testing program of a concrete strength investigation have
been presented; however, no evaluation has been performed.
Verification and if necessary improvement of the procedures given
would be beneficial.

3. In-situ testing of laboratory prepared structural
elements in conjunction with destructive tests of the elements
would provide excellent data with which the Bayesian
relationships presented herein could be further evaluated.

4, Based on the research reported here and on further

related studies it may be possible to develop general guidelines

for in-situ concrete strength investigations.
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APPENDIX A

Example of Bayesian Inference for a Discrete Random System

Problem’

An engineer at an ironworks factory is in charge of ordering
reinforcing steel from a supplier. The factory has a stockpile
of reinforcement on hand and the management tries to maintain the
distribution of stock proportional to its use. The ironworks
factory has been operating at capacity for the last year and will
likely continue at capacity for the foreseeable future. Because
of the steady-state conditions the engineer has been ordering
about the same tonnage of reinforcement every month for the last
year; all that changes from order to order is the'distribution of
the bér sizes. The engineer in completing his next order refers
to the statistical distributions of bar sizes used during the
last year and during the current month (see Figure Al). What

distribution of bar sizes should the engineer order?

Solution

The PMF for the distri;ution of bar sizes required on
average over the last year is considered to be the prior
distribution (see Figure Al). The distribution of bar sizes
required in just the last month constitutes the likelihoods for
each of the possible events. A reasonable prediction of what the
distribution of bar sizes should be in the upcoming order can be

attained by using Bayes‘ theorem in the form of [2.8]. The

decimal of one unit that should be ordered as 10M bars is
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calculated as,

P(B=10M|LM)

where

X = P(B=10M)
P(B=15M)
P(B=20M)
P(B=25M)
P (B=30M)
P(B=35M)

P(B=45M)
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P(B=10M) « P(LM|B=10M)
X

+ P(LM|B=10M) +
« P(LM|B=15M) +
e P(LM|B=20M) +
« P(LM|B=25M) +
e P(LM|B=30M) +
e P(LM|B=35M) +

s P(LM|B=45M)

where LM refers to the data from last month. Substituting into

this eqguation gives,

P(B=10M|B'=10M) =

In a similar way the

P(B=15M|LM)
P(B=20M|LM)

P(B=25M|LM)

.20 x .20
.20x.20 + .25x%x.30 + .25 x 0.10 +

.15x.20 + .10x.15 + .05x.05 + O

e

0.213

following probabilities were calculated,

0.400

0.133

0.160
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P(B=30M|LM) = 0.080
P(B=35M|LM) = 0.013
P(B=45M|LM) = 0.000

The posterior PMF resulting from this exercise is shown in Figure
Al. This posterior PMF should be used by the engineer to
determine what distribution of bar sizes to order next month,
Since the summation of the probabilities equals one, this

posterior PMF is theoretically acceptable.
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APPENDIX B

Example of Bayesian Inference for a Continuous Random System

Problem

Over the course of several years a structural design
engineer has kept track of the span-to-depth ratio of simply
supported primary steel girders that he has designed. The
average span-to-depth ratio is 20 and for simplicity the engineer
represented the pdf describing this random system using the

following bi-linear relationship:

f(r) 0.00333r, 0 < r < 20

f(r)

-0.0067r + 0.20, 20 < r < 30

where r = the ratio of the girder span to the éirder depth.
These equations are shown in Figure Bl and labelled "Prior
Prediction of Ratios".

After completion of a project the structural engineer wanted
to combine the span-to-depth ratios of the girders used in order
to update his current statistical distribution. The ratios u;ed

were 10, 15, 22, 22, 22, 24, 26, 26, 26, and 27. What does the

new pdf look like?

Solution
The new beam span-to-depth ratios can be used to develop a
new simple bi-linear relationship representing the likelihood

function. The average of the ratios is 22. The density function
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which describes the likelihood function is therefore

f(r'|r) 0.00303r, 0 < r< 22

-0.0083r + 0.250, 22 < r € 30

f(r'|x)

where r' refers to the pdf being based on new data.
In order to predict the posterior distribution of the pdf
[2.12] is used. For the event of r = 2 the ordinate of the

posterior density function is calculated as,

f(rz) . f(r'|r2)

f(r2|r') = —
[ £(r) » f(r'|r) dr

- QO

In this problem it is convenient to use numerical integration as

follows,
£ . f(x'
e per) o (m) * ETIE)
2 15
L ] 1 [ ]
z f(ry;) o £t ryy) ¢ Ay
i=0
0.00333r, * 0.00303r,
)
£ 0.00333r + 0.00303r ¢ 2 +
i=0 2i 2i
15
£ (-0.0067r., + 0.200) + (-0.0083r_ ., + 0.250) « 2
i=11 21 2i

where Ar = 2.

0.0067 = 0.0061 _ 4 pp92

£(r,|r') = -
2 2.213 x 1072 x 2
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The ordinates of the updated pdf of r are calculated at intervals
of 2 from r equals 0 to 30; these calculations are summarized in
Table Bl. The updated pdf is shown in Figure Bl. A check that

the enclosed area of the posterior pdf equals one indicates that

it is theoretically an acceptable statistical description of the

system.
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Table Bl - Calculations for Updating f(r)

e e [N

f(r) f(r'|r) f(r) « f(r'|r) f(r|r")
0 0.0 0.0 0.0 0.0
2 0.0067 0.0061 4.087 x 107° 0.00092
4 0.0133 0.0121 1.609 x 1074 0.0036
6 0.0200 0.0182 3.640 x 1074 0.0082
8 0.0266 0.0242 6.437 x 1074 0.0145
10 0.0333 0.0303 1.009 x 1073 0.0228
12 0.0400 0.0364 1.456 x 1073 0.0329
14 0.0466 0.0424 1.976 x 1073 0.0446
16 0.0533 0.0485 2.585 x 1073 0.0584
18 0.0599 0.0545 3,265 x 1073 0.0738
20 0.0666 0.0606 4.036 x 1073 0.0912
22 0.0526 0.0666 3.503 x 1073 0.0791
24 0.0392 0.0508 1.991 x 1073 0.0450
26 0.0258 0.0342 g8.824 x 1074 0.0199
28 0.0124 0.0176 2.182 x 1074 0.0049
30 0.0 0.0 0.0 0.0
) 0.496 0.503 2.213 x 1072 0.499
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APPENDIX C

In-Situ Test Data and Parametric Study Data Bases
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Table C1 Nondestructive Test Data

No. Location Pulse Minimum

Velocity Rebound
(mm/psec) No.
1 AN#1 3.805 38.0
2 AN#2 3.925 40.0
3 AN#3 4.064 36.0
4 AN#4 4.108 42.0
5 AN#5 4.150 44 .0
6 AN#6 4,076 47.0
7 AN#7 4,152 41.0
8 AN#8 4,194 46.0
8 AN#9 4.068 40.0
10 AN#10 4,125 41.0
11 AN# 11 3.828 44.0
12 AN#12 3.646 41.0
13 AN#13 3.863 40.0
14 AN#14 3.974 44.0
15 AN#15 3.911 43.0
16 AN#16 3.669 42.0
17 AN#17 3.564 41.0
18 AN#18 3.615 44 .0
19 AN#19 3.814 46.0
20 AN#20 3.814 42.0
21 AN#21 3.875 41.0
22 AN#22 3.862 39.0
23 AN#23 3.871 39.0
24 AN#24 3.952 44 .0
25 AN#25 4,127 43.0
26 AN#26 4.089 41.0
27 AN#27 4.083 40.0
28 AN#28 4.106 43.0
29 AN#29 4.271 41.0
30 AN#30 4.023 43.0
31 AN#31 4.148 44 .0
32 AN#32 4,201 42.0
33 AN#33 4.000 42.0
34 AN#34 4.100 41.0
35 AN#35 3.980 40.0
36 AN#36 4.030 40.0
37 AN#37 3.886 40.0
38 AN#38 3.416 40.0
39 AM#1 3.853 45.0
40 AM#2 3.9829 41.0
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cont. Table C1 Nondestructive Test Data

No. Location Pulse Minimum

Velocity Rebound
(mm/psec) No.
41 AM#3 3.976 36.0
42 AM#4 3.966 40.0
43 AM#5 3.961 40.0
44 AM#6 3.922 36.0
45 AM#7 4,154 43.0
46 AM#8 3.859 41.0
47 AM#9 3.841 40.0
48 AM#10 3.966 42.0
49 AM# 11 3.877 42.0
50 AM#12 4.033 43.0
51 AM#13 3.954 44 .0
52 AM#14 4,163 41.0
53 AM#15 3.978 43.0
54 AM#16 4.003 43.0
55 AS#1 3.985 48.0
56 AS#2 4.000 48.0
57 AS#3 4,042 43.0
58 . AS#4 4.108 48.0
59 ~ AS#5 3.995 40.0
60 AS#6 4.214 42.0
61 AS#7 3.832 40.0
62 AS#8 3.990 43.0
63 AS#8 4.080 42.0
64 AS#10 4,116 38.0
65 AS#11 4.066 43.0
66 AS#12 4.150 43.0
67 AS#13 3.948 38.0
68 AS#14 3.988 38.0
69 AS#15 4.242 49.0
70 AS#16 4,268 47.0
71 AS#17 3.551 40.0
72 AS#18 3.694 40.0
73 AS#19 3.578 - 40.0
74 AS#20 3.914 41.0
75 AS#21 4.048 40.0
76 AS#22 4.027 44 .0
77 AS#23 3.895 . 46.0
78 AS#24 4.103 50.0
79 AS#25 4.100 43.0
80 AS#26 3.900 41.0
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cont. Table C1 Nondestructive Test Data

No. Location Pulse Minimum

Velocity Rebound
(mm/usec) No.
81 AS#27 4,015 38.0
82 AS#28 4,081 40.0
83 AS#29 3.897 38.0
84 AS#30 4,066 36.0
85 AS#31 3.863 44,0
86 AS#32 4.043 43.0
87 AS#33 3.874 42.0
88 AS#34 3.785 38.0
89 BN# 1 4,242 47 .0
g0 BN#2 4,059 44 .0
91 BN#3 3.910 41.0
92 BN#4 4.104 38.0
K BN#5 3.871 40.0
94 BN#6 3.926 44,0
95 BN#7 3.899 41.0
86 BN#8 4.029 41.0
97 BN#9 3.842 43.0-
98 BN#10 4,023 46.0
899 BN#11 4.020 45.0
- 100 BN#12 4.003 43.0
101 BN#13 3.770 42.0
102 BN#14 4,171 50.0
103 BN#15 4.020 48.0
104 BN#16 3.978 47.0
105 BN#17 3.786 47.0
106 BN#18 3.986 41.0
107 BN#19 4,164 38.0
108 BN#20 4,118 38.0
109 BN#2 1 3.896 42.0
110 BN#22 3.944 30.0
111 BN#23 3.830 30.0
112 BN#24 4.037 36.0
113 BN#25 4.013 36.0
114 BN#26 3.867 43.0
115 BN#27 4,040 44.0
116 BN#28 3.999 47 .0
117 BN#29 4,072 47.0
118 BN#30 4,009 40.0
119 BN#31 4.219 40.0
120 BN#32 4,029 38.0
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cont. Table C1 Nondestructive Test Data

No. Location Puise Minimum
Velocity Rebound
(mm/psec) No.
121 BN#33 4,097 49.0
122 . BN#34 3.944 46.0
123 BN#35 4.104 42.0
124 BN#36 4,092 44.0
125 BN#37 4,097 47 .0
126 BN#38 4,028 43.0
127 BM# 1 3.921 45.0
128 BM#2 3.895 40.0
129 BM#3 4,081 44 .0
130 BM#4 3.695 40.0
131 BM#5 3.929 40.0
132 BM#6 3.843 41.0
133 BM#7 3.666 43.0
134 BM#8 3.867 42.0
135 BM#9 4.032 44,0
136 BM#10 3.618 44.0
137 BM#11 3.854 41.0
138 . BM#12 3.996 44 .0
139 BM#13 4,246 47.0
140 BM#14 4.056 46.0
141 BM#15 3.968 48.0
142 BM#16 4.030 43.0
143 BS#1 3.886 40.0
144 BS#2 4,093 40.0
145 BS#3 3.895 ' 38.0
146 BS#4 3.896 38.0
147 BS#5 4,024 33.0
148 BS#6 3.944 37.0
149 BS#7 4,133 38.0
150 BS#8 3.947 41.0
151 BS#9 3.830 42.0
152 BS#10 4,240 41.0
153 BS#11 4.061 41.0
154 BS#12 3.941 38.0
155 BS#13 4,198 38.0
156 : BS#14 4,018 40.0
157 BS#15 4,193 40.0
158 BS#16 4,064 42.0
159 BS#17 3.437 42.0
160 BS#18 3.800 46.0
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cont. Table C1 Nondestructive Test Data

No. Location Pulse Minimum
Velocity Rebound
(mm/psec) No.
161 BS#19 3.894 44 .0
162 BS#20 3.810 48.0
163 BS#21 3.903 44 .0
164 BS#22 3.862 38.0
165 BS#23 3.830 37.0
166 BS#24 3.761 36.0
167 BS#25 4.027 42.0
168 BS#26 3.945 40.0
169 BS#27 3.778 36.0
170 BS#28 3.895 36.0
171 BS#29 3.871 34.0
172 BS#30 3.807 37.0
173 BS#31 3.871 42.0
174 BS#32 4,081 40.0
175 BS#33 3.906 40.0
176 BS#34 3.901 40.0
177 BS#35 3.800 38.0
178 BS#36 3.799 - 30.0
179 CN#1 3.827 37.0
180 CN#2 3.838 38.0
181 CN#3 4.082 34.0
182 CN#4 3.930 39.0
183 CN#5 4,218 37.0
184 CN#6 3.749 37.0
185 CN#7 4,208 32.0
186 CN#8 3.784 34.0
187 CN#9 4,171 32.0
188 CN#10 4,137 37.0
189 CN#11 4,124 41,0
190 CN#12 4,101 37.0
191 CN#13 4,138 39.0
192 CN#14 3.866 37.0
193 CN#15 3.974 35.0
194 CN#16 4,113 36.0
195 CN#17 3.689 38.0
196 CN#18 3.947 46.0
197 CN#19 3.819 . 46.0
198 CN#20 3.751 41.0
189 CN#2 1 4,097 41.0
200 CN#22 4.116 45.0
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cont. Table Ct1 Nondestructive Test Data

No. Location Pulse Minimum
Velocity Rebound
(mm/psec) No.
201 CN#23 4,199 43.0
202 CN#24 4,089 39.0
203 CN#25 4,160 39.0
204 CN#26 4.185 30.0
205 CN#27 4,208 36.0
206 CN#28 4,047 41.0
207 , CN#29 4.052 40.0
208 CN#30 4,148 32.0
209 CN#31 4.071 33.0
210 CN#32 3.733 38.0
211 CN#33 3.976 40.0
212 CN#34 4,145 38.0
213 CN#35 4,073 41.0
214 CN#36 4.008 38.0
215 CN#37 3.918 41.0
216 CN#38 3.658 39.0
217 CM#1 4,024 43.0
218 CM#2 3.907 46.0 .
219 CM#3 4.284 41.0
220 CM#4 3.805 45.0
221 CM#5 4,029 42.0
222 CM#6 3.544 41.0
223 CM#7 3.809 39.0
224 CM#8 3.810 44 .0
225 CM#9 4,102 40.0
226 CM#10 3.816 41.0
227 CM#11 4.061 44 .0
228 CM#12 3.884 44 .0
229 CM#13 4,133 42.0
230 CM#14 3.998 41.0
231 CM#15 4,031 44 .0
232 CM#16 4,253 40.0
233 CS#1 4,338 48.0
234 CS#2 4,166 49.0
235 CS#3 3.926 45.0
236 CS#4 4,354 39.0
237 CS#5 4,060 34.0
238 CS#6 4,345 40.0
239 CS#7 4,360 34.0
240 CS#8 4.117 40.0
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cont. Table C1 Nondestructive Test Data

No. Location Pulse Minimum
Velocity Rebound
(mm/psec) No.
241 CS#9 3.902 38.0
242 CS#10 4,081 32.0
243 CS#11 3.881 39.0
244 CS#12 4.143 42.0
245 CS#13 4.184 40.0
246 CS#14 4,299 37.0
247 CS#15 4.207 38.0
248 CS#16 4.123 36.0
249 CS#17 3.713 36.0
250 CS#18 4.001 36.0
251 CS#19 3.901 39.0
252 CS#20 3.907 40.0
253 CS#21 4,059 40.0
254 CS#22 4.085 38.0
255 CS#23 3.961 39.0
256 CS#24 4.249 45.0
257 CS#25 3.948 38.0
258 CS#26 4.190 42.0
259 CS#27 4.027 41.0
260 CS#28 3.981 36.0
261 CS#29 4,225 39.0
262 CS#30 4.202 42.0
263 CS#31 4,132 47.0
264 CS#32 4,201 48.0
265 CS#33 3.932 40.0
266 CS#34 3.914 47.0
267 CS#35 3.870 46.0
268 CS#36 3.943 34.0
269 CS#37 3.682 34.0
270 CS#38 3.791 31.0
271 DN# 1 3.894 38.0
272 DN#2 4.000 36.0
273 DN#3 3.990 34.0
274 DN#4 3.628 38.0
275 DN#5 3.9835 . 40.0
276 DN#6 3.899 40.0
277 DN#7 3.799 39.0
278 DN#8 3.849 45.0
279 DN#9 4.005 43.0
280 DN#10 3.942 43.0
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cont. Table C1 Nondestructive Test Data

No. Location Pulse. Minimum
Velocity Rebound
(mm/psec) No.
281 DN#11 3.879 43.0
282 DN#12 3.907 38.0
283 DN#13 3.734 41.0
284 DN#14 3.742 36.0
285 DN#15 3.980 36.0
286 DN#16 3.980 38.0
287 DN#17 3.672 43.0
288 DN#18 3.735 49.0
289 DN#19 3.715 47.0
290 DN#20 3.830 46.0
291 DN#21 3.697 41.0
292 DN#22 3.775 41.0
293 DN#23 3.840 42.0
294 DN#24 4,009 46.0
295 DN#25 4,139 43.0
296 DN#26 3.965 41.0
297 . DN#27 4.091 40.0
298 DN#28 4.014 40.0
299 DN#29 4,007 40.0
300 DN#30 4.125 41.0
301 DN#31 3.918 42.0
302 DN#32 4.162 36.0
303 DN#33 4.096 30.0
304 DN#34 4.020 38.0
305 DN#35 4,129 41.0
306 DN#36 4,009 40.0
307 DN#37 3.881 35.0
308 DN#38 3.944 36.0
309 DM# 1 4.070 49.0
310 DM#2 3.795 45.0
311 DM#3 4.035 43.0
312 DM#4 3.942 47.0
313 DM#5 4.038 50.0
314 DM#6 3.675 45.0
315 DM#7 4.015 42.0
316 DM#8 3.850 47 .0
317 DM#9 4,125 44 .0
318 DM#10 3.302 40.0
319 DM#11 4.068 47.0
320 DM#12 3.783 48.0
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cont. Table C1 Nondestructive Test Data

No. Location Pulse Minimum
Velocity Rebound
(mm/psec) No.
321 DM#13 4,081 41.0
322 DM#14 3.864 40.0
323 DM#15 3.887 44.0
324 DM#16 3.702 40.0
325 . DS#1 4,193 34.0
326 DS#2 4,172 38.0
327 DS#3 4,076 38.0
328 DS#4 4.226 38.0
329 DS#5 4,101 43.0
330 DS#6 3.996 36.0
331 DS#7 4.057 36.0
332 DS#8 3.806 36.0
333 DS#9 4.084 37.0
334 DS#10 3.911 38.0
335 DS#11 4,057 39.0
336 DS#12 3.966 40.0
337 DS#13 4.073 39.0
338 DS#14 3.872 38.0
339 DS#15 4.006 36.0
340 DS#16 4.007 37.0
341 DS#17 3.827 38.0
342 DS#18 3.902 40.0
343 DS#19 3.917 42.0
344 DS#20 3.852 47 .0
345 DS#21 4.044 47.0
346 DS#22 3.955 32.0
347 DS#23 3.971 38.0
348 DS#24 3.970 42.0
349 DS#25 3.974 43.0
350 DS#26 4,069 40.0
351 DS#27 4.054 38.0
352 DS#28 3.988 36.0
353 DS#29 4,055 36.0
354 DS#30 4,291 48.0
355 DS#31 4,194 40.0
356 DS#32 4.109 39.0
357 DS#33 4,269 48.0
358 - DS#34 4,291 40.0
359 DS#35 3.940 45.0
360 DS#36 3.951 45.0
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cont. Table C1 Nondestructive Test Data

No. Location Pulise Minimum

Velocity Rebound
(mm/usec) No.
361 DS#37 3.740 36.0
362 DS#38 3.813 38.0
363 EN#1 3.970 37.0
364 EN#2 3.824 38.0
- 365 EN#3 3.977 40.0
366 EN#4 3.940 41.0
367 EN#5 4.026 38.0
368 EN#6 4.011 42.0
368 EN#7 4.042 - 44.0
370 EN#8 3.945 38.0
371 EN#9 3.916 41.0
372 EN#10 4.006 39.0
373 EN#11 3.998 40.0
374 EN#12 3.907 38.0
375 EN#13 4.078 38.0
376 EN#14 3.967 40.0
377 EN#15 3.754 38.0
378 EN#16 3.659 42.0
379 EN#17 3.469 36.0
380 EN#18 3.444 38.0
381 EN#19 3.765 41.0
382 EN#20 3.698 44.0
383 EN#21 3.873 38.0
384 EN#22 3.889 43.0
385 EN#23 4,032 38.0
386 EN#24 4.031 36.0
387 EN#25 3.95% 38.0
388 EN#26 3.971 40.0
389 EN#27 4.058 40.0
380 EN#28 3.830 41.0
391 EN#29 4.062 40.0
392 EN#30 4.100 40.0
393 EN#31 3.967 38.0
394 EN#32 3.890 41.0
395 EN#33 4.012 50.0
396 EN#34 3.821 43.0
397 EN#35 3.8980 42.0
398 EN#36 3.883 38.0
399 EN#37 3.993 39.0
400 EN#38 4.078 43.0
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cont. Table C1 Nondestructive Test Data

No. Location Pulse Minimum
Velocity Rebound
(mm/psec) No.
401 EM# 1 3.768 , 46.0
402 EM#2 3.940 38.0
403 EM#3 3.871 46.0
404 EM#4 3.768 40.0
405 EM#5 3.757 41.0
406 EM#6 3.837 42.0
407 EM#7 4.072 43.0
408 EM#8 4.026 43.0
409 EM#9 3.793 41.0
410 EM#10 3.913 39.0
411 EM#11 - 3.811 40.0
412 EM#12 3.855 42.0
413 EM#13 3.868 44 .0
414 EM#14 3.682 44 .0
415 EM#15 4.011 41.0
416 EM#16 4.043 40.0
417 ES#1 3.905 39.0
418 ES#2 3.913 36.0
419 ES#3 3.795 37.0
420 ES#4 3.865 36.0
421 ES#5 3.930 39.0
422 ES#6 3.942 48.0
423 ES#7 4.016 41.0
424 ES#8 4.057 41.0
425 ES#9 3.916 47.0
426 ES#10 4.017 48.0
427 ES#11 4.043 48.0
428 ES#12 4,091 44 .0
429 ES#13 4.060 43.0
430 ES#14 4.077 40.0
431 ES#17 3.976 40.0
432 ES#19 4.144 40.0
433 ES#20 4.035 38.0
434 ES#21 3.928 44 .0
435 ES#22 3.925 38.0
436 ES#23 4.019 44.0
437 ES#24 4.059 46.0
438 ES#25 4.045 42.0
439 ES#26 4.055 36.0
440 ES#27 3.957 36.0
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cont. Table C1 Nondestructive Test Data

No. Location Pulse Minimum
Velocity Rebound
(mm/usec) No.
441 ES#28 3.874 37.0
442 ES#29 3.849 39.0
443 ES#30 4.049 44 .0
444 ES#31 3.953 38.0
445 ES#32 4.136 42.0
446 ES#33 4.021 34.0
447 ES#34 4,167 38.0
448 ES#35 4,088 37.0
449 ES#36 3.896 36.0
450 ES#37 3.972 36.0
451 ES#38 3.920 37.0
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Table C2 Concrete Core Data

No. Location Core ~ Pulse Minimum
Strength Velocity Rebound
(MPa) (mm/psec) No.
1 AN#23 35.88 3.871 39.0
2 AN#29 44 .42 4,271 41.0
3 AN#32 40.10 4.201 42.0
4 AM#9 39.70 3.841 40.0
5 AS#5 41.82 3.995 . 40.0
6 AS#8 37.34 3.990 43.0
7 BN#4 40.05 4.104 38.0
8 BN#8 36.45 4.029 41.0
9 BN#31 40.72 4,219 40.0
10 BS#3 29.42 3.895 38.0
1 BS#7 32.56 4,133 38.0
12 CN#1 20.70 3.827 37.0
13 CN#5 33.45 4,218 37.0
14 CS#1 45.76 4.338 48.0
15 CS#5 38.93 4.060 34.0
16 DN#3 36.30 3.890 34.0
17 DS#31 35.16 4.194 40.0
18 EN#8 40.05 3.945 39.0
19 ES#23 29.79 4,019 44.0
20 ES#29 27.51 3.849 39.0
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Table C3 Random Nondestructive Test Data Base

No. Location Pulse Minimum

Velocity Rebound
(mm/psec) No.
1 BS#5 4.024 33.0
2 BN#2 4,059 44 .0
3 AM#7 4,154 43.0
4 AS#2 1 4.048 40.0
5 EN#7 4,042 44 .0
6 CN#19 3.819 46.0
7 AN#18 3.615 44 .0
8 EN#6 4.011 42.0
] DN#32 4.162 36.0
10 AS#24 4.103 50.0
11 BM#2 3.895 40.0
12 BS#10 4,240 41.0
13 AM#6 3.922 36.0
14 BS#3 3.895 38.0
15 DS#11 4,057 39.0
16 ES#35 4,088 37.0
17 AS#2 4.000 48.0
18 AM# 1 3.853 45.0
19 AM# 11 3.877 42.0
20 CS#19 3.901 39.0
21 EM#16 4.043 40.0
22 DN#14 3.742 36.0
23 CN#21 4.097 41.0
24 BN#25 4.013 36.0
25 DN#33 4.096 30.0
26 BN#10 4.023 46.0
27 BS#25 4.027 42.0
28 BN#38 4,028 43.0
29 AN#4 4.108 42.0
30 DN#36 4.009 40.0
31 CS#35 3.970 46.0
32 DS#31 4,194 40.0
33 BS#1 3.886 40.0
34 AN#36 4.030 40.0
35 DN#8 3.849 45.0
36 BS#24 3.761 36.0
37 AM#9 3.841 40.0
38 DS#33 4,269 48.0
39 DS#29 4,055 36.0
40 BN#27 4.040 44 .0
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cont. Table C3 Random Nondestructive Test Data Base
No. Location Pulse Minimum
Velocity - Rebound
(mm/psec) No.
41 EM# 1 3.768 46.0
42 AS#6 4.214 42.0
43 DN#5 3.935 40.0
44 BN#13 3.770 42.0
45 ES#5 3.830 38.0
46 CN#20 3.751 41.0
47 DM#13 4,081 41.0
48 - CN#1 3.827 37.0
49 BN#33 4,097 49.0
50 CN#25 4,160 39.0
51 CS#13 4,184 40.0
52 DS#17 3.827 38.0
53 AS#16 4,268 47.0
54 BM#8 3.867 42.0
55 EN#24 4.031 36.0
56 BM#10 3.618 44 .0
57 DS#2 4,172 38.0
58 AS#8 3.990 43.0
59 - CS#1 4.338 48.0
60 CN#31 4,071 33.0
61 CS#7 4,360 34.0
62 ES#17 3.976 40.0
63 DS#35 3.940 45.0
64 AS#25 4.100 43.0
65 AN#2 3.925 40.0
66 CM#4 3.805 45.0
67 CN#7 4.208 32.0
68 AM#13 3.9854 44 .0
69 EN#9 3.916 41.0
70 ES#32 4,136 42.0
71 EN#12 3.907 38.0
72 ES#26 4.055 36.0
73 EN#4 3.940 41.0
74 DN#2 4,000 : 36.0
75 DN#4 3.628 38.0
76 CS#34 3.914 ' 47.0
77 DS#28 3.988 36.0
78 CN#13 4,138 39.0
79 AN#35 3.980 _ 40.0
80 BN#21 3.896 42.0
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cont. Table C3 Random Nondestructive Test Data Base
No. Location Pulse Minimum
Velocity Rebound
(mm/psec) No.
81 CN#27 4.208 36.0
82 AM#8 3.859 41.0
83 EM#14 3.682 44.0
84 EN#23 4,032 38.0
85 CN#24 4,089 39.0
86 CM#12 3.884 44 .0
87 DN#35 4.129 41.0
88 BN#8 4.029 41.0
89 BS#31 3.871 42.0
90 BM#1 3.921 45.0
91 BS#36 3.799 30.0
92 EM#10 3.913 39.0
a3 DN#23 3.840 42.0
94 AM#10 3.966 42.0
85 DN#7 3.799 39.0
96 EN#15 3.754 38.0
87 ES#8 4,057 41.0
98 AN#20 3.814 42.0
89 EN#11 3.998 40.0
100 ~ CN#14 3.866 37.0
101 AS#23 3.885 46.0
102 BM#4 3.695 40.0
103 BS#7 4,133 38.0
104 AM#3 3.976 36.0
105 ES#10 4,017 48.0
106 DS#13 4.073 39.0
107 ES#36 3.896 36.0
108 AN#32 4,201 42.0
109 AN#28 4.106 43.0
110 AS#27 4.015 38.0
111 AS#19 3.578 40.0
112 CN#11 4,124 41.0
113 AM#14 4,163 41.0
114 AN#38 3.416 40.0
115 EN#3 3.977 40.0
116 CS#26 4.190 42.0
117 DS#37 3.740 36.0
118 DN#30 4,125 41.0
119 CN#30 4,148 32.0
120 AN#33 4.000 42.0
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cont. Table C3 Random Nondestructive Test Data Base
No. Location Pulse Minimum
Velocity Rebound
(mm/psec) No.
121 DM#9 4,125 44 .0
122 BM#6 3.843 41.0
123 AS#28 4.081 40.0
124 EN#2 3.824 38.0
125 BN#11 4,020 45.0
126 DN#28 4.014 40.0
127 AN#11 3.828 44,0
128 CN#29 4,052 40.0
129 DS#26 4,069 40.0
130 ES#20 4,035 39.0
131 ES#25 4.045 42.0
132 BN#6 3.926 44 .0
133 CS#4 4,354 39.0
134 DS#30 4,291 48.0
135 CS#30 4.202 42.0
136 BN#19 4.164 38.0
137 ES#33 4,021 34.0
138 CS#31 4,132 47.0
139 BN#16 3.978 47.0
140 ES#29 3.848 39.0
141 CN#3 4,082 34.0
142 AN#7 4,152 41.0
143 AN#2 1 3.875 41.0
144 BS#18 3.800 46.0
145 DN#25 4,139 43.0
146 CS#8 4,117 40.0
147 EM#2 3.940 38.0
148 CS#37 3.682 34.0
149 DN#22 3.775 41.0
150 BM#11 3.854 41.0
151 DM#14 3.864 40.0
152 ES#12 4,091 44.0
153 BS#16 4,064 42.0
154 AS#7 3.832 40.0
155 AS#11 4.066 43.0
156 BS#2 4,093 40.0
157 CS#6 4,345 40.0
158 CM#2 3.907 46.0
159 DN#37 3.881 35.0
160 BS#26 3.945 40.0
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cont. Table C3 Random Nondestructive Test Data Base
No. Location Pulse Minimum
Velocity Rebound
(mm/psec) No.
161 AS#31 3.863 44 .0
162 DN#24 4,009 46.0
163 CN#35 4.073 41.0
164 DS#9 4,084 37.0
165 EM#4 3.768 40.0
166 EN#25 3.959 38.0
167 DN#26 3.965 41.0
168 CM#3 4,284 41.0
169 DS#8 3.806 36.0
170 CN#36 4,008 38.0
171 EN#31 3.967 39.0
172 AS#15 4,242 49.0
173 AN#9 4,068 40.0
174 CN#22 4,116 45.0
175 DS#36 3.951 45.0
176 ES#11 4,043 48.0
177 BS#20 3.910 48.0
178 AN#6 4.076 47.0
179 CN#17 3.689 : 38.0
180 CN#37 3.918 41.0
181 EN#14 3.967 40.0
182 AM#2 3.929 41.0
183 EM#5 3.757 41.0
184 CN#12 4,101 37.0
185 EN#28 3.930 41.0
186 AS#29 3.897 38.0
187 EN#8 3.945 39.0
188 AS#13 3.948 38.0
189 EN#21 3.873 38.0
190 CS#17 3.713 36.0
191 CS#36 3.943 34.0
192 AS#9 4,080 42.0
193 BS#21 3.903 44.0
194 BS#14 4,018 40.0
195 DS#14 3.872 38.0
196 CN#6 3.749 37.0
197 BM#16 4,030 43.0
198 EN#27 4,058 40.0
199 DM#4 3.9842 47 .0
200 DS#6 3.996 36.0
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cont. Table C3 Random Nondestructive Test Data Base
No. Location Pulse Minimum
Velocity Rebound
(mm/psec) No.
201 CS#5 4,060 34.0
202 EN#22 3.889 43.0
203 CM#1 4.024 43.0
204 CS#9 3.902 38.0
205 BN#22 3.944 30.0
206 CS#38 3.791 31.0
207 EM#8 4,026 43.0
208 CM#8 3.810 44 .0
209 DM#16 3.702 40.0
210 DN#29 4,007 40.0
211 CM#14 3.998 41.0
212 AN#1 3.805 38.0
213 CN#15 3.974 35.0
214 AS#22 4.027 44 .0
215 ES#27 3.957 36.0
216 AS#34 3.785 38.0
217 DS#24 3.970 42.0
218 - CN#10 4,137 37.0
219 AM#5 3.961 40.0 -
220 CN#18 3.947 - 46.0
221 EN#17 3.469 36.0
222 DN#15 3.980 36.0
223 AN#30 4,023 43.0
224 AS#18 3.694 40.0
225 BN#23 3.830 30.0
226 AN#14 3.974 44.0
227 EN#13 4.078 38.0
228 ES#22 3.925 38.0
229 AM#12 4,033 43.0
230 CN#4 3.930 39.0
231 CS#14 4,299 37.0
232 , AN#19 3.814 46.0
233 BS#9 3.830 42.0
234 EN#36 3.883 38.0
235 BN#20 4,118 38.0
236 AS#3 4,042 43.0
237 CN#38 3.658 39.0
238 AN#10 4,125 41.0
239 BN#5 3.871 40.0
240 EM#9 3.793 41.0
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cont. Table C3 Random Nondestructive Test Data Base

No. Location Pulse Minimum

Velocity Rebound
(mm/psec) No.
241 EN#34 3.921 43.0
242 DS#20 3.852 47.0
243 EN#29 4,062 40.0
244 CS#33 3.932 40.0
245 CS#24 4,249 45.0
246 AN#23 3.871 39.0
247 BS#12 3.941 38.0
248 BN#35 4,104 42.0
249 BN#24 4.037 36.0
250 BS#4 3.896 38.0
251 CS#3 3.926 45.0
252 CS#20 3.907 40.0
253 AM#16 4.003 43.0
254 - EN#5 4.026 38.0
255 DS#7 4,057 36.0
256 EN#1 3.970 37.0
257 DS#25 3.974 43.0
258 DN#6 3.899 40.0
259 AN#37 3.886 40.0
260 BN#4 4.104 38.0
261 CN#2 3.838 38.0
262 DN#16 3.980 38.0
263 DS#16 4,007 - 37.0
264 DS#38 3.813 38.0
265 BS#28 3.895 36.0
- 266 CN#23 4,199 43.0
267 DS#21 4,044 47.0
268 BM#7 3.666 43.0
269 DS#15 4.006 36.0
270 EM#6 3.837 42.0
271 CM#6 3.544 41.0
272 AS#1 3.985 48.0
273 AN#26 4.089 41.0
274 EN#30 4.100 40.0
275 ES#38 3.920 37.0
276 BS#27 3.778 36.0
277 BN# 1 4,242 47.0
278 DS#3 4.076 39.0
279 BN#37 4,097 47.0
280 ES#24 4,059 46.0
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cont. Table C3 Random Nondestructive Test Data Base
No. Location Pulse M1inimum
Velocity Rebound
(mm/psec) No.
281 CM#15 4,031 44 .0
282 DM#3 4,035 43.0
283 DS#1 4,193 34.0
284 DS#10 3.911 38.0
285 EM#3 3.871 46.0
286 BM#3 4,081 44 .0
287 AM#4 3.966 40.0
288 DS#12 3.966 40.0
289 DM#5 4,038 50.0
290 CN#16 4,253 40.0
291 ES#30 - 4,049 44 .0
292 AN#25 4.127 43.0
293 EN#38 4.078 43.0
294 DS#34 4.291 40.0
295 BM#5 3.929 40.0
296 CS#11 3.881 39.0
297 " DM#6 3.675 45.0
298 DN#13 3.734 41.0
299 BS#17 3.437 42.0
300 CN#26 4,185 30.0
301 DN#12 3.907 38.0
302 EN#19 3.765 41.0
303 BS#34 3.901 40.0
304 EM#12 3.855 42.0
305 ES#4 3.865 36.0
306 BS#22 3.862 38.0
307 AS#14 3.988 38.0
308 AN#15 3.911 43.0
309 DM# 1 4,070 49.0
310 DS#27 4.054 38.0
311 BN#30 4,009 40.0
312 BS#29 3.871 34.0
313 BM#15 3.968 48.0
314 BN#26 3.967 43.0
315 EN#32 3.890 41.0
316 AS#5 3.995 40.0
317 CM#11 4.061 44 .0
318 ES#31 3.953 38.0
319 ES#13 4,060 43.0
320 EM#11 3.811 40.0
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cont. Table C3 Random Nondestructive Test Data Base
No. Location Pulse Minimum
Velocity Rebound
(mm/psec) No.
321 DS#23 3.8971 38.0
322 CN#33 3.976 40.0
323 CS#12 4,143 : 42.0
324 AN#8 4.194 46.0
325 DN#21 3.697 41.0
326 EM#7 4.072 43.0
327 ES#1 3.905 39.0
328 CN#16 4,113 36.0
329 DM#15 3.887 44 .0
330 DN#38 3.944 36.0
331 DS#4 4,226 38.0
332 CS#18 4.001 36.0
333 EN#10 4.006 39.0
334 CS#32 4,201 48.0
335 ES#37 3.972 36.0
336 AS#30 4.066 36.0
337 AS#26 3.900 41.0
338 BN#17 3.786 47.0
339 BN#34 3.944 46.0
340 ES#21 3.928 44 .0
341 BN#3 3.910 41.0
342 DN#20 3.830 46.0
343 CS#28 3.981 36.0
344 AN#17 3.564 41.0
345 BN#9 3.842 43.0
346 AN#13 3.863 40.0
347 AN#27 4.093 40.0
348 AM#15 3.978 43.0
349 CS#21 4,059 40.0
350 DN#10 3.942 43.0
351 DN#1 3.894 38.0
352 CM#9 4.102 40.0
353 AN#3 4.064 36.0
354 CN#8 3.784 34.0
355 EN#20 3.698 44 .0
356 ES#28 3.874 37.0
357 BM#14 4,056 46.0
358 DS#18 3.902 40.0
359 CN#5 4,218 37.0
360 BN#15 4.020 48.0
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cont. Table C3 Random Nondestructive Test Data Base
No. Location Pulse Minimum
Velocity Rebound
(mm/psec) No.
361 CN#9 4,171 32.0
362 BN#36 4,092 44,0
363 DN#34 4.020 38.0
364 CS#27 4,027 41.0
365 AS#12 4.150 43.0
366 BS#6 3.944 37.0
367 BS#15 4,193 40.0
368 DN#17 3.672 43.0
369 BS#23 3.830 37.0
370 BM#13 4.246 47 .0
371 EN#18 3.444 38.0
372 DN#27 4.091 40.0
373 DS#32 4.109 39.0
374 ES#3 3.795 37.0
375 BS#11 4,061 41.0
376 AN#24 3.952 44.0
377 EN#33 4.012 50.0
378 BS#19 3.894 - 44,0
379 CN#34 4,145 38.0
380 CN#28 4.047 41.0
381 EN#16 3.659 42.0
382 BS#8 3.947 41.0
383 DM#2 3.795 45.0
384 BS#35 3.800 38.0
385 ES#34 4,167 38.0
386 AN#5 4.150 44.0
387 BS#13 4,198 38.0
388 AN#29 4,271 41.0
389 ES#14 4.077 40.0
390 AN#16 3.669 42.0
391 CS#23 3.961 39.0
3982 ES#2 3.913 36.0
393 DM#12 3.783 48.0
394 BN#29 4,072 47 .0
395 DN#3 3.990 34.0
396 DN#19 3.715 47.0
397 AN#34 4.100 41.0
398 CM#13 4.133 42.0
399 EM#15 4.011 41.0
400 DM#7 4,015 42.0
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cont. Table C3 Random Nondestructive Test Data Base
No. Location Puise Minimum
Velocity Rebound
(mm/psec) No.
401 ES#23 4.019 44.0
402 BN#32 4.029 38.0
403 BN#14 4,171 50.0
404 CS#29 4,225 39.0
405 BN#31 4,219 40.0
406 AN#31 4,148 44.0
407 ES#7 4.016 41.0
408 DS#19 3.917 42.0
409 BM#12 3.996 44,0
410 CN#32 3.733 38.0
411 DS#22 3.955 32.0
412 AN#22 3.862 38.0
413 BS#30 3.807 37.0
414 EN#37 3.983 39.0
415 BN#12 4,003 43.0
416 CS#10 4,081 32.0
417 DN#11 3.879 43.0
418 AN#12 3.646 41.0
419 BM#9 4,032 44 .0
420 CS#25 3.948 38.0
421 ES#9 3.916 47.0
422 AS#33 3.874 42.0
423 AS#4 4.108 49.0
424 CM#10 3.816 41.0
425 BN#28 3.999 47.0
426 EN#26 3.971 40.0
427 AS#10 4.116 38.0
428 AS#20 3.914 41.0
429 DM#10 3.302 40.0
430 BN#18 3.986 41.0
431 DN#9 4.005 43.0
432 DN#31 3.918 42.0
433 CM#5 4,029 42.0
434 CS#16 4,123 36.0
435 ES#6 3.942 48.0
436 EM#13 3.868 44.0
437 ES#19 4,144 40.0
438 CS#22 4,085 38.0
439 DS#5 4.101 43.0
440 CS#15 4,207 38.0
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cont. Table C3 Random Nondestructive Test Data Base
No. Location Pulse Minimum
Velocity Rebound
(mm/psec) No.
441 EN#35 3.890 42.0
442 CS#2 4,166 49.0
443 AS#17 3.551 40.0
444 DN#18 3.735 49.0
445 AS#32 4.043 43.0
446 DM#8 3.850 47.0
447 BS#32 4.081 40.0
448 BN#7 3.899 41.0
449 . DM#11 4,068 47.0
450 BS#33 3.906 40.0
451 CM#7 3.809 : 38.0
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Table C5 Quasi-Random Concrete Core Data Base

No. Location Core Puise Minimum
Strength Velocity Rebound
(MPa) (mm/psec) No.

1 BS#3 29.42 3.895 38.0
2 AS#8 37.34 3.990 43.0
3 BN#4 40.05 4.104 38.0
= 4 CN#5 33.45 4,218 37.0
| 5 AN#23 35.88 3.871 39.0
o 6 EN#8 40.05 3.945 39.0
7 BS#7 32.56 4.133 38.0
8 DS#4 44.74 4,226 38.0
9 AM#9 39.70 3.841 40.0
10 ES#23 29.78 4.019 44.0
11 CS#5 38.83 4.060 34.0
12 AN#29 44 .42 4.271 41.0
13 ES#29 27.51 3.849 39.0
14 DN#3 36.30 3.990 34.0
15 BN#8 36.45 4,029 41.0
16 AN#32 40.10 4.201 42.0
17 CN#1 20.70 3.827 37.0
18 AS#5 41.82 3.995 40.0
19 DS#31 35.16 4,194 40.0
20 BN#31 40.72 4.219 40.0




