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ABSTRACT

four methods for determin%ﬁgkthe geometric eIeﬁents
~of aun eclipsing binary from its\light curve are exy‘oréd
in acﬁail. The mcthods discussed arebthose of“Rnséell
(specifically, the version aue to Tabachnik), Kitamura,
Kopal (frequency domain approach), and Wood. 1TIn - :h cuase,
the uhder]ying model of an eclipsing binary system is lis-
cussed. The various methods of light analysis are the.
applied to fée eclipsing binaries HS Herculis, W Delpl ni,
and HD219$34. The results of cach analysis are discussed,
and thevarious methods of analysis.are‘compared with one
anothef. Finally, the relative merits of each model o7 an
eclipsing binary system are considered. Computer programs

i¢:r the various methods of light curve analysis, along with

explanations of their use, are prcusented in the appendices.
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CHAPTER 1

INTRODUCTION

. Yy

Eclipsing binary stars are, in many ways, very

v

informative to the astronomer and astrophysicist. The

study of eclipsing binary stars can reveal a great deal

[y

about  the sizes of stars, their masses, densities, and

>

internal structure. Such information is also valuable in

ascertaining the evolutionary state of the two (or more)

¢

stars constituting an eclipsing . binary system. In certain

‘cases in which the two compgnent stars of an eclipsing

binary system are in close proximity to one another, it is

also possible to deduce the amount-of tidal'distortion

present, apgd to check for the resénce of matter streams
AY p .

between the -wo stars. With all of this information in

\

- hand, a séale model of an eclipsing binary star may be

cohstruéted, and hénce, our knowledge of the system will
be complete.  One may then use. this scale model te look for
long—term effects such as apsidal motion, the presence of
which can be deduced from a secuiarlchange in the period of
the eclipsing binary. Such measurements may,also.be usédv
to verify Einstein's theory of General Relativity. »

The key problem,»howev%gl is in interpreting the

‘observed light Changés (the '"light curve')'of an eclipsing

binary. -This is the critical step which lies betwee? mak-

ing the‘observatigns;and cominé to_the conclusions out ined

{ -



1 ) -

in the previqQus paragrapﬁ, To thié end a great deal of
work has been done, from thé first tentative steps‘taken

by Russell in 1912 (Russell, 1912), which Qeélt with the
-determinétion;of the geometric élements (the relative rédii
of the stars, the orbital inclination angle, and the rela-
tive luminosities) of an eclipsing binaryiconsisting of.
non-limb darkened spherical stérs, to the recent Fourier
analysis methods of Kopal (see for instance, Kopal, l979),

. which use the harmonic content of the observed light

v

changes to deduce the geometfic eleménts.

A ﬁecessary ingredient in all methods for determin-
ing the geometric elements froﬁ~the obServéd light changés
is a realistic physical model of the binary star, preferably
involving as few assumptions as poséible regérding the
‘forms of the stars (i.e., spherical, non-sphericae i) and
ﬁtheir physicél propertiés‘(tempefature, iﬁminosity; etc.) .
The eomplexity, and consequently the realism, Qf such models
of eclipsing binaries has grdwg»sincg the injtial ihveéti-‘
gation of the problem by Rgssellﬂinﬁl912. Preéent day
models of eclipsing binaries deScribe a range of situations,
ééom that of two well—éepa:ated‘spherical stars to systemé
in which both stafs are in contact, in which .case both stars

are greatly distorted by their mutual tidal interaction.

A question of some importance 1is then: which of the several
models of eclipsing binary stars cﬁrfently available best
describes a given eclipsing binary star? To answer this

question, representative models of eclipsing binary stars



and. their accompanying methods of ligh£ curve analysis will
have to be analyzed and the appropri.. conclusions .drawn.
There are three broad catégories of methods used in

light curve analysis. They are the "classical" or "Russell-

%

type" ﬁethods previouély referred to, the "syhthesis"
méthods, devised in thé early 1970s, and the "freqﬁency—
domain" methods of Kopal previously referred to. Two )
methods of the "classical" tgpé are the Russell-Merrilio
(1952) method ana'the method of Kiﬁamura. A fine example
of a "synthesis" method is a method devised by Wood. Seve-
ral versions of.Kopél's frgquency—domain method éxist,‘bu;
the best of thése are the most recent ones (e.g., Kopal
(1982)). These methods of light curve analysis will be
applied to three stars covering a wide range of physical
conditions, from the well-separated case of W Delphini,

to the case of HS Heréulis with its matter stream, and
finally to HD 219634, which may be a massive binary and
possibly even an X-ray source (see Guliijer, Hube and Lowe
(1982)). This analysis will, we hope, shed some light on

the validity of the various models of eélipsing binary stars

to be considered.

~ /
e

e \‘\



/' CHAPTER 2

THE PUSSELL MODEL

2.1 General Principles
3

The first steps toward an ihteréretation of eclips-
ing‘binary light curves were taken by Russell in 1912
(Russell(;912a,b)).lSubsequent refinements to the theory
Qere made by Russell and two collaborators, Merrill and
Shdplgy(see Russéll and Shapley (1912); Russell and Merrill
(1952)). The Russell modellcan be applied to both spherical
_.énd non-spherical stars witﬁ varying degrees of accufacy.
The "spherica. model" assumes that the eclipsing
binary system consists of two spheriéal stars moving in
‘circular ‘orbits about a c¢ommon centre of gravity. The dis-

tribution of surface brightnes§ J(y) over the disk of each

star is assumed to follow the "cosine law"

LY

J(y) = J(0)(1l - X + xcos v) (2.1)

where J(0) is thé_éurface'brightness at the éentre of the
observed disk of either star, x the coefficient of limb
darkening, and vy the angle of foreshortening, or the angle
between the line of sigﬁt and a radius vector from the ‘
centre of the star (see figure &). The angle vy varies

" between 0 and 90 degrees. At this point, it should be
noted that the physical properties of the stars enter the
Russell model only through eqﬁation»(2.l). The detailed

features of the stars (e.g., starspots}‘magnetic‘fields,
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intrinsic variablility) are rot accounted for.

To arrive at a method for determining the geometric
‘elementskof an eclipsing binary using the spherical model,
it will be necessary to consider, in some detail, the
geometry of an éclipse. . The treatment that follows is
similar to that given by Irwin (l962) or Russell R19l2a,b).
Before plunging‘headlong.into this problem, it wiil‘be
ﬁecessarx to define some of the quantities that will be
used. The radius of the smallef star is denoted by rgos and
that of th larger star by rg. These radii are me;sured in
'units of'éhe céntre-go—centre separation of the component
sﬁars of an eclipéing‘binary.‘ The relati luminosity of
the small and large stars will‘be’denoted b? LS and Lg'

respectivéiy. These luminosities are so defined that
L.+ L_=1. S O (2.2)

Since an eclipsing,binary light curve digplays brightness

. . ‘ » . \ . ) .
as a function of time, it 1is necessary to define an orbital
S

'

phase 8 by

. 8 = ? (t-to)

where P is the period of the eclipsing binary, t the time

at which the brightness was observed or is to be calculated,
and to ﬁhé time of conjunction, whiCh usually coiqcides with
the time of minimum light during the\primary (deeper)
eclipse. The times t and tO are measufed in Julian days,

while the period P is measured in days.\xwith explicit
. N \\



reference to the eclipse, it is customary to define three
additional quantities, namely k, p, and 6. The dimension-

less parameter k is simply the ratio of the radii r and

r :
g

=
It
a] IU)H

, - (0 <k < 1)

Q

The "geometric‘depth" p is another dimensionless parameter,
which represents the extent to which the eclipse has prc -
gressed  at any eclipse phase 6. A parameter closely
relgied to p is 6§, the apparent separation of the centres
of the disks of the‘stars. The parameters p and § are
shown in figure 2. The following equation gives the rela-

tionship between p and § (and does, in fact, serve to

define p)
§~-r ' - ' '
p = — | ~ (2.3a2)
< .
or
§ = r (L+kp) . ' (2.3b)

using the definition of k stated above; Relation (2.3b) is
the more useful of the two relations relating p and §. The
quantity & may also be related to the phase 8 and the orbi-
tal inclination. The orbital inclination is def}ned as the
angle between a plane éefpendicular to thHe line >f sight

. (the "celestial sphere") and the érbital plane (see.figure
. 3). Through the use of some simple trigonometry, and
recalling that the two stars éonstituting the éclipsing
binary have a unit'separation, one arrives at the "geometri- -

cal relation": o
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62 = coszi + sinzO sin2i =l-—sin2i cos20
or
2
)

ré(l+'kp ==coszi + sin28 sinzi . (2.4)

-

Equation (2.4) 1is ﬁhe fundamentai eqqation_of all Russell-
type methods for the determination of the geometric elements.
The derivation of the geometric relation is outlined in
figure 4. It should also be noted that only a relative
orbit is considered, namely, the relative orbit of the
smaller star about the larger one. 1In the case of an ellip-
tical orbit, the geometric relation would be multiplied by
R2, R being the separation between the stars at any orbital
phase. The orbital~phase would have to be replaced by v-u,
where v is the true anomaly and o the angle between the
line of apsides and the line of sight. - The vast majority
of eclipsing.binary systems have circular orbits, however,
largely as a consequence of their short orbital periods and
consééuent tidal interations.

As an aia in the ihterpretation of eclipsing binary

light curves, a relative luminosity % is defined. This

luminosity is related to a change in magnitude Am by

¢ = lO—O.4Am (2.5)

where Am is taken relative to the magnitude of the eclipsing
binary just before the start of the eclipse. The value of
2 at the minimum of the eclipse is denoted by A. A gquantity

a = a(k,p) is also defined; representing the fractional
-4

10
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’

light loss. At.any eclipse phase (see figure 2). This
»
bquantity may be determined directly from the observations

by
(2.6)

2.2 Totalvand Annular Eclipses

Wé are. now in a pogiﬁiOn to describe Russell's
method for the determinaﬁion qf rs,.réq and i. .The follow~
ing derivation may also be found in a recent boék by Kopal
(1979, pg. 110). The baéié idea-of the method is to write
down the geometric reiation (eqn.‘(2;4z) fér Fhree ecliﬁse_

phases and to consider sinzi, coszi,_and r; as the unknowns.

.For the system of eqﬁations to have a unique solution,

. 2 2 ‘

sin 61 . (l4—kpl) 1 1

sin262 (1+ kp2)2 ool =0 . : ('2.7\
2.2 T

sin 83 (14-kp3) 1

. , _ _ - ,

In_this equation, k is the only unknéwn, since p can
in piinciple be determined from a(k,p).”vThe'phases 6, and
éz\are chosen so as to correspond té‘a==0.6 and‘a%10.9 |
respéctively. From this point on;‘the meﬁhod uSed;tgfde—

termine r ,r_ and i depends on the type of eclipse. It

s
should also be noted that the entire light curve is not

required for the analysis. Only one half of an eciipse is

required., -

12



For a total or annular eclipse (see figure 5), the

determinant in equation (2.7), is written as

. 2 \ - '- o
sin 83 = A+ B ¥ (k,p) . (2.8)

where
A = sin26 , - B =A - sinze

1 2

and , : 2 5
2(p3-pl) + k(p3‘—p ). .

v(k,p,a) = > 3 . o (2.9)
2(pl‘-p?_> + k(pl-pz)

v
/

If sin263 is allowed to repreéent any eclipse phase, then
A and B may be determined, and finally ¥ (k,p,a) for the

,givenle | Thus, .one tabulates ¥ (k,p,a) for all eclipse

3°
phaseé. Y(k,p,a) cah also be tabulaged using equation (2:9),
SO a comparison between thevobsérved and theoreticél values.
of ¥ (k,p,a) can be made, allowing k to be détérhined fo: 
}each eclipse phase. Rﬁssell tabulaféd-w(k,a) for‘both typeé
of ecliﬁse, bﬁt the most comprehensiye t&bulétion was‘that
of Russell and Merrill (1952). A‘shorte%‘and‘more‘useful.
set of tables (for x=0.5) was published by Irwin, (1962).

' To summarize, one finds a value for k by determining ¥ (k,a)
from the“light.c&rvé by eguatio; (2;8), and by using thesé
observed values of w(k,&;, along withithé corresponding

" values of a determined by equation (2.6), to do inverge
interpolation in a;tabig of W(k;a), thereby ﬁrodﬁding a

- range of values for k. An average of the values of k is

taken, and this number, <k>, is.then taken to be the

'y

'correct k' in later calculations. The inclination i and
the radius rg'can now be found from , o -

N

13
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| cot’i = 5;%?7 - A and (rgcsc i)2= ¢1(k) , (2.10)
whefe ¢l(k) and ¢2‘k) are two auxiliary functions also
tabﬁlatea by Russell and Merrill in_the refefence quoted
above. The value of r_ can now be found by usihg the defi-
nitioﬁ.of‘k. | -

The'method of finding<rs, Fg' and i just described
was modified by Russell and Merrill (1%52) to use more
peints on'theelight cu;ve during ‘an ec&?pse. " This is

“achieved b; using three weighted means of sin®8 and Yik,a),

\

and by defininé a new function'R(x,k)

~..

M, [sin? 0] - M, [sin8] - My [¢] M, [Yy]
_M SR N

R(x,k) = (2.11)

M2[51n‘e]-M3L§;n 61

MjLsinze] = A+ BM] . §=1,2,3

2 ‘ . . . v

where Mi[sinze], j=1,2,3, is a welghted mean of 51n26 for
certaln values of % , and MJ V], j= 1¢¥ 3, 1s the correspond—

lng.welghted mean of Y (k,0). Only one table is required to

2

q .
find k given R(x,k), M,[sin’8], 'M,[sin®0], and M,[sin?6].

31
The values of I ré and i are obtained as in the earlier

' 'version of the Russell method. The version just described,
. : . : : \

known as the 'Russell-Merrill' method, has th. advantage of

simplicity and greater computational speed, and will be used
» , . , ,
in subsequent examples.



2.3 Partial Eclipses

In the case of a partlal eclipse (see figure 5), a
different approach is requ1red. The problem is more dlffl—

cult to solve since observations of both eclipses are

required for a unique solution, and the value of o at mid-
eclipse (denoted by o) is also unknown. At mid-eclipse,

" the geometric relation (2.4) becomes
2, 2 2 o :
cos 1—-rg(l+fkpo) r Py = p(k,ao) _ (2.12)

since 8 =0 at this péint. Upon éubtracting~t?is result
4

‘o

from the geometric relation, one has

. 2, - S 2. 2 2.,
sin 6-—(rsrg csc,l)[Z(pfipO)~tk(p f-po)] . ..A(2.l3)

This is the fundamental equatien for the anelysis-of,partial
eqlipses. Russeil's‘app;eaeh (Russeil, 1912b) was to’first
define n as the ratio of 1-% to 1-\ at any eclipse phase,
and to take the value of sinzg at n=0.5-as a 'base point'.
Russell then divided equation (2.13) py its cqunterpart‘at-
ﬁ= 0.5, obtaining ‘

2

2(p-rpo)+-k(pz-po)

. 2 N _ 2_ 2
sin®8 (0.5) * 2(p;=p,) *+ k{p] - p,)

sin26 (n)

tit

X (kyain) »(2.14)

where 8(0.5) denotes the value of 6. when ni-O 5, 98 (n) the

value of 6 for any other n, and pl the value of p at n=0.5.
C
In the analy51s of partial- ecllpses, the/x\£anctlons play a
N
v

similar role as do the Y- functlons in the anaL&51s of total

and annular eclipses. However, in the partlal eclipse case,

15.
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the solution is graphical. The values of X(k,ao;n) may be

cohputed from the light curve by using the left-hand si ¢

of equation (2.14). S:ncc k and a, are to be solved for.
first, only two values of X are needed. Suppose these
values to be denoted by X =¢cy and X=Cye One may also com-

pute x from the right-hand sidé of equation (2.14), and
therefore tabulate X(k,ad;n). The most complete tables Qf
x(k,ao;p) are those compiled by Russell and Merrill (1952),
which can be used for both occultation and transit eclipses
and any value of limb ‘darkening x. After choosing a value
of x, one uses the x-tables to plot a, as a function of k
for the given values of X,-Aémely <1 and Cy- Therefore{
the point at which these curves.intersect should provide
the required values of k and Q- Unfortunately,\the ;olu—
tion oObtained ié indeterminaté since it is not known whether
" the given?eclipse is an occultation or a tranéit: Thefefore,

\ . .
both eclipses must be used. The type of eclipse may now be

determined quite easily by using the relationship (see

Irwin (1962), p. 607)

x°C (k,0_;n=0.8) >'xtr(k,ao;n=0.8) : (2.15)

where 'oc; denotes occultation and 'tr' transit. This
relation may be verified by consulting the appropriate
tabies of X/for n=0.8. Anofher problem arises in the géct
thatnthe intersection éf the two Y = constant curves can be
quite shallow, resulting in an indeterminate solution once
again. To remove this indeterminacy, another independent

Ki
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relation must be introduced.

If A denotes the value of minimum light for either

eclipse, then

A =1-0a L (L + L =1)
o s g
where L is the relative luminosity of cither star. If one
writesthis out for both eclipses and sclves for a s there
results
oc | 3 l—.Ab N
o = 1-Xx_ + : for an occultation
o a 2
k7Y
° (2.16)
atr = 1=-Xx_ 4+ (1-2Xx )sz for a transit
o) b a .

. where Xa and Ab represent A for occultation and transit
. . . ' . oc, tr

eclipses respectively and Y denotes the ratio o /ao .

Either of equations (2.16) is known as a "depth" equation,

since such equations relate the depth of an eclipse (l;l)

to o and k.A Equations (2.16) are incorporated in the solu-

tion method for partial eclipses by obtaining values of k

and o for successive values of Y. Tables of Y(ao,k) exist

(Irwin (1962) gives tables of qo(k,agc)==k2¥(k,a8c)) for
this purpose. The set of values of k and a; so obtained are

plotted on the same graph as are the equations for X =
constant mentioned earlier. The curve so defined will
usually make a steep intersection with the Y = constant
curves, thereby rendering the solution detérminate. An

example of such a‘graph is shown in figure 6.
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FIGURE B: THE GRAPHICAL SOLUTION FOR

PARTIAL ECLIPSES (ADAPTED FROM IRWIN(1962,06,60/7)).
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The preceding paragraphs have described the form of
the Russell-Merrill method that is most useful for the
analysis of toéal and annular‘eclipses, but which for par-
tial eclipsés is not the best nor the most uséful approach.
In fact, Kopal (Kopal, 1979, pp. 113-114) has argued strongly
against the use of the x-functions for determining the
orbital elements. The essence of his criticism is that the
position of any 'fixed' or 'base' points, as used in the
'Russell—Merrill method, can be determined only to some
finite accuracy, and that this uncertainty would propagafe
through the entire light éurve solution, leading to an un-
‘certainty in,thé values of ry.r, and i. Furthermore, the
soldtién is fitted only at the 'fixed points', not at all of
the data points. Oné could imagine a "worst case" in which
a rather large initial error would propagate and magnify
through the solution, leading.to‘wildly erroneéusresults.
'I£ is situations such as these which have led other workers

to use other versions of the Russell-Merrill method.

¢

2.4 A General Formulation

The Russell-Merrill method may be:restated in a form
uéeful fof any type of eclipse, and moreover, in a form tha£
‘is amenable to use with electronic cdmputérs. This method,
due tb Kopai (see Kopal (1979), pg. 115), takes the geometric
relation and rewrites it in the form y=ax+b, which is

linear. If one defines

X = sin28 and y = (1+kp)



v
)

then the geometfic relation may be written in the form

- X = (rgcsc i)2y - cot2i
or
sinzi ' cos2i .
Y = 3 X + 5 ’ ’ (2.17)
: r r
g : g

this latter form being suggested by Tabachnik (1973).

The elements r , ros and i may be found from the following
: 20,2 2, ,.2 ‘
ti ;, Wh =si r d b=cos :

equations gﬂfre a n‘l/ g an c J./rg

2, _a _ -~ =1/2 3 :
tan"i=¢ rgf-(a4-b) and"rs——krg . (2.18)

If an initial value of k{is used to determine p from a
table of a(k,p), then the correct valué'of k will be the
one that renders equation (2.17) a sﬁraight line. The
straight line is fitted using the standard least-squares
technigues. A good initial guess at k can be made in seve-

ral ways. The simplest is to use the formula

el‘_en

k= greer

where 06' is the phase angle of first‘contact and 9" the
éhasg angle of ‘second contact (see figqure 7 for definitions
of 6' and 6"). Other methods are given in Appendix 1. The’
advantage in using eduation (2.17) lies in the fact that éll
available eclipse data'are used, and no special points on
the light curve ére required. ’Moreover, one can use any
a(k,p) table, for,either‘an occultation or a transit, and

‘for any limb darkening to determine p(k,a). Tharefore, this

version of the Russell method is clearly the preferdble one.

£

21

.



LIGHT CURVE

FIGURE /. THE PHASES OF FIRST AND

SECOND CONTACT (87,877),



23

The present-author has written a program for the T1-59 pro-
grammable calculator to use equation (2.17) in the analysis
of eclipsing binary light curves. The values of sin20 and
p are used as input. The T1-59 calculator is particularly
convenient since it has a built-in least-squares linear fit
routine, which can be easily incorporated into a larger
prograr This program will be used in later sections whén
‘rticul~r stars are considered. A listing of the program
.. »rese- "ed in Appendix 1. A computer program, LINE, in-
corporatii ¢ Tabachnik's method, is also listed iﬂ Appendix 1.
Nnefore discussing the appiicatibn of the Russell
meithod - 'd the Russell-Merrill method to close eclipging
bina. y stars, it should be mentioned that several other
versions of the Russell-Merrill method ekist‘in the litera-
ture. Most of these are due té Kopal, in particular the
iterative methods (based on equation (2.13)), which have
proven to be very useful. These methods are conveniently
summarized in;the 1979 book by Kopal. A computer program
incorpofaging an iterative method has been published by
Jurkevich (1970). An important variation due to Kitamura
(1965), which employs Fourier transforms of the light curve,
will be considered in the next section. Séme methods which
are no longer in use are those of Scharbe (1925) and Fetlaar
(1923). The latter method is summarized in a book by |
Tsesevidh (1953), which also contains a description of a
method called the 'express method;. A recent revival of

Kopal's iterative methods may be found in Look et al. (1978),
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which also coﬁtains an interesting application of the depth

equation.

2.5 Non-Sphericity and Rectification

Naturally, one cannot apply the Russell-Merrill
method (or any one version of it) to all eclipsing binary
stars.‘th all eclipsing binafy stars have spherical compo-
nent stars since there are inevitably tidal effects in any
close system. Those eclipsing binaries with relatively
short periods, less than about 3 days, will most certainly
have some tidal distortion present, since thé_two stars
involved wili be quite close to one another (Kepler's har-
monic law:.sz a3). There are often other‘associated
effects. An obvious one 1s théf one star will heat the
other, the effect being a-mutual.one. When first discovered,
‘this effect was called the "reflection éffect", since it
was believed at the time thaﬁ.light %rom one star was re-
flecting off the surface of the other: Thougﬁ inaccurate,
the name stuck. .As the theory of stellar atmospheres
evolved beyond the well-known "gray" case;miﬁ was realized
that the "reflection" =ffect was really a heating effect.
The reflection‘effect has become one of the most difficult
effects to understand, ard hence model, since the magnitude
of the effect aepends not only on the closeﬁeés of the stars,
but also on the state of their atmospheres. The problem as
it ¢urren£ly stands is Summarizea by Sahade and Wood (1978).
A comprehénsive study of the reflection effect, typical of

-many done, is that done by Napier (1968).
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Another effect present in eclipsing binaries is a
direct consequence of the closeness of the component stars.
This 1s the presence of streams of mafter between the stars.
Matter streams can arise in two ways, the first being the
presence of one star with a méving atmosphere (stellar wind).
. Wolf-Rayet sﬁars and red giant‘stars éan be involveé/;nv
this type of mass exchange. A mass exchange can -also arise
if one star expénds out to its Roche limit (see figure 8).
éome of the matter from the expanding'étar is tﬁen drawn
off by the other star (through its éravitation), with the
result being either an accretion disk or a "hot spot",
where the matter stream .makes contact with the atmosphere
of the attracting star. in the Russell model, the effects
of tidal interaction, reflection, and mass transfer are
dealt with.by the process of rectification.

The dynamical and physiéal theory upon-which ﬁhe
process of rectification rests wili not be devéloped here.
A comprehensive treatment may be found in an article'by
Martynov (1973) in the book edited by Tsesevich (1973).

'The treatment £o~be followed here is that given by Proctor
and Linnell (1972). The Russell model treats the stars of
~a close eclipsing binary as prolate spheroids (see figure9),
‘although the rééulté obtained‘at the end of the rectifica-
tion process cén‘be canverted into results applying‘to a

- -

triaxial ellipsoid. The bbject of rectification is to

’

convert the light curve. of an eclipsing binary consisting

of distorted stars into an equivalent "spherical" light



ROCHE LIMIT

26



FIGURE 9, A PROLATE SPHEROID,

LENGTH=a

@
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curve. Thus, rectification produces a rectified luminosity

L and a rectified phase §. ,giveh hnrectified values of &

and 6. 'More rigofously, if an obserer at Roint‘o,,having

difection cosines Q,Hﬁ n 1s* watching an ellipsoidal star in
' ,

a close binary system, then the process of rectification is

ahraﬁfine t;ansformatioh that carries the observer at 0 to

another point 0', with direction cosines Z',ﬁﬂ, n', at the
same distance from the gphere. ‘Sinée_the £;ansformation
carries an ellipébid intd a sphere (with a radius equal to
the ellipsoid’'s semi—maﬁor aXié), then the luminosity of the
spherical star, as seen at d', must be the same as that seen
froﬁ the'ellipéoid at 0. Since the light from the ellipsoid
varies with phase, the‘light from thé“sphere must be modu-
lated fo prodﬁce the same liéht,variation. ‘'The affine
tranéférmatioh is illustratéd in figure 10. It was shown by
ﬁussellﬁand Merrill (1952) that the light'Variation from a
prolate séheroid with‘axes (a,b,b)‘is‘thé same as that from
a>triaxialuellipsoid Having(axes (a,b,c).' vathe orbit has
"an inclination ﬁ in the prélate spheroid case aﬁd i in the
eliipsoid éase, then the semiaxés b and»cfofithe triaxial_’

|

ellipsoid are related by

tan"j _ ¢~ : . - (2.19)

-

Before_prodeeding furthef,/it 1s necessary to define
some parametérs that will be used ‘in the discussion that
follows. The oblatenesste is defined as (a-b)/a, a and b

being the semiaxes . of either the prolate sphéroid or the

28
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‘triaxial ellipsoid. An approximate expression for ¢ is

5
YNnT, n being the cccentricity of the cross-section he

star in the orbital plane. 1t will also be uscful to de-
. , : . : 2 = .

fine z, which 1s cqual to 2¢ sin”j. A non-spherical star
. | . .-

will not have a uniform surfacce gravity, and consequently,

Ve
thoso parts of the surface of the star farther from the

/
/

star's cont or will apoear cooler, while those pavts closor
to the center (neav. the pole of rotation) will appear
hotier. A quantity that describes this o Tect is the

gravity darkening coefficient y, which is defined by

Martvnov (1973):

9]

Yo T e
14T (1 - e )
O .

where X 1is the wavelength of observation, T_ the surface
temperature, and c, (equal to hc/k) is a numerical constant
~hose value depends on the units of A and'To (see Gray

(1976), pg. 117). Therefore, the observed intensity at

any point on the star's surface.will be
I = H(l-x+x cosy) (1L-y +yg/go) (2.21)

where H 1s theﬁintcnsity at the centre‘of the obhserved disk,
x and 7 are defined in equation (2.1), g is the surface
gravity at any ;oint on the star, and 9o is a rgfercnce
value of g, usually taken to be the value at the pole of

the star. The light from either star can be expreséed as

(Russell and Merrill (1952), pg. 42): N

«
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2(0) = I(90°) (1 - Ne sin?j cos?8) + G £ () (2.22)

L IRTY
where

15 + x

N=i5—_—5§(l+Y) -

In this formula, I(9OO) is the light from one star at qﬁa—
dgature phase (8==90o), G is an 'albedo' factor that deter-
a¥nes the fraction of light received from the companion
star which is reradiated et the wavelength of ebservation

(Russell and Meﬁ%ill (1952), pg. 46), and f(¢) is a 'phase

function' fhat characterizes the reflection effect. The

\\procedure of rectification is oneﬁinvwhich the effects of

reflection and ellipticity are removed Ey writing out the
equetion for 2(6) for both stars, finding the sum of these
two cquations, and then doing the appropriate subtraction
and division to produce the value of 1(6) for a system

cor isting of sﬁhericel stars. In practice, rectification

is uone by fitting a Fourier series of the form:

'sin6 + B, sin 20  (2.23)

cos 26 + B 5

"2(86) =-AO4-Alcos”-+A2 1
to the light curve ef the eclipsing binary outside the’
‘eclipses (one may use cosze and sin29 instead of cesée and
sin 26, by making use of a trigonometric idehtity, but the
coefficients will then take on different meaningsj. The
series may bevfitted either by the least—squeres method,or
by a graphical method developed Ey Ruseeli and Merrill. An

example of the latter may be found in Appendix 1. The rec-

tified light is then given by



- i + i 8
| _ Robs (Bls1n 0 stln 290) (2. 25)
regt l-A + A, cosB6+ A_cos 29
2 70 1 2

i
and: the rectified phase

sin 6
o

sin 8 = b5
rect : . 2 X
(1 -z cos Oobs)
and
cos 6 = 1-z 5 cos 6 (2.26)
rect 2 obs ' '
. l—-2zcos 6 b

where both‘eéquations are required for proper'quadrant de-
finition (in taking an inverse tangent, an electronic
computer uses the range -m/2 < 8 < 7w/2, rather than 0<6<2m,
which is the range of eobs). These formulae appiy to all |
observations, both in and out of eclipse. The faétor z fay
be obtained empirically by using the approximate relation
z= |2A2]; It should also be noted that the'preseqce of the
sine terms in the Fpurier series for 2(6) is not jus:ifiable
physically; their only purpose is to take care of any extra
'compliégfions' that might arise. This then is the process
of rectification as developed by Ruésell and Merrill. Thé
end product is a lidht curve thét is flat 6utside the
eclipses, with the eclipses being those appropriate to
spherical stars.

The proéess of rectification is opeﬁ to criticism
oh several grounds. The first, and most obvious, is the
presence of the sine terms in the Fourier‘series for 2(6).
The presef;i)6§ such terms should be justifiable from a

physical p 'n{fé{ view, but the present author knows of no
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such justification, published or unpublished. Another cri-
ticism, raised by Kopal (1979, pg. 192), is that one is using
a Fourier series outside its range of validity, since a

series, which has been fitted to the out-of-eclipse obser-

vations is being applied to all obscrvations, both in-. and

out-of-eclipse. Rectification will work for systems in
which distortion effects and the reflection effects are
minimal. The example in Appéndix 1 is of this variety. 1In
cases such as these, the Bn—terms are qdite small in com-
parison ﬁo the>An—terms.. However, one really cannot apply"
rectification to highly distorted éystems (very close
binaries, e.g. W Ursae Majoris). "In systems such as these,
the shapes of the stars depart greatly‘from an ellipsoidal

form, and actually approach a Roche-surface form. The

‘theory upon which rectification rests is clearly not de-

signed with such systems in mind. Consequently; rectifi-
cation is no longer used, and more physically acceptable

procedures have replaced it.

2.6 Differential Corrections

If the geometric elements Iyr Xy i,Ll ,L2 roXq

ahd x, are well-determined (in the sense thaﬁ the solution
for these elements 1is determinate),rone may improve the
values of these elements by the 'differential corrections'
procedure. Differential corrections are based on the idea

that if

2(8) = u - aL (w = 2(90°)) (2.27)



then

AL(B) = Au - aAL - LAo

N Sa - ‘

= Au - abL = L ] 37 Ax. (2.28)
L X. J
=1 "3

where Xj is one of the'elements rl, r2,jq xl, or X
Equation (2.28) may now be regarded as an equation of con-
dition, so that if.this equation is written out for each
(6,2) pair, one may solve the system of eduations fér ij's,
Au, and AL by the least-squares method. The value of AL is
found by subtracting the calculated vaiue of'l from the
observed véiue (i.e., an '0-c'). The various partial de-
rivativeé appearing in equation (2.28) have différent forms
according to the eclipse type. The form of o must also be
chosen according to the eclipse type. The paper by Irwin
(1947) describes the procedure of differential corrections
in great detail, and tables of the various derivatives are
provided in an appendix to the paper. The present author
has written.a number of computer programs for performing
the differential corrections procedure using the values of
the derivatives from Irwin's tables or values generated by
thé equations fof'the derivatives. Some of these programs
‘may be found in Appendix 1. It should be noted that one
cannot apply differential corrections to every eclipsing
binary star, since, as mentioned earlier, a well-determined
set of elements is required, as well as a large number of
observations to make the least-squares method fruly appli-

cable. Least-squares differential corrections should not
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be regarded as a 'black box' that always generates improved
values of the elements, therefore it should be applied with
some discretion. As Irwin mentions in the paper quoted

earlier, least—squarés is no substitute for good sense!
2.7 ,Conciusion

The discussion of the Russell model and the method
of light curve analyéis associated with it is now cohplete.
This model of an eciipsing binary star is best appiied to
systems having spherical components, since any application
to systems having distorted stars will inévitably lead to
the use of rectification, the validity of which is in some
doubt. The Russell-Merrill method is still used to provide
a preliminary Set'of,elements to be used in more advanced
méthods of light curve analysis. In short, the Russell-
Merrill method is not the most fruitful one, since it is
possible to derive much more information from a light curve.

It\would also be of some advantage to have a method of

" analysis tailored for use on an electronic computer.
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CHAPTER 3

THE METHOD OF KITAMURA

3.1 Introduction

With the developmentvof the electroﬁic computer in
the late 19505, many workers in the field of close binary
stars began looking for methods of analyzing eclipsing
binary light curves that might be suitable for electronic
computatioﬁ. The pregrams that were developed all used the
Ruseell model and the Ruesell method for computing the
orbital elements. In_general, the method of analysis used
was one of Kopal's iterative methods. A good example of
such a computer program can be found in the work of
Jurkevich (1970). This preliminary analysis. was usually
followed by the application of a differential corrections
program to obtain improved values of the elements. However,
the problems of determinacy were still present (especially
for partial eclipses), as well as the ever-present problem
of allewing for the various 'proximity effects' present in
close eclipsing binary stars. It was éuggested by Kopal in
1959, that the problem of the‘determihation of the geome-
tric eléments of an eclipsing binary might be more easily
‘solved if one were to somehow make use of the Fourier
transform of.the light curve. Such a'methOd was formulated
by Kitamura (1965). It stili used as a basis the Ruesell
model of an eelipsinq binaryv, with rectification'being

required for close eélipsing binaries. Kitamura's method
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L
solved in part the problem of 'proximity effects', since
the Fourié: transform operation (like any form of inte-
gration) is a smoothing operation. The required Fourier
transforms being easily calculated by an electronic
‘computer.b The process of determining Fhe elemenhts was then
one of matching the Fourier transforms of the observed'light
curve with those compﬁted from fhe Russell model. This is
the essence.of Kitamura's method. We now examine the |

method in detail.

3.2 Incomplete Fourier Transforms

As previously mentioned, Kitamura's method is basgd
on the Russell model.’ The observed light from an eclipsing
Mvpinary system at any phase 0 is, accordiqg to the Russell
model,

2(8) = 1 - oL ,
where ¢, o, andyL are-the quantities defined iﬁ chapter one.

Following Kitamura (1965, pg. 30), the Fourier transform of

%1 %1 °1
J 1(8) e ap = J e1® 46 —LJ «e™ a8 (i=/D)
0 0 0

Separating the real and imaginary parts, we arrive at the

'incomplete' transforms of 2(6)

1 81 °1
’SnE J 2(6) sinnb d6 = J sinnBb d6 - L {asin nb6 ds
| J
0 0 0]

(3.1)



For the purpose of analyzing the light curve, the left hand

°1 %
Cc_ = J 2(8) cosnd do = J cosnf db - L
0 0

-

\

|

a cos On 46

n=0,1,2,.

38

sides .of equations (3.1) are used while the right hand sides 6

are used for the model computations.

The specification of

the limits of integration remains to be decided. Since

2(8) is symmetric about either minimum, the lower limit of

integration is obviously 6 = 0 (assume that 8 =0 specifies

the minimum of 2(8)).

To determine the upper limit, one

may choose -any phase ¢:>el, el being‘the phase angle of

last contact (see figure 11).

arbitrarily will be accounted for later.

The effect of choosing ¢

It should be

>noted that in general, there will not be a data point at

exactly 8 =0, so any data point having a phése g close to

6 =0 will suffice. Equations (
o)
S = ( 2(8) sin nb6 4ds and C
n J n-
€

Without going into excessive déﬁFil, Kitamura found it con-
venient to define three parameters simply related to Sn and .

Cn to connect the Fourier transforms to the geometric ele-

ments. These parameters are
N A1 e o152
1 Llcl 2 Llc2

where
quo = ¢ - ek - Co .

3.1)

become:

)
=j 2(6) cosnb de6 .
€

' (3.2)
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L.s = 1l - cos n¢ 1l - cos ne \ XS ) (3.4)
1l n n n

Lo = sin no¢ sin ne X~ KC
1l°n n n

Once again, A is the value of 2(9) at mid-eclipse, and K is
a normalization factor for the light curve, which can be

computed by
K = vy~ % .
C, (o) = C 13,

¢l and ¢2.being two phase angles outside the eclipse. The
first two terms in each of equations (3.4) account for the
. choice of integration limits, ¢ and €. Thergarameters Fl'

F and E may also be calculated with the right hand sides

5
of equations (3.1). Kitamura (1967) performed such a gom-
putation, and the result was a large set of tables of,Fl,
Fé, and E for 0« rl;2 < 1 and 40° < i < 900, To account for
1imb darkening, Kitamura computed Fl, F2, and E for zero -and
total limb darkening. EKe then conétructed a table of 're-
lated delta-functions', which allow interpolation for inter-

mediate yaldes'of limb darkening. The 'related delta-

functions' are/defined by the following formulae:

s' - s© o C' — Co _
A' = B n , A =2 1 (occultation) , T
5, sg Ch c© . C
n
30 (k)s" - s° 39 (k)c” -¢
A" =t n__n A"z % (transit), (3.5)
s, 2 ! ¢, 2 ’ ]

' T - 2
o (k) = 4 > sin YV/k - Yk (1-k) (12 +28k - 32k7)
37Tk . ATk




where a prime denotes an occultation eclipse and a double

prime a transit eclipse. For any darkening x, the charac-

teristic functions become

1+ XA, " 1+x
X _ 0" Sn wx _ o l+_XASn X _ 0 o ,
p'* =29 —— 8B g F=r 0, E'=E — =,
n ‘n 1+ xA i n n 1+ xA 1+ f(O)
' : Cn Cn .
(3.6)
£(0)"-£(0)° o.3 _o
£(0) = ) , £(8) = Up-x)ao-ki Xo
= £(0)°[1+xA£(0) T ,
where
£(0)°=0° , f£(0)' =34° ,
- .O 1 —2 l r .

£(0) being'the light loss at mid-eclipse. if the ieft hand
sides of these equations are taken to be the alues found
via equations (3u3), then if prelimingry Qéluu of Ty s Xy
and i afe known from an'initial solution, the values of the
A-functions may be found from the tables and (assuming a

limb darkening x) used in equations'(3.6) to solve for Fg ,

"'
Fg and Eo.-,Using these new values of the characteristic .

functions, one may find new values of ry Xy and 1i.

3.3 Practical Approach

In practice, the’incomplete Fourier transforms Sn
and Cn are cdméuted from the light curve by using the tra-

pezoidal rule:

(L ('ei) sin n8i + 2 (ei+1)5ihn(6i+l)][ei+l - Gi]

_1 7%
ShT3 z

and
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Z [2(8,) cosn, + (8, ) cos n‘(ei+l)][‘ei+l—ei]

To obtain improved values of S, and C_ end corrections to .

the trapezoidal rule may be used:

o L 2 2 N
ACc =0 , A?l‘—l_Zh U¢) sin¢ , AC2 h® 2(¢) sin 2¢ ,

T
|+

2

2 h“[2(0) - & (¢) cos 2¢]

I
oV

.1
AS) =37 h

[£(0) - 2(¢) cos ¢ ] ' A52
With these values of S_ and 'C_,.the values of L s and L,cC

- ~ n n 1l7n 17n

in equations. (3.4) may be found, and hence the values of Fr

F,, and E. ' The preceding analysis is' performed for each

observed eclipse, provided that the eclipses are déep

enough to allow Sn and Cn to bé computed. If the eclipse

type is in doubt, the folloWing 'rule -of thumb' may be used:

tr ocC
[F 17 < [F]

This rule need only be applied in the case of partial
eclipses, ‘when the type of eclipse cannot be determined

directly from the light curve. One can now consult

SN,
N RN

Kitamura's tables of Fl' FZ’ E'ahd Fl/F2 to fiﬁé the gppro—
priate elements LyrXys and i;’ In general, one will énd up
with several sets of elements for which the values of the
charécteristic functions match. To determine which set of
elements is the 'best fit', one can examine the values of

T-1, where T is given by:



- | , /

| | . \ N ‘//,

- L D D , v
T==ij—LSJ Lp=‘C5£%_’ LS= “:S , (p=primary eclipse,

: Bp = (.Lico)p r Dg = (LlCO)S , S = secondary eclipse)

-where‘the values of Dp.andiDS can be computed from the
firSt of equations (3.4), and (.co)p and (co)S can be found
from Kitamura's tables (cOc }Eocfa, c§r==c8?Q - both»fa and
Q are listed in the tables adjacent to each set of elements
£y r2,»and i). The set of elements fo~ yich T-1 is a
minimum (= 0) is the 'best’' set of elements. If limb dar-
kenlng is to be taken into account the procedure descrlbed
earlier, 1nvolv1ng the related ajéunctlons,fmay be used.

The present author has written,é/computer program 'LCFT2',
which computes Spr Ch Fl,>F2, F /F2 and E for a given 3
eclipse light curve. Thks program, along w1th a sample run,
may be found in Appendl; 2. | '

As with the ﬁussell'methbd, a differential corrector
program 'may be usedrtolimprove'rﬁe values of the best set
of'elements. In fact;‘a’differential‘corrector should be
used 51nce the values of the elements obtained are read
dlrectly from the table and therefore represent only an
approximate set of elements. The programs for.dlfferential

. ; ‘ |
corrections discussed in chapter one may be used for' this

-

purpose.

3.4 Conclusions s

' Kitamura's method has many advantages over Russell's

method, since it uses all the data available instead of only
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gﬁpree or more fixed points. Furthermore, as mentioned
égrlier, the Foﬁrier transform operation acts as a smooth-
ing operation to reduce the effect of random errors in the
observations. This aspect of Kitamura's method also has
the advantage of épeed and cémputational simpliéity. ‘Once
the incomplete Fourier transforms have been found, it is
ju;t a matter%bf gbnsulting the appropriate tables to;det

!

the values of thq/elements. The bulk of the computation is

PIN

done by the computer.
. Howevér,{there are distinct disadvantages in /
‘Kitamura's method. The first is that it is based on the
Russell model of an eClipsiAg binary, so rectification is
required for those cése? in which the stars involved are
vsigﬁifiqantly distorted, and where other effects (reflec-
tion, mass transfer) are-presenﬁ. Kitamura's method would
be mﬁéh more useful if it were based on a better (more
realistic) models of an eclipsing binary. A second disad-
‘vantage is\the need to consult a rather large set of tables
in the last step in the analysis ¢. a light curve. This
procedure is not objectionable when results from both
minima are available, or when a single minimum provides
determinate.results. A search through the tables in éases
such as this takes only five or ten-minutes at the most. -
However, in an indétefminate case, the researcher is facedv
with the prospect c wahdering through:24l large-format

(about 30 cm x 50 cm) pagqs to look for one set of elements.

One can easily spend an afternoon doing this. All objections



aside, Kitamura's method provides an excellent way in whi;h
to compute the geometric elements of a well—detacﬁed (no
photometric complications) eclipsing binary. From a his-
torical péiﬁé of view, Kitamura's method provides a start-
ing point for an alternative form of light curve analysis,

which culminated in the recent work of Kopal (1979).
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CHAPTER 4

ANALYSIS OF LIGHT CURVES IN THE FREQUENCY DOMAIN

4.1 Introduction

To make further‘progress in the analysis of the
light curves of eclipsing binary stars, one must dispose of
the Russell model entirely, and adopt a more realistic, and
consequently a more phyéiéally compléx model of a binary
star. Briefly, éuch a model would take into account details
such as non-sphericity (e.g., using the Roche model), stellar
atmosphéres (for the purposes of deducing'limb darkening,
g?avity darkening), and any other effects that might be
present. Consequently, the mathematical machinery required

- grows in complexity.

A generalized approach, such as the one just des-
cribed, has been developed By Kopal. A convenient summary
of this work can be found in his recent book (1979). Brief-
1y, deal considers eclipsing binaries with both spherical
and non-spherical component stérs from both a dynamical and
a gecometric (i.e., eclipse geometry) point of view. One

\can, thefefore, look at an eclipsing binary in any dedree
of complexity, from a simple preliminary analysis to one
taking into.account the unique features of a particular
binary star. Xopal achieves this flexibility by using the
Fourier transform of the light curve, .but in a way that is
much different from the approach uséd by Kitamura. The

details of Kopal's use of the Fourier transform of the
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light curve wili be expounded later. The motivation behind
this approach is twofold: the Fourier analysis, in certéin

cases, renders the solution for the geometric elements

(rl, r, and i).algebraic, in the sense that the end result

is an equation stating "rl= ...", for exémple. Eurthermore,
'proximity' effects present in close binaries can be separ-
ated‘from light variations due to eclipses by the nature of
their frequency spectra. Eclipse variations produce a con-
tinuous frequency spectrum, while proximity effects produce
only discrete ffeqdéncies. In short, Kopal's approéch pPro-
vides both a realistic .description of an eclipsing binary,

and a relatively simple method.for determining the geémetric

elements, given the Fourier transform ¢: the light curve.

4.2 'The Equations of Kopal's Method

’

To begin.ouf explorétion of Kopal's method, let us
consider the Fourier transform of a.light curve. The pro-
cedure and notation follow that of Kopal (1979). Consider
first the light curve drawn in .. sin“" 8 (m = 1,2,3,...)
coordinates. The motivation for doing this will become
'clear,later. Figure 12 shows the light curve plottéd in the
R-—sinzme.coordinates. The case of spherical stars will be
»éonsidered first. There is a straightforward éeneralization
for'non—sphefical stars. Let the area bounded by the light

curve and the lines sin2m6 = 0, & = 1 be denoted by A

2m

This area, known as the m—-th moment of the light curve, is

evidently given by



FIGURE 12, THE DEFINITION OF App,
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91 2m
A = J (1-2)d(sin"06) , (m=1,2,3,...) (4.1)
2m Ay -
0
.where 81 is the phase angle of last contact. The upper

limit el was chosen because 1-% equals zero for 9§ > Bl,
giving zero contribution to the integral. By the very

nature of the integral defining A, , one might suspect

2m

that A2m is related to the Fourier transform of 1 - 2(8).
Indeed, it is not difficult to show this. To proceed, the
following result is required (Oberhettinger,1973; p. 31):

(—l)jej cos 276

s 1 j =0
€. = .
J 2 3 >0

The differential of this series is, after a little algebra:

(m+3) ¥ (m=3) ¢ (4.2)

i

2m

8) =

‘ o J+1 .. .
d(sin (2m) ! Z (-1) j sin 238 (4.3)
j:

gm-1 1 (m+j)!(m—j)! :

Multiplying by 1-%, integrating from 0 to el, and inter-
changing the order of summation and integration on the

right-hand side, we arrive at

Y imdsin® o)
2m | sin

>
Il
OV

! Of (“1)j+li jl (1-2) sin 23648 . (4.4)
41 521 (m+3) ! (m~-3j)! _
0

1

To relate this result to the Fourier transform of (1-R),

consider an arbitrary function f (8) (which could be 1-2(8)),

49



which is an even function (i.e., f(-0) =-£(08)). The
Fourier transform of f£(8) will be
c
F(u) = f £(9) e 2™VO 45 | (4.5)
-C . ’
where v is the spectral frequehcy, and *c are the limits
of integration, which can be infinite. In the situation
at hand, the limits of integration will be the pﬁases of
first and last contact since £(8) = 1-2(8), which will be
zero outside the eclipses (61> c). Let us now split up f(9)

in the féllowing way:
_1 1
£(6) =35 [£(8) +£(-8)] + Eff(e) - f£(-8)]

The first term of this equation is an even function, while

the second term is odd. KnoWinQ this, it is not difficult

\

to show that

c c ,
f %[f(e) +£(=0)] e 22V 03p = J [£(8)+f(-8)]cos 2mve ds
c 0 '

¢ . ) ‘ Fl(\))

and (4.6)

c , . c ‘
J % [£(8) - £(-8)] e *°™ 045 = j [£(8) - £(-6)]sin 27v6 d6
fo 0

The Fourier transform F(v) can then be decomposed into its

l(v)-in(v). Now assume that

f(-8)=-£(6), so that Fl(v) is zero and (letting c= 81-—

‘real and imaginary parts as F
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phase of last contact)

51

el
Fz(v) =2 J f(6) sin 2mv0 d8 . (4.7)
0
For £(6) =1-2(8) and v = j/m one has for Fz(v): )
] .
1.3 1 L
5 Fz(ﬂ) = f (1-2) sin 236 de . (4.8)(
0

This integral is identical to the integral in the series

expansion for A derived earlier, and is also the expres-

2m
sion for the Fourier coefficient sz in the Fourier sine
series

1-2 =
j

lo~18 .

. sz sin 236 . (4.?)

This series is a special case af the more generalized

Fourler series

) cos M2+ F_(

. ' _T
2 =) sin — (c ——??)

N
als
Q

-

1
+CZF(—
(4.10)

when the upper limit of integration in Fz(v) is exténded

to m/2. The Fourier coefficients b are then given by

2]
/2 , |
23 T2 T . . |
0
Finally,
m i+l .
_ (2m)! 'n*(_l) 3
fam T Tm il m+3) w3071 225 - (4.12)

This result shows the relationship that exists between the



A2m and the Fourier transform of the light curve. The

moments of the light curve, the A, 's, are essentially

2m
'weighted means' of the Fourier coefficients b2j' For the
cases of interest in light curve analysis, m=1,2,3. The
A, 's are then
2m )
T
By =715 ‘,
A, =T b.-ip)=a -LTb L (4.13)
4 4 2 2 74 2 8 74 ) .
e o 5 L3y .3y
Ag =7 (g Py - 704 * 16 Pg

A point of particular importance here is that the moments

A2m are related to the coefficients sz, and these corres-

pond to discrete frequencies in the Fourier sine series

(4.9). The index m on the A, 's will then correspond to

2m

the frequencies used in the spectral analysis of the light
i) .

curve.

" Another feature worthy of note is that equation (4.1)
-is valid only for sphérical stars. . Furthermore, it applies
for any value of limb darkening and any eclipse type. .The
comput;tion of the Azm—functions will be considered later.

The results juft obtained may be generalized to the

case in.thch'thé stafs constituting the eclipsing binary
are non—spheric;i. From the point of view of data analysis,
this étep is quite simple. One need'only replace the
integrand of equation (4.1) (that is, the function 1-2(6))
by 2(w/2) - 9(8), where 9(m/2) 1is the wvalue of 2(8) at qua-

4
drature. In the case of spherical stars, 2(m/2) = 2(81)='1,
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the upper limit of integration being el. In the case at
hand, however, the upper limit of integration is‘ext;nded
ﬁ}o 0 =1/2 since L(1/2) - 2(0) 1is, ip general, non-zero for
0‘56 < m/2. Furthermore, since it 1is often difficult to
separate the eclipse phases from the non-eclipse phases in
non—sphérical eclipsing>binaries, an extension of tﬁe uppef
limit of integration to 8 =7/2 will adequately cover any
eclipse phases (between 6 =0 and 6 =7/2) that might be‘pfe—

sent. The integral defining Ay becomes:

/2
m . 2m .
A, = J (e (z3) - 2(8)]d(sin” 8) . (4~.14)
' 0

For future reference, this particular integral will be

denoted by A o to distinguish it from its spherical geome-

2

try counterpart, equation (4.1).

-

To implement Kopal's method, one must be able to

determine A2m or ﬂZm (whichever-is appropriate) from the

observed light curve of an eclipsing binary. There are

several methods available for computing A2m or A, _, given

2m
2(6).

The most straightforward approach is to numerically
evaluate equations (4.1) and (4.14) by the trapezoidal rule.

If one samples the light curve at equally-spaced points,

the standard trapezoida} rule applies:
0 8

1 2m L om-1
J (1-2)d (sin®™9) =J (1-2) 2m sin”™ 16 qe
0 0 | | (4-15)
= (B ((1-2.)sin®M6, + (1-2,) sin°™0 )+N§l(1+sz, )sin?Mp, ]
2 1 1 " N i 147

i=2

Sy
S s
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where N is the number of obéervaﬁions; (Oi, l—Qi) are the
N data points, and h = el/N is the sampling interval for
the integral. Alternatively, the data may be used directly‘
in the following integration rule (Niarchos, 1981)

- N 1 . om, . _2m |
A, = Z [2(—)—:2-(,Qi+2i+l)J[51n B84~ sin ei] . (4.1-

: ’

Similar formulae hold for the evaluation of §2m' The pfb—
cess of numerical integration just described is very useful
and is ad. - te for wmost purposes. However, there are some
dréwbacks. “irst, one is unable to perform any sort of
error analysis if the méments of the light curve are formed
by numerical integration. The various aspects of error
analysis will be explored later. Moreover, in the case of
the.sz's, a ladk of points néar 0 = /2 will seriously
affect the value of the integral. This effect has been
noticed by Koul and Abhyankér (1982) and also by the present
éuthor in earlier work (1983). Tﬁis problem arises from
the fact that the valué of 2(8) closest to 8 = w/2 gives
small but significant contributions to §2m' Since 2(8) is
incréasing in thé range 0 < 6 ﬁ m/2, one would e#pect a
large contribution to RZm from values of 2(8) near © ?'OL
.but steadily smaller contributions as 6 approaches W/Z;
This problem is illustrated in figure 13. This éffect is
particularly prevalent when an observer has concentrated on
acquiring a large'number of eclipse observations, but has
paid relé}ively little aﬁtention to‘the lightvcufvéloutside?. .

.

~the eclipses. q

1



X

FIGURE 13, CONTRIBUTIONS TO Ay,
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4.3 The Use of Fourier Series

A much more suitabfe method for determining the
moments of the light curve is to fit a Fourier cosine
series to 1-2(6) orll(n/Z)-R(e).b In ﬁhé’spheriéai staf'
case, one can fit 1-¢ directly with a’Fourier ésries of

the form

: 1 o 'nmd '
l-2=3a  + Z a_ cos(Hz—) \ (4.17)
- n=1 . 1

where el==phase of last contact and N is the maximum‘number
of terms in the series to be used. .The_cosine series is
used because 1-2(8) is an even function of 8, hence all of.

. ‘ ; b,
the sine coefficients will be zero. To find the various

I

Fourier coefficients a, (n=0,1,...,N) in ﬁquation;(4;l7),
one must first estimate 6, , and then form equation (4.17)
for each observation in'the'range 0<B< 81. The resulting
system of equations may be solved. by the least—squaré;

method. This process for determining.the Féurier coeffi-

cients is described in some detail by Kopal (1982a). Since

. the least—squarés solution can also produce estimates of

the uncertainties of the Fourier coefficients, an error
analysis may be done. Béfore-venturing into this, the
relationship between the Fourier coefficients and the mo-

ments of the light curve A should be explored. Following

2m
the development given by Kopal. (1979, pg. 241), let usAbegin

with the following identity (Oberhettinger, 1973; p. 31) .

_ o Ly
2 J=0 I35+ )T (55=~ 3)

.56
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As with equation (4.4) of this‘chgpter, differentiate both
sides of this equation, multiply by 1-%, and integrate

between 6 =0 and 8 =6_:

1
6
1
A, = J (_1—2_)d(sin2me)

5 . 4 ' (4.18)
[ (2m+l) / (=17 o |

=‘“i%%if‘ y 3 T J (1-2)d[sin(2j+1)e8] .
2! J=0 I (m+3+3)T (m=j+3). o ’ |

N ' : |

2 o . s .
Kopal has evaluated the integral on the right-hand side of
: &

'equation (4.18) in terms of the Fourier coefficients an.-'
The procedure used. is not unlike that used to derives
equation -(4.12) earlier. Without going into the algebraic

details, the following result is obtained (Kopal (1979,

~
-

4

pg. 241): .
| (—l)Jsip(2j+l)él o (—1)“[(2j+1)el]2

A = D(2m+l)
2m 4m

a .
n

3=0 F(m+j+%)P(m—j+%)n=0 [(2j+l)91fa;[mﬂ2
- (4.19)
The number of termé to be used in the second sum in equation
(4519) w;ll‘dgpend uponyhow many coefficientsrcan be deter-
gmined significantiy frbm the data. Typically, one can
determine only five or six coefficients from the leést—
squares solution of equation (4.17);} To facilitaté the
determina;}on of the A ‘ |
1 Kopal (1982a, pp;_l3lr132) summed the first sg;ies:in eqgua-

's from'the Fourier coefficients a s

tion (4.19) explicitly, leading to much more tractable

relations for the A, 's (m=20,1,2,3):

2m

A = % a +a, +a, + ... + a

o) o) 1 2 N
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3 L2 L2
0 d,. s1in Ol X f}y+lbos_ol

AL - [__ﬁ__,_.-w"_. ; “ L
5 .
2 v=0 b T 1-—[vﬂ/01]2" l—-[(2v+l)w/20ﬂ2'

wqyé" sinzO sjn270
~ y_, V- [ 1 1
A, = e e T ST a, -+
4 - ‘2 . 2 4-| .2\)
V=0 ‘1——[vﬂ/01] [vn/O ]
D >
a2 ‘\ -&; ! N - 2
.o ( O 31 COs Ul F
! - »)" - - T T e
o Li-r EURVALN 4-—[ 2v+1)n/9o 2i72vr
(4.20)
3 5 sin” 0 8 sin”20
\621%_ - ; ( ] ~ Amlj,y
' w0 kl_—[\n/e ] 1= [vie/0, ] :
' \
3 s1in 3@1 ) 3b‘w’. 5cos Gl
oo ”M'”4§3a2v + 16 \Z SN ““"*“fj -
9~ [/8, B S S SEVELTY
: - 2 )
8 [ 052 2J . 3 CcCOs k‘ Q ; ,-/'_"_'. V'U o
_ ;_._'__M,‘:._‘__l,__ »-—+' . 1 s X ES
S 4- (v r/28, 14 9-—[<2v+1>nzae1 T2 A2 N
where ' - ;'
. ~)
L1 v:O)
Yooz vso)

The present-author has adapted a prdgram publishcd by
Jurkevich (1981), which performs the Fourier analyéis of
the light c@:ye and the comﬁdtation of the’mém?nté.
Examples of this analysis will dppear ig later chaptersy,
wheq individual stars are considered. The process of
leaét—squares Fourier ‘analysis 1s quite sufficient forrthe
analysis of mosﬁ eclipsihg binary stars, but. it must bhe

generalized if it is to be applied to, very cloSe_éclipsing

systems, in which the stars are severely distorted (e.gq.
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"
W Ursae Majoris-type systems). This generalized form of
\

Fourier analysis has been developed by Kopal (l982b)5 The
mathematical development of Kopal's generalized Fourier
analysis is quite complicated, and only the resulté will be
stated here. The method also émploys tie dynamical'theory»
Qf close binary stars, which will_Pe considered later in

this chapter. One begins by writing ﬁ-ﬂ as a Fourier cosine

1

series valid in the range -1/2 < 8 £ w/2:

1-9 = ] e,a cos2mé , (4.21)
m=0

- where e is the factor defined .injfequation (4.20), and M is

S
the number of coefficients to be used. Once again, the

least—squareS'method is used to‘determine'the Fourier co-

- efficients a - The next step in the analysis is to deter-

= (1)

mine the 'modulated moments' Bn from
M o ~
RO oy en) g (A=1,3,5, n=3,4). "(4.22)
1 m m
m=0
The ¢ék’n)<functions have beeh tabulatéd by Kopal (1982b,

It N

" pp. 447-448). The modulateé\momenés'ﬁél) may now be related

to the moments of the light curve through
é(l)

o~ 8

oem) a0 (3 =1,3,5, n=3,4), (4.23)

j=1 I 23 _ .

where the pgx’n)-funcéions havéwbeen tabulated by Képalyw

's may be found either b%ithEMﬂkfé{
. » 4 i ..‘;;:L, LW ,_:

" (1982b, pg. 449). The By

.me-hod' of least-squares or by‘setting up as many eﬁué&&gﬁsﬁg

.
3

of the form (4.23) as there are Azj's to be determinﬁgﬁkN

2 .

P

R
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/
équations in N unknowns). Since only A2, A4, and A6 are

required, only three equations are required. However, AO

is still to .be determined. Ao 1s now given by
3 .
A =1=-12) c. , (4.24)

where : .

1-2 =,% a +a, +a, + ... + a

The coefficients cj are part of the light curve modulation
- process, and will be considered in more detail later. A
further equation incorporating the cj's is:

AC.
—+:‘.]-+
1 M3

a0 _
o

ogA’O)Az. . : (4.25)

Il o~y

He~—18

]
Equation (4.25) may be used tO‘SOlVé for the cj's(by matrix
inversion),'Since.ﬁél) ma;-be found frqm:equation (4.22),
and since the éeéond summation in equation (4.25)‘contains
péA'O)AZj, which can be detérmined for j==l,2,3.v A; can
now be evaluated via equati-n (2.24). This cémpletes the
determination of-the moments of the light curve for the non-
SphericalAcase. ‘The procedure just described is a 'filter'
for remdving proximity effectS; naméi& eliipticity (non-
sphericity) and reflection. If'tidal distortion is impor-

tant, further results from the}dynamical theory of close

binary stars nav ; : used. As a final note, one may deter-

mine the error in the resﬁltiﬁg values -of the Azm's found
ey .
via thejﬁtgyess of generalized Fc -ier analysis. This is

- done 'with the aiﬁ of the following equation:

J
V-
B
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A S LI ‘ (4.26)
- ™

(Asn) functions have been tabulated

where, once again, the Kj
by Kopal (l982b, pp. 445-446). Equation (4.26) gives the

error incurred by using n= 3,4 in equations (4.22) and (4.23).

(),

The values of the € 's will be qulte small in most cases.

PRI

4.4 The Use of Numerical Integration

The moments of éhe light curves of non-spherical
eclipsing binary stars may also be found by the technique
of numerical integration‘(Kopal; 1979, p. 195) discuésed
earlier. Recall that (equation (4.14)),

m/2

[z( 2(8)]d (sin’™ @)

]|
Il

2m

was tﬁe_expression for the mémeht of the light curwe in the
non-spherical case. As in the Fourier analyéis technique,
one may mdelate the light curve.and obtain the moments Azm
' of the light curve for an equivalent 'spherical"system.

To do this, the following equation must be used:

: 4
- - _ }_ :
A, =-m zz B(m, 53+1) ¢y + Ay + By (4.27)

where B(nh-%j+l) is the bété@%@%ction (equal to P(m)F(%j*JJ/

i
RS
el

TUn+%j+l)),cj are the dYﬁ@%&péi~8§efficients mentioned
earlier. The last term in'(4;27), the B2m’ is known as a

1'photometric perturbation' and deécribéﬁbthe departure of
&«\J,

the star's shape from the spherlcal fog;“*ﬂ§$pse quantltles

o\)

S SRR
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are usually defined by rather complex expressions. The
general form of the B, term is (Kopal, 1979, p. 3195):
/2 .
M g0 o) L (), .(h) 2m
B, =L, ) C (£ +£ 7+ £ 7]d(sin” 0) (4.28)
2m 1 .- j * 1 " .
h=1 5 2

where L, is the relative luminosity of the star being

1
eclipsed, A is the degree of limb darkening, and the co-
efficients C(h).are defined by:
NC I S B
- A Lu, o
- l _ Z X,
o ey 2 , .
and ' . (4.29)
o(h) _ “h
A fu
) SL+%
2=1

the ui's the coefficients of limb darkening (ul==linear

darkening, u, = quadratic darkening, etc.). The term in
» ’ .
square brackets in equation (4.28) describes the effects of
N

rotational and tidal distortion. To determine the Azm's

for m=1,2,3, one computes the A. 's by numerical integra-
: Y g

2m
tion, and the coefficients Cj by numerical integration via

a .
cj=\'[[ﬂ(%)- 2(6)]p§a'n)(x)dx (x=cos8) (4.30)
-a
~where ta==icosel_ represent the limits of that part of tﬁe
ga,n)
, J
'modulating polynomial', which describes a star's surface

light curve,which is free from eclipses. p (x) is a

- : . N .
distortion to first order. Kopal presents these polynomials

.o

for n=4, j=1 to 4, and for various values of a = cos el



(1979, pp. 198-203). Alternativély, one may evaluate the

sum in equation (4.27) directly by using

a
n : . .
m ] B(m, 33i+l)c, = f[sa(%)—z(m]f)(a'“) (x) dx (4.31)
3=1 ’ "
a

(x)

(ahn)(x) are polynomials similar to the p(a,n)

where the Q .
m J

polynomials. At this point, one would evaluate the Bom™

term using an expression appropriate for the eclipse type.

Kopal gives B - for m=1,2,3 for the case of 'a total eclipse’

2
(1979, p. 211). However, complete expressions for all types

of eclipses may be found in the pages by Livanion (1977)

-term evaluated,

and Rovithis-Livanion (1979). With the B2m

2m
again, it should be emphasized that this particulai method

the process of finding A is one of simple algebra. Once

\

of determining the A, 's-is useful oniy‘if the light curve

2m

has been well-observed, particularly around 6 = w/2.

4.5 Computing the=A2m's-with the Kalman Filter nglg

An approach which is entirely different from either
the Fourier analysis or numerical integration technigues

for finding the A is.the Kalman filter algorithm. This

2m

approach was first formulated by Jurkevich (1976). 1In

~essence, the Kalman filter pfovides a meané‘of determining

the values of the A2m recursively; while producing a result
~ .

that is optimal in the least-squares sense. It combines

the features of numerical integration and least-squares

o lé;# S R
ff@ting, giving a fast and compact algorithm for determining



the Azm's. The theory of Kalman filtering has be&en inves-
tigated in detail, and a particularly good discussion is
provided in the book by.Bryson and Ho (1969).

In order to use the Kalman filter, one must be able
to writevthe-equations of a problem as'ordinAry differe?—
tial equatiqns. These differential equations are then
treated as.'stochastic differential equations', or equations
in variables which are statistical in nature (random vari-
ables Qaving a varianceo2 and a mean equal to zero). These

s .
differential equations ére then integrated between the
‘observations, resulting in a set of difference equations
for the variables involved. In the-ﬁroblem.at hand, the

k3
. Q .
variables are A2m (hereafter referred to as um),x==l—£,
and the errors in the various Mo and x, here denoted by P
‘and p_. The treatment to be followed here is that given

by Jurkevich (1976). The differential equations of the

. problem are:

ﬁm(t) = 2mx(t)sin2m_lt cos tdt , um(O) =0
Tx(t) =0, x(0) = 1- 2(0)
px(t) = q , px(o) = r V

p_(t) 2m sinzm_lt cos t A
m X

a

where t is the phase, and q serves to connect the stochas-

tic function with the function being estimated. The trans- .

fer to stochastic variables is very simple: stochastic

variables will be denoted by a variable with a hat; i.e.,

64
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ﬁm‘ If the differential equations‘above‘,(in their
/
stochastic form) are integrated between observations with

phases ti+l==b and ti==a, the following recursion relations

are obtained:

-

i+l i

>
Il
=

i+l

pX(l+l) = Px(l) + q(b—a) r (4.32&)

_ ,_2m . .2m
pm(1+l) - Pm(ly*‘P (-)[Sln b-sin a] +

xl Ay
o . 2m _ -
al(b-a) sin™ b - £_(b) - £ (a)] )
_ -1 -171 )
Pyl = Pyeny — ¢ 1
o b [1+ 17t
Po(i+l) -~ Pm(i+1) Py (i+1)/ T .
o v (4.32b)
N A x(i+l) (. _ 2 | -
Xi+1 = X4 T T [z; -]
A A P (i+1) ~
m(i+l) T Pm(i+l) - r [zi Xi] )

Hefe, r is the mean squige value of the observationaiéﬂﬁﬁ:
errors. . Equations”(4.325) serve to 'propagate'Jthe-sdlu—
tion from one»observatidn to the next, while equations
(4.32b) 'update' the solution by processing the iatest
d;ta point. Jurkevich (1981) has published a FORTRAN‘ “
program which uses the Kalman fiiter algorithm to compute |,
A2m for m=1,2,3,4. The program itself is very simple,
Qith all the computations being contained in one DO=1lo0p.

-



The presen£ author has adapted this,prog;am for ﬁse on the
MTS FORTRAN compiler at the University of Alherta. The only
modifications required were the replacement éf certain in-
put and output ' lines. The program is listed'in Appendix 3.
The Kélman filter has its advantages and disadvan-
tages. As was mentioned earlier, the algorithm is compact

and simple, and it has the desirable quality that the

values of the A, 's obtained are least-squares estimates.

2m
The relative performance of the Kalman filter will be con-

sidered in a later chapter when individual eclipsing bin-
aries are diséussed. At this point, it suffices to say
that the Kalman filtér produces satisfactory values for
the'AZm's. - A major disadvantage is that the error anélysis
. produces séuriously low numbers. " Jurkevich (1976, 1981)
Has investigated this} butiﬁpe céuse of the problem

remains a mysteryi A possibie solution, suggested by
jurkevich (1980), is that theisystem of differential equa=

tions (4;32), which constitute a model of an eclipsing

binary, are too simple for the purpose of error analysis.

bl

2m S

4.6 Error Analysis for the A

After the A2m's have been found by one of the pro-

. cedures just outlined, one can perform an error analysis

to give the uncertainties in the values of theTAzm's.

. . )
This error analysis may be done quite easily when least-

squares Fourier’analysis is used (i.e., equations (4.17)

and é4.21)), since the least-squares solution produces the

/\_) . N .
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uncertainties of the Fourier coefficients directly. How-
ever, error analysis is virtually imposéible when.n%me;ical
integration is used, since the error formulae for numerical
integration rules are usually quite cumbersome to userKsee,
_ for example, Gerald, p. 211).

Demircan (1981, p. 127) has found an approximate

expression for the error in the AZm's found by numerical

integration:
. : N
A - Ausin® © 4.33)
A2m =~ Au sin 1 (4.
where Au is ‘the error in % at 8 = T/2 (quédrature), and 61

is the phase angle of first (or last) contact. In most
cases, one is interested in only an approximate value for
AAZm’ so equation (4.23) is sufficient for most purposes.

To determine AA _ when least-squares Fourier analysis is

2m
used is guite straighpfor%ard, one simply applies the rules
of error propagation to equat¢ons’(4;20). This results in

- the following expressions:

AN = l Aa + Aa, + Aa, +
o 2

e 1 2
and
N | .
bA, = ] ¢ da . _ (4.34)
n=0 . X
where
- o (=1)3" ¢ sin(29+1)6. [(23+1)8. 1%
om _ (2myt T n 1 1
. mSZ0 rm+ 3+ HNTMm- ) (2j+l)812—[mr]2

- It should be noted that the unsimplified general expression

for A ‘'in terms of the‘Fourier coefficients has been used

2m
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in equation (4.33). If one were to use equation (4.20)
directly, a typical result would be: .
| By
E €y sin26l coszei
AA_ = {__ Aa, + Aa ,
? veg U 2 l-—[wr/el]2 2 l-[(2v+l)ﬂ/2el]2) 2v+l
| (4.35)
AA_ being found in a similar fashion. Clearly,

w1§h AA4, 6

only the errors in the Fourier coefficients are considered

'in equations (4.34) and (4.35). . )
Considering these results, there is a definite

advantage to using least—squareg Fourier analysis to deter—'

mine the A2m rather than numerical integration. The ‘problem

now is to relate the moments of the light curve (A, ) to

2m
the geometric elements rl, r2, i, Ll’ and L2, for the

cases of both spherical and non-spherical stars.

4.7 Computing the -Elements- -y - ™

The problem now is to relate the momehgs of the

(m=0,1,2,3), to the elements ST
<

light curve, the A2m

and i. To explore the relationship between the Aém's
¢ n o

Ll” '
and the elements.rl,'rz, Pl’ and i, tHe‘relatively simple
césé of a total eclipse of a uniformly bright star will be
considered in detail. This will serve to introduce the
more complicated cases in which limb darkenirg and distor—
‘tion are present. In all éases, the method of solution
+will be outiined.

To relate the moments of the light curve to the

geometric elements Iy T, ,Ll,and i in thz2 case of the
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total éclipse of a uhiformly bright star, following the
treatment given by Kopal (1979, pp. 148—153), one starts

with the equétion defining the A2m function:

)
1 | ' )
_ _ . 2m : - -
A, = f (1 Q)d(%ln 8) (4.36)

5 _

where, once again, el is the phase angle of fourth contact.
"In the casé'being considered here, one may write 1-¢ in
terms of L, and a(k,p), which were defined in the chapter'

EAY . N

dealing with the Russell model. The equation is: 4

Ao - 1-2(8) = a(k,p) Ly . o (4.37)
The geometric relation must also be used to replace sin” 6§:
§° = sinze sin2it+ coszi . . (4.38)

CIf SOEEcos i (8§ at 6 =0), then solving for sinze gives:

) 4 I : -m
sinmn6~= m(é?-—&z) (1 - 62) .
o’ - o’

Differentia;ing with respect to 62sgives

-y i m_l -m |
d(sin®™8) = m(8%-6%) (1-68%) as? .
; ” o) O
. . 2 ﬂﬁ_ om, .
Therefore, A2m becomes (with (1-50) =.csc i)
S 87 L
- 2m - 2 20 2 A '
Azm—dnLlcsc 1[2 (§ -60) o dé . (4.39)
. 5 .
(@]
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This equation is our starting point for the analysis of a
total eclipse of a uniformly bright star. The 1imits'

i I ' .
61 and 62 are the values of 6§ at first contact (corresponds.

ing to 81) and at second contact (6 = §). At first contact,
‘the two stars will appear to be "touching" Yo) 61==rii-r2.

At ‘second contact, the larger star (Wlth radius r ) will

have just "covered" the smaller one (radius r ), SO 62

r2-rl. Therefore, 6 > 6 60 for a total eclipse. A2m
may be split up in the follow1nq way
6 2 _
m-1 'él m—1 ‘
s A2 —InL csc l{f ad62+J (GQ—sz’ dddz‘.-
I m (o]
" \ 52 52 ‘
-2
(4.40)

. The first integral is the contribution from the total phase

T -

of the eclipée, in which the smaller star is completeiy
covered np, with the second integral describing the contri-
butions from the partial eclipse phases. Théﬁfirstﬂintegral

is quite easy if one remembers that o'= 1 during the total

 Phase: - : ' ‘I : -
‘ . N :T‘“—«\ —
ag L : 6; .
m= -1, m
«[2 (67620 Tas? = mls2- 6" |
.o om0 o 9
8 §:
° : - o o
2 2.
(62-83H" .

Matters are not so simple during the partial phases.: DOing

the second integral by parts gives:
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.following form:

results:

71

2
6 .-
1 , m-1 m—l 1 _ 1 m
f (§2-62%) o as’ 1(62—6 )l -_mlJ (§2-82) ?%ds
2 . : o
5 5 5 |
5 2 2 (4.41)

If an expression for 3a/56 can be'fOUnd, theyintegration

. will be complete. For a uniformly bright disk, o has the

2 2 1 '

mrie=r] [¢l 5 sin 2¢ ]-&r [¢ 51n 2¢., ] (4.42)
62+ri—r§ Gz—ri-i-rg o

'cos ¢1 = 55 and cos ¢2= 581 . (é.43)

1 - Tz

.Using these'equations, the following expression for 3ua./98

&

62r2 '

oo 2 2_ 2 2_ .2
da 1 T2 /(61 SERL CRRPY
2

This equation may be written in a simpler form if one intro-

,duces a new variable ¢‘defined by

\ . 142

2 _ 2 _ .
§ 7’?1 2rlrzcos¢ + rg}J
so that 3a/38 becomes i _ T
da _ 2 T2 si n ¢ L oy
375 < T = ‘r ) . ' . uzs o (4\.44)"j
ASsembling all of these results allows A2m to be writt?n”in "y
the form ) . | ,'
G4 62—62 m ; ‘ .
= - o & . )
A2m Ll J - 52 35 das . ‘ (4.4.5')
8 K » )
2

Using this'expression (for m==l,2,3), and the previodéll
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result for 3a/38, one can generate equations for the A2m's;
. . 2 \ .

For m=1,2,3, one has (with Li==l—l)

) . . ' — . .
' By = PG5 ; L o -
- 2
A4 = Ll(C +.c2)
‘ 3 2
= + +
| Bg = Lplcy ¥ 305Cy
where
¥ L]
_ .2 :
Cl = rlcsc 1\ .
Jvk.'
C2 = rlrzcsc i
2 s 2. 2.
C3 = rzcscil cot l

,Solving this system of equatidnsﬂfor fil f§¢éhd:ﬁf¥
T . . NP

the following‘result:. L B

2 - . o :
- 1.2 g minlie S ”Wz? a7y
d (1-c,)C, +C A : u—c )c #+C : Y

’

+

Thus, we have expre551ons for the geometrlc elements of an . Mg
. )

ors

ecllp51ng blnary in closed form.« However, the condltlons

for -such,;a solutlon are that the dlSkS of tae ‘stars appear
‘unlformly bright (not too reallstlc), and that the_eclrpse
be total. ~The results just ob ained can be made*to'apply

\_-

are. 1nterchanged and lf

. to an annular eclipse if rl

Ll is replaced by (r /r ) Ll i The solutlon for a partlal

ecllpse 1s an 1terat1ve one, and w1ll not be dlscussed hére. “,1"

4»*&

The procedure ¢o be used gs outllned by Kopal (1979,pg 15%)

Q

EAN

,The method of @§r1v1ng the Varlous results in thlS sectlon S s

-~ o & ‘.~-'_N',‘U



is 1nd1Cut1ve of the method used by Kopal in the/more
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general cases of arbltrary llmb darkenlng and - non- spherlcal

stars.

3

4.8 Total and Annular Ecllpses of Limb- Darkened Stars -

@
,,, i

In most cases,

blnary system:. pave a non-zero llmb darkening.

the stars constltutlng an ecllp51ng

Tb modlfy

the results'obtalned in the unlformly brlght case to the

llmb darkened case amounts to llttle more than redeflnlng

the constants Cl’ C

, .

5? h

A,and Cj

7\“solutlon for the elements will be outllned

The method by which thls

transformatlon is achleved, and »the resultlng method of

Soe R

To pass to the case of non- zero limb darkenlng, a -’

generallzed form for the A2

into the detailsfgf

derived;by Kbpal (19

)

the‘ﬂerlvaglen, the ‘form ofythe'Azm

79, pg. 160) is

) . T, \)+ 1 e
.. -’ Do L R © (2) (l _ C2) & ] ,}!},:ﬁ? -
E, =T(m+l) L siﬁzme- ) 9 g‘%"“

2m 177 7L 2y Y F(v+l)F(v+m+l) .
L § vrans2; 1 uenrl) B 12
‘ :f‘ go = (n+v+l) {———————r(nﬂ) Gn (v, \)+l a }

G (v+2 vm+2 1-c?) (4

n o ’_' B o 4 -

.Where'E(xf]is'the gamma—functionfﬁég

,- i L
S

4
g

R & TR
is theﬂJacobl.poly—

's is requlred.c Wlthout §01ng

nomial dfxdrder n (deflned as a spehlal case of the hyper—

geometrlc serles

()

2 1
pq-l94),

-—'rf

e

(a, b c x)° see Mathews and Walker,

Vo= (4 . = =
= ( 2)/2, Cy ces i, and‘a rl/ rl+r2).

pressions for the A
. e 2m

's for each case

(total,

the.constant deflned in equatron (4. 29)

S
:._;‘6(‘4'
W
Ty
Jag%
.48)
U e
"»:"r‘
> é}_“ 5 ’
h&{‘ ~.V (

N

ExpllClt ex-

annular,

-
L
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¥

{
!

partial)

follow from the equation above.

The transformation to an arbitrary limb darkeninges
A

can be carried

¥ollowing equations

O
1l

O

0l

[SH N
I

where Cl’ ¢2,1C"

¢

out with the aid of equations (4.29) and the
(Kopal, 1979, pg. 164) A
w (2)
2=0 v »
2 21 C :
c2 72L& # g (4.49) .
2 p2p VL) _ B
. 52 ; 314
172 (2, v(vHl) (v+2)

O )

L.

3 are the constants introduced in the dis-
. . X AN /

cussion of the uniformly brigﬁt cese. In»mSSt;cases/éf

practical interest, only a linear limb darkening coefficient

is available.

01
"
0

3
=2

) Cr =
= =2 _
gl =c

‘These equations
kening into the

-,tHe analysis of

darkenihg. The

In. this event,

‘the above equatiohszreduce to

@ 15- 7ul L e L N
PC2~[3(35—-l9ulX} ~2J32J;l"
172 70(3.-u;) , \§.

provide a means for introducing limb dar+ -
. 3 . . : ., )

method Of analysis. Let us now consider

eclipsing binary starS-with arbitrary limb

stars constltutlna the blnary system w1ll

S

Stlll be regarded as. belng spherlcal.-:‘m

Once agaln, the 51mplest case 1s tha; of the total

qcilpse

. ‘.‘ N
~
N -

.4.1

: The equatlons requlred are SLmllar to those used

e
e ) Y -
L |

kel
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» N
» R

WY .
in the uniformly bright case (Kopal, 1979, pg. 164):

AO = E‘l,! = l - A ’ ]
B T R . u : :
. - ' (4.51)
A, = L (82 + &% r |
4 173 2
_ . =3 =2= = =2
A = L, (C3 +3CCy + CCo) |

The solution proceeds in exactly the same way as in the
uniformly btight case, once the limb darkening has been
introduced using the equations presented earlier. However,
the problem 1is more complicated in theAcase of annular and
partial eclips@ﬁJ: The method to be presented here comes
from a later work by Kopal (1982a). The equations relating

the moments of the llght curve, the A_. 's, to the elements

.. 2I
Ty rzy‘ and i are (for both annular and parﬁ%al ecllpses)
o 1o 4 - w
A, = L [C, + (1-a )cotz”]-L B cot? i = : ﬂ?"y?w
o2 15737 % - 1°2 s K ﬁ .
| o - - P (4. 52)"
_ =2 =2 - L4, PNL. SIS . v ‘:3. & .
A, = L%ﬁc33-q2 (1 ao)cot 1]-+L1B4qgt 17 TR -
_ 3,222, = =2 e - T
= . -+ N - .
A Ll[¢3_3c2t34-clc2 (1 o )cot il L1B6cot i . )
' cos A . N N ‘ . — -
where do 1slthelvalue}9§§%dat’Q;d—eclipse, and the B, are
given .by: : ' e
.v‘-v-" . . . ’ 3 ~
'( “? b . i . , ’ ’ - ' " . : g v - N : ! N o YJ ,A‘) .
e

CoTEms L
s :

. L2 R .
b L L e Ry
CSen .
An e
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e

—_

y E { 1 om ] _n,
7k LB G T 2 j+lé:;§izzf

. . 2' 2 . ks
x Gj(v—23, 2,r2/rl) , , (4.53)

where Gj is the Jacobi polynomial and
M : n, .

(_E) _ r{( §+]+l)

2341 0 T(=9

‘Kopal points out (1982, pg. 136) that the térms containing ... .-

the‘B2m are so numerica.! vy small that?ﬁﬁéy may be ignored

altoggther or treated'ouly as small perturbations. As an -
example in the samé ﬁ%pery“Kopal computéd By By and Béﬁ
for the_ligﬁt cﬁrve of Algol. The largest térm‘was B2c0t4i,
having a‘magnitudéggk épbroximately 5X 10f4. B4cot4i and

6
‘_féspectively. The method of solutiqn to be used is depen-

B cpt6i are smaller than‘Bzcotzi by factors of 100 and 10000

‘deﬁt upon fhe value of o . H©lIn the case of an annular
_ e

%5 S .

eclipse, ao==k2Y,‘QBé£e k=:ri/r2, ‘and where

.

= ool o o _(annular eclipse) :
‘x’y z 2 - © . SR (4.54)

I 1 a_(total eclipse) M -
R o O. _ - :

Wes to définé'¥. TS solve for. the elements in the case
4 . . . } ) . '

of ap annnlar eclipse, one proceeds in the following way. .

<

We-bégin by finding.k2 from
- I | ~
k% = b | - . (4.55)

a : : .
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where Aa==z at maximum total eclipse and Ab== 2. at maximum
transit eclipse. A good starting value for Y is 1. Ll may

then be found-with the aid of
A =1-A_ =1L " L Z‘;Y  (4.56)
S T % T R - '

Qﬁe then solves for'x=ir§csc2i and y = qotzi from

o ; ;
2 3 \ 2 ;
. ASA¥2AD-3A AJA, A_(L+£k%) -L;
T - 2 2 2 4 2 2
AOA4-' 5 : Ao(l+3f2k +f4k )—3AOLl(l+f2k Q*@Ll
(4.57)
xL., - A
and y = —2—2 .
) A
' o
In the equation for x, f2 end.f4 are
' {
_ _15-7u L _3(35-19u) |
£, = 53-w 2 LT TEsEEo0 (4.58)
These equations, along with the fact that‘rl==kr2, provide .
"a prelimihary set of elements. The value of kK~is recalcu- ' ,&@f

lated, hence a new value of Y, attc “the procedure:-is
repeated. Only two or three iterations are required to

p;ovide_i;final set of "good" elemehts. The BZm“é%may be ,Efiy
included if ohe so desires. ‘However, it'shgpld be_remem— ’
'bered that uhcertainties in the elemente and the observa- o
tions may not justlfy the use ofthe B2 's. Eof a variety

of reasons, a solutlon for the elements could be poorly s

determined, sO the use of the 82 's would only compound the

probleﬁ. : ' o



,Such a deflnltlon is' qulte useful ‘in alstlngulshlng eclipse; o

4.9 Partial Ecllpses of Limb- _Darkened Stars

“The solutlon for a partlal eclipse is similar to .
that for an annular eclipse. In the case of a partial

eclipse, one usually starts with k and Y both equal to 1. 2

The value Of.ao may be found from e@;her of the following » \z:
equations:
1-X_.
al = 1=, +—3 b
‘ k°Y :
(4.59) >
a, = l-Ab + (1-A_) kY ,
-since, for k=Y=1, a =a'=0a . The value of L, is found
o} o] o 1
from Ao==L1aO.»~One now evaluates x and y as in the annular
case. To find 'a new value of k, one can solve for k from
A =L.[x-2y+f.k?x]x & Ay , (4.60)
4 1= 2.y 2 "o < , -

and then repeat the whole proeedure until k no longer
changes 51gn1f1cantly from one iteration to the next

Hence we have a stralghtforward lteratlve procedure
for computlng the elements of an ecllp51ng blnary w1th llmb'
darkening, for both annular and partlal ecllpses. It shouldr

be noted here that the deflnltlon of k the ratlo of . the X

. a)‘\,

radii, depends on the. type of ecllpseﬁ% For‘af%ran51t fv“ R g'g
eclipse, k> 1, whlle for an occultatfon,ﬁ<< l hrs arises

"P

o -

from the fact that k is deflned as the radlus of the

ecllpsed star . lelded by the radld% fof the ecllp51ng star.
Kow

- g 4 4%

types 'in the case of a partlally—ec§$p51ng system Three %
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. computer programs for determining the elements of an eclip-
sing binary. for each of the three cases discussed above -may

be found in Appendix 3.

4.10 Incorporatiﬁ§“the Effects of Non-Sphericity

If tHe stars constituting an.eclipsing binary are
non—spherical, one may still use the method of analysis
just‘discussed, but the A2m‘s will have to be found with
the aid of equations (4.21)-(—4.26) or equations (4.27)+(4.31), ‘
i.e., the effects due to non- spheriCity, reflection (and
‘possibly mass t ansfer) will have to be filtered out before
the solution for .the elements oan,proceed. Other than this
extra stepfin the computation, there are .no addededifficul-
ties in solving for the elements ofua nonrspherical eclips-
ing binary: However, one should keepgin;mind thatfthe radii

so obtained are.in fact mean radii.

o

. 4.11 Conclusions ' e

ThlS concludes the presentation of g\ ' 7

,p.r' ey [N

domainitechnique. The method obViously has sey ral advaﬂ—

AYETA
I

tages, not the least of Wthh is the ease Wltg'whlch it may

i,m" R
/

;be automated. The entire solution .can be done

hdigital computer, eliminating the need.for cumber me tables

,:'whigh are required in Russell's method. Kopal's method is

also quite compact in its formulation, making it easily
}comprehenSible. uIt also has the advantage of:being a
. ”

modern method of analySLS, since lt incorporates all curregf e

o
_\ . ./ N wd, -)" 4 ,-7; N N k)

A& frequency - - e

%th a ‘ u"v"' o
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ap.'
knowledge of stellar structure. Moreover,rall relevant
astrophysical information can be brought to bear .ifh those

cases in which one is confronted with an ecllpSLng blnary'

&ilA

having certain peculiarities. However, no method of light

curve analysis 'is without its drawbacks, and Kopal's method.,

80

is no exception. The most apparent of these is the need to'/

assume a value for ‘the limb darkening (ulf before proceed-

v

1ng with the analysis. One may infer a value for the‘limb

darkening by consideringwthe spectralbtypefof_each star.

\

Unfortunately, the limb darkening inevitably_turns out to

"

be the most poorly determined element{‘no matter what

¢

method of analysis is used. A second%drawback is the pre-
sence of the B2m's: whose purpose, it seems, is to make
life difficult for the astronomer. Indeed, ohe should only
consider using the Bzm's\if the light curve'is of very high
quality (small error Al); or if the solutlon for the ele—

!

ments is.very well determlned In any other situation, the
T

B, 's would not be worth using. Puttlng these crlt1c1smsth

Fm -~
aside, Kopal's frequency .domain technlque is indeed a ste
‘Jﬂ R i

i

forward in llght*curve analy51s.

A

p

ey
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CHAPTEQ%P
WOOD'S MODEL AND 'THE WINK PROGRAM =

5.1 Introduction
The last method of light curve analysis to be con-

sidered is oan example of "a "synthesis" method. Before
cxploring Wood's model and the WINK program in detail, let
us consider some of the general features of all synthesis
methods. DPut very simply, a synthesis method is a pattern
recognition algorithm. It kweps on constructing light
curves and systematically varving the model parameters

. » . )
antil it achicves a match with the observed light curve.
The algorithm synthesizes the light curve using a model of

. _ - | .

_the eclipsing binary, heénce the name. Computer programs
using the light curve synthesis approach are usually. large

(typically 2000 lines of code) and quite complicated. Most

of the eurrcntly available programs are the end products of

scveral vears of development. R

From a more technical:point of view, synthesis pro-
grems utilize either a triaxial ellipsoid or Roche“surface
geometry for the component stars.’ WOod's mddel uses the

former. A t)plcal synthQSLS program pn@&pies in two general

K@@S, the calcu]atlon of the lumlnos1'
phases 6, and a parameter adjustment sﬁ

model into better agreementh1th the observed llght curve.

This step is usually achleve w1th the ald of a differential

©

corrector operating in roughly the same way as in RUesell's“




method. The stellar models are usually complex, incor-

~

porating the properties of the’atmoepheresof.both stars to
determine parameters such as surface temperature, eurface .
gravity, and limb darkening. It is also possible to account
for extended atmoepheres, which are found in Wolf-Rayet
blnarles and systems that ‘have reéjglant components (a

yell known example of the latter is VvV Cephel). .To handle
particularly close eclipsing systems,:a¢typical synthesis
program would incorporate a subroutine to handle the reflec-
tion effect.h There is no standard'procedure for Handling-
reflectlon, and the approach used 1n each computer program
is diff eren%@ When deallng with the reflection effect, one

has to'make a tradeoff between computing time and the ‘ i

accuracy of the reflectlon model. Reflection effect cal;

culatlons ‘can 51gn1f1cantly increase . the run ?;_> ime of a
synthesls program. Clearly, synthesis meth
a .computer's *number-crunching" ability. This allows|one to
use the complex stellar models mentionedAearlier.

e first

comgﬁ¢er programs'using,the synthesis-approach appeared in”bgjggf

the early 1970's. Every researcher had a different approach. (.“"&

»(" N
A
Thgﬁearllest synthe51s programs were those dev1seo by Wilson -

and Dev1nney (l97l), Hill and Hutchings (1970) aﬁi_fucy
(19685 In each case, the appro;ch taken was approxlmately
the same, namely »to use a Roche geometry, and to compute |
the surface 1nten51ty I(u) at several_thousand points on thgb

surface offeach star. These programs were closely followed

by those of Woodv{1972), Rucihskl (1973); Mochndckd, and
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Doughty tl§72)} Nelson and Davis (1972), and Berthier(l975).

: Mochnackl and Doughty were able to 51mpllfy the synthesis ~
procedure by uSLng_cylindrlcal coordinates rather than the
usual spherical‘bipolar coordlnates. Berthier's prograh

used a llbrary of over 4000 known light curves to flnd Lnl—-

| tial values for model parameters The Nelson- Dav1s approach
uses an unorthodox 1ntegratlon procedure for determlnlng
surface brightness. More recently, Hill (1979),‘B1nnend1jk'
.(1977), and Budding and Najim (1980) have proposed synthesis 4

methods, with various improvements such as faster integra-

. :‘,-‘: . . - ) - B .
tidn.procedures, and an increased use of analytical formulae .

for computing certain quantities.' Binnendijk's program even

g

-allows the user- to compute a theoretlcal radlal velocity

\‘curve for use w1th spectroscoplc data. A paper by Hutchlngs

o &

(l97l) descrlbes the .computational aspects of a synthe51s \

Pethod in some detall. Hutchlngs also discusses the compu-

I

tation of line absorption and_emission profiles for eclips-
! ' : |

o
-

ingv?lnaries, as well as the treatment of eXtended or S

ILIN o %‘P
expandithg stellar atmospheres. The partlcular model that
a
will be dlscussed here is Wood's model in part because it is

_one of thevmost widely used programs. The WINK and WINKS

compiter programs, both devised by Wood, will be discussed.

5.2 Model Parameters e

. 3,
We begln the survey of Wdod S model and the§WINK

program by descrlblng the general propertles of thé model.

" The treatment glven here follows that of Wood (}ﬁ?ﬁ,_1972),
r _ , ~ A»g '

%) . . A

Tl
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o

The model takes into aocodnt rotational and tidal distor—
- tion, limb darhening, qravity brightening, and reflection.
The three major siﬁplifications eﬁployed are’ that the stars
-are triaxial ellipsoids, with the reflection dffect being

approximated, rather than being computed by more rigorous

(and consequently more time-consum’ ;s, and that the
‘stars rotate in their-orbital plar period equal to

the orbital period. The first of these assumptions provides

for fast computation, and is valid except for very close

—

ms since the Roche surface defines the exte&t of the
ter'atmosphere'and not the photosphere, Woed claims that
the\approximation used:to simulate the reflectfon effeot
%to»be'discussed later) is "very jood". This is.to be ]

interpr;ﬁ:v 1n the sense that the approx1matlon agrees well

e

.Umporoushcomputatlons~(1 e., the work ofANapler

q__"van astroJFy51cal point of v1ew, the reflec—
: - e X -
: tlon approx:.matlon is ag y atmosphere approxunatlon. The

/

assumptlon regarding rot.'lon can. be relaxed somewhat 51nce

. orbltal skew and polar t ht are allowed. Orbital skew

v

1mplles that the stars do not face one another along their

[V

- major axes, but that the'major axis of oné of the stars

either lags or leads,periastron passage by an amount I,

Polar tilt allows for stars whose rotation axis is not

parallel to the orbital pole (by .

'case,-the deviations must be.coni

. Y, )
amounit -1). In ‘each
~ .

_ The model is deflned by three sets, of parameters,

rqw 3 ‘ba‘@ul -

namely the orbital, geometrlc, and photometrlc paraﬂet ?aﬂw

l .‘ . . T . ~ “ ¥ o
ot

E A



- The orbital parameters serve to specify .ature of the

1

‘ Y

: . , \
relative orbit of star B about star A. Star A is eclipsed

during the primary eclipse (i.e., it is the primary compo-
nent). More specifically, the orbital'parameterslare the
period P, time of conjungtion Tc (usually aero), the semi-

, J
R 0 . N / . ~ : . i . N
major axis of the orbit RO (usually one), eccentricity e,

longitude of periastron ®, and inclination i (see fig. 14).

The definition gf the inclination remains unchangéd from
previous chapters. The geometric parameters are .just the‘
stellar semiaxes arwb, and‘c. Certaln relatlonshlps that

x1st between the semlaxes will.be explored later. The

photometric panameters spec1fy the apparent inte Lty dis—_

) /q

tribution on eﬂch star. These parameters are the- surface
vy o \ i “

intensity I, or the value of I in o

I=1I, (l - u + u cos ¥). ]

1

at time T

Q !

ang coefficient u, grav1ty brlghtenlng cqeff1c1ent v and

TN

reflection coefflclent (or albedo) w. g . . /-

As mentloned earller, there are.certain relazhon—‘

shlps between the stellar semiaxes. Woodireplacesb

L —

axes a, b, and<c by,a,new setzof_quantities'

= - 4
aA aRo ) X
aB‘= k al? ;o 1lel, k. = aB/aA
5? - — ’ " 7‘
. bA=€AaR =€AaA ', p
. ’ _*‘L‘ (5.1)
b, =e_._k aR = ¢_a , : .
. ]

=T, +-§/4 (tlme of quadrature)/ the limb darken-‘

he semi-
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FIGURE 14, ORBITAL PARAMETERS IN WOOD’S MODEL,

av



2 Co : .
— = +
= (l+cA) EAaR‘o (1 E;A) EAbA .
and c. = (1+1,) ezlc anRr =A(l4-c ) € 'b
B ‘ >B°-"B a o] B B B

{
‘The param. :r K, is so defined that if ka>>l, then the pri-
mary eclipsc iz an occultation;, and a transit if ka<:l. The
stars are assumed to be triaxial ellipsoids. Chandrasekhar

(1933) showed that the stellar semiaxes can be writtenvin

terms -of the polytropic index n, the mass ratio q (mass of

) 3

starAB/mass of star A), and a quanfity v o= ao/Ro, where ay
is the "unpérturbed rad;us“rof the star, i.e., the radius
of‘a‘spheré hav;ng'a volnné*equal to that of tne‘star.' If
each of ££é semiaxes 1is eXpanded in a'serieé in v, 'n, and
g, one thainsAfhe triaxial ellipsoid geometry (retaining
£ermsrupqtq‘ofdér 3°in v). It is convenient to introduce a
quantity k., wnich is defined as

v = 9B _ oafv T
B R R : \

o

N . \ . “\ .
~One can now express either the semiaxes or the quantities

introduced in eguation (5.1) in terms of aua ! kv,'q and n.

Ny

As in the models discussed in previous chapters, the

intensity étuany point on the apparent disk of either star
may be written as!

\
\

: Vo _ ' -
. I = Io(l - % + u cos y) . . (5.2)

where IO is the intensity at the "sub-earth" point, or the
point at which the l@né of sight .is perpendicular to the
, \ . .

stellar surface (y = d). In the originél WINK program

i

\ : Vo : . .
. o . \ ; Lo
\
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so defined that at,tﬁfr

r

(vgrsion published by Wood in 1972), Wood uses-a bdackbody

approximation for IO. Improvements on this will be dis-

cussed later. The graQity brightening v. is defined in the

following way (analogous to the definition of "1imb darken-—
ing)

,;Io =I[1-v+viz/T)] , » , | (5.3)

where r is the local radius (at any point), and r is the

!

radius at the sub~earth point at time T I was defined

| o)
earlier as a photometric parameter.
The quantity which one fnust compare with the obser-

vational data is the system luminosity at a given time t.

To. compute this, one must evaluate
b JJ(IO-Ff*) (lL- u + u cos Y)aA ,‘_" (5.4)

the integration being taken over the apparent eilipse of

‘either star (shape of star projected onto the plane of the

sky). The system lum#hosit& at any time t is
: / e

! . &)

: Ltot(t) = LA(tD + L_(t) - L (t)V( L (5.5)

B ecl’

where Ledl 1s the llgbt'loss during ecllpse. LA and LB are

= + = . ) : -
Q,_Ltot .LA LB 1 The WINK pro

gram allows for the presence of a third star (the;"thifd

1ight") in the following sense:

-

\
+ + L =
Ly + Ly + Lo = 1
Hence, the calculazion ur tre light curve amounts to the

computatlon,of Ltot

[

(t). In general, three integrations are

88



required, one over each star, and one over the overlapping
arca (if any). Orne must ‘mow the outline of cach star and
the overlapped area, as well as the intensity at any poilnt
on Lhe stars. Also, reflection must be taken into account.
The contribution to I from the reflection effect 1is the
L * : ; ‘
quantity 1~ that appears in cquation (5.4). Wood computes

\
* . . . - . . * .
I* by determining the local incident lntensity L at“a given

point and then reflecting o+ fraction w uniformly over the

’

4 * .
* wkhL ] : : ) ' . (5.6)

outooing hemispliere:

R |
27 (l T 2’)

. *
I* must now be added to IO. The method used to compute L
. . ‘ ke
will be discussed in detail later, but the approximation

¥

used is valid for a, and ag less than 0.5 (the usual range

of interest). Wood alsc allows for the‘possibility of an
extended atmosphere around either star, but this aspect of

the model will not be discussed here.

N
\

\

5.3 Computation of the Elements

The solution for the elements 1s done by least—

squares differential pbrrectipns. “The light curve intensity

I is assumed to be of the. form I'= I(t, X, ...[XN), where
Xivare the elements (unknowns). We may then write
‘ ‘ o3I I :
= -1 =2 Ax 44
A1 Iobs Icalc axl l+ SX-AXN
. N
; N . |
5 21 . :
= 1 ax M ,_\ (5.7)



-7
A_J/)I.
having the form of equation (5.7). Tﬁeﬂ:esulting system of

r . . ) - .
whi}¢ Axi is the differential correction .to the estimate

Fach obscervation provides an equation of condition

~cquations is solved by the least-squares method.. This may
‘be tur&ed‘into an iteraﬁive process which,. one hopes, will
converge to a sﬁluﬁion. Convergence is not easy to attain
since there arc obsecrvational errors-and intérrelationships;
between the paramoters. It 1s also difficult to know which
pqrametd}s should be varied, and a lot of gucss wérk is
involved. Tn general, more than one computer. run is re- .
o ‘ LI ' v o
duired. The partlial derivatives SI/SXi‘afé computed numer-
ically( and there exist cértain shoft-cuts and.simplifica~
tions in their computation. =

a

5.4 Details of the WINK Program .

We howggbnsider some specific aspects ofiWood‘s'
~model.and the WINK progfaml Of greatest interest are\éhe
method of integration u%ed, théiQay in which eclipses are
detected andftheir limits found, the'reflection-appro#ima—
tion, and the ﬁse of model stellar atmospﬁéres.

i
a

5.5 The Integration Proc&dure

" In order to discuss the integration procedure used

in the WINK program, we must first define the coordinate

v

systems in which ‘the integration is carried out. The fun-
damental coordinate system is a rectangular one centered on

star A. ‘The x-axis ; ints along the line of sight and the

v
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Yz plane is in the plane of the sky.\ Each star has its own
coordiuate-system, denoted by‘(x';y'AZ'l. The z'-axis is
coi:.:ident with the star's principle axis. Since there'is)
octant symmetry, the sense of the coordinates does nc
,'hatter (except for reflectioh effect calculations). The
‘apparent ellipsoids each have a yz coordinate system lying
along the major axes of the apparent ellipsoids. Th . yz
system is rotated with respect to the yz plane.

The various integration procedures used in WINK a. »
‘hangile}i by the subroutines .'II‘O’I‘INT (total eclipse), ANNEC
(annular eclipse), ECLINT (partial eclipse) and ATMECL
(atmospheric eclipse,‘replaces-TOTINT). Subroutine TOTlNT
also computes the total light output from each star at any
time. In all integration computations, Gaussian quadrature
is ised, with three grid sizes available: 4 x 4 (coarse),
6x 6 (normal or default), and 12x 12 (high precision). To

integrate over an ellipse 'with semiaxes a and b, one uses'

the following formula: .

9.1 (aX. ., X.b/1=x%)
i7p 3 i i’

I et

I=ab Z Wj/l X4

2
=1 )

i=1

where Ip(y,z) is the intensity along the line of sight at
“point (y,z) (egquation (5.2)), W, and Wj_arevtge Gaussian -

weights, and X, Xj are the Gaussian ordinates (loaded by

subroutine GRID). Also, n is the number of gquadrature
points (4, 6, or 12). Integration over an eclipsed area 1is

done with the aid of

91



where

In

dinates,

o

a Y a‘

nd L re
subroutine
subroutine

all cases,

<
"o

n n
j=1 RS
(YH ,.— Y ) r

¥ .

the y—limits of

T ULy
1LIMT 22,
the in:

excer~ fcr

e

ZH and

anc re

2gration

_ 1
Bg =7 {2yt
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P oW, T (X +Yg 20X, + 2 )
j S

s

integration (Y >YL), found

H

ZL'are the z-limits as found

functions of Y.=Y X. + Y .
J D 3 S

is performed in the yz coor-

T, which uses a coordinate rotation.

‘A coordinate ‘=-ausiation is required in ANNECL because the

v

integration i;rpefformed over the area of one star with the

intensity points of the other star. A similar 81tuatlon

exists when star B is e

Allpsed, since . the 1ntegratlon l mits

are in the cqordinate system of star A. The intensity

I
p(

BRIGHT uses the yz;coordinates.

Y,z) is computed by the function BRIGHT. As indicated,

integration grids.

5:6

LIMITZ

.

Figure 15 shows the various ,
, _
/ #

Eclipse Detection and Limit Finding

It is the’duty of the subroutines SCREEN, LIMITY, and

to search for and f}ﬁd:the limits of any ecli?ses

that occur during computation of the light curve. Subroutine

SCREEN searches. for eélipses by comparing the centre-to-

centre separation d\wiEh the sum of the radius vectors.
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ANNULAR ECLIPSE
|

A7 .

PARTIAL ECLIPSE

Frgure 15, INTEGRATION GRIDS USED- IN WINK
(ADAPTED FROM wooD(1972; pG,25)).,

3



—~or _both less than 2

94 .

Obviously, an eclipse occurs if ‘6 < rl+-r2. ‘Subroutines
LTIMITY and LIMLTZ determine the y and.z limits of the over-
lapping area during an eclipse and the nature of .the eclipse

(i.e., total, annular, or partial). In general, two

‘ellipses can interseét at as many as four points;_'LIMITY

- (and LIMITZ) uses a bisection searc¢h (a line y= constant)

to find these intersections. For an eclipse to occur, each
ellipse must havr -0 roots (four roots in total). The way"

in which the roots interleave determines whether an eclipse

-

occurs, and if it is partial. The roots are denoted by ZAl

and ZA2 for star A, and by Z and 2 for star B. An

eclipse does not occur if Z

Bl B2

Al«and ZAZ are both greater than,

and ZB

. Bl 2"
cases that caﬁNBEEur“if\an_gclipse is suspected. The bi-

Figuré 16 shows the various

section search (Wood calls this a."scan wire") proceeds
from right to left to determine where the interleaving of
the roots changes.  When such a change is found, the search
is reversed and aismaller séarch interval ié usedi If the
procedure is repeated, the ldcation of-the intersection-may

be determined quite accurately. In the event of a shallow

‘eclipse, a smaller search interval is used, and if such an

ec;ipse Qoccurs on the.negéfive'y-aXis; the negative limJF
is found first, or in other words,'the search goes from
left to right. The bisection algoriéhm}is demonstrated in
figure 17. A similar procedure is usea to deterﬁine the z-

limits of the eclipse, and it should be noted that the z-

. . v . ]
limits are usually the two "inner" roots (see figure 16).
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Q

2 ROOTS - NO ECLIPSE 4 ROOTS - NO ECLIPSE

’
—

4 RooTs - TOTAL OR 4 ROOTS - PARTIAL ECLIPSE,
ANNULAR ECLIPSE ‘ : STAR LIMBS AS INTEGRATION

LIMITS.,

3

4 ROOTS - PARTIAL ECLIPSE, | 44 ROOTS - PARTIAL ECLIPSE.
INTERSECTIONS AS [NTEGRATION ' GENERAL CASE OF FOUR
CLIMITS, INTERSECTIONS, ’

FIGURE 16, IDENTIFICATTON OF ECLIPSE TYPES (ADAPTED FROM

‘woop(1972, pa. 21)),



%

FIGURE 17. BISECTION ggARCﬁ‘#OR DETECTING

e

ECLIPSE LIM;ITS .(ADAPQ‘%}%D ;‘QRQM..WOOD (1972 , PG.22)).,
TR ’ -‘”,J; - B :
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5.7 The Reflection Effect

The reflection effect is handled by the subroutine
REFL. The general procedﬁre for determihing the reflected
intensity I* was discussed earlier. Let us now examine the
computation of L*, the'incident'intensity. LY is assumed to
be a function of tﬁe,sohfce star's apparent éngular size
(AS, as.seen from a point on the other star), fﬁe inten- .
sity I at the end qf its a-axis (i.e., thefsub—stel1ar
poiqt)nfits 1£mb darkening (us), and‘its apparent_zenith_
distancg (xA'). The'approximatioq ﬁsed was derived from
more exa t results obtained by numerical integration, since

such an integration can increase the compu{igg time required

- by an order of magnitude. We may now write L* as
LY = 1_A_ £( s A’
= I Ag us)g(cos ) .

The limb darkening dependence, which appears through f(us),‘
is well approximated by '
u \

-1 . _S
f(u%)—l 5

e

(L-u+u cos Y)’sinydy =1 -
s , ‘

In other words, one is considering the contribution from _—

f

the visible hemisphere of the source star. Wood has fopnd
\

that g(cos A') caﬁ be approxihated (lineé}ly) as

g(cos A') = —O.Q653544-argl4—(2.044ﬁ-argz)cosk + C

where

3
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<,

g, =0.224935 - 0.761696a_ + 3.81425 a’

}

g,=-0.170831 - 1.231707a_ + 9.955083 ai ,

and C is the larger of 0 or

0.38736 + a_(-0.82442 + 1.43431a ) +

+ (cosl')[-l.22172-+ar(—0.43316+-4.9378asﬁ]

In the above formulae, as»and a_are the apparent sizes of -
the source star and reflecting star respectively. The
equations and procedure for determining A' may be found

4

in the publication by Wood (1972, Appendix 2).

5.8 Model Stellar At@ospherés

| The original WINK program, 'as pdblished by Wood in
1972, uses Planck's,blackbody law to simulgte the atmps— A
pheré of. each star in an eclipsing binary system. In
general, star are not blackbody radiators, but over.a:
narrow wavelength;region, tﬁe appréximatipn is valid. ?o
allow U, B, and V light .curves to be analyzea, one must
have a better model of a star's atmosphere. To this end,
fluxes computed from LTE'(loc;l thermodynamic equilibrium)
model atmospheres were incoréoratéd'in succeeding versions
of the WINK program. The current version, WINK8, uses the
LTE model atméspheres éomputed by Kurucz (1979). By spéci-
- fying the wavelength of observation (in.Ahgstréms), the

! . - ' . L} )
effective temperature of each star (in degrees Kelvin), and

the logarithm of the stellar surface gravity (g), WINKS

[
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can interpolate in a tagle of fluxes to produce the
reéuired flux (and intensity) for the gi&enlwavelengthv
. effective temperature, and log)g. This procedﬁre is

: |
handled, by the function ATMOD.‘ The atmosphere tables
cover a range of surface gravities (log g = 2.5 to 4.5),
wavelengths (3300 R to 8000 &), and twé tgmpé;ature ranges
(4000 K té 9500 K and 11000 K to 40000 K). In the compu-
tation of the atmospheres, Kurucz used more realistic line
opacities to simulate a wide variety of steilar spectral
.types. The atmoséheres were also bomputed—at 342 different

anelengths. Clearly, 4n approachxsuch as this has a

.aefinite advantage over the blackbody approximation.

5.9 Conclusion

This brings us to the end of the discussion of Wood's
model and the WINK program. .Evidently, synﬁhesis programs ,
sﬁch aé WINK and WINK8 use a much more realistic model of |
eclipsing binary systems, cdnstituting a definite improve-
ment over the Russell -model. The stars are no longer
restricﬁed to a spherical gedmetry, 1o} thét‘onexapproéch
can be épplied to a wiae v-riety of systems. However, ih
cerﬁain»cases; sﬁch as the W Ursae Majoris stars, one must
re;o%t &6 the Roche geometry. 1In contrast, Kopal's fre-
quency domain method requireéntwo differenﬁ approaches, one
for relatively "wide" binary systémé, the other for close
binary systems. Anothérladvantage of a.synthesis program

is that complex or subtle effects can be handled with

K

<t



relative.ease (with the differential corrector), onoe the
more fundamental‘oarameters (such as radii and inclination)
are known. Furthermore, the reflebtion effect is handled
in a satisfaotory ﬁanher, not only in a phy51cal sense, but
also in terms of computing  time. Flnally, realistic stellar
atmospheres are used, allowing oheAto analyze the light
curve at different wavelengths (ile.,nBV or UBV). Model
atmospheres. such as these also allow a convective atmosphere
to be simulated. Other atmospherlc pecullarltles such as
starspots or extended atmospheresﬁmay also be included. The
only drahhack worth mentioning is that convergence to a-
soluti is not Quaranteed, and one must beware of non-
global inima (i.e., ﬁlo—c)2~may.have several minima, only

one of whl h is the true solutlon (the deepest one)).' How-

ever, good lnixlal estimates cf the elements and good obser-

vational data fan allev1ate‘most amblgultles. Clearly,

models of ecllp81ng binary systems such as Wood's model

provide one with a more detailed and phy51cally reallstlc
4

model, which is something of great nece551ty when one is

deallng with ecllp51ng binary systems having photometric

compllcatlons.
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CHAPTER 6

SOME PRACTICAL GUIDELINES

From the preceding discusSion, it is. clear ;hat
some of the models of eclipsing binaries can dnly be used
in certain situations,‘and that each requires a different
amount of initial data. For an inifial solution, the
Russell—Merrill method, or the version due to Tabachnik,
may be used. This will provide one with a set bf "rough"
"elements, which may the' be used as initial data fb: a
synthesisiprOgram'such as WINK8. Moreover, the Russell-
Merrill method requires only‘one-ﬁalf of an eclipse, and
may theréfore be'QSed if.the'light cﬁrve,is'incomplete.
The preceding remarks also apply to Kitamﬁra's method, since
it is a version of the Ruéséll—Merrill method. Solutions
made using»éither Kopal's ffequenéy-domain technigque or a
synthesis method can be regarded as‘final, since both
-methods modél a binary éysEem in some detail. Kopal's
method requires only one-half of an‘eclipsé, but if there
is a significaﬁt out-of-eclipse effect,'this portion of the
iight curve is-required."Since no initial estimates of the
elements are.required; one may make a solution directly from
the data in one step.” On the other hand, a synthesis pro-
gram réquifesvé'complete light curve (implying the need for
over one hundred daﬁa'points) énd aﬁ~initial'set of elemen£sf

However, the corresponding'sdlution is (in most cases) of
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high'qﬁ;lity. Therefore, Kopal's method and the syﬁthesis
progﬁams should be regarded as competitors. At this point,
it is worth describing thg procedure to be used if o;e is
énalyzing a close eclipsing binary. In this case, oné:
should avoid the Russell-Merrill method, or any of its
variants since the underlying physical model is not at all
realistic (e.g., the lines of constant brightness on the
sgrface of én ellipééid are nét concentric, éontrary to the
assumption made in the Russell model). Moreover, such an
analysis would require the use of rectification, which is
not a-valid procedure. If one is attemptihg to aﬁalyze the
’light curve of a close eclipsing binary, either Kopal's
method or a synthesis method should be used. To provide

, initial‘data for the latﬁér, one may use a Russell-Merrill
method since any effects dué to either stéllar distortion
or to matter streams are at a .ainimum during eclipse. In
fact, WINKS providés its own set of default elements if no
initial ones areiavailablet In using Kopal's'method, one
must use ﬁhe procedure described for the ahalysis of close
eclipsing binaries (equations (4.21) to (4.26), or (4.14)
and (4. 27) to (4.31) of chapter 4). During any light curve
analysis, 1t is adv1sable to assume a constant value for
the limb darkening, since a variation in the limb’ darkenlpg
can mimic a change in the radius of elther star (see Kopal
(1979), pg. 232). These comments should serve as a broad
guidéline in the analysis of any eqlipsing binary, but one
should also be careful to accoun£ for the,individual pecu-

liarities of each system. s
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CHAPTER 7

HS HERCULIS

I

7.1 Introduction

The flrst example of the analysis of a 1lght curve
of an eclipsing binary will be that of HS Herculls. The
data to be used in this analysis come from the paper of
H4all and Hubbard (1971). The results obtained in this
chapter will be compared to those of Hall and Hubbard, who

used the. Russell-Merrill method (with rectification) to

obtain the geometric elements. A light curve appears in

flgure 18.

The most notlceable feature of IlS,Herculis is that
the primary (deeper) ecllpse is annular, and_that the
secondary is total. An annular eclipse is identified by a
'rounded mlnlmum, unlike the sharp mlnlmum of a partial
eclipse, or the flat minimum of a total ecllpse. Therefore,

the larger star 1is also the brighter of the two. *In most

!
1

cases, the situation is reversed, w1tH the smaller star
being brighter. Since the secondary (total) eclipse is
well-defined, it may be'used in determining the geometric
elements. Another feature that can be detected after some
1nspectlon is the displacement of the secondary mlnlmum
toward the primary minimum by an amount A8 = 0.02 revolu-
tions. One would therefore suspect a non-zero eccentricity

and significant apsidal motion. Hall @nd Hubbard propose a

value e= 0.033 for the eccentricity and an aps1dal period
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i

p_=15.5 yr. Scarfe and Barlow.(1974) were unable’to con-
firm\this apsidal perlod. The values ‘of e and PA must be
considered doubtful for another reason;. qu present author
has -discovered that the heliocentric Julian\dates and

phases as_given by Hall and Hubbard do not doincide with

one another (using Hall and Hubbard's values\for P and to).
There is a constant'error of -0.0009 (%1 in'the last place)
revolutions when the phases of Hall and Hubbard are compared
with those‘used in the present work. The causL of this dis-
crepancy is not- known, although the possibility of not’making
the heliocentric correction to the geocentric Julian dates
has not. been ruled out. The light curve shown in figure
l8'incorporates the present author's phases. The two stars
constltutlng the E S Herculis system are of early spectral
type, with the larger one being of type B4 and the secondary
of type A4, as given by Hall and Hubbard The flnal feature
worthy of note 1is that the secondary minimum is asymmetrlc,
since the system is brlghter after secondary ecllpse than
it is before the ecllpse. ThlS effect is most pronounced in
‘the Uu&ight curve, but is barely noticeable sin the V light
curve. This asymmetry has been attributed to a gas stream
near,the inner Lagrangian point.of the system, which is
situated in such a way that it is invisible during .the des-

cending branch of the secondary eclipse, but reappears as

the system comes out of eclipse.



7.2 Light Curve Analysis

The geometric elements, for the mefhods-of Russell
(Tabachnik's method), Kitamura, and Kopal are presented'in
table 7.1. The results fro% WINKS are presented in taole
%.2; In computing the geometric elements with the first
three methods, the'"depth'EQu;tion" (equetion (2.16)) was |
solved for k, the ratio of the radll Tuislwas done using
the iterative procedure suggested by Jurkev1ch (1970, pg. 75).
In this procedure, one solves the,depth equation for k2.

>\ ‘ . A .
2 ~ b : N ' »
ko= i Y- D 7.1

where’ ,
Y(k,1) =13 (L= %) + 2xb('lr(k)/}'€2]/l(3 - x,)

and'

Lo) = & 13 sin™h VR - (3 -40) (L% 2k) VE(T= K]

Here Ab is'the value of L(0) ar-the'moment of internal tan-
gency durlng the tran51t ecllpse and A is the depth of the
occultatlon ecllpse. Also, xs is the limb darkenrng‘of‘the
larger star. Equation (7fl)‘is solved using e simple iter—
ative procedure. Alproqram'for the TI-59 programmable
calculator, whlch performs this calculation, may be found
.1n Appendlx l This procedure produced a value of k—-O 582

(for X 1-0.6)5 which ‘is sllghtly larger than Hall and

b
Hubbard's 0.55. In all calculations, a limb darkening

xb = 0.6'uas used.
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Table 7.1 The Geometric Elements of HS Herculis

Russell Model (Tabachnik's method - total eclipsé)

initial corrected corrections (ZAPP.DC)
r, 0.210 0.211 6.01x 10”3+ 1.54x 1073
r, 0.122 0.122 ©Z1.13x 10 °+g.91x 10”4
X 0.582 0.578 |
3 ] ° 2. -4 ’ -4
i B4°.63 84°.57 A(cos“i) =1.70%x10 "+ 4.32x% 10
X 0.6 0.6
L, 0.900  0.902 0.002 < ]
L,  0.100 0.098  -1.98x10 >+ 1.82x 10 "
» Ja L2 1
Ratio of surface mean intensities=-—=-— — = (0.325.
J.. L. .2
b 1k : .
7

Sum of squares of residuals = Z(O—C)2 = 3.71x10 '.

Russell Model (Kifamura's method - annular eclipse)
initial -corrected corrections (ZAPP.DC)
r, = 0.26 0.26 0.1697 x 1073 = 0.4064 x 1072
r, 0.16 - 0.16 . ~0.1877 x 107> ¢ o.5657><_1o"2
k 0.62 0.62 |
i 190°.0 89°.1 A (cos?i)=-0.7095x107>£0.3735x10 2
X 0.60 0.60 )
.Ll ~ 0.900 0.9¢4  0.0439 : 0.0241 )
L2 0.100 0.098 0.0439 + 0.0241 ’
Sum of squares of residuals =‘Z(0-—C)2 = 9.02x 10—6.
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Table 7.1 (cont'd)

Kopal Model (annular eclipse)

(eclipsed star) 0.301+0.006

1
; o - Q??
r, (eclipsing star) 0.165% 0.034 : ‘
k ' 1.82 *0.35
i 82°.12+ 2°.14
x | | 0.60 (fixed)
Ll (eclipsed star) 0.902 (fixed)
L2 (eclipsing star) 0.098 (fixed)

Moments of the light curve (program EB.FS):

0.3412 +* 0.0017

>
Il

(@] _

A, = 0.01943 *+ 2.365 x 1074
A, = 1.664 x 107> * 5.599 x 107> ]
A = 4 -5

1.792 x 10~ * + 1.286 x 10
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Table 7.2 WINK8 results for H S Herculis

x, = 0.261 * 0.003
k = 0.555 * 0.004
r, = 0.145 + 0.003
i = 86°+0°.9 ‘ : \ b

Magnitude at quadrature = 8.522 * 0.002 mag.

T, = 23000 % 600°K
éz = 10000 °K (fixed)
x = 0.6 (fixed)

log g; = log, = 4.0 (fixed)

q = mass ratio = 0.3 (fixed) . .

’

r.m.s. error = *0.013
J(0-C)? = 0.0227

Number of iterations = 4

Astrophysical Parameters:

' | [} ” ’ o1 ; -
star . \V \ éo ' Teq( K) Tpole( K) vPolytrSpe
- ,
A 0.262 = 0.262 23072.25 23333.63 5.0
B 0.145 0.145 1000000 10064.91 5.0

i

Model? a=0.266 ka==0.553 kV::0'553v J5486 = 0.22

JA/JB=?O.25 : Jnorm =,0'22 delo = 0.935'
star ellipticity' z u; =X v w a b c
A .0.9921 -0.0036 0.6 -4.0 1.0 0.266 0.264 0.261

B 0.9851  0N0085 0.6 =-4.0 1.0 0.147 0.145 0.144



-

Table 7.2 (cont'd)
Luminosities:
star apparent normalized
A~ 0.175 0.929
B 0.0134 +0.0711
0.0765

ratio

Reflection effect:

star -unheatéd (°K)
A 22885.96

B . 9845, 18

“total (4m) .
.

1.38x10%

1.45% 10%

0.0106

heated (°K)
22893.32

1 13709.76

2

110

normalized (4w)

0.98955

0.01045
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Tabachnik's method (program LINE2) produced slightly
’smaller radii and a lower inclination. The most probable
cause of this is that rectification was not used, slnce out-
of-eclipse effects (otherlthan the gas stream mentioned
earlier) are minimal. One would expect rectification to
alter the 51zes of the stars'and the 1ncllnatlon by a small
C“amount . siace rectlflcatlon produces an equlvalent"spherlcal"
system; - Kitamura's method produced 1n1t1al elements very
close to.those found hy Hall and Hubbard. A dirferential_ Co
correction (using program‘ZA?P.DC) did hot produce any dras— v
tic changes ih the elementsi Kopal S metho (programs KAL,
‘ANNULAR, and EB.FS) was used with data from‘the annular
'eclipse. The elements found by ANNULAR are close to those.
~found using Tabachnik's method; A further aualysis, using
programs EB.FS and ERROR, establlshed the approx1mate errors

in the’ elements. Program EB.FS (see Jurkev1ch (1980)) fltS
a\Fourier series to the eclipse data,‘thus determihino‘the
Fourier coeﬁficients and their uncertainties. It theh//;
determines the moments ané their errors.(see table 7.1).
Program ERROR then uses these uncertainties, and the known
values of the\elements to'compute their errors (see'Kopal'
(1982a) , pp. 154-155). The WINK8 solution used 143 data
points,«ééenly distributed throughout the‘light'curve of
HESHerculls. The elements obtalned were ldentlcal to those
found by Hall and Hubbard. It 1s lnterestlng to note that.. =7

only four 1teratlons were required (a. maximum of six was

allowed), and that in the last iteration, fhe inclination

o
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was deleted from the list of variables to be corrected.
WINK8 will do this if a correction AXi is lower than a
certain preset limit. One may conclude that, in the case
of HS Herculis, the solution was very well determined.
Reflection effect calculations revealed a significant con-
tribution from the primary (hotter star); i.e., the tem-
pefature ofifhe secondary (cooler) star is‘significantly
affected by radiation from the primary. " However, the con-
verse is not true. ‘HoweVer, in the WINK8 run, one temper-
ature was.held constant (T, = 10000 K) and the othef allowed .
to vary. This would influence the magnitude of the reflec-
tion effect, so the result should be treated with some
caution. Also, the temperature of the orimarybobtained by
WINK8 does not agree with the result-of Hall and Hubbard

i

(for a B4/star T~ 16000 K). . | -

7.3 Conclusions

" In concluding the analeis‘of H S Herculis, there
are a,few poinfs that should be discussed. The most notable
feature of the various sets of elements obcained is that
their values are similar, but not the same (in general)
These differences arise primarily from the different models
and computational procedures used.. In the case of
Tabachnik's method? one isffitting a line to the vaxiables
.sin26 and (l+—kp)2, so that' the choice of k has an effect

- on the elements obtained. Another factor influencing the

solution is the scatter of the points in the Slnze - U_+kp)
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" plane, since a least-squares line minimizes the square

distance (i.e., (O-—C)2) betwe%n the line and the data
points. This is importantﬁbecauée the elements depend on‘
the slope and intercept .of the line. Since Kitamura's

; N
method involves the use of the Fourie; transform of 1(6),_
a‘smoothingioperation is involved,_decreasing the influence
of scatter of the data points. Since Kitamura's tables are
quite comprehensive, a good first approximation to the
elements may be obtained. With reference to both.
Tabachnik's and Kitamura's methods, one must'remember that' =
they are "indirecta methods, - since ﬁhe elements are obtained

2 )2

through the use of sin™®, (1+kp)”~, F, F2, and Fl/Fz;

Therefore, elements differing by sma’l amounts should be

expected. Furthermore, it should be xept in mind that the

Russell model, as used in the methods just discussed, is a
first approximation only. The model is almcst entirely
geometric in character. The only physical features used

are the limb darkening and the relative luminosities of the

stars constituting the binary system. The essential point

\

is that a simple, approximate model will give approximate

elements. Since Kopal's method uses an entirely different

b

"approach to the problem, one would expect some differences

- between results obtained with it and with Russell-type

methods. 1In Kopal's method, the 1limb darkening enters the

'

" problem directly, so one has a moreaphysically realistic

" model (one can easily include non-linear limb darkening).

As well, one has the advantage of the Fourier transform
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operation and a subsequent error analysis. In complete
contrast to the preced:ng methods, WINK8 fits the whole
light curve.-to a model, whereas the previous methods use
only eclipse data. Moreover, WINK8 uses a much more realis-
£ic‘model, in which the‘sta:g are treated as ellipsoids,no£
spheres.' It aiso allows for finer details such as reﬁlec—'
. tion, atmospheres (hence temperatures), both linear and
non-linear iimb dankehing, and'gravity brigﬁtening. There
are also other parameters which may either be varied or held
> X . ' .

constant, according to the needs of the user. From the
‘results obtained witthINK8, one can see that the components
of HS Herculis are_sphericai tb,a very good approximation.
Therefofé;_when one‘is;éompa:iﬁg elements obtained by
Vatious\methdds, it is‘imeftant to understand the assump-
tions and proceaufes involved‘in a particﬁlar?solution
method. - ' s

The next point. to be addressed concerns the identi-
fication of the "best" set of elements. Technically, one
should choose that set which minimizes Z(OmC)z. Héwever,
we must remember that the methods of Tabachnik,'Kitamura,
and Kopal use only eclipse data, -and that WINKB uses the
whole light curve, as mentioned earliér. One cannot thep
compare the other three methods to WINKS, since theséb
methods assume a constant value for 2(8) outside eclip$é§ 
(in the spherical épéroximation). The meﬁhods of Tabacﬁﬁik
and Kitamufawappearlto give the best fit to the eclipse -

data (by considering,Z(OQC)z), while WINK8 provide§ the

4
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"best fit" to the whole light curve. One might then ask
which method provides a set of elements closést to-the set
" obtained by WINK8. From this point.of view, the methods of
Kitamura and Kopal are.the closest. It should be noted that
in general, the inclination has a g#eater uncertainty with
reSpeét to the other elements. This can be seen in various
sets of elements obtained. Therg ore, one can only choose
a "best" set. of elements after an inlercomparison of the \
various sets of:elements,“and after considering the value
of J(0-C)Z2. -

The final point to be raised regards the Russell
modei and rectification. The results obtained with WINKS .
suggest that there is a large'reflection'efféct, Hence,.
oﬁe may ask whether or‘not the Russell model, as used in ‘
the methods of Tgbachnik ana Kitamura, is really valid.
To'answer‘this, it should begremembered that the result
obtained wiﬁh WINKS8 involvedvholdiQQ the secondary tempera-
ture’constaht, and'letting that of t primary vary. As
was ﬁentioned earlier, this wouid influence the magnitude
of the reflection effect. One should, therefore, treat the
WINK8 result wigh.some caution. Also, the Russéll model is
a first approximation,'and serves to provide a prelingary
set of elements. During the eclipses, reflection is being
ignored, Fﬁréhermore, to make use of rectification wduld
not be correct, because one cannot reliably extend a fitted
curve beyénd the domain of the fit.‘ The rectification

constants (the values of AO, Al, A2 in the series 2(8) =



AO4-Alcose-+Azcosze) are fitted to the.out—of—eclipse

variation, and the resulting Fourier series is applied to

all data points, both inside and outside eclipses. From

116

the point of view of obtaining a set of preliminary elements,.

the use of the Russell model is justified.

i

'In_general, it is not possible to estab}ishva set of
criteria for choosing the best elements. Therefore, a

choice of a "best"\set elements should be based on the
Y

2y . . . . ,
observer's experience, and on any other available informa-

: | . . . :
tion regarding the particular binary system.

|



CHAPTER 8

W DELPHINI

8.1 Introduction

fhe second star to be analyzed with the various
métﬁods of light curve analysis is W Delphini. This.star'
has served as a "standard example™ in earlier work on light
~curve analysis (see Russell (1912b), Aitken (1935, ?. 192),
Irwin (1962, p. 597), Tabachnik and Shul'berg (1967), and
Tsesevicﬁ (1971)). The light curve of W Deiphini has beén -
well-observed by Wendell (1909, 1914), .and<ﬁoie'recently by
Walter (1970). The data to be used in this' chapter are
t§£en from both of ghese sources. In particular, the pri-
mary eclipse data is taken from Irwin (1962), who hsed W
Delphini to demonstraté the Ruséell—Merrill methbd (Irwin's
data is from Wendell's light curve).

‘ W Delphini has been classified as an "Algol-type"
(i.e., detached) system by Russell (1912b), although the
results of Wélter (1970) indicate the presence of mass
transfer ahd.a'significant reflection effect.  The ofbitai'
period of W Delphini‘is 4.806i days. The primary eclipse
is a very deep total eclipse (flat minimum), the magnitude
change being 2m.695, . The secondary (énnular) eclipse is
very shaliow_and almost non-existent. Irwin (1962, p.599)
has computed the change in magnitude to be 0™.039. The
primary eclipée of W Delphini is shown inifigure 19. 1In

table 8.1, the values of the geometric elements, as found
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FIGURE 19, LIGHT CURVE-W DELPHINI,



by I&win (1962, p. 598) are given. ) It should.be noted that
the value of x=0.5 used for the limb darkening by Trwin
was for demonstration purposes only. If the spectral types
of the stars are taken into account, a more realistic value
is x=0.6. The spectral types, as given in the catalogue
\of.Batten et al (1982) are AOe for the primary, and G51IV
for the secondary. Furthermore, the eccentricity e= 0.20,
* the masslfunction f(m) =0.0127, and asini=1.94 le6 km.
The orbital elements of.Irwin,pas given 1in table08.l, will

be used as a comparison with results obtained by other

methods;

8.2 Lioht Curve.Analysis

» The results obtained with the methods of Tabachnik,
Kitamura and Kopal appear in tableoSLZ, and the WINKS8
results in table 8 3. The light curve of Wendell was
analyzed u51ng the methods of Tabachnlk Kltamura, and
Kopal, while Walter's light curve was analyzed with WINKS.
(The observations were weighted according to the"square root .
of the number of observations made at a particular phase)
Tabachnlk S method was programmed into a TI-59 programmable
calculator; Once again, the program LCFT2 compated the
quantitieslnecessary for an analysis by Kitamura's method.
An analysis using Kopal's method‘yas carried out‘using the
Kalman filter (program KAL) and the total eolipse‘program“

TOTAL. The Kalman filter was used because both light curves

had relatively few points (Wendell: 27 points, Walter: 59

(8]
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Table 8.1 W Delphini - Irwin's Elements

radius of large star = rgv=;0.2474 (k= Of625):m
radius of small star = r, = 0.1546
i = 85°.07
light of large star = Lg = 0.9164
light of small star = LS = 0;0836
limb ¢:rkening x = 0.6 ‘ _ -

Table 8.2 The Geometric Elements of W Delphini

Tabachnik 5 method (Ti—59)

: |
i = 88°.04

radius ~f large star = r, = Of226 \ ‘ J
radins of small star = r, = 0.176 |
limb darkening x = 0.6

L, = 0.9164 ' L, = 0.08360
Kitamura's method (LCFT2)

| i = 88°

rl'= 0.24 . r, = 0.21

x = 0.6

L, = 0.9164 . L, = 0.08360
Kopal's method (KAL, TOTAL)
rédius of eclipsed star = r, = 0.153
radius of eclipsing star = r, = 0.241

i = g6 | |

L, = 0.9164 L, = 0.08360

1 2

(Note: L, = light of larger star, L, = light of smaller star) .
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Table 8.3 WINKS - W Delphini
i-= 85°
radius of primary star = r, = 0.147 % 0.006
radius of secondary star = r, = 0.241+ 0.022
LA = 0.9213 |
Lg = 0.07868 Z(O—C)2 = 0.017573

Astfophysical parameters

star v a, B T(equator) T(polar) 1logg polytrope
A 0.14803 0.1480 0.250 9600.0 °K 9623. 0 °K! 4.0 5.0
B 0.é4319 0.2432 0.250 4699. 0°K 4796;0 °K 4.0 5.0
Model»parameters
a = 0.14863 X, = 1.71916 k, = 1.64284
Je310 éAo.02741 T opm = 0-02723 Iy 010 = 0-05742
maés ?étio==0.5 quadrature magnitude = 0.025 .
o F : \
star ellipticity C 'ul=x u, v w a’ b c
A 0.09976 0.0 0.60 0.0 -4.0 1.0 0.1486 0.1483 0.1479
B 0.9589 0.0205 0.60 0.0 -4.0 1.0 - 0.2555 0.2450 0.2398
‘ . . _ »
Luminosities
‘star apparent :normalized total (4m) normalized (4m)
.A 0.05538 0.92122 0.1299><lO12 0.86606
B 0.00473 0.07868  0.2009x 10" 0.13394
ratio 0.08540 | 0.15465
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points). . In such a case, least-sduares Fourier analysis
would not produce meaningful results. This was substan-
tiated when brogram EB.FS was used to compute the moments.

" Several trial runs produced situdtions in which éome of the
moments were negative, had largé errors (greater than the
moments themselves), or whose‘magnituae did not decrease
with increasing values of m. On the otherbhand, the Kalman
-filter prdduced,positive moments, whosé magnitude did
decrease with increasing'valués‘offh (see table 8.2).
Unfortunately, the use of“the Kalman filter precludes any
error analysis. Moreover, Ehe elements produced with the
moments computed by KAL were much more reasonable. Other
sets of moments (from EB.FS) pkoduced values of the primary
stér‘s radius greater than one, Which is an unreasonabie

" value since the light curve is not one of an "ovgr—contact"
(i.e., similar to W Ursae Majoris) system; The analysis
using WINKS did not‘préduse'any unusual results; other than
that it found both ecliﬁSééﬂﬁo be partiélj‘rather than |
total and annular. However, such a result is -not unreason-
éble, given‘that only 59 points were used, and that the
eclipse:;s a grazing (i.e., just barely total) one. Hénce,
a small change inltﬁe inciinétion could alter the type of
eclipée, from total to partial. As with H S Herculis, ﬁhere
is a significant-reflection effect on thé secondary star
(~702°K), but a negligible effect on the primary. The

stellar semi-axes showed that both stars were spherical,

with the secondary being slightly more polar-flattened than
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the primary (see table‘8;3). The —-ocmplete analysis required

five iterations.

8.3 Conclusiomrs

-

-

,In_qoncluding the analysis of W Deiphini, theré are
some points worth discussing. As with HS Herculis, there
are differences between the difféient sets of elements.
However, the differencés are between the methods ﬁsingfthe
Russell model and those not using this model. Thg élements
obtained with Tabachnik's and Kitamura's methods produced
nearly identical resu@ts (except for the radius of the
smélle; star), while Koéal's method and WINK8 produced’
identical sets .of elements. Once again, one is faced with
the choice of choosing the best set of e€lements, but given
the more realistic models employed by Kopal's method and
WINK8, one would tend to believe the sétS'of elements.
'bbtaiped'with these methods. It should be-noted that a
differential corrections program was not used, sincé the
sysfém is well—§eparated, and also for the purposes of a
direct comparison between the methods. One can-also argue
that the.elemeht; obtained via Kopal's method are closest
to those fbﬁnd by WINKS8. ' Any further differences between
the various séts of elements should be attributed ﬁo thé
computational'methods employed.

The analysis juét presented reveals dan important
point regarding Kopal's method. In Ehé previous'section,

it was mentioned that the_methbd of least-squares Fourier

<
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analysisvproduced spufious results, makihg the,use~6f the.
Kalman filter a necéssity. This situation precluded'any
sort of error analysis. Hence, if one wishes to obtain a
set of elements with error estimates using §ppal's method,
one must have a -large number of data points available.
This situétion also demonstrates thé utility of the Kalman
filter and its ability to produce good'leaﬁt—squéres esti:'
mates of the moments using relatively few (27) pﬁints.
Therefore, the'kalman filter is well~suited to,situations
in which the light curve consists of relatively few data
points. Théﬂopposife‘would be true for -least-squares
Fourier analysis. |
.. As a final note, this analysis of W Delphini shows

: / N
that many of the eclipsiﬁg binaries analyzed using Russell-
type methods would bear a second look, bqth from the point
'onView of‘light'cﬁrve analysis, and fréﬁ\qn obéervagional
point of view. Systems such as W Delphini should be re-
analyzed using modern metﬁéds (Kopal-or'WINKB), thch would
.use well—observed (i.e., several hundred data,poihts) fiépt

a . :
of elements, with'good_error estimates. 1In this-regard,
£his analysis of W Delphini is somewhat orig;na; since this
system‘has not (to‘the‘author's knowledge) beeﬁ analyzed
with any method more complicated than Tabach\ik‘s method.
Rather than reaffirming»oldiresults, an anal sis such as
(_thejone just ééeﬁented provides greater insight into the

phenomenon of eclipsing binaries,

t
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curves as input data. One could then compute reliable sets



CHAPTER 9
o

HD 219634

9.1 Introduction

The last eclipéing binary to be cunsidered in this
survey of light éurve analysis methods is the recently dis-
;bveréq-systéﬁ oleD 219634.. The syétem has‘beeﬁ observed
photometrically by Gulliver, Hube and Lowe\(l982), but has
been monitored only intermittently sincé the.discovery of
its'eclipéing nature. ‘Hube has also made several épéc£ro4
graphic obéervations,.with.whiCh a spectrosEopic solution

has been computed (not yet published).‘ The‘spectroscopic
Isoluﬁion revealed a mass function of 0.16 solar masses and
a period of 2.3912 days. The large value of the mass fuac~
tion suggestediphat HD 219634 might be an eclipsing binary.
Gulliver et.al have deduced é épectral-ﬁype of BOVn for-

HD 219634. Since the secondary was. not detectea speqtrbs;
Acbpically,.this classificétion would.refér to the pfimary
star. It should also be noted that HD 219634  is a possible
optical counterpart to the X-ray source 402316 + 61 (see |
Forman et al (1978)).

‘'The partial light curve to be used in this analysis
v ' .

o I |
was obtained by Gulliver at Kitt Peak in 1981, using diffe-
rential UBV photometry. The AV light curve appears in

figure 20. 'The'light curve has several noticeable features.

o _ } 12 .
The, eclipses appear to be partial, sincdé the minima are

LN

- fairly sharp. ‘Secondly, there is a noticeable lack of

¢
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points outside the eclipses, a feature which autom: -ica.
rules out least-squares Fourier analysis'in Kopal's & hod.
Hence, the Kalman filter must be used. ‘The original light
curve of Gulliver et al was asymmetric in the scnse -that the
shoulders of the light curve (points of’ekternal tangency)
weré/not ievel, particularly at primgry minimum. The asym—v
metry amdunted to 0™.02 in.the AV light curve. Tﬁe light.
‘curve shown in figure 19 has this Qariation removed (ali
points witﬁ 0.0.5 8 ﬁ 0.0930 wére‘shiffed up by 0m.02).
7Nbulliver et al have attributed this variation to a possibly
non—éonstant comparison star (HD220057) or to an intrinsic
variation in HD 219634 itself."It should also be notediﬁhat
the 1i§ht variation outside the eclipses is not constant,
so one would, expect the components to be somewhat oblate.
,The observations to be used in the liéhthcurve énalysis

_appear 1in appendix 5.

9.2 iight Curve Analysis

The two previous chapters have demonstrated the rela-

tive performance of the various methods of light curve
analysis. HD 219634 allows these methods to Be applied to

a new, and previously unstudied system.
Since the light curve of HD 219634 shows effegts due

to oblateness and reflection, the Russéll model is techni-.

-

cally not applicable. However, the method of Kitamura was

used since the Fourier transform operation minimizes.irre-

. gularities in.the_iight curve, and is therefore preferable
N !
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to Tabachnik's mqthod; Kopal's method waé ﬁsed for the’
same reason. WINK8, which models both reflection and oblaﬁe—
ness in a realistiq manner, gave the beé; results. The
results from the methods of Kopal and Kitamura appear in
table 9.1. The WINK8 results appear in table 9.2. All
methodsvproduced an inclination close to 69° degrees. How-
ever, the“agreement between the various radii is not good.
In all cases, the radius of.the smaller star lies between
0.1 and 0.2, while the larger radius lies betWeen 0.12 and
0.36.- A similar situation exists for the reiatiﬁe lumino-
sities. Since WINRB uses a more realistic model, the |
-results so optained are probably'closer to the truth. The
‘value of k=0.799 obéained by WINK8 implies that the primary
eclipse is a transit (ife., annular). In using Kopal's |
me- 10d, it was found that the primar§'eclipse was an occul-
tation. - This was determined throuéh the use of the Russell-
Merrill x-functions (see Appendix 3). No such assumption
was required with Kitamura's method. The values of the
characteristic function E indicated that the primary eclipse
is an occultation, agreeing with Kopal's'method.“‘Further )
analysis to resolve this disagreement between the Fourier
transform methodsAand WINKS8 .is most certainly required.
Some other interestiné results-obtéined Qith WINK8 were th;t
the larger star is also the brighter one, and that there is
a significant reflection effect on the secondary (AT = 250°K).
Both stars are also significantly oblate; The temperatures

obtained by WINK8 did not agree with the spectral classifi-

<
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cation of Gulliver et al, which was BOVn (29000°K) for the
primary and B8 (12000°K) for the secondary. This arises,
from the fact that WINK8 w.s allowed to use its default
parameters in,starﬁing the solution. The.default values of
the temperatures are 5§£h 10000°K. This pfoblem with the
temperatures will be discussed further in the conclusions
of this chapter. The discrepancies in the radii and rela-
tive luminositiestdisplaYed in the ﬁethods‘of Kopal and
Kitamura‘can‘be attributed to the computatiohal method used.
In the case of Kopél's method, an initial estimate of k was
requifed, and the resulting elements reflect the rather
large uncertainty.in the value of k. Unfortunately, the 4
' \ <

method for determining an improved value of k led to wildly

erroneous values, so only an initial approximation to the

elements was possible. 1In the case of Kitamura's method
it was possible to match the characteristic functions only
for the case r_ =0.36 and r_=0.13. Thus the problem lies

b
with any uncertainties that the characteristic functions

~.

might have. However, the radii so obtained are closer to
those found by WINK8 than are ‘the radii from Kopal's method.
Once again, similar remarks would apply to the relative

luminosities. -,

9.3 Conclusions

In concluding this analysis of HD 219634, there are
some points t \be discussed and some observations to be

made. In t é\gégyious section, it was mentioned that the

\)@
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temperatures found by WINKS8 ‘did not agree with spectfal
classification.of}ﬁ)219634.’ A possible remedy would be to
fix both temperatures at the values determined from the
speétral classification and to compute another solution.
The tempefatures would affect the solution through the limb
darkening (which was held fixed at 0.6, according to the
stars' spectral types) and through the value of the central
intensity, I(0), since it is only these parameters which‘are
directly affected by the temperature. However, one should
not rule out more subtle connecﬁions between the tempera-
tures 6f the stars and othéf parameters. ! Since a change in
limb darkening can mimic a change in the radius, the limb
darkening»wés held constant.' Hence, the only direct effect
that a change in gémperatgrevwould have would be on I(0),

~

which»ultimafély determines the luminosity of the star;
This would 9§§iously have an effect won the r;dius‘of the
star; altﬂéﬁgh the magnitude of such an effect could not be
easily estzﬁzgga. Hence, a further avenue of research would .
be to investigate the changé in the radius induced by a
change in:the temperature; Cléariy, the resulté obtained
with Kopal's methoa require some comment. The problems lie
in the computational method used. This method is outlined
in Séétion 4.9 of Chaptef 4. Using this approach, if seemé
to be quite difficult, if not impossible, to proceed to a
more refined solution. The problem with the présent method

of solution in the case of partial eclipses is that an

initial value of k must be specified. A better approach



would mean abandoning the method of Section 4.9 and to use
a mére fundamental approach. Kopal outlines such a methéd
iﬁ his 1979 book (pp.l75—l79); Withoht going into great

detail,‘ﬁhe method involves finding the roots of simultan-

eous non-linear equations

A2 . A2
(a,c ) = 2 and g,la,c) = 4
A A A 497 %0 A.A
. o4 : 276
. r 4 .
where a = - jr and co = EEEELi .
1 ~2 1

The right hand sides of the first set of equations are de- -

termined from the observations. The left hand sides are
then computed using the series expansion, equation (4.48)

of Chapter 4. The problem is then an iterative one for

determining a and c_.’ '

Finaily, the question arises regarding the hest set

of elements. It was mentioned in the previous section’that

the set of elements that are closest to the truth are those
found by WINKS. Since WINK8 fits the whole light curve,
and accounts for both oblateness and reflection, one would
expect the WINX8 elements to be.the best. -The only other
solution that comes anywhere close is the set of elements
from Kitamura's method. With regard-to WINK8, the problem
of the discrepant temperatures should not be forgqtten.
Clearly, HD 219634 merits further inveStigation,'both obser-
vatiéhallj aﬁd.analyticaliy. The number of out-of-eclipse
observafions is too small to reliably model tﬁe second-

order effects, and the source(s) of the displacements of

131
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the two branches of each eclipse is still not known. In
\ . i .

spite of their small number and (possibly) large uncertain-
ties, it is comforting to note that some sense can be made

of the observations of this system.

-y



Table 9.1 HD 219634 Orbital Elements

Kitamura
‘i = 68°
r, (small star) = O.Ig
rb:(large star) = 0.38

L, (primary) = 0.08106

L (secondary) = 0.9189

X = 0.6
Kopal
.1 = 68°.4
ry (eqlipsed star) = 0.168
r, (eclipsing star) = 0.122
L. (eclipsed star) = 0.2920
1 ' T
L, (eclipsing star) = 0.7080 -
x'= 0.6

(Note: X =r )
a

A

133
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Table 9.2 HD 219634 Orbital Elements from WINKS

‘i = 69°.06+0°.43

magnitude at quadrature = -0.429+* 0.001
STy = 10000°K (fixed)
T2 = 9400°K £ 251°K

1l

rl(large star) 0.249 + 0;004

0.199 + 0.013

r2(small star)
k = 0.799 % 0.042 '
x = 0.6 (fixed for both stars)

J(0-C)2% = 0.00793
/

Astrophysical Parameters

A . poly-
star . Vv ag B T(equator,°K) T(polar,°K) log g trope
A 0.25239 0.2524 0.25 10000.0 - - 10155.81 4.0 " 5.0 .~
B 0.18827 0.1883 0.25 °  9097.36. ©9139.15 4.0 5.0

Model Parameters .
a=0.26054 k =0.73230 k =0.74597 J =0.78784
‘ . a Y 5200

J = 0.78873

norm Jbolo-=‘0.67955 g = 1.0
¥

star ellipticity - z ul(=x) u, v w a b c

A 0.9766 0.0076 0.6 0.0 -4.0 1.0 0.2605 0.2545 0.2504 -

B - 0.9901 0.0033 0.6 0.0 -4.0 1.0 0.1908 0.1889 0.1877
Luminosities
‘star apparent normalized . total (4w) normalized (4m)

A 0.16460 0.69642° . 0.4482X 1012 0.72697

B 0.07180  0.30358 0.1683 x 1012 0.27303

ratio 0.43591 _ 0.27557.

8]
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CHAPTER 10

. | CONCLUSIONS. AND COMMENTS

After having applied the four methods of light curve

analysis to three different eclipsing binaries, a number of

qustions %Pite naturally arise. To begin with, how do the
various methods of light curve analysis compare? How physi-
cally realistic are the various models underlying these
methods? - B | \

The anélyses in the previous three chapters have
~clearly established that Wobd;s'model'isvthe "best" since
the.eleﬁents obtained are thé result of a fitvto the whole-
light curve, rather than to one half of an eclipse. Agree-
ment with published results confirms that WINK8<ié operating
correctly. However, Kbpal's frequency domain method per-
formedbjust as well as WINK8, despite the fact that a spher-
iéal model was-used; ;This is partidularly evident in the
anaiYsis of W Delphini.: Oﬁe can therefore say that Kopal's
method can produce resulﬁs as g%od as those found using
WiNKS, Eut with relatively litt&e computation. However,
Kopal's method does not provide the detailed déscfiptidn
that Wood's mode; does. Edr instance, one cannot estimate
the magnitude of the reflection effect or compute the separ-
~ate semiaxes a, b, and.c in Kopél's method. @lso, Kopal's
method does not really allow one to computé_a theoretical
light curve, apart fromAcdmputing'a explicitly, a.process

which is quite tedious if the stars in a particular system
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are significantly distorted,‘ WithAthese limits, however,
one can regard the methods of Wood and Kopal as being equi—‘
valent. The two methods ihcorpérating Ehe Rﬁssell model,.
namely the methods of Tabachnik and Kitamura, show thé
"approximate nature of the model, and hence its inability to <
representfsystems which do not have spherical components, |
or those in which reflection may be important.j Of tﬁese

two methods, the more desirable of the ﬁwo is that of
‘Kitamura, since the Fourier transform operation acts és.a
smoothing éfocéss. The sucééss of Kitamura's methbd in this
regard is evident in the case of HD 219634, even though the
elements were sligﬁtly diffefent’from those found by WINKS.
A disadvantage that both of the Russell-type methods have |
is that théy are indirect. One must cémpyte‘various apxi—

«
liary functions and then eifher compare these with theore-

tical computations or use them in a.further computation,
which finally produces the set of élgmgnts. On the other
hand, WINKBjand Kopal's ngpod proceéd to the solution more
difectly. In the case QE/WINKS,‘the residuals AI(0-C) have
-a direct bearing on the resultant elements. In Kopal's.
methad, the moments of the light curve enter the equations
for the elements directly. , /
As far as realism is concerned, the points madé'in.the
previous paragraph apply. The modelé-of Wood and Kopal are
clearly superior to .the Russell model since;the physical

properties of tHe stars enter the analysis more directly.

The Russell model is really little more than a qeometrics

ot St s et o S mmnr (L
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one. With the models of Wood and Kopal, one can represent
<

stellar oblateness and reflection rigorously, rather than

resorting to the questionable approach of rectification.

\

Also, the models of Wood and Kopal benefit from our current

137
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knowledge of stellar atmospheres,  especially with regard to

limb darkening. With regard to the reflection effect in
particular, the models of Kopal and Wood handle it in a
satisfactdry way. WINK8 models the effect directly, whereas

Kopal's method allows one to filter out the reflection

3

effect. , &
.The gnalyses of the previous chapters@arg but Erei&m—
inary ones, particularly in the case of HD 219634. ‘After
such initial analyses, one can go on to refine the solution,
investigating any_interre;ationships that may exist between
the various modél pafameters,‘ A case in poilnt ié t@e "dis~
crepant temperatures" problem inlﬂ)2l9634. Clearly, further
work on this system is necesséry. If the elements of a
particular eclipsing_binary are reasonably well determined,
some other avenues of research are to determine the eccen-
tricitylof the relative.orbit, the absolute diﬁensions éév
the system (using spectroécopié”data), and to investigate
the possibility of apsidal motion; The last. item is parti-
cula;ly important with rega;d to relatiyistic effects and
stellar eyolution. .Henée, one can gauge the importanée of
mass transfer. An independent approach would be to examine

the spectrum of a system, which provides one with some idea

of the rotational velocities of the two stars There are
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also other effects that can be investigated in the spectra

of eclipsing binaries. The analyses of HS Herculis and W

Delphini show that these systems are worth a second look,

since the newer approaches to light curve analysisbprovide

greatérvinsight into. the nature of eclipsing binaries,

rather than

reaffirming older results. Many eclipsing'

binaries anaiyzed with the Russell model would certainly

benefit .from more detailed consideration using one of the

s

/-

modern techniques.

In conclusion then, it can safely be sdid that modern

methods of light curve analysis provide greatér insight

into the nature of eclipsing binary stars, since the models

employed and the methods of analysis used are based on more

realistic physical models. However, a "best set" of ele-

ments is not easy to obtain since light cur\  inalysis

~methods are

dent of the
very nature
’approaéh is

the physics

not "black boxes" which produce results indepen-

user's judgement. Light curve analysis by its

is not a simple problem, so an "experimental!

required to really\éome to an understanding of

. !
involved in eclipsing binary stars.

;

«
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Appendix 1 Russell Model Programs and Rectification

Al.l1 Computer Programs

There are sevéral programs which use Russell's model
in the analysis of eclipse light curves. The FORTRAN pro-
grams LINE aﬁd LINEé use Tabééhnik's method. LINE takes a
value of k and the values of 6 and b és input data. After
choosing an appropriate value of k, one must use the Russell-
Merrill tables (see Russell and Merrill (1952)) to find the
values of p corresponding to the values of a computed from
the light curve. LINE.does all other computatiéns. LINE2
- is similar to LINE, but takes as input values of p corres-
écnding to two values of k (maximum difference of 0.1 &n k
alloWed). LINE2 then scans all k values between the chosen
limits, and prints out the corresponding values of Z(O—C)z.
The value of k for which Z(O—C)2 is a minimum should be
‘taken as the solution. Both LINE and LINE2 make use of an
integer array known as INDIC. If INDIC(I) =1, then a par-
ticular observation is included in the least-squares fit.
An observation is omitted if INDIC(I) # 1 (values for INDIC i
follow ‘those of 6 and p, i.e., ei, pi, l, for:.all observa-
tions). The programs are initiated by the commands'

SET-T = 1.0 .

$R *FORTG SCARDS = .LINE T=1.0

(Computer will respond with a message.)
$R . -LOAD# 5 = (A DATA FILE) 6 =-P

(another message.)
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To see the results, list the output file -P. All FORTRAN
programs are used in this fashion. ' A program using
Tabachnik's method is also given for the TI-59 calculator.
The instructions are self-explanatory. ' The programs ZAPP.DCk
and LIGHT are differential correction programé. ZAPP.DC 1is
a WATFIV progﬁam that ‘uses values of the derivatives from
" Irwin's tables (see Irwin (1947)).‘ The generaiized linear
least-squares program used in ZAPP.DC haé been adapted from
the ﬁ?égram published by Malin et al (1982) . . The valués
of the derivatives are found by interpolating in IrWin;s
tables. One need anly enter the value of a, the valﬁes of
the derivatives, the value of A%(0-C). the weight ‘(usually
1.0), and the phase, for each observatioh. ZAPP.DC then
formulates the equations of condition, and solves them for
Mﬁhe COfrecﬁibns ALi,2’ Ary , Ar, ‘and A(coszi), »?he value
-of the limb darkening, which is required for the solution,
is not corrected. The program listing includes a s;ﬁplg
input. The standard deviatior~ of the corrections are also
printed out, as is the value of Z(O-C)z. A sample output
follows the program listing. ZAPP.DC is initiated with the
command »

$R *WATFIV‘ SéARDS =AZAPP.DC .
All resulté are printed out on the terminal. Program
LIGHT uses an entirely diffefént approach. All derivatives
are computed numerically, -and the required a-functions are
computed using the polynomial approximations of Fliegel ang

Wilson (1968). The least-squéres procedure used is known
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\

as the Levenberg-Marquardt algérithm (see, for example,
Gill, Murray and Wright.(l9él,pp.l36-137)). A program,
known as CURFIT, which incorporates this algorithm has-
been published by Bevington (1969, pp. 237-239). This pro-
gra{y as well as other required subroutines»have been
incorpofated into LIGHT.  LIGHT requires only the inbut
light curve (eclipée part only), as well ;s starting values
for the elements and step lengths to be used in the solu-
tion. Due to its large size, LIGHT is not feproduced here,
but a sample run and data file are given. LIQHT is initia-~
ted in the same way as LINE and LINE2, but one must use the
following sequence to run thé pfogram:‘

$R - LOAD# 4=COEF 5= (A DATA FILE) 6=-P
File COEF contains coefficients for the‘polynomial appro-
ximation to a. It should be noted that LIGHT cannot handle
the\aﬁnular phases of annular eclipses because an approxi-

mation to o for such phases does not yet exist. Such an |

\

aporoximation will be incorporated in future versions of \

LIGHT.

There are a few subtleties to be aware of when
using LIGHT. One should not use "1arge" step lengths
0 0.l)since this can produce wildly erroneous results.
Hence, all step lengths-should be no larger than 0.01, a
good "typical" value being 0.001. In Eontraét to a differ—.
ential corrector such as ZAPP.DC, LIGHT prints oﬁt the ney

‘ _ . L.

set of elements followed by their standard deviations.

Corrections are not printed out, but a list of input para-

meters is provided for the user's reference.
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Al.2 An Example of Rectification

The method of rectifid@ﬁkoﬁ~used is the graphical
method of, Russell and Merrill (1952, pg. 54), and is des-
cribed completely therein. In order to rectify a light

curve, one fits the Fourier series

2 (8) =Ao_+ Al cos 8 + A2 cos 206 + B151n6 + stln 206

to the light varlatlon outside ecllpses. It should be
noted that the presence of the last two terms cannot be
justified physically. One is also assuming higher terms
to be negligible, which is net usually the case. The
method itself is quite simple: oﬁe reads values of g(e)
from the light curve at some convenient interval in 8 (say
10°=0.17 rad), letting a, b, c/d. Lepresent L(0) at 8,
180°-6, 180°+8, and 360°-6. By combining a, b,c, and d in

various ways, one finds that

. ) 4
Z(§+b+c+d) = AO + A2cos26
la-pb-c+d) = A. cos 8

a 1
lia+b-c-q) = B. sin 6

2 B
L(a’—b+c—d)= B, sin 8

1 By

Therefore; by plotting the left hand side of these equa-
tions agqinst cos 26, ces e,isin 8, and sin 26, one can
find the coeffie}ents from the slopes (and”iﬁtercept-in.
" the first eqﬁation only) of the lines. Any points happen-

ing to be within eclipse will not lie on any of the lines,



so one may effectively exclude in-eclipse observations,
using this criﬁerion. The rectification procedure 1is then
carried out u‘lng equations (2.25) and (2.26) of chapter 2.
To illustrate the procedure,vobservationé‘of HS
Heréulis 6utside eclipse will be analyzed. To facilitaté
the compﬁtation; only a small number of observations will
be used.. In general, it would be advisable.to use all
available observations. The procedure descgibed above can
be‘perfbrmed with relative ease using a programmable calcq—
iato;. ihe coefficients Ao, Alf AZ' Bl.and B2 may tﬁen be
found using a linear least-squares routiné. The results
of the calculation are preseﬁted in table Al.1l, -along with

those of Hall and Hubbard (1971).

o

Table Al.1l
R .' |
present work - Hall and Hubbard.
AO 0.9376 -~ 0.980
A -0.01645 . -0.015
A2 -0.03931 0.003
B 0. | B .
1 0 , | 0.0
B, 0.0 : ' ‘ 0.0
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COMPUTATION OF ECLIPSING RINARY.ORBITAL 148

1 C
2 C ELEMENTS BY TABACHNIK®*S METHOD.
.3 C PROGRAM 'LINE*. BY D.HOLMGREN, JAN.8'34a. ‘
<4 C , o
5 IMPLICIT REAL (A—H,0-2)"
6 REAL INCL
7 INTEGER' INDIC(20)
8 DIMENSION T(S0)sP(S0)+X(S0),Y(50)
-9 C READ IN DATA (THETA,.P).
10 READ(5+1)NOBS, RK
11 1 FORMAT(I3.F14.,7)
12 READ(S+2) (T(I),P(I),INDIC(I), I=1,NOBS)
13 2 FORMAT(2F14.7,13)
14 C FORM X AND Y. _
15 . DG 3 I=1,NOBS
1e XCI)=SIN(T(I))*SIN(T(I))
17 3 Y(I)=(14RK*P(I))*(1e+RK¥P(1))
18 C DO LEAST-SQUARES FIT
19 SY=0.
20 SX=0.
21 SY2=0.
22 SX2=0.
23 SXY=0.
24 . DO 4 J=1,NOBS .
25 . IFCINDIC(J).NE.1) GO TO 4
26 SX=SX+X(J)
27 A . SY=SY+Y(J)
28 ‘ SX2=SX2+X(J)*X(J)
29 SY2=SY2+Y(J)I%Y(J)
30 _ SXY=SXY+X(J)%Y(J)
31 4 CONTINUE
32 C DETERMINE PARAMETERS.
33 ’ AA=SXY—( SX*SY/NOBS)
34 BB=SX2-SY2+((SY*SY-SX*SX)/NOBS )
35 ) DSC=BB*BB/(4e«*AAXAA) +1.
36 IF(DSC «LTe. 0.)DSC=-DSC
37 A=—BB/ (2.%AA)+SQART (DSC)
38 . - B=1SY=A%*SX)/NOBS
39 IF(ALT.0s) A=—A
40 - IF(B +LT. 0.) B=-B
41 TI=SQRT(A/B)
42 INCL=ATAN(TIL)
43 - R1=1./SQRT(A+3)
44 . R2=RK*R1 ' : P,
45 ' WRITE(6,+5)R1sR2, INCL
46 S FORMAT(1X,'R1=%,F14,7,1X,'R2="',F14, 7.1x.-1NCL—'.F14 7)
47 C FIND SUM SQ. RESID. »
48 $2=0.
49 DO 6 K=1,NOBS
. 50 . 6 S2= 52+(A*X(K)—Y(K)+8)*(A*X(K)—Y(K)+B)
51 - , S2=S2/(1.+A%A)
52 WRITE(6,7)S2
53 - 7 FORMAT(*SUM SQe. RESIDe =',F14.7)
54 STOP
55 END ‘ . o

END OF FILE
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14
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37
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46

47
43
49
50
S1
52
53
S4
55
56
57
58
59
60
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aNaNe!

O

IMPLICIT REAL (A=H . +35-Z2)
REAL [INCL ’

INTEGER INDIC(20)
DIMENSIUN T(50)+P(50).+X

C READ I[N DATA (THETA,?).
READ(S5+1)NDOBSe NKe RKL U KKHI » DEL

1

>

FORMAT (2I3+3F1447)

COMBUTATION OF ECLIPSING CINARY GFBITAL
ELEMENTS 3Y TABACHNIK®*S MFTHGO . {
PRUOGRAM 'LINE2', £Y D.HOLMGREN, JAN.22't4.

(50)«Y(50)PLU(S0),PHI(30)

READ(S e2) (T(I)sPLOCI)ePHI(1I) s INDIC(T)y I=1,N7HS)

FURMAT (3F1447,13)

C FORM X AND Ye.

RK=RKLQC

DO 100 L=1,NK' _
CALL INTER(PLO,PHI P,RK
DO 3 I=1,NOBS
XCI)=SIN(T(I))ESIN(T(I)

s KKLOsRKHI « NGRS}

)

3 YUI)=(1e+RK*P(L))*(1e+RKXP (1))
C DO LEAST-SQUARES FIT

4

SY=O .
SX=0e'
SY2=0. .

' 3X2=0.

SXY:O.

DO 4 J=1,NOBS
IF(INDIC(J).NLa1) GO TO
SX=SX+X(J)

SY=SY+Y(J)
SX2=SX2+X{J)%X(J)
SY2=SY2+Y(J)%Y(J)
SXY=SXY+X(J)*Y{(J)
CONTINUE

C DETERMINE PARAMETERS

5

5

12

AA=SXY—( SX%SY/N0OBS)

4

BB=SX2-3Y2+( (SY®SY-5X*SX)/NUSS)

]

0SC=BB#BB/ (4 «*AAXAA)+ 1+
IF(DSC «LTe 0.)DSC=-DSC -

A==BB/ (2. %¥AA)+SQRT (D5C)
B=(SY=A%SX ) /NOBS
TF(ALTe0s) A=—A

[F(B «LT. 0.) B=-8
TI=SQRT(A/B)
INCL=ATAN(TI)
R1=1./SQRT (A+&)
R2=RK*R1 |
WRITE(6,5)R1+R2, INCL

149

FORMAT (1 Xe'R1=* 3y FlGaT7s1Xs"R2="3F 14741 X, 'INCL=?,FlbGas7)

WRITE(6,12) RK
FORMAT (LXs"K="* ,F14.7)

C FIND SUM SQe. RESID. o

100

S2=0.
DO 6 K=1,NOS8S

)

{

S2=S2+ (ARX(KI-Y(K)+2 )% (A%X(K)-Y(K) +F)

S2=S2/(1l«+A%A)
WRITE(E,7)5S2
FORMAT (* SUM SQe RESID.
RK=RK+DEL

STOP

=Y WFl4.7/)
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61 END
62 =~ C LINEAR INTERPOLATION SUBRUUTINE.
& 63. SUBROUT INE INTER(PLOYPHI 4Py RKs RKLU oA KHT g NULIS)

‘64 IMPLICIT REAL (A-H,0-2) T

65 DIMENS ION PLO(S0),PHI{S0),P(5C)

66 DO 1 I=1,NUHS

67 I PCIN=PLO(IN+(PHI{I)-PLO(TI))*(RK=-RLO)/{RKHI—-&KLD)
68 RETURN

69 END

END OF FILE
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[S1 TP SR CVI \ O o

o ~NO

0

10
11
12
13

124440,
2.74854,1.0004+2,
2.7539,0.7749+ 1
2e7696,0.66014 1,
2.8067+0.2482510
2.8255,0.107Ss 1
2.8306,0.00397441,
2.8463,-0.0516Ss 1
2.8727+,=0.2541 41
2¢9506+4=045401 41
2.5565,=0.6795,1
3.40065,=0.6427415
3¢0150,—1.00042»

END OUF FILE

ODNG O & UM~

25
2€
27
8

e

271105045+C2a65,0.010,
0-00120—1 OOOOv‘loOOO'lv
0.0029+=1+000+=1+0004+1,
0e00544—=Ce9541+—0e9574 41
0e0074+—0454S50+—0e952641
0e600963—0e8508,=0.8969,1
0e0117 4=0e8538+=0.8614,1
0e0137+=0e7955+=0.8056,1
0e01509=0e71344—04705741
0e01794=0e6462+=0.6602,1
0¢0195,~0458105=0+,5960,1
0e0216+=0e5438,-0.5593,1
0¢02399=0e4776,—0.4938,1
0002594 =0e3941+~0.4286,1
000281 +=042957+—03165,1
0e0301+=0.2505+s-0.2676,1
0e03224=Cel274+~041437,1
0e0341+,-0.1048+,-0.1210,1
003634040016+~ 0.4013741,
0.0384+0.0658+040511415
Ce08044+0e17648,0e165001,
0e06427+0e2727 04042603, 1,
0e0449,0e2727+06260391
0404664 0638074043701 01,
0e0488,0e4752:0¢465941 4
0¢0522+0e6086,04601241 4
0e056340eE537+0e647341,
0e058540e7554+0.791341,

eND OF FILE - .
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TI PROGRAMMABLE
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nre _Russell Model PAGE —L___ DE °
PROGRAMMER PROGRAM RECORD
pROGRAMMEUR D _Halmgren oATE _May 19,1983  FICHE PROGRAMME -
PARTITIONING (O 17} | ! Z 9 5 g LIBRARY MODULE — PRINTER — CARDS
PARTITION (Or 17) _MODULE ENFICHABLE IMPRIMANTE CARTES
PROGRAM DESCRIPTION ® DESCRIPTION DU PROGRAMME
. Program solves for tb- elements of an eclipsing binary (r,,rz,i)
in. the case of complete eclipses (ie., total or annular).
Method used is a variation of Kopal's method due to V.M. Tabachnik,
which fits a line of the form y=ax+b, where y=(l+kpﬂ; x=si_n2 ’
a=sin¢i/r% and b=coszi/r? (k=r,/r,). /p is the geometrical depth,
4 and is used as input data (use Russell-Merrill tables .._ af(k,p)).
Elements are given by: tan i=a/b,r=(a+b)§§?kq (k used as input)
’ USER INSTRUCTION ® MODE D'EMPLOI oL
sree - : ENTER PRESS DISPLAY
seouence - PROCEDURE INTRODUIRE APPUYER SUR AFFICHAGE
Load program ‘ 1 1
Initialize ) E 0.
Input k k r/s| % intermediate
. ~ resuit i
3| Input data (8;,pl, where §;is in 0 A . intermediate
radiang and p; i$ the corresponding J . result
geome#rlcgl depth. b, /s o oL of
4 points so far.
N . .
4 Calculate elemnts ("GO")- B .
first element computed is 1i. i (degrees)
5| Display r, R r/s r,
6 Display r, r/s~ T,
7 Fxamine co:rrelation coefficient (C(¢ r/s cc
as a check on the value of k used
- (for k close to the correct value,
- the CC should be close to 1)
USER DEFINED KEY$ i ) - ’
TOUCHES UTILISATEUR Ro‘é;.rlks:::slzs:q'?niuns _ ([inv] R ) LABELS (OP 08)
+ data entry o % 1° r, W) __Mng) (60 @ _ =0 __
8 compute - v 1 1, 7 (A GO _ (/D _sM_ T
c ' 12 l linear - 2 ‘ 3 TR O Y - O () Y O~
0 , | —tnead ) 1 _E_E_E
¢ initialize . |regression |, FE_(E_E0_N_ KR
. ! o m_E __mE_ B _E3_
A 5 (L.R.) 5 .
o ! , m_ B [ B m_
S P : EB_m_m & m|om
;‘-!1'"” T b - . 7 l!l_m_m_ﬂ__m_
R ' a e B - P
T ) 9 L 9 L .
.;:iifgux 0 : 1 2 S 4 5 & 7 8 9

91977 :reiﬁ Instruments

1014966-1
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TI PROGRAMMABLE 153

TITLE ‘ OF .
rRe _Russell Model . PAGE — 3  DE 3 ) o
[PROGRAMMER D. Holmgren May 19,1983 PROGRAM RECORD

PROGRAMMEUR DATE FICHE PROGRAMME -

PARTITIONING (OF 17) LIBRARY MODULE (‘\) 1 . PRINTER CARDS

PARTITION (OF 17) uﬂ_ﬂ-.—:lﬁ—] MODULE ENFICHABLE IMPRIMANTE = CARTES, 1

PROGRAM DESCRIPTION ¢ 'DESCRIPTION DU PROGf?AMME -

Example:W :Delphini - total eclipse. k is estimated from:
k=(0'<6")/(6'+0") = 0.5779 ‘
where 6'=phase at first contact, p"=phase at second contact. See
sheet of observations which follows program description. Results:
k=0.5779: i=84.45(degrees) %=0.528: 1=83,42 -
=0.248 ' r=0.256 )
r=0.144 E ' £=0.135 . (published)
- - | Coe !
\ USER INSTRUCTION ® MODE D'EMPLOI !
N ‘ J
| seovence \ v PROCEDURE IENNTTREC?DUIRE :ziiil-:n surR 'l::rsr’:éalsz
0 | Load program . ‘ 1 1
1 Initialize : ' _ » E . 0.
2 | Enter k 4 . 0.5779 |r/s '0.5779
13 | Enter data ' : 6=0.394 | A 0.
: " , p=1.00 x/s| 1. e
: | | | 8703304 A | | 1.1473....
- o ‘ .
“etc., until all observations- QFO.64 r/s 1 2.
have been entered. ‘ ,
4 Calculate i " B 84.45
5 | Calculate r, ' r/s : 0.248
6 Calculate r, : : - |x/s 5.144(
7 | Check CC S K r/s 0.99974. ...
 Solution complete . ’ ‘ '
Ref. Eclipsing Variable Stars,
Ch.5, *Edited by V:P.‘TseseviéhL\N,-z'
John Wiley &~ Sons, 1973.
weosmenxevs [ ommese oy e e
A 0 0 ) O I =2 O = I = [ 3 D
’ A ‘ 7 _(m) - GO _ D _EM 57
c 2 2 @-E};m_@_@_@_
0 3 3 EaRl (=] (D _ (3] /[0
E 4 4 . H= _E]_m_m_m_m_
\ . . N G OO &N W EN_
. . m_E_ B _B_D_E_
§ El_ i _m BB _E_I
‘ 7 o D B ED_FN_E9_ERD
0 s ’ NO_H3_E3_ B3 OB EA_
E 9 9 B_B_
brAPEAUX . ° - 2 i a 5 6 7 8 9

© 1977 Texas Inst ‘
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( L N . v/"(
Table Al.2 "W Delphini - Observations

9 (rad) | o 1-¢ : p(a)
v‘o.3§4o 0.0 0.0 1.00
. 0.3304 0.1 " 0.0917  0.64
0.2968 0.2  0.1834 0.42
0.2681 03 Y 002750 0.23
0.2426 0.4 °  0.3667 0.07
10,2173 0.5 0.4584  -0.10
0.1931 " 0.6~ 0.5501  -0.26
0.1850 0.7, 0. 6418 ~0.41
Lo A A
0.1281 0.8 &%?7334.4 -0.57
0. 1054 | 0.9 .8251 | -o.7§
6.0836 ©  0.95 0;87l0 -0.85
0.0632  0.98 0:8985  -0.92
.0.0536 0.99 | 0.9076  -0.95

.0.026 1.00 0.9168 . =1.00



TITLE ) _ ,
TITRE - Depth Equation Solution. race .
PROGRAMMER ' .

procrammeur Do HQlmgren

PARTITIONING (OP 17)
PARTITION (Or 17)

4,7,95 9

LIBRARY MODULE
MODULE ENFICHABLE

_ of
1 oe

3

OATE _,Tan 27'84

* TI PROGRAMMABLE

PROGRAM RECORD
-FICHE PROGRAMME

PRINTER
(MPRIMANTE

PROGRAM DESCRIPTION e DESCRIPTION DU PROGRAMME

CARDS
CARTES l

The equations are:

tangency of annular eclipse), %fdepth of to

at internal tangency of total eclipse), and

Solves the depth equation using an iterative procedure. Input

data is the limb darkening x (larger star), 1-1p(X=2(8) at internal
1l eclipse (or value of 2(8)

an initial estimate of k.

Y (k,-1)=(3 (1-xp) +2xp (11 (k) /k2)) / (3-xp)

k2= 1-2y It(k)=2 (3sin-1/k-(3-4k) (1+2k) /K (1-k) ) %
AgY (k,=1) 3 - I
USER INSTRUCTION ® MODE DEMPLOI
sm ‘ ENTER PRESS SPLAY
uo:lnu PROCEDURE INTRODUIRE 1 APPUYER SUR 2:’Flé:AGE
Load Program
Enter input data (xp,l=Xa,Ap k) vz Xb STQ 00 Xb
(initial estimate -of k) T 1=Xp sTq 01 1-2p
| \a STQ 02 Aa
_ \ k STA 03 k .
: X
2 Set radian mode g - 2ND| RAD » -
3 Begin iteration r/s E.flashing
4 | See new approximate k ‘ new k
5 Continue iteration (as man§ times
as nec- sary to obtain convergence) r/s
*Requires only ~four itefations ‘| x/s final k
with a good initial estimate. , ’
A bad estimate will extend the
o process by 2 or 3 iterations.
: { ? )
 USER DEFINED KEY ' ‘ K :
TOUCHES pTlLlSATESUR gégg::f?s'?;::%las (V] W) * LABELS (OP 08) +
» 1t (k) routine | ° xp f 0 W) _ ) e _ (Gl G & _
; | |1y > (7] _ O Sk o
¢ ¥ ‘ 2 Ay 2 (€] }\,— ‘ {««D:@;_@ -3
D" : T 3 _L:J;@_EJ (7 O
k 3 5 3¢ - ’
s © Y (k,-1) ‘ o= =gk o e
N s 1 (ﬁ) . . .00 BB E3_
, T oy W o EX.
8 5 6 o B N Y
¢ 7 7 - - g - I T s
o 5 2 BO.HEl_K3_@m_onm_Em
£ 9 "9 L. B -
FLAGS - . '
DR’;PEAUX 0 ) 1 2 3 4 5 6 7 8 9

© 1977 Texas instruments
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PROGRAMMER
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L N IR ORI

Cr O A S Ot M Eoe Ty

Solution____.__.
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CODING FORM
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KEY ;
TOUCHE

[ CIMUINTS
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CODE
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TI PROGRAMMABLE 156

TITLE . ' ; ' of
nre __Depth Equation Solution — eace —3  oe 3 (e -
PROGRAMMER ' PROGRAM RECORD
Frocrammeus D . Holmgren owre _Jan.27'84 FICHE PROGRAMME
pannmon or 1 4.7, 95,9 MODULE ENFICHABLE - IPRINANTE camres L
PROGRAM DESCRIPTION ® ossqn&mo& DU PROGRAMME
Example: HS Herculis _
Xp=0.6, Ap=0.705, so 1-Ap=0.295, Az=0.9 initial k=0.5
final k=0.549410 (4 iterations)
.— ‘ )."q‘ )
¥
USER INSTRUCTION ¢ MODE D'EMPLOI
s ' ENTER PRESS Y
stouthce ! PROCEDURE INTRODUIRE APPUYER SUR 2:~‘SF':2:1AGE
Load Program
Enter data Xp,=0.6 0.6STO100 0.6
l1-Ap=
0.295 [.295STO 01| 0.295
_ Xg=0.9 0.9 [sTO|02 0.9 .
Nedy .-
s tkinit=0.5 0.5 [STO|03 0.5
2 Set to radian mode 2nd |RAD
3 Begin iteration r/s L
4 New k N 0.5520....
5 Continue iteration r/s
Next k' value 0.54929....
etc.
Fourth iteration 0.549410....
(No change in subsequent
iterations)
" LieroD D KEY S
To.zugu"ﬁusn:un 2@2&::5;?;5;2,8% ‘; N([@ ) LABELS (OP 08)
+ '~ k) routine | ° xp /*‘é@%’ . W _fex) (€0 _OW __EE G _
. 1 1-Ap ;ﬁﬁ%ﬁ ‘ (a5 _ &) 60 _Fe) 6w O
¢ s Ay Y, O 0 _F_ X
) Ik ‘3 R _ =] B _[#]_RA_[]_
¢ Cov(k,-1) . L*_/:A__Eﬂ_ﬂm__m:_
- E_D_E_BE_El
- ©oltl) o m O @
¥ s ' 5 N _mn_ 3 KR ;L
¢ T 7 M _B_B\_E_gn
b X 8 B EE_E3_n_EBEn
: ; : @ |
FLAGS
DRAPEAUX 1] . 1 ) 2 3 4 ] 6 7 8 9
© 1977 Texas lnsivumems "
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/COMPILE NOEXT NOLIST i .
PRCGRAM *ZAPP.DC* FOR THE LEAST-SQUARES SOLUTIGN OF ey

C
C M LINEAR EQUATIONS ‘IN N UNKNGWNS USING NORMAL EQUATIONS.
C THIS PROGRAM FOR DIFFERENTIAL CORRECTIONS USING IRWIN'S TABLES.
C BY De HCLMGRENs OCT.14"83« SLIGHTLY MOOIFIED - 0OCT. 20°'83
C .
REAL TIQTZ."»-VQSD'QI'RZvINCLvRK.AL.P:DARK-TAU.XTAU.pI
INTEGER NTYPE - .
DIMENS ION A(Ol)s:(d321)'lp(81)
DATA B/3321%0.0 ,1P/81%*1/
PI=3014159
C . : : )
C SPECIFY THE NUMBER OF EQUATICNS (M) AND THE NUMBER GF
C UNKNUGWNS (N).
C

READs MsN.NTYPE
READsR1sR2+RK,s INCL s AL +DARK
! INCL=INCL*PI1/180. ,

C .
IF(M 'oLTe N) GG TO 16 ¢ -
NP=N+1 . «

c . |

C FGRMATICN CF NORMAL EQUAT ICNS MATRIX (B). /

c : :

DO 1 I=1,M

READ IN. NUMERICAL COEFFICIENTS.‘A, OF AN OBSERVATIONAL
EQUATION: '

ACL) XX 14A(2) $X2+AL 3)¥ X3+ v e+ ACN) €XNZA(NP) ‘ ,

AND I WEIGHT, wT. ﬁ
{IF WE IGHTING, SET WT=1.0 FCR ALL EQUAYT IONS).

READS(A(J)sJ=1sNP) s WT,P
C TRANSIT ECLIPSE.
IF(NTYPE—-1)22,23,22
22 TAU=2.%{(ARSIN(SQRT(RK))I+(4 «*RK—34+) * (2. %¥KkK+ 1) *SQRT(RK*{1+—-RK)) /3.
-)/P1 _ ’
XTAU=3 % (1 e~DARK)*RK*RK/{3+—DARK)I+2.*DARKETAU/ (3 .—~DARK)
A{1)=—A(1)&XTAU
A(2)=—AL2)%AL¥RK/R1
A(3)=—A({3)*AL®XRK/R2
Al4)=A(4)*cALRRKXCOS(P)*COS(P)/(R1*R2) © o
GO TO 24 '
C OCCULTATION ECLIPSE.
23 A({1)=-A(1)
A(2)=-A(2)%AL/R1
A(3)=—A{3)*AL/R2 ! E v,
A(4)‘A(4)*AL*CGS(P)*COS(P)/(R[*RZ)
24 CONTINUE

v

C
L=1
DO 1 J=1,NP
T1=A(J)*WT ’
; D 1 K=J,NP
< B(L)=B(L)+T1*A(K) )
1 L=L+1 R
c . .
C INVERT NORMAL EQUATIONS.
C

DO 12 1=1,N

e
i
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61 PV=0.0
62 K=1

63 ' DO 2 J=1.N .

64 IF(IP(J)+EQe—1) GO YO 2

65 IF(PV.GE.BI(K)), GO TO 2

66 PV=E(K) - Py

67 11=K ‘ '

68 L=J

69 2 K=K+N=J+2

70 IP(LY=—1

71 - PV=1.0/PV

72 . B(Il)=1.0

73 12=0

74 . DO 11 J=1leNP

75 IFLJ-L)3.11.4

76 3 I3=12+L

77 T1=B{I3)%PV

78 GO TG S ‘ .

79 4 T1=8(I114+J-L)®FLCAT(IP(J))*PV

80 s Ia=]12 :

81 DO 10 K=JsNP

82 IF(K—L)6,7,8

83 6 T2=B(I4+L)*FLOAT(IP(K))

84 ' - 14=14¢NP—K _ .

85 . GO 70 9 '

86 7 B{13)=0.0

87 8 T2=B(I1#K-L) 2

88 9 IS=I2+K '

89 10 B(15)=8B(15)-T1%T2

90 : 11 [2=12+NP—-J

91 DO 12 K=L,NP

92" B(I1)=B(I11)%PV

93 12 I1=11+1

94 C

95 IF(M.EC.N) GO TO 14

96 - C

97 C EVALUATE STANDARD DEVIATION AND OUTPUT RESULTS. ;o
98 c . o . - PO
59 “C THE X*S ARE THE CORRECTIONS.

100 T1=B(I2+NP)/FLOAT{M—N)

101 J=1 ‘

102 0O 13 I=1,N

103 , SD=SQRT(T12xB{J))

104 K=J+NP—-I-

105 WRITE(6+100)1s8(K)»SD _ o
106 100 FORMAT (' X(? 4134 )=?,E15e¢7+5%X5*SeDe =*,E15.7)
107 v 13 J=K+1 : ‘
108 . RRITE(&,200) 8(J)

109 ' 200 FORMAT(/' SUM DF SQUAKES GF RESIDUALS =',£15.7)
110 sTOP ' ' :

111 c . '

112 C OLTPUT RESLLTS FOR M=N.

113 C R

114 14 K=NP
- DO 15 I=1,N

WRITE(65300)1,B(K)

117 300 FORMATI(® X(* ,I3+')="3E15.7) ‘

118 15 K=K+NP—-1 ' ’ -
119 ' sSTOP .
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121 C ERROR MESSAGE {(MeLT.N)

122 . ¢ , ’ ‘
123 16 WRITE(64400)MsN _ \
12a 400 FORMAT (¢ EQUATIGAS UNDERDETERMINED{ Nu SULUTIUN.?®.®
125 : - vor M= 14,5Xs*N=*,14) :

126 ' STOP '

127 ' END

128 /EXECUTE

129 T 15e4 sl

130 062104041225 04582+840 63+ 00100,0.60

131 1e000+0e0003040005,0.000+0400204+1404+3.1460

132 0eG482+0a8343—~0e365206399,04001841+0+3.1724 N

133 0093064+0e47T+s~0e3844Ce419+000025+1004+3.1862

134 = 0.965750e378,-04331,043675,0.001951.0,3.2126

135 0.8805+005703—-0e409+0+348,0.0017+140,3.2340

136 Qe4857+0e716+-0e108+0¢3525,0.0010,1.053.2591

137 0.5398+0e721s—0e 165:04374+0e e0011+105342673

138 0.4776+0e712:=060988504349,0.00104+1404+3.2518

139 04405150688 3—040213+0¢318+0.0008+1.0,3.3018

140 0e5133,047192=0e137+04364204001051.0+3.3326

141 -~ 0e35104+0e66450+0361506294506000751053.3640

142 002959+ 00632+060923400268+0200064+1.0,3.3778

143 0.1208¢00459906226+0017050.0002+10+3.409y

144 000650+00359 +00232+043269C+00014'1.0s3.4281

145 . 0.0000+00000+Ce000+0+000+04000051+0+3.45706

153 /END ' ° 1

END OF FILE

T /COMPILE NOEXT NOLIST i /
2 1 /COMPILE NOEXT NOLIST
3 X{ 1)= —0.1982740E-02 SeDe = 0.1821888E-03
4 X( 2)= 0.6007678E-03 SeDe = . 041540373E-02
5 X( 3)= -0.1127133E-04 SeDe = 048912557E~03
6 X{ 4)= 0.1697175E-03 SeDe = .0.43225505-03
"8

SUM: OF SQUARES OF RESIDUALS = 03706959E-C6
END OF FILE ’



Lo

OO Ne O &N -

10

NPTS= 15 NTERMS= | ¢4

PARAMETERS AND INCR
02100000 -
041220000
14771000
C.9000000
1.0000000

 0.6000000
0.6000000
ITERATION: CH

1 - 0.60393

NE W PARAMETERS AND FITTED VALUES;

0.2111225
© . 0e1231265
1.4817168
04571903
0.8445965
0.8455732
0.8474686
08548371 -
08642265
0.6761773
0.8832317
0.8992648 -
0.5060666
0.9272828
0.5483727
0.5571829
0.9759211
049850607
0.9564976

END OF FILE ' !

WV o~NOOF W~

i0
11
12
13
14
15
16
17
18
19
20
21 ,
22
23
END OF FILE

1554405191y
0e210+0.010
0e122,0.010
1.4771+04.100
049000500001
1.000,0.000
0«6000,00000
046000+ 000
0.0000509020504001
0+0264404507040001

0604025 069087+0.001 "

0¢06665049053,06001
0e0880s0.9137+0.001
0el131+049524504001
0e1213+0e9471,0.001
0e1458+049532¢0.001
0+15584 Co$603,0.001
0el1866+0694974+04001
0e218050e965650.001
023185045710, 0001
0.2639,049881,0.001
0e28215049536504001
0e3116+140000,04001

MODE= O

EMENTS:
0.0100000

0.0100000 .

0.1000000
0.0010000
0.0 |
0.0 '
OQO
I~SQUARE:

691E+00

03542341

0.3482378 .

0.2529887
5.5833859
0.0574005

0.0614268 -

0.0612314

00504629

0.0494735
0.0742227

0.0638683

0.,0536352
0.0542334
0.0224172
0+0172273

" 0.0138171

0.0121789
0.,0085393
0.0035024

1
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Appendix 2 Program for Kitamura's Method

The program LCFT2 uses the procedure outlined in the
chapter on Kitamura's method to compute the values of E’Fl '
?2, and Fl/F2 (the characteristic funcfibﬁs). LCFT2 is a
WATFIV program (a listing and sample run follows); and is
therefore initiated by -

$R *WATFIV SCARDS = LCFTZ2 .

As with ZAPP.bC,'all results are printed out at the terminal.
If one wanted to save the‘results in a file, one would
follow the SCARDS coﬁmand with SPRINT = an output filé.

The only input data required is ﬁhe set of observations
(half'of one éclibse). The integer variable INORM, which

. 1s an input parameter, allows one to either ﬁormalize the
light curve using edquation (3.5) (INORM=1) or to omit this
‘step (INORM # l).‘ The aughor'é experience 1is ﬁhat there 1is

little difference in the Values of E, Fl’ F2, and Fl/F2

when INORM is used. One must also enter the last two values

Fade

of the phase 8 if INORM is to be used (in fact, these two
values of 6 must be included regardless of whether or not

INORM is used). Hence, the first input‘line reads:
number of observations, 6,6, , INORM .

The observations in (§,2%) pairs foilow immediately. LCFT2
prints out all of the observations,‘follow§d_py the values
of the transforms (S_ and Cn), and.finally théﬁvalue579f E,
Fl, F2, and Fl/F2. All computations are done péiné double

precision (REAL*8) arithmetic.

) - 161



/COMPILE NOEXT NOLIST B 162
PROGRAM TO COMPUTE FOJURIER TRANSFCRM OF L IGHT CUFVE.

N

C
3 C THE TRANSFORMS CGMPUTED ARE KITAMURA'S [INCOMILETE TRANSEORMS.
4 C DATA IS ENTERED IN PHASE~-LUMINOSITY PAIYS AFTUR /EXECUTE.
5 C BEFARE THFE DATA APPFARS, THE MNUMAER OF OASERVATIONS “MUST APIEAF .
& C NMOTT THAT THIS NUMBER IS AN INTSGEw. .
7 C PRUGRAM 1S INITIATED 3Y: %R #WATFIV SCARDS=LCFT2 SPRINT=DJTPUT | ILE>.
) C TO SEE THE RESULTS, LIST THZ OUTPUT FILE. ! :
9 REAL*8 S(3),C(3)+PHASE(20),L(20) s SSUMGCSUMIST CTH0R,
19 —EPS sPHI sLAM L ST o LS24sLCTsLC24EE+F sF1+3F2,LCD 9 AV, AK,CO01,0722
11 INTEGER N oKy [ +NOBSs Js INORM
12 CHARACTER *15 NAME
13 A N=0 '
14 € ENTER AND ECHO INPUT, WITH A HEADER.
15 ‘ READ.NAME
16 o PRINT s NAME
17 READsNOBSs INORM, PHI 1, PHI 2
18 : READ, (PHASE(I),L{I),s I=1,NGBS) v
19 PRINT,*OBSERVATIUNS* _
20 PRINT,(PHASE({I),L(I)s I=1,NUES) : o
S 21 PRINT,* FOURIER TRANSFORM OF LIGHT CURVE?®
22 : PRINT, * NUMBER OF ORSERVATIONS®,NORS
23 AV=0.0 / ‘
-2 ' K=1
25 . WHILE(K" +LFe NCRS)DD : .
25 ’ AV=AV+PHASE(K) i
27 . K=K+1
28 ENDWHILF
29 AV=AV/NOBS
30 - EPS=PHASE(1)
31 PHI=PHASE (NDRS)
32 LAM=L (1)
33 ” PRINT,"EDS=? JEPS ¢ OHI =1 y PHI, ' LAMBDA=* ;L AM
34 C- COMPUTE TRANSFORM.
34,1 | IF( INORM.EQa.1l)AK=14
34,5 IF (INORM.EQ.1)GJ TC 5
35 CO1=0.
36 DO 1 I=1,N13S \
37 , IF(PHASE(1).GT.PHI1)GO TD 2 ‘ ' e
33 1 CO1=COl+L(I) :
.39 2 CONTINUE
.40 . C02=0. o
41 DO 3 J=1,NOBS
42 : CIF(PHAGE(J) « GTWPHIZ2)IGT T 4
a3 3 C02=C02+L{J)
aa 4 CONTINUE T -
45 AK=(PHI1—-PHI2)/(CO1-CO02)
45,5 5 " COMNTINUE A
46 WHILE(N JLEe. 2)DO
I [= 1= o
4R ' . SSUM=C35UM=0,0
49 ' K=NOR S—1 ,
50 - CWHILE(I JLE. K)DD
51 , DP=PHASE(I+1)—-PHASE(I) .
s2 ST=(L(I)A{DSIN(NEPHASE (L)) I+L (T+1)%(DSIN{N*PHASE([41))))%D?
53 : CT=(L(I)%(DCOS (N PHASE(T))I+L (L+1 ) (DCTSINAOHASE(I+1))))I*0OP
ca : SSUM=SBUM+ST : :
55 . CSUM=C3UM+CT
56 . I=1+1

57 ENDWHILE

i~
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548 S{N+1)=55UM/240
59 CIN#L)=CSUM/2.D
60 C PRIMT RESULTS.
a1 _ DRINT s *FOGR NZY N ?SN= S (NeL Y,y o CH=, CIN+L)
62 N=N+1
A2 | ENDwHILE
64 5(2)=5(2) +((L{1)=L(NUBS)IFOCZS(MHT))*AVEAY/1207)
63 si3)=9(3)+((L(1;-L<NUBS)¢0CLNﬁf.sabHr))*Avxav7ﬁ.0)
6A CU2)=C(2)+(AVEAVEL(NURS) *DSIN(PRT)/12.0)
o7 ' C({3)=C(2)+(AVHAVEL (NDAS)*¥OSIN(FHT)/A.0)
68 SRINT ' CORKECTFD $S2,S32,C2.C3 ARE D!
59 PRINT+S(2)+5(3)+C(2).C(3)
70 LS1=1 eN=0CIS{PHI)I=(1e0-DCOS(EPI) I&LAM~C(2 182K
71 LS2=(1eG=DCOS(2.0%PHI)=(1.0-DCUS(2.0%EPSG) ) LAM)/20=-5(2)#An
72 . LEO=PHI-(EPS*LAM)—C(1)*AK :
73 LC1=DSIN(PHI)I-(DSIN(EPS)}®l AM-C(2) *xAK
74 LC2=(DSIN(20%PHI) =(DSIN(2.0%EDS) ) *LAM)/2.7=C(3)*AK
75 C ZOMPUTE KITAMURA®*S CHARACTLCRISTIC QUANTITIES,
75 F1=LS1/LC1
77 . F2=Ls2/LC2
78 - FE=LCO/{1e—LAM)
79 . . F=F1/F2
80 OPRINT +*E=1*,EE
81 PRINT J*F1='4F1
B2 PRINT*F2=¢,52
53 PRINT *F1/F2=1,F
84 sTOP
85 : END
86 /EXECUTE
87 *tHS HERCULIS®
88 17+1+044932,1.0030 .
89 0.0195:0.6%00 -
90 0.0352,0.6603 '
91 0.0754,G.6639 <.
92 . 0.0886,0.6719 - I
93 0e1659,0.7567 : :
94 0ol 7514047708 ‘ e
9g 0.2035,0.8093 - _ g
96 0e2168,2.8221 ' ’
97 042300,0.540% .
98 © 0:i2457, 048593
99 0.2803,0.9031
100 3443,0.5577
101 . 0435755 Ce97073
102 0.284640.,9856
103 0e750,0.9911
104 0.4882,0.9957"
105 . 0e5498,1.0030
109 - /END
) OF FILE

B}



164

00 QS9vTI°0

00 QSE15863%P1I*0 =ND 10-0YT2v22189%250L808°0

00 QO0E91°0

00 dgscye60e -

00 gesssS1L2321"7

10-06282°0

00 TOL¥26°0.

00 CO1168°0"
00 €028%L°0
00 G00S69°0
00 Q0888S5°0
00 C02805°0.
00 GO666E°0
00 GO%¥262°0
0C GOwvEZ*0
00 COEB9T*0.
GO GOZETI*O

10-G66068°GC
10-C66SE8°0

=vagwv. 50

,00 CO®SE*Q
00 GS90¢C*0
0C GGZ282°0
00-.08E£52°0
00 C08Z2c2*0
00 Ql1202°0

00 G&%921°0
06 CO00S1°0
00 GS221°0

10-C0¥v36 *0
10-G02EL "0
10-00S9I%*0
1¢c-cceés1°*0

N -

10-0S90590E£699528521°0

Co00000SL9FC

00

€ =ND 10-C9£21912521%4812%°0
=ND" 00 G0000000000000000°0

00
Q0
00 Q000000000000 ®S0B" O

goo0000000000E8B8S6*0

00 (¢00000000000028YL"0O
00 G1000000000001829°*0
00 C000000000000%225°0
00 gd00060C0O00000S0ED*O
00 71000CO000000002%E"0
G0.C0000C0000000LYS2Q
00 GCO00000O0O0O0QOOOO%TO0OCZ*O
0C CO00000000000LEET O
00 C0000000000006ECCT 0

10-06666666666665288°0
1I0-C666666666666628L°0

G00C0000000008206°0.

aL0262%8210088

86%*0

00 Q%9222%8.8%SH%2H22°0

00 Q11ElL6¥26S
00 U8®YSSTTISSO
10-C2689¢€8

=NS 1
=NS ©

S189E1°0
9202512°0 -,
0GL.86666E€°0

=1Hd 20-0866666666666662.°0

=2d/ 13
=24
=14

=3

t3YY £€D22D*ES*2S Q31LD34¥Y0D
=NS ¢

=N ¥04d
=N U0
=N ¥04

=5d3

SNOILVYAY3S80 H0 ¥3IgWNN
FAYND LHOITT 40  WHOASNVYL HITJN0H

00 C000000
00 - GO0OO0QOOO
00

00 Q00000
00 C00000
00 C00000
00 CC0QO00
00 C00Q0O
00 C00000
00
10-C6666

000 000SLIE"C
000000LLZE*O

€0000¢00000001€62°0

0000000892°0
000000S 1%2°0
00000054120
0000006881 °0
0000006291°0
0CO0000%¥SET*0

G0000f0000000E2T1°0

6656666198 °0

10~C000000Q000000109°0
10-C00000000000C014E"0

Nownmmoomk

I[WMW M
. N

66666666LL°0

SNO11lvAY3580
INIHdTI3Q M

*37IdW0 D/

ﬁﬁJOZ 1X30ON 37IdW0OD/

1

3714 40 QN3
og
62
gz
L2
92

.62
v2

€2
22
12
0z
61
g1
21
91
S1
v1
£1
21
11
01

M~ A M0 ~©O



T

Appendix 3 Programs for Kopal's Method

There are six programs for Kopal's method: TOTAL
(total eclipses), ANNULAﬁi(annularveclipses), PARTIAL (parai
tial eclipses), EB.FS (least-squares Fourier analysis and o
moment determination), KAL (Kalman filter for‘moment deter-
mination), and ERROR (error analysis for orbital‘eleﬁents);
Pfograms EB.FS ;nd KAL ha&e beén adapted from the progréms
published by Jurkevich (1981). All six programs use the
FORTRAN laﬁguage, and are used in the‘following way:

SET T = 1.0 E |

$R *FORTG SCARDS = PROGRAM NAME T = 1.0

(computef fesponds with a message)

$R - LOAD# 5 = INDUT DATA FILE 6 = -P

(another message)..
To see' the results, list the tempordry file ;PL 'Liétings'of_
all prdgraﬁs, as well.as'sampie input and output fiies |

follow. The programs TOTAL, ANNULAR, and'PAg?IAL.all re-
. ,}}1 A

quire the moments of the light curve as input data. In all

cases, a value of the limb darkeﬁing is required. ANNULAR
. : - . . . 1 :
and PARTIAL reguire the depths of both minima as input data.

ANNULAR uses the iterative method devised by Jurkevich(1970,

'pPg. 75) for determining k (see chapter on HS Herculis for a

complete description. PARTIAL requires an initial estimate

of k, which is best.determined by forming (according/to

Kopal (1979, pg. 176))

165  ° «
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where g2ﬁ=g2(a,co) aqg g4==g4(a,c0).» The parameters a.and

.c, are defined as (rl==fadius of eclipsed star, r2==radius

of eclipsing star):

4 = 1 L o = _Gosi
-7 +r. - - To +r.
752 . 17 %2 o -

One may determine a and Cq using the set of tables published
by Demircan (1981, pp.. 144-147). Another parameter .b=1l-a

may be used to find k: , L ;

H

S

k = .

a : : o
b : : ‘

This will be either greater than or leés than onevadcqrding'
to the eclipse type. To establish the eclipse type in'the

case of a partial'eclipse, one may take advantégé’of a use-—

' ful property of the Russell-Merrill yx-functions

tr(qéo.é)

<

¥°C (n=0.8) > ¥

where ;: ;
n=-—2-%* (Q.==valﬁé'of % at minimum).
-2, “© T - -
The x-functions are easily computed with the .equation
-~
sinze(n)

siﬁze(n=0.5)v ‘
] ’ - ! . . .)
The yx-functior.s allow for a quick determinatﬁon’of the

eclipse type. Table A3;lusummarizesuihe input data required

(in the correct format) by TOTAL, ANNULAR, and PARTIAL.

' : : - I3
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Program EB.FS requlres only the ascendlng branch of one

ecllpae as lnput data, along with some:out-of- ecllpse
] : )
boints for the determination of Au EB.FS requlres the

be most copmonly,used.'

puted, I¥YN in llne 71, should be set equal to 1. The only

“tpé number of ln“#:

1

other parameters of 1nterest are MI,

ecllpse observatlons,'MMAX thé nghhém>p£ out of ecllpse

observations} and'NMAX tha\number of Fourler coeff1c1ents
- \r: e y ’

to be used. These three numbers appear on ilne\1 ln the Lty

o 1 :
J ° . B A o

-follow1ng order.

NMAX, “MI, MMAX . e s

w L e T
The value . of § at external tangency folléws’these numhers14 4
Lines 3 need not be altered 1nﬂmost Cases.l The last ‘two S =
'lines of the,EB.FS input.file_read:':.r _ i':_ ' . _ ,&Sf )
6 (external tangencyl, 107,10, 7, 'fi 4"f;;35 4
‘170806, N “ |

where 1 and 7 are dlglts controlllng the number of moments

to be calculated and 1. OE 06 is the max1mum allowable error

iy LT

. 1n the calculatlon of thes moments.~Program KAL 1s qulte )

151mple to use. The flrst llhe of the 1nput flle contalns

.the value of q/r, whlch 1s denoted by T-in the progrém (q/r

S

<

1nten51ty of whlte n01§a/vaf1ance of varlable), the valJe of

P

l L at zerg&phase (estimated) and the.numher of_observaf .

t;ons._:Invother words;

e - . - ; . o

. . - . . e " SN ) 3
L . . o e i
: - B i N SRR Lo . - 3
% ) . ca i AR TN



oy, ,1" f
2P
A 4 ’
. o . /
T,1-2(0), number of obscrvations. Y

166

The data follow in (8;@) pairS; where 0 must be in radians.

Program error. requires a special command for execution.

ey

Since. it incdrporé{és in IMSL subroutiﬁe, ﬁ%e foilowing )
comimand Shouldwﬁé‘used:~ ‘ .
N $ngﬂgﬁD# r*TMSLLIB‘ 5:; input file, 6i= -P.
The inuut“gbfhat rcq@;red,isﬁéhown in table A3.1. B
i . ) f | ) }
. ’ ( ) | b q
. NG gy ,L Lt
. o : . )
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. Table A3.¥/.Input

| .

N / L g ‘
(TOTAL: AL By, Ay Ag  (format 4E15.6)
S x o, I (format 2F14.7)
ANNULAR:. x, DOC, DTR, L, (format' 4F14.7)
A s A, A, B,  (format 4E15.6)

(Note DOC = value

DTR = value

K]

Formats for Programs Using Kopal Methgd.

N
Wy

of 2 at minimum of occdltaéion,

of £ at minimum of transit).

W

169

PARTIAL: x, DOC, DTR, k(eStimated) (format 4F14.7)
A ,A.,A,,AS -2 (format 4E15.6) 4 7
o] 2 o 4 6 g ) : \ aidid
o tr ocC T s . ’
ERROR: AAST, AT, BB,y AR, AAG,«_NIYPE (format 5E15.6, I3) -
T Ty, X Y, ik L x (format 8F14.7)
ACC, AT g (format 3F14.7)
o o , v
where:- tr = trahéiﬁ o ol
"o@‘?: occultation .o g
1 . occultation
NTYPE = o L
anything else transit’r ¢
ry = eclipséd star
'rz = eclipsing star E
N Q' i :
. X = r%csc2 i ,
- ey ' i
Y = cot2i_ 7 -
a, = value of o at minimum of primary'eclipse



C PROGRAM TO ESTIMATE MOMENTS OF BINARY LIGHT CURVES FROM 170

1
2 C FOURIER COSINE SERIES APPROXIMATION OF LIGHT LOSS.
3 C THI" PROGRAM ACAPTED (FROM ARTICLE BY JURKEVICH) BY
4 C DiVHOLMGREN FOR USE ON MTS FORTRAN. NOV. 19°83.
5 C
6 IMPgJCIT«REA;*s (A=H,0=2)
7 . DIMENSION T(400),EL(400),RU(13,13)sRL(13,13),Q(13,13),
8 —AEhxxaa.cstls).SN(13).X(13).APHI(9.9).AMOM(13).AM0MER(13).
9 -EPS(13)
10 C DIMENSION OF 13 ON RU AND RL IMPLIES 13 TERMS IN THE REGRESSION
11 C. EQUATION:10 HARMONICS,A0,(=DELU)+AND THE ABSOLUTE TERM.
12 e
13”7 ‘ READ(S,13) NMAXsMI ¢ MMAX
14 13 FORMAT(I2,213)
15 READ(5,14) THETAT
16 . 14 FORMAT(F14.7)
17 ‘ READ(5,499) 12,13
18 499 FORMAT (2I2) ' 2
19 C THETAT IS THE POINT OF EXTERNAL, CGNTACT IN RADIANS.
20 C IF I2=1 DO NOT COMPUTE INDIVIDUAL RESIDUALS FIRST ~iME ARQUND.
21 C IF I3=1 (AUTOMATICALLY SETS 11=0) COMPUTE RESIDUAL.-.
22 .. C NMAX=HIGHEST HARMONIC USED, MI=NUMBER OF OBSERVATIONS WITHIN
23 C ECLIPSE, MMAX=NUMBER OF OBSERVATIONS OUTSIDE ECLIPSE.
2a C )
25" - WRITE(6,800)
26 800 FORMAT (1H1)
27 > WRITE(6+120) NMAX,MI,MMAX
28 120 FORMAT (11 Xy SHNMAX=I292X +3HMI=, 1 3,2Xs SHMMAX=13,2X)
29 wnrr€&£.121)12.13
30 121 FORMAT (1X,5H . I12=12, 2X+s3HI3=12)
31 " WRITE(6,122) THETAT .
32 122 FORMAT (1X, 7THTHETAT=F 8.6/ /) .
33 NOBS=MI+MMAX N -
34 DO 15 -1=1,NOBS ' =N @
35 READ(5,16) T(I),EL(I)
36 16 FORMAT(2E15.6)
37 ' 15 CONTINUE .
38 C : ' -
39 C DEFINE CONSTANTS. ' EREE i
40 _ PI=3.141592653589793D0
41 C ' ‘ i
42 I MAX=NMAX+2 ‘ R R
43 : S JMAX=NMA X+3 B N ,
44 A RE#ANG:PI/THETAT G S TR
46 C COMPUTE L 0SS OF LIGHT. A s
47 - DO 53 I=1,MI ‘ ' 5 0
48 . . EL(I)=1.-EL(I) ;
749 ~ 53 CONTINUE - -
.30 B - e o . ; ’
51 C COMPUTE SUM OF SQUARES OF LIGHT LOSS ’ S
52, s DO S2 1I=1,MI ) : ’ - ,
53- . , TRYISTRYI+EL(I)*EL(T) . : v .
e (54 52 CONTINUE . ‘ IR S a .
© .85 __._.’.\#w- C A ‘ o Tt . A . - '
s6-:? C ZERO OUT RU MATRIX. - - N P

DO 1 J-l.IMAX ’ . o~ W



€1
62
€3
&4
€S
éo
67
€8
69

70"

71
72
73
74
75
76
77
78
79
80
air
82

83 .

84
85
86

87
88
89
90
91
92
93
94 .

95

96
97
98
99
100
101
102
1\‘.Q 3

164 .

105
106

107 -

108

1109
110
111

112
113
114
115
116
117
118
119
120

1

1 CONTINUE .
c . %

C COMPUTATION OF COSINES FOR

‘;ILL .
~d

171

K*TH OBSERVATIONY

11 DO 10 M=1,MI

200 CS(J)=CS(J=1)*CSN=SN(J=1)*SSN

124 FORMAT(/7/)

DO 200 J=2,NMAX

ANG=REFANG*T (M) :

SSN=DSIN(ANG) ;
CSN=DCOS(ANG) - '

SN(1)=SSN

CS(1)=CSN

g
SN(J)= :SN(J=1) * CSN+CS(J—1)*SSN ' , o ST

C . ‘ 3 \
C COMPUTATION OF INDIVIDUAL RESIDUALS IF NEEDED. -
IF(12-1)2065207,102 ‘ , C .
206 Y=0. L :
DO 501 I=2,NMAX | ; N
SO1 Y=Y+Q(I,JMAX)*CS(I~1) ' o o
Y=Y +0e5%Q( 1+ JMAX)=Q(IMAX s JMAX) s ey
S1=EL(M)~Y ' '
S3=S3+S1%S1 ‘
 WRITE(64128)T(M),EL(M),Y,SI1 _ .
128 FORMAT(10X+D23.16,3(3XD23.16)) : .
13=0 ) . AT
GD TO 10 e b L
C : e .
C COMPUTATION OF CQEFFI = .TS OF NORMAL EQUATIONS.
207 'Xx(1)=0.5 - .
NU=NMA X+ 1 B T . ‘o
DO 201 J=2.NU. :
X(J)=CS(JI=-1)
201 CONTINUE
X(IMAX ) ==EL (M) , ~ . ]
DQ/203 J= 1:@@ ' . _ ' .
DO 202 I=1,J R : )
202 RU(JSIDI=RU(JoTI+X(T)%X(J)
' RUCJIMAX s J) =RU( JMAX 3 J ) +X (J) £ X (IMAX)
203 CONTINUE - , L
~10 CONTINUE . :
IF(12.EQ.1)G0 TQ a1 @
WRITE(6,127)83 " : T
127 FORMAT (7X,3HS3= 023.16)
41 DO S00 J=1,IMAX
. RUECIMAXs J)==2.%RU(Js1) : .
500 CONTINUE
. RU(CIMAX, IMAX)=RU(IMAX, IMAX) +MMAX
% RUGJIMAX, FMAX)==2. * ¥RU(JMAX,1) .
/ - $H RiYd
4#OLuTICN oF NORMAL ~ EQUATIONS.J P
' NP1=JMAX - S ,
CALL CRACOV(RU sNP1sRL +Q) : . N

WRITE(6o124)

WRITE(6,125)

125 FORMAT(2X, lHJo3X,lHI;lZX.ZHRU¢24X,2HRLc18X'1HI'3X91HJo

-12X,1HQ/)

DO S05 I=1sJMAX e o ‘ 'ié
DO S04 J=IWJMAX : ' : :
WRITE(6,123)J,1, RU(J,I).RL(J,I),I.J.Q(I.J) ¥

123, FDRMAT(IX-IZ.ZX-IZ.3X.DZS.16g3XoDZ3 16, SXcIZoZX.IZEIX D23.15)

B

- o S ) . T .

~



121
122

123
124

125

125

. 127
128

129

130

131

132

133

134

135

. 136

137

- s 138
T 1390
,»140
141
g tla2
143

144

145
146
147
148
149
150

ﬁ;al

{52

153
154
155
156
157
158
159

1607

1€1
162
163
164
165
166
1167
168
169
170
171
172
» 174
17
176
177

178
17%;

180

T 173

504

506
505

CONTINUE
WRITE(E+506)
FORMAT (/) S
CONTINUE a

C COMPUTE THE SECOND TERM OF EQUATICN (15).

36

C

TRY2=0.
DO 36 I=1,IMAX
TRY 2=TRY2+RL ( JMAX, 1) *RL(JMA
CONTINUE
DEN=MI+1~IMAX
S2=(TRY1-TRY2)/DEN
ERRMEA=DSQRT(S2) .

&

C COMPUTE ERRORS OF UNKNOWNS.

33

32

35
C

DO 33 I=1,IMAX

'AER(I)—O.

CONTINUE :

DO 35 I=1,IMAX

00 32 J=1,IMAX
AER(I)=AER(I)+Q(I,J)%*Q(I,J)
AER(I)"ERRMEA*DSQRT(AER(I))
CONTINUE

C PRINT UNKNQOWNS AND THEIQ ER RS

)

38

‘39
37

126

618

WRITE(6,124)
WRITE(6,38) .
FORMAT(6Xs IHI »12Xs4HA(I) 22

. DO 37, I=1,1IMAX

I1=1~-1
WRITE(6+39)11+Q( 1., JMAX),AER
FORMAT (5Xs12,2(3X,D023.16)y)
CONTINUE '
WRITE(€E,126)S2
FORMAT (/7X +3HS2=D23.16//)
DO 618 L=1,2

WRITE(6,800)

CONTINUE .

A

Xs 1)

Xo6HAER(I)/)'

(ry O

.
PER

172

C DECISION WHETHER TO COMPUTE INDLVIDUAL RESIDUALSo,

208

110

IF(I3-1)102, 208-102
12=0 -

S3'0y

WRITE(6.110)

FDRMAT(ZOX.4HT(M).20X;5HEL(M)-22X.1HY 25X92HSI)Y ' "

GO TO 11

C COMPUTE MOMENTS: IF IYN Oe

102
17

18
19

617
C

T

READ(S+17) IYN e
FORMAT(I1) ' K
IF(IYN.EQe.1) GO TO 612
READ(S+,18) THETAsMUINsMUF IN
FORMAT(F1447,412)
READ(5519) EPS(1)
FORMAT(E15.6)

DO 617 K=2,9
EPS(K)=EPS(K= 1)*0.100
CONT INUE

C NOTE THAT MU AND T ARE OFF SET.

C THETA IS IN RADIANS.

~

+ ! RN

i.t 1y

+sIINGIFIN

O

TO RUN MU=0:CASE,

MUTOP MUST BE

le



181
182
183
184
135
186
187
188
189
190
191
192
1932
194
195
196
197
198
199
“200
201
CPn2
203
204
208’
206
207
208
209
210
211
212
213
214
21¢
216

217

218
219
220
221
222
223,
224

225

226
227

- 2z8

ry2 29
""{\?30

231/ S

232
233
234 -
238
232€
~ 237
228
232g
. zan

A ;" . v
w ; b]
C “ .

’ N

C BELOW J1/IS MU,I1

DC 12 J=MUINJMUFIN
TOL=EPS(J) - ' 4
D0 12 I=TINJIFIN .

SJ1=d-1
I1=1-1
WRITE(6'103)J1.II'EPS(J)

IS THE RUNNING INDEX

IN PHI(I,MU).

103 FODRMAT (1 Xe 3HMU=13, 3Xe2HI=I34+3X46HEPS=D23<16/)

CALL PHI(I1l3J13THETA»TOL+JJPHIL)

WRITE(6,104)J1, I1.JJ,.,PHIL"

173

104 FORMAT (1 X+3HMU=,13, 3X.2HI—I3;3X¢3HJU—-1603Xv10HPHI(I MU)‘DZJ.lé//)'

APHI(I +J)=PHIL’ 5

12 CONTINUE e

PRINT TABLE OF PHI®S.

614

615
619

616

400

300

WRITE(6,800)
WRITE(6,614)

FORMAT(ZX-ZHMU-ZX.IHI19X.10HAPHI(I.MU).llX 7HEPS(MU)/)

DO 616 JI1,MUFIN
DO 619 I=1,IFIN
J1=J-1

T1=1-1 ' _
WRITE(6,615)J1 311, APHI(IsJ)+EPS(J)
FORMAT (2X+12452Xs11+3X,D23416+3X+D862)

CONTINUE
WRITE(€,506)
CONTINUE"

IFIN=IMAX=1

DO 300 J= loMUFIN

I=1

SUM= APHI(I'J)*Q(I.&MAX) O

DO 400 I=2,IFIN
SUM=SUM#2 ¢ ¥ APHTI (I+ J)%Q( 1 JMAX)
CONTINUE - ’
AMOM(J)=SUM -

CONTINUE

K

COMPUTE ERRORS IN AMOM(I)

DO 600 J=1,MUFIN

-SUMl 0’

.DO 602 I= l-IFIN
SUM=0. -
DO €01 K-loI

601.SUM”SUM+APHI(K'J)*Q(K.I)

- €02

c - i
C PRINT A TABLE OF MOMENTS ‘AND THEIP ERRORS.

600

"WRITE(E, €10) ' -_@ ‘ :
610 FORMAT(IOXQZHMUvIZX'éHMOMENT,ZZéJSHERROR/)

'SYM1=SUM1 +SUM*SUM
CONTINUE - - co
AMOMER(J)—ERRMEA*DSQRT(SUMl) :

CONTINUE

WRITE(6,800) N

DO, €12 J= £yMUFIN

MU= = J-1

. WRITE(écéll)MUoAMOM(J).AMDﬁER

614

612

FORMAT (10X.d2, 4x.023 16,4XD2
CONTINUE‘ o

‘mu e . N
o ; .
. : P .
A L .. A .
LI . . e

COMPUTE MOMENTS FRDM ASUBMU SUM(APHI*NEUMANNNO*ASUBI)

5
23

%
g

e



241 sTOP S , | 174

4

.o
s r

W

242 END .
243 B SUBROUTINE CRACCV(RU NP1 4RL,Q) ,
244 IMPLICIT REAL*8 (A=H,0-2) ) ' \
‘2as DIMENSION RU(13,13),RL(12,13),Q(13,13)
24€ INTEGER DI : ‘ :

247 N=NP1-—-1
248 RL(NP1,NP1)=1,
249 RL(1+1)=DSART(RU(141))
250 DO 50 K=1,N '
251 KM1=K=1
252 'DO 40 I=K,NP1
253 SUM=0.
2sa IF(KMI.NE 0)G0 TO 10
255 RLEIZK)=RU(IK)/RL(14+1)
256 GO TO 40 s
257 10 DO 30 J=1,KM1 °
258 SUM=SUM+RL (I 4 J)*RL(K+J)
259 30 CONTINUE’
260 . IF(K.EQ.I)GO TG 60
261 'RL(I-K)—(RU(I.K)—SUM)/RL(K.K)
262" GO TO 70 . o
263 60 RL(I.K)—DSQRT(RU(I'K)—SUM)
264 70 CONTINUE :
265 40 CONTINUE
266 S0 JNTINUE
267 DO 100 I=1,.N
268 QCIsI)=1e/RL(I1)
269 100 CONTINUE ' '
270 QINP1,NP1)=1.
271 DO 130 I=1sN
272 v K2=NPL-I ‘
273 DO 120 K=1.K2 . =
274 SUM=0, - , S
275 DO "110 J=1+K . ‘ S
276 DI=J-1
277 SUM= SUMfRL(I+K'I+DI)*Q(I~
278 110 CONTINUE '
. 279 0(1.1+K)——SUM/RL(I+K.1+wn
280 120 CONTINUE
281 130 CONTINUE
282 : RETURN
233 END i : -
284 SUBROUTINE PHI (I,MUs THETA,TOL
. 28% IMPLICIT REAL*8 (A=H,0-2)
286 REAL JY
287 . PI=3.1415925535900 .
288 ' E=2.71828182845D0
289 ONE=FLGCAT(-1)
290 AMU=FLOAT-(MU)
291 FACT=(E**(1+MU))/PI
- 292 CALL  GAMMA ('1.+AMU+GAM, IER)
293 TS1=GAM/ (2.D0*%MU) ‘

CAI=FLOAT(I)

AIPI=AI*PI

296 TS3=(AMU+3.D0) /2.D0
<287 “TS4=(AMU+1.00)/2.D0
T 298 .., ®»'SUM=0.D00 '

299 e d=—1 : v
LoFoa” e A

‘, : o 4 5 g
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[y

LR

301

302
303
304
308
306
307
308
309
310
311
212
313
314
315
316
vz
318
319
320
324
222
323
324
325
326
327
328
329

. 330

331
332
333
334
335

" 33€

337
338
339
340

341}
342
243 .

344
345
346
347
248

349,

350
3s1
352
353
354

- 355
© 356
- 357

358
359
369

- t

4"

o,

C IS MU 0ODD OR EVEN . . . 175
[0DD=1 ) &
Y=AMUL wh
Y=Y/ 200

. JY=SNGL(Y)
IY=IFIX(JY)
DIFF=Y—-FLOAT(IY)
IF(DABS(DIFF )«LE+0+1D=-10) 10DD=0

[ala]

GENERAL FORM OF SERIES FbLLDWS-

20 J=J+1

ITS=MU+1-2%J
IF{ITS.EQ.0)GO TO 10
AJ=FLCAT(J) ' '
TS2=2.%AJ+1.
ARG=TS2%xTHETA
ARGSQ=ARG*ARG
TEMPNU= (ONE** (1 +J) )*ARGSQ*DSIN(ARG)/ (ARGSQ—-AIPI%AIPT)
IF((MU+GE«0) eANDe(J«GT .50))G0O TO 21 -~
CALL GAMMA(TS3+AJ,GAML,I1ER)"
CALL GAMMA(TS4-AJ.GAM2,IER)
FACT1=1./(GAM1 *¥GAM2)
GO TO 30

c -

C ASYMPTOTIC SECTION FOR J GREATER THAN 50.

C iy

21 Al=(AMU+1.)/(2.*AJ) R

A2=(AMU—=1.)/(2.%AJ)
ANUM=( 1.—Al1) %% (J=-MU/2)
DENA=(1le=A2) X% (J+14+MU/2) \
DENB=AJ**x(1+MU) '
TEMP1=ANUM/ (DENA%*DENB)
AMPL=FACT*TEMP1
ANG=(AJ-AMU/ 2. +o.500)*px
FACT1I=AMPL*DSIN(ANG)

C
C COMMON SECTION._; _
Co : . i
30 TEME= TEMPNU*FACTI
~~ & SUM=SUM+TEMP . ‘ ' : 1.
' IF(IODD.EQ.1)GO TO 20 .
IF(DABS(TE&@».LE TOL)GO TO 10 </
"GO ¥o 20
10 CONTINUE
JJ=J
PHI1=TS1%SUM
RETURN
END
SUBROUTINE GAMMA({XXsGXs IER) :
C SUBROUTINE TO COMPUTE VALUES OF GAMMA FUNCTION .
C PARAMETERS:XX — THE ARGUMENT OF THE GAMMA FUNCTIGN.
c GX — THE RESULTANT GAMMA FUNCTION VALUES.
c . ' IER - TOLERANCE CODE:
C .. IER=0 NO TOLERANCE
C =1 XX IS WITHIN 2000001 OJF BEING
C A NEGATIVE INTEGER.
c - =2 XX GT.34 S.GX IS SET TO 1.E38.
IMPLICIT REAL¥8 (A—H,0—=2)
IF(XXeLEe3445D0) GO TO 6 . : -

R



361 - IER=2 ' , 176
362 GX=1.00+38

363 , 6 X=XX

364 T TOL=1.0D-06

265 IER=0

366 GX=1.DO “

367 IF(X=2eD0)504+50415

268 10 IF{XeLE«2.D0) GO TO 116P

2€9 15 X=X=1400" ‘

370 GX=GX*% X ‘ o

371 GO TO 10 : ‘ : - v

272 50 IF(X—1+D0)E0+120+110 ‘ S -

ar3 "C SEE IF X IS NEAR NEGATIVE INTEGER OR ZERO -~

374 60 IF(XeGT.TOL)GO"TO 80 :

375 K=X ' \ , ‘

376 : Y=FLOAT(K)=X : B

377 IF(DABS(Y).LE.TOL) GO TO 130

378 IF((1DO-Y)«LE-TOL) GO TO 130

379 C X NOT NEAR NEGATIVE INTEGER OR ZERO.

380 70 IF(XeGTeleDO) GO TO 110

381 80 GX=GX/X

282 e X=X+1e 00

383 . 60 TO 70

3ga 110 Y=X+~1.D0

388 ' GY=1eD0+Y*(=045771017RO0+Y* (0. 9858540D0+Y*(—0 876421800+
386 . =Y%(0.8328212D0+Y*(~0.5684729D0+Y*(0:254820500+Y*(=0. 0514993100))a)
, 387 , -)) : , ) o
388 GX=GX*GY ’ '
389 120 RETURN

390 ©* . 130 IER=1 . : :

391 RETURN : ™~

2g2 END

D.OF FILE



DR L e . ' B e

4,864521,

0.4663, o ,
1.0, o 177
6e900E-03+6+630E-01 - .
B8.797TE-0346+558E~01
1e900E-02,:64520E~01
2.011E-02,6+650E=0!
3.519E-02+6+630E-01
3.581E-02+6+668E-01 ,
J+100E-02,6.730E-01 ;| ' ;

_ .
C OV ~NOWU P WL~

i1 7+540E~02+6+662E~01L
12 . 84357E-02,6«748E-01
R 13 BeBSIE—=02 164 742E-01
(el 14 9.990E-02,64842E-01
15 1.370E~-01,7«010E-01,
16 1eS33E-01,7«191E-01
17 1e65S9E~014+7 «S93E—04
18 1.690E-01,7.610E-01
19 1e791E-01,7+730E-01
20 1.973E-01+8.128E-01 ’
21 2.036E-01+,8.121E-01
22 2.036E-014+8.091E~01 ,
23 2.168E—01,8.249E=01 '
2a 2.199E~-01,8.241E-01
2s 2218BE-01+8.279E-01 . _
26 ' 24300E-01.8.433E-01 = _ .
27 2.457E-01+8+620E-01
Y- ¢ 2.590E~014+8+760E-01
29 2.601E-01+8.760E-01
3% 2.695E-01,8.980E-01
31 2+.802E-0139.061E-01
32 2.959E-01,9+256E~-01 &
33 2.972E-01+9.179E-01 <
34 3.123E-01+9.428E-01
35 /3e192E-01+9+341E~01
36 3.267E-01+9+367E-01
37  3.280E-01+9+629E-01
38 3.349E-01,9.603E-01
" 29 3.443E-01,9.710E=01
40 3.456E-01+9+701E-01
41 "3.581E~01+9«736E-01
a2 3.550E-01+9+745E-01
43 3.657E~-01+9.745E-01
44 3.814E-01,9.881E-01
as 3.845E-01+9.890E-01
a6 4.084E-011,9.917E-01
a7 44241E-01,9.917E-01
a8 4.310E-01,9.982E-01 e Dy .
49 4.540E-01,9.917E-01 S R \
50 4.750E~01+9+945E=-01 ' B '
51 4.882E—01+9.991E-01 T e g
52 5.429Er01.9.927§-01 P
53 5.,498E~01+1+006E 00
54 ' ,54592E-01,+9.963E-01 o
. 55 . 5¢693E—01,+9«936E-01 . o> '
56. 5.820E-01,9.908E-01 '
57 6e183E~01,9.963E-01
58 9.3705—01.9.8905—01, ,
56 . 6+597E-01+9.9FBE-01L ; |

60 | 64810E-01+9.927E-01 ~ . C



61
@ 62
63
64
65
66
67
68
69
70
71
72
73

. 9e494E-01+9.927E~
9¢626E—-01+9.972E~
1e404E 00+9+954E-
l.424E 00,1.011E"

END OF FILE

‘7 .

T

» .

6.8935“0l QIOOOlE

1.441E 00,1.,006E
1+462E 00, 1.002E
1.497E 00,1.003E
1.510E .00,1.010E

O
9.4663'lo7v1 27

'1+0E-06

00
01
o1
o1
00
00
00
oo
00

1.529E 00,+,9.908E-01

NG

-

178

&



1 1 , | 179
2 NMAX= 4 “MI= 46  MMAX= 21 _ o -
3 12= 1 13= 0 o

4 TIHETAY -0 .666300

5 S

6

7

8 .

9 ,

10 J o1 RU » ' Sl RL

11 .

12 1 1 0.11-0000000000000t2+#02 0.'3391;!6%9‘)15()2630,?_r01

13 2 1 L0 .233/41717256460676L+00 LD .6892667205459690-01

14 3 1 0 .P29519%G 7709567911401 20.6768162512901 09712400

15 4 1 0.369598722T 7371097 0.108938717356214912+01

16 S 1 Q.4491 345972226304 0.1442383291424 3221400

17 6 1 —0.230000000000000 0.67823299831292681 +01

18 - 7 1 0 L36EV0VAITIIIIIID 0:2088401 7761398341401

19 : - ' ) S

20 ’ .

21 2 2 0.20704830442220430 +02 O aga97511u994>4321401

22 3 2 0.36602455104806430+01 O 750724538685/700811+00%

23 4 2 — 0 18060559606806063741:+01 ~0.380A66E262112017212¢+00

24 S 2 0.64172989470350332+01 O.XAL”663§70?86h96F&01

25 6 2 0.4674834345129352E£+00 0. 1220007394808122E~16

26 7 2 —0.3605872057905ﬁ15ﬁ401_ ~0.8788164390195610+00

27 ' S -

28 . , o C - . A i
229 0.2348913597222927£+02 0.47390066118253303E%01

30 0.2487570002041458:+01 o:7agpaa70068aqg135+oo

31 ~0.20B720090277416414£+01 —0.6434845563760302F +00

32 a5903911541913371+o1 0.46846499055175616E-16

33 -0 . 632%?396r?a?)dﬂjf—01‘ —0.3748692957778373E-01

34 ’ . ' ' ' o ’

35 5 : ; .

36 0.2320 086299567923 +02 0.461T8092413823091E+01
37 -0 .252 FWENR 0901 416635 +01 —0;3608055&08921379c+ﬁ0’

38 ~0.7391% 5>ara‘1/L+o1. £ 0.9616291101511826(-16

39 L 0.6%520853807131691:+00 . OJQGOO8}b151a??196EjOi

40 l ' .‘ ! J * . N . .

41 . . o :

42 = 5 - 0O 2465 060?43185g35'+02 0. AGBIB?“OO/?O&O%%“&OI
.43 : 6 S 20.9782%19444585090i2400 ~ ~0.2667 73824 7829130t1-16

a4 7. % ~O.124§118305588875{+01 0.158457546427069617-01

as - . » ) o

4'6‘.‘ i ‘ »

Ta7 R 1 6 0.6700000000000000+02 ¢ 0. a58?57qoqaq)gaaoL+ox

48 7 6 0.7381899G699999991E+01 '-0 ?a2270%?612>1°39f5x5
49 TN S . y .

50 . . ' ‘ . o . e
S1 Y 4 7 UUUUUUUUUUUUUUUU‘ : ' , o.xoooooqooopobooos+01

52 . ' S e g -

53 .'.Pt; d

54 T :\' - Y S e W ‘.

5S N T - S o R

S6. . \ o B T T § I

57 A . s ACL) s oo AER(l)

58, - T : : ) ' ] o - I P
so. . 0. ' 0-32986495553379106+00 . O 3864?”0&&J?00%ﬁd1—02
60 1 .'Q.19Q8110530345074ﬁ;00_"_0.169361ﬂ°r/aym)ﬁb'~oz

e ot - s . . * . © oeT IS

g




Thet hed b b gt et e

4

3

‘;,‘

RPxiA2r N
\

oY
e

i

oo

TTuwwwu o NN

P

G

C

NonPWN -

N Qe UWN

~N 00

Q —

0.294B8391230979". 20

0.4467 377532449905E-02

0.4139852929155914E-01

~0.7586549024577098E-01

—0.1058932026705827E-01
0.436435780471984TE+00
0.3298649555337910E+00

Al N

0.2197932069045428E+00
0.348111048731.2316E-01
0.2369030036234182E-01
~0.6927714769747591E-01
' ~0.1355067706999971E-18"
0.1808710586346974E+00

0.2109710819930634E+00
~0.3383714285393836E-01-

0.2638859062972673E-01
~0.2713067672470925E-17

0¥9047302208186694E-02

\

&3,6.21653952510727445+oo
0.1668749183178674E~01
0.4641114674013645E~17 "

*0.1022705708986*99Ef01,

0.213589777%016940E4+00
0.1243409070464465E~17
—0.3384491206897639E~02
0.2182178902359924E+00
—0.5286776307738839E~16

“0.1000000000000000E+01

) I
! (s N

-

P

c:?.



61
62 .

63
64
€S
66
67
593
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
. 84
-85
86

87

88
89
90
91
92

93 .

94
SS
96

o7 .

98
99
100
101.
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116
117 -
118

119
120

MU=

MU=

MU=

MU=

MU=

MU=

MU=

MU=

MU=

MU=

MU=

MU=

MU=
MU=
MU=

MU=

£ W

n

0v90473027208186634E—~02

—0e10227 . . /.- I86199E-01

—O L] 338‘
-0.528

1912

VA SN

. &4
S2= 045238, '°°

I= 0
I=.. 0
I= 1
I'= 1
1= 2
I= 2
1= 3
I= 3
1= (o]
1= 0
1= i
I= 1
1= 2
1= 2
I= 3
I=. 3
I= 0
I= 0
1= 1

EPS=

JJd=
EPS=
EPS=
EPS=
JJd=
"EPS=
;E"Ps=
EPS=
JJd=
EPS=

EPS=

EPS=

JJ=

v

’ . s 180
0.1558257563163604E—-02

0.1371943351827974E~-02
0.1545946051006363E—-02
0.1579943968588530E402

Y7639E-02
. 38839E-16

5124 43E-04
t -

0.1300000000000000E~05
397  PHI(IaMU)= 0.4992063467509574E+00

0«1000000000000000E~05 "

397 PHI(IMU)= O-SOO7§64662738852E+061

v
aQ

0.1000000000000000E~05.

f ‘

397 PHI(IsMU)= 0.49920€61223261391E+00

,

0+1000000000000000E-05

397 PHI(IsMU)= 0450079691509€6195E+00

'
!

0.9999959999999998E~07'

1 PHI(I+MU)= 0.2247921951182108E+00

0.9999999999999998E?07

1 PHI(I.MU)= 0.5063923716540568E~02

a4

0.9999999999¢S /9998E—-07

s

1 PHI(IyMU)=f0.124494711209LOOZE—O2

o

’

019999999959999998E—07

1. PHI(I,MU)= 0.5515126340430748E—05

-

0.9999969999599997E~08

505  PHI(IsMU)= 0.1010716530804723E+00 -

0.9999999959999997E—-08

°

205 PHI(IgMU)=—O-3856155094274944E—01

~



121

122
123
124
12
126
127
128
129

130.

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"153
154
155
156
157
158
159
160
161
162
163
1€4
165
166
1€7
168

169
170

171

172

173
174
17¢
175
177
178
179

10N

‘MU=

MU =

“MU=

MU=

MU-

MU =

- e

WwWw

O o0 0o

[\NEAV N AVIRAV]

“WN = O

whne=o W= 0

WwNe=o

1= 2 EPS= 0.9999999999999997E~08 ’ 181

1= 2 | JJd= 205 - PHI(IsMUF=—0.22682023926361725-02
: o &
1= 3 EPS=, 0.9999999999999997E-08
. o . *
1= 3 JJ= 205 PHI(I.sMU)=—0.39534834609200365-02
I= .0 EPS= 0.9999999992999996E-09
I= 0o Ji= 27 PHI(I,MU)= 0.4563637677810613F-01
I=- 1  EPS= 09999999999999996E-09
I= 1. JJ= 2 PHI(I MU)=—0.26660758592"0120E-01

I= 2 EPS= 0.9999999999999996é—09

I= 2 JJ= 2 PHI(I MU)= 0.5489542%9?0475525902'

.

I= 3 EPS= 09999999999995996E—-09

CAPHI (I .MU)’

0.4992063467509574E+00
0.5007964662738852E+00

0.4992061223261391E+00

0.5007969150966195E+00

©

0.2247921951182108E+00
0.5063923716540568E—-02
—~0.1244547112091002E~02
0.5516126340430748E-03

0.1010716530804723E+00
~0e3856155094274944E~01
—0.2268202392636172E-02
—0+3953483460920036E-02

0.4543637€677810613E-01
~0.26660758592101206E-01
0.5489542402047552E-02
~0.2360682034962293E-02

Mu’ . MOMENT

1= 3 JJ=. 2 PHI(IoMU)=—0.2360682034962293E—02

<

EPS(MU)

0«.10E-05
0«.10E-05
0.10E=05
0« 10E-05

0«10E-06
G«10E-06
Oe105—-06

0.10E-06 N

0.10E—~07
0.10E=-07
0+10E—-07
0,106—07

0.10E-08
O« 10E-08
0.10E-08
O.lOETOS

ZRKOR,



182

0.34461943234276204E+00 O‘. 16297605480308302-02

181 0

182 1 0.7594909236061163E-01 0.49968184266135E0E-005
183 2 0.1943048204298121E~01 0.2365339477044186E-03
184 . 3 05491 165902488758E-02 - 0.114950563465T150E-03

END OF FILE



—~——

NS WN -

33
\ 34

57
58
59
€0

AADA O

(=

: 183
PROGRAM TO ESTIMATE MOMENTS UF BINARIES B8Y

K _MAN FILTER = EVEN MUMENTS A(2M).
THIS IS JURKEVICH®*S PRUOGRAM. ’

ADAPTED FUR USE ON MTS FORTRAN BY . R
D. HOLMGREN. NOV.'83. ‘
IMPLICIT REAL*8 (A-H,0-Z -

DIMENSION FE400) EL(400)
INTEGER NOBS
RUAD(Se1) TeXs.NOBS

1 FORMAT(2F1447,13)
DO 2 1=1.NOBS.
READ(S+3) F(I).EL(T)

3 FORMAT(2Fla.7) . . o

2 CONTINUE :
P=1.
P12=0.
P14=0.
P16=0.
p18=90 i
X2=0. :
XA=0. ) _
X6=0. \
X8=0e. c .
B=0.
DO 4 I=1,N0BS
Z=1.-EL . 1)

: DIFZX=2Z-X

A=B
B=F (1)
SA=DSIN(A)
SB=DSIN{8)
C=8-A
AM=P+T*C
$B82=5B8%S8
SA2=SA%SA
SB4=5SB2*SB2 :
SA4=SA2%SA2
SB6=5B2%SB4
sB8=SB4%SBa
DIF2={SB+5A) *( SB—SA)
SIG=SB2+SA2 ¢
DIFAa=S *G*DIF2
S3SA=SB%SA
DIF6=DIF2%( SIG-SBSKA) *¥( SIG+SBSA)
DIF8=(SBAa+SA4) *SIGXDIF2.
AM12=P12+P*DIF2+T#(C*SB2+S2(A)=-52(B))
AM14=P14+P*DIF4+T*(C*SB4+54(A)-54(B))
AM16=P16+P*DIF6+T*(C*SB6+S6(A)=S6(8))
AM18=P18+P*D [FB8+T#(C*xSB3+S8(A)-58(B))
DM=l1e/ (1 a+AM) - ' Co :
P=AM%DM )
PL2=AM12%DM -
Pl14=AM14%DM
Pl6E=AM15%DM
P1B8=AM18%DM .
X2= X2+ X¥DIF2+¢P12%xDIFZX
Xa=X&+X«DIF4+P14a %D IF ZX
X6=X6% X*¥D[ F6+P 16%DIF ZX
X8=X84X*kDIFB+P183*DIF ZX

4 X=X+PxDIFZX



300

\

‘STOP

‘ ' .
' 184
WRITE(6+300)X2sX4sX0+X8
FORMAT (1 Xe3HA2=E11e5 +2X3HAK=EL ]l .5+2X3HAL= Ell.S.2X3HA8 ElloS//)

END

REAL FUNCT IUN S2(X)

REAL S2, X
$2=(X—SIN(X)*COS{X))/2. .
RETURN

"END

REAL FUNCT ION Sa(X)

REAL S4eXeSXsCX

SX=SIN(X)

CX=COS(X)

S4=3e%X/Be={3e *sx/a.+(sx*sx*sxy/a.)*cx
RETURN . -
END ' ' d
REAL FUNCT ION S6(X)

REAL 564+ XsSXeCXe53+S5

SX=SIN(X)
CX=C0S(x)

 S3=SX#SX%SX

S5=53%SX%SX ~ ' ‘ \
SE=5e%*X/16e=(5.%SX/16e+5.%53/24.455/6.) %CX

RE TURN

END .

REAL FUNCT ION S8(X)

REAL SBy Xe SX+CX3S53,55+S7

SX=SIN(X)

CX=COB(X)

S3=SX$SX*SX

S5=53% SX¥SX

ST7T=S5%SX*%SX

SB=35.%X/128.-(35.%¥5X/128.+35. *53/192'f7.*55/48.+57/8.)*Cx
“RE TURN _ .

END | o

« -

o
Oy

-l
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PROGHAM TO USE KOPAL'S FHSQUENCY DOMAIN METHON 185
TO CUMPUTE GEOMETRIC ELEMENTS OF AN ECLIPSING EBINARY
THIS VERSION FUR TOTAL ECLIPSES =~  PRCGRAM *TUTAL'.
De HULMGREN, AUGe *F3. \ i
REVISED MARCH®84 FOR USE_ WITH 'EB.FS'..
IMPLICIT REAL(A~H,0-2)
DIMENSIUN C(3),.,CB(3),
READ IN DATA.
READ(5+1)A0+A2 4AL , A6
1 FORMAT (4E15.6) ~
READ(5+2)U-ELI
2 FORMAT(2F14.7)
CB(3)=AZ/A0
WRITE(6+5) AOGsA2+:AG4AD
S FOPMAT(4E15.6)
C(3)=CB(3)
CB(2)=(AO*AG~A2%A2)/ (AO%AD) )
CR(1)=(A0%AOKAG=3+ kKAOKAZKAL+2, kA2KALXA  (AUXAO0%XAQ)
CB{1)=CB(1)/CB(2) !
C(2)=CB(2)%5 e%(3e=U)/(15e=7o%U) : o
C(1)=CB(1)%7.%(15.~7+%U)/(3+%(35.-1%+*U)) 2
D=(1.-C(3))%xC(1)+C(2)
R1=C(1)%*C(1)/D
R1=SQRT(ABS(R1)) )
R2=SQRT(ABS(C(2)/D) , ‘ .
SSI=C(1)/D '
WRITE (6, 3) (
3 FORMAT(*ORBITAL ELEMENTS: /)
WRITE(G+4) R1sR2,55I .
4 FORMAT ("RI1Z"4F 18 eTs1Xe "R2="4F 1407 +1Xs ' SINI#X2=1 ,Fl4a7)
STOP : o
END

\
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GRAM TO USE KOPAL'% FR! JUENCY DOMAIN METHUD. 186

TO COMPUTE GEOMETRIC ELE! :NTS OF AN ECLIPSING BINARY

THIS VERSION FOR™ ANNULAR ECLIPSES — PRUGRAM ‘ANNULAR'.
D. HOLMGREN, AUG. *383. MODIFIED SEPT. 18'83 :
REAL AOsA2 sAG  A6sR1sR2 35T .C(3) ¢ 3),
—XsYUsCC(2) e YYoINCL +CTI 4PI s TAU,DKsRKL
—sRK ¢S1 -SZOLZ'LIOALFO!ZQPI' XG e AM‘FI.QKI-DOC DTR
P1=3.14159 _
READ IN DATA. .
L1 REFERS TO THE ECLIPSED STAR. DoOC 15 ‘ a
DEPTH OF OCCULTATIUN., DTR THAT UF THE ‘
TRANSIT.
' READ(S5+3) U,DOCDTReL1
3 FORMAT(4F14.7) R
READ(S s8) A0+A2,A4,A6
4 FORMAT(A4F15.5) ‘

S

1
2

WRITE(6+5) AOQsA24A4. 6
'FORMAT('A0='cElS.6"A2='gElS.é.'A4='.EIS.6.‘A5='.515-6)
RK=0.5 ' .
RKL=RK

DO 1 I=1i17 .
TAU=2.*(3¢‘AKSIN(SQRT(RK)i—(3a—4.*RK)*(l.+2.*RK)*

~SQRT(RX®(]1 —X) 1) 3.%PI)

YY=(3.%11. - U)+2.#U~TAU/(RK*RK) )/ (3.-U)
RK=(1s -DYR)/ IPOCEYY)

RK:&QQ T{ :’.;k:)

DK=ABS {PK—Rk:.}

IF(DKevtelesF 22)G0 TO 2

RKL=RX

CONTINUE

RK=1e/RK

CONVERT £ROM RUSSELL®S Ko \

RK

X=R

18

FIN

16
30

21

22

IS Ky K=R1/R2 (K>1)

X=(AQ*AD*AG—3.%A0KA2 A442.KA2¥A2¥A2)/ (AOKAS—A2¥A2)
F2z(15e~7e*U) /(Se%x(3e-U)) '

FA4z=3.€(35.~19.%U)/{35.%(3.-1"))

X=X*(A0% (la+F_ XRK*¥RK ;~L1)

X=X/ (AOKAD* (1 oe#3.kF2*RKERK+F4*(RKE%XA,) )=3. *AO*LI*(I.fFZ*RK*PK)
—+2. €L 1%L 1) .

Y=(X*L1-A2) /A0 //’\“‘*‘\~\\\
2%%2 xCSCI*%2, Y=COT [*%2,

WRITE(S6s»18) RKeXeYHsL1lsYY

FORMAT (" K—'oFl4 Ts*X= 'vF14.7,'Y="F14-7"L1='nFl"'a? /‘;t
—2'YY="',Fl8a7) E (/ ' :
D R1,R24INCLINATION. - ' ' o

IF(X «LTe 0s)X=ABS(X) ' : o .
IF (Y oLE. 0.)[NCL—1.5708 61 . sToP
[F(Y LEe. O0.) GO TO |6 : _ - 62 END
Y=SQRT (Y) o END OF FILE
INCL=ATAN(1.7Y)

WRITE(6,30)

FORMAT (*Y<=0. [=90+ ASSUMED.')

RZ—X*SIN(INCL)*S[N(INCL)~

R2=SQRT(R2)

R1=R2%RK

WRITE(6+21) Rl.Ra.INCL

FORMAT (*R1=¢3F14.7 ¢ R2=1V,F 1447, INCL="4F14.7) -
WRITE(6,22)

FORMAT (* THESE ARE FINAL ELEMENTS')

~

:
¢
)
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GRAM TO USE KOPAL'S ' REQUUNCY DOMAIN METHQD

COMPUTE GEOMETRIC ELEMENTS OF AN ECLIPSING BINARY

S VEKSION FOr PARTIAL ECLIPSES — PRUGRAM 'PARTIAL'.~
HCLMGREN, MAR.4*83.°

IMPLICIT REAL(A=H,0=2)
REAL INCL,L1
PI=3.14159

C READ IN DATA.

Ul

C RK,

C X=R

18
C FIN

16

21

100

22

READ(5+3) U+DOCDTRsRK \
FORMAT (4F14.7)

READ(S+4) AOD1A25A: A6
FORMAT(4EL15.6)

"WRITE(6.5) A0sA2+A8,4AG6
FORMAT( 'AD=" yE15e6 91 Xs A2 E1526,1Xs%A47 " ,E1S 4631l Xs 'AES*,EL1544])
DO 100 I=1.2 ‘ : -
RK2=RK *RK

IF(RK LT.l.)ALFA—I.—DOC+(l.—DTR)/RKZ ,

IF(RK eGE el e ) ALFA=1e=DTR+( 1.-DGC ) *¥RK2 .

L1=A0/ALFA ‘ i .
1S Ks K=R1/R2 ' :

X=(A0KAO*A6=3 ¢ KADKA2¥AG+ 2. K AZKAZEAR) /(AOXAG=AC*AL)
F25(15e=7e¥U)/(Se¥(3e—-U))

FA=3.%(35.~19«%U)/(35e%(32e=U))

X=X* (A0 (1e+F2*RKERK)=L1)

X=X/ (A0OKAOR( 1 e +3e¥F2*RKXKK+F 4% ( RK*%4,) )=3.%A0%L 1 %( 1o +F2¥RK*RK)
—4+2.%L1%L1)

Y=(X*L1-A2) /A0 v “
2%%2 *CSCI*%2, Y=COT I*x*2. ‘ -
WRITE(6+18) RKeXeY, L1 .
FORMAT(OKS"yF18e7 s lX s X='yF14eTolXs* Y= Fl4a731X s L1="3F14.7)

D R1+R2+INCLINATIUNS

IF(X oLTe 0¢)X=ABS(X) N

IF(Y +LE< 0.)INCL=1.5708

IF(Y «.LEe. Oe) GO TO 16

Y=SGRT(Y)

INCL=ATAN(1./Y)

CONTINUE

Ra=X*SINCINCL)*SIN(INCL)

K2=SART(R2)

R1=R2%RK

WRITE(6.,21) R1+R2sINCL

FORMAT ('RI=' yF14e7 9"R2=1 yFl4 o7  INCL=' 4F14,7)
RK=(A4~AOQ*Y®XY) /(L 1%F 2% X¥X)+ (2 %(Y/X)=1s)/F2

RK=SQRT(ABS(RK) )

CONTINUE

WRITE(6,22) : ~
FORMAT ('THESE ARE FINAL ELEMENTS')

STOP ‘

END

N
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-C SET

PROGRAM TO COGMPUTE UNCERTAINTIES IN -
ELEMENTS GIVEN ERRQOKRS -UF MOMENTS AND VALUES OF
ELEMENTSe. USES IMSL ROUTINE 3

A SYSTEM OF EQUATIONS. ‘

B8Y De HOLMGREN, FEB.'84.
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EQT1F TC SOLVE -

TO RUN: SR —~LOAD#+¥IMSLLIB S=<INPUT FILE> 6==P.

'

"CIMPLICILT REAL (A—H, U~2Z)

REAL INCL
DIMENSION A(3o3).8(3).wKAREA(10)

READ 1IN MOMENTS, ELEMENTSs AND ERRGORS.

UP INITIAL ESTIMATE OF DELTA K*%2,
READ(S5s1) DAOTR.DAOOC,DA2+DA4 sDA6NTYRPE
FORMAT (S5E1546, [3)

READ(Se2)R1sR2+XeYs INCLsAKsELL U

FORMAT (8F14.7)
READ(Ss15) AOOCsAOTR+ALFO

FORMAT (3F14.7)

AK2=AK*AK _ ) .
DK2=1E=-03 - ‘ '
IFINTYPE=1)304.3
DALF=DAOTR+AK 2*DA00C* (DAOGC/AODOC+DK2/AK2)
DL 1=(DA0OC/AQOC~DALF/ALFO)*EL1

GO TG S

DALF= DAOOC+(DAOTR/AKZ)*(DAOTR/AOTR-DKZ/AKZ)
DL1—(DAOTR/AOTRTDALF/ALFO)*ELl
CONTINUE

UP EQUATIONS FOR DX»DY s OK%¥%2.4
IFINYTPE=1)6,7,6 .

AO=AOTR , .

DAO=DAOTR’

GO TO 8

A0=A00C , .

DAO=DAOCC

CONT INUE -

A(1,1)=ELL

A(l.2)=-A0

A(l1+43)=0.

B(1)=DA2+Y%DAO~X*DL1
F2=(15e=7e%U)/(Sa¥(3a~U))
FA=3¢%(35e=19e%UI/(25e%(3e~U)) : N
Al 251 )=2a¥ELL* ( X»Y+F 2% AK2%X)
A(2,2)==2e¢% (EL1%EX=A0%Y)
A(2,3)=EL1%F2% X* X

B(2)=DA4~Y*XY¥DAO

B(2)=B(2)-(X*X— 2.*X*Y+F2*AK2*X*X)*DL1

/

«

T RMY=X~Y P -

FK2=F2%AK2’ , _
FK4=F&4 %AKZXAK2 ‘ ‘\
X2=X*X

X3=X%xX2

Y2=YXY

XY= X%Y

A(3e1)SXMYEXMY +FEK2 XX X (3exX=2%Y)+FKL%X2

A(391)=3.*%EL1%A(3,1)

A(3:2)=EL1%( X2=2 s 8XY+FKZXX2)+A0%Y2
A(3+2)==3%A(3+2) |

A(3:3)=3¥F 2%k X2%¥XMY+ 2 ¥F 4¥XAK2% X3 ¢
A(3,3)=EL1*¥A(3,3)
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61 ‘ B(3)=DAG+Y2%xY%DAO
62 | ZEXK(X2=3 e kXY +3.%Y2)

63 ’ Z=Z+3+ ¥FK2EX2¥ XMY+FK4 % X3

64 - ‘ B(3)=B(3)-2Z*DL1

€S M=1 .

66 N=3

67 IA=N ‘ oo .

68 10GT=0 ' :

69 cALL LEQTlF(A.M-N.IA.B.IDGT.WKARcAplcR) b S
70 C SOLVE EGUATIUNS. X RETURNED IN B :

71 WRITE(6+,9) (B(I)s I[=1,3) : :

72 o 9 FORMAT (*DX='yE15.641Xs°DY="* ,Elvaé'lx.'DK**Z "L E1Se€/)

73 CSI=COS(INCL)*CCS(INCL) ’

74 SSI=14—CSI

75 DX=8(1) _ . ’ .
76 DY=8B(2) - ~

77 DK2=8(3)

78 DCSI=DY*CSI*SSI/Y

79 DR2=R2%R2%(DX/ X-DCSI/SSI)

o0 DRI1=R1*R1%(DK2/AK2+DR2/(R2*R2))

81 WRITE(6o10)DCSIyDR2.DRl :

62 10 FORMAT ($DCOS [%%2=% yE15 e69 1X ¢ "DR2¥¥2Z=* 4 E154 69 1Xs 'DR1%%2=% 4 E154€
83 C KRE-EVALUATE DL1 : . :
8a IF(NTYPE=-1)11+12,11

85 . 11 DALF=DAOTR+AK2#*DA00C*(DAOBC/AOCC+DK2/AKS)

86 DL1= (DAOOC/AOOC—DALF/ALFO)*ELI1{

X4 GO TO 13

88 12 DALF=DAODC+(DAOTR/AK2) *(DAOTK/AOTR=DK2/AK2)

89 . DLI=(DAOTR/AOTR-DALF/ALFO)*EL1 .

90 " 13 CONTINUE - : : ,
91 WRITE(6,14)DL1

92 14 FORMAT(*NEW DLI=*3E15.6) ’

93 STGP .

94 END

END. OF FILE

D
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L.
Iy ,C . . -~
1 0.9020E 00,0.48255E~01,0.37023E~02,0.342786-03
2 0.6+0.9092, .
END OF FILE . S . ¥

i

Input file, total eclipse (W Delphini).

1 0.6+0.9020,0.7050,0.9020
2 0.3338,0.018745,0.0015258,0.0001545
END OF FILE ‘

Input file, annular'eclipse (HS Herculis).

1 0.6+0093155,0.9462,1.38, . . :
2 0.538E—Ql-0.41lZOE—02-0o62256E~03'Q.13489E—O3

. END OF FILE

o

“Input file, partial eclipse (HD219634).



191

VILEYd wexboad woxz 3ndjng

3714 40 ON3

: 2 . S1N3W313 VNI4. 3dv 3S3IHL
86620.5°1 =IONIYE9H090° 0 =2H0LYEIIE O =1y -

m<<ﬁ:ﬁmoocomc.o =11 L110S.0°0-~ =A 8SS9€00°0 =X 08S2.90°9 . =M
8662025°1 SIONIEE6STI2T 0 - =2WBB6LLI91°0 =1y

T s266162°0 =17 ¥9299S51°0-  =A 6v8.L%10°0- =X 100008€°1 =X
£0-3068%ET1°0 =9y £0-3095229°0 =%V 20-300211+¥°*0 =2V 10-30008£S°0 =0V

*UVTINNNY we xbo1d woxjy 3ndangp

SIN3W33 IvNI3 3dv 3S3HL
LO9VEEE V'L =INIGPYESIOT* 0 =2H269210€£°0 =1y
(FWND)) *CINNSSY *06=1 °*0=>A

"8.64S80°1 - = AAO000Z206°0 =1182€1610°0 . =A0298220°0 =x2890z2e8 "1 =3

£0-300S+¥S1°0

0880566 °0

€0-30BLCVE*O

a

=9v20-30852G1°0 =V 10—-30G9L8BT1°0 =Z2v00+3008BEEE*D0 , =0V

- . *TIVIOL Emumou&.ﬁouw and3nQ

ZZ2#8INIS OLELI¥Z *0° =24 OTEEESI®*O =1y v
: €

' $SIN3IN3I3 v1i1ado 2

20-30E20LE°0 10-305528%°0 00+3000206°0 1

- 3713 30 AN3.

9

S\,
®
£
2
.

INI4 40 AN3

S

- o



192

- B £
s3ndano lmowmm wexboxd
. - . 3714 40 ON3
20-3605299°0 =170 M3N S ‘
[0-3Yvb06LE°0  =Z##1¥0 10-3100201°0- =2442¥C 10-3966102°0- =2+#15050 :
10+39928E1°0  =Z##Q 1031216620~ =AQ 10-3995211°0- =xq -

*3117 3andut -HOWYH E@HmOHm

3714 40 ON3

v v : $,0°1¢214£°0%0860°0 €
4% *°09°0'0860°0°0206°0°*228 1 L9VEEEL*1*G2ETI610°0°0298220°0°SI1°0*10E°0 4
. i

N $C*S0-3¥98C 1 °S093665°S*¥0~3G9E*C*E€0-30° [*€0-TL" T

A



- Appendix 4 The WINKS ?rogram‘

1
»
i

~ The llght curve‘syntheSLS progrfm WINKS is a modlfled

version of Wood's original WINK program publlshed ih l972
(see Wood (l972)). WINK8 lncorpdratés a number of improve-
\ments, only two ‘of ‘which w1ll be mentloned here. The flrst
of these is. the ‘use. of model stellar atmospheres, since
these are- more reallstlc than the blackbody approx1matlon.
’In the program, these model. atmospheres are used as input
data and are stored as tables w1th temperature, surface
‘gravity, and wavelength as the arguments. The tabular quan—
“tity is the normal surfacevflux. These fluxes are used to
compute the intensity at each point:on the star. -An inter-
4polation routine is used to derive.the flux, which is then
converted to an.intensity.}assuming the,limb darkening to
be a knOWn quantity). The second major improvement incor—
porated in WINKS is the way in which thevreflection effect
is computed. Rather than us}ng an explicit numerical. inte-

-

gratlon scheme, WINK8 uses a series. of approx1matlons to

~

compute certain quantities requlred in the calculation of

the reflectiondeffect.

WINKS is not difficult to use. Due to its great_size.
(1857 lines), it is not reproduced here, but a sample data
. ’ - R /\

‘file is shown. The data file is composed of four distinct

parts. The first seventeen lines contain input parameters
O

relating to the orbit and to the stars themselves. The

first line must contain the word 'WINK' in columns 1-4, and

193
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any‘other alphabetic data in the remaining columns. Line 2.
must be blank. Lines 3-16 contain the orbitdl and stellar
parametetrs. There are 19 parémeters which may'be treated as

variables, but not all of these should be treated as vari-

%

ables at the same time. In most cases to be encountered,
\the orbital and stellar parameters to be given séecific
values are .those shown in lines 3-16. The important para-
meters and'theif descriptions (along with any necéss;;y
~commen£s)vmay‘be found in table A4.l. |

The "-1 0" must follow the last input parameter. Each
input parameter‘has an index I which appears in colﬁmns 1
and 2. If input parameters 1-9 are not known accurately,
; one ﬁeed not specifyﬂany of them ;ince WINKB has'a‘se;;of
default parameters. However, sqchlthingSJas the wavelength
of observation should be sbecified. Lines 18-3l contain tﬁe
mbdel atmosphere dafa. The format shown is the one which‘l.
muSt-betysed in all cases. Lines 18f24 apply to thé priméry
star, and lines 25-31 to the secondary.. The logarithm of
the surface éfavity apéearé in lines 18 aqd 25, and at the
‘end of lines 20, 21, 23, 24, 27, 28, 30 and 31. The tem-
perqmures appear in lines 19, 22, 26 and 29. Theée tempera-
tufes are divided into two ranges: low (4000°K -~ 9500°K) and
fiiygh (11000°K-40600°K). Theée temperatures are followed by
two lines of fluxes which correspond to ;he given tempera-
tures. The wayglength; bracketing the observation wéve—
length are the'sepoﬁd to last humberé.on the lines con%aining‘

the fluxes. The model atmosphere data must be followed by
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a b}ank line. All succeeding lines, except the last two in
the. file, contain the input data in the form:

phase, magnitude ¢ luminosity, observatlon weight.
The.phase may* be in eithef radians or revolutions. The l"
in the- 'second’ last line must be present (anywhete in the
vfirst‘lO cblumnsﬁ. The last line 1s known as the "T/F card".
This line tells QINKB which of the 19 variable parameters
are to be treated as variables and which are to be treated
as constants. A "1" denotes that the parameter is to be
Jatied, while a "0" denotes a constant. Note that each num-
ber is separated by a space.

To facilitat: che construction of a data file, a
demonstration file, knan as DWINK, may be copied to an
empty file and then altered to suit the star‘being analyzed.

WINKS ‘will produce several pages of output, so an
exampie is not shown here. However, thevoutput is entirely

self-explanatory, so the user should not have any trouble

in understanding it.



Table 2A4.1

Parameter

1
2,3,4

13,14

15

16

19

43

45,46

84

87

Important'WINKB Input Parameters

Description

inclination i, (degrees)

e sin w, e cos w, TC

linear limb darkening
coefficients u;, u,

non-linear limb darkening
coefficients U21, U2,

albedos wl,Q2

magnitude at guadrature

temperatures Tl' T
(in degrees Kelvin)

unperturbed radius r,
of primary star

ratio of radii k at
primary minimum
(k = radius of ~~lipsing
) star '

196

) Comments

T =time of
conjunction

usually set equal
to 0.0. '

equal to 0.0 if
intensities

* are used

one should be
held constant

k <1 for an occul-
tation at ‘
primary eclipse

radius of ¢~ liopsed star)

‘mass ratio g

wavelength of observation
in

logarithms of the surface

‘gravities, log gyr log g,

maximum number of itera-
tions

equals 0. if data in magni-
tudes, 1. if intensities
are used. ) '

g<l usually.

usually 6



1 WINK HS HERCULIS. ‘ . 197
5 :
3 1 88.70000
a | 5 +60000 _ -
5 6 «60000 '
€ 11 84520
7 13 16000.0
8 14 10000.0
9 15 «259000
10 16 «550000
I 19 .300000
12 43 5480400
13. 45 4.,00000
14 46 4.00000
15 84 6.00000 } \
1€ 87 0.00000 : :
17 -1 0.
18 4.0
19 4000. 5500 6500 75004 8500 9500,
20 G.3821E0S 2.2382E07 S<2838E07 1.0374E08 1.7648E08 2.4465E08 4950.
21 1.5887E06 2+0354E07 4«0926E07 7«1047E07 1.0S€6E08 1.3830E08 6000,
22 11000. 13000, 15000 20000, 30000e° 40000 ;
23 3.3779E08 4 «6408E08 S5.9531E06 9.728SE08 2.1057E09 3.3174E0% #6550,
24 1.8437E0E° 2.4842E08 3.1322E08 4.9357E08 1.0236E09 1.6201E09 6000
25 : 4.0 .
26 4000. 5500 ‘6500 © 7500 8500. 9500
27 9e3821E05 22382E07 S5+2838E07 1+0374E08 1.7648E08 2.4465E08 4950.
28 1.5887E06 2.0354E07 4.0926E07 7+1047E07 1.0566E08 1.3830E08 6000,
29 11000« 13000 15000 20000 30000. 40000
30 3.3779E08 4 .6408E08 S5.9531E08 9.7285E08 2.1057E09 3.3174E09 4950.
31 1.8437E08 2.4842E08 3.1322E08 4.9357E08 1.0236E09 1.6201E09 6000.
32 ‘ ‘
33 0.0011000 8.,9770000 1.0
34 0.0014000 8.5880000 1.0 g
35 . 0.0031000 8.9940000 1.0
36 .+ 0.0056000.- £.9770000 1.0 ' N
37 0.0120000 845710000 1.0 -
38 04C141000 8.958000C 1.0
39 0+.02€4000 8.8290000 1.0
40 0.0285000 88050000 1.0 ‘ .
41 0.032400C €.7560000 1.0 el
42 00345000 8.73S0000 1.0 ! S
43 0.0366000 B8+.7150000 1.0 ?
44 00391000 846510000 1.0 .
45 0+ 0446000 E+46370000 1.0 -
46 0.0548000 B8.5620000 1.0
47 00570000 B8.5590000 1.0
48 0.0612000 845420000 1.0
49 0.0756000 645350000 1.0
50 00777000 B8¢531000C 1.0
51 0.0875000 8.5230000 1.0
s2 0.0584000 B.5340000 1.0
s3 0.1014000 8.5420000 1.0
54 01050000 8.5330000 1.0
55 '0«1084000 65.538000C 1.0 \ e~
56 01097000 845290000 1.0 \
s7 0.1511000 E.5380000 1.0
. €8 091532000 8.5330000 1.0
59 0.2234000 64535000C 1.0 ~
60 02263000 8.5240000 1.0 i
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121 0.514700C 8.6180000
122 0.5187000 8.5730000
123 V.5200000 8.5790000
124 0.5239000 8.5720000 1.0
125 05255000 845640000 1.0
126 0.5304000 E.5750000 1.0
127 05354000 8.5530000 1.0
128 05376000 845520000 149 ‘
129 0.5427000 8.5330000 1.0 ‘
130 05456000 E.5270000 1.0
131 0.5503000 8+S52C0000 1.0 .
132 05524000 80515000C 140 !
133 0.5546000 85170000 1.0 \ \
134 05588000 8.5190000 12 . |
135 05613000 €.5170000 1.0 b
136 0.5638000 8.52C0000 1.0 |
137 05685000 85250000 1.0 \
138 | 0.5706000 8.5220000 1.0 \
139 0.5728000 845210000 1.0 :
140 05775000 845300000 1.0
141 0.5795G00 845210000 1.0
142 0.5842000 845090000 1.0 ;
143 0.6533000 6.5310000 1.0 9
144" 0.6579000 845240000 1.0
145 . 0.7011000 8.5220000 1.0 °
146 0e7C37.000 £.5120000 1.0
147 0.7062000 8.5110000 1.0
148 0.7104000 8.5260000 1.0
149 0.7121000 8.5180000 1.0
150 0.7164G00 845310600 1.0
151 0.7189000 E8.5260000 1.0
152 C.8582000 E£.5340C0C 1.0
153 0.8646000 8.5160000 1.0
154 " 0.8756000 8.5340000 1.0
1s8¢ C.8798000 8.5340000 1.0
156 0.8820000 845370000 1.0
157 09083000 845490000 1.0
158 0.9091000 8.5480000 1.0
159 0.9146000 8.5420000 1.0
160 0.9172000 8.5430000 1.0
161 0.9312000 8.5580000 1.0
o162 05388000 845800000 1.0
163 0.9456000 E€+46070000 1.0
164 0.9565000 8.E530000 10
165 09607000 £.6570000 1.0 .
166 0.9646000 847440000 1.0
167 0.9671000 87710000 1.0
168 09692000 8475S000C 140
169" 0.575200C 848700000 140
170 0.S794000 E.S17000C 1.0
171 0.9835000 845580000 1.0
172 0.5862000 8.955000C 1.0
173 09526000 £4S720000 1.0,
174 0.9543000 849710000 1.0
175 C.S9E4000 £.57C0000 140
176 =1 .
177 1 006G6GO0O000101011000
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0601940C0y~0es3E4 41
0e0229600,=0.3691
0.0248900+=0e373501
0+0274800s~0e38041
0.0299100,=0e381,1
0.0327100,-0¢382,1
0.0356400s=0e38741.
0.0377300+~0:39241

0.0359800+—00395v 10

0.0829500+~0+403s1
0e0448800+,—0+404410
0.0486800+-0.403,1.
0.0507700,~0+4 11510
0.0560000+-0e4120¢1e
0.0582600,~0+419,1
0.0603000s=0e414 410
0.0643200,~0e416410
0.0829300+=0e%1641.
0+03569005-04423 1%
0.0881200+=0.418,1.
0.0921300,=0e624410
0e0956000v=0e427 41
0.27510005,-0+416,1
0.2807000,-0eG14 414
0.2836000,-0+431+})0
0e2866000,~0e422+1
0e2511000,-0+419,14

0.2537000s=0e417 410,

0¢2963000,=04417,1,
0.3C03000,s=0ed284+1

,Oc5036000-—00414|1.

0.43050000—00410'1.

0:4353000v~04% 1401
: 0.4385000\--0.408'1’

0+4478000,-0+400Qs1.
0e4506000+s=~04357+10
0e4527000+,-0+395,1

O.454UOC90_00392’ 1 .

0,45740009s=0e3G1 41

Q.45930001—O-353y1
0;4617000v—0-586q1
064666000+ —0e375s 10
0.4687000,-037951
064721000s=0e3764,1
0e4739CCCr=0e37441,
0647670009 ~037041,

"0.4788C00,-0436991,

0e4 EOSOCCs=0e370,1a
0e4331000,-0e36%,1.
0.4927000,=0e365,1
0e4956C0Cs=0e363s1a
0e845746000s=0e364,1.
0445995000y —0+363,1.
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61 0.5017Q000,-0.301 41 201

5

62 0.5065000+-0..368,1.
63 0.5(69000,~0.369,1.
64 . 0.5088000,~0.36441.
65 0.5121000+-0+369,1.
) . o6 0.5156000,-0.367+14
67 0.51790004—-0.373,1. A\/
£y 0.5213000,-0.378,1.
69 0.5324000,~-0+43%06s1. !
70 0.534B000,-0.3974+1.
7 0.5370000,-0.399.1.
72 0.5400000,-0.403,1.
73 0.5626000,-0.41041.
74 0.%6433000,-0.40741."
s 0.5461000,-0.409,1.
’6 0.S6452000,-0.402,1.
77 0.5519000,-0+413,1.
78 0.55360C0,-0.410,1.
79 0.5505000,~0.41241.
80 0.56G0000,-0+414,1
81 0.%5003000,-0.423,1.
82 D.5774C00,~0.41641.
83 0.5300000,-0.418,1.
&84 0.5828000,-0.418,1.
; s 0.5443CC0,—02420,1.
836 0.5873000,—-0.423,.1.
104 0.7716D00,-0.432,14
88 0.77460004+-0.3421,1. - -
89 0 0.7769000+~0.628,1. S
90 0.7756000,-0.828,1.
91 . 0.7821000,—0.427,1.
92 0.7847000,—0.4248,1.
93 0.73869000,~0.421,1.
94 0.78G4.000,-0.419,1.,
ys 0.7516000,-0.423,1.
96 0.7637000,-0.42541.
97 0.7960000,-0.424 414
98 0.7682000,-0.421,1.,
‘ ‘ 59 0.8032000,~0.420,1.
. 100 0.8059000,-0.420,1.
101 0.8C78000,-0e419,1.
« 102 - C.8107000,-0.425,1.
103 0.£128000,-0.417,15
104 C.8131000:-0.420,1. -
' 105 0.£8181000,-0.421,41.
1106 0.8203000,-0+419,1. \
107 0.8229000,~0.418,1.
108 0.8247000,~0.817,1.
109 £.8278000,-0.,417,1.
110 C.B2%5000,—0+417,1.
111 0e8339000,-0+420,1.
112 0.8360000,—0.418,1.
113 0.8417000,-0.413,1.
114 0.84383000,-0.419,14
115 0.9320000,—-0.409.1.
116 0.9362000,-0.410,1.
117 0.9379000,-0.409,1.
118 C.%399000,-0.408,1.
119 0.5428000,-04404,1,
120 g 0-5450000,-0.401,1.



121 Ue9471000+s—0440241. 202

122 0e9501000+=04397414
e 0e6524000s—0e35641.

124 Ce4544000s=0e3904 14

125 0eS567000,=0e3354 1

12¢ 0e9SBBU00 =0 a3B8B,1 e . ‘
127 0e5607000s=0e373 414 b : oo
128 0e9633000+=-08375 41

129 0eG654000,~04371,514

130 0e9675000s=043724 1

151 0e9703000,~0e 366014

132 0.9723%3&.—0.365-1.

133 . 0497530000 =0e359,1.

134 Ca97900C0+~0e357 41

135 0e9307000,=-0e347,1. ° .

136 0e98400004+s=0 o348 418 §;3
137 0.5862000s-0+348414

138 0¢9883000,~0 354,14

139 0eSS15000,=0e344 31

140 0e9635000+=0+349 414

141 0e5558000,~0e343,5 14

142 - 0eS387000+s—0e343 414

143 1.0000000,~0¢350¢1.

ZND OF FILE



