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Abstract

In recent years, Networked Control Systems have become prevalent and replaced hard wired

systems. After widespread use of wireless networks and computers in control systems, a

significant challenge emerged in this domain: security. As cyber security is insufficient in

addressing the consequences of the cyber threats in control systems, cyber-physical security

came into attention in which various aspects of the control system such as stability and

performance under possible attacks can be investigated. One of the most common and at-

tainable attacks is denial-of-service (DoS). In this thesis, we consider input-output stability

and performance of networked control systems under DoS attack. We show that under

certain conditions on the DoS attack, input-output stability is preserved at the expense of a

deterioration of the L2 gain. The scheme is resilient enough to present a good perspective of

different implementation options and enable the designer to balance the trade-off between

performance and the allowable duration of the attack into consideration.
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Chapter 1

Introduction

This thesis explores cyber-physical security of control systems under attacks. The purpose

of this research is to analyze stability and performance of a cyber-physical system subject

to denial-of-servie (DoS) attack. In this chapter, we provide an overview of the subject

along with some preliminary background, overview of the literature, define the research

motivations, and summarize the main contributions.

1.1 Literature review

Different from the faults that randomly happen in the system, attacks may have access to

the system model and data through eavesdropping, faults or leaked information, and so on.

By means of this knowledge, more intelligent and harmful attacks can be designed [1]. In an

attempt to put cyber attacks into the perspective, they can be broadly classified into three

major groups, discloser attacks, deception attacks, and disruption attacks [1]. Disclosure

attack corresponds to interferences that involve eavesdropping of the data [2]. Deception

attack manipulates the trustworthiness of the data and corrupts the signals (e.g. false-data

injection [3]), and disruption attacks refer to the intrusion which cause delay or blockage in

the signal (e.g. Denial of service [4]). Mapped to the attacker perspective mentioned above,

comes the defender perspective in which the security goals can be viewed as three general

classes of confidentiality, integrity and availability. [5–8] .

The defender’s perspective is of high importance in cyber-security notion. Guarantee-

ing desired overall security of a system is complex. In an ideal case, the most complete

mechanism for security of the overall system consists of three stages. In the first place, if

feasible, it is better to prevent the occurrence of the attack. In this stage, attacks can be

postponed or inhibited. Using prevention methods, still some attacks can happen. Thus,

during the attack, “resiliency” helps to maintain the performance of the system close to
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Figure 1.1: Different phases of an overall defense mechanism in security of CPS, which
includes prevention, resilience and detection and countermeasure.

normal (in a reasonable level) in the interval between the start of attack and detection and

recovery mechanism. Therefore, significant impacts on the system can be minimized in the

occurrence of attacks. By the latter, the source of the attack can be identified and the sys-

tem can be recovered into the normal mode by corresponding recovery actions [9]. Figure

1.1 illustrates these three phases of defense mechanism in an overall defense scheme for a

cyber-physical system. In what follows, the tools and results represented in the literature

under this three main category is discussed.

1. Prevention: In this stage, approaches are targeting against disclosure attacks that

start from penetration in the system to steal information and use them in future

attacks. The defense mechanism in this group can be classified into Cryptography

and Randomization. The former has been comprehensively studied in the computer-

science notion [10]. But the latter is rooted in control theory and has a strong history

in robust control [11]. Here, we focus on the results presented in randomization.

Randomization is a method based on confusing potential attackers and prevent them

from predicting the deterministic rules and gaining access to the vital information

of the system. It is proven to be useful as a robust control technique [11, 12]. Ran-
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domization of data is a very prevalent method whenever confidentiality is aimed to

be kept. In [13], the private data is masked in the presence of a malicious agent.

The non-adversarial agents use the masked data with a noise and gain the correct

states and compute the average consensus. In [14], a random gain selection method is

suggested to guard the closed loop control system against disclosure attacks targeting

the control rule.

2. Resilience: Resilience is defined as a property that enables the system to tolerate

severe conditions resulted from natural faults or deliberate attacks [15]. Resilience

of a system against adverse conditions usually needs to be strengthen via proper

design of the control system. There are numerous methods in literature for increasing

the resilience. Below, is the main three groups of approaches used in cyber-physical

security literature for increasing the resilience of systems.

(a) Game-Theory Methods: The goal in game theory methods is to minimize the

impact of an attack on the system. In game theory, two or multiple players

interact to optimize their own objective function and this optimization depends

on the choices made by each player and cannot be done separately. Game theory

has a rich literature in security of the systems. This method addresses two main

perspective regarding the structure of the cyber-physical system or the type of

attack on cyber layer. In the former, security game is modeled based on the cy-

ber and physical structure of the system [16–20]. It consist of two interconnected

games in the physical layer and the cyber layer.

Another perspective corresponds to the type of the attack on the system [21–23].

Specifically speaking, suitable game strategy is chosen with regards to whether

the malicious behavior is either active or passive. The Stackelberg game is well

suited for the case of a jammer and a passive defender. Whereas, when there is

an active defender, Nash equilibrium is a reasonable choice [24,25]. Another pas-

sive attacker example is when an eavesdropper gains access to information from

a communication channel leakage. Here, the eavesdropper can be modeled as a

follower in a Stackelberg game with an active defense [26]. Moreover, in [27,28] a

game framework for networks with unknown topology is considered in which the

defender tries to reach synchronization and while mitigating the attack signal

from malicious agents.
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(b) Mean Square Reduced (MSR) Algorithms: In MSR approach, the control input

is computed at each update time in order to ignore doubtful values to attenuate

the effects of attack on the system. A famous application of MSR method is

against Byzantine threats where malicious information is sent to the neighbor

nodes by byzantine nodes [29,30]. This algorithm have been used in distributed

computational problems, such as synchronization [31], state estimation [32],con-

sensus [33, 34], and optimization [35]. In MSR approach, each node ignores a

certain number of largest and and smallest values from neighbors and therefore

the global topology knowledge is not needed. Hence, unlike detection-based ap-

proach, it does not require heavy computation load in each node [36].

(c) Event-triggered Control: In event-triggered approach, in contrast to time trig-

gered techniques, data is sent to communication channels only when it is needed

and generating new control input is based on a triggering function which de-

pends on the errors of state variables. Event-triggered schemes are used to in-

crease the resiliency based on the frequency of attacks occurrence. [37] is an

introduction to event-triggered control. It is a suitable approach to mitigate

the impact of disruption attacks (e.g. jamming or DoS) in networked control

systems. Event-triggered technique is used in order to guarantee the input to

state stability of the closed-loop systems in the presence of attack, whose fre-

quency and length is limited [4]. In [38–41] more application of event-triggered

control for resiliency of the networked control systems has been studied. Sev-

eral references deal with resilient control under DoS attack implemented in an

event-triggered fashion, [4, 38, 39, 42–45]. In [42] and [43] a method is proposed

to improve the scheduling time of control updates by means of avoiding the DoS

periods. This method is effective when the DoS attack is structured over time,

e.g., pulse-width or periodic jamming signals. In [38, 39], a more realistic model

of DoS attack is considered based on the frequency and duration of denial inter-

vals. By adopting the ETC framework, these references propose a scheme that

guarantee system stability in the presence of DoS attack. In [4], input-to-state

stability in the presence of a bounded disturbance is analyzed. In [44] and [45],

output feedback control of systems in the presence of DoS attack is considered

with a focus on L∞ stability analysis under DoS attack.
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3. Detection and isolation: The other important constituent of defense mechanism

is detection and isolation which focuses on detecting the attacks and recovering the

system during occurrence of attacks. Detection is usually based on monitoring the

impact of attacks on output of the system. When the effect of attack is not evident

in the output, it is called stealthy [46] or covert attack [1]. Majority of methods

proposed for detection and isolation in the literature can be classified into three groups

as follows:

(a) Observer-based techniques: The goal of observers is to estimate inaccessible

states. By comparing the resulted state estimates in normal and attacked situations-

termed residue- detection can be done whenever the residue surpass a certain

threshold. [47] provides a unified model for deception and disruption attacks

based on linear algebraic conditions for detection and identification of the at-

tacked sets. This idea is extended to the multi-agent systems in the presence of

malicious nodes in [36,48,49]. In these methods, considerable amount of compu-

tational complexities and memory is taken due to different matrices for prediction

and detection.

A subset of observers when the model is static is prevalent in power systems where

measurements of current and voltage needs to be estimated. References, [50–53]

provide robust signal processing technique such as Least Trimmed Squares (LTS)

for minimizing the residue.

(b) Watermarking: Watermarking is a well known concept in authentication of enti-

ties. This approach has been very successful in detecting replay attacks. When

an attacker records the sensor data in a time period and replays it again, the at-

tack is referred to as replay attack. Therefore, since the normal data is sent back

to monitors, the operator is tricked to think that system is working normally [54].

The idea here is to add a perturbation to the optimal input of the system and

by monitoring the output for traces of the perturbation, the replay attack would

be detected. This idea extended to the SCADA networks and multi-agent sys-

tems for detecting replay attacks respectively in [55] and [56]. In contrast to the

additive perturbation, in [57], a sensor multiplicative watermarking technique is

applied to detect replay attacks. The same approach is used in [58] to detect

routing attack where an intentional swapping between sensors wires happens.
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(c) Learning-based Detection and signal reconstruction: This method roots in com-

puter networks for anomaly detection. However, due to its efficiency, its utiliza-

tion in control systems has been significantly increased. This technique has been

introduced in power systems in [59]. Anomaly detection in the presence of at-

tack has been investigated by the means of Neural Networks(NNs) and Bayesian

learning in [60–62]. In [63, 64] methods for localizing attacks in power systems

is proposed. In [65, 66] a recursive distributed kalman filter is developed in the

presence of sensor attacks. Alongside, in [67] , a new technique which is a com-

bination of data-driven methods and traditional resilient estimation is proposed

in which signals are reconstructed to remove the effects of attack.

1.2 Research Motivation and Objectives

Control systems have traditionally been designed assuming that the information flow coming

from the sensors can be used to make decisions that affect plant operation. More recently,

however, Networked Control Systems (NCSs) have replaced classical hard wired systems

with more flexible and easy to reconfigure networked interconnections between subsystems.

Networked control systems eliminate unnecessary wiring reducing the complexity and the

overall cost in control implementations. One important problem that has emerged as a

consequence of the massive use of computer networks in control, however, is the possibility

of cyber threats, particularly in safety-critical areas such as power networks and intelligent

transport systems, forcing designers to incorporate control strategies that guarantee stability

and possibly some level of performance in the presence of cyber attacks [68, 69].

This, in turn, have brought up the necessity of investigation of various aspects of cyber-

physical systems’ security; from attack models to methods for ensuring the resilience of

the system. There are many attacks reported in the industrial systems in the last few

years such as, stuxnet [70] and Maroochy attack [71] . Cyber attacks in Networked control

systems can be broadly classified as deception attacks and denial-of-service (DoS) attacks.

While the former manipulate the trustworthiness of the data transmitted over the network

[1, 3, 72], the later affect the timeliness of the data transmission to cause packet losses or

preventing communication over time intervals of random duration over the network channels

[1], [73–75]. In this thesis, we focus on DoS attacks.

Our starting point is the universal property that a control network must have integrity,

i.e. it should have some resilience to the effect of cyber attacks and remain operational

during their occurrence. Remaining operational imply not only retaining stability, but
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also some level of acceptable performance that allows the network to operate during the

attack and to recover post attack. Consistent with current trends and to maintain network

communication as low as possible, we cast our analysis and solution in the context of event-

triggered control (ETC) which limits the transmission of the data by proposing triggering

rules dependent on sensor measurements. Several reference deal with resilient controls under

DoS attacks implemented in an event-triggered fashion, [4, 38, 39,42–45].

1.3 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2: This chapter Provides an overview on denial-of-service (DoS) attacks in

networked control systems. Different types of DoS existed in different forms of networks

are introduced. We discuss the recent works have been done on control of cyber-physical

systems under DoS attacks. There are also different approaches on modeling the denia-of-

service in order to capture the uncertainty nature of these attacks. The model used in this

thesis would be discussed in details.

Chapter 3: In this chapter, we consider input-output stability and performance of

networked control systems under Denial-of-Service (DoS) attack. We show that under

certain conditions on the DoS attack, input-output stability is preserved at the expense of

a deterioration of the L2 gain. The scheme is resilient enough to present a good perspective

of various implementation options and enable the designer to balance the trade-off between

performance and the duration of the attack into consideration. At last, the results are

illustrated by a numerical example.

Chapter 4: A summary and conclusion is provided along with research plan for future

works.
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Chapter 2

Denial-of-Service Attack

Communication networks are inevitable components of many industrial control systems.

The necessity of data transmission to remote locations in control systems has led to an

enormous increase in using wireless networks and the Internet. Recent rapid growing devel-

opments in the Internet of Things is an indication to expect even more increase in utilization

of the wireless technologies in the control systems. Although these new developments are

improving the efficiency of control systems, they are also making them more vulnerable

towards cyber attacks. Widespread utilization of control systems in various safety-critical

infrastructures such as power grids and transportation demands guaranteed reliability and

availability of the networks. Attacks against these systems in the absence of proper security

mechanism can lead to real-world damage to environment, safety and health of the people

and substantial financial losses [76].

There are different security issues concerned with network control systems as investi-

gated in [5–8], [72], [7]. Attacks are performed with different approaches on control systems

based on the purpose and amount of knowledge of the attacker. As investigated in afore-

mentioned works, the content of the control or measurement data can be changed during the

attack. Also attackers may be able to inject false data into the system and remain stealthy.

These attacks requires knowledge on the system dynamics as well as communication pro-

tocol. The more an attack becomes smarter, the more information and knowledge of the

system is required. On the other hand, denial-of-service (DoS) can prevent transmission of

the data while it requires least amount of information about the system. Therefore, DoS can

be one the most common and at the same time severe source of damage and performance

issues for the systems. DoS attacks can occur differently in different networks. Here, two

types of Denial-of-service including packet drops by malicious nodes in multi-hop networks

and jamming attacks in wireless networks is discussed.
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In a healthy multi-hop network, data packets are transmitted to the remote nodes by

means of intermediate ones as routers. Whereas by introducing malicious nodes to the

network, it can face packet drops in various forms such as blackhole and grayhole DoS

attacks. In blackhole attack, the malicious node introduces itself as having a shortest route

to the destined node. Therefore, by creation of a path through the malicious node for

transmission of the packets, it drops the packets instead of forwarding them the remote

node. An extension to blackhole attack is grayhole attack in which the behavior of the

malicious node is very unpredictable. In this scenario, malicious node acts in a way that

makes its detection very difficult. It may drop packets received from certain nodes while

forward all other packets. Furthermore, the node may behave maliciously for certain amount

of time and then switch back to healthy behavior afterwards. The combination of these two

types is also possible, i.e. the malicious node would drop packets from certain nodes in a

certain time [77], [78].

Another type of denial-of-service is jamming attack in wireless channels. Jamming

attacker tend to prevent the transmission of packets by emitting strong interference signals

into a wireless network. Because of the easiness of generating jamming attack and its ability

to target various wireless technologies such as GPS, Wi-Fi and mobile communication, it

can be a main concern in control systems security. Jamming attack can operate in both the

physical layer and medium access control layer (MAC) [78]. In physical layer the jammer do

not have to follow any rules of the protocol, by simply emitting radio signals on the wireless

medium it tend to corrupt the packets at the receiver or by making a legitimate transmitter

sense the channel busy and thus inhibit it to gain obtain access to the channel. [79]. In

the case of MAC layer, by exploiting the vulnerabilities of current standards, such as the

popular IEEE 802.11, the attacker would be able to corrupt a single bit with sending just

enough power and as a result the received packet would fail the cyclic redundancy checks

(CRC).

DoS attack have been investigated in different problems such as feedback control, state

estimation and consensus. Here, we discuss DoS attack in feedback control problems.

2.1 Control Problem

In the context of networked control problems, plant and controller communicate over a

network which is exposed to DoS attack in the form of malicious packet-drops and jamming.

The dynamic of the system would be described by linear-continuous system as

9



ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0

y(t) = Cx(t)
(2.1)

In [4,39], the control scheme is implemented in the context of event-triggered systems. The

measured states are transmitted over the network in time instants of tj , j ∈ {0, 1, 2, ...}.
Since the network may be exposed to DoS attack, some of the transmission attempts may

be unsuccessful. Thus, the control input of the system is given by

u(t) = Kx(tj(t)) (2.2)

where j(t) is the index for the last successful transmission time. In [4, 39], the control

input is held constant between two successful control updates and is not assumed to be zero

during the failure of data transmission.

Several reference deal with resilient controls under DoS attacks implemented in an event-

triggered fashion, [4, 38, 39, 42–45]. In [42] and [43] a method is proposed to improve the

scheduling time of control updates by means of avoiding the DoS periods. This method is

effective when the DoS attack is structured over time, e.g., pulse-width or periodic jamming

signals. In [4, 39], a more realistic model of DoS attack is considered based on the average

duration and frequency of the attack. In these works the strategy of the attack is considered

to be unknown. This model is further discussed in section 2.2 . By adopting the ETC

framework, these references propose a scheme that guarantee system stability in the presence

of DoS attack. In [4], input-to-state stability in the presence of a bounded disturbance is

analyzed.

In the context of output feedback control, there are approaches investigated in [44, 45,

80–82] . In [44] and [45], output feedback control of systems in the presence of DoS attack

is considered with a focus on L∞ stability analysis under DoS attack. In [80, 81] by using

a predictor and an impulsive observer at the controller side, an approach is provided to

mitigate the capabilities of the attack. In [82], it is assumed that the outputs are measured

by multiple sensors and transmitted over multiple channels.

In [45,83], the system is considered to be nonlinear. In [83], the state feedback control of

the system under DoS attack is investigated. Output feedback control of nonlinear system in

event-triggered scheme is explored in [45]. Moreover, by developing a linearization approach

in [84], stabilization of the nonlinear system is achieved. In this case, if the DoS attack gets

very strong, it can make the states leave the linearization region and thus, cause instability
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in the system. In [85], an adaptive controller is proposed to guarantee the stability of a

system that contains unknown nonlinear function.

In the domain of distributed systems, a method is proposed in [86] to mitigate the

effect of DoS by switching the strategy of transmission between round-robin protocol and

event-triggered.

Contrary to previous references, in this work our focus is on L2 stability and perfor-

mance. Our interest is in establishing conditions under which (i) L2 stability is preserved,

and (ii) the closed loop L2 gain of the system remain within certain limits. With respect

to the second objective, our interest is to better understand the tradeoff between the du-

ration of the attack and the deterioration of the control properties, measured in L2 gain

sense. Some work related to our objectives were reported in reference [87]. In this reference

the authors consider an event-triggered H∞ load frequency control for power systems with

energy-limited DoS attacks. The disturbance in this work, is assumed to be upper bounded

by a linear function of the state norm.

2.2 Deterministic Modeling of DoS attack

There are various modeling approaches for denial-of-service attacks in the literature. We can

divide the methods into two main categories of probabilistic and deterministic approaches.

The former is extended along of the probabilistic modeling of data transmission failures in

networked control system due to non-malicious issues. These failures are usually modeled

with stochastic processes such as Bernoulli and Markov processes. In [40], non-malicious

data transmission failures and DoS attack is modeled using probabilistic methods.

In this Section, our attention is focused on deterministic modeling approach of DoS

attack which is also the basis of modeling in this thesis. As shown in [39], proposed deter-

ministic model allows the denial-of-service to occur in an arbitrary fashion. In this approach,

the total duration of the attack in a certain amount of time interval is upper-bounded with

a deterministic function of that interval’s length.

In the continuous-time context, the modeling is as follows. For denoting the starting

time and the duration of each attack interval, two sequences are considered respectively

such as {hn ≥ 0}n∈N0 and {τn ≥ 0}n∈N0 . At the nth attack interval, DoS attack transition

from off to on occurs at the time hn and lasts for τn. For avoiding overlapping of consecutive

attack intervals, it is assumed that hn+1 > τn + hn. In Figure 2.1, a sample of sequence of

DoS attack intervals is illustrated.

This model is very well compatible with the jamming scenario, in which the communi-
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Figure 2.1: Example of a DoS attack sequence.

cation channels may be exposed to a very strong jamming radio signals in the intervals of

[hn, hn + τn]. When a data transmission time occurs in any of the attack intervals, a data

transmission failure happens at that time.

It is also helpful to define a notation for total attack duration. For any time interval of

[τ, t], the set of DoS attack occurring times is denoted by

A(τ, t) =
⋃

n∈N0

[hn, hn + τn]
⋂

[τ, t]. (2.3)

Also, the total duration of the attack in the same interval is denoted by |A(τ, t)|.
If the DoS attack cover the whole time span, it would be |A(0, t)|= t for all t ≥ 0. In

these cases, the communication is not possible in the networks. In practice, attackers face

some constraints that limit their capabilities and prevent them from attacking continuously

at all times. For instance, emitting strong jamming signals are costly [78]; thus, due to

the energy resources limitations that attackers may face, they typically cannot attack at all

the time span. Moreover, attacking without any constraints would reveal the presence of

attack in the system. Therefore, strategic attackers avoid attacking continuously to be able

to remain stealthy.

These practical constraints are taken into account in [39] by considering the following

assumptions.

Assumption 1. There exist scalars κD ≥ 0 and ρD ∈ [0, 1) such that

|A(0, t)|≤ κD + ρDt, (2.4)

for t ≥ 0. Equation (2.4) implies that scalar ρD performs as an upper-bound for av-

erage ratio of the total attack duration to the total time interval in the long run, since
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limsupt→0|A(0, t)|/t ≤ ρD. The scalar κD is used to model the ability of the attacker at

the initial time. When the first attack interval starts at h0 = 0, Equation (2.4) imposes an

upper-bound on the first attack interval τ0 as τ0 ≤ κD/(1− ρD).

In stability analysis of networked control systems in [39], assumption 1 is considered. In

[4], an additional constraint is also assumed on the frequency of the attack. The assumption

is as follows.

Assumption 2.There exist scalars κF ≥ 0 and ρF ∈ [0, 1) such that

n(0, t) ≤ κF + ρF t, (2.5)

for t ≥ 0, where n(τ, t) ∈ N0 is the number of attacks in the time interval of [τ, t].

In Equation 2.5, scalar ρF serves an upper-bound for frequency of the attack in the

long run. In networked control systems with periodic transmission, the frequency of attacks

requires to be upper-bounded by a small enough scalar ρF . It would become more clear

if assuming to have a transmission period such as δ. An attacker aware of δ, can set the

attacks to locate periodic transmission times with even short duration of attack intervals.

In such cases, if ρF ≥ 1
δ , all data transmission attempts can fail and stability of the system

can not be achieved.

When there is disturbance in the system dynamics, Assumptions 1 and 2 are not suffi-

cient [4]. The reason is, Assumptions 1 and 2 allows the attack to be activated continuously

for long period of time until Equations (2.4) and (2.5) are not violated. For achieving this

scenario the attacker can wait for a long duration of time and start attacking continuously

afterwards. In such cases, data is transmitted successfully in the initial attack-free period,

however because of the presence of disturbance, states never reach to zero. After onset of

the attack, it can be continuously active until it cause the states to grow to very large values.

Therefor, for avoiding such scenarios, more restricted version of Assumptions 1 and 2 are

considered in [4], in which the maximum length of continuous attack would be bounded.

Following are the new inequalities

|A(τ, t)|≤ κD + ρD(t− τ)

n(τ, t) ≤ κF + ρF (t− τ)
(2.6)

for all τ, t ∈ R≥0 and t ≥ τ .

Average duration and frequency in Equation (2.6) are used in [4, 80, 81] to model DoS

attacks in networked control systems. In [4], a sufficient condition is achieved to guarantee

asymptotic stability of control systems under attacks which satisfy Assumptions 1 and 2
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with Equation 2.6 in event-triggered control scheme. The condition is as follows

Δ∗ρF + ρD ≤ ω (2.7)

in which scalar ω ≥ 0 depends on system dynamics parameters and the scalar Δ∗ ≥ 0 is an

upper-bound for intervals between data transmission instants. In [4], Input-to-state stability

of networked control system in the presence of disturbance is shown to be guaranteed under

conditions with equations (2.6). In [80, 81], authors have shown that by using predictors

and buffers in the control system, the condition on DoS 2.7 can get more relaxed. It is

worth to mention that the scalars κD and κF in Equations (2.4) and (2.5) or (2.6) does

not affect stability of the linear systems. They only play a role in state trajectory bounds

and performance of the system. However, in nonlinear case, they also affect on stability

properties of the system.

There are also other deterministic methods for modeling DoS attack. For instance,

in [42], DoS attack is modeled as a pulse-width modulated (PWM) signal. It consists of

periodic sleeping and jamming cycles. In this case, each cycle of the DoS signal consists

of Tj seconds of jamming followed by Ts seconds of sleeping. Since the modeling approach

in [4] allows more generality for the DoS attack, we proceed our work by considering that

method as our bases for stability analyses of the system.

2.3 Event-Triggered Control

Event-triggered control is one of the most prevalent approaches in control of networked

systems under DoS attack. In [4], the event-triggered control approach is utilized to obtain

asymptotic stability under any DoS attacks that satisfy Assumptions 1 and 2. When the

error between the last transmitted state and current state exceeds a threshold, the trans-

mission of state is triggered. In this approach, for checking the event-triggered condition,

state of the system needs to be continuously monitored. Self-triggering is a method to avoid

monitoring continuously. In [4], a self-triggering approach is also proposed to in which the

predicted value of the state is used to determine the next transmission time. Some of the

transmissions may fail due to the presence of DoS attack in communications channels. By

using Lyapunov function techniques, the global asymptotic stability of the overall system

in [4] is guaranteed under sufficient conditions related to event-triggering and DoS charac-

teristic parameters.

Our approach will be cast in the context of event-triggered control. Several references

have studied the event-triggered L2-gain control problem. In [88], finite gain L2 stability of
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event-based LTI systems is investigated using a full information H∞ controller. Reference

[89] extends the results of [88] and derives explicit lower bounds for the sampling periods.

The disturbance in this reference is assumed to be bounded by the norm of the state.

In [90], this assumption is relaxed. In references [91] and [92], event-triggered output

feedback controller is proposed to guarantee finite gain L2 stability of the closed-loop system.

Reference [93] considers the nonlinear L2 problem. More recently, references [94–96] study

the event-based L2/Lp stability of general nonlinear systems. As previously mentioned,

most of the literature on stability of NCS under DoS attack deals with disturbances which

belong to L∞ and are bounded. In contrast, this paper considers L2 disturbances that

are only bounded in energy and no assumptions are made on the boundedness of their

magnitude. Our main contribution is the analysis of finite L2 gain of the closed loop system

under Denial-of-Service attack. By deriving an explicit finite L2 gain, one can get a better

understanding of impact of DoS attacks on system performance.

Most of the aforementioned works so far in ETC of systems under DoS attack, are

based on emulation approach. In this method, the controller or observer gain is designed in

advance, hence the design would be restricted to the initial choice of this parameters. In [87]

and [40] co-design method for designing control law and the event-triggered condition under

DoS attack is proposed. In [97] the effect of quantization errors is also considered in a NCS

system under periodic DoS attack. This work has been extended to a more general type of

DoS attack in [98].
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Chapter 3

L2 Stability Analysis of
Event-Triggered Control Systems
Under DoS Attack

3.1 Preliminaries

We first introduce the notation used throughout the rest of the paper. R represents the

field of real numbers and R
n the n-dimensional vectors with elements in R. Given α ∈ R,

R>α (R≥α) represents the set of real numbers greater than (greater than or equal) to α. N

and N0 represent the set of natural numbers and nonnegative integers, respectively. ‖.‖ is

Euclidean norm of a vector in R
n. Given sets A and B, A\B indicates the set of all the

elements in A which do not belong to B.

3.1.1 System Dynamics

Throughout this paper we will consider a linear time-invariant system described as follows

ẋ(t) = Ax(t) +B1u(t) +B2w(t) (3.1)

where t ∈ R≥0, x ∈ R
n is the state and u ∈ R

m is the control signal. w ∈ R
n is an external

disturbance that is assumed to belong to L2. A and B are matrices with appropriate

dimensions.

The control law is implemented in an event-based fashion over a network. The basic

mechanism is represented in Figure 3.1. When the event condition is satisfied, event detector

updates the control signal and the actuator receives the updated control input.

Assume the event time instants are denoted by the sequence {tj}j∈N0 , starting from

t0 = 0. The control signal is held constant between two successive updates. Thus, the

control input can be defined as follows:
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Figure 3.1: Event-triggered mechanism of the closed-loop system and DoS attack.

u(t) = kx(tj) t ∈ [tj , tj+1). (3.2)

3.1.2 DoS and Control

Denial-of-service can interrupt communication between system components by preventing

(3.2) from being updated at the desired times. We consider a scenario in which DoS attacks

simultaneously affect measurement and control channels. Thus, in the presence of DoS,

data cannot be sent or received. We consider a more general framework describing DoS

attack [38]. Let {hn}n∈N0 represent the time instants of DoS off/on transitions. Then

Hn = {hn} ∪ [hn, hn + τn[

represents the nth DoS interval with the length of τn over which communication is denied.

Thus, the attack and non-attack intervals can be represented as follows

A(τ, t) =
⋃

n∈N0

Hn

⋂
[τ, t]

N(τ, t) = [τ, t]\A(τ, t)

where for each interval [τ, t], A(τ, t) and N(τ, t) represents the time intervals in which

communication is not possible and is allowed, respectively. Therefore, the control input in

the presence of attack can be stated as follows:

u = kx(tj(t)) (3.3)

where j(t) represents the last successful control update, defined as follows:

j(t) =

{
−1, if N(0, t) = ∅
sup{j ∈ N0|tj ∈ N(0, t)}, otherwise

(3.4)

As mentioned, j(t) represents the last successful control update for any t ∈ R≥0.

Note that definition (3.4) covers the scenario that the attack is applied continuously in (0, t).
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i.e. when N(0, t) = ∅, there are no communication period from 0 to t and therefore never

triggering occurs. In these cases, we can define j(t) = −1 and the corresponding u(t) = 0

and x(t−1) = 0.

3.1.3 Control Objectives

The goal is to find a controller and a sampling logic that ensure finite gain L2-stability of

the closed loop control system in the presence of the DoS attack. This goal can be stated

as follows

Definition 3.1 The closed-loop system comprised as the system (3.1) with the control signal

(3.3) is said to be finite gain L2-stable if there exists positive real constants γ and η such that

‖x(t)‖L2≤ γ‖w(t)‖L2+η

for t ∈ R≥0 and w ∈ L2.

3.2 Control Policies

In this section, we define the control law, ignoring the cyber attack. Our interest is in

a control law, implemented using an event-triggered approach, that attenuates the effect

of disturbances, in L2-sense. The effect of the DoS attack will be discussed in the next

section. Consider the dynamical system (3.1) along with the control signal (3.3) and define

the following triggering error :

e(t) = x(tj(t))− x(t). (3.5)

Thus, e(t) represents the gap between the value of the state at the last successful update of

the controller, and the actual state at the current time.

Theorem 3.1 Consider the system (3.1) and the control input (3.3). Assume there is a

positive definite function V : Rn → R that satisfies the following hamilton-jacobi inequality

(HJI) for a real constant γ > 0,

∂V

∂x
Ax+

1

2

∂V

∂x

1

γ2
∂V T

∂x
− 1

2

∂V

∂x
BBT ∂V

T

∂x
+

1

2
xTx ≤ 0 (3.6)

Let the control signal take the special form

u = kx(tj(t)) = −BT ∂V (x(tj(t)))
T

∂x
(3.7)
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Defining the following event-triggered rule

‖e(t)‖2≤ (1− ζ2)

‖k‖2 ‖x(t)‖2 (3.8)

with user defined parameter constant ζ ∈ R satisfying

0 ≤ ζ ≤ 1 (3.9)

The control system is finite gain L2 stable from external disturbance w to the output with

L2 gain of equal or less than γ/ζ.

Proof. The proof follows closely reference [93]. Taking the derivative of V (x) along the

system trajectories and substituting the control signal (3.7), we have

V̇ =
∂V

∂x
Ax(t) +

∂V

∂x
Bkx(tj(t)) +

∂V

∂x
w(t)

Substituting kx(t) = −BT ∂V T

∂x , we obtain

V̇ =
∂V

∂x
Ax(t)− x(t)TkTkx(tj(t)) +

∂V

∂x
w(t).

Completing now squares for ∂V
∂xw(t), we get

V̇ =
∂V

∂x
Ax(t)− x(t)TkTkx(tj(t)) +

γ2

2
‖w(t)‖2

+
1

2γ2
‖∂V

T

∂x
‖2−1

2
‖γw(t)− 1

γ

∂V T

∂x
‖2.

Applying now the HJI (3.6),we obtain

V̇ ≤ −x(t)TkTkx(tj(t)) +
γ2

2
‖w(t)‖2−1

2
‖x(t)‖2

− 1

2
‖γw(t)− 1

γ

∂V T

∂x
‖2+1

2

∂V

∂x
BBT ∂V

T

∂x
.

Substituting kx(t) = −BT ∂V T

∂x ,

V̇ ≤ −x(t)TkTkx(tj(t)) +
γ2

2
‖w(t)‖2

− 1

2
‖x(t)‖2+1

2
(kx(t))Tkx(t).

We can now complete squares for x(t)TkTkx(tj(t)), to obtain

V̇ ≤ −1

2
‖x(t)‖2+γ2

2
‖w(t)‖2+1

2
‖k‖2‖e(t)‖2−1

2
‖kx(t) + ke(t)‖2
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Which implies that

V̇ ≤ −1

2
‖x(t)‖2+γ2

2
‖w(t)‖2+1

2
‖k‖2‖e(t)‖2 (3.10)

Introduce now a design parameter 0 ≤ ζ < 1. We have:

V̇ ≤ −ζ2

2
‖x(t)‖2+γ2

2
‖w(t)‖2

+ (−1− ζ2

2
‖x(t)‖2+1

2
‖k‖2‖e(t)‖2)

Thus, defining the control update rule

‖e(t)‖2≤ (1− ζ2)

‖k‖2 ‖x(t)‖2

we conclude that

V̇ ≤ −ζ2

2
‖x(t)‖2+γ2

2
‖w(t)‖2.

Integrating both sides of the above inequality, we obtain

ζ‖x(t)‖L2≤ γ‖w(t)‖L2+
√
2V (x(0))

which implies that the closed loop system is L2 stable with gain γ/ζ from the external

disturbance w to the state x.

3.3 L2 Stability Under Denial-Of-Service

In this section, we consider the effect of DoS attacks. In the presence of an attack, the

control update rule (3.8) may be violated since control updates may be interrupted thus

affecting stability and performance. It is therefore important to understand the effect of

the attack on system performance, according to the attack characteristics.

We begin our discussion by defining our assumptions on the DoS attacks. Then, based on

these assumptions, we derive L2 stability conditions under DoS attacks.

3.3.1 Assumptions

(i) Given the dynamical system (3.1) with control input (3.3), there exist a posivive definite

function P such that the Lyapunov function V (x) = xTPx satisfies the HJI (3.6).

Remark 3.1 Note that since V (x) = xTPx is positive definite, then there exist α1, α2 > 0

such that α1‖x(t)‖2≤ V (x) ≤ α2‖x(t)‖2.
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(ii) We assume that the DoS attacks are limited in duration and frequency as follows:

DoS duration: For any given t, τ ∈ R ≥ 0 that t ≥ τ , there exist k0 ≥ 0, T > 0 such

that

|A(τ, t)|≤ t− τ

T
+ k0 (3.11)

The above assumption, adopted from [4], is based in the concept of average dwell-time in

switching systems, introduced in [99]. The expression provides a criteria to express the

length and overall distribution of the attack interval with respect to the time span.

DoS frequency: Let n(τ, t) indicate the number of attacks occurring on the interval [τ, t).

There exist N0 ≥ 0 and τD ∈ R ≥ 0 such that

n(τ, t) ≤ N0 +
t− τ

τD
(3.12)

for all τ, t ∈ R ≥ 0 with t ≥ τ .

Remark 3.2 In the concept of average dwell time, the assumptions of duration and fre-

quency are defined to characterize the switching system. In this article we adapt similar as-

sumptions in the characterization of DoS attack. The assumptions provides realistic bounds

that will enable us to characterize stability and system performance, and are general enough

to include a wide range of possible DoS attacks. In particular, assumption (3.11) provides

an upper bound on the attack duration. Similarly, (3.12) defines the dispersion of the attack

intervals over a time span.

3.3.2 L2 Stability Under Denial of Service

In this section we study closed loop L2 stability in the presence of DoS attacks, under

assumptions (3.11) and (3.12). Note that these assumptions do not depend on the system

dynamics and/or information that might be available to the attacker. The closed-loop

dynamics under attack can be considered as a switching system that may contain stable

and unstable modes.

The set of integers indicating the time instants of control update attempts under DoS

can be defined as follows

ψ = {j ∈ N0|tj ∈
⋃

n∈N0

Hn}

We can now state our main result:
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Theorem 3.2 Consider the control system (3.1) along with the control input (3.2) and

control update rule as (3.8). Let assumption (3.11) be satisfied, and assume that any DoS

sequence satisfies assumption (3.12) with

1

T
+

Δ∗
τD

≤ w1

w1 + w2
(3.13)

where Δ∗ ≥ 0 is a constant satisfying supj∈ψΔj ≤ Δ∗ and Δj = tj+1 − tj. In this expres-

sion, w1 = β2/α2 and w2 = (

√
1− ζ2
‖k‖ +2)2/α1 and θ and β are design parameters satisfying

β2 + θ2 ≤ ζ2. Then, under these conditions, the closed loop system is L2 stable with the

gain of γ
θ .

Before proving the Theorem, we notice that the time axis can be separated into two types

of intervals, namely; (i) intervals with no attack during which transmission of information is

possible and thus, (3.8) holds, and (ii) intervals where the flow of information is prevented

by a DoS attack. In these intervals, the systems is essentially in open loop and the control

law (3.8) is not applied and therefore not valid.

Moreover, we should note that DoS attack cause actuation delay in the system. To

explain, assume that sampling time tj belongs to some DoS interval Hn, then the transmis-

sion would fail at tj . Since transmission rate is finite, when the DoS interval is over, there

would be a delay from when DoS interval finishes (i.e. hn + τn) and the next successful

transmission attempt. Thus, it is necessary to consider this delay into characterization of

the intervals in which event-triggering rule (3.8) holds and may not hold.

Consider the control update sequence {tj} and the DoS sequence {hn}, let the set

Sn := {j ∈ N0|tj ∈ Hn} denote the integers corresponding to attempts for control updates

occurring in the DoS interval. Define

λn :=

{
τn, if Sn = ∅
tsup{j∈N0:j∈Sn} − hn, otherwise

Λn :=

{
0, if Sn = ∅
Δsup{j∈N0:j∈Sn}, otherwise

Therefore, the nth time interval in which (3.8) may not hold would be

H̄n = {hn} ∪ [hn, hn + λn + Λn[

which is the union of the DoS interval Hn and corresponding actuation delay. Note that

next attack interval may occur in the DoS induced delay and thus hn+1 may belong to H̄n
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and cause an overlap between intervals of H̄n and H̄n+1. To address this concern for analysis

purpose, it is more convenient to consider the overlapping intervals as a single interval [4].

By using an auxiliary sequence {zm}m∈N0 and defining it recursively from {hn}n∈N0 as

follows

z0 := h0

zm+1 := inf{hn > zm|hn > hn−1 + λn−1 + Λn−1}
for all m ∈ N0. Let vm be the duration of mth attack interval in this new definition as

vm :=
∑
n∈N0

zm≤hn<zm+1

|H̄n\H̄n+1|

for all m ∈ N0.

Now, for any τ, t ∈ R ≥ 0 with t ≥ τ , the interval [τ, t] can be defined as union of

complementary intervals of |N̄(τ, t)| and |Ā(τ, t)|, where |N̄(τ, t)| (respectively, |Ā(τ, t)| ) is
the total time in which (3.8) holds (respectively, is violated) as follows

Ā(τ, t) = ∪m∈N0Zm ∩ [τ, t] (3.14)

N̄(τ, t) = ∪m∈N0Wm−1 ∩ [τ, t] (3.15)

where

Zm = {zm} ∪ [zm, zm + vm[ (3.16)

Wm = {zm + vm} ∪ [zm + vm, zm+1[ (3.17)

As mentioned earlier, {zm}m∈N0 and {vm}m∈N0 are two sequences of non-negative real

numbers where z−1 = v−1 := 0. As it can be seen, by construction, Ā(τ, t) is union of

sub-intervals if [τ, t] in which (3.8) may not hold. Note that since the union of sets Ā(τ, t)

and N̄(τ, t) equals to N̄(τ, t) and their intersection is empty, they are complementary. Also,

the union of sub-intervals in which (3.8) satisfies is N̄(τ, t). Specifically, by construction,

for each m ∈ N0, the successful control update occurs exactly on at zm + vm and there is

no denial-of-service over Wm. The Equations (3.14),(3.3.2),(3.16) and (3.17) would be used

in the proof of Theorem 3.2.

To proceed with the proof of Theorem 3.2 we also require the following lemma. Here,

we denote μm = zm + vm for ease of use.
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Lemma 3.1 Let t, τ ∈ R ≥ 0 with t ≥ τ , and assume that every DoS attack of duration

|A(τ, t)| satisfies assumption (3.11) for some k0 ≥ 0, T > 0. Then we have that:

e−w1|N̄(μm,t)|ew2|Ā(zm,t)| ≤ e−ρ∗(t−zm)e(w1+w2)k∗

where ρ∗ = w1 − (w1+w2)
T∗ , T∗ = τDT/(τD + TΔ∗) and k∗ = k0 + (1 +N0)Δ∗.

Proof. As defined before, |Ā(τ, t)| is the total time during which the control update rule

(3.8) may not hold because of the presence of DoS attack. This time equals the total length

of DoS interval over [τ, t] plus the delay caused by the DoS. The actuation delay can be

upper bounded by considering it happen n(τ, t) times during the interval [τ, t] and once at

the beginning of the interval. Thus, the upper bound of |Ā(τ, t)| for any τ, t ∈ R ≥ 0 is as

follows:

|Ā(τ, t)|≤ |A(τ, t)|+(1 + n(τ, t))Δ∗

Then we have

|Ā(τ, t)| ≤ t− τ

T
+ k0 + (1 +N0 +

t− τ

τD
)Δ∗

≤ k∗ +
t− τ

T∗

where k∗ = k0 + (1 +N0)Δ∗ and T∗ = τDT/(τD + TΔ∗).

Since |N̄(μm, t)|= |N̄(zm, t)|, we conclude that |N̄(μm, t)|= t− zm − |Ā(zm, t)|. Then,

e−w1|N̄(μm,t)|ew2|Ā(zm,t)|

≤ e−w1[(t−zm)−(k∗+ t−zm
T∗ )]ew2(k∗+ t−zm

T∗ )

≤ e−(t−zm)[w1− (w1+w2)
T∗ ]e(w1+w2)k∗

≤ e−ρ∗(t−zm)e(w1+w2)k∗ .

This completes the proof of Lemma 3.1.

Proof of Theorem 3.2. We can now proceed with the proof of Theorem 3.2. In

the presence of an attack, communication is prevented and the event triggering rule is not

applied to the system, except at the very beginning of the attack, where the triggering rule

still holds. Thus,

‖e(zm)‖2≤ (1− ζ2)

‖k‖2 ‖x(zm)‖2.
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To find an upper bound for e(t) in the presence of an attack we proceed as follows:

‖e(t)‖2 = ‖x(tk(zm))− x(t) + x(zm)− x(zm)‖2

= ‖e(zm)− x(t) + x(zm)‖2

≤ ‖e(zm)‖2+‖x(zm)‖2+‖x(t)‖2

+ 2‖e(zm)‖‖x(t)‖+2‖e(zm)‖‖x(zm)‖
+ 2‖x(t)‖‖x(zm)‖

Thus, during attacks, the following upper bound on the error is satisfied:

‖e(t)‖2≤(
(1− ζ2)

‖k‖2 + 2

√
(1− ζ2)

‖k‖ + 1)‖x(zm)‖2+‖x(t)‖2

+ (2 + 2

√
(1− ζ2)

‖k‖ + 1))‖x(zm)‖‖x(t)‖

Substituting the above upper bound in the Lyapunov inequality (3.10) and defining ξ =

(1−ζ2)
‖k‖2 , one obtain

V̇ ≤− ‖x‖2+γ2‖w‖2+(ξ + 2
√

ξ + 1)‖x(zm)‖2

+ ‖x(t)‖2+(2 + 2
√
ξ)‖x(zm)‖‖x(t)‖.

It follows that

V̇ ≤− ‖x(t)‖2+γ2‖w(t)‖2

+ (
√
ξ + 2)2max{‖x(zm)‖2, ‖x(t)‖2}.

(3.18)

The Lyapunov function V (x) = xTPx is positive definite, and thus satisfies:

α1‖x(t)‖2≤ V (x) ≤ α2‖x(t)‖2 (3.19)

Substituting (3.19) in (3.18), we get

V̇ ≤ −‖x(t)‖2+γ2‖w(t)‖2

+
1

α1
(
√
ξ + 2)2max{V (x(zm)), V (x(t))}.

Thus, we concluded that

V̇ ≤ −‖x(t)‖2+γ2‖w(t)‖2+ 1

α1
(
√
ξ + 2)2V (x(t))

Let now w2 =
1
α1
(
√
ξ + 2)2 , a2 = γ2 and a3 = 1. Then, we have

e−w2t(V̇ − w2V ) ≤ −e−w2t‖x(t)‖2+γ2e−w2t‖w(t)‖2

Thus,

d

dt
(e−w2tV ) ≤ −e−w2t‖x(t)‖2+γ2e−w2t‖w(t)‖2.
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Integrating both sides of the above inequality and multiplying by ew2t, we obtain

V (x(t)) ≤ew2(t−zm)V (x(zm)) + a2

∫ t

zm

ew2(t−τ)‖w(τ)‖2dτ

− a3

∫ t

zm

ew2(t−τ)‖x(τ)‖2dτ
(3.20)

The above Lyapunov inequality is satisfied for the system in the presence of an attack.

When there is no attack occurring in the system, communication network is not interrupted.

Hence, as mentioned earlier in section III, the Lyapunov inequality is as follows:

V̇ ≤ −ζ2‖x‖2+γ2‖w‖2

Taking account of the inequality β2 + θ2 ≤ ζ2 and replacing in the above equation, we

have:

V̇ ≤ −β2

α2
V (x(t)) + γ2‖w‖2−θ2‖x‖2

Let w1 = β2/α2 , b2 = γ2 and b3 = θ2. Following the same procedure used to obtain

the Lyapunov inequality during the attack interval (3.20), in the absence of an attack we

obtain the following inequality:

V (x(t)) ≤e−w1(t−μm)V (x(μm))

+ b2

∫ t

μm

e−w1(t−τ)‖w(τ)‖2dτ

− b3

∫ t

μm

e−w1(t−τ)‖x(τ)‖2dτ

(3.21)

Substituting V (x(μm)) in (3.21) using the upper bound obtained from (3.20), we obtain

V (x(t)) ≤ e−w1(t−μm)ew2vmV (x(zm))

+ e−w1(t−μm)a2

∫ μm

zm

ew2(μm−τ)‖w(τ)‖2dτ

− e−w1(t−μm)a3

∫ μm

zm

ew2(μm−τ)‖x(τ)‖2dτ

+ b2

∫ t

μm

e−w1(t−τ)‖w(τ)‖2dτ

− b3

∫ t

μm

e−w1(t−τ)‖x(τ)‖2dτ.

By continuing this procedure, i.e. substitution of initial values of the Lyapunov function in
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the inequality with their upper bounds from their previous interval, we obtain

V (x(t)) ≤ e−w1(t−μm)ew2vm

× e−w1(zm−μm−1)ew2vm−1V (x(zm−1))

+ e−w1(t−μm)ew2vme−w1(zm−μm−1)

× a2

∫ μm−1

zm−1

ew2(μm−1−τ)‖w(τ)‖2dτ

− e−w1(t−μm)ew2vme−w1(zm−μm−1)

× a3

∫ μm−1

zm−1

ew2(μm−1−τ)‖x(τ)‖2dτ

+ e−w1(t−μm)ew2vmb2

∫ zm

μm−1

e−w1(zm−τ)‖w(τ)‖2dτ

− e−w1(t−μm)ew2vmb3

∫ zm

μm−1

e−w1(zm−τ)‖x(τ)‖2dτ

+ e−w1(t−μm)a2

∫ μm

zm

ew2(μm−τ)‖w(τ)‖2dτ

− e−w1(t−μm)a3

∫ μm

zm

ew2(μm−τ)‖x(τ)‖2dτ

+ b2

∫ t

μm

e−w1(t−τ)‖w(τ)‖2dτ

− b3

∫ t

μm

e−w1(t−τ)‖x(τ)‖2dτ.

Denoting γ1 = max{a2, b2}, γ2 = min{a3, b3} and Γ(τ) � γ1‖w(τ)‖2−γ2‖x(τ)‖2, we obtain

V (x(t)) ≤ e−w1(t−μm)ew2vm

× e−w1(zm−μm−1)ew2vm−1V (x(zm−1))

+

∫ μm−1

zm−1

e−w1(t−μm)ew2vme−w1(zm−μm−1)

× ew2(μm−1−τ)Γ(τ)dτ

+

∫ zm

μm−1

e−w1(t−μm)ew2vme−w1(zm−τ)Γ(τ)dτ

+

∫ μm

zm

e−w1(t−μm)ew2(μm−τ)Γ(τ)dτ

+

∫ t

μm

e−w1(t−τ)Γ(τ)dτ

Continuing the above substituting for all the intervals from 0 to t and using Lemma 2, the
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overall Lyapunov inequality is given by:

V (x(t)) ≤ e−w1|N̄(0,t)|ew2|Ā(0,t)|V (x(0))+

∫ t

μm

e−w1(t−τ)Γ(τ)dτ

+
∑
m∈N
μm<t

∫ μm

zm

e−w1|N̄(μm,t)|ew2|Ā(τ,t)|Γ(τ)dτ

+
∑
m∈N
zm<t

∫ zm

μm−1

e−w1|N̄(τ,t)|ew2|Ā(μm−1,t)|Γ(τ)dτ.

(3.22)

Taking account of Lemma 2, we obtain

V (x(t)) ≤ e−w1|N̄(0,t)|ew2|Ā(0,t)|V (x(0))

+

∫ t

0
e−ρ∗(t−τ)e(w1+w2)k∗Γ(τ)dτ

(3.23)

Since V (x(t)) ≥ 0, from the Lyapunov inequality (3.23) and the definition Γ(τ) � γ1‖w(τ)‖2−γ2‖x(τ)‖2,
we can get:

γ2

∫ t

0
e−ρ∗(t−τ)e(w1+w2)k∗‖x(τ)‖2dτ ≤

+ e−w1|N̄(0,t)|ew2|Ā(0,t)|V (x(0))

+ γ1

∫ t

0
e−ρ∗(t−τ)e(w1+w2)k∗‖w(τ)‖2dτ

By integrating both sides from t = 0 to t = ∞ and rearraging the double integral area we

can obtain:

γ2
1

ρ∗

∫ ∞

0
e(w1+w2)k∗‖x(τ)‖2dτ ≤∫ ∞

0
e−ρ∗te(w1+w2)k∗V (x(0))dt+γ1

1

ρ∗

∫ ∞

0
e(w1+w2)k∗‖w(τ)‖2dτ

Thus one can get

γ2

∫ ∞

0
‖x(τ)‖2dτ ≤ V (x(0)) + γ1

∫ ∞

0
‖w(τ)‖2dτ

which results

‖x(t)‖L2≤
√

V (x(0))

γ2
+

√
γ1
γ2

‖w(t)‖L2

Since, by assumption, γ1 = max{a2, b2} and γ2 = min{a3, b3}. Therefore,γ1 = γ2 and

γ2 = {1, θ2}. Also θ2 ≤ 1, and thus γ2 = θ2. Consequently,√
γ1
γ2

=
γ

θ
.

This completes the proof.
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Remark 3.3 In the absence of an attack, the L2 gain of the system is γ/ζ, as expected

from Theorem 1. It is relatively straightforward to recover this result from Theorem 2. In

this case θ = ζ, and the gain becomes γ/ζ.

3.3.3 Discussion

In this proposed framework, there is a trade off between the length of tolerable attack and

the quantitative system performance in L2 sense. A larger β indicates a larger amount of

tolerable attack duration as it corresponds to larger w1/(w1 + w2). On the other hand, a

larger β means smaller θ and therefore a larger L2 gain.

The theorem explicitly shows the trade off between the L2 gain and the event update rule.

Having more frequent update results in higher performance and smaller L2 gain.

In the next section, we provide a numerical example to better illustrate the analysis.

3.4 Illustrative Examples

In this section, the theory and discussion are illustrated using a numerical example. Consider

the following system, and notice that it has an unstable equilibrium point at the origin.[
ẋ1
ẋ2

]
=

[
0 1
−2 3

] [
x1
x2

]
+

[
0
1

]
u+ w (3.24)

Using the Lyapunov function V = xTPx, for an L2 gain of γ = 4, the stabilizing L2 feedback

controller is u = −2BT
1 P

Tx, where P is the solution to the HJI (3.6),

P =

[
27.28 6.812
6.812 9.315

]

Thus, we obtain α1 = 7.02 and α2 = 29.57. Taking β = 0.68 and θ = 0.68, the allowed

duty cycle of the DoS attack is w1/(w1 + w2) = 0.0501, which implies a tolerable duty cycle

of 5%. Figure 3.2, shows the trajectories of the system under the control feedback (3.3)

and above characteristics. Triggering times determined by the event rule (3.8) are shown in

Figure 3.3. The disturbance w is a uniform distribution between 0 and 1. DoS attacks are

generated randomly. In this example, the generated DoS attack has a duty cycle of 20%.

Although the value obtained for the amount of tolerable DoS attack is conservative due to

the assumptions used in the stability analysis, it provides an explicit relationship between

the system performance, event rule and convergence rate of the closed-loop system.

Table 3.1 shows the trade-off between the L2 gain of the closed-loop system and the

duty cycle of the DoS attack for different values of β and θ for ζ2 = 0.9409. It is shown that

for a predefined γ and the control rule (3.3), the closed-loop system is resilient to attacks
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Figure 3.2: Trajectories of closed loop system under L2 control.

Figure 3.3: The error and the event rule margin trajectories.

with larger duty-cycle up to a threshold, while sacrificing performance.

The amount of duty-cycle of the attack converges to a maximum of nearly 5% for a large

L2 gain.

The gain and the maximum amount of tolerable attack depends on various design pa-

rameters such as control rule parameters, γ, α1, α2 and ζ. In Figure 3.4, the trade-off

between tolerable amount of the attack and L2 gain of the system is explicitly shown for

various values of ζ. It is worth mentioning while as much as it is needed to sacrifice the

gain to bring the system to the desired amount of attack tolerance, near 90% of the desired
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Figure 3.4: Trade-off between tolerable amount of attack ω1
ω1+ω2

and L2 gain of the system
for various values of ζ.

tolerance can be obtained without significant deterioration of the gain. Moreover, smaller

ζ corresponds to fewer update of the control rule and as a result less transmission of data

in the network. Thus, Figure 3.4 gives a good insight of the relative trade-off between these

parameters which enables the designer to suitably tune the design parameters with respect

to the design goals.

Table 3.1: Trade-off between the L2 gain and the duty cycle of the attack for
ζ2 = 0.94

[
θ
β

] [
0.84
0.48

] [
0.68
0.68

] [
0.56
0.79

] [
0.39
0.88

] [
0.32
0.91

]

DoS 1.4% 2.7% 3.5% 4.4% 4.6%

L2 gain 4.7 5.8 7.1 10 12.3

3.5 Summary

In this chapter, we investigated L2 stability of networked systems under DoS attack. We

derive an explicit finite L2 gain to characterize system performance in the presence of dis-

turbance and certain class of DoS attack. Also, tolerable amount of DoS attack with respect

to the control law is derived to ensure the closed-loop L2 stability is preserved. By having
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the explicit relation between control and event rule parameters and attack characteristics,

a better perspective into designing an event-triggered robust controller is provided. Hence,

the L2 controller is designed to obtain a resilient control system despite of the presence

of disturbance and DoS attack. In this regards, several interesting research venues such

as deriving an optimal control strategy with respect to a certain class of DoS attack can

be followed. Also, the result can be extended to nonlinear networked systems as a future

research topic.
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Chapter 4

Summary and Conclusions

Traditionally speaking, control systems are usually designed with this assumption that the

sensors measurements can be used for controlling the plant operation. By introduction

of Networked Control Systems (NCSs) in which the classical hard wiring are replaced with

more flexible networked interconnections between subsystems, unnecessary wiring and over-

all complexity of control systems are reduced. Although the widespread use of computers

have brought many privileges into networked control systems, it also introduced an impor-

tant threat: cyber attacks. Various types of cyber attacks have been known and investigated

so far. One of the most common and easy to apply attacks in networked control systems is

denial-of-service (DoS). Due to the fact that the attacker does not require to know the sys-

tems dynamics for performing the attack, DoS becomes one of the primary options between

different types of attacks. Therefore, guaranteeing stability and some level of performance

in the presence of DoS attack in networked control systems is a must.

In chapter 2, denial-of-service attack is put on perspective based on different types of

its origin and methods of modeling. There are different DoS modeling approaches in the

attempt to make it compatible with various frameworks and control approaches in networked

control systems. Moreover, an overview of methods for guaranteeing and analyzing of

stability of networked control systems under DoS attack is provided. Consistent with the

recent trend, our focus is on event-triggered implementation of control systems which leads

to a significant reduction in data transmission in communication channels.

In chapter 3, input-output stability and performance of the control system under DoS

attack is analyzed. While the literature is mainly focused with retaining stability, in this

chapter we are also concerned with keeping the performance of the system in a reasonable

level. For this purpose, L2 stability of the system is investigated. In this stability analysis,

no constraint was assumed on magnitude of the exogenous disturbance. The model con-
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sidered in this thesis for DoS attack is very general and no knowledge is assumed available

about the time instants of the attack occurrence and length of each attack interval. We

show that under some assumptions on DoS attacks, input-output stability of the system

is guaranteed in the expense of deterioration of the L2 gain. Moreover, explicit relation

between L2 gain of the system and tolerable amount of DoS attack is provided. The scheme

is resilient enough to enable the control designer to consider a suitable trade-off point be-

tween security of the system (i.e. the amount of tolerable attack) and the performance of

the system under attack. At last, the results are illustrated by a numerical example.

4.1 Directions for Future Work

Our proposed results in this thesis can be pursued in the following areas:

� As a further path in this research, stability of the system in model-based periodic

event-triggered control scheme can be investigated. It has been shown that using this

mechanism significantly decrease the amount of transmissions in NCSs compared to

both standard periodic time-triggered controller or periodic event-triggered controller

[100]. Using predictors both in controller to actuator (C-S) and in sensor to controller

(S-C) channel, enables the ETC system to outperform the conventional ETC systems.

Using this scheme, it would be beneficial to investigate the stability and L2 gain of

the control system under denial-of-service attack using this scheme.

� In the next step, previous results and ideas can be extended to decentralized systems.

Decentralized systems are suitable for large-scale system in which physical components

such as controllers, actuators and sensors are distributed over a wide area. Centralized

ETMs and controllers can be very costly due to the fact that event-triggered rules and

controllers need access to all plant or controller output in every sampling time. More-

over, by considering a large-scale plant consisting of number of sub-systems instead of

a complete plant model, the computational load on ETMs would be reduced. There-

fore, extending the previous ideas to decentralized systems would be of a practical

importance in stability analyses of control systems under DoS attack.
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