
Learning Programmatic Policies from ReLU Neural

Networks

by

Spyros Orfanos

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Spyros Orfanos, 2023

Abstract

Oblique decision trees use linear combinations of features in the decision nodes.

Due to the non-smooth structure of decision trees, training oblique decision

trees is considerably difficult as the parameters are tuned using expensive

non-differentiable optimization techniques or found by extensive search of a

discretized space. Recent work showed that one can induce oblique decision

trees from the derivatives of ReLU neural networks. For learning with gradient

descent, the derivative-based model requires one to anneal from a smooth

approximation of ReLU activation functions to ReLUs during training and to

use a dynamic programming algorithm to efficiently compute the gradients.

In this thesis we show that regular ReLU neural networks trained with

backpropagation can be written as oblique decision trees. We also show that

hidden units from ReLU networks can be used to implicitly train oblique decision

trees using computationally efficient algorithms for axis-aligned trees. Our result

provides not only simple and efficient ways to induce oblique decision trees,

but effective methods for synthesizing programmatic policies. This is because

oblique decision trees can be seen as programs written in a domain-specific

language commonly used in the programmatically interpretable reinforcement

learning literature. All one needs to do is use a ReLU neural network to encode

the policy, and learn using any policy gradient algorithm. Our methods can

then map the policy learned with gradient descent to a program. Empirical

results show that our approaches for synthesizing programmatic policies is

competitive with the current state of the art if the synthesized programs are
ii

small; our methods outperforms the state of the art in almost all control

problems evaluated if it is allowed to synthesize longer programs.

iii

Preface

Parts of this thesis are under review as a conference paper with shared first

co-authorship with Levi H.S. Lelis in the 32nd International Joint Conference

on Artificial Intelligence. This thesis extends the results presented in the paper

with new experiments for PID controller policies, discrete action domains, and

supervised learning results using densely-connected networks.

iv

Acknowledgements

I would like express my deepest gratitude to my advisor, Levi Lelis, for his

endless support and invaluable guidance throughout my degree. Levi’s positivity

kept me motivated during ups and downs of research and his supervision,

insights, and advice profoundly impacted my research acumen and creativity.

Thank you so much, Levi.

I would also like to thank my peers from the Amii Synthesize reading group

for introducing me to program synthesis and for their insightful discussions.

I would like to acknowledge the financial support from the Natural Science

and Engineering Research Council of Canada (NSERC) for the Alexander

Graham Bell Canada Graduate Scholarship - Master’s (NSERC CGS-M) and

the Faculty of Graduate Studies and Research (FGSR) for the Walker H. Johns

Graduate Fellowship and the Science Graduate Scholarship.

Lastly, I would like to thank my family for their endless support. I am

grateful to my sister, Katerina, for her encouragement, my grandparents for their

inspiring wisdom, and my parents, Chrisi and Andreas, for their tremendous

support, motivation, and care. Each of you always believed in me and gave me

the courage to pursue my ambitions.

v

Contents

1 Introduction 1

1.1 List of Contributions . 4

2 Background Material 5

2.1 Oblique Decision Trees . 5
2.1.1 Early Methods . 5
2.1.2 Locally Constant Networks 7

2.2 Program Synthesis . 8
2.3 Reinforcement Learning . 10

2.3.1 Policy Gradient Methods 12
2.4 Imitation Learning . 13
2.5 Related Work . 14

2.5.1 Oracle-guided PIRL 14
2.5.2 Oracle-free PIRL . 16

3 Oblique Trees From ReLU Networks 18

3.1 Notation . 18
3.2 Mapping ReLU Networks to Oblique Trees 19

3.2.1 Example . 23
3.2.2 Extensions to OTR . 25
3.2.3 Synthesizing Programmatic Policies with OTR 26

3.3 Approximating ReLU Networks with Oblique Trees 27
3.3.1 Pruning OTR Trees 27
3.3.2 Neurally Augmented Decision Trees 28

4 Experimental Results 31

4.1 RL for Continuous Action Spaces 31
4.1.1 PID Controller Policies 34

4.2 RL with Discrete Action Spaces 36
4.3 Supervised Learning . 39

5 Conclusion 42

References 44

vi

List of Tables

4.1 Reward and standard deviation of depth-6 policies over 100
episodes, averaged over ten (three for NDPS and ⇡-PRL) in-
dependent runs of each algorithm. The last column shows the
performance for depth-32 dOTR policies. In brackets is the
estimated pruned depth, log2a (a is the number of activation
patterns realized). The best average for each domain is high-
lighted in bold. 34

4.2 Performance of different methods for training oblique trees on
supervised tasks. The best average is highlighted in bold. . . . 40

vii

List of Figures

2.1 AST for program if x2 < x1 then x1 else x2 9
2.2 DSL for oblique decision trees (discrete output). 10

3.1 Neural network (left); set of weights and biases (W and B) of
the network and of the inference path for input X = [0.5 �0.5]T

of the tree OTR induces (P and V) (middle); inference path for
X (right). Each Z

0i
k -value (bottom) is equal to its corresponding

Z
i
k-value for the input X. 19

4.1 DSL for affine policies and regression ODTs. 32
4.2 Original (left) and simplified (right) OTR programmatic policies

for Mountain Car Continuous. These policies achieve an average
reward of 92.8 and 92.2, respectively (90 is considered solved). 34

4.3 DSL for PID Controller Policies 35
4.4 OTR PID controller policy for Pendulum. This policy achieves

an average reward of -162.6 over 1000 consecutive episodes. . . 36
4.5 DSL for discrete output oblique decision trees. 36
4.6 Performance of AugTree (blue), Viper (orange) and NDPS(red)

for various tree depths on Lunar Lander. Average return and
standard deviation across fifteen runs. 38

4.7 A simplified AugTree policy for lunar lander. This policy
averages a return of 246.8. 39

viii

Chapter 1

Introduction

Much of the recent success in artificial intelligence (AI) can be attributed

to artificial neural networks. Artificial neural networks are widely used in

nonlinear function approximation due to their ability to generalize complex

hypotheses and their efficient training algorithms which leverage modern com-

puting abilities. Approximate solution methods in reinforcement learning (RL)

[41] often use a neural network to represent the policy, which defines the agent’s

behaviour. Such methods have defeated world champions in the games of chess,

Go, and Dota 2 [31], [40] and have been applied to research areas such as

robotics. While their success is remarkable, they produce opaque ‘black-box’

policies that are hard to interpret or explain, resulting in safety concerns when

deployed in real-world settings.

In contrast, interpretable models can improve our understanding of how

problems are solved since the agent’s behaviour is known, thus increasing our

trust and confidence in the model. Emphasis on interpretable AI models has

lead to the development of the programatically interpretable reinforcement

learning (PIRL) [46] framework in which policies are encoded in human-readable

computer programs. Such policies are more amenable to verification [4] and

tend to be easier to understand [46].

Decision trees are one of the most interpretable models in machine learning

and widely used to encode PIRL policies. Decision trees are non-differentiable

due to their if-then-else architecture, so one needs to search over a large and

non-smooth spaces of programs. This contrasts gradient descent methods,

1

which ‘learn’ by adjusting the model parameters by a small amount in the

direction opposite to the gradient. This is consequential because RL algorithms

employ the latter approach by using the agent’s experience to learn online,

while interacting with the environment. Without gradient descent methods for

incremental parameter updates, finding an optimal policy directly from the

reward signal is generally infeasible as it cannot learn from previous experience.

As such, much of the work in PIRL relies on the search signal a neural oracle

provides to guide the search [2], [4], [45], [46]. That is, RL is reformulated into a

much simpler supervised learning problem known as imitation learning. Viper

[4] uses axis-aligned decision trees to encode programmatic polices, which are

trained by imitating a pre-trained neural network policy. Axis-aligned decision

trees [7] are particularly interpretable because the user needs to reason about

a single feature at each node of the tree. Using a single feature in the decision

nodes also allows for computationally efficient training algorithms; however, it

severely limits the capacity to induce effective hypotheses. Program synthesis

approaches to PIRL [2], [45], [46] also rely on imitation learning; however,

they can induce more expressive decision tree programs that can encode more

complex hypothesis. The domain-specific language (DSL) is the high-level

language that defines the set of allowed programs. Program synthesis methods

search over a possibly large DSL and require computationally expensive non-

differentiable optimization of the tree’s parameters. As a result, the scalability

of program synthesis methods in the PIRL setting is limited to small programs.

Qiu and Zhu [32] argued that this imitation learning approach could lead

to weak programmatic policies due to a possible representation gap. That is, it

is possible that the neural policy used as an oracle cannot be represented in

the programmatic space. In addition, these approaches are suboptimal since

the search is guided by imitation learning instead of the environment’s reward

signals. Qiu and Zhu recently introduced a method, ⇡-PRL, that uses a smooth

approximation of a DSL to allow for the use of online gradient-based learning.

⇡-PRL uses policy gradient algorithms to learn a programmatic policy, which

is encoded as a differentiable approximation of a decision tree. The main

drawback of ⇡-PRL is that the time complexity for evaluating a state during
2

training is exponential on the depth of the tree. Thus, the method can only

synthesize small programs (they induced trees of depth 6 in their experiments).

Recent work in supervised learning introduced locally constant networks

(LCN), a type of neural network model that can be mapped to an oblique

decision tree [22]. Oblique decision trees account for all features of the problem

in each node. Oblique decision trees are of particular interest because they

can be seen as a program written in a commonly used DSL for synthesizing

programmatic policies [13], [32], [39], [46], [51]. This language allows if-then-else

structures with affine transformations of the input values in the decision nodes,

which is exactly what oblique trees can represent. LCN learns a function of

the derivatives of a ReLU neural network. As a result, the gradient signal for

training with gradient descent is insufficient. The model is trained with an

annealing procedure where it transitions from a smooth approximation of ReLU

to ReLUs. LCN’s training procedure also employs a dynamic programming

procedure to compute all gradients efficiently as it cannot leverage gradient

computation algorithms such as backpropagation [37].

In this thesis we present two methods that use ReLU networks trained with

backpropagation to induce oblique decision trees.The first method, Oblique

Trees from ReLU Neural Networks (OTR), leverages the activation patterns of

a ReLU neural network [3], [15], [22], [28], [35], [50] to represent the network

as an equivalent oblique decision tree. A ReLU neuron is active if it produces

a value greater than zero and is inactive if it produces a value of zero. An

activation pattern defines which neurons are active and which neurons are

inactive for a given input. Like LCN, OTR rewrites the function of each

neuron, one for each possible activation pattern, as a linear combination of the

inputs. This is because the ReLU function produces either a linear combination

of its inputs or the value of zero. Each path of the induced tree represents

a different activation pattern and each decision node on a path represents a

different neuron of the network. LCN maps a constant to each leaf node, so

each path of the tree is locally constant. We show that this is not necessary,

and that ReLU networks trained with back-propagation can also be mapped to

oblique decision trees. If the network has n neurons, the tree induced by OTR

3

will have 2n paths, one for each possible activation pattern, and its depth will

be n. In the leaf nodes, OTR returns a linear model instead of a constant.

The second method, Neurally Augmented Decision Trees (AugTree), is an

imitation learning algorithm that uses the hidden units of the neural network

oracle to augment the input space. AugTree leverages the computationally

efficient CART [8] algorithm for training axis-aligned trees to implicitly induce

oblique decision trees. We hypothesize that having access to network’s hidden

units can improve the decision tree’s capacity to imitate the oracle and reduce

the representation gap. In contrast to OTR which maps ReLU networks to

oblique trees, AugTree trains oblique trees using pieces of ReLU networks.

As such, AugTree approximates ReLU neural networks.

While both methods apply to supervised learning (e.g., regression and

classification problems), we study them in the context of PIRL - namely to

encode programmatic policies as oblique decision trees. Empirical results

on several control problems show that the programs OTR and AugTree

synthesizes are competitive with the current state-of-the-art in programmatic

RL. In contrast to other methods in PIRL, ours can scale to train longer

programs, which could result in stronger programmatic policies that are possibly

less interpretable than those encoded in shorter programs.

1.1 List of Contributions

• The main contribution of this thesis is to show that a mapping between

small ReLU networks and oblique decision trees can be used to supersede

more complex PIRL approaches if the DSL only supports programs with

if-then-else structures and affine transformations of the inputs.

• Accompanying code to map ReLU networks to oblique decision trees is

publicly available at https://github.com/spyrosUofA/OTR.

• Neurally Augmented Decision Trees, an efficient imitation learning algo-

rithm that can implicitly train oblique decision trees.

4

https://github.com/spyrosUofA/OTR

Chapter 2

Background Material

In this chapter we review algorithms for training oblique decision trees. Oblique

decision trees are of particular interest because they have been used in other

works (e.g., [13], [32], [39], [46], [51]) to encode programmatic reinforcement

learning policies. Before outlining current approaches to programatically

interpretable reinforcement learning, we summarize the necessary background

material, namely program synthesis, reinforcement learning, and imitation

learning.

2.1 Oblique Decision Trees

An oblique decision tree T is a binary tree whose nodes r define a function

P ·X + v 0 of the input X, where P and v are parameters of r. Each leaf

of T contains a prediction for X. A tree T produces a prediction for X by

defining a path from the root to a leaf of T , which we call an inference path.

An inference path is determined as follows. If P ·X + v 0 is true for the root,

then one follows to the root’s left child; the right child is followed otherwise.

This rule is applied until we reach a leaf node. For classification tasks, the

leaves return a label. For regression tasks, we consider linear model trees [19],

where each leaf returns the value of P ·X + v as the prediction for X.

2.1.1 Early Methods

Early methods for inducing oblique decision trees such as Cart with linear

combinations (Cart-LC) [7] use a local search algorithm to find the hyperplanes

5

of each node. Cart-LC starts with an arbitrary hyperplane and it perturbs

it while it is able to make improvements with respect to a metric of impurity.

Heath [16] used simulated annealing to search for the hyperplanes. OC1 uses

an improved method for perturbing the coefficients of the hyperplanes. Linear

Machine Decision Trees (LMDT) [44] trains a linear classifier for each node of

the tree. The partition of the training data that the classifier induces defines

the hyperplane of each node. Another classifier is then recursively trained on

each of the resulting parts, until a purity threshold is achieved. Murthy et

al. [29] compared OC1 and LMDT and found that OC1 tends to perform

better than LMDT on non-linear problems.

HHCART applies a transformation to the training data that tries to increase

the chances of an axis-aligned partition resulting in high purity values [48]. The

axis-aligned partition encountered in the transformed space is equivalent to an

oblique partition in the original space. Wickramarachchi et al. [48] showed that

HHCART is competitive with OC1. We use HHCART as a baseline in our

supervised learning experiments. Another algorithm we use as baseline in our

experiments is TAO [12]. TAO iterates from bottom to top while optimizing

for the parameters of linear classifiers of each node. TAO was shown to produce

good empirical results, but it only works for classification problems.

All the algorithms reviewed so far can suffer with poor local minima. Others

have developed exact methods for finding optimal partitions in trees [5], [6].

The drawback of these methods is that they do not scale to trees of even

moderate size. Lin et al. [24] showed how to scale the training of optimal trees,

but only for axis-aligned trees, not oblique trees.

OTR is able to leverage all the machinery developed for training neural

networks, such as stochastic gradient descent for escaping local minima and

backpropagation for efficiently computing gradients. As a result, and as we

show in our experiments, OTR is able to induce much better trees than

these previous methods. Note that while the main focus of this thesis is

programmatic reinforcement learning, previous methods for training oblique

trees are unsuitable for online learning. As such, we separately evaluate and

compare these approaches to OTR on supervised learning problems (regression
6

and classification).

2.1.2 Locally Constant Networks

Consider a ReLU neural network f✓ : X 2 Rd
�! Y 2 Rl with m hidden

layers and ni neurons in the i
th layer. The j

th neuron in layer i before and

after applying the ReLU activation is denoted Z
i
j and A

i
j, respectively, for

j 2 {1, 2, ..., ni}. The set of neurons in the i
th layer before and after applying

the ReLU activation are denoted as Z
i
2 Rni and A

i
2 Rni , respectively.

We denote the concatenation of neurons (A0
, A

1
, ..., A

i) as Ã
i
2 Rñi , where

ñi =
Pi

j=0 ni and A
0 := X. A neuron’s excitement is defined as O

i
j =

@Ai
j

@Zi
i
= I[Zi

j � 0] 2 {0, 1}, where I[·] is the indicator function. The activation

pattern, which represents the excitement of all neurons, is denoted Õ
m =

(O0
, O

1
, ..., O

m) 2 {0, 1}ñm where Oi = (Oi
1, O

i
2, ..., O

i
ni
). There are 2ñm possible

activation patterns.

Recent work used the derivatives of ReLU neural networks to train locally

constant networks (LCN) that are equivalent to oblique decision trees [22]. Like

OTR, LCN leverages the piece-wise linearity of ReLU networks [21] to map

the ñm neurons of f✓ to the decision nodes of a depth ñm oblique tree. More

detail on how the neurons are written as linear combinations of the features

and then arranged in the tree is provided in the presentation of OTR (Chapter

3). For now, we accept that each inference path of the decision tree corresponds

to a particular activation pattern of the network. In each leaf node, and hence

for each activation pattern, LCN returns a the locally constant output given

by a table g, where g : Õm
2 {0, 1}m �! Y 2 Rl. This describes the canonical

architecture for LCNs; however, it is not practical for learning since g is not

differentiable. The standard architecture is used in practice, where the tabular

g is replaced by another neural network g� : JXÃm
2 R(m⇥d)

�! Y 2 Rl. JX

denotes the Jacobian, so g� that maps the gradients of f✓ to the output of a

leaf node. Since f✓ is piece-wise linear, each activation pattern is locally linear

(i.e., the network reduces to a linear transformation for any activation region).

Therefore, the gradients with respect to the input JXÃ
m are locally constant.

The authors prove that there exists a bijection between JXÃ
m and Õ

m, from
7

which it follows that g�(JXÃm) and g(Õi) are equivalently representative.

While the standard architecture is differentiable, inactive neurons do not

provide any useful gradient signals so LCNs cannot be trained as easily as

regular neural networks. To overcome this, LCN anneals between softplus

activation functions, an infinitely differentiable approximation of the ReLU

function, and ReLUs in order to increase the gradient signal. In the final

training epoch, the exact ReLU function is used, so JxÃ
M produces exactly 2ñm

unique and locally constant gradients, which are input to g�. LCN computes

the gradient of all neurons with respect to the input values, which requires a

special dynamic programming approach to be done efficiently, in a single pass.

To summarize LCN, the underlying model f✓ has 2ñm locally constant

gradients which are the inputs to g�. The neurons from f✓ map to the decision

nodes of the induced tree. g� outputs the final prediction for each leaf node.

The standard LCN architecture, which is used in practice, assumes only one

neuron in each layer and has a more complex training procedure than what

is required to train regular ReLU networks. Furthermore, LCN’s annealing

procedure makes it unsuitable for incremental learning as it is not clear how

each update repeats the annealing procedure.

With OTR, we show that all one needs to do to train an oblique tree is to

train a regular ReLU neural network (fully connected or densely connected)

with backpropagation. For classification tasks, the OTR tree is deeper by l� 1

levels compared to LCN. For regression tasks, the OTR tree outputs a linear

model instead of a constant.

2.2 Program Synthesis

Program synthesis methods use input-output pairs to construct a program,

represented as an abstract syntax tree (AST), that correctly maps the input

values to the output values. As an example, consider the following set of input-

output pairs: {([x1 = 1, x2 = 2], 2), ([x1 = 10, x2 = �2], 10), ([x1 = �1, x2 =

0], 0)}, where x1 and x2 are the input values. A solution to this problem can

represented by the following program: if x2 < x1 then x1 else x2, whose AST

8

ITE

<

x2 x1

x1 x2

Figure 2.1: AST for program if x2 < x1 then x1 else x2

is shown in Figure 2.1. The root of the tree, ITE represents an if-then-else rule,

where its leftmost child represents the Boolean expression, the middle child

represents what is executed if the Boolean expression returns true, and the

rightmost child what is executed if the Boolean expression returns false.

The domain-specific language (DSL) is the high-level symbolic language

that defines the set of allowed programs and is represented as a context-free

grammar. The DSL is composed of non-terminal symbols, terminal symbols,

and a set of rules describing how a symbols can by replaced by another. An

engineer specifies the DSL, so it can be arbitrarily general. For example,

one may allow for binary operations (e.g., ‘AND’, ‘OR’, ‘XOR’), arithmetic

operations (e.g., addition, exponentiation), higher-order functions (e.g., fold),

loops, and pre-determined functions. An example of a DSL equivalent to oblique

decision trees is given in Figure 4.5, where E is the initial symbol, that can be

replaced by either C or if B then E else E. The DSL accepts the program

if x2 < x1 then x1 else x2 with the following rules: E ! if B then E else E;

B ! C < C, yielding if C < C then E else E; C ! x2 and C ! x1 for

the first and second C, respectively; E ! C for the two Es, which are then

replaced by x1 and x2 with C ! x1 and C ! x2.

Although designing a large, general DSL sounds enticing, defining a concise,

succinct one is essential since program synthesis methods must search in the

space of programs the DSL defines. Bottom-up search (BUS) [1] is a synthesis

algorithm which enumerates all possible programs up to a specified size, removes

the programs that are ‘observationally equivalent’ (i.e., if two programs produce

exactly the same output for the set of inputs of interest, then BUS considers

only one of the programs in search), and then evaluates each program. Such

9

E ::= C | if B then E else E

B ::= C < C

C ::= x1|x2

Figure 2.2: DSL for oblique decision trees (discrete output).

enumerative search algorithms are simply not feasible on large DSLs due to

the size of programmatic space.

An alternative to enumerative search algorithms is local search algorithms.

Simulated annealing (SA) [20] is a stochastic, local search algorithm where

a temperature parameter specifies the greediness of the search. SA starts by

randomly initializing an AST. Each iteration of SA mutates the current program

by replacing a randomly chosen non-terminal node with a random sub-tree

(e.g., the second child of ITE in Figure 2.1 could be replaced by another ITE

tree). The new program is accepted based on a probability that depends on the

temperature and the difference in utility compared to the current program. The

temperature starts off high, so a wide range of the programs are accepted, which

is useful for escaping local minima. The temperature is decreased over time,

so SA evolves into a greedy search that only accepts strong programs. Local

search algorithm do not always find the optimal solution, and having a large

DSL can hinder the optimization. In any case, finding optimal coefficients or

constants in an AST requires searching over a discrete set of allowed constants,

or non-differentiable optimization techniques such as Bayesian optimization

[27]. As a result, the scalability of program synthesis methods in the PIRL

setting is limited to small programs.

2.3 Reinforcement Learning

Reinforcement learning (RL) [41] focuses on training an agent to act in a way

that maximizes a reward signal. The environment that the agent interacts

with is often formalized by a Markov decision process (MDP), which is defined

by the 5-tuple {S,A, R, P, �} consisting of the set of states, the set of actions,

10

the reward function, the transition probability matrix, and the discount factor,

respectively. At each time step t, the agent observes a state St = s and then

samples an action At = a from its policy ⇡(a|s). In the discrete control setting,

⇡(a|s) represents the probability distribution over the possible actions. In

continuous control, actions are real numbers, and the policy typically specifies

the parameters of a Gaussian distribution from which actions are sampled. In

either setting, after executing an action, a reward signal Rt+1 = r is observed.

The transition to the next state St+1 = s
0 is specified by the transition probabil-

ity p = P (s0|s, a). Episodic MDPs eventually terminate and so this interaction

cycle gives rise to the sequence {S0, A0, R1, S1, A1, ..., RT , ST}, which is called

an episode. G0 is the return of an episode, where Gt =
PT�t�1

k=0 �
k
Rt+k+1. The

control problem (i.e., finding a policy that maximizes return) is considerably

difficult since immediate actions have long term consequences on the objective.

Program synthesis methods approach this problem by searching the policy

space, denoted ⇧, directly, to synthesize a policy. Synthesized policies are

evaluated by the return they produce over some number of episodes. In

algorithms like SA, the return may guide the search for subsequent policies.

Such methods, however, do not consider what happened during the the episode,

which means they cannot assign credit to specific actions or make updates to

the agent as it interacts with the environment. In contrast, RL algorithms

make incremental updates to the policy online, while interacting with the

environment. Model-free RL algorithms leverage value functions to facilitate

trial-and-error learning. The state-value function, v⇡(s), is defined as the

expected return given the agent is currently in state s and acts according to a

policy ⇡. That is,

v⇡(s) = E⇡[Gt|St = s] = E⇡[Rt+1 + �v⇡(St+1)|St = s] = q⇡(s, a = ⇡(s))

The state-value function is useful for prediction and for ranking policies. An

optimal policy, denoted ⇡⇤, is one that maximizes v⇡(s) for all states. Formally,

⇡
⇤ is optimal if 8⇡2⇧,s2S v⇡⇤(s) � v⇡(s). The action-value function q⇡(s, a)

is useful in the control problem. The action-value function is defined as the

expected return given the agent is currently in state s, takes action a, and acts
11

according to policy ⇡ thereafter:

q⇡(s, a) = E⇡[Gt|St = s, At = a] = E⇡[Rt+1 + �v⇡(St+1)|St = s, At = a]

Classic RL algorithms estimate the optimal state-value (denoted v⇤) or the

optimal action-value (denoted q⇤) by maintaining a table with the estimated

value for each state or state-action pair, respectively. It follows that ⇡⇤ =

argmaxa q⇤(s, a). By interacting with environment, the values for the table are

updating using the temporal difference (TD) error. For example, Sarsa, which

uses TD(0) error, has the following update rule for estimating q⇤ ⇡ Q:

Q(St, At) � Q(St, At) + ↵[Rt+1 + �Q(St+1, At+1)�Q(St, At)]

2.3.1 Policy Gradient Methods

Often the state space of an MDP is too large to enumerate, so learning

an optimal policy using a tabular representation is not possible. Instead,

approximate solutions methods in RL use function approximation (e.g., linear

models, neural networks) to approximate the optimal policy. This is typically

done with parametric approximation of the action-value (i.e., q⇤ ⇡ q̂) or

of the optimal policy directly (i.e., ⇡⇤
⇡ ⇡✓). Both approaches use gradient

descent-based learning to make incremental model updates, so differentiable

models are required.

The latter approach describes policy gradient methods, which offer several

advantages over the former: the policy gradient theorem is a form of policy

improvement, updates to the policy are smooth and incremental, and they

extend naturally to continuous action spaces. Actor-critic algorithms are a type

of policy gradient method which learn two models: an actor ⇡✓ representing the

policy, and a critic v̂ (or q̂) representing the value function. In this thesis, we

use various actor-critic algorithms to learn policies represented by ReLU neural

networks. In Chapter 3, we show that ReLU networks are equivalent to oblique

decision trees, so small actor networks can be encoded as interpretable programs.

We briefly describe one such algorithm - proximal policy optimization (PPO)

[38]. PPO uses �-returns, G�
t , to make TD(�) updates to the policy and as the

12

target for v̂ (s). The surrogate loss objective (line 12 of Algorithm 1) clips the

estimated advantage to prevent the policy from changing drastically (hence

proximal policy), thereby improving the stability of the actor.

Algorithm 1 PPO Pseudo-code
1: Initialize network weights ✓,
2: for each episode k = 1, ... do

3: Experience: {S
k
t , A

k
t , R

k
t+1}

Tk�1
t=0 by acting according to ⇡✓

4: Compute: {v̂
k
 (st)}

Tk�1
t=0 , {G�,k

t }
Tk�1
t=0

5: if k mod K = 0 then

6: ✓
0
 � ✓, 0

 �

7: Compute Ât = G
�
t � v̂ (st) for each t, k in the entire batch, then

normalize.
8: for each E epochs do

9: Shuffle the batch, slice into N mini-batches
10: for each mini-batch do

11: l(✓0, 0) = -mean
h
⇣t(✓, ✓0,)

i
+ mean

h �
G
�
t � v̂ 0 (st)

�2 i

12: where ⇣t(✓, ✓
0
,) = min

h
⇡
✓
0 (at|st)

⇡✓(at|st)
Ât, clip

⇣
⇡
✓
0 (at|st)

⇡✓(at|st)
, 1� ✏, 1 + ✏

⌘
Ât

i

13: Update network weights ✓0, 0 using Adam with loss l(✓0, 0)
14: ✓ � ✓

0, �
0

2.4 Imitation Learning

Imitation learning is a form of supervised learning that involves minimizing

the error on a dataset of state-action pairs labelled by an expert, known as

the oracle. In this thesis and related works, the oracle is represented by a

neural network. The distribution of states is not independent and identically

distributed since they depend on the transition dynamics and the policy. This

is significant because distribution of states between the ‘learner’ policy and

oracle may differ. The ‘learner’ may find itself in a state unseen in the dataset,

which could be problematic. Dataset Aggregation (DAgger) [36] is an online

imitation learning algorithm that remedies this by rolling out the ‘learner’

model for some number of episodes, and then re-labelling the actions with the

optimal actions provided by the oracle. Each time the dataset is aggregated,

the student model is updated and the cycle continues. The pseudocode for

DAgger is given in Algorithm 2.
13

Algorithm 2 Imitation Learning with Dataset Aggregation (DAgger)
1: Input: POMDP E, neural policy ⇡N ,M,N

2: Initialize dataset D � ?
3: Initialize policy ⇡̂0 � ⇡N
4: for i = 1 to N do

5: Sample M trajectories Di � {(s, ⇡N (s)) ⇠ d
⇡̂i�1}

6: Aggregate dataset D � D [Di

7: Imitate oracle ⇡̂i � arg min⇡̂0
P

s2D ||⇡̂
0(s)� ⇡N (s)||

8: Output: ⇡̂
⇤
 � best_reward_policy(⇡̂1, ⇡̂2, ..., ⇡̂N)

2.5 Related Work

In programmatically interpretable reinforcement learning (PIRL) [46] one

encodes policies as a human-readable programs. Programmatic policies have

shown to be easier to understand [46] and formally verify [4]. They were

also shown to better generalize to unseen problems [18]. Most approaches to

PIRL encode policies as some kind of decision tree program (e.g., axis-aligned

decision trees, oblique decision trees, non-linear decision trees). Decision trees

are non-differentiable due to their discrete if-then-else structure, so updates

require training the policy from scratch by searching over the program space.

This is problematic because RL with function approximation makes online

updates using stochastic gradient descent. Although searching for a decision

tree program directly is possible on simple MDPs [13], most work in PIRL

overcomes this in one of two ways. The first way is to guide the program search

by way of imitation learning. This search is much simpler as it circumvents

many challenges present in RL (e.g., exploration-exploitation trade-off, delayed

feedback, learning from bootstrapped targets). The second approach to PIRL

is to use a differentiable approximation of a program or program space to

allow for gradient descent based learning. We review several oracle-guided and

oracle-free PIRL approaches.

2.5.1 Oracle-guided PIRL

Verifiable reinforcement learning through policy extraction (Viper) uses DAg-

ger-style imitation learning to induce axis-aligned decision trees to encode

14

policies [4]. Viper uses the samples from the dataset according to the ‘im-

portance’ of each state. A state’s importance is estimated using the oracle’s

action-value function, and calculated as l(s) = q̂�(s, ⇡✓(s))�mina02A q̂�(s, a0).

That is, states where the difference between taking the best and worst action

is big are given more attention. Although Viper programs can be trained

easily using Cart, axis-aligned trees are often not very expressive. This is

problematic as the programmatic policy may require thousands of nodes to

perform well or the program space lacks the capacity to represent the oracle.

Neurally directed program search (NDPS) [46] uses program synthesis with

Bayesian optimization to encode policies as programs. Like Viper, NDPS

uses DAgger to guide the search. The search only enumerates programs from

a small, dynamic neighborhood of program templates and parameters that

are known to perform well. The authors state that the algorithm is sensitive

to the initialization of this neighborhood. In the paper, NDPS is used to

synthesize programs with oblique decision nodes, which are of course more

expressive than Viper’s axis-aligned decision nodes. Every iteration involves

costly non-smooth optimization for each AST in the neighborhood of programs,

which severely limits NDPS to synthesizing very small programs.

A major concern with these methods is that one might not be able to

represent the teacher’s policy in the programmatic space. As a result, the

teacher might guide the search toward weak programmatic policies [32]. Propel

attempts to mitigate this issue by training neural policies that are not ‘too

different’ from the synthesized programs [45]. Unlike the previous methods

where the oracle is a fixed, pre-trained neural network policy, Propel trains

the oracle alongside the programmatic policy. Propel uses policy gradients

methods to train the neural policy; however, mirror descent is used to update

the policy in the constrained policy space. The constrained space is a mix

of the oracle’s actions and the programmatic policy’s actions, so Propel

only applies to continuous action spaces. The constrained oracle guides the

search (program synthesis or decision tree) for the programmatic policy using

DAgger. Sketch-SA is less likely to suffer from this representation gap

problem because it uses imitation learning to synthesize a sketch of a policy;
15

the policy is synthesized from the sketch by evaluating it directly in the

environment [26]. Another caveat with oracle-guided PIRL methods is that

they are suboptimal: instead of maximizing the RL objective, the objective is

to minimize the error on a dataset.

2.5.2 Oracle-free PIRL

Differentiable or ‘soft’ decision trees are smooth approximations of decision

trees, meaning they can be trained using gradient descent. Like oblique decision

trees, the decision nodes of soft decision trees consider linear combinations of

all input features. To make the tree differentiable, at each node the probability

of taking the right child node is �(P ·X + v), where � is the logistic sigmoid

function and P ·X + v is the decision node. The output of the tree is defined

as the weighted average of the leaf nodes, weighted by the inference path

probability. Silva et al. [39] use soft decision trees to learn a programmatic

policies using policy gradient methods. To improve interpretability, the authors

‘discretize’ the tree and transform it to an axis-aligned tree. Each decision

rule is simplified to Xi <
�v
Pi

, where i is the index of P with the largest value.

Unsurprisingly, this simplification worsens the performance on most domains.

Oracle-free programatically interpretable reinforcement learning (⇡-PRL)

[32] constructs a differentiable DSL by approximating if-then-else nodes with

the logistic sigmoid function. In doing so, ⇡-PRL leverages policy gradient

methods to train the programmatic policy directly, without the need of an

oracle. Once again, their DSL requires oblique decision nodes. Learning ⇡-

PRL programs requires iterative bilevel optimization, where updates to the

AST alternate between policy parameter optimization and policy architecture

optimization. Both types of updates maximize the surrogate objective used in

PPO (or other policy gradient algorithms). During policy parameter updates,

the upper-level program parameters (i.e., weights from sigmoid) are frozen and

the low-lever program parameters (i.e., coefficients in decision nodes and leaf

nodes) are optimized. For architecture optimization, the low-level program

parameters are frozen and the upper-level program parameters are optimized.

The model returns an action for a given state during training by evaluating
16

all nodes in the tree and averaging them according to the sigmoid functions.

Upon convergence, the tree is discretized by a top-down greedification of the

upper-level parameters. Finally, the low-level parameters are further optimized.

⇡-PRL does not suffer from the representation gap because policy gradient

algorithms are able to optimize the programmatic policy directly with gradient

ascent; however, its drawback is its exponential complexity for evaluating states

during training (it needs to evaluate all leaf nodes of the decision tree for every

decision during training). As a result, ⇡-PRL is only able to synthesize small

decision trees. However, compared to the other PIRL methods we surveyed,

⇡-PRL achieves compelling results in many complex MDPs.

17

Chapter 3

Oblique Trees From ReLU

Networks

In this chapter we present algorithms to induce oblique decision trees from

neural networks that use ReLU activation functions in their hidden layers. We

first introduce Oblique Trees from ReLU Neural Networks (OTR), a one-to-one

mapping from ReLU networks to oblique decision trees. In our presentation we

assume a single neuron in the output layer that uses either a Logistic function

(classification tasks) or a linear activation function (regression tasks). Later

we show how OTR generalizes to multi-class tasks where the network uses a

Softmax function in its output layer. Finally, we approximate ReLU networks

using oblique decision trees. First, by pruning OTR trees, and then using a

novel and computational efficient method we call Neurally Augmented Decision

Trees (AugTree).

3.1 Notation

We denote matrices with upper-case letters and scalar values with lower-case

letters. We consider fully-connected neural networks with m layers (1, · · · ,m),

where the first layer is given by the input values X and the m-th layer the output

of the network. For example, m = 3 for the network shown in Figure 3.1. Each

layer j has nj neurons (1, · · · , nj) where n1 = |X|. The parameters between

layers i and i+1 of the network are denoted by W
i
2 Rni+1⇥ni and B

i
2 Rni⇥1.

The k-th row vector of W i and B
i, denoted W

i
k and B

i
k, represent the weights

18

Neural Network Weights and Biases Inference Path

x1

x2

A2
1

A2
2

A2
3

A3
1

W 1 =

2

4
�2.7 �0.8
0.2 2.0
1.0 �0.1

3

5 , B1 =

2

4
�0.4
0.6
1.2

3

5

W 2 =
⇥
�2.0 �2.4 1.2

⇤
, B2 =

⇥
1.4

⇤

P 1 =

2

4
0 0
0 0
1.0 �0.1

3

5 , V 1 =

2

4
0
0
1.2

3

5

P 2 =
⇥
1.2 �0.12

⇤
, V 2 =

⇥
2.84

⇤

Z 02
1

Z 02
2

Z 02
3

Z 03
1

 0

 0

> 0

Z0-functions Z 02
1 = �2.7x1 � 0.8x2 � 0.4, Z 02

2 = 0.2x1 + 2.0x2 + 0.6
Z 02
3 = 1.0x1 � 0.1x2 + 1.2, Z 03

1 = 1.2x1 � 0.12x2 + 2.84

Figure 3.1: Neural network (left); set of weights and biases (W and B) of
the network and of the inference path for input X = [0.5 � 0.5]T of the tree
OTR induces (P and V) (middle); inference path for X (right). Each Z

0i
k -value

(bottom) is equal to its corresponding Z
i
k-value for the input X.

and the bias term of the k-th neuron of the (i+1)-th layer. Figure 3.1 shows an

example where n1 = 2 and n2 = 3. Thus, W 1
2 R3⇥2 and the first row vector

of W 1 ([�2.7 � 0.8]) and the first entry of B1 (�0.4) provide the weights and

bias of the first neuron in the model’s hidden layer. Let A
i
2 Rni⇥1 be the

values the neurons of the i-th layer, where A
1 = X and A

m is the output of

the model. A forward pass in the model computes the values of Ai = g(Zi),

where g(·) is an activation function and Z
i = W

i�1
·A

i�1 +B
i�1. We compute

the values of Ai in order of i = 2, · · · ,m.

We consider ReLU activation functions: ReLU(x) = max(0, x) [30] for all

neurons in hidden layers; we consider Logistic and linear activation functions

for neurons in the output layer for classification and regression problems,

respectively. OTR also works with Leaky ReLUs [25] in the hidden layers and

Softmax in the output layer; we discuss the use of such functions in Section 3.2.

3.2 Mapping ReLU Networks to Oblique Trees

OTR produces a one-to-one mapping from ReLU neural networks to oblique

decision trees by leveraging the metric of activation patterns of a neural

network [35], which considers the “active” and “inactive” neurons for a fixed

input. For ReLU functions, the k-th neuron of the i-th layer is active if Zi
k > 0

19

and is inactive otherwise.

A network with n neurons results in a tree with depth n, where each node

on a path from root to a leaf represents a different neuron and each path

represents an activation pattern. For such a network, there are 2n activation

patterns and hence 2n inference paths. Since the ReLU function is piece-wise

linear, the output of the network is a series of linear transformations, which

can be reduced to a single linear transformation. Once an activation pattern is

defined, the Z
i
k-values of the network are simply a linear transformation of the

input X [22]. OTR chooses the parameters P and v of each node such that

Z
i
k = P ·X + v for the node representing the k-th neuron of the i-th layer. For

neurons in the first layer, the nodes in the decision tree are simply the neurons

from the network, ...

Algorithm 3 Oblique Trees from ReLU Networks (OTR)
Require: Neural Network’s Weights W and biases B, problem type t (classifi-

cation or regression)
Ensure: Oblique tree T .
1: Initialize P as a set of matrices P

1
, P

2
, · · · , P

m�1, where P
i
2 Rni+1⇥n1 .

2: Initialize V as a set of matrices V
1
, V

2
, · · · , V

m�1, where V
i
2 Rni+1⇥1.

3: P
1
 W

1, V 1
 B

1

4: r Empty-Node
5: Induce-Oblique-Decision-Tree(r, t, 1, 1, W , B, P , V)
6: return r

Algorithms 3 and 4 show the pseudocode of OTR, which receives the weights

and biases of a network R and the problem type t (either binary classification

or regression); OTR returns an oblique decision tree that is equivalent to R.

OTR recursively processes all neurons of layer i before processing neurons of

layer i+ 1. It starts with the root of the tree, which represents the first neuron

of layer j = 2 (l = 1 and k = 1 in the pseudocode) and finishes with the output

neuron.

As illustrated in our example, OTR rewrites the functions Z of the network

in terms of the input values X, the resulting functions are denoted Z
0. Similarly

to how the Z-values are computed in terms of W and B, the Z
0-values are

computed in terms of matrices P and V . We define Z 0i
k = P

i�1
k ·X+V

i�1
k , where

20

Algorithm 4 Induce Oblique Decision Tree
Require: Node r, problem type t, layer l and neuron k, matrices W , B, P ,

V .
1: if l > 1 then

2: P
l
k W

l
k · P

l�1

3: V
l
k W

l
k · V

l�1 +B
l
k

4: if l = m� 1 then

5: if t is classification then

6: r (P l
k, V

l
k , left = 0, right = 1) # represents output neuron for

classification

7: if t is regression then

8: r (P l
k, V

l
k) # represents output neuron for regression

9: return

10: e Empty-Node, d Empty-Node
11: r (P l

k, V
l
k , left = e, right = d) # represents k-th neuron of layer l + 1

12: if k = nl then

13: k 1
14: l l + 1
15: else

16: k k + 1
17: Induce-Oblique-Decision-Tree(d, t, l, k, W , B, P , V)
18: P

l
k

⇥
0 · · · 0

⇤
, V l

k
⇥
0
⇤

19: Induce-Oblique-Decision-Tree(e, t, l, k, W , B, P , V)

P
i�1
k and V

i�1
k are the k-th row vector of P i�1 and V

i�1. Once the values of P i
k

and V
i
k are first computed (line 3 of Algorithm 3 or lines 2 and 3 of Algorithm 4),

Z
0i+1
k = Z

i+1
k . However, the value Z

0i+1
k of a node needs to be equal to A

i+1
k ,

so that the weights P
i+1 and V

i+1 of the next layer can be computed (in our

example P
1
k and V

1
k are such that A

i+1
k = Z

0i+1
k = P

i
k ·X + V

i
k). In line 18 of

Algorithm 4 the values of P i
k and V

i
k are set to zero, so that the Z

0i+1
k computed

from the V and P matrices passed as parameters to the recursive calls in

lines 19 and 17 are equal to A
i+1
k . The first recursive call treats the case where

A
i+1
k = Z

i+1
k and it recursively creates the right child of node r. The second

call treats the case where A
i+1
k = 0 and it recursively creates the left child of r.

The matrices P
1 and V

1 are equal to W
1 and B

1 (line 3) because the

functions Z
2 are defined in terms of X. Matrices P

l for l > 1 are computed in

line 2 with the operation W
l
k · P

l�1. This operation performs a weighted sum

of the values pj of the neurons q from the previous layer; the sum is weighted

21

by the value in W representing the connection between the neuron k being

processed with neuron q from the previous layer. In our example, this operation

was used to compute P
2 = W

2
1 · P

1 = [1.2 � 0.12]. Similarly, V l is computed

with the operation W
l
k · V

l�1 + B
l
k, which is a weighted sum of the bias terms

of the neurons from the previous layer, added to the bias term of the current

neuron. In our example, we computed V
2 = W

2
1 · V

1 + B
2
1 = 2.84. Once the

k-th row of P l and V
l are computed, we create the node representing the k-th

neuron of layer l + 1 with the parameters P
l
k and V

l
k (line 11).

For classification tasks, the left child of the node representing the output

neuron returns the label 0, while its right child returns the label 1 (line 6).

For regression tasks, the node representing the output neuron is a leaf and it

returns the value of Pm�1
1 ·X +V

m�1
1 as the prediction for X. As one can note,

for classification tasks, the tree has one extra level if one considers the nodes

with labels.

Theorem 1 Let W and B be the weights and biases of a fully-connected neural

network R whose hidden-layer units use ReLU activation functions and the

single unit of its output layer uses either a Logistic or a linear activation

function. The oblique decision tree T OTR induces with W and B is equivalent

to R, i.e., T and R produce the same output for any input X.

Proof. For a fixed input X, we prove that Z 0i
k = A

i
k, where Z 0i

k = P
i�1
k ·X+V

i�1
k

and A
i
k = ReLU(Zi

k) for all values of Z 0i
k encountered along the inference path

of X in T . If Z 0i
k = A

i
k for any i and k, the Z

0-value of the leaf node on the

inference path matches the output of R for a fixed X. Thus, both T and R

produce the same output for any fixed input X.

Our proof is by induction on the layer i. The base case considers i = 2, the

model’s first layer.

Z
2
k = W

1
k ·X +B

1
k (definition of Z2)

= P
1
k ·X + V

1
k (line 3 of Algorithm 3)

During inference, if P 1
k ·X + V

1
k 0, we follow the left child of the node with

parameters P 1
k and V

1
k . In this case, P 1

k is set to a vector of zeros and V
1
k is set

22

to zero (line 18 of Algorithm 4), thus P 1
k ·X +V

1
k = 0. If P 1

k ·X +V
1
k > 0, then

we follow the right child and P
1
k ·X + V

1
k = W

1
k ·X +B

1
k. Therefore, Z 02

k = A
2
k,

for any k. The inductive hypothesis assumes that A
i�1
k = P

i�2
k ·X + V

i�2
k .

For the inductive step we have the following.

Z
0i
k = P

i�1
k ·X + V

i�1
k (3.1)

= (W i�1
k · P

i�2
k) ·X +W

i�1
k · V

i�2
k +B

i�1
k (3.2)

= W
i�1
k (P i�2

k ·X + V
i�2
k) + B

i�1
k (3.3)

= W
i�1
k A

i�1
k +B

i�1
k (3.4)

= Z
i
k (3.5)

Step 3.1 uses the definition of Z 0i
k , while step 3.2 is due to the computation

in lines 2 and 3 of Algorithm 4. Step 3.4 uses the inductive hypothesis and

step 3.5 the definition of Zi
k.

We consider the two possible cases for Z
i
k:

1. Z
i
k 0: OTR sets P

i�1
k and V

i�1
k to zeros (line 18 of Algorithm 4) so

Z
0i
k = Z

i
k = A

i
k = 0.

2. Z
i
k > 0: we have from the derivation above that Z 0i

k = Z
i
k = A

i
k.

Thus, Z 0i
k = A

i
k.

The parameters Pm�1
1 and V

m�1
1 of leaf nodes are never set to zero because

line 18 of Algorithm 4 is not reached for them. Therefore, Z
0m
1 = Z

m
1 =

P
m�1
1 ·X + V

m�1
1 . In regression tasks, T returns the value Z

0m
1 = Z

m
1 of the

leaf node as its prediction (line 8). In classification tasks, the leaf node with

label 0 is reached if Pm�1
1 ·X + V

m�1
1 0 for the node representing the output

neuron because g(z) 0.5 if and only if z 0 for the Logistic function g; the

leaf node with label 1 is reached otherwise. Therefore, T and R produce the

same output for a fixed input X. ⇤

3.2.1 Example

Let us consider the network R in Figure 3.1. OTR induces an oblique decision

tree T that is equivalent to R (the value of the leaf node on the inference
23

path for fixed values of x1 and x2 is equal to the output of R for the same

inputs). Figure 3.1 shows the inference path (right-hand side) for x1 = 0.5 and

x2 = �0.5 of the tree OTR induces from R. Each node on an inference path

of T defines a function Z
0i
k of the input values that matches the value of Zi

k

of R for a fixed input (we omit the parameters of the functions to ease the

notation). The Z
0-functions of nodes representing neurons in layer i = 2 of R

are equal to R’s Z-functions because Z is already defined in terms of the input.

Here, Z 02
1 = �2.7x1 � 0.8x2 � 0.4 = Z

2
1 , Z 02

2 = 0.2x1 + 2.0x2 � 0.6 = Z
2
2 , and

Z
02
3 = 1.0x1 � 0.1x2 + 1.2 = Z

2
3 . The value of Z3

1 is computed in R according

to the output values of the neurons in layer i = 2. OTR defines Z
03
1 = Z

3
1 in

terms of x1 and x2 as follows.

We define matrices P 1 and V
1 where the k-th row of P 1 defines the weights

of the k-th neuron of layer 2 in terms of x1 and x2. Similarly, the k-th entry

of V
1 defines the bias term of the k-th neuron when the value the neuron

produces is written in terms of x1 and x2. In this example, for fixed x1 = 0.5

and x2 = �0.5, P 1 and V
1 are W

1 and B
1 with the first two rows filled with

zeros. This is because the first two neurons of layer i = 2 are inactive for x1

and x2. The weights of Z 03
1 are given by P

2
1 , where P

2
1 = W

2
1 · P

1 and the bias

term by V
2
1 , where V

2
1 = W

2
1 · V

1 + B
2
1 (Figure 3.1 shows the matrices P

2 and

V
2). As can be verified, Z 03

1 = Z
3
1 for x1 = 0.5 and x2 = �0.5. For the decision

tree: Z
03
1 = 1.2 · 0.5� 0.12 · (�0.5) + 2.84 = 3.5. For the neural network:

Z
2 =

2

4
�2.7 �0.8
0.2 2.0
1.0 �0.1

3

5 ·

0.5
�0.5

�
+

2

4
�0.4
0.6
1.2

3

5 =

2

4
�1.35
�0.30
1.75

3

5 , A
2 =

2

4
0
0

1.75

3

5

Z
3 =

⇥
�2.0 �2.4 1.2

⇤
·

2

4
0
0

1.75

3

5+
⇥
1.4

⇤
= 3.5

If the output neuron uses a linear function, then the output of network A
3
1 =

Z
3
1 = Z

03
1 ; if it uses a Logistic function g, then T predicts class 1 because

Z
03
1 = 3.5 and g(x) > 0.5 if and only if x > 0 for the Logistic function; it would

predict class 0 if Z 03
1 0.

24

3.2.2 Extensions to OTR

Densely-connected Networks. OTR is also able to induce oblique decision

trees that are equivalent to densely connected networks [17]. In densely

connected networks, every neuron in layer i receives as input the output of

layer i � 1 and additionally the network input, X. The values of P l
k and V

l
k

must be appended to the matrices P
i and V

i for i > l because the output of

the k-th neuron of layer l is used as input in all the following layers.

Corollary 1 Let W and B be the weights and biases of a densely connected

neural network R whose hidden-layer units use ReLU activation functions and

the single unit of its output layer uses either a Logistic or a linear activation

function. The oblique decision tree T OTR induces with W and B is equivalent

to R, i.e., T and R produce the same output for any input X.

Leaky ReLU. OTR can be modified to handle Leaky ReLU functions:

LReLU(x) = max(x, a · x), where 0 < a < 1. Similarly to ReLUs, the right

child of a node handles the A
i
k = Z

i
k case and the left child handles the

A
i
k = a ·Z

i
k case. Instead of setting the values of P l

k and V
l
k to zero in line 18 of

Algorithm 4, OTR assigns the values of a(W l
k ·P

l�1) to P
l
k and a(W l

k ·V
l�1+B

l
k)

to V
l
k .

Other Activation Functions for Output Layer OTR is compatible with

ReLU networks with any activation function for the output layer. For regression

problems, any output activation function g (e.g., identity function, Poisson link

function, hyperbolic tangent) is suitable since it can be applied to the output

of the induced tree. In the following two paragraphs, we discuss extensions to

the binary classification problem.

Multi-Class Tasks. For multi-class tasks OTR can handle networks with

multiple neurons in the output layer and Softmax functions. This is achieved

by implementing, as part of the tree, a maximum function for the Z
0-values

of the output neurons. For example, a node s checks if Z 0m�1
1 � Z

0m�1
2 0 (is

25

output 2 larger than output 1?) and s’s left child checks Z 0m�1
2 �Z

0m�1
3 0 (is

output 3 larger than output 2?) while its right child checks Z 0m�1
1 �Z

0m�1
3 0,

and so on. For a classification problem with c classes, OTR maps a ReLU

network with n hidden neurons to an oblique tree of depth n+ c� 1.

Multi-Label Tasks. For multi-label classification tasks, we train one model

for each label so our results are directly comparable with those of previous

work [22].

Sparse Oblique Trees. Axis-aligned decision trees tend to be easier to

interpret than oblique trees because each axis-aligned node considers a single

feature (e.g., xi b). By contrast, each node in an oblique tree considers all

features. In sparse oblique trees some of the weights pi related to xi are set

to zero, thus increasing interpretability [12]. OTR allows for the induction of

sparse trees if one uses L1-regularization while training the underlying neural

network [42]. L1 regularization is effective in inducing sparse oblique trees

with OTR if the network has a single hidden layer. Since L1 regularization is

able to drive some of the weights of the model toward zero, nodes representing

neurons in the model’s first hidden layer will have some of its pi-values also

set to zero (because P
1 = W

1). Nodes representing neurons in layers i > 2 are

less likely to be sparse as they depend on a combination of w-values being set

to zero or adding up to zero in the operation W
i
k · P

i�1.

3.2.3 Synthesizing Programmatic Policies with OTR

In the context of PIRL, OTR offers an effective way to learn programmatic

policies. One must simply train a small ReLU network policy using any policy

gradient algorithm, and map it to a small program encoded as an oblique

decision tree. Previous methods that encode policies as oblique decision trees

are much more complicated - they require search over a non-smooth program

space or use a continuous approximation of the program space and then

discretize the resulting program. Furthermore, due to its annealing schedule,

LCN is not compatible for online learning problems like RL.

26

We note that other works (e.g., [3], [15], [22], [28], [50]) have established

that ReLU neural networks produce piece-wise linear functions. However, to

our knowledge, the LCN paper was the first to make the connection between

ReLU networks and oblique decision trees. Compared to LCN, OTR offers a

much simpler, fully differentiable training procedure at the expense of slightly

more complex decision trees (i.e., in classification OTR trees require additional

depth to account for the output layer, and in regression OTR’s leaf nodes are

linear models). Nonetheless, we are the first to make the connection to PIRL

to obtain a simple and effective method for synthesizing programmatic policies.

As long as the DSL used to synthesize programmatic policies only accounts

for if-then-else structures and affine transformations of the input values, OTR

supersedes most previous PIRL methods because it strikes a good balance

between simplicity and effectiveness, as we show in the empirical section of this

thesis. Previous PIRL methods such as NDPS, Propel, and SketchSA are still

needed in cases of more complex DSLs, such as those including loops. ⇡-PRL

is still the method of choice if the problem can be solved with small programs

and one is interested in searching for both the program structure as well as

the parameters of the program; the structure of the program OTR induces is

defined by the architecture of the ReLU neural network encoding the policy.

3.3 Approximating ReLU Networks with Oblique

Trees

3.3.1 Pruning OTR Trees

Recent work showed that ReLU networks realize surprisingly few activation

patterns compared to the maximum possible [15]. Lee and Jaakkola [22] also

observed this phenomenon in their LCN experiments. Activation patterns that

are not encountered (or rarely encountered) on a sufficiently large data set

can possibly be removed with little to no effect on the model’s performance.

For OTR trees this translates to pruning entire inference paths, which can

significantly reduce the complexity of the learned model and improve its inter-

pretability. We propose \OTR, an approximation to OTR in which we prune

27

branches that are not reached while executing the model in the environment for

some number of episodes or on the training dataset. We also propose \OTR(k),

where only the k most frequently encountered inference paths are kept and

all others are removed. As we observe in our experiments, for some problems,

training a larger OTR model and then approximating it using \OTR is easier

than training an small OTR model directly.

3.3.2 Neurally Augmented Decision Trees

We present Neurally Augmented Decision Trees (AugTree), an imitation

learning algorithm that augments the input space with the hidden units of the

oracle, which is represented by a ReLU neural network. AugTree leverages

the computationally efficient training procedures for axis-aligned tees (i.e.,

CART [8], linear model trees [19]) to implicitly construct oblique decision

trees. In the PIRL setting, we use DAgger to guide the imitation learning

search for the programmatic policy. Since the oracle’s hidden units have been

optimized for success in the given problem, we hypothesize that they contain

structured pieces of useful information. This information is readily available

by querying the oracle and may improve the capacity to approximate (i.e.,

imitate) the neural network, thus reducing the representation gap between the

programmatic policy and the oracle.

Consider a dataset D = {(X(t)
, y

(t))}kt=1 where each X
(t) = [x1, x2, · · · , xd]T

and an oracle represented by a ReLU neural network with m layers and ni

neurons in each layer i 2 {1, 2, · · · ,m}. Let Z
i
j denote the value of neuron j

in the i
th layer before applying the ReLU activation function. AugTree uses

the hidden units from the oracle’s first hidden layer to augment the features

from X = [x1, x2, · · · , xd]T to X̃ = [x1, x2, · · · , xd, Z
1
1 , Z

1
2 , · · · , Z

1
n1
]T . Only the

hidden units from the first hidden layer are considered since they are written

in terms of the input features by default. Whenever the oracle is queried, Z1

is calculated intermediately in the forward pass of the network, so there is no

computational cost to access this information in an imitation learning setting.

Augmenting the input space this way, we learn a mapping from X̃toY . Like

OTR, AugTree applies to both discrete and continuous output problem by
28

learning a mapping. It follows that AugTree induces oblique decision trees

since nodes are of the form Z
i
j c or xi c, with the latter being a specific

case of an oblique decision node. The time complexity for training the decision

tree using increases from O(dk log2k) to O((d+ n1)k log2k).

AugTree provides a very efficient way to induce oblique decision trees

without actually needing to optimize the weights in the decision nodes. Since

OTR proves a one-to-one correspondence between ReLU networks and oblique

trees, AugTree can be seen as an approximation of ReLU networks. Similar

to LCN, AugTree uses the hidden units from the underlying ReLU network

in the decision nodes, and the leaf nodes are trained separately (LCN uses g�).

OTR maps the entire requires a depth of n1 + · · ·+ nm + c� 1. AugTree’s

maximal depth is set by the user so, the approximated tree can potentially

map to shallower trees. For continuous output tasks, if AugTree uses Cart

to train the model, the leaf nodes in the resulting oblique tree are constants,

like in LCN. If one uses linear model trees, the result would be an oblique

decision tree with linear models in the leaf nodes, like in OTR.

AugTree also offers advantages over \OTR and \OTR(k). The latter

approaches can only prune branches of the OTR tree - there is no freedom

to adjust the decision node parameters, leaf node parameters, or restructure

the tree by changing the order of nodes. AugTree on the other hand, has

more flexibility: it fits new bias terms in decision nodes, fits its own models in

the leaf nodes, and freely decides the how to arrange the neurons in a decision

tree. This is an important distinction since AugTree makes it possible to

aggregate similar leaf nodes together in a more principled and automatic than

what pruning allows. For example, a pruned OTR tree may reroute certain

inputs X to leaf nodes that are very different to the one from the original

inference path.

Variants to AugTree

There are several variants to AugTree that one might consider. One may

use OTR to write the neurons from other layers in terms of input; however,

this would require additional computational cost and the feature space would

29

be augmented by n1 + 2n2+···+nm new features. Furthermore, one might prefer

to learn a mapping from {Z
1
1 , Z

1
2 , · · · , Z

1
N1
} to the output. If n1 < d this is

actually faster than training on X yet likely to result in a more expressive

model. In addition, one could potentially augment the feature space with Z
1

from networks that use activation functions which are approximately linear

(e.g., the hyperbolic tangent, sigmoid, LeakyReLU).

30

Chapter 4

Experimental Results

We performed experiments on reinforcement learning and supervised learning

problems. In the RL setting, we considered both continuous and discrete action

spaces for episodic MDPs. In the supervised learning setting, we consider

both regression and classification problems. All reinforcement learning and

supervised learning experiments for OTR were completed in approximately

504 hours and 2 hours, respectively, on single CPUs. Our RL models were

implemented in the Stable Baselines3 repository [34], which is available under

an MIT license. Our supervised learning models were implemented in Lee and

Jaakkola’s repository1 [22].

4.1 RL for Continuous Action Spaces

We begin by training programmatic policies on eight continuous action control

problems from OpenAI Gym [11] and MuJoCo [43]: Reacher, Walker2D, Hopper,

HalfCheetah (HC), Ant, Swimmer, BipedalWalker (BW), and Pendulum. With

the exception of Pendulum, the action spaces are multi-dimensional, so each

action dimension has a linear model in the leaf nodes. We use OTR to train

depth-six oblique decision tree policies so our results are comparable to those

of ⇡-PRL, which also uses depth-six trees. We also train oblique trees of depth

thirty-two, and use \OTR to reduce their size to demonstrate that our methods

can scale to produce much larger trees which can easily be simplified.

Since we are interested in finding a programmatic policy representation and
1https://github.com/guanghelee/iclr20-lcn

31

https://github.com/guanghelee/iclr20-lcn

E ::= C | if B then E else E

B ::= P ·X + v 0

C ::= P ·X + v

Figure 4.1: DSL for affine policies and regression ODTs.

not a programmatic value function, we use actor-critic methods to train small

neural network policies and arbitrarily sized value networks, and apply OTR

on the policy network only. We run PPO [38] for 3 million environment steps

on BipedalWalker and Swimmer, SAC [14] for 3 million steps on Pendulum

and Reacher, and SAC for 4 million steps on Walker2D, Hopper, HC, and Ant.

We ‘squeeze’ the actions the model produces by using a hyperbolic tangent

function in the leaf nodes for SAC policies.

We use hyperparameter values that are similar to the default values of

known open-source implementations. For BW, we use a learning rate of 0.0003,

minibatch size of 64, 2048 steps between updates, GAE parameter of 0.95, 10

epochs, clip factor of 0.2, and discount factor of 0.99, which are the default

hyperparameters in Stable-Baselines3. For swimmer, we used a learning rate

of 0.0002, minibatch size of 256, 1024 steps between updates, GAE parameter

of 0.98, 10 epochs, clip factor of 0.2, and discount factor of 0.9999 - which

are similar to the PPO parameters in Baselines3 Zoo [33]. For Pendulum,

Reacher, HC, Hopper, Walker2d and Ant we use SAC with hyperparameters

which are the default values for TD3 in Stable-Baselines3 and very similar

to those used in ⇡-PRLẆe used a learning rate of 0.001, minibatch size of

100, buffer size of 1000000, 10000 learning starts, and added Gaussian noise

N (0, 0.1) to actions. We use ReLU activation functions and critic networks

with two hidden layers of size 256 each on all domains except Walker2d, for

which we used the LeakyReLU.

We use NDPS [46], ⇡-PRL [32] and Viper [4], and a modified version

of Viper that uses linear model trees [19] (LM-Viper) as baselines. NDPS

and ⇡-PRL use the language from Figure 4.5, Viper and LM-Viper produce

axis-aligned trees. We use NDPS and not Propel [45] because previous work

32

noted that the former performs better than the latter on the OpenAI Gym and

Mujoco domains [32]. Recall that Viper LM-Viper and NDPS are imitation

learning methods whereas ⇡-PRL and OTR use policy gradient methods to

learn a policy directly. For NDPS, instead of searching for an oblique decision

tree policies via program synthesis, which is computationally expensive, we use

⇡-PRL (OTR works too) to imitate the oracle using DAgger.

We perform ten independent runs of each system, except NDPS and ⇡-

PRLwhich are run three times, and evaluate the best policy from each run

for 100 consecutive episodes. The best policy was found during training

by evaluating the policy every 10, 000 steps for 10 episodes. Interpretable

models are typically static so that they can be reasoned before being put into

production. As such, one should deploy the best suited model, so evaluating

the best policy is a reasonable metric. Furthermore, the imitation learning

baselines we consider also return the best policy by design.

The mean and standard deviation across the runs are reported in Table 4.1.

The best average result for each domain is highlighted in bold. OTR is capable

of solving a variety of problems using small actor networks, and outperforms

oracle-guided approaches (Viper, LM-Viper, and NDPS) by a large margin

in Walker2D, Hopper, HC, Swimmer, and Pedulum, and is overall competitive

with ⇡-PRL. OTR has better average reward than ⇡-PRL in five of the eight

domains tested, but ⇡-PRL is a close competitor in all eight domains. ⇡-PRL

outperforms OTR in HC and Ant. In contrast with ⇡-PRL, OTR is able to

scale and train longer programmatic policies. \OTR policies trained with 32

neurons perform well across all domains with the exception of Swimmer. The

pruned tree depths range from 8 to 12, which is a major reduction in size from

the original depth of 32. These results show that OTR can synthesize longer

and more powerful policies, at the cost of possibly having less interpretable

policies.

Example of an Interpretable Policy

Figure 4.2 shows an OTR policy trained with a single hidden neuron on the

mountain car problem. The goal of mountain car is to reach the top of the

33

Table 4.1: Reward and standard deviation of depth-6 policies over 100 episodes,
averaged over ten (three for NDPS and ⇡-PRL) independent runs of each
algorithm. The last column shows the performance for depth-32 \OTR policies.
In brackets is the estimated pruned depth, log2a (a is the number of activation
patterns realized). The best average for each domain is highlighted in bold.
Environment Viper LM-Viper NDPS ⇡-PRL OTR \OTR

Reacher �6.3± 0.3 �4.3± 0.2 �5.8± 0.1 �5.1± 0.1 �4.9± 0.4 �4.0± 0.1 (9.0)

Walker2d 710.9± 186.7 2847.2± 1168.8 3671.7± 1196.2 5178.0± 16.3 4829.4± 338.9 5339.4± 454.8 (9.5)

Hopper 618.6± 196.8 2139.2± 896.5 1646.3± 588.2 3535.3± 23.3 3641.5± 126.9 3300.0± 703.1 (9.6)

HC 1764.2± 992.2 3429.4± 1477.0 3569.3± 50.2 10772.7± 60.2 7317.3± 683.7 10307.9± 1320.6 (11.2)

Ant 2080.3± 637.9 4379.8± 1052.4 4874.7± 188.9 5679.7± 844.3 3504.7± 904.7 5392.5± 875.6 (10.6)

Swimmer 335.1± 62.9 333.7± 65.0 334.7± 0.9 340.3± 31.4 365.9± 1.1 340.7± 62.4 (7.9)

BW 203.9± 52.5 278.4± 21.8 273.0± 12.3 274.3± 18.3 294.0± 12.6 284.8± 21.0 (12.6)

Pendulum �196.3± 21.8 �267.0± 47.7 �146.7± 4.5 �144.7± 3.3 �138.3± 1.0 �135.0± 1.2 (8.4)

mountain on located to the right. The state is defined by the car’s position, x,

and its velocity, vx. The one-dimensional continuous action is a real number in

[-1, 1] and represents the directional force applied to the car. The car starts

near the bottom of a valley, and cannot reach the goal by simply moving to

the right: it must first gain enough potential energy by moving to the left

before moving to the right. We interpret the program as follows. We notice

that the velocity term dominates the other terms in the boolean expression,

so we simplify the node to vx 0. Similarly, the velocity term dominates

the equation in the “False”, and so max(5117vx, 1.0) ⇡ 1.0. As such, we can

simplify the policy and interpret it as follows: if the car is moving to the right,

keep moving to the right. Otherwise, move to the left.

if �2.2� 3.8x+ 114.3vx 0 then

return �6.1
else

return �102.3�169.8x+5116.5vx

=)

if vx 0 then

return �1.0
else

return 1.0

Figure 4.2: Original (left) and simplified (right) OTR programmatic policies
for Mountain Car Continuous. These policies achieve an average reward of 92.8
and 92.2, respectively (90 is considered solved).

4.1.1 PID Controller Policies

Proportional-integral-derivative (PID) controllers have long been used to sta-

bilize control systems due to their robustness and stability guarantees. More

recently, discretized PID controllers have been used in programatically in-

34

terpretable RL [32], [45], [46] where the proportional (P), integral (I), and

derivative (D) are approximated as follows:

P = (✏� s), I = fold(+, ✏� h), D = peek(h,�1)� s

where s 2 Rd is the current state of the environment, ✏ 2 Rd is the known fixed

target for which the system is stable, h is a history of the previous k states

(we use k = 5), fold is a higher-order function which sums the input sequence

along its dimension, and peek(h, -1) returns the last state in h.

This DSL for PID policies (Figure 4.3) uses linear combinations of features

in the decision nodes. As ReLU neural networks are capable of tuning PID

parameters, denoted ✓P , ✓I and ✓D, we can apply OTR to induce a PID con-

troller policy. However, terminal nodes of OTR programs are linear functions

of the input (e.g., ✓P = ✓P (s) = M · X + v), which is more expressive than

the given DSL in other works where the PID parameters are constants. One

could perhaps use LCN since the leaf nodes are constant instead of linear. We

instead use aggressive L1 regularization on the network’s output weights so

that the PID parameters are as close as possible to the common DSL.

E ::= C | if B then E else E

B ::= M ·X + v 0

C ::= ✓P · P + ✓I · I + ✓D ·D

Figure 4.3: DSL for PID Controller Policies

We use OTR to train a PID policy on the pendulum problem from OpenAI

Gym. The state is given by the vector s = [x = cos(!), y = sin(!), !̇], where

! is the angle relative to the upright position and !̇ is the angular velocity.

The objective is to balance the pendulum upright by applying a leftward or

rightward torque, so the stable point is ✏ = [1, 0, 0]. We use DDPG [23] to

train the PID controller, and then we apply OTR on the actor network to

induce the PID controller policy. The actor network consists of a single hidden

35

neuron and nine output neurons, three for each ✓P , ✓I and ✓D. We used L1

regularization with ↵ = 2.5 for the weights in the output layer.

Figure 4.4 shows the resulting policy, which achieves an average reward

of -162.6 over 1000 consecutive episodes. Notice that the L1 regularization

is effective in eliminating the state dependence on the ✓P and ✓D parameters.

Verma et al. report scores of -187.7 for Propel and -435.7 for NDPS.

if 7.78� 15.7x� 21.7y � 8.48!̇ 0 then

return [3.15, 3.24, 0.65] ·P + [0.12, 0.52, 0.04] · I + [10.94, 11.89, 0.13] ·D
else

return [3.15, 3.24, 0.65] ·P + ✓I · I + [10.94, 11.89, 0.13] ·D

where ✓I = [�0.25 + 0.75x+ 1.04y + 0.41!̇, 0.52, 0.10� 0.13x� 0.17y � 0.07!̇]

Figure 4.4: OTR PID controller policy for Pendulum. This policy achieves an
average reward of -162.6 over 1000 consecutive episodes.

4.2 RL with Discrete Action Spaces

E ::= C | if B then E else E

B ::= P ·X + v 0

C ::= a 2 A

Figure 4.5: DSL for discrete output oblique decision trees.

We evaluate our algorithms for inducing oblique decision tree policies on

lunar lander, a discrete action environment from OpenAI Gym. The goal of the

lunar lander task is to safely land the space ship on a landing pad by taking

one of four actions: do nothing (0), activate the left engine (1), activate the

main engine (2), or activate the right engine (3). The state is given by an

eight-dimensional vector consisting of six continuous variables representing the

horizontal coordinate x, vertical coordinate y, horizontal velocity vx, vertical

velocity vy, angle ✓, and angular velocity v✓, and two binary variables cL and

cR which equal 1 if the left and right legs have contact, respectively. The

36

problem is considered solved after achieving an average return above 200 over

100 consecutive episodes.

We trained ReLU actor networks with two hidden units using PPO for

2 million time steps and mapped the policy to an oblique tree using OTR.

Averaged over five independent trials, the resulting depth-five 2 oblique decision

tree programs achieved a return of 269.0±16.6 over 100 episodes. Differentiable

decision tree approaches to PIRL such as SDT and CDT [39] were unable to

solve this problem using policy gradient methods. Before and after discretizing

the depth-five trees, SDT achieved an average return of 97.8 ± 10.5 and

�88.0± 20.4, respectively. Similarly, CDT achieved a score of approximately

100 for trees with depths ranging from four and six.

For this reason we only use Viper (axis-aligned trees) as a baseline and

compare it against AugTree, which is also an oracle-guided approach. We

use DAgger with fifty rollouts and twenty-five episodes per rollout for both

methods. Furthermore, we assess the robustness of AugTree by augmenting

the policy space with layer-one hidden units from oracle networks of various

architectures, denoted N , ranging from small and shallow to large and deep.

Since the hidden units from the critic network are not used, we fix its archi-

tecture to two hidden layers of size 128. Figure 4.6 shows the performance of

both methods (averaged over fifteen independent trials) for various tree depths

when guided by different oracles.

AugTree was able to solve the problem with trees of depth two, which

is the minimum depth to account for all four actions. With depth-three

trees, AugTree was on par with the oracle’s performance. These results

were consistent among all four oracle networks architectures. Interestingly,

augmenting the input space with the layer-one hidden units from deep, multi-

layer oracles networks was enough for this problem. Viper required trees of

depth eight to solve the problem, and depth-ten trees to perform similarly to

the oracle. It is clear that axis-aligned trees require much deeper trees than

their oblique counterparts, which can actually hinder interpretability according

to certain metrics [13].
22 hidden units + 4 units in output layer - 1 = 5

37

Figure 4.6: Performance of AugTree (blue), Viper (orange) and NDPS(red)
for various tree depths on Lunar Lander. Average return and standard deviation
across fifteen runs.

In Figure 4.7 we present a policy learned using AugTree. The policy was

simplified a posteriori by retraining the left and right decision nodes using

linear discriminant analysis with L1 regularization. The original AugTree

policy achieves an average reward of 249.1 while the simplified policy achieves

an average reward of 246.8. The decision node of left child can be interpreted

as follows: if the ship’s downward velocity is more than half of its vertical

position, fire the main engine. Otherwise, fire the the left engine. The right

decision node turns off the engine if either leg has contact so that the ship

can come to rest. If neither leg has contact, the right engine is activated. The

actions to fire the left and right engines are on different branches of this small

tree, so the root node perhaps considers the craft’s horizontal position.

38

if �0.09x+ 0.12y � 0.12vx + 0.27vy + 0.22! + 0.18!̇ + 0.22cL + 0.20cR 0 then

if 0.45y + vy �0.02 then

return 2
else

return 1
else

if cL + cR > 0 then

return 0
else

return 3

Figure 4.7: A simplified AugTree policy for lunar lander. This policy averages
a return of 246.8.

4.3 Supervised Learning

In order to compare OTR with LCN, we evaluate OTR on the five supervised

learning problems from the MoleculeNet benchmark [49] LCN was evaluated

on: Bace, HIV, SIDER, Tox21, PDBbind. Each instance in all five problems are

described by 2,048 binary features. The first four tasks are classification tasks

and the last one a regression task. Bace and HIV are binary classification tasks,

SIDER has 27 binary outputs and Tox21 has 12 binary outputs. Our empirical

methodology for supervised learning tasks is identical to that used in the LCN

original paper [22], including the training, validation, and test splits, so that

our results are directly comparable to theirs. We present the performance of

the classifiers in terms of area under the curve (AUC) for classification tasks

and root mean squared error (RMSE) for the regression task. We train one

model for each label in the multi-label tasks (like LCN does) and present the

average results for all labels.

We use as baselines the axis-aligned trees Cart induces [7] as well as the

oblique trees HHCART [48], TAO [12], LCN [22] induce. The TAO authors

did not consider regression trees in their study, so we do not use TAO on the

PDBbind domain. The LCN authors also introduced variants of the LCN

model, which we do not include in our experiments because they were not

proven to be equivalent to oblique trees. While all algorithms tested might

perform better if used in an ensemble [9], [10], we focus on evaluating single-tree
39

Table 4.2: Performance of different methods for training oblique trees on
supervised tasks. The best average is highlighted in bold.

Algorithm Bace (AUC) HIV (AUC) SIDER (AUC) Tox21 (AUC) PDBbind (RMSE)

Cart 0.652 ± 0.024 0.544 ± 0.009 0.570 ± 0.010 0.651 ± 0.005 1.573 ± 0.000

Hhcart 0.545 ± 0.016 0.636 ± 0.000 0.570 ± 0.009 0.638 ± 0.007 1.530 ± 0.000

Tao 0.734 ± 0.000 0.627 ± 0.000 0.577 ± 0.004 0.676 ± 0.003 -

Lcn 0.839 ± 0.013 0.728 ± 0.013 0.624 ± 0.044 0.781 ± 0.017 1.508 ± 0.017

OTR 0.815 ± 0.017 0.741 ± 0.019 0.656 ± 0.088 0.796 ± 0.071 1.467 ± 0.030

models because ensembles are considered black boxes [47].

We trained fully-connected neural networks with two hidden layers with 8

neurons in each layer. The output layer contained either one neuron with a

linear function for the regression task or one neuron with a Logistic function

for the classification tasks. For multi-class tasks we trained one model for

each label, so we are consistent with previous work [22]. All our models had

approximately 16K parameters for all domains. We followed the procedure

used in the original LCN experiments where the architectures of the densely

connected models were tuned for each domain [17]. Namely, the number of

parameters of the LCN models range from 43K (HIV) to 5.8M (PDBbind).

Table 4.2 presents the results. OTR’s oblique trees are far superior to

the axis-aligned trees Cart induces, which is expected as oblique trees tend

to encode better models than axis-aligned trees at the cost of reduced inter-

pretability. Both LCN and OTR, the two neural-based methods, substantially

outperform the oblique trees HHCART and TAO induce, in all domains

evaluated. Despite using a simpler training procedure (equivalent to that of

training a fully-connected ReLU neural network) and models with many fewer

trainable parameters, OTR is competitive with LCN in all domains tested.

Training Sparse Models. We also trained two neural networks with a single

hidden layer with 16 neurons for the Bace problem. For one of the models

we used L1 regularization with a coefficient of 0.00001; the other model did

not use regularization. Both models were trained for 100 epochs and learning

rate of 0.1. Both regularized and non-regularized models achieved an average

AUC value of 0.814 over 10 seeds. The regularized model had approximately

40% of its weights smaller than 10�5 whereas the non-regularized models had

40

fewer than 1% of weights smaller than 10�5. If these small weights can be

ignored, the regularized model may significantly improve the interpretability of

the learned model.

41

Chapter 5

Conclusion

In this dissertation, we presented an algorithm for mapping neural networks

trained with back-propagation that use ReLU activation functions to oblique

decision trees. Furthermore, we showed how hidden units from ReLU networks

can be used to augment input spaces and implicitly train oblique decision

trees. Both of our methods require significantly less computational cost than

other methods to induce oblique decision trees. Oblique decision trees can

provide concise and interpretable solutions to complex problems. Our work

is applicable to a variety of tasks including supervised learning (regression

and classification), reinforcement learning (discrete and continuous control),

and PID controller tuning. We focused on PIRL since current approaches for

inducing interpretable programs are quite complex. The experimental results

demonstrate that OTR and AugTree are competitive with many current

approaches to programmatically interpretable reinforcement learning while

being significantly more scalable and easier to implement.

It would be interesting to couple AugTree with Propelas this may bridge

the representation gap between neural networks and programmatic policies

even further. Augmenting the DSL by adding the oracle’s hidden units as

function could be used to synthesize more powerful programs that include

loops, for example. Furthermore, using AugTree in the imitation learning

phase of Sketch-SA and then relying on program synthesis for the direct

policy search phase would improve the run time and perhaps the quality of the

program. We can also use our algorithms to augment DSLs with the hidden

42

units. Finally, extending LCN to policy gradient methods could be useful

for learning oblique decision tree programs with constant leaf nodes (e.g., the

DSL for PID controllers in Chapter 4). However, this approach remains in

question as LCN cannot leverage efficient gradient computation methods such

as backpropagation and requires an annealing schedule that .

43

References

[1] A. Albarghouthi, S. Gulwani, and Z. Kincaid, “Recursive program syn-
thesis,” in CAV, 2013.

[2] G. Anderson, A. Verma, I. Dillig, and S. Chaudhuri, Neurosymbolic

reinforcement learning with formally verified exploration, 2020. doi: 10.
48550/ARXIV.2009.12612. [Online]. Available: https://arxiv.org/
abs/2009.12612.

[3] R. Balestriero and R. G. Baraniuk, “Mad max: Affine spline insights into
deep learning,” Proceedings of the IEEE, vol. 109, no. 5, pp. 704–727,
2021. doi: 10.1109/JPROC.2020.3042100.

[4] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement learn-
ing via policy extraction,” in Proceedings of the International Conference

on Neural Information Processing Systems, Curran Associates Inc., 2018,
pp. 2499–2509.

[5] K. P. Bennett, “Global tree optimization: A non-greedy decision tree
algorithm,” in Computing Science and Statistics, 1994, pp. 156–160.

[6] D. Bertsimas and J. Dunn, “Optimal classification trees,” Machine Learn-

ing, vol. 106, no. 7, pp. 1039–1082, 2017.
[7] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification

and Regression Trees. Monterey, CA: Wadsworth and Brooks, 1984.
[8] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification

and regression trees,” 1983.
[9] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,

pp. 123–140, 1996. doi: 10.1007/BF00058655.
[10] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,

2001, issn: 0885-6125.
[11] G. Brockman, V. Cheung, L. Pettersson, et al., Openai gym, 2016. eprint:

arXiv:1606.01540.
[12] M. A. Carreira-Perpiñán and P. Tavallali, “Alternating optimization

of decision trees, with application to learning sparse oblique trees,”
in Advances in Neural Information Processing Systems, S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds., vol. 31, Curran Associates, Inc., 2018.

44

https://doi.org/10.48550/ARXIV.2009.12612
https://doi.org/10.48550/ARXIV.2009.12612
https://arxiv.org/abs/2009.12612
https://arxiv.org/abs/2009.12612
https://doi.org/10.1109/JPROC.2020.3042100
https://doi.org/10.1007/BF00058655
arXiv:1606.01540

[13] L. L. Custode and G. Iacca, “Evolutionary learning of interpretable
decision trees,” ArXiv, vol. abs/2012.07723, 2020.

[14] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2017.

[15] B. Hanin and D. Rolnick, “Deep relu networks have surprisingly few
activation patterns,” ArXiv, vol. abs/1906.00904, 2019.

[16] D. G. Heath, “A geometric framework for machine learning,” UMI Order
No. GAX93-13375, Ph.D. dissertation, USA, 1993.

[17] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 2261–2269. doi: 10.1109/
CVPR.2017.243.

[18] J. P. Inala, O. Bastani, Z. Tavares, and A. Solar-Lezama, “Synthesizing
programmatic policies that inductively generalize,” in International Con-

ference on Learning Representations, 2020. [Online]. Available: https:
//openreview.net/forum?id=S1l8oANFDH.

[19] A. Karalič, “Employing linear regression in regression tree leaves,” in
Proceedings of the 10th European Conference on Artificial Intelligence,
ser. ECAI ’92, Vienna, Austria: John Wiley amp; Sons, Inc., 1992, pp. 440–
441, isbn: 0471936081.

[20] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by sim-
ulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983, issn:
00368075, 10959203. [Online]. Available: http : / / www . jstor . org /
stable/1690046 (visited on 11/07/2022).

[21] G.-H. Lee, D. Alvarez-Melis, and T. S. Jaakkola, Towards robust, locally

linear deep networks, 2019. doi: 10.48550/ARXIV.1907.03207. [Online].
Available: https://arxiv.org/abs/1907.03207.

[22] G.-H. Lee and T. S. Jaakkola, “Oblique decision trees from derivatives
of relu networks,” in International Conference on Learning Representa-

tions, 2020. [Online]. Available: https://openreview.net/forum?id=
Bke8UR4FPB.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., Continuous control with

deep reinforcement learning, 2015. doi: 10.48550/ARXIV.1509.02971.
[Online]. Available: https://arxiv.org/abs/1509.02971.

[24] J. Lin, C. Zhong, D. Hu, C. Rudin, and M. Seltzer, “Generalized and
scalable optimal sparse decision trees,” in International Conference on

Machine Learning, 2020.
[25] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve

neural network acoustic models,” in ICML Workshop on Deep Learning

for Audio, Speech and Language Processing, 2013.
45

https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://openreview.net/forum?id=S1l8oANFDH
https://openreview.net/forum?id=S1l8oANFDH
http://www.jstor.org/stable/1690046
http://www.jstor.org/stable/1690046
https://doi.org/10.48550/ARXIV.1907.03207
https://arxiv.org/abs/1907.03207
https://openreview.net/forum?id=Bke8UR4FPB
https://openreview.net/forum?id=Bke8UR4FPB
https://doi.org/10.48550/ARXIV.1509.02971
https://arxiv.org/abs/1509.02971

[26] L. C. Medeiros, D. S. Aleixo, and L. H. S. Lelis, “What can we learn
even from the weakest? Learning sketches for programmatic strategies,”
in Proceedings of the AAAI Conference on Artificial Intelligence, AAAI
Press, 2022.

[27] J. Mockus, V. Tiesis, and A. Zilinskas, “The application of bayesian
methods for seeking the extremum,” in Sep. 2014, vol. 2, pp. 117–129,
isbn: 0-444-85171-2.

[28] G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio, “On the number
of linear regions of deep neural networks,” in Proceedings of the 27th

International Conference on Neural Information Processing Systems -

Volume 2, ser. NIPS’14, Montreal, Canada: MIT Press, 2014, pp. 2924–
2932.

[29] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of
oblique decision trees,” Journal of Artificial Intelligence Research, vol. 2,
no. 1, pp. 1–32, 1994, issn: 1076-9757.

[30] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the International Conference on

International Conference on Machine Learning, 2010, pp. 807–814.
[31] OpenAI, : C. Berner, et al., Dota 2 with large scale deep reinforcement

learning, 2019. doi: 10.48550/ARXIV.1912.06680. [Online]. Available:
https://arxiv.org/abs/1912.06680.

[32] W. Qiu and H. Zhu, “Programmatic reinforcement learning without
oracles,” in International Conference on Learning Representations, 2022.
[Online]. Available: https://openreview.net/forum?id=6Tk2noBdvxt.

[33] A. Raffin, RL Baselines3 Zoo, https://github.com/DLR- RM/rl-
baselines3-zoo, 2020.

[34] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8,
2021. [Online]. Available: http://jmlr.org/papers/v22/20-1364.
html.

[35] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. S. Dickstein, “On
the expressive power of deep neural networks,” in Proceedings of the

International Conference on Machine Learning, 2017, pp. 2847–2854.
[36] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation learn-

ing and structured prediction to no-regret online learning,” in AISTATS,
2011.

[37] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Rep-
resentations by Back-propagating Errors,” Nature, vol. 323, no. 6088,
pp. 533–536, 1986. doi: 10.1038/323533a0. [Online]. Available: http:
//www.nature.com/articles/323533a0.

46

https://doi.org/10.48550/ARXIV.1912.06680
https://arxiv.org/abs/1912.06680
https://openreview.net/forum?id=6Tk2noBdvxt
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1038/323533a0
http://www.nature.com/articles/323533a0
http://www.nature.com/articles/323533a0

[38] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proxi-

mal policy optimization algorithms, 2017. doi: 10.48550/ARXIV.1707.
06347. [Online]. Available: https://arxiv.org/abs/1707.06347.

[39] A. Silva, M. C. Gombolay, T. W. Killian, I. D. J. Jimenez, and S.-H.
Son, “Optimization methods for interpretable differentiable decision trees
applied to reinforcement learning,” in AISTATS, 2020.

[40] D. Silver, T. Hubert, J. Schrittwieser, et al., “Mastering chess and shogi
by self-play with a general reinforcement learning algorithm,” CoRR,
vol. abs/1712.01815, 2017. arXiv: 1712.01815. [Online]. Available: http:
//arxiv.org/abs/1712.01815.

[41] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998, isbn: 0-262-19398-1. [Online].
Available: http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-
book.html.

[42] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal

of the Royal Statistical Society, vol. 58, pp. 267–288, 1996.
[43] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-

based control,” in 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, IEEE, 2012, pp. 5026–5033.
[44] P. E. Utgoff and C. E. Brodley, “Linear machine decision trees,” De-

partment of Computer Science, University of Massachusetts, Amherst,
Massachusetts, 01003, USA, Tech. Rep., 1991.

[45] A. Verma, H. M. Le, Y. Yue, and S. Chaudhuri, “Imitation-projected
programmatic reinforcement learning,” in Proceedings of the International

Conference on Neural Information Processing Systems, Curran Associates
Inc., 2019.

[46] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri, “Programmat-
ically interpretable reinforcement learning,” CoRR, vol. abs/1804.02477,
2018. arXiv: 1804.02477. [Online]. Available: http://arxiv.org/abs/
1804.02477.

[47] C. Wang, B. Han, B. Patel, and C. Rudin, “In pursuit of interpretable, fair
and accurate machine learning for criminal recidivism prediction,” Journal

of Quantitative Criminology, 2022. doi: 10.1007/s10940-022-09545-w.
[48] D. Wickramarachchi, B. Robertson, M. Reale, C. Price, and J. Brown,

“Hhcart: An oblique decision tree,” Computational Statistics Data Anal-

ysis, vol. 96, pp. 12–23, 2016, issn: 0167-9473. doi: https://doi.org/
10.1016/j.csda.2015.11.006. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167947315002856.

[49] Z. Wu, B. Ramsundar, E. Feinberg, et al., “Moleculenet: A benchmark
for molecular machine learning,” Chemical Science, vol. 9, Mar. 2017.
doi: 10.1039/C7SC02664A.

47

https://doi.org/10.48550/ARXIV.1707.06347
https://doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
https://arxiv.org/abs/1804.02477
http://arxiv.org/abs/1804.02477
http://arxiv.org/abs/1804.02477
https://doi.org/10.1007/s10940-022-09545-w
https://doi.org/https://doi.org/10.1016/j.csda.2015.11.006
https://doi.org/https://doi.org/10.1016/j.csda.2015.11.006
https://www.sciencedirect.com/science/article/pii/S0167947315002856
https://www.sciencedirect.com/science/article/pii/S0167947315002856
https://doi.org/10.1039/C7SC02664A

[50] L. Zhang, G. Naitzat, and L.-H. Lim, “Tropical geometry of deep neural
networks,” in International Conference on Machine Learning, PMLR,
2018, pp. 5824–5832.

[51] H. Zhu, Z. Xiong, S. Magill, and S. Jagannathan, “An inductive synthesis
framework for verifiable reinforcement learning,” in Proceedings of the

40th ACM SIGPLAN Conference on Programming Language Design and

Implementation, ACM, Jun. 2019. doi: 10.1145/3314221.3314638.
[Online]. Available: https://doi.org/10.1145%2F3314221.3314638.

48

https://doi.org/10.1145/3314221.3314638
https://doi.org/10.1145%2F3314221.3314638

	Introduction
	List of Contributions

	Background Material
	Oblique Decision Trees
	Early Methods
	Locally Constant Networks

	Program Synthesis
	Reinforcement Learning
	Policy Gradient Methods

	Imitation Learning
	Related Work
	Oracle-guided PIRL
	Oracle-free PIRL

	Oblique Trees From ReLU Networks
	Notation
	Mapping ReLU Networks to Oblique Trees
	Example
	Extensions to OTR
	Synthesizing Programmatic Policies with OTR

	Approximating ReLU Networks with Oblique Trees
	Pruning OTR Trees
	Neurally Augmented Decision Trees

	Experimental Results
	RL for Continuous Action Spaces
	PID Controller Policies

	RL with Discrete Action Spaces
	Supervised Learning

	Conclusion
	References

