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Abstract

A numerical study is presented for the steady electrokinetic flows in both single straight
capillary channels and in intersecting channels with a T-shaped configuration. The electric
potential and space charge density distribution along the capillary are obtained
numerically by solving the non-linear Poisson-Boltzman equation for arbitrary
electrokinetic length(ka) and arbitrary surface potential. The velocity and pressure profiles
are obtained by solving a modified Navier-Stokes equation using a primitive variable
algorithm.

Initially the electroosmotic flow in a single straight channel is studied. The flow
behaviour is investigated by changing the surface potential on part of capillary channel
and by use of auxiliary pumping capillary. The pressure distribution induced by the
difference in electroosmotic flow along the channel is obtained. The velocity profiles are
shown to be a combination of an electroosmotic flow and a pressure driven flow.

A study of flow in the T-shaped intersecting channels showed that the induced
pressure within the channel is an important factor that affects fluid leakage out of the side
channel. The parameters which affect leakage from a floating channel are investigated.
The results showed that the flow in each channel can be controlled by applying a
potential at each reservoir connected to the end of a channel. The dependence of flow

on the surface zeta potential of each channel is studied.
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Nomenclature

a half width of capillary channel, (m)

au coefficient in discretization equation for u

av coefficient in diecretization equation for v

ap coefficient in discretizationn equation for p

b constant term in discretization equation

c solute concentration, (mol/m>)

e elementary charge, (C)

E, electric field strength in the left channel, E;=(®,-®;)/L,
E, electric field strength in the right channel, E,=(®-®,)/L,
electric field strength in the side channel, E;~(®5-®,)/L
electric field in axial direction, -d®/dX

general variable defined by equation (2.58)

electric current, (A)

m m

b

Boltzmann constant, (J/K)

dimensionless length of channel

dimensionless main channel length

dimensionless side channel length

L;,L,,L; length of left sright and side channel, respectively

n, ionic number concentration of the cations, (m~)

3

S e o S B

w

n_ ionic number concentration of the anions, (m~)

n, ionic number concentration in the bulk solution, (m™)

p fluid pressure , (Pa)

Dy negative pressure gradient, -dp/dx, (Pa/m)

P dimensionless pressure

P, dimensionless negative pressure gradient, -dP/dX
R electric resistance, ()

S source term in discretization equation
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stream function, (m%/s)

absolute temperature, (K)

fluid velocity in x direction, (m/s)
electroosmotic flow velocity according Helmholz - Smoluchowski equation m/s
dimensionless velocity in x direction
dimensionless average velocity in the left channel

dimensionless average electroosmotic velocity in the left channel
dimensionless average velocity in the right channel

dimensionless average electroosmotic velocity in the right channel
characteristic velocity, (m/s)

velocity correction
axial velocity based on guessed pressure P*

fluid velocity in y direction, (m/s)
dimensionless velocity in y direction
dimensionless average velocity in the side channel

dimensionless average electroosmotic velocity in the side channel
coordinates in x direction, (m)
dimensionless x coordinates
coordinates in y direction, (m)

dimensionless y coordinates

absolute value of a (z:z) electrolyte solution valency

relaxation factor

dielectric constant, dimensionless
permittivity of vacuum, (C/m V)
dimensionless surface potential
relaxation factor

inverse Debye length, (m™)
fluid viscosity , (Pa s)



free charge density, (C/m®)

dimensionless external electric potential

dimensionless external electric potential at left reservoir
dimensionless external electric potential at right reservoir
dimensionless external electric potential at side reservoir
dimensionless external electric potential at intersection
external potential, (V)

&, = -d¢/dx, (V/m)

dimensionless potential due to electric double layer
dimensionless surface potential

potential due to electric double layer, (V)

surface potential, (V)

Subscripts

E,W,S,N neighbour grid point on the east, west, south, and north,respectively

- g <4 & o

-

control volume face on the east, west, south, and north, respectively
inlet

the main channel

general neighbour grid point

surface or the side channel

velocity in x direction

velocity in y direction

pressure

left, right and side channel, respectively

Superscripts

correction

previous-iteration value of a variable



Chapter 1

Introduction

1.1 Concept of Capillary Zone Electrophoresis

Over the past decade, capillary electrophoresis(CE) has emerged as a very
powerful alternative for the separation of charged species present in an aqueous medium.
Capillary electrophoresis is a modem analytical technique which permits rapid and
effective separation of charged ionic species present in small amounts. The most
attractive features of this relatively new separation technique include high separation
efficiencies, high resolving power, high speed, full automation and applicability to a
variety of biologically important molecules. CE has been applied to chemical, biochemical
and pharmaceutical analyses. Some examples are the separation of proteins, Amino acids,
peptide, tryptic mapping, DNA sequencing, Serum analysis, analysis of neurotransmitters
in single cells, determination of organic and inorganic ions, and chiral separations. The
separation in CE is based on the difference in electrophoretic mobilities resulting in
different velocities of migration of the different species in an electrophoretic buffer
solution contained in the capillary. The separation mechanism is mainly based on
differences in solute size and charge at a given pH[1,2]. Figure 1.1 shows the schematic
of a system for CE. In capillary electrophoresis, a background electrolyte with adequate
buffering properties forms a conducting medium along the migration path. Under the



influence of electric field applied tangentially to the capillary surface, two mechanisms
of electrokinetic phenomena occur{3,4], i.e. electrophoresis and electroosmosis.
Electrophoresis is the migration of charged species relative to the bulk solution under the
influence of an electric force exerted by an electric field. The migration velocity is a
characteristic of the molecular charge, size and shape. Concomitant to the electrophoretic
migration, a bulk flow of solution is induced by the electric field. This migration, called

electroosmosis, is dependent on the

characteristics of the capillary surface Detector
as well as the composition of the @
buffer. It is the electroosmotic flow HV 1

(EOF) that makes the full automation
of capillary electrophoresis possible.

fused-silica capillary having a
negatively charged surface is usually significantly greater than the electrophoretic flow
of individual ions. Consequently, both cations and anions can be swept to the cathode.
Cations are attracted toward the cathode and their speed is augmented by the EOF.
Anions, although electrophoretically attracted toward the anode, are swept towards the
cathode with the bulk flow of electrophoretic medium. Since different ions have different
mobilities, the electrophoretic separation of different charged species is thus achieved.
Electroosmotic flow plays an important role in capillary electrophoresis. It affects
the residence time in the capillary and therefore, may affect both efficiency and resolution
indirectly[S]. Therefore, the control of EOF may have a large effect in improving
resolution and efficiency and is one of the most important aspects of controlling
reproducibility in CE[6]. Several strategies have been suggested to control electroosmotic
flow in recent years. These include derivatizing the inner surface of the capillary[7],
altering the buffer pH[8-9], applying radial voltage to the capillary wall [10-14], and
auxiliary capillary pumping [15]. The experimental results due to[10-15] have shown the
effect of applied radial voltage and auxiliary pumping on the EOF. However, the velocity
profile along capillary is not well understood.
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When the surface potential of the wall of a segment of a channel is different from
the other part of the capillary, the electroosmotic flow in both segments of the capillary
will be different. One segment can either hinder or augment the other and the velocity
profiles in both parts of the channel will no longer be plug-like. When electric potential
gradients are different in two capillary segments that are joined together, the flow within
one segment will also influence the other. The flow mechanism of the above two physical
situations can be modeled by varying the surface potential within a given portion of the
capillary walls and varying the electric field along the capillary. A numerical model is
developed to predict the electroosmotic flow and velocity profile for the above two cases.

1.2 Electrophoresis in a Glass Chip
It has been successfully demonstrated that an electroosmotic sample injection

system and electrophoretic separation can be integrated together on a planar glass chip[16-

22]. By micromachining a complex manifold of flow channels in a planar substrate, one

can fabricate a network of capillaries

capable of sample injection, ? —

pretreatment, and separation. Instead J I

of using a pressure difference to

induce the flow, electrokinetic

mmigegupugE)

phenomena have been employed. The -

use of electroosmotic pumping offers ®

an additional advantage as compared
Figure 1.2 Device layout with reservoir and

to micromachined pumps and valves ., o) 1obels indicated [17]

in that there are no moving parts, and

reliable performance has been achieved with this technology. To understand what factors
play a role in the performance of such a device, it is useful to consider here the modes
of operation. Figure 1.2 shows a channel layout of a simple device for sample injection
and separation. It consists of reservoirs, A, B and C, at the heads of three interconnected

capillary channels. As conceived, the application of a voltage between any two reservoirs



will cause electroosmotic pumping of fluid along those channel segments between the
reservoirs. Valveless switching of fluid flow between channels should be achieved by
switching the voltages applied to each channel. For example, voltage applied between
A (sample electrolyte) and B (separation, waste) would draw sample solution into channel
AB and past the intersection region J. Subsequent application of a voltage between C
(carrier electrolyte) and B would then drive a small plug of sample at J along separation
channel JB, resulting in
electrophoretic separation of the
components in the sample plug.
Compared to conventional
systems, such devices can reduce

solvent and sample consumption or

Side channel

decrease analysis time because of their
decreased dimensions. Very rapid

separations (< 5 s) of fluorescently

labelled amino acid mixtures can be

effected within such devices[20]. The Figure 1.3 Photomicrograph of a device with 1
kV/cm applied along the horizontal channel,

separation  efficiency has been while the side channel is left floating [16]
improved by increasing the voltage

range and improving the detector. More challenging and complex samples may be

A

separated with compact CE devices[17].

As described above, fluid flow in a manifold of intersecting channels can be
directed in the desired direction by the appropriate application of potentials to various
channels within the manifold. This valveless control of fluid flow is subject to leakage
between the channels at their intersection region. When the potential of a side channel
is left uncontrolled ( hereinafter called floating), solution may leak into the active main
channel. A photomicrograph of a device taken while two of the three channels were
actively under potential control is shown in Figure 1.3[16]. The device was flooded with
488-nm light while positioned on an Olympus BH-2 microscope stage (20:1
magnification). The applied potential drove the buffer solution along the channel CB,
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while the side channel AJ was filled with a fluorescent dye and left floating. There is a
convective flow of the dye out of the side channel. This indicated that the electroosmotic
flow along the main channel caused liquid leakage out of the side channel. It has been
shown that the leakage can vary greatly within different devices, from 1% up to 30% in
some layouts. The magnitude of the effect depends on the applied potentials, and the
dimensions of the connecting channels. As these leakage effects are of great importance
in determining the separation efficiency of a CE device, the flow behaviour within these
intersecting channels needs to be better understood.

The experimental study{16] clearly shows that the leakage from a side channel to
a main channel is mainly due to hydrodynamic effects. The flow out of the floating side
channel into the active channel in which electroosmotic flow is induced under the
influence of an electric field may be due to the viscous effect or static pressure
difference between the reservoir and intersection. Some qualitative studies have been
carried out trying to understand the factors which influence the flow behaviour in the
channels[18]. It is desirable, however, to develop a more quantitative description of the
influence of the resistance to flow in intersecting channels, and to study the phenomena
such as leakage or mixing at channel intersections[17]. The objective of the present
work is to attempt to establish a mathematical model to predict the flow behaviour in

intersecting channels.

1.3 The Mechanism of Electroosmotic Flow

Silica surfaces are characterized by the presence of several types of silanol
groups (SiOH), which are weakly acidic in character. In contact with an aqueous solution,
some of the silanol groups are ionized and cause the surface to be negatively charged
and an electric double layer develops within it. The interface between the fused silica wall
and the bulk buffer inside the capillary has been studied extensively [3,23]. The structure
of this interface may be divided into three parts : (1) the silica surface (2) the immobile
layer ( also called the Stern layer or inner Helmholtz plane and (3) the diffuse layer [12].
The immobile layer is modeled as tightly bound counterions and the diffuse layer as



solvated, loosely held counterions.

The thickness of the diffuse electric double layer is of order of the Debye length
«’l. When an electric field is imposed tangentially to a surface, the electric forces act
upon the spatial distribution of the ions within the diffuse layer causing unilateral
movement of the ions toward the oppositely charged electrode. During their migration,
these ions drag the surrounding solvent molecules, resulting in an overall movement of
the solution. This bulk movement of the solution relative to the stationary charged surface
is referred to as electroosmotic flow. The electric double layer or electrokinetic radius xa
and zeta potential determine the flow velocity profile when an electric potential is applied
across a capillary.

The govemning equations of the electrokinetic phenomena under the influence of
applied pressure and potential gradients across capillaries filled with an electrolyte are
well known [3], The basic relationships involved were formulated by Smoluchowski[4].
However, Smoluchowski's model suffered from a restriction due to the assumption that
the electrokinetic radius xa was large, that is, the double layer thickness was small
compared with the capillary radius (a). Rice and Whitehead [24] calculated analytically
the correction factors that must be applied to Smoluchowski's results for narrow
cylindrical capillaries having arbitrary values of xa (0<ka<cw). However, their theory itself
is subject to a severe restriction that the surface zeta potential be sufficiently low to
permit the use of the Debye-Hiickel approximation, effectively limiting the application
of their prediction to surface potentials less than 25 mV for a monovalent electrolyte.
Levine et al. [25] extended the Rice-Whitehead theory to higher zeta potentials by
developing analytical approximations to the solution of the nonlinear Poisson-Boltzmann
equation within the capillary. However, their analysis is confined to monovalent
electrolyte. The previous published solutions have been to a large extent analytical and
are limited in their applicability.

This work attempts to provide some insights into the electroosmotic flow and
hydrodynamic flow phenomena within intersecting channels. The purpose of this study
is not to present an analysis of any particular CE device. Instead, an attempt will be

made to model the flow in general terms and thereby to predict the flow rate and velocity
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profile in each channel and explore the factors which control flow within intersecting
channels. To this end, the analysis will focus on the numerical solution of the govemning
equations for steady electrokinetic flow in capillary channels. The different factors that
affect the electrokinetic flow will be discussed.

1.4 Outline of the Thesis

In chapter 2, the problem to be investigated and the solution strategies are
described. The goveming differential equations and the boundary conditions are stated.
Numerical solutions for the electrical potential both due to the electric double layer and
to an externally applied field are obtained. Comparisons of the numerical solutions with
the analytical solutions are made where possible.

The numerical implementation of the problem is described in chapter 3. A
numerical algorithm based on Liu-Masliyah numerical separation method and SIMPLE-C
algorithm are briefly described. The accuracy of the developed computer code is tested
by solving the creeping flow and by comparing the solutions with the literature.

The electroosmotic flow in a straight channel and the control of flow are
considered in chapter 4. Velocity profiles are obtained and are used to illustrate the
factors which affect the flow.

Chapter 5 deals with the electrokinetic flow in intersecting capillary channels(T-
shaped channels). A systematic study of the effects of the main parameters on the flow
and leakage at channels intersection is conducted.

Chapter 6 gives the conclusions and recommendations.



Chapter 2 «

Physical Phenomena and Mathematical

Formulation

2.1 Definition of the Problem and Assumptions

The use of a planar glass chip fabricated by photolithography for capillary
electrophoresis has been successfully demonstrated[16-22]. Both electrophoretic and
sample injection systems have been integrated together using microlithographic
technology known as micromachining. Figure 1.2 shows the layout of a typical glass
device that consists of three capillary channels intersecting at right angle to form a T-
junction. In the study of CE on a chip, the channels were 10 pm deep and 30 pm wide.
By alternating the electrical potential in the three reservoirs, it is possible to control the
electroosmotic flow in each channel.

The problem is to predict the steady electroosmotic flow in the three channels
under different conditions, with the potential at one of the reservoirs either fixed or left
uncontrolled while an electric potential is applied across the remaining two reservoirs.
It has been shown that electroosmotic flow in such capillaries requires a few hundred
microseconds to develop after the potential has been applied to a capillary[26]. In this
analysis the electroosmotic flow delay is not taken into consideration. Due to the high
thermal mass and conductivity of the glass chips, experimental results showed that an
electric field up to 2500 V/cm with a power dissipation of 2.3 W/m did not result in Joule



heating effects[19]. Therefore, thermal effects will not be considered here. The study of
electroosmotic flow in a capillary channel then consists of solving the Poisson-Boltzmann,
mass conservation and the Navier-Stokes transport equations coupled with the Nemnst-
Planck equation. The electrolyte solution is idealized as a fluid with a constant bulk
concentration, n_, viscosity, p, density, p, and dielectric constant, e. The use of the
Nemst-Planck equation can be avoided once the bulk ionic concentration is taken as
constant along the channel.

Following Henry's [27] classical analysis of electrokinetic flow, it is assumed that
the total electrostatic potential can be expressed as a linear superposition of the potential
due to the electrical double layer (y) which would exist in the absence of the applied
electric field and the potential that arises from the applied extemnal field (¢). Figure 2.1
shows the coordinates of the T-shaped channels for which we ultimately will obtain the
total potential. It is assumed that §,,.,= ¢ + v. ¢, ¢, and ¢, are electric potentials
applied at each reservoir. y, and ' are the surface potentials in the main and side
channel respectively. According to the
Guoy-Chapman model, the surface i

potential is identicalized as zeta ¢3: or floating
potential when the ions are taken as e
i Side channel
. v !
point charges. s |
LY
Assumin ilibri the
Poisson - Boltzmann equation for T
\l!/ iMom channel
s .

Debye double layer and the Laplacian

equation for the external electric Figure 2.1 Arangement of coordinates and
potential  distribution can be boundary conditions for electric potential
solution.

decoupled from the transport

equation. The electrical potential distribution due to the Debye double layer and the
electric field are obtained first, and the velocity and pressure profile can be obtained by
solving the Navier-Stokes equation. The numerical method used to solve the Poisson-
Boltzmann and the Laplacian equation is straight forward, Therefore, some results of the

electric potential distributions due to the electric Debye layer and an external electric field
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will be given in this charpter. A numerical implementation to the transport equation will
be described in Chapter 3.

2.2 Electric Potential Distribution due to Electric Double Layer
The electric potential distribution within the diffuse electric double layer is given

by the Poisson equation as

Viy =-P_ Q2.1)
880

For a 2-D problem for the case shown in figure 2.1, we have,

Py +32‘4’ =P 2.2)

ax* ay* E£%§

The charge density is given by

N
p =Y mze @-3)
il

Where n,is the ionic number concentration of the ith species, m?

z; is the valence of the ith species

e is the fundamental charge, 1.602x10'°C

N is the number of ionic species in the electrolyte solution.

e is the dielectric constant of the electrolyte solution that is assumed to be a
constant.

e, is the permittivity of vacuum, £,=8.85x10"2 C/Vm.
The assumption of thermal equilibrium leads to the Boltzmann's equation, that is

z.ey
. =n, -1 24
n; =mexp-——]

Where n, is the ionic number concentration at the neutral state where y = 0, k is the

Boltzmann constant, and T is the absolute temperature. Combining equations. (2.3) and

10



(2.4) leads to

P E 21, exp[-— w] @.5)

Substitution of equation (2.5) into the Poisson equation (2.2) leads to the well-
known Poisson-Boltzmann(PB) equation for a 2-D configuration,

oy? oy _
+ 0Zi€eX [ ] (2.6)
ox? oy? eeo§n‘ aeep

For a symmetric electrolyte solute (z:z), equation (2.6) can then be written as

2n_ze
oy? +6\|r2 _“ o sinh[zew] @.7
ox? dy* %

The boundary conditions for equation (2.7) includes the surface potential at the
walls and the potential distributions at three channel ends. At the walls of the main
channel, ¢ = y, v, is the surface potential of the main channel wall; at the walls of the
side channel, y = y';, V', is the surface potential of the side channel wall. When
electrolytes in both the main and side channel are the same, y, will be equal to v',.
The boundary conditions for the potential distributions at three channel ends are
concemned with three one-dimensional equations. For the left and right ends(for x = -l
and x = 1,), the potential is a function of y, which is given by the following equations,

2y 2
4y T inn(Y) 2.8)
dy? €8
¥y =y, aty=a (channel wall) <.9)
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v =y, aty=-a  (channel wall) (2.10)

For the side channel end (y = 1), the potential is a function of x,

d’y 2.z sinh(Z2Y) @2.11)
dx? €%, kT
v =y, at x=a (channel wall) (2.12)
y=y, at x=-a (channel wall) 2.13)

Equations (2.7) through (2.13) form a set of equations and boundary conditions
to solve the electric potential due to the electrical double layer. The following

dimensionless parameters are introduced,
and they lead to normalized equations. Equation (2.7) becomes

> +22£ =(xa)*sinh¥ (2.14)

x* oY?
where « is the reciprocal of Debye double layer thickness defined by

i =[2nmzzc32]”2

.1
gggkT @.15)
and the normalized boundary conditions are given by,
(a) The main channel wall conditions
atY =-1 forall X, (2.16)

¥ = {Y -1 forX<- and X>1

(b) The side channel wall conditions

12



¥ =¢/ atX =%l forY>I 2.17)

(c) The boundary conditions of the ends of the main channel (for X = -L; and X
= L,), equations(2.8) through (2.10) become

2
9V _ca)?sinh¥ 2.18)
dy?

Y= at Y-=I 2.19)
W= at Y=-1 (2.20)

(d) The side channel end conditions ( for Y=L/), equations(2.11) through (2.13)

become

2
€2 - (xa)*sinh¥ @.21)
dx

¥ =¢' at X=I @-22)

2.23)
¥=¢" at X=41

The electrical potential distribution due to the Debye double layer can be obtained by
solving equation (2.15) with above boundary conditions (a) to (d).

13



2.3 Electrical Potential Distribution due to External Field

2.3.1 Laplacian Equation

Now consider the T-shaped channel (figure 2.1) with a charge-free dielectric in
it. The electric potential associated with the external (applied) electric field ¢, satisfies the
Laplacian equation,

V2¢ =0 2.24)

for 2-D the Laplacian equation can be written as,

.@4»_@ =0 2.25)
x> oy?

Similar dimensionless parameters are introduced as follows

® =zki1‘?, X=xfa, Y=yha (2.26)

The dimensionless Laplacian equation becomes

do , Fo 2.27)

The boundary conditions are,
(a) wall and floating conditions

@=0 or @:0 (2.28)

[5)'4 oX
(b) end conditions

O=¢, atY-=L
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2.3.2 Kirchhoff’'s Rule

If the potential variation
across the channel at intersection is
not taken into account, the three
intersecting channels with potentials

applied to the reservoirs can be

modelled as a simple network of

. . . |
three resistors, as illustrated in figure h 2

22. With three potential =sources Figure 2.2 Equivalent circuit for the device of
connected to the channel ends, the figure 1.2 [17].

current in each channel and the

potential at the intersection are readily expressed using Kirchhoff rules,

I, =(®, ;) /R, (2.30)
I, =(®, -@)/R, (2.32)
L, =(®,-®)/R, 2.33)

I =1, +I, .34

The assumed direction of electric curents I, I, and I; are shown in figure 2.2. The sign
of the electric current depends on the values of the potentials. The potential at the
intersection can be obtained by solving the above equations, leading to

_®R;R; +Q,RR;+0;RR,
R R +R R;+R,R,

It has been shown that the resistances are proportional to the equivalent channel length
[31].Consequently, Kirchhoff rule will be used to obtain the initial guess for the numerical

(2.35)

Dy

solution.
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2.4 Electrokinetic Transport Equations

Consider the steady flow of an incompressible aqueous solution of a symmetrical
electrolyte through the T-shaped channel (figure 2.1). In the presence of the electric
field the equation of motion for creeping flow through the channel is given by the
modified Navier-Stokes equation:

— - 2.3
¥ p =uv2u ~p¥(y +4) @-36)

and the continuity equation,

Do u =0 @37

Where u is the velocity vector, u is the electrolyte viscosity, and p is the pressure. The

free charge density, p, for symmetrical electrolyte is given by,

= 2n_zesinh(ZZY (2.38)
P o S

The following dimensionless parameters are introduced :

gV -2 x_X y.¥ 2.39)
kT kT~ a a

u=2_ v=_Y_ p=_2 (2.40)
<u> <u> p<u>

where <u> is a characteristic velocity defined by

2n_akT
11

<u> (2.41)

The normalized transport equation becomes
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g-29-.2- 2.42)
X ax* aY?
®_PV, PV +sinh g2+ D) (2.43)
oY ax? aY?
U,V Q2.44)
oX oY

Here ¥ and @ are given in 2.2 and 2.3, respectively. The above governing partial
differential equations for motion are subject to the following boundary conditions:

(1) Uniform inlet condition:

U=U_, V=0, atX=-L,, -1<Y<l (2.45)

V=v_,U=0, atY-=L, -l1<X<I (2.46)

(2) Fully developed outlet condition:

g=o, V=0, atX=-L, -I<Y<I 247

(3) No-slip wall boundaries: U=V=0.
Here U, and V, are determined iteratively.
The boundary condition for the pressure can be obtained by solving a one

dimensional transport equation. For both ends of the main channel, the Y-momentum
equation leads to,
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P _ o hydY (2.48)
oY oY

The above equation is obtained because the transverse velocity is assumed to be zero at
the ends due to the presence of a flat velocity profile or fully-developed velocity profile,
and & does not vary in the transverse directions. Integration of equation ( 2.48) leads to,

P =cosh¥+P, (2.49)

P, is the pressure at the channel ends, i.e. the pressure in the reservoirs. ‘¥ is the function

of Y for the main channels.

For the side channel end, the pressure is given by the similiar equation as equation

(2.48),
P _innw2¥ 2.50)
oX oX
P =cosh¥+P, (2.51)

but here ¥ is the function of X .

The physical explanation for the pressure boundary condition at the ends of the
channel is that the electric potential due to the Debye double layer varies in the transverse
direction. The transverse dependence of the electric potential results in electric force
acting on the fluid which will only be balanced by a hydrodynamic force, that is, a non-
uniform pressure distribution is present.

The numerical solution to the goveming equations for the motion will be given
in Chapter 3. The solution to the electric potential distribution is straight forward and will

be discussed in this chapter.
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2.5 Solution to the 1-D Poisson-Bolzmann Equation

2.5.1 Debye-Hiickel Approximation and Exact Solution for a Flat Plate
Linearization of the sinh¥ term for small dimensionless values of the potential,

zey/kT, leads to the Debye-Hiickel approximation, viz. sinh'¥~'¥. For a single channel,

‘_izi =(xa)*¥ (2.52)
dy?
Y=( atY =1 (2.53)
Y= atY=-1 2.54)
Solution to the above equations gives,
= G cosh(xaY) (2.55)

cosh(ka)

For the diffuse layer near a flat plate, the electric potential can be obtained
analytically. The governing equation is given by

2
¥ _ (xa)?sinh¥ (2.56)

dYIz

where Y’ is the distance from a wall. The boundary conditions for a flat plate are, Y'—o,
¥=0, and ¥=¥, at Y'=0. The exact solution to equation (2.56) follows upon multiplying
both sides by d'¥/dX to obtain exact differentials that, after integrating twice and applying
the boundary conditions, yields,
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{ 1 +exp(-xaY’) tanh(-i-‘{’s)}

¥ =2In .57

1-exp( -kaY’) tanh(-i‘l’s)'

The above solution can be used to predict the potential distribution across channel
for large xa (ka>10), in which case, the potential, ‘¥, at the centre of the channel is zero.

2.5.2 Numerical Solution to the

1-D P-B Equation and the node of
interest
Comparison with Analytical i1 X i i+1
. O + ~O -+ O
Solutions X=h, X=0 X=h,

Equations (2.19)-(2.21) specify
a 1-D problem for a straight capillary gii;.::sizo.zal pfg;leﬁzdal arrangement for one
channel. However, the hyperbolic sine
term in the Poisson Boltzmann equation (2.19) makes the second-order differential
equation exponentially non-linear. For large «a, the solution will be very steep near the
wall, which suggests a 'stiff equation[28]. Recently, Bowen and Jenner [29] introduced
a position function M(R) and transformed the original equation to a fourth order
differential equation in terms of M. It is claimed that such a transformation reduces the
stiffness of the equation, but the resulting equation is still non-linear and it is more
complicated.

Here, we use a finite difference approximation of second order accuracy for

nonuniform grid size. The three points quadratic interpolation formula is given by:

£og G B b6 By b, .58
hyhy(hy +hy)

Where h, and h, are the two grid spacings of the node of interest ( see figure 2.2). f is
any general variable of interest. It should be noted that equation (2.58) is quadratic in the

parameter x (i.e. location).
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Equation (2.19) is discretized using the formula (2.58) and the resulting difference
equations were solved iteratively using the Thomas algorithm[48]. The solution is
facilitated by relaxing the hyperbolic term with the Taylor formula, that is,

sinh¥ =~ sinh ¥*+(¥-¥*) cosh(¥"*) (2.59)

Where ¥" is a currently available value during an iteration. It is found that the
convergence is very fast even for large xa in which case the variation of 'V is very steep
near the wall, and for large surface potential { in which case the Poisson-Boltzmann
equation can not be linearized.

Numerical results and their comparison with the analytical solution are given in
figures 2.4 through 2.7.

Figures 2.4-2.7 compare the potential calculated from the exact solution for large
xa and the Debye-Hiickel approximation with the numerical solutions. It is shown that
the numerical solution agrees well with both the analytical solution for large xa and all
surface potential values and Debye-Hiickel solution for small £ values and all xa values.

It is also shown that Debye-Hiickel approximation may be satisfactorily applied
to small surface potentials (figures 2.4 and 2.6 for £=0.1, 1.0 respectively) except for very
small ka, but for large surface potential (figure 2.5, { =6.0) the Debye-Hickel errs
substantially. Figure 2.7 shows that for large surface potentials there still exist differences

between the exact solution and the Debye-Hiickel approximation even for very large ka.
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2.6 Numerical Solution to Electric Potentials for the T-shaped Channels

2.6.1 Electric Potential due to Debye Double Layer

For the case of a T-shaped channel as shown in figure 2.1, equation (2.15) with
boundary conditions (2.17) through (2.24) was solved using a finite difference method.
The method is straight forward, therefore, the solution algorithm will not be discussed
here in detail. The results are shown in figure 2.8 and 2.9 forxka =20, =0 =1.0,L=
L,= L =50, here, L,, L, and L, represent the length of the left , right and side channel,
respectively.

Figure 2.8 shows the electric potential distributions due to the electrical double
layer at the intersection region in the main channel. It shows a big gap at the intersection
due to the presence of the side channel. The presence of a side channel influences the
potential distributions only in the region close to the intersection (about -1.2 < X < 1.2).
The electric potentials due to the double layer do not vary axially in the main channel for
X<-120r X212

Figure 2.9 shows the electric potential distributions due to the electric double layer
at the intersection region in the side channel. For Y > 1.2, the potential does not change
along the side

channel.

2.6.2 Electric Potential due to External Electric Field

The numerical formulae to solve equation(2.28) through (2.30) are the same as that
of the potential due to the Debye layer. The results are shown in figures 2.10 and 2.11
for L,= L,=L_=50. It is shown that the potential distribution due to the external electric
field is linear except at the junction area where a potential perturbation is expected. Figure
2.10 shows the electric potential distribution in both the main and side channel with three
potentials applied at three reservoirs, respectively. Plots a) and b) in figure 2.10 show the
electric potential distribution due to external electric field in the main channel. In
particular, b) is an expanded view at the intersection. It is shown that in the intersection

region (-3 < X < 3), there exist differences in the electric potential across the main
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channel. Plots c) and d) in figure 2.10 show the electric potential distribution along the
side channel. The potential perturbation at the intersection can also be observed. The
electric potential will not change beyond the intersection region.

When the side channel is left floating, from figure 2.11, it is interesting to note
that the potential in the side channel remains the same, except in the region close to the
intersection. The perturbation occurs at the intersection region (-3 < X < 3 in the main
channel, and Y < 3 in the side channel).
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Figure 2.4 Dimensionless transverse electrostatic potential distribution across a channel
for different xa values at a fixed wall potential ({(=1) using three different methods.
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methods.

25



0-10 1 ks L v
__ Debye-Huckel approximation
Analytical approach for large xa
0.08 ® Present work )
~e
B T~
_ . e — &

S 0.06 1
c
)
<]
o
2 0.0
E 004 .
_&D_, ~ -
w T~ e—

0.02 4

e
T — -
0.00 --- o~ ——%
-1.0 04 -0.2 0.0

Figure 2.6 Dimensionless transverse electrostatic potential distribution across a channel
for different xa value at a fixed wall potential ({=0.1) using three different methods.
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Figure 2.7 Dimensionless electrostatic potential distribution across a channel for xa=100
and surface potential {=6 using three different methods.
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Chapter 3

Numerical Implementation of

Flow Equations

3.1 Introduction

The governing equations (2.42) to (2.48) form a set of elliptic partial differential
equations. They cannot be solved analytically in a closed form and hence they must be
solved numerically. Based on the assumption that the flow is in the creeping flow regime
and that the Boltzmann distribution can be invoked, the potential distribution can be
decoupled from the transport equations. Once the electrical potential distributions are
obtained, the major calculation step is the solution of the transport equations as presented
by the modified Navier-Stokes and the continuity equations.

Current techniques for the solution of incompressible viscous flows can be
categorized as (a) primitive variable (b) vorticity - stream function (c) vorticity - velocity
methods[31]. A literature review reveals an on-going concem with the primitive variable
approach. The so-called primitive variables are the velocity components and pressure. By
transforming the continuity equation into a pressure-Poisson equation, the approach led
to the development of the SIMPLE (Semi-Implicit Method for the Pressure Linked
Equations) algorithm[32-35]. This method proved to be a remarkably successful implicit
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method over the last two decades in resolving the pressure -velocity coupling in
incompressible flow problems. As with any other algorithm, the application of algorithm
SIMPLE is not without its difficulties. The SIMPLE-C[35] and SIMPLER[33] have been
developed as enhancement to the SIMPLE algorithm. Based on the SIMPLE algorithm,
a Separation Method of Liu and Masliyah [30] was developed which is a first order non-
conforming numerical scheme with a 3-point exponential interpolation. They decoupled
the multi-dimensional probiem into multiple one-dimensional sub-problems upon
discretizing. The velocity and pressure are decoupled at each iteration using Patankar’s
pressure correction method. The separation method has been shown to possess the
property of good convergence and improved economy. The following algorithm will
mainly depend on the Separation Method, as well some concepts of the SIMPLE-C will
also be applied for this electrokinetic flow problem.

3.2 Finite Difference Equations

3.2.1 Grid Definition _ .
The staggered grid, H H

figure 3.1, shows the nodal

arrangement in the calculation

domain for a 2-dimensional

problem. The spacing .B‘ """ E} """" @
. . . f_x' 4x:‘

between the grid lines is non- S W

uniform with a fine grid near % %

the wall and the entrance
region where the velocity
gradient is steep, and a o P o U =V

coarser grid at the centre of Figure 3.1. Staggered grid

the tube and far away from a

perturbed region. The purpose of the non-uniform mesh is to minimize the total number
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of nodes in the calculation domain.

In this study, U and V grid lines are first determined in the x and y directions,
respectively. P grid points are then placed at the centre of the cell formed by adjacent U
and V grids. The electric potential shares the same grid as P.

The quadratic interpolation function (equation 2.58) in a nonuniform one-
dimensional grid will be used to obtain finite difference equations.

3.2.2 Discretization of the Momentum Equation
Using equation (2.58) as a quadratic approximation for the velocity, the diffusion
term of equation (2.42) can be discretized as a finite difference term,

Pu_ 20U Gy 2UitUy) (3.1)
ax? Ky X)X X)) KX )X Xi)

PU_ 20Uy | 2UaUy) (3.2)
ayY? (Yj+[ -Yj)(Yjﬂ ‘Yj_l) (Yj ’Yj_{)(qu 'Yj-l)

op PPy (3.3)
X XXy
3 Py Piyj (3.4)
X Xi‘xi-l

Note that equation (3.3) implies a linear approximation for the pressure dependence on

X. Substitution of equations (3.1-3.4) into (2.42) leads to

auUp =euUg +wu U, +nuUy +sulU;+b+S (3.5)

or more simply
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where the summation is over the appropriate neighbour points (e.g. i-1 to i+1, j-1 to j+1).

The coefficients are given as

2

eu= (3.7

X X)X Xi)
2

wu = (3.9)
XX )X i)

nu= 2 (3.9
(Yj+1 ‘Yj)(Yj + ‘Yj-l)

cu= 2 (3.10)
(Yj ‘Yj-l)(qu ‘Yj_|)

au =eu+ wu+nu+su (3.11)

poOP _PijPiay (3.12)

X XXy
S =sinhy 2V +P) (3.13)
oX

The Y-momentum equation is similarly discretized, resulting in the same form as equation

(3.6) except with minor differences in the coefficients

avV, =E a,V,,+b+S (3.14)
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_op By Piq (3.15)

oY Y4
s =sinhp XX *P) ( 3.16)
oY

3.2.3 Treatment of the Continuity Equation

The pressure correction method of Patankar [32-35] will be used to treat the
continuity equation. For any guessed pressure field P", the velocity U” obtained by

solving the U-momentum equations satisfies equation(3.5) as seen below,

auUp=euUg +wu Uy, +nu Uy +suUg +gxli +§ (3.17)

where au, eu, wu, su and nu are the coefficients for U in equation (3.17). Correction of
the guessed pressure by P'=P-P* is therefore necessary to correct the U* by U=U-u*.

The relationship between U’ and P’ can be approximated as,

ul= L % ( 3.18)
au 0X

Here the SIMPLE algorithm is applied. ie the term Za U’ is neglected for economic

calculation. Similarly for V, the correction term is written as,

v/ 1 0P (3.19)
avoyY

The continuity equation becomes a pressure-Poisson equation

9,1 o', 8 o ap')=_v.[j; (3.20)
0X audX  0JY avdY

Where
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au* ev* (3.21)

Discretizing of equation (3.20) leads to

(3.22)
apP/p=epP'E+WpP/w+in'N+spP/ s*bp or apP’ =Y a P/ +bp
where

ap =ep+Wp+np+sp (3.23)
ep= ! (3.24)
wp= L (3.25)

au(X;-X; )AX
np= L ( 3.26)

av(Y,, Y)AY
P (3.27)
AX=X;-X,,, AY=Y,Y,, (3.28)
bp=-AU__AV (3.29)

AX AY

It is noted that a quadratic approximation of the velocity and the linear approximation for

the pressure have been used in order to yield a stable scheme [30].
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3.2.4 Boundary conditions

The treatment of the boundary must be consistent with the interior points.
Application of the velocity boundary conditions is straightforward, however, the boundary
condition for the pressure correction equation is not obvious. The general rule
recommended in reference [30] is used.

. Only when the gradient is known should one use a symmetrically extrapolated
grid outside of the domain of interest. Under no other circumstances should one use a grid
point outside the domain of interest.

2. For a Dirichlet velocity boundary condition, all the velocity components must
have a grid point on the boundary. The pressure nodes are not necessarily placed on the
boundary. dp'/on = 0 becomes the boundary condition.

3. When the velocity gradient is known on a boundary, the pressure node can be
placed on the boundary. However, the normal velocity components should not be placed
at the boundary.

4. The pressure node must be present on a pressure-known boundary, where the

normal velocity is not present. In this case, p'=0 should be set at the boundary.

3.3 Solution Procedure

3.3.1 Under-relaxation Factor
To moderate the changes in the consecutive solutions, under-relaxation is

introduced to the momentum equations (3.6) through « as,

(1+a)aulU_ =Za +AP  S+qauU* (3.30)
] nb™~'nb AX

where U" is the currently available value of U. The same factor is used for both U and
V equations. The optimal value of a lies in the range of 0.1-0.25.
The relaxation factor in the pressure correction equation is different from that of

the momentum equation. Since the initial value of P' is uniformly zero, the relaxation
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factor is introduced to equation (3.22) in the following way,

(1+a)ap P/ =Ea P/, +bp (331

We have noted that the under-relaxation factor a, is very important for the convergence
of P' equation, here a,;=0.25 has been used.

3.3.2 Solution Procedure

1) Guess the pressure field and initialize the velocity.

2) Evaluate the coefficients of the momentum equations ( such as equation(3.7)
to equation(3.12)) and the source term using the local potential fields which have been
obtained by solving equation (2.15) and equation(2.28).

3) Solve the momentum equation to obtain U* and V* values.

4) Evaluate the coefficients of the pressure correction equation and solve for P',
and correct the pressure field P=P*+P'.

5) Repeat steps 2-4 until continuity equation is satisfied.

The accelerated TDMA-Solver proposed by (Van Doormal & Raithby)[35] was
found to be effective. A 6 value of 1.90 was used for both the momentum and the
pressure correction equations. The accelerated TDMA-Solver was used together with an
ADI technique. At each iteration, usually S sweeps in each direction for the momentum
equations and then 5 sweeps for the pressure correction equation were found to be

sufficient for fast convergence.

3.3.3 Convergence Criteria

The overall iteration procedure for the momentum and pressure correction
equations was terminated when the relative grid average error in continuity equation was
less than 107, Hence the momentum equations are satisfied as long as the pressure field

is correct. The average relative error for the continuity equation is given by[30],
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> PRH, |
[FLOWIN,[{fFLOWOUT,| (3.32)

yi

where PRHj; is the error in the flow in and out of the conservational domain of P; and
FLOWIN and FLOWOUT are the flow into and out of the conservational domain,
respectively. This algorithm has been embodied in a computer program using Fortran-77

RSD =

language.
3.4 Test of Flow Program

In developing a possible new numerical scheme for solving the Navier-Stokes
equation, the channel entrance problem has often been regarded as a standard problem for
comparison. There are numerous investigations of the entrance flow in a channel made
of two parallel plates. Previously reported contributions [36-45] deal with different
versions of the classical finite difference and finite element methods as well as with
approximate analytic-type solutions obtained through linerization of the inertia term.

Various inlet flow conditions were considered, with particular emphasis on uniform

Av

U=0, v=0

X

U=1.5(1-¥9)
V=0

U=0, V=0

Figure 3.2. Geometry and coordinate system for developing duct flow

parallel flow. The outflow boundary condition is in general handled via consideration of
a fully developed velocity profile at a sufficiently large truncated channel length.
Recently, a hybrid numerical-analytical approach (the generalized integral transform
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technique, GITT) for incompressible steady state Navier-Stokes equation was employed
to solve this problem[44,45]. The creeping flow regime (Re=0) in the developing region
is considered here, the results will be compared with the literature data.

Consider creeping flow of a Newtonian fluid inside a parallel plates channel with
a uniform parallel inlet axial velocity distribution as shown in figure 3-2. The pressure
at outlet is specified as P=0. The solution was obtained on a Risc6000 main frame
computer using a 50x21 uneqhal spaced grid system with a fine grid size near the
entrance region and near the wall, and a coarser grid as the fully developed region is
approached. A typical CPU time for a converged solution is about 150 seconds.

Figure 3.3 shows the development of the axial velocity profile for creeping flow.
It is noted that for small X values ( in the entrance region) the velocity profile includes
a local minimum at the axis, Y=0, and symmetrically located maxima on either side of
the center line near the wall. The velocity overshoots have also been reported by other
investigators [40-42, 45]. The physical explanation for this phenomena is that, due to the
no-slip condition at the walls, the core flow must be accelerated in order to satisfy the
continuity equation. However, the flow acceleration does not instantaneously reach the
center line, therefore such bulges appear near the walls for small X. This type of velocity
profile has been observed up to Re=2000 [40].

Figure 3.4 compares the center line velocities computed by various researchers.
It is shown that the present solution agrees well with the solution due to integrated
transform techniques[45] and the solution of a finite element method[38]. Figure 3.5
shows the development of the axial velocity along the channel at various values of Y. The
flow development is not sensitive to the transverse location.

Figure 3.6 illustrates the development of the transverse velocity components
along the duct entry region, showing the expected migration of the relative maximum
towards the duct center line as the flow develops.

The distribution of mean pressure across the flow cross section versus the
downstream distance and its comparison with literature data are shown in figure 3.7. It
is seen that the value of the pressure gradient increases for decreasing values of X. It also

shows that the present work agrees well with the literature data.
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Chapter 4

Electroosmotic Flow in a Straight Channel

4.1 Introduction

For a surface zeta potential of less than 25 mV, the Debye-Hiickel approximation
can be invoked and the analytical solution for the fully developed flow can be obtained.
Consequently, the
study o f - - - - - -

electroosmotic flow in + + + +
a single channel can Anode ] Cathode
be used to test the Y /J I: :
numerical code . " . .

V=vg

developed here.

In this chapter, I
the electroosmotic
flow in a straight Figure 4.1 Electroosmotic flow in capillary channel.

channel formed by two
parallel plates is studied. The velocity and pressure profiles will be obtained for a
straight channel with a portion of its wall having different surface potentials. The

mechanism of auxiliary electroosmotic pumping in CE will also be considered.
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The problem considered here is sketched in figure 4.1. The walls are negatively
charged with a surface potential of {. The fluid enters the channel with either a flat
profile or a fully developed velocity profile. The parameters involved are xa, {, and the
electric field strength E,. The effect of varying these parameters on the flow will be
studied.

4.2 Fully Developed and Developing Electroosmotic Flow in a Capillary

Channel
4.2.1 Fully Developed Electroosmotic Flow

For small surface potentials ({<25 mV), the Debye-Hiickel approximation can be
invoked. For fully developed flow, equation (2.42) leads to,

- d*U “E cosh(kaY) (4.1)

_P —_— x
dy? cosh(xa)

X

where P, = -dP/dX, E, = -d®/dX. The boundary conditions are:

U _o ay =0 4.2)
Y

U=0 atY =l “#-3)

The velocity field U can be obtained by solving equation (4.1), leading to,

U =-Lp(v21)- ES 0 _cosh(aY), “.4)
(Ka)z cosh(xa)
The right hand side of equation (4.4) consists of two terms, the first term is the
Poiseuille flow due to a constant pressure gradient and the second term is the
electrokinetic flow due to an applied electric field, E,.
The average velocity in the channel can be obtained by integrating equation (4.4)
from Y=-1 to Y=1. It is given by,
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v-lp 56 [1--L tanh(ca)] @.5)
Ka

3% (k)

Figure (4.2) compares the velocity of the fully-developed electroosmotic flow
obtained by the present numerical code with equation (4.4). It shows that the present code
agrees well with the analytical solution.

The dimensional velocity can be obtained from equation (4.4) for a typical
electrolyte solution with parameters, £=78.5, £,=8.85*10"'2 C/N m?, p=1.0x10 (Pa.s),
k=1.381x10 "2 JK™, N,=6.022x10% mol ™, T=293 K, z=1, e=1.602x10""" C; channel half
width, a=5pm=5 x10%m. The expression for ka is given by equation (2.15),

2 1
(2“32 7. 4.6)
egkT

m:

where n_, is the ionic number concentration, n, = N,xC, C is the molar concentration

of the electrolyte solution in mol/m>. Substituting the above data into equation (4-6) leads

to,
k =1.0486x10%/C (m™) @.7
Substitution of the dimensionless parameters into equation(4.4) leads to,
u= —;_:lpx (A} +‘°‘s":’5¢"{1 -‘c";::?z; 4.8)
For large xa (» 1), the Helmholz-Smoluchowski equation gives,
u, =K, 4.9
where p, is the electroosmotic mobility given by,
_E&oYs (4.10)

be =—

<u> is defined as a characteristic velocity which is given by,
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2n_kTa
T}

<> = =24.365C (m/s) (4.11)

where C is concentration in mol/m>. Once the xa is determined the characteristic velocity
can be calculated using equation(4.11). The dimensional velocity will be obtained using
u=Ux<u> (m/s). Figure 4.3 shows how the velocity varies with ka. It can be seen that
as ka—ao, Wu,—»1, and at xa =20, w/u,=0.95 at y=0. For the convenience of computation,
ka of 20 is chosen as a parameter in modelling.

A test of grid sensitivity to the numerical solution has been carried out by
changing the grid size in both X and Y directions. Some calculations were carried out
using 41x50 and 61x100 grids with different stretching parameters. In all the tests, the

largest disagreement of the average velocity was smaller than two percent.

4.2.2 Developing Electroosmotic Flow

Consider electroosmotic flow of an electrolyte solution inside a parallel plate
channel with an uniform parallel inlet axial velocity distribution. The pressures at both
ends are of the same value. The entrance effect on the electroosmotic flow can be
obtained using the present numerical code. Figure 4.4 shows the pressure profile along
the centerline of the channel for different zeta potential values. One can observe that the
centerline pressure undergoes a sharp drop at the entrance mouth. This is because when
the electrolyte enters the capillary channel there will exist a transverse pressure
distribution due to the electric double layer (see equation (2.47)). The pressure then
gradually recovers to the outlet pressure, which is the same as the inlet pressure. The
positive pressure gradient means that the pressure force is against electroosmotic flow,
which is driven by the electric force. Therefore the electroosmotic flow is reduced due
to the entrance effect for a short channel (in this case L=10). The velocity profiles are
shown in figure 4.5. Clearly the net flow is due to both the electroosmotic flow and the
pressure driven flow (as shown in equation (4.4)). For higher zeta potential, the entrance

effect is more significant due to higher electroosmotic flow.

50



Velocity ratio, u/u,

i 1 i 1

0.0 — 1 1 1 1 1
410 -09 -08 -07 -06 -05 -04 -03 -02 -0.1 00

Y
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(.) with analytical solution (solid line) for € = -1.0.
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4.3 Controlling of Electroosmotic flow in Capillary Electrophoresis

4.3.1 Introduction

In capillary electrophoresis, it is well known that, concomitant to the
electrophoretic migration, the bulk flow of the solution, i.e. electroosmosis, is dependent
on the characteristics of the capillary surface as well as on the composition of the
conducting medium (electrolyte). The electroosmotic flow has a substantial influence on
the residence time of the analyte in the capillary. The understanding and control of
electroosmotic flow has an important implication on the design of electrophoretic
separation devices. In recent years, several strategies have been developed to control the
electroosmotic flow. The first effective means is to alter the chemical and physical
properties of the buffer solution. Changes in the pH and ionic strength of the buffer, and
in the type and concentration of the inert electrolyte or organic additives [8,9], as well as
changes in solvent viscosity, dielectric constant, and temperature, have been shown to
affect electroosmotic flow. Another simple approach to affect the electroosmotic flow is
to change the chemical composition of the capillary material by physical coating and
chemical deriv- atization methods[7]. As well, direct control of the electroosmotic flow
in capillary electrophoresis by using a radial electric potential gradient across the
capillary wall [10-14] has been
demonstrated. The applied radial

electric potential gradient can affect 0204
the polarity and magnitude of the

0.15 1

surface potential at the capillary- >

0.10 1
solution interface and therefore
would control the direction and the

0.05 1

flow rate of the electroosmotic 000

0 2 4 6 8

flow.
Figure 4.6 Dimensionless average velocity

Numerical modelling the yergys ¢ potential (xa=20, Ey=10).
control of electroosmotic flow in a
straight capillary channel is investigated in this chapter. The flow control in muitiple
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channels within a chip will be discussed in the next chapter.

4.3.2 Effect of Surface Potential on Electroosmotic Flow

Figure 4.6 shows the variation of electroosmotic flow with zeta potential. It is
shown that the velocity is linearly dependent on the surface potential. The surface
potential can be easily changed by varying the solution pH.

4.3.3 The Control of Flow by Changing Surface Potential in a Portion of
Capillary Wall

The use of external radial potential for controlling the electroosmotic flow can be
modelled by varying the surface potential within a given position of the capillary's walls.
This is possible as it was shown that the radial potential affects the zeta potential only in
those portions of the capillary directly inward of the external potential field [13].

Figure 4.7 shows the arrangement used in the control of electroosmotic flow by
externally applying a radial potential across a portion of a capillary [11]. Now consider
a capillary channel with a portion of the wall having zero surface potential. The velocity
and pressure profiles were obtained using the present numerical code. Figure 4.8 shows
the velocity and the pressure profiles for the case in which the surface potential on the
middle half of the wall is zero. It is observed that the velocity profile halfway within the
channel becomes parabolic. This is

simply due to the fact that in this

|

region the driving force is the —' 7 gteel Plate
pressure gradient alone. Setting the =
surface potential to zero can be [ 1
considered as coating a channel + -
wall with a material having zero - T
surface potential, or defect in the

I Figure 4.7 Schematic of the apparatus used to control
channe] wall. electroosmotic flow by imposing radial potential{11].
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Figure 4.9 shows the dimensionless average velocity variation with the length of
the imperfect wall ({'=0). One can observe that the flow rate is linearly dependent on
the length of imperfect wall. This is to be expected. The transport equations for creeping
flow show that the velocity is linearly dependent on the electric force, which is
proportional to the length of the perfect wall (having non-zero surface potential).

Figure 4.10 shows the average velocity across the channel versus the surface
potential of the middle portion of the capillary channel. It is demonstrated that when
£=C', the flow is solely due to electroosmotic effect. When C=-C, there is no net flow
in the channel. The flow will either be inhibited or enhanced depending on the values of
C' and C.

Figure 4.11 shows the velocity and pressure profiles for the case of {=-1.0 and
g'=-1.5. It shows that the flow in the middle portion of the channel is inhibited and a
positive pressure gradient exists. However, the flow in either side of the channel is

enhanced. This can be observed by the velocity profiles in figure 4.11.
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Figure 4.8 Velocity and pressure profiles in a capillary channel having the surface
potential set to zero within the middle half of the channel for ka=20, E,=10, L=100.
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4.3.4 Control of Flow by Auxiliary Electroosmotic Pumping
The electroosmotic means to control electroosmosis has been developed with the
application of an auxiliary capillary[15]. A conductive membrane can be used to connect
a second capillary to the primary capillary, the membrane serving as the common ground
for both high voltage sources. The direction and magnitude of the field applied to the
second capillary controls the bulk flow in the first capillary. It may be augmented,
inhibited or be unaffected by the pumping action exerted by the second capillary.
Consider the arrangement schematically shown in Figure 4.12. Capillary Cl1 is
connected to a
source vial housing

a high voltage ﬂ%l AN

electrode HV1 and _
to a grounding HV1 HV2
joint J. Here no L

C1 1 G2

fluid can exit at -
Figure 4.12 Auxiliary electroosmotic pumping scheme.

point J, thus, there
is no equilibration
with atmospheric pressure. The joint J is connected to capillary C2, hereinafter referred
to as the pump capillary. C2 terminates in an electrolyte reservoir, housing a second high
voltage source electrode HV2. J is the common ground. When HV1 and HV2 are opposite
in sign and the electric field strength in C2 is larger than that in Cl, the electroosmotic
flow generated in C2 augments the flow in C1. The flow in one channel will inhibit the
other when the sign of the potential of both reservoirs is the same. It would be expected
that a pressure gradient will be induced along the channel if the potential gradients in the
two capillaries are different. Here the flow should include both electroosmotic and
hydrostatic contributions.

Figure 4.13 shows the velocity and pressure profile along the capillary channel for
the case of ®,=1700, ®,=-3000. @, and @, are the dimensionless electric potential
applied at inlet and outlet, respectively. In this case ka=100, £{=-1.0. The boundary
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conditions for flow are, uniform inlet and fully developed outlet. The plot shows that the
flow in the capillary C1 is enhanced by the flow in the auxillary capillary C2. Therefore,
the velocity profile in Cl is pulled out and the flow in C2 is held back. The velocity
profiles in both capillaries are not flat because of the hydrodynamic force, this may lead
to band broadening in CE and affect the efficiency of electrophoresis separation due to
Taylor dispersion[49]. Figure 4.14 shows the variation of the dimensionless average
velocity with the dimensionless electric potential applied at the outlet of capillary C2
while the potential at the inlet of capillary Cl is kept the same value. The average
velocities for different surface potentials decrease with the electric potential at outlet ©,.
For all cases illustrated in figure 4.14, the net flow is zero when the potential at outlet
(®,) is equal to that at inlet (®,). This is because the electric field strength across both
channels are opposite in direction and their magnitudes are same, therefore there is no net
flow across the channels.

In conclusion, the velocity profile resulting from controlling the electroosmotic
flow is shown to be a non plug like profile. The fluid flow consists of both Poiseuille
and electroosmotic flow, the pressure driven Poiseuille flow is induced due to the
differing electroosmotic flow along the capillary channel. The effect of this velocity
profile on the efficiency (dispersion coefficient or plate height HETP) should be
considered during the flow controlling process[46,47]. It should be recalled that a plug

velocity profile leads to a zero axial dispersion.
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Figure 4.13 Velocity and pressure profiles in a capillary channel with different electric
field in the main capillary C1 and auxiliary capillary C2 (xa=100, £=-1.0).
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Chapter 5

Electroosmotic Flow in T-shaped Capillary

Channels

5.1 Introduction

In chapter 4, the electroosmotic flow and its control in a simple straight channel
were investigated. The factors which affect the electroosmotic flow, such as ka, surface
potential and electric field strength were considered. The results showed that both
electrokinetics and pressure can be used for the control of electroosmotic flow in a
capillary electrophoresis. From these results one can expect that the hydrodynamic effects
can be very important for a manifold channel system in which both sample injector and
electrophoresis system are integrated together. The experimental results [18] have shown
qualitatively that sample leakage from a side channel and electrolyte mixing at an
intersection exist during the electrophoresis process. The control of leakage at an
intersection can be achieved by controlling the potential of each connecting channel
simultaneously.

The numerical study of the electroosmotic flow is carried out in a T-shaped
capillary channel with a side channel which either is left floating or has a fixed potential.
The goveming equations were described in chapter 2. The calculation domain consists

of the main channel, the side channel and three ends connected to their respective
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reservoirs.

5.2 Liquid Leakage From a Floating Side Channel

It has been shown that if the potential of the side channel is left floating while a
voltage is applied to cause flow in the main channel, there will be leakage of solution
from the side channel, thus, contaminating the main channel [16-20]. Quantitative study
of the leakage can be obtained using mathematical modelling of the electrokinetic flow
in simple T-shaped capillary channels.

5.2.1 Effect of the Channel Length on the Leakage

Consider a T-shaped channel as shown in figure 5.1. L, L, are the length of side
channel and main channel, respectively. The side channel is located in the middle of the
main channel and the electric potential at the side reservoir is left floating (FL), the ratio
of the length of the side channel to the main channel is kept the same at LJ/L,,=4/5. The
dimensionless potential gradient in the main channel is maintained at E_=10. Here, ©,=0,
E,=(®,-®,)/L, and @; is left floating.

The variation of the average velocities in both the main channel and the side
channel with the channel length is shown in figure 5.2, for L=100-1500, ka=20, Ex=10,
and (=C'=-10. It

clearly shows a

significant | C J
decrease in leakage
from the side — Ls —
channel when both

A B
channel lengths are
increased, even — Lm

though the LJ/L,

ratio remains Figure 5.1 Schematic of connecting channels, A, B and C are three
reservoirs. L., and L, are the lengths of the main and the side

constant. The ratio .
channel, respectively.
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of leakage out of the floating side channel ranges from 14.56% (for L,=100) to 1.13%
(for L,=1500), indicating that there is less leakage for a longer side channel.

As indicated in figure 5.3, when the side channel is left floating, the electric
potential is relatively constant along the side channel. That means that there is no electric
force to drive the electrolyte to flow along the side channel. The flow must be driven by
a pressure gradient.

Figure 5.4 may help to understand this phenomenon. It shows the pressure profile
along the center line of the main channel for different channel lengths. The center line
pressure undergoes a sharp drop at the entrance mouth as observed in straight channels.
This is because when the electrolyte enters the capillary channel there exists a transverse
pressure distribution due to the electric double layer (See equation (2-47)). The pressure
then gradually recovers to the outlet pressure, which is the same as the inlet pressure.
The plot also shows that the pressure at the intersection varies little from 0.35(for
L,=100) to 0.10 (L,=1500). However, the pressure gradient along the side channel
decreases significantly when the channel length is increased. This leads to a decrease in
the leakage rate. As the driving force is solely due to the pressure gradient, the velocity
profile is expected to be parabolic in the side channel. The velocity profiles both in the
main channel and in the side channel are shown in figure 5.5 for xa=100, &= {'=-1.0,
L=1000, L =800, E,=10. The fluid enters the main channel with a flat profile and
develops along the channel due to the effect of both the electric force and the
hydrodynamic force. Therefore, its fully-developed profile is the superposition of the
electroosmotic flow and Poiseuille flow.

Figure 5.5 (b) shows the velocity development along the side channel. It shows
that both fluid inflow and outflow occur at the intersection area because of the convective
effect. However, the outflow is larger than the inflow such that the net flow results in
leakage from the side channel to the main channel. As expected, the fully developed
velocity profile in the side channel is parabolic. The penetration length is about 1.5 times
the channel width.

Figure 5.6 shows the streamlines at the intersection for L;=100, L.=80. It
illustrates that some of the fluid flows up into the side channel and then runs back to the
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Figure 5.2. Variation of dimensionless average velocity in the channels
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main channel. The numbers indicated at the streamline of figure 5.6 represent the values
of the stream function. The value of stream function is constant along each streamline.
In steady flow the streamlines are the curves actually traced out by particles of the fluid.
The stream function, ¥(x,y), is given by equations (5.1) and (5.2),

w=2F (5.1)

By
v=-Y (5.2)
%

On a streamline where ¥ = constant, we write,

dv =g ¥4y 2o (5.3)
ox oy

Then the equation for streamline is given by

dy . _OF/ox _v (5-4)
dx 0¥y u
One of the important property of the stream function is that the difference in the value
of the stream function between two streamlines is the volumetric flow rate between the
two streamlines (per unit depth). The stream function on the wall of Y=-1 is zero.

An experimental study due to Seiler et al.[18] demonstrated the same leakage
phenomena in T-shaped channels. In figure 1.3, the buffer is driven through the main
channel while the side channel of the dye sample is left floating. The photograph shows
dye flow into the intersection from the side channel. The streamlines in figure 5.6 show
the same profile as that of figure 1.3. The streamlines show that some liquid in the main
channel flows into the side channel and then flows back to the main channel. This
illustrates that the numerical model can be a useful guide for predicting the leakage

phenomena in intersecting channels.
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5.2.2 Effect of the Side Floating Channel Location

As illustrated in the previous section, when the side channel is left floating, the
leakage flow from the side channel is solely due to hydrodynamic effects, i.e. the pressure
gradient. When the side channel intersects the main channel at different positions, the
flow will be different as the pressure varies with position along the main channel. The
pressure variation along the main channel for different side channel locations is shown
in figure 5.7. Figure 5.8 shows the variation of the dimensionless average velocity in
each channel with the side channel location for L =1000, L,=800, xa=20, ®,=10000,
®,=0, P, is floating, £=-§'=1.0. As the pressure difference between the intersection point
and the inlet of the side channel decreases for increasing L,/L,, values, ie. the side
channel location is closer to the main channel outlet, one would expect less leakage for
increasing L,/L, values. This is clearly observed in figure 5.8 where it is shown that the
average velocity in the side channel decreases with L;/L,,. The total flow in the main

channel, U,, remains nearly constant.

5.2.3 Effect of the Side Floating Channel Length

Figures 5-9 and 5-10 illustrate the effect of the length of the side channel when
the length of main channel is maintained at the same value (L ,=1000). Figure 5-10 shows
that the leakage from the side channel decreases with increasing side channel length. This
means that the longer the side channel is, the more the resistance to the fluid flow. The
ratio of leakage out of the side channel to the flow out of the main channel ranges from
3.87% for L =200 to 1.69% for L;=800. The pressure at the intersection region does not
vary much with an increase in the length of the side channel (figureS.9). Therefore, the
pressure difference between the side reservoir and the intersection will change little.
However, the driving force, or the pressure gradient, will decrease significantly.
Therefore, leakage decreases with the side channel length.
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5.2.4 Effect of the Surface Potential and the Electric Field

The surface zeta potential is normally influenced by both the solution composition
in terms of electrolyte content and pH value and the surface characteristics {8]. Thus
when the electrolytes in the side channel and the main channel are different in pH or
composition, the zeta potential in each channel can in generai be different as well. In
tumn, the surface zeta potential and the electrolyte concentration determine the channel's
electroosmotic flow. Results from this study have shown that, for the case of a floating
side channel, the flow in each channel will not vary with zeta potential of the side
channel. This can be expected from the analysis discussed in the previous sections, that
is, when the side channel is left floating, the driving force for the fluid flow in the side
channel is due to the pressure difference rather than electric force. However, the zeta
potential of the main channel would affect both flows in the main channel and the side
channel.

From figure 5.11, one can observe that the average velocity in each channel is
linearly proportional to the zeta potential in the main channel. The ratio of leakage from
the floating side channel to the total flow in the main channel does not vary with zeta
potential of the main channel. The relationship between the electroosmotic flow and zeta
potential in manifold channels is similar to that of a straight channel. As illustrated in
chapter 4, the velocity increases with zeta potential. The linear relationship between the
velocity in the side channel and zeta potential can also be expected from the transport
equation for creeping flow. The average velocity is proportional to the pressure difference
between the side reservoir and the intersection point, while the pressure at the intersection
point is linearly dependent on the flow in the main channel.

Figure 5.12 shows the variation of the average velocity in each of the channels
with the electric field strength. As expected, the flow increases linearly with the electric
field strength.
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5.2.5 Effect of the Floating Channel Length When Flow is around a

Comer

In figures 5.13 and 5.14, the electrolyte was directed from the side reservoir
toward the right reservoir while the remaining reservoir (left side) was left floating (F1).
Figure 5.13 shows the variation of the velocity in each channel with the length of the
floating channel for L .=500, L, =500, L,=200~800. Taking a close look at both figures
5.10 and 5.13, one can find that the trends are similar to each other. The leakage from
the floating channel decreases with increasing floating channel length. The velocities in
the two active channels (side and right) varied little with an increase in the floating
channel length, e.g., the average velocity in the side channel varies from 0.02252 for L,
=200 to 0.02276 for L,=800. The ratio of leakage out of the floating side channel to the
flow out of the right active channel ranges from 3.70% for L,=200 to 1.66% for L;=800.
Comparing these values with the case in section 5.2.3, we can say that essentially no
difference in the flow between both cases is present. The reason for this may be that the
resistance to flow around the comer is the same as the resistance to the straight flow for
creeping flow in which the inertia terms are neglected.

Figure 5.14 shows the velocity profiles in each channel. As expected, the velocity
is parabolic in the floating channel. The velocity profile at cross-section 3 shows both
inflow and outflow at the intersection region with a net flow from the floating channel
to the active channel. The streamlines in figure 5.15 clearly show the flow near the

intersection region.

5.3 Flow in Each Channel with an Electric Potential Applied to Each
Reservoir

5.3.1 Control of Leakage by Use of a Potential

All of the results discussed up to now have been based on a system in which one
of the intersecting channels was left floating. As indicated above, the leakage out of the
floating side channel is due to convective effects. The leakage can be controlled by
increasing the length of the side channel or changing the position of the side channel.
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It is also possible to control the flow at the intersecting channels by controlling
the potential of all reservoirs from which a channel initiates. Considering the three
channels intersecting in a T shaped configuration (L ,,=1000, L .=800), three potentials
are applied to the reservoirs with two potential sources and a ground potential. The
potential at the left reservoir is fixed at ®,=10,000, the right potential at ground. The
problem is to predict what is the side potential @, required for zero leakage.

Figure 5.16 shows the variation of the dimensionless average velocity in the
channels with the side potential ®,. It shows a linear dependence of the velocity in each
channel on the potential applied to the left reservoir. We also note that the leakage from
the side channel is zero when the side channel potential is at 4820. As was indicated in
figure 5.3, the potential at the side channel is 5000 when the side channel is left floating.
This means that an electric potential difference of 180 is needed to counter the flow. The
potential distributions in the channels are illustrated in figure 5.17 for ©;=4820. It shows
the electric potential distributions in both the main channel and the side channel are
basically linear, see a) and c) of figure 5.17. A small perturbation at the intersection
region is expected. Figure 5.18 shows the pressure profiles along the center line of the
main channel for different side channel potentials. Figure 5.18 clearly shows that there
exists a pressure difference between the intersection and the side channel end at which
the pressure is the same as that of main channel ends. It is this pressure difference that

needs to be balanced by electric force for zero leakage.

5.3.2 Effect of the Surface Potential of the Channels
In this section, the effect of surface potentials in both the main channel and
the side channel will be discussed with three electric potentials applied to all reservoirs.
When the surface potentials are different in each channel, the electroosmotic flow will
also be different. The difference in electroosmotic flow between each channel will result
in hydrodynamic effects. The flow behavior will be discussed in this section.
Figures 5.19 and 520 show the variation of the average velocity in both the side
channel and the main channel with the side channel surface potential, for different left
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channel potential ®,. From figure 5.19, one can observe that the velocity in the side
channel increases with the side channel surface potential. This is straight forward as the
electric force is linearly dependent on the surface potential. The plot also shows that the
velocity in the side channel for ®,=5500 is larger than that of ®,=10,000. This can be
explained by the increased electric field strength in the side channel with ®,=5500. The
potential at the intersection can be approximately obtained from equation (2.35).

Case 1: For ®;= 5500, ®,= 0, ®,= 5500, L, = L, = 500, L= 800, one can
calculate @ ;= 3404.76 from equation.(2.35); The electric field strength in the side channel
is given by E; = (®;-®)/L, = 2.619. Similarly the electric field strength in the left
channel, E; = (©,-®,)/L,= 4.191; the electric field strength in the right channel, E, =
(P-P,)/L,= 6.810.

Case 2: For ®;=10000, ®,=0, ®,=5500, L, =L,=500, L.=800, one can get
©=5119.05. The electric field strengths in each channel are given as, E= 0.476,
E;=9.762, E;=10.238. Clearly, the electric field strength, E, for ®,=5500 is larger than
that for ®,=10,000. Therefore the flow in the side channel for ®,=5500 is larger than that
for ©,=10,000.

From figure 5.20, one can observe that the average velocity in the left channel
decreases slightly with the side channel surface potential. This is due to the increase in
the resistance to flow in the intersection region when the flow in the side channel is
increased. However, the total flow, U, in the right channel increases with the side
channel surface potential. This means that the increase of flow in the side channel
dominates over the decrease of flow in the left channel.

In order to describe the hydrodynamic effect on the flow, figure 5.21 and figure
5.22 show the variation of velocity ratio in the channels with the side channel potentials.
Here V
flow alone, which can be obtained from equation (4.5) for P,=0. V;/V,;, shows the
magnitude of the hydrodynamic flow relative to the electroosmotic flow. Figure 5.21

in is the dimensionless average velocity in the side channel due to electroosmotic

shows that the hydrodynamic effect becomes smaller when the side channel surface
potential is larger. This is because the electric force becomes larger as the side channel
surface potential is increased. The reason why the velocity ratio for ®,=5500 is less than
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Figure 5.30. Streamlines in the channels for L, =1000, L.=800,
xa=20, {=- 0.1, £'=-1.0, ® =d.= 5500, ©,=0.
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that for ®,=10000 is that the electroosmotic flow in the side channel for ®,=10000 is
smaller. Figure 5.22 shows the velocity ratio in the main channel for two different P,
values. The plot illustrates that the relative effect of the hydrodynamic term for ®,=5500
is stronger than that for ®;=10000, as the electroosmotic flow in the main channel is
larger for ®;=10000.

Figure 5.23 shows the pressure profiles along the centerline of the main channel
for different side channel surface potentials. It shows that the pressure at the intersection
becomes larger as the side channel surface potential is increased, indicating the resistance
to flow in the main channel is increased as the flow in the side channel is increased.
From the pressure profile of figure 5.23, one can expect the velocity profile to be
different in each channel, as the velocity profile is the superposition of both the
electroosmotic flow due to an electric field and the hydrodynamic flow due to pressure
gradient. The velocity profiles at different sections of the channels for L =1000, L:=800,
®,=0,=5500, ®,=0, &= -1.0, = -1.3, are shown in figure 5.24. The velocity profiles
at sections 2, 5 and 8 are fully developed profiles in the left, right and side channels,
respectively. As indicated in figure 5.23, the pressure gradients in both the side and the
left channels are positive, therefore, the hydrodynamic flow is against the electroosmotic
flow, leading to concave velocity profiles at sections 2 and 8. The electroosmotic flow
in the right channel is enhanced by the hydrodynamic flow, therefore the velocity profile
at section S is convex. Figure 5.25 shows the streamlines for the conditions indicated in
figure 5.24. It shows the flow path of liquid at different locations. The numbers of
streamline in each channel indicates the relative magnitude of flow rate in each channel.

Figure 5.26 shows the variation of the dimensionless average velocity in the
channels with the main channel surface potential for L, =1000, L;=800, ®=®;=5500,
®,=0, §'= -1.0. The velocity in each channel increases with the main channel surface
potential. It is not hard to understand the increasc in flow in the main channel as the
electroosmotic flow is proportional to the surface potential. One can observe that when
the surface potential of the main channel is very small (e.g. £=-0.1), the flow in the left
channel is negative (figure 5.30 shows the streamline for this case). This means that for

small main channel surface potential the pressure driving force dominates over the
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electrokinetic force in the left channel, leading to flow toward the inlet of the left channel.
The increase in the flow of the side channel is due to the increase of the momentum in
the main channel, leading to more drag force at the intersection region. Figure 5.27 shows
the variation of the velocity ratio in the channels with the main channel surface potential.
It also illustrates the hydrodynamic effect is significantly higher for small surface
potential.

The pressure profile of figure 5.28 may help in understanding the above mentioned
trend. As indicated in figure 5.28, the pressure at the intersection is decreased when the
main channel surface potential is increased. For {=-0.1, the pressure at the intersection
is so high that the flow in the left channel is reversed. Figure 5.29 shows the velocity
profile for £=-0.5. The profiles are similar to those of figure 5.24. The velocity in the left
channel and the side channel are concave in shape, indicating the hydrodynamic flow is
against the electroosmotic flow. The velocity profiles in the right channel are convex due
to the negative pressure gradient, meaning that the net flow is due to the contribution of

both the electroosmotic flow and a pressure driven flow.
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Chapter 6

Summary and Recommendations

The objective of this study was to analyze the electroosmotic flow in a capillary
electrophoresis system (CE). The electroosmotic flow plays a very important role in CE and
makes the full automation of a CE system possible. It is desirable that liquid flow in
intersecting channels be controlled and determined quantitatively for a CE system in which
electroosmotic injection and electrophoresis are integrated together on a planar glass chip.
The mechanism of the control of electroosmotic flow in a single straight channel and in
intersecting channels of a T-shaped configuration has been studied.

A numerical study was carried out for steady electrokinetic flow in both single
straight capillary channels and intersecting channels of a T-shaped configuration. The
Poisson-Boltzmann equation was decoupled from the transport equations. The electric
potential and the space charge density distributions on a cross section of a capillary were
obtained numerically by solving the nonlinear Poisson-Boltzmann equation for arbitrary
electrokinetic radius( ka) and arbitrary surface potentials. The electrostatic potential due to
an applied electric field was obtained by the Poisson equation. The velocity and pressure
profiles were obtained by solving the modified Navier-stokes equation using a primitive
variables algorithm.

Initially the electroosmotic flow control in a single straight channel was studied by
changing the surface potential on the mid part of the capillary channel and by the use of
auxiliary pumping capillary. It was shown that a hydrodynamic effect is induced due to the
difference in electroosmotic flow along the channel. The velocity profile is a superposition
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of an electroosmotic flow and a Poiseuille flow. The velocity profiles along the channel was
no longer 'plug-like' under some conditions. The effect of Taylor dispersion due to non-
plug like velocity profile on the separation efficiency of capillary electrophoresis may need
to be considered.

A systematic study on the effect of the main variables was undertaken for the
intersecting channels in a T-shaped configuration. It was shown that the convective effect is
an important factor that affects liquid leakage from the floating channel in an intersecting
channel system in which electric field is applied to induce electroosmotic flow in active
channels. The magnitude of leakage out of the floating channel depends on the length and
location of the channel. The longer the floating channel is, the less the fluid leakage out of
it. The ratio of leakage out of the floating side channel to the total flow in the main channel
ranges from 14.56% for L;=100 to 1.13%for L=1500, when the ratio of the length of the
side channel to that of the main channel is maintained at 4/5. When the lengths of the
channels are kept the same (eg. L»,=1000, L;=800), the flow out of the side channel varied
with the location of the side floating channel. The ratio of the leakage changed from about
3% to 0.6% when the side channel moved downstream from the entrance to the outlet. It
was shown that the leakage phenomenon from the floating channel was the same,
irrespective of the direction of flow at the intersection. The surface potential and electric
field were quantitatively shown to be very important parameters controlling the
electroosmotic flow. The linear dependence of the flow in each channel on the surface
potential and electric field were demonstrated.

The predicted streamline pattern was shown to be similar to the experimentally
obtained photograph{16]. The velocity profiles in both the main channel and side channel
were obtained. It was shown that the velocity profile in a floating channel is parabolic as
the driving force in this channel is due to pressure rather than electric force. The velocity
profiles in active channels were shown as a combination of electroosmotic flow and

Poisuille flow.
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The control of flow in each channel by use of an applied potential was illustrated.
It was shown that the direction of the flow could be reversed in one of the channels by
manipulating the applied potential at each reservoir. The velocity in each channel varied
with the surface potential when an electric potential was applied to each reservoir.

The numerical results, of course, must be validated by experimental tests. To this
end, some experiments have been carried out on measuring electroosmotic flow and
electrokinetic parameters in the Chemistry Department of University of Alberta. Further
studies using numerical modelling of electroosmotic flow for 3- Dimensional problems and

heat transfer under the influence of electric current should be conducted.
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