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ABSTRACT 

Computer-based quality management systems have been widely implemented throughout the 

construction industry as per the requirement of the International Organization for Standardization 

(ISO) 9000. Although these systems have facilitated the collection of vast amounts of quality 

management data, conversion of this data into useable information remains challenging for many 

practitioners. Automated, data-driven quality management systems, which facilitate the 

transformation of data into useable information, are often implemented to enhance decision-

making processes. However, for a data-driven quality management system to be successful, it 

must accurately estimate process uncertainty. Integration of accurate, reliable, and 

straightforward approaches that measure uncertainty of inspection processes are instrumental for 

the successful implementation of automated, data-driven quality management systems. 

This research has addressed these limitations by exploring and adapting Bayesian statistics-based 

analytical solution and Markov Chain Monte Carlo (MCMC)-based numerical solution for 

fraction nonconforming posterior distribution derivation purposes. Using these accurate and 

reliable inputs, this research further develops novel, analytically-based approaches to improve 

the practical function of traditional pipe welding quality management systems. Multiple 

descriptive and predictive analytical functionalities are developed to support and augment 

quality-associated decision-making processes. These include (1) operator quality performance 

measurement, (2) project quality performance forecast, (3) product complexity measurement, 

and (4) rework cost estimation and control. Multi-relational databases (e.g., quality management 

system, engineering design system, and cost management system) from an industrial company in 



iii 

 

Edmonton, Canada, are investigated and mapped to implement the proposed novel approaches, 

and case studies are conducted to demonstrate their feasibility and applicability.  

This research has contributed to the academic literature by: (1) providing a novel Bayesian-based 

approach for fraction nonconforming uncertainty modelling to address hard issues in simulation 

input model updating; (2) creating an MCMC-based numerical solution for complex probability 

distribution approximation; (3) developing a dynamic simulation environment that utilizes real-

time data to enhance simulation predictability; (4) advancing uncertain data clustering techniques 

using Hellinger distance-based similarity measurement; (5) providing a systematic approach for 

analyzing product complexity using the indicator of product quality performance; and (6) 

creating a novel absorbing Markov chain model for simulating construction product fabrication 

processes associated with rework. 

The industrial contributions of this research are identified as: (1) developing a simulation-based 

analytics decision-support system to enhance quality-associated decision-support processes; (2) 

creating reliable and interpretable decision-support metrics for quality performance measurement, 

complexity analysis, and rework cost management to reduce the data interpretation load of 

practitioners and to uncover valuable knowledge and information from available data sources;  

and (3) generating meaningful simulation results to assist practitioners in performing quality and 

rework cost risk analysis during both the project planning and execution phases of a project. 
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1 CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 

The International Organization for Standardization (ISO) has developed a series of quality 

management standards (ISO 9000), issued in 1987, which have been implemented throughout the 

world to increase consistency and to ensure minimum quality standards in construction (Chini 

and Valdez 2003). According to ISO 9000, quality is defined as “the degree to which a set of 

inherent characteristics fulfills requirements” (Hoyle 2001). In the construction industry, quality 

performance is listed as a key performance indicator essential for successful project delivery 

(Bassioni et al. 2004; Chan et al. 2004). From a practical perspective, poor quality performance 

often leads to penalties, cost and schedule overruns, and productivity loss (Battikha 2002). 

Consequently, unsatisfactory quality performance can negatively impact companies’ reputations 

and market competitiveness (Jaafari 2000; Yates and Aniftos 1997).  

As the concept of lean construction becomes increasingly implemented, a greater number of 

construction components are being standardized and manufactured in fabrication shops (Salem et 

al. 2006). Examples include pipe spools for oil refinery plants (Wang et al. 2009) and wall panels 

for residential buildings (Shewchuk and Guo 2012). Prefabrication of construction products 

allows for the implementation of more rigorous quality control processes. Specifically, many 

components are inspected as either conforming or nonconforming to specified quality standards 

(Montgomery 2007). For example, a failure of nondestructive examination (NDE) for a pipe 

weld is recorded as nonconforming and requires rework. In practice, construction companies use 

the indicator of project fraction nonconforming (i.e., the number of nonconforming items over 

the number of inspected items) to measure their fabrication quality performance. However, 
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uncertainties, such as a vast number of designs and variable operator quality performance, make 

this measurement more complex. Improper management of the quality-associated processes 

negatively impacts the overall project performance.  

As required by ISO 9000, computer-based quality management systems have been widely 

implemented for quality management purposes within the construction industry (Battikha 2002; 

Chin et al. 2004). For this purpose, the construction industry relies primarily on commercial 

Enterprise Resource Planning (ERP) systems, quality management software, or in-house 

computer solutions. Although these systems have facilitated the collection of vast amounts of 

quality management data, conversion of these data into usable information remains challenging 

for many practitioners (Dean 2014). Other types of information, such as engineering design and 

cost management information, are typically stored in companies’ isolated management systems 

and are not efficiently utilized for quality-associated decision support.  

Therefore, a novel, automated, data-driven decision-support system is needed to improve quality-

associated decision-making processes. For the new generation decision support system to be 

successful, it must:  

• Source data from multiple sources;  

• Incorporate advanced analytical techniques; and  

• Generate reliable and accurate decision-support metrics.  

By fusing multiple data sources, the following quality-associated challenges are expected to be 

addressed through the developed decision-support system in this research:  
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• The quantitative measurement of nonconforming quality performance uncertainty, which 

can combine previous knowledge with observed real-time data;  

• Data-driven nonconforming quality performance prediction models at product-, project-, 

and operator-levels;  

• Construction product complexity assessment through the indicator of quality performance; 

and  

• Quality-induced fabrication rework cost estimation and control through real-time updated 

quality and cost performance data.  

1.2 Research Objectives 

The overall goal of this research is to develop a novel, analytics-based decision support system to 

enhance quality-associated practices of the industrial construction sector. This research intends to 

achieve the following objectives: 

Objective 1. Measure fraction nonconforming performance through the integration of historical 

and real-time information to improve the way fraction nonconforming is determined in current 

practice. The following activities will be undertaken to achieve this objective: 

• Create novel models, capable of both dynamically incorporating real-time data and 

uncertainty, to measure fraction nonconforming quality performance.  

• Create data-driven, fraction nonconforming prediction models for product-, project-, and 

operator-level forecasting.  
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Objective 2. Develop novel analytical approaches, based on dynamic simulations, for 

augmenting quality-associated decision support. The following activities will be undertaken to 

achieve this objective: 

• Develop a dynamic simulation environment, which is capable of sourcing multi-relational 

databases and updating simulation input models with real-time data, to enhance the 

predictability of simulation models.  

• Develop novel analytical models to generate meaningful decision-support metrics for 

improving quality-associated practices. 

1.3 Research Methodology 

This research develops a simulation-based analytics framework to incorporate analytically-based 

simulation approaches for enhancing quality-associated performance of construction projects. 

The proposed framework was derived from state-of-the-art concepts related to data analytics 

applications (LaValle et al. 2011), dynamic data-driven application systems (Darema 2004), and 

simulation-based analytics (Dube et al. 2014). The framework makes use of a variety of 

analytical methods, including data mining, to identify anomalies or missing information, and 

simulation methods, to populate and fill gaps or to validate data. Algorithms and models that 

facilitate analytics use the transformed data together with simulation models to generate desired 

metrics for a given decision-support application within the analysis framework. 

At the core of the proposed framework is the dynamic, data-driven application system (DDDAS) 

concept (Darema 2004). DDDAS refers to a paradigm that strives to seamlessly couple the 

simulation world with measurements of a real system in real time. This concept facilitates the 
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dynamic addition of new data into simulation models to enhance the accuracy and predictability 

of the original models at execution. Many of the improvements to the original model are a result 

of automated internal calibrations; data used for this purpose are typically archival, real-time 

generated, or from online measurements of actual systems (e.g., sensors, detectors, etc.).  

While simulation applications in construction are mature, DDDAS offers potential advancement 

to the state-of-the-art. The prevalent approach in construction simulation is to use statistical 

distributions and probabilistic methods (e.g., Markov chain) to model uncertainties. Updating of 

the input models to realign with new data in a dynamic manner and in real-time represents 

significant challenges—which this research resolves by building upon the works of DDDAS and 

Bayesian techniques to update input models (e.g., statistical distributions and probabilities) with 

new data to provide more accurate predictions. 

Here, the concept of simulation-based analytics is developed for achieving the aforementioned 

objectives using existing quality management, engineering design, and cost management data. 

The specialized framework, summarized in Figure 1.1, is comprised of five components, namely 

the data source, data adapter, data analysis module, simulation module, and decision support 

module. Detailed description and development information for these modules are introduced in 

Chapter 3, Section 3.3. Notably, this simulation-based analytics system can be generalized and 

implemented at companies through simple modifications of the data adapter as per the 

companies’ data structure.  
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Figure 1.1: Research framework. 

R (https://www.r-project.org), a free programming software for statistical computing and 

graphics, is utilized to drive all components of the entire framework. In addition to basic 

functionalities, such as data manipulation, statistical calculation, and graphical display, more 

than 10,000 packages are available on CRAN (https://cran.r-project.org) for advanced data 

analytical tasks, such as data mining, machine learning, and simulation. These packages are a 

collection of R functions that makes it easy to immediately get access to the latest data mining, 

machine learning, and simulation techniques. R allows users to perform hybrid data analysis 

processes, such as the transformation of real-time data, the creation of analytical models, and the 

generation of decision support metrics, under one integrated environment.   

https://www.r-project.org/
https://cran.r-project.org/
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1.4 Thesis Organization 

This thesis is organized following a paper-based format that is consistent with the research 

framework shown as Figure 1.1. Chapter 2 develops solutions for the dynamically updated 

simulation inputs, which can be utilized to improve the predictability of the further developed 

decision-support system. Chapter 3 discusses the development of the specialized simulation-

based analytics system for quality-associated decision support. Chapters 4 through 6 develop 

novel analytical models and meaningful decision-support metrics for achieving the 

functionalities (i.e., operator quality performance analysis, product complexity analysis, and 

rework cost management) of the proposed decision-support system. Detailed contents of each 

chapter are listed as follows.  

Chapter 2: Credible interval estimation for fraction nonconforming: analytical and numerical 

solutions. 

• Models the nonconforming quality inspection process as a stochastic process. 

• Develops Bayesian-based analytical and Markov Chain Monte Carlo (MCMC)-based 

numerical solutions for deriving posterior distributions and credible intervals of fraction 

nonconforming for quality performance uncertainty measurement. 

• Demonstrates the feasibility and applicability of proposed solutions with a practical case 

study. 

Chapter 3: Simulation-based analytics for quality control decision support: a pipe welding case 

study. 
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• Creates a dynamic, analytically-based environment that feeds real-time multi-relational 

data into advanced analytical systems. 

• Develops a set of quantitative methods to model, infer, and forecast pipe welding quality 

control processes. 

• Generates accurate and reliable descriptive and predictive decision-support metrics.  

Chapter 4: Integrated data-driven approach for analyzing pipe welding operator quality 

performance. 

• Fuses and transforms data from separate data sources (i.e., quality management system 

and engineering design system) into an interpretable dataset. 

• Implements an MCMC-based approach to numerically estimate posterior distributions of 

operators' welding quality performance. 

• Utilizes an A/B testing algorithm to compute probabilistic differences between operators' 

quality performance. 

• Proposes potential applications to comprehensively improve pipe welding quality 

performance for practitioners. 

Chapter 5: Complexity analysis approach for prefabricated construction products using 

uncertain data clustering. 

• Proposes accurate and reliable measurements of product complexity uncertainty using the 

product quality performance indicator. 

• Derives meaningful assessments of product complexity distribution similarity using the 

Hellinger distance. 
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• Generates a reliable and interpretable clustering of products with similar complexity.  

Chapter 6: Data-driven simulation model for quality-induced fabrication rework cost estimation 

and control. 

• Creates an absorbing Markov chain-based analytical model to perform direct rework cost 

(e.g., man-hours) estimation and control. 

• Generates meaningful and reliable decision support metrics for enhanced decision-

making processes. 

• Utilizes the previously developed simulation-based analytics framework as the simulation 

environment to achieve the practical application.   

Chapter 7: A summary of the research contributions, limitations, and envisioned future work.  



10 

 

2 CHAPTER 2: CREDIBLE INTERVAL ESTIMATION FOR FRACTION 

NONCONFORMING: ANALYTICAL AND NUMERICAL SOLUTIONS1 

2.1 Introduction 

Sampling uncertainty must be considered during estimation of a true population variable when 

data are obtained from a sample rather than an entire population (Weiss 2012). A common tool 

used to assess uncertainty are interval estimations, which are applied to estimate the margin of 

sampling error (Casella and Berger 2002). Of the several types of interval estimations, 

confidence intervals, which are commonly introduced in statistics textbooks, have been widely 

applied in statistical process control. However, several researchers have outlined the 

disadvantages of confidence intervals and have contended that confidence intervals are not well-

suited to address the needs of scientific research (Morey et al. 2016). Accordingly, due to their 

straightforwardness (Casella and Berger 2002) and reliability (Gelman et al. 2003), researchers 

are now advocating for the use of Bayesian credible intervals rather than conventional 

confidence intervals. In contrast to confidence intervals, an observer can combine previous 

knowledge with observed data to estimate parameters of interest when using Bayesian statistics 

(Berger 1985; Gelman et al. 2003). In a Bayesian treatment, prior distributions of the parameters 

are introduced and posterior distributions are computed, based on Bayes’ theorem, from 

observed data (Bishop 2007). After obtaining posterior distributions, uncertainty can be 

quantified by providing certain tail quantiles of the posterior distribution (Weaver and Hamada 

2016). For example, a 95% credible interval can be specified by the 0.025 and 0.975 quantiles of 

the posterior distribution.  

                                                 
1 This chapter is adapted from published work as “Credible interval estimation for fraction nonconforming: 

Analytical and numerical solutions” in Automation in Construction 83, 56–67. doi:10.1016/j.autcon.2017.07.003 

and has been reprinted with permission from Elsevier. 
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Calculation of sampling uncertainty in quality management systems is further complicated for 

quality characteristics that cannot be appropriately represented numerically. Often, quality 

characteristics are assessed as either conforming or nonconforming to specified quality 

standards. In contrast to data that is represented numerically, sampling uncertainty must instead 

be assessed from the fraction nonconforming, defined as the ratio of nonconforming items in a 

population to the total items in that population (Montgomery 2007). To appropriately incorporate 

uncertainty, it is necessary to obtain a range of values that cover the true population fraction 

nonconforming (Nicholson 1985). As is common for statistical processes, this range should be 

wider for unfamiliar items and narrower for familiar items.   

The aim of the present study is to introduce a credible interval estimation approach for fraction 

nonconforming by providing two alternative types of solutions, namely analytical and numerical, 

to more effectively incorporate uncertainty in fraction nonconforming inferences. The content of 

this chapter is organized as follows: An overview of the research workflow is provided in the 

methodology section, and the research methodology is detailed in the following sections. First, 

the statistical principles underlying fraction nonconforming for mathematically modelling 

nonconforming quality control processes are discussed. Then, a detailed introduction to credible 

interval and Bayesian inference is provided. Afterwards, a Bayesian statistics-based analytical 

solution and an MCMC method-based numerical solution for determining credible intervals and 

posterior distributions for fraction nonconforming are introduced. To elaborate on the 

implementation of the proposed solutions, an illustrative example of each solution is provided. 

Finally, the feasibility, applicability, and consistency of the two proposed solution types are 

demonstrated following a practical case study of industrial pipe welding quality management. In 

addition to providing insights for the improvement of uncertainty estimation in automated data-
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driven quality management systems, findings of this study will also provide valuable insights on 

the use of MCMC methods to determine posterior distributions for complex variables.  

2.2 Research Methodology 

The research methodology of this study is illustrated in Figure 2.1. First, the problem was 

abstracted into a mathematical model using a Bernoulli process—an established model from the 

area of statistical quality control—to estimate the fraction nonconforming (Montgomery 2007). 

Second, to demonstrate the advantages of implementing Bayesian statistics for incorporating 

uncertainty in fraction nonconforming estimation, the theoretical background of credible interval 

estimation and Bayesian inference were thoroughly investigated. From this, it was determined 

that a credible interval has a more intuitive interpretation than a classic confidence interval when 

estimating the unknown fraction nonconforming. The results also demonstrated that Bayesian 

statistics were capable of recalibrating existing statistical distributions with newly updated data. 

To determine a non-informative prior distribution for fraction nonconforming estimation, 

selection of the prior distribution was then investigated. Finally, a Bayesian statistics-based 

analytical solution and an MCMC-based numerical solution were developed to derive the 

posterior distribution of fraction nonconforming. To reveal how the inherent mathematical 

mechanism functions, a step-by-step proof with a calculation example was conducted for the 

analytical solution; a specialized Metropolis-Hastings algorithm and an illustrative simulation 

example were provided for the numerical solution. Advantages and disadvantages of each 

method were discussed. Then, the feasibility and applicability of the proposed solutions were 

evaluated following their application to an industrial case study. Details of the systematic and 

theoretical analysis of these research steps are detailed as follows.  
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Fraction Nonconforming Modelling

Investigation of Credible Interval 

and Bayesian Inference 

Prior Distribution Selection

Posterior Distribution Determination

Industrial Case Study
 

Figure 2.1: Research methodology flow chart. 

 

2.3 Fraction Nonconforming Modelling 

In the nonconforming quality inspection process, the desired outcome is usually referred to as 

“success” and the alternative outcome is often referred to as “failure.” When an item fails, it 

must be repaired and inspected until it passes inspection. The inspection outcome 𝑂  can be 

treated as a Bernoulli random variable with probability function (Montgomery 2007): 

𝑃(𝑂) = {
𝑝

(1 − 𝑝) = 𝑞       
𝑥 = 1
𝑥 = 0

 (2.1) 

Variable 𝑂 takes on a value of 1 with probability 𝑝 and the value 0 with probability (1 − 𝑝) = 𝑞. 

A realization of this random variable is called a Bernoulli trial. The sequence of Bernoulli trials 

is a Bernoulli process. The number of failed inspections 𝑋 has a binomial distribution 𝐵(𝑛, 𝑝). 
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In statistical quality control processes, the fraction nonconforming of the sample is defined as the 

ratio of the number 𝑋 of nonconforming items in the sample to the sample size 𝑛 as Eq. (2.2) 

(Montgomery 2007). 

�̂� =
𝑋

𝑛
 (2.2) 

�̂� is a point estimate of the true, unknown value of the binomial variable 𝑝, which represents the 

fraction nonconforming of the sampled items. The mean of  �̂� can be calculated as Eq. (2.3). 

𝜇𝑝 = 𝑝 (2.3) 

2.4 Credible Interval and Bayesian Inference 

In statistics, interval estimation is generally defined as the use of sample data to calculate an 

interval of possible (or probable) values of an unknown population variable (Casella and Berger 

2002). Confidence intervals and credible intervals are the most widespread forms of interval 

estimations. In general, both confidence intervals and credible intervals can be defined for a 

variable X as P{l ≤ X ≤ u} = 100(1 − α)%. Where l is the lower interval limit, u is the upper 

interval limit, and (1 − α) is the level of confidence (α is the significance level). However, the 

interpretation for confidence intervals and credible intervals is conceptually different.  

Before introducing the concept of the credible interval, the drawbacks of the confidence interval 

will be discussed. Generally, a confidence interval is a range of values designed to include the 

true value of the variable with a tolerance probability of 100(1 − α)% . As the number of failed 

inspections has a binomial distribution, only confidence intervals for binomial distributions will 

be discussed here. The Wald’s interval, Wilson interval, and Agresti-Coull interval are classical 
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methods for setting confidence intervals for binomial distributions (Brown et al. 2001). Their 

analytical equations are listed in Table 2.1. 

Table 2.1: Classical confidence intervals for binomial distribution. 

Confidence Interval Formula 

Wald Interval �̂� ± 𝑍𝛼
2⁄
√

�̂�(1 − �̂�)

𝑛
 

Wilson Interval (�̂� +
𝑍𝛼

2⁄
2

2𝑛
± 𝑍𝛼

2⁄
√

1

𝑛
[�̂�(1 − �̂�) +

𝑍𝛼
2⁄

2

4𝑛
]) /(1 +

𝑍𝛼
2⁄

2

𝑛
) 

Agresti-Coull Interval  �̂� ± 𝑍𝛼
2⁄ √

�̂�(1 − �̂�)

𝑛 + 𝑍𝛼
2⁄

2  

From the confidence interval equations listed in Table 2.1, it is evident that interval endpoints in 

these intervals depend only on collected data (i.e., the fraction nonconforming �̂� and the sample 

size 𝑛). However, when the fraction nonconforming �̂� is close to zero and sample size 𝑛 is small, 

these confidence intervals lose inference accuracy and reliability (Morey et al. 2016). For 

example, the 95% Wald interval for a new product that has failed inspection one time out of 

three is (-0.2110, 0.8743), where it is impossible to have a negative lower boundary for the 

obtained confidence interval. Furthermore, historical data of similar products may indicate that 

the confidence interval is too large to accurately infer the true fraction nonconforming for the 

given products. The product real fraction nonconforming should lie within a tighter interval.  

Conversely, Bayesian statistics defines the problem philosophically in a different manner. A 

Bayesian method assumes the variable’s value is fixed and has been chosen from an existing 

probability distribution known as the prior distribution. The Bayesian method incorporates both 

prior information that is representative of an estimator’s belief about the variable before any 
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observation is made, termed the prior distribution, as well as the updated belief about the 

variable after observation, termed the posterior distribution. Given the estimator’s belief, the 

estimated interval should be considerably tighter than the calculated confidence intervals. In 

other words, when prior information is taken into consideration, the estimated interval should be 

more accurate and reliable.   

Bayesian statistics is a systematic way of updating information of interest as more observations 

become available (Gelman et al. 2003). Data are collected and utilized to calculate the 

probability of different values of the variable based on current data and existing information. 

This new probability distribution is called the posterior distribution. Subsequently, the 

uncertainty of the variable can be summarized by providing a range of values based on the 

posterior distribution that includes 100(1 − α)%   of the probability. This range is called a 

100(1 − α)% credible interval. As discussed, the credible interval serves as a summary of the 

posterior distribution. Its interpretation, therefore, is considerably more meaningful than that of a 

confidence interval. Also, once the posterior distribution has been generated, it has the advantage 

of deriving additional statistics such as mean, median, variance, and all quantiles, which can be 

used during the decision-making process to obtain solutions more directly and intuitively.  

2.5 The Prior Distribution 

In Bayesian statistics, a prior distribution (short for prior) of an uncertain variable is the 

probability distribution that expresses the estimator’s beliefs about this parameter prior to the 

consideration of any evidence. To determine the prior distribution, it is common to use beta 

distributions as the standard conjugate priors for inferring variable 𝑝 in a binomial distribution 

(Berger 1985). The primary reasons for choosing beta distributions are: (1) the variable fraction 
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nonconforming should be bounded within the range of 0 to 1; (2) beta distributions have the 

flexibility to provide accurate and representative outputs; and (3) the parameters of beta 

distributions are intuitively and physically meaningful and easy to estimate from the data. 

Suppose the number of failed inspections 𝑋~𝐵(𝑛, 𝑝) and the fraction nonconforming 𝑝 has a 

prior distribution 𝐵𝑒𝑡𝑎(𝑎, 𝑏), given by 

𝑃(𝑝) = 𝐵𝑒𝑡𝑎(𝑝|𝑎, 𝑏) =  
𝛤(𝑎 + 𝑏)

𝛤(𝑎)𝛤(𝑏)
𝑝𝑎−1(1 − 𝑝)𝑏−1 (2.4) 

The parameters 𝑎 and 𝑏 are two positive shape parameters that control the distribution shape of 

the fraction nonconforming 𝑝 . 𝛤(𝑧)  is the gamma function. Figure 2.2 depicts six beta 

distributions with different combinations of shape parameters. These examples are all bounded in 

the range of 0 to 1, with their diverse shapes catering to different outputs.  
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Figure 2.2: Examples for beta distribution. 

In general, Bayesian priors can be categorized into informative priors and non-informative 

priors. An informative prior expresses specific, definite information about a parameter. From the 

population perspective, the prior distribution can be interpreted as a population of possible 

variable values. From the subjective knowledge perspective, the guiding principle is that 

knowledge and uncertainty about the variable must be considered as if its value was randomly 

chosen from the prior distribution. A non-informative prior expresses vague, flat, and diffuse 

information. When priors have no population basis, they can be difficult to construct. 

Identification of priors that are guaranteed to play a minimal role in posterior distributions, 

therefore, is desired. The reason for using non-informative priors is to remove the effects of 

external information on current data. For the binomial proportion 𝑝, the non-informative prior 

𝐵𝑒𝑡𝑎(1 2⁄ , 1 2⁄  )  is commonly used in credible interval estimation (Berger 1985). The 
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determination of prior distribution is beyond the scope of this chapter, but it is vital, particularly 

when the observed data sample is small. In this chapter, the non-informative prior 

𝐵𝑒𝑡𝑎(1 2⁄ , 1 2⁄  ) is used to conduct the calculations for demonstration purposes. In practice, the 

prior distribution can be determined based on historical data, professional experience, and 

existing knowledge.  

2.6 The Posterior Distribution 

Bayesian inference derives the posterior distribution as a combination of a prior distribution and 

a likelihood function (Gelman et al. 2003). In this research, the parameter of interest is the 

fraction nonconforming 𝑝. The prior distribution of 𝑝 is 𝑃(𝑝), which summarizes what is known 

about 𝑝 before the data is observed. The likelihood function 𝐿(𝑋|𝑝)  provides the distribution of 

the data, given the fraction nonconforming 𝑝. 𝑃(𝑋) is the marginal distribution of the data 𝑥. The 

posterior distribution 𝑃(𝑝|𝑋) indicates information in data 𝑥 together with information expressed 

in the prior distribution. Based on Bayes’ Theorem, the posterior distribution 𝑃(𝑝|𝑋) can be 

obtained as Eq. (2.5).  

𝑃(𝑝|𝑋) =
𝐿(𝑋|𝑝)  × 𝑃(𝑝)

𝑃(𝑋)
∝ 𝐿(𝑋|𝑝) 𝑃(𝑝) (2.5) 

In general, analytical solutions for 𝑃(𝑝|𝑋) may, or may not, exist. An analytical solution is 

always preferred, as it has the closed-form equation for posterior distributions. However, when 

the analytical solution is too complex to derive or does not exist, a numerical solution can instead 

be used to approximate the true value of interest. Therefore, this chapter will provide both the 

analytical and numerical solutions for deriving the posterior distributions of the fraction 

nonconforming 𝑝 . After obtaining posterior distributions, uncertainty can be quantified by 
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certain tail quantiles of the posterior distribution (e.g. credible intervals). For the purpose of 

estimating credible intervals for fraction nonconforming, the analytical solution is 

straightforward and accurate. In addition to having no discernable effect on accuracy, the 

numerical solution offers an alternative approach to solve similar problems and provides insight 

regarding the implementation of an MCMC method for statistical quality control problems.  

2.6.1 Analytical Solution 

In mathematics, an analytical solution is any formula that can be evaluated in a finite number of 

standard operations. It is the exact solution derived by a series of logical steps that can be proved 

correct (Borwein and Crandall 2013). An analytical solution will assist with the understanding of 

the mechanism behind the modelled problem. In this section, a step-by-step analytical proof of 

the credible interval estimation is given. The proof steps demonstrate how prior distribution and 

posterior distribution are mathematically related.  

Step-by-step Proof 

As per the Eq. (2.5), keeping the factors that only depend on 𝑝, the prior distribution has the 

form 

𝑃(𝑝) ∝ 𝑝𝑎−1(1 − 𝑝)𝑏−1 (2.6) 

And, similarly, the likelihood function has the form 

𝐿(𝑋|𝑝) ∝ 𝑝𝑋(1 − 𝑝)𝑛−𝑋 (2.7) 



21 

 

Therefore, the posterior distribution of 𝑝 can be obtained by multiplying the prior distribution by 

the likelihood function. Keeping only the factors dependent on 𝑝, the posterior distribution has 

the form 

𝑃(𝑝|𝑋) ∝ 𝐿(𝑋|𝑝) 𝑃(𝑝) ∝ 𝑝𝑋+𝑎−1(1 − 𝑝)𝑛−𝑋+𝑏−1 (2.8) 

Indeed, the posterior distribution is another beta distribution, and is given by 

𝑃(𝑝|𝑋) = 𝐵𝑒𝑡𝑎(𝑋 + 𝑎, 𝑛 − 𝑋 + 𝑏)

=  
𝛤(𝑋 + 𝑎 + 𝑛 − 𝑋 + 𝑏)

𝛤(𝑋 + 𝑎)𝛤(𝑛 − 𝑋 + 𝑏)
𝑝𝑋+𝑎−1(1 − 𝑝)𝑛−𝑋+𝑏−1 

(2.9) 

Furthermore, the posterior mean is a weighted average of the maximum likelihood estimation 

and the prior mean and can be calculated as 

𝜇 =
𝑋 + 𝑎

𝑛 + 𝑎 + 𝑏
= (

𝑛

𝑛 + 𝑎 + 𝑏
) (

𝑋

𝑛
) + (

𝑎 + 𝑏

𝑛 + 𝑎 + 𝑏
) (

𝑎

𝑎 + 𝑏
) (2.10) 

Therefore, a 100(1 − 𝛼)% equal-tailed Bayesian interval is given by Eq. (2.11), 

[𝑙, 𝑢] = [𝐵𝑒𝑡𝑎(𝛼 2⁄ ; 𝑋 + 𝑎, 𝑛 − 𝑋 + 𝑏), 𝐵𝑒𝑡𝑎(1 − 𝛼 2⁄ ; 𝑋 + 𝑎, 𝑛 − 𝑋 + 𝑏)] (2.11) 

where 𝐵𝑒𝑡𝑎(𝛼; 𝑎, 𝑏 ) denotes the 𝛼  quantile of a 𝐵𝑒𝑡𝑎(𝑎, 𝑏) distribution. This interval leaves 

𝛼 2⁄  posterior probability in each omitted tail. Indeed, if a beta distribution is used as the prior, 

then the posterior distribution has a closed-form expression. The posterior distribution depends 

on both the prior distribution and the data. As the amount of data becomes large, the posterior 

increasingly approximates the maximum likelihood estimation.  
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In this chapter, the prior distribution is assumed to be non-informative and is defined as 

𝐵𝑒𝑡𝑎(1 2⁄ , 1 2⁄  ). Therefore, after observing 𝑋 successes in n trials given the non-informative 

prior distribution 𝐵𝑒𝑡𝑎(1 2⁄ , 1 2⁄  ), the posterior distribution for fraction nonconforming 𝑝 is a 

beta distribution  

𝑃(𝑝|𝑋) = 𝐵𝑒𝑡𝑎(𝑋 + 1 2⁄ , 𝑛 − 𝑋 + 1 2⁄ ) (2.12) 

The 100(1 − 𝛼)% equal-tailed credible interval is defined as Eq.(2.13). 

[𝑙, 𝑢] = [𝐵𝑒𝑡𝑎(𝛼 2⁄ ; 𝑋 + 1 2⁄ , 𝑛 − 𝑋 + 1 2⁄ ), 𝐵𝑒𝑡𝑎(1 − 𝛼 2⁄ ; 𝑋 + 1 2⁄ , 𝑛 − 𝑋 + 1 2⁄ )] (2.13) 

This credible interval is called the Jefferys Interval (Berger 1985).  

Calculation Example 

For demonstrating the analytical method, a calculation example for X~B(100, 0.1) is provided. 

The lower and upper limits for the credible interval (𝛼 = 5%) can be calculated as Eq. (2.14). 

[𝑙, 𝑢] = [𝐵𝑒𝑡𝑎(0.05/2; 10 + 0.5, 100 − 10 + 0.5), 𝐵𝑒𝑡𝑎(1 − 0.05/2; 10 + 0.5, 100

− 10 + 0.5)] = [𝐵𝑒𝑡𝑎(0.025; 10.5, 90.5), 𝐵𝑒𝑡𝑎(0.975; 10.5, 90.5)]

= [0.0526, 0.1701] 

(2.14) 

This result indicates that the 95% credible interval for 10 non-conformers out of 100 items is 

[0.0526, 0.1701]. The fraction nonconforming is theoretically distributed as 𝐵𝑒𝑡𝑎(10.5, 90.5). 

Figure 2.3 shows the posterior distribution and the 95% credible interval for 𝑋~𝐵(100, 0.1). 

The posterior distribution is bound between 0 and 1 and is right-skewed. The two tails of each 

side are not symmetrically distributed.  
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Figure 2.3: Posterior distribution and credible interval (𝛼 = 5%) of 𝑋~𝐵(100, 0.1). 

2.6.2 Numerical Solution 

In the previous section, the posterior distribution of the fraction nonconforming has a closed-

form solution, which is 𝐵𝑒𝑡𝑎(𝑋 + 𝑎, 𝑛 − 𝑋 +  𝑏) . However, in most cases, the closed-form 

solution is difficult to derive or does not exist. In such cases, the numerical method can instead 

be used to approximate target distributions. Convergence of the numerical solution lies on the 

algorithm design and the large number of iterations. In this section, the specialized Metropolis-

Hastings algorithm will be designed to approximate the posterior distribution and credible 

interval for fraction nonconforming.  
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Metropolis-Hastings Algorithm 

The Metropolis–Hastings algorithm is a MCMC method for generating random samples from a 

probability distribution. It was developed by Metropolis et al. (1953) and subsequently 

generalized by Hastings (1970). The utilization of this algorithm was primarily limited to the 

field of physics until the 1990s, when it was exposed to statisticians by Moller and 

Waagepetersen (2003) and Tierney (1994). In the last decade, the Metropolis-Hastings algorithm 

has become one of the most popular statistical techniques for distribution approximation (i.e., to 

generate a histogram) and to compute integrals (Hitchcock 2003; Robert and Casella 2011). 

Compared to other sampling techniques (e.g. Gibbs sampling), the Metropolis-Hastings 

algorithm achieves a better numerical approximation in terms of accuracy.  

The Metropolis-Hastings algorithm constructs a Markov chain of fraction nonconforming values 

for {𝑝(1), 𝑝(2), 𝑝(3), … , 𝑝(𝑁)}. The next value 𝑝(𝑖+1) is chosen by proposing a random move that is 

conditional on the previous value 𝑝(𝑖) and on the ratio of 
𝑃(𝑝∗|𝑋) 

𝑃(𝑝(𝑖)|𝑋) 
, where 𝑝∗is a candidate sample 

from the proposal distribution. This acceptance ratio indicates how probable the new candidate 

sample is with respect to the current sample. The move is accepted if the new sample is more 

probable than the existing sample. Otherwise, the move is accepted with the acceptance 

probability or alternatively, the move is rejected. Given that these conditions are met, the 

Markov chain of parameter values will remain in the high-density region and will converge to 

the target distribution 𝑃(𝑝|𝑋). As the sampling effort is concentrated in the area with higher 

posterior density, the time required for obtaining an acceptable convergence is typically reduced 

compared to other sampling techniques.  
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The logic of the Metropolis-Hastings algorithm is demonstrated in a step-by-step algorithmic 

form with the initial value 𝑝(0) and repeat for 𝑖 = 1, 2, 3, … ,𝑁.  

Step 1. Choose a new proposed value 𝑝∗ such that 𝑝∗ = 𝑝(𝑖) + ∆𝑝 , where ∆𝑝~𝑁(0, 𝜎). 

Step 2. Calculate the ratio 𝜌 = min {1,
𝑃(𝑝∗|𝑋) 

𝑃(𝑝(𝑖)|𝑋) 
}, where 𝑃(𝑝|𝑋)  is the posterior distribution.  

As discussed in the analytical solution, the posterior distribution has the form 

𝑃(𝑝|𝑋) ∝ 𝐿(𝑋|𝑝) 𝑃(𝑝) ∝ 𝑝𝑋+𝑎−1(1 − 𝑝)𝑛−𝑋+𝑏−1 

Therefore, the ratio 𝜌 can be calculated as 

𝜌 = min {1,
𝑝∗𝑋+𝑎−1(1 − 𝑝∗)𝑛−𝑋+𝑏−1 

𝑝(𝑖)𝑋+𝑎−1
(1 − 𝑝(𝑖))𝑛−𝑋+𝑏−1 

} 

This equation will be utilized in the code of the proposed Metropolis-Hastings algorithm for 

deriving the posterior distribution of fraction nonconforming.  

Step 3. Sample 𝜇~𝑈[0,1], where 𝜇 is a randomly sampled number from the uniform distribution 

[0,1]. 

Step 4. If 𝜇 < 𝜌 

𝑝(𝑖+1) = 𝑝∗ 

 else  

𝑝(𝑖+1) = 𝑝(𝑖) 
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Step 5. Return the values {𝑝(1), 𝑝(2), 𝑝(3), … , 𝑝(𝑁)}. 

The draws {𝑝(1), 𝑝(2), 𝑝(3), … , 𝑝(𝑁)}  are regarded as a sample from the targeted distribution 

𝑃(𝑝|𝑋) only after the chain has passed transient phase and the impact of the initial value can be 

ignored. After obtaining the fraction nonconforming values {𝑝(1), 𝑝(2), 𝑝(3), … , 𝑝(𝑁)}, a frequency 

histogram plot is generated.  

Simulation Example 

For consistency with the analytical solution, X~B(100, 0.1) is also used for illustrating the 

numerical solution. As the algorithm is a numerical approximation to the true posterior 

distribution of fraction nonconforming, the outputs have a slight difference for each run. By 

performing the proposed Metropolis-Hastings algorithm, the empirical posterior distribution 

based on one run can be obtained in the form of a frequency histogram plot, as illustrated in 

Figure 2.4. Visually, it has a comparable shape with the derived posterior distribution by the 

analytical solution shown in Figure 2.3. For estimating the credible interval, the “quantile” 

function in R Project for Statistical Computing (https://www.r-project.org) is used to find the 

lower and upper limits for the 95% credible interval using the 0.025 and 0.975 sample quantiles. 

For the given example X~B(100, 0.1), the 95% credible interval is [𝑙, 𝑢] = [0.0529, 0.1726], 

which is quantitatively similar to the analytical solution [0.0526, 0.1701]. 

https://www.r-project.org/
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Figure 2.4: Empirical posterior distribution of 𝑋~𝐵(100, 0.1). 

For assessing the Metropolis-Hastings algorithm, the trace plot and the autocorrelation function 

(ACF) plot are commonly adopted. Once the designed algorithm has passed these assessments, it 

can be used to efficiently and accurately generate a posterior distribution. A trace plot for a 

parameter is a scatter plot of successive parameter estimates against the number of iterations. 

The plot provides a straightforward method of examining the convergence behavior of the 

designed algorithm. An autocorrelation function (ACF) plot can also assist with algorithm 

diagnosis. If significant values are detected at certain lags, the proposed sampler is not efficiently 

sampling the posterior distribution.  

Figure 2.5 elaborates the 10000 iteration samples in the form of a trace plot for the example of 

X~B(100, 0.1). The initial value is set at 0.5. The trace plot can be utilized to qualitatively 
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assess the efficiency and accuracy of the proposed algorithm. The current trace plot, observed in 

Figure 2.5, reveals that the algorithm is efficient, as indicated by the rapid convergence rate, and 

accurate, as evidenced by the stationary distribution of the values around 0.1. Generally, the 

fraction nonconforming values generated by the Metropolis-Hastings algorithm construct a 

Markov chain. This chain has a unique stationary distribution that can always be reached if a 

large number of iterations is guaranteed. Figure 2.6 includes the trace plots for four scenarios 

with different initial value 𝑝(0) = {0.2, 0.4, 0.6, 0.8}. The first 200 iterations are drawn for each 

scenario. Although the four traces begin from different initial values, they reach the same 

stationary distribution after approximately 50 iterations, indicative of an ideal stationary 

distribution.  

 

Figure 2.5: Trace plot of 𝑋~𝐵(100, 0.1). 
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Figure 2.6: Trace plot for different initial value 𝑝(0) = {0.2, 0.4, 0.6, 0.8}. 

Figure 2.7 illustrates the ACF plot for the example of X~B(100, 0.1). As shown, the ACF 

values converge to zero as the number of iterations increases, which indicates that posterior 

distribution is being efficiently sampled.  
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Figure 2.7: ACF plot of 𝑋~𝐵(100, 0.1). 

Together, the above assessment results demonstrate that the proposed Metropolis-Hastings 

algorithm feasibly and reliably performs credible interval analysis for fraction nonconforming. 

This designed algorithm will be applied in the case study to test the proposed methodology. 

2.6.3 Discussion 

As the concept of credible interval was rarely discussed in previous fraction nonconforming 

literature, the authors of the present study were interested in investigating the properties of 

credible intervals for fraction nonconforming. The properties of credible intervals are discussed 

to demonstrate how changing variables impact credible interval range. The concluded properties 

can be applied regardless of the type of solution used. According to Eq. (2.11), the credible 
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interval range depends on two variables: the sample size 𝑛 and the fraction nonconforming 𝑝. To 

improve investigation of these relationships, one of the variables is fixed for each experiment.  

Credible Interval vs. Sample Size 

Figure 2.8 depicts the relationship of the credible interval and sample size when fraction 

nonconforming is fixed at 0.25.  As shown, the credible interval is rapidly reduced in the initial 

phase and converges to 0.25 when 𝑛 is increased. This indicates that as the amount of data 

expands, control over uncertainty increases.   

 

Figure 2.8: The relationship between credible interval and sample size for 𝑋~𝐵(𝑛, 0.25). 
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Credible Interval vs. Fraction Nonconforming 

Figure 2.9 depicts the relationship of credible intervals and fraction nonconforming when the 

sample size is fixed at 100. The credible interval is narrower when fraction nonconforming is 

approaching 0 or 1. When fraction nonconforming equals 0.5, the credible interval has a 

maximum range, indicating that actual fraction nonconforming (e.g. quality performance) can 

affect credible interval range.  

 

Figure 2.9: The relationship between credible interval and fraction nonconforming for 

𝑋~𝐵(100, 𝑝). 

In the following subsection, the analytical solution and the numerical solution are compared from 

the perspective of solution accuracy, development effort, and computational effort. Conclusions 

are summarized in Table 2.2.  



33 

 

Table 2.2: Comparison of analytical and numerical solutions. 

Features Analytical Solution  Numerical Solution 

Accuracy Exact Approximate 

Development Effort High Low 

Computational Effort Low High 

Accuracy. The analytical solution is an exact solution generated by series of logical steps that can 

be proven correctly in a “closed form” (Borwein and Crandall 2013). In contrast, the numerical 

solution approximates the exact solution and requires thousands of iterations to achieve 

acceptable accuracy.  

Development and Computational Effort. An analytical solution requires rigorous mathematical 

deduction to derive and may not even exist. After derivation, an analytical solution may be 

calculated by hand. In contrast, a numerical solution can be easily achieved, without spending 

time on complex mathematical deduction, by using advanced computational tools. However, as it 

requires thousands of iterations to reach a stationary distribution, a considerable amount of 

computational time is required to achieve the numerical solution.  

Overall Recommendation. Due to its relative accuracy and low computational effort, 

implementation of an analytical solution is recommended—particularly if it has already been 

developed. However, in cases where analytical solution development is not feasible or is 

unavailable, a numerical solution can be successfully adopted. Practitioners are encouraged to 

consider the advantages and disadvantages of each solution and to choose the methodology that 

is best suited to their particular situation. 
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2.7 Case Study 

Industrial construction, used to build facilities such as petroleum refineries, petrochemical plants, 

nuclear power plants, and oil/gas production facilities, is a method of construction involving the 

large-scale use of offsite prefabrication and preassembly (Barrie and Paulson 1992). Pipe spool 

fabrication is crucial for the successful delivery of these industrial construction projects. 

Typically, pipe spools are built in a fabrication shop according to engineering designs and must 

be cut, fit, welded, and inspected (Song et al. 2006). Pipe spool fabrication is heavily dependent 

on welding, which must be sampled and inspected to ensure that welding quality requirements 

are met. Due to various combinations of pipe attributes (e.g. nominal pipe size (NPS), pipe 

schedule, and material), it is difficult for practitioners to interpret currently-available inspection 

data to estimate welding quality performance. In this section, the tracked pipe welding inspection 

data from a pipe fabrication company is used to demonstrate the practical application of the 

proposed credible interval estimation approach.  

2.7.1 Data Description 

Inspection data were connected and extracted from the company’s Structured Query Language 

(SQL) server of their quality management system and were processed using R Project for 

Statistical Computing software. For illustration purposes, only records of radiographic tests (RT) 

of butt welds were used in this chapter. As shown in Table 2.3, inspection records were grouped 

by combination of pipe attributes, namely NPS, pipe schedule, and material, where pipe schedule 

defined wall thickness of the pipe, and NPS defined the outside diameter of a pipe. Materials 

were categorized into material A – plain carbon steel, material B – alloy steel, material C – 

stainless steel, and material D – others. Numbers of inspected and repaired welds for each type of 
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pipe weld are listed. Notably, the 35 types of pipe welds listed represent the most common 

welding products in the studied company, encompassing 80% of their business.   

Table 2.3: Pipe welds inspection records. 

Pipe Type Schedule NPS Material Inspected Welds Repaired Welds 

1 XS 2 Material A 7475 249 

2 STD 3 Material A 4495 173 

3 STD 6 Material A 3518 43 

4 STD 4 Material A 3078 66 

5 STD 2 Material A 4722 400 

6 XS 6 Material A 3705 70 

7 STD 8 Material A 2302 51 

8 XS 4 Material A 1774 28 

9 160 2 Material A 2302 26 

10 80 2 Material A 1055 41 

11 STD 10 Material A 1131 30 

12 STD 12 Material A 1069 34 

13 XS 3 Material A 1484 16 

14 XS 8 Material A 1318 10 

15 40S 2 Material C 555 21 

16 40 2 Material A 271 38 

17 80 4 Material A 638 5 

18 160 3 Material A 510 5 

19 40 4 Material A 592 17 

20 40 6 Material A 333 5 

21 XS 10 Material A 529 14 

22 XS 12 Material A 666 31 

23 10S 2 Material C 175 12 

24 40 3 Material A 217 6 

25 40 8 Material A 452 17 

26 40S 3 Material C 364 6 

27 40S 4 Material C 271 2 

28 80 3 Material A 512 6 

29 80 6 Material A 572 3 

30 STD 16 Material A 422 13 

31 10S 3 Material C 149 9 

32 40S 6 Material C 171 4 

33 10S 6 Material C 154 4 

34 10S 8 Material C 204 13 

35 80 16 Material A 634 9 
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2.7.2 Credible Interval Estimation 

As the inspected welds are not fully sampled from the population of each type of weld, 

estimation of an interval for fraction nonconforming (e.g. percentage repair rate) that considers 

uncertainties is required. The 95% credible intervals, calculated by implementing the proposed 

analytical and numerical credible interval estimation approaches, are listed in Table 2.4. The 

closed-form posterior distributions for the analytical solution are also listed. However, as the 

posterior distributions for the numerical solution are empirical distributions randomly generated 

by the Metropolis-Hastings algorithm, only credible intervals are listed for the numerical 

solution. The numerical solutions are based on the average of 30 runs of the proposed approach. 

As the analytical solutions are the exact solutions, they can be utilized to validate the accuracy 

and reliability of the numerical solution. Here, the numerical solutions are approximately equal 

to the analytical solutions, demonstrating that the MCMC method is valid for this estimation. 

Table 2.4: Credible intervals of analytical and numerical solutions. 

Pipe 

Type 

Analytical Solution Numerical Solution 

Posterior Distribution 

𝑩𝒆𝒕𝒂(𝑺𝒉𝒂𝒑𝒆𝟏, 𝑺𝒉𝒂𝒑𝒆𝟐) 

95% Credible Interval 95% Credible Interval 

Shape1 Shape2 
Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

1 249.5 7226.5 0.0294 0.0376 0.0297 0.0376 

2 173.5 4322.5 0.0332 0.0444 0.0329 0.0441 

3 43.5 3475.5 0.0090 0.0163 0.0088 0.0164 

4 66.5 3012.5 0.0168 0.0270 0.0167 0.0278 

5 400.5 4322.5 0.0770 0.0929 0.0767 0.0918 

6 70.5 3635.5 0.0149 0.0237 0.0153 0.0239 

7 51.5 2251.5 0.0167 0.0288 0.0167 0.0285 

8 28.5 1746.5 0.0107 0.0224 0.0111 0.0227 

9 26.5 2276.5 0.0076 0.0162 0.0073 0.0164 

10 41.5 1014.5 0.0284 0.0518 0.0284 0.0517 

11 30.5 1101.5 0.0183 0.0371 0.0182 0.0368 
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12 34.5 1035.5 0.0225 0.0436 0.0222 0.0442 

13 16.5 1468.5 0.0064 0.0170 0.0065 0.0177 

14 10.5 1308.5 0.0039 0.0134 0.0040 0.0140 

15 21.5 534.5 0.0243 0.0562 0.0251 0.0558 

16 38.5 233.5 0.1028 0.1853 0.1041 0.1863 

17 5.5 633.5 0.0030 0.0171 0.0033 0.0177 

18 5.5 505.5 0.0038 0.0214 0.0038 0.0214 

19 17.5 575.5 0.0175 0.0446 0.0181 0.0442 

20 5.5 328.5 0.0058 0.0326 0.0066 0.0337 

21 14.5 515.5 0.0152 0.0428 0.0156 0.0431 

22 31.5 635.5 0.0325 0.0646 0.0331 0.0650 

23 12.5 163.5 0.0380 0.1132 0.0384 0.1111 

24 6.5 211.5 0.0116 0.0561 0.0121 0.0582 

25 17.5 435.5 0.0229 0.0582 0.0228 0.0600 

26 6.5 358.5 0.0069 0.0337 0.0073 0.0338 

27 2.5 269.5 0.0015 0.0235 0.0016 0.0251 

28 6.5 506.5 0.0049 0.0240 0.0049 0.0246 

29 3.5 569.5 0.0015 0.0139 0.0014 0.0146 

30 13.5 409.5 0.0174 0.0506 0.0179 0.0528 

31 9.5 140.5 0.0303 0.1073 0.0320 0.1103 

32 4.5 167.5 0.0079 0.0547 0.0084 0.0551 

33 4.5 150.5 0.0088 0.0606 0.0093 0.0606 

34 13.5 191.5 0.0362 0.1035 0.0374 0.1066 

35 9.5 625.5 0.0070 0.0257 0.0072 0.0259 

2.7.3 Error Analysis 

In this section, visual representation and quantitative estimation are conducted to test the 

accuracy of the numerical solution with respect to the analytical solution. To visually compare 

the credible intervals for both analytical and numerical solutions, results are plotted in Figure 

2.10. For each type of pipe weld, two confidence intervals, based on different solutions, are 

given. The analytical solution is represented by the letter A, while the numerical solution is 

represented by the letter N. The dashed line (fraction nonconforming = 0.0296) represents the 

average fraction nonconforming for all 35 types of pipe welds. This value is used as the initial 

fraction nonconforming value for running the designed Metropolis-Hastings algorithm. As 

evidenced in Figure 2.10, the two solution types are visually consistent.  
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Figure 2.10: Credible intervals for analytical and numerical solutions. 

Quantitatively, two indicators, Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE) are used to assess the efficacy of the numerical approximation with respect to the 
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analytical solution. MAE describes the average magnitude of differences between numerical and 

analytical solutions (Willmott and Matsuura 2005), and RMSE represents the standard deviation 

of differences between numerical and analytical solutions (Willmott and Matsuura 2005). In 

general, MAE measures the accuracy of the mean approximation, while RMSE reflects the 

dispersion degree of the approximation performance. For this case study, MAE and RMSE were 

calculated by Eq. (2.15) and Eq. (2.16),  

𝑀𝐴𝐸 = 
1

𝑛
∑|𝑓𝑁 − 𝑓𝐴|

𝑛

𝑖=1

 (2.15) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑓𝑁 − 𝑓𝐴)2

𝑛

𝑖=1

 (2.16) 

where 𝑓𝑁 is the numerical approximation, 𝑓𝐴 is the analytical solution, n is the number of weld 

types.  

Table 2.5 summarized the residual values for the numerical and analytical solutions. For lower 

limits, the calculated MAE is 0.0004, and the RMSE is 0.0005. For upper limits, the calculated 

MAE is 0.0008, and the RMSE is 0.0011. The relatively low values indicate that the numerical 

approximation is accurate and can serve the credible interval estimation purpose with acceptable 

errors. Notably, the posterior distributions are right-skewed and more sensitive within the upper 

tails, resulting in MAE and RMSE values for upper limits that are slightly larger than those for 

lower limits. When numerical solutions are applied to unfamiliar products, an inappropriate 

initial value 𝑝(0)  may result in greater error. This unexpected impact can be eliminated by 

increasing the number of iterations or removing these values in the initial unstable stage.  
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Table 2.5: Residual values of numerical solutions with respect to analytical solutions. 

Pipe Type 

Analytical Solution Numerical Solution 
Residual Value 

95% Credible Interval 95% Credible Interval 

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit 

1 0.0294 0.0376 0.0297 0.0376 0.0003 0.0000 

2 0.0332 0.0444 0.0329 0.0441 -0.0003 -0.0003 

3 0.0090 0.0163 0.0088 0.0164 -0.0002 0.0001 

4 0.0168 0.0270 0.0167 0.0278 -0.0001 0.0008 

5 0.0770 0.0929 0.0767 0.0918 -0.0003 -0.0011 

6 0.0149 0.0237 0.0153 0.0239 0.0004 0.0002 

7 0.0167 0.0288 0.0167 0.0285 0.0000 -0.0003 

8 0.0107 0.0224 0.0111 0.0227 0.0004 0.0003 

9 0.0076 0.0162 0.0073 0.0164 -0.0003 0.0002 

10 0.0284 0.0518 0.0284 0.0517 0.0000 -0.0001 

11 0.0183 0.0371 0.0182 0.0368 -0.0001 -0.0003 

12 0.0225 0.0436 0.0222 0.0442 -0.0003 0.0006 

13 0.0064 0.0170 0.0065 0.0177 0.0001 0.0007 

14 0.0039 0.0134 0.0040 0.0140 0.0001 0.0006 

15 0.0243 0.0562 0.0251 0.0558 0.0008 -0.0004 

16 0.1028 0.1853 0.1041 0.1863 0.0013 0.0010 

17 0.0030 0.0171 0.0033 0.0177 0.0003 0.0006 

18 0.0038 0.0214 0.0038 0.0214 0.0000 0.0000 

19 0.0175 0.0446 0.0181 0.0442 0.0006 -0.0004 

20 0.0058 0.0326 0.0066 0.0337 0.0008 0.0011 

21 0.0152 0.0428 0.0156 0.0431 0.0004 0.0003 

22 0.0325 0.0646 0.0331 0.0650 0.0006 0.0004 

23 0.0380 0.1132 0.0384 0.1111 0.0004 -0.0021 

24 0.0116 0.0561 0.0121 0.0582 0.0005 0.0021 

25 0.0229 0.0582 0.0228 0.0600 -0.0001 0.0018 

26 0.0069 0.0337 0.0073 0.0338 0.0004 0.0001 

27 0.0015 0.0235 0.0016 0.0251 0.0001 0.0016 

28 0.0049 0.0240 0.0049 0.0246 0.0000 0.0006 

29 0.0015 0.0139 0.0014 0.0146 -0.0001 0.0007 

30 0.0174 0.0506 0.0179 0.0528 0.0005 0.0022 

31 0.0303 0.1073 0.0320 0.1103 0.0017 0.0030 

32 0.0079 0.0547 0.0084 0.0551 0.0005 0.0004 

33 0.0088 0.0606 0.0093 0.0606 0.0005 0.0000 

34 0.0362 0.1035 0.0374 0.1066 0.0012 0.0031 

35 0.0070 0.0257 0.0072 0.0259 0.0002 0.0002 
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2.8 Conclusion 

Interval estimation has been identified as an efficient tool in the DMAIC (Define, Measure, 

Analyze, Improve, and Control) process, which is a structured problem-solving procedure for 

quality and process improvement (Montgomery 2007). Here, the authors demonstrate that 

credible interval estimations provide a more accurate, reliable, and interpretable estimation of the 

uncertainty of nonconforming quality control processes than conventional confidence interval 

estimations. This chapter also proposes an analytical and numerical solution for fraction 

nonconforming inference from the Bayesian statistics perspective.  

For the analytical solution, this chapter applies the concept of the credible interval for binomial 

distribution and implements this concept into a nonconforming quality control process. The 

mathematical logic underlying the proposed method was revealed by the step-by-step proof. In 

this solution, a beta distribution was selected as the conjugate prior distribution because of the 

flexibility of its shape. Consequently, the posterior distribution retained the same beta 

distribution form in its analytical solution. Although an analytical solution is always preferred, 

due to its closed-form equation for posterior distributions, many researchers have claimed that 

when an analytical solution is too complex to derive or does not exist, a numerical solution is 

suitable for approximation of the true value of interest (Hitchcock 2003). The advances in 

Bayesian computing have increased the popularity of MCMC-based numerical methods. In this 

chapter, a Metropolis-Hastings algorithm-based numerical solution to approximate the empirical 

posterior distribution and credible interval for fraction nonconforming was developed. In 

addition to its ability to estimate sampling uncertainty, the proposed numerical method also 
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provides valuable insight on the implementation of MCMC in drawing samples from complex 

and arbitrary probability distributions.  

An industrial case study was used to validate the feasibility and applicability of the proposed 

credible interval estimation solution for pipe welding quality control processes. The achieved 

error analysis results indicate that, with respect to analytical solutions, the numerical solutions 

were accurate and reliable.  

Integration of accurate, reliable, and straightforward approaches that measure uncertainty of 

inspection processes, such as those presented here, are instrumental to the successful 

implementation of automated data-driven quality management systems. Results of the present 

study indicate that practitioners can improve quality performance, and consequently enhance 

their market reputation and competitiveness, by implementing the credible interval estimation 

methodology in their automated quality management and decision-making processes.  

Although the present method improves upon current interval estimation techniques, this research 

is limited by the assumption of a fixed prior distribution. Prior determination is a complex 

problem that requires incorporation of historical data, professional experience, and existing 

knowledge. To improve current computing performance, a systematic approach of determining 

the prior distribution should be further developed. Future work examining this topic include the 

(1) development of an automated data-driven quality performance forecast system and (2) 

quantification of quality-induced rework cost. 
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3 CHAPTER 3: SIMULATION-BASED ANALYTICS FOR QUALITY CONTROL 

DECISION SUPPORT: A PIPE WELDING CASE STUDY2 

3.1 Introduction 

Pipe fabrication is essential for the construction of industrial projects such as petroleum 

refineries, petrochemical plants, and oil/gas production facilities. A fundamental process in pipe 

fabrication is pipe welding. High quality weld performance, or weld integrity, is essential for 

reducing rework costs, for maintaining project safety, and for ensuring overall product quality. 

Weld integrity can be controlled through the implementation of quality control systems, which 

sample and test pipe welds to ensure that quality requirements are satisfied.  

Computer-based quality management systems, as required by ISO 9000, have been widely 

implemented to facilitate the process of quality control within the construction industry (Battikha 

2002; Chin et al. 2004). While these systems have facilitated the collection of vast amounts of 

project records, transformation of these data into valuable information remains challenging for 

construction companies. In particular, current quality management systems (1) cannot collect 

data from multiple sources in real-time; (2) place a heavy interpretation load on practitioners; 

and (3) are unable to generate meaningful decision-support outputs. An approach capable of 

addressing these shortcomings, such as an analytically-based decision-support system, could 

positively impact quality management decision-making processes within this industry. 

The primary objective of this research is to develop a novel, analytically-based approach to 

improve the practical functionality of traditional pipe welding quality management systems. This 

                                                 
2 This chapter is adapted from work that has been accepted for publication as “Simulation-based analytics for quality 

control decision support: A pipe welding case study” by the Journal of Computing in Civil Engineering. doi: 

10.1061/(ASCE)CP.1943-5487.0000755 and has been reprinted with permission from the American Society of Civil 

Engineers.  



47 

 

is achieved by (1) creating a dynamic, analytically-based environment that feeds real-time multi-

relational data into advanced analytical systems; (2) developing a set of quantitative methods to 

model, infer, and forecast pipe welding quality control processes; and (3) generating accurate 

and reliable descriptive and predictive decision-support metrics. In this chapter, the framework 

of the simulation-based analytics approach is introduced, and the current state-of-the art and its 

challenges are described. Then, the functional modules and inherent advanced analytics of the 

specialized simulation-based analytics approach for quality control purposes are outlined, and the 

deployment of a C#-based prototype system at an industrial company is demonstrated. Finally, 

research contributions, from both an academic and industrial perspective, are discussed.  

3.2 Simulation-Based Analytics 

This research proposes that a simulation-based analytics framework could be used to 

successfully integrate analytically-based forecasting, planning, and optimization approaches to 

improve construction project performance. The proposed framework was derived from state-of-

the-art concepts in data analytics applications (Barton and Court 2012; LaValle et al. 2011), 

dynamic data-driven application systems (DDDAS) (Darema 2004), and simulation-based 

analytics (Dube et al. 2014). The philosophy behind the framework, as shown in Figure 3.1, is 

the dynamic incorporation of data—as they are generated—into to simulations, thereby 

enhancing the accuracy and predictability of original models. This framework employs a variety 

of analytical methods including data mining (to identify anomalies or missing information) and 

simulation methods (to populate, fill, or validate data). Transformed data is then coupled to 

simulation systems via designed algorithms and models to generate desired metrics and 

outcomes.  
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Figure 3.1: Simulation-based analytics for construction. 

3.2.1 Dynamic Data-Driven Application Systems 

At the core of the proposed framework is the concept of a dynamic, data-driven application 

system (Darema 2004), which strives to seamlessly couple the simulation world with 

measurements of a real system in real time. A DDDAS (Darema 2004) provides the means for 

coupling simulation with measurement disciplines (i.e., data collection). Consequently, DDDAS 

improve upon current models through the incorporation of automated internal calibrations. Data 

used for this purpose are typically archival or are generated in real-time through collection from 

sensors or detectors or by input from practitioners. 

DDDAS is particularly advanced in the domain of transportation engineering. A research project 

conducted at the Georgia Institute of Technology attempted to estimate arterial travel time—in 

real-time—through the integration of simulation with real-time sensor data (Henclewood et al. 

2008). Huang and Verbraeck (2009) have also applied DDDAS at a company in the Netherlands 
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to measure tram travel durations using a system called TriTAPT. Data collected were input into 

simulation models to generate updated schedules that were published for travelers. Similar 

information was generated to simulate control systems.  

Despite the benefits of DDDAS, however, recalibration of input models to realign with dynamic, 

real-time data is associated with significant challenges. In particular, data collected in real-time 

tends to be messy, arrives in no particular order, and is often incomplete or erroneous due to 

transmission problems or sensor malfunctions, which can result in significant interpretation 

difficulties for construction practitioners. 

3.2.2 Bayesian-Based Measurements Recalibration 

Simulation modellers often use static, statistical distribution-based approaches to represent 

uncertainties that exist in the systems they are analyzing. In contrast, the proposed framework 

uses Bayesian techniques to update input models with new data. Bayesian statistics can be used 

to dynamically update information of interest as additional observations become available 

(Gelman et al. 2014). Prior distributions of the parameters are introduced and posterior 

distributions are computed from observed data based on Bayes’ theorem (Bishop 2006). After 

obtaining posterior distributions, uncertainty can be quantified by providing certain tail quantiles 

of the posterior distribution (Weaver and Hamada 2016). There has been an ample amount of 

work focused on developing formulations for the application of Bayes’ theorem to update normal 

distributions in literature (Lynch, 2007; Chung et al., 2004). This is partly due to the low 

dimensionality associated with the parameters of this distribution and the computational 

challenges associated with evaluating Bayesian formulation for updating probabilistic models.  
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3.2.3 Binary Nature of Weld Quality Management Data 

Typically, pipe weld quality is assessed by nondestructive examination (NDE), which detects 

discontinuities in welds without inducing pipe damage (ASME 2005). In pipe welding quality 

control processes, the NDE inspection result is recorded as either “conforming” or 

“nonconforming” to specified quality standards (Montgomery 2007). Given their binary nature, 

these data cannot be appropriately represented numerically.  

In statistical quality control, the terminology “fraction nonconforming” is defined as the ratio of 

the number of nonconforming items in a population to the total number of items in that 

population (Montgomery 2007). However, due to the vast possible combinations of pipe 

attributes (i.e., NPS, pipe schedule, and material) in conjunction with the inappropriate 

incorporation of inspection sampling uncertainty, understanding and predicting product and 

project quality performance from fraction nonconforming records remains challenging. 

Traditional fraction nonconforming estimation methods lack accuracy, interpretability, and 

capability of incorporating new data. In Chapter 2, both analytical and numerical solutions were 

developed for the purposes of extending updating capabilities to beta distributions for inferring 

fraction nonconforming performance. Due to its relative accuracy and low computational effort, 

the analytical solution is recommended, particularly if it has previously been developed.  

3.3 Methodology 

The proposed simulation-based analytics framework was designed to achieve more efficient 

quality control decision support. The specialized simulation-based analytics approach consists of 

five components, namely the data source, data adapter, data analysis module, simulation module, 
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and decision-support module. The data source component extracts quality and design data from 

quality management and engineering design systems, respectively, which store information 

required for the analytical process. The data adapter then transforms raw data into a tidy format 

through data connection, data wrangling, and data cleaning processes. The data analysis module 

provides a suite of algorithms to analyze the data from the data adapter and/or the simulation 

module for the establishment of decision-support metrics. The simulation module generates raw 

data of predictive decision-support metrics by interacting with the data adapter and/or the 

analysis module. Finally, the decision support module utilizes the outputs from the data analysis 

module to support decision-making processes. The conceptual framework of the proposed 

simulation-based analytics approach is illustrated in Figure 3.2. 
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Figure 3.2: The conceptual framework of the proposed simulation-based analytics approach. 

R (https://www.r-project.org), a free programming software environment for statistical computing 

and graphics, was selected to perform all functionalities of the specialized simulation environment. 

While R was traditionally limited to academia and research, the use of R within private and 

https://www.r-project.org/
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business analytics sectors is rapidly expanding. R’s functionality can be easily expanded with more 

than 10,000 packages available on CRAN (https://cran.r-project.org). These packages are a 

collection of R functions, which provide users immediate access to advanced data mining, machine 

learning, and simulation techniques. Notably, other statistical suites may also be used. 

3.3.1 Data Sources 

Construction companies handle large amounts of raw data during operations, which includes data 

from two primary sources, namely (1) dynamic data that is obtained from information stored in 

Enterprise Resource Planning systems and standalone applications (e.g., time-sheets, quantities, 

and safety incidents) and (2) static data that is passed on from engineering in the form of 

drawings (e.g., 2D, 3D, and BIM models).  

Here, dynamic data were comprised of quality management data and operator information, and 

static data were comprised of engineering design data. NDE inspection results, weld type, and 

operator information for each pipe weld were stored in the quality management system, 

Structured SQL Server (ArcuTrack), of a pipe fabrication company located in Edmonton, 

Canada. Over the last 10 years, the system has collected vast amounts of data—for butt welds 

alone, the system has tracked around 250,000 NDE inspection records that include more than 

680 combinations of pipe attributes. In this research, the data were split into a modelling set and 

a testing set in chronological project order. Projects conducted in the first eight years were 

selected as the modelling set, and subsequent projects were utilized as the testing set. 

Pipe weld attributes, such as NPS (i.e., outside diameter), pipe schedule (i.e., wall thickness), and 

material for all welds were extracted from the engineering design system. Materials were 

https://cran.r-project.org/
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categorized into material A – plain carbon steel, material B – alloy steel, material C – stainless 

steel, and material D – others. Pipe weld type was defined by the pipe format: NPS, schedule, 

material, weld type, where pipe (40, 2, A, BW) represents butt welds with NPS of 40, schedule 

of 2, and material A. Design information was matched to each weld through primary key and 

foreign key relationships. Notably, data were stored in multi-relational databases, which resulted 

in the dispersion of useful information across various tables and databases. Detailed information 

for the two types of data sources are listed in Table 3.1.  

Table 3.1: Data sources. 

Data Source Database Information 

Quality 

Management 

System 

ArcuTrack 
• NDE inspection result 

• Weld type (Butt weld, Fillet weld, etc.) 

• Welder information 

Engineering Design 

System 

Autodesk 

Navisworks 

• Weld design attributes (NPS and schedule) 

• Material information (Plain carbon steel, alloy 

steel, stainless steel, and others) 

3.3.2 Data Adaptor 

In practice, most information cannot be adequately represented by independent data tables; 

rather, multiple types of objects are linked together through various types of linkages. Such data 

are usually stored in relational databases. While multi-relational databases can provide richer 

information for data mining, most existing data mining algorithms cannot be applied to relational 

data unless the relational data are first converted into a single table. A data adapter integrates 

real-time information from various data sources into one, centralized dataset. This is particularly 

important for data that are collected from a variety of sources or databases. In this case, multi-

relational data were dispersed across quality management and engineering design systems. A 

data adapter was developed to transform raw data, through the processes of data connection, data 
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wrangling, and data cleaning, into compatible and interpretable formats. R was used to perform 

data connection, data wrangling, and data cleaning tasks.  

For real-time data connection, the R package for Open Database Connectivity (RODBC) was 

used to connect to the SQL Server of the quality management and engineering design systems. 

The RODBC package provides access to databases (including Microsoft Access, Microsoft SQL 

Server, or Oracle Database) through an Open Database Connectivity (ODBC) interface.  

RODBC has two group of functions: the main internal odbc* commands, which implement low-

level access to the ODBC functions, and the sql* functions, which operate at a higher level to 

read, save, copy, and manipulate data between data frames and SQL tables. The data connection 

through RODBC was periodically redone to ensure that accessed data was up-to-date, thereby 

achieving real-time computation. 

The term “tidy data” has been used to refer to data that are maintained in a table form where each 

variable is saved in its own column and each observation is saved in its own row (Wickham 

2014). Tidy datasets are easy to manipulate, model, and visualize (Wickham 2014). Here, the 

dplyr and tidyr packages were used to perform data wrangling tasks. By making use of multiple 

processors, these packages can perform data wrangling tasks in relatively little time, which is 

critical for processing large-sized datasets, such as the ones used in the present study (Wickham 

2017; Wickham and Francois 2017). 

Omitted values, noise, and inconsistencies render data inaccurate and unreliable. Data cleaning, 

which can be used to improve data accuracy and reliability, is an essential step of the proposed 

approach. Although many mining routines have developed procedures for dealing with these 
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types of data, these procedures are not always robust (Han et al. 2011). Therefore, specific data 

cleaning rules should be specified for each particular case.  

3.3.3 Data Analysis Module 

A data analysis module is comprised of a suite of algorithms that facilitates the establishment of 

the metrics required for decision support. A hybrid data analysis module was developed to (1) 

analytically model nonconforming quality inspection processes; (2) generate auto-calibrated 

input models (i.e. posterior distributions for product fraction nonconforming); (3) determine the 

descriptive decision support metric for quantifying operator quality performance at a product-

level; and (4) generate the predictive metric for forecasting nonconformance for a given project.  

Nonconforming Process Modelling 

In statistical quality control, fraction nonconforming is defined as the ratio of the number of 

nonconforming items in a population to the total number of items in that population 

(Montgomery 2007). For details of nonconforming process modelling, please see Chapter 2, 

Section 2.3. 

Auto-Calibrated Input Models 

To consider sampling uncertainty, Chapter 2 proposed a Bayesian statistics-based analytical 

solution to derive the posterior distribution of the fraction nonconforming during estimation of 

the population fraction nonconforming variable when data are obtained from a sample. This 

Bayesian statistics-based method is capable of recalibrating the posterior distribution of fraction 
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nonconforming at a product-level by combining both previous knowlede (i.e. prior distribution) 

and real-time observed data.  

Beta distributions are commonly used as the standard conjugate priors for inferring variable 𝑝 in 

a binomial distribution (Berger 2013). The primary reasons for choosing beta distributions are 

that they (1) bind the variable fraction nonconforming between the range of 0 to 1; (2) have the 

flexibility to provide accurate and representative outputs; and (3) have parameters that are 

intuitively and physically meaningful and that are easy to estimate from the data (Ji and 

AbouRizk 2017).  

If the fraction nonconforming has a prior distribution 𝐵𝑒𝑡𝑎(𝑎, 𝑏), then the posterier distribution 

would be defined in Eq. (3.4).  

𝑃(𝑝|𝑋) = 𝐵𝑒𝑡𝑎(𝑋 + 𝑎, 𝑛 − 𝑋 +  𝑏) (3.4) 

In practice, the prior distribution can be determined based on historical data, professional 

experience, and existing knowledge. In this research, a non-informative prior distribution 

𝐵𝑒𝑡𝑎(1/2, 1/2)  was used to remove the effects of external information on current data (Berger 

2013). After observing 𝑋 successes in 𝑛 trails, and given the non-informative prior 𝐵𝑒𝑡𝑎(1/2,

1/2), the posterior distribution for fraction nonconforming was defined by the beta distribution:  

𝑃(𝑝|𝑋) = 𝐵𝑒𝑡𝑎(𝑋 + 1/2, 𝑛 − 𝑋 +  1/2) (3.5) 

Descriptive Decision Support Metric: Operator Quality Performance 

Practitioners are interested in identifying welding operators with exceptional quality performance 

(i.e. low fraction nonconforming) for particular weld types. Since welder information is tracked 
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by the quality management system, a welder’s performance can be determined for each weld 

type. The derived posterior distribution for fraction nonconforming is implemented to measure 

welder quality performance at a product-level. For illustration purposes, data for one welding 

operator with pipe (STD, 2, A, BW) was utilized to demonstrate the metric. After connecting and 

processing the data, it was determined that 8 out of 51 welds failed inspection for the selected 

welding operator with pipe (STD, 2, A, BW) at a certain time point. As per Eq. (3.5), the 

theoretical distribution was determined to be 𝐵𝑒𝑡𝑎(8.5, 43.5),  which is illustrated in Figure 3.3. 

The obtained posterior distribution represents the fraction nonconforming density of the 

operator’s quality performance (i.e. fraction nonconforming), and the vertical axle depicts the 

occurrence of nonconforming items for a certain fraction nonconforming value. Based on the 

derived posterior distribution, inspection sampling uncertainty was incorporated to quantify the 

welder’s quality performances for the particular weld type. For interpretation purposes, the 

obtained posterior distribution is transformed to a boxplot with a five-point summary. Details of 

the boxplot are discussed in the Decision Support Module section.  
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Figure 3.3: Theoretical posterior distribution of fraction nonconforming for an operator with pipe 

(STD, 2, A, BW). 

Predictive Decision Support Metric: Project Fraction Nonconforming Estimation 

Raw data for the predictive decision-support metrics are generated by the simulation module. 

Generated data can be processed through the data adapter and data analysis module for further 

decision-support purposes. 

Pipe welds with various combinations of design attributes each have their own posterior 

distributions for fraction nonconforming. Therefore, for estimating fraction nonconforming of 

the overall project, a mixture of distributions must be derived to determine the distribution of the 

overall fraction nonconforming. The static model can be described as in Eq. (3.6): 
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𝐹(𝑥) =
1

𝑛
∑𝑃𝑖(𝑥)

𝑘

𝑖=1

,   𝑘 > 1  (3.6) 

where 𝑛 is the total number of welds for the project and 𝑃𝑖(𝑥) is the cumulative density function 

of the 𝑖-th posterior distribution, which represents the fraction nonconforming distribution of this 

type of pipe weld.  

This equation forecasts project fraction nonconforming by randomly sampling a fraction 

nonconforming rate for each pipe weld from the project. This predictive decision-support metric 

can be used to predict future project quality performance in a real-time manner from detailed 

design information. In the next section, the generation of the project fraction nonconforming 

histogram is described in detail.  

3.3.4 Simulation Module 

A simulation module generates raw data of desired predictive metrics for a given decision-

support application using transformed data from the data adapter and/or the analysis module. In 

construction research, Monte Carlo Simulation has been widely used to conduct uncertainty 

analysis for achieving improved scheduling (Jun and El-Rayes 2011; Lu and AbouRizk 2000) 

and cost estimation performance (Firouzi et al. 2016; Touran 1993).  

Here, Monte Carlo Simulation was implemented in the simulation module to forecast project 

fraction nonconforming with incorporated uncertainty. The accuracy and feasibility of this 

Monte Carlo simulation model have been previously validated through the comparison of 

simulated project quality performance and actual project quality performance of 35 historical 

projects by Ji and AbouRizk (2016). Briefly, the steps of the Monte Carlo Simulation module are 
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(1) identifying input models (i.e. posterior distributions) generated from the data analysis module 

in a real-time manner; (2) generating the static model that is described by Eq. (3.6); (3) sampling 

random variables with multiple iterations; and (4) analyzing results for decision-making 

purposes.  

For each type of pipe weld, the posterior distribution for fraction nonconforming can be derived 

using Eq. (3.5) as an input model for the Monte Carlo Simulation. The project fraction 

nonconforming is a mixture of distributions of all pipe weld types. After multiple iterations of 

the Monte Carlo Simulation, a histogram for project fraction nonconforming is generated. Once 

the project fraction nonconforming histogram has been generated, statistics of interest are 

obtained using R. A detailed example is provided in the following section. In this research, 100 

iterations are performed to achieve the predictive decision-support metric. The duration of each 

iteration depends on the number of pipe welds a project involves. For simulating all historical 

projects (250,000 pipe welds), the duration for the entire analytical process would be less than 30 

seconds. 

This proposed simulation module can serve the fraction nonconforming estimation purpose for 

both the project planning and project control phases. In the project planning phase, the overall 

project fraction nonconforming can be simulated from new project weld design information. In 

the project control phase, the predicted results can be periodically updated by incorporating real-

time inspection data.  
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3.3.5 Decision Support Module  

The decision support module contains two functionalities to support decision-making processes, 

namely operator quality performance measurement and project quality performance forecast. 

These two functionalities can improve day-to-day decision-making at the operational 

management level and support job planning at the tactical management level. Details of the 

functionalities are discussed as follows.  

Functionality 1: Operator Quality Performance Measurement 

The main outputs of this functionality include both the quantification and ranking of welding 

operators' quality performances for each weld type. Based on the proposed approach, useful 

information can be generated in a real-time manner, which dramatically reduces the data 

interpretation load for decision makers. Under this functionality, a boxplot is utilized to visualize 

the welding operator quality performance distribution. In statistics, a boxplot is an efficient 

graphical representation of a five-number summary (minimum value, 25% quantile (Q1), 

Median, 75% quantile (Q3), and maximum value) of a distribution (De Veaux et al. 2005). The 

upper whisker extends from the hinge to the highest value that is within 1.5 * IQR of the hinge, 

where the IQR equals to the inter-quartile range or distance between the first and third quartiles. 

The lower whisker extends from the hinge to the lowest value within 1.5 * IQR of the hinge. 

Data beyond the end of the whiskers are outliers and are plotted as individual points. 

In this section, data regarding pipe (STD, 2, A, BW), the most common work type, is used to 

demonstrate the main outputs of this functionality. 17 operators, who have each had over 100 

welds inspected, were selected. Table 3.2 lists the performance records and the five-number 
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summaries of the welding quality performances, with respect to fraction nonconforming, of these 

operators. Consistent with Figure 3.4, the median value of their performance is sorted in 

ascending order in Table 3.2. Operator identification numbers were randomly reassigned to 

maintain employee anonymity.  

Table 3.2: Statistical summary of operator welding performance of pipe (STD, 2, A, BW). 

Operator ID Inspected Welds Repaired Welds Min Q1 Median Q3 Max 

1 355 11 0.008 0.027 0.031 0.038 0.072 

2 147 5 0.005 0.025 0.035 0.047 0.097 

3 264 9 0.013 0.029 0.035 0.043 0.080 

4 208 9 0.009 0.035 0.043 0.054 0.110 

5 123 5 0.006 0.033 0.043 0.057 0.119 

6 316 16 0.020 0.043 0.051 0.059 0.097 

7 175 9 0.017 0.040 0.052 0.067 0.133 

8 120 6 0.011 0.038 0.052 0.064 0.155 

9 175 11 0.023 0.053 0.064 0.076 0.138 

10 119 8 0.015 0.054 0.069 0.086 0.182 

11 104 7 0.009 0.055 0.070 0.087 0.196 

12 207 16 0.028 0.068 0.080 0.093 0.159 

13 100 8 0.026 0.065 0.081 0.100 0.223 

14 307 27 0.046 0.078 0.089 0.099 0.157 

15 139 13 0.036 0.080 0.096 0.113 0.193 

16 111 11 0.029 0.085 0.103 0.123 0.225 

17 175 25 0.069 0.128 0.147 0.166 0.243 

To visually represent and compare welding operator quality performance, a side-by-side boxplot 

can be generated, as shown in Figure 3.4. Box width is inversely proportional to the stability of 

operator quality performance, where a narrower box is indicative of an operator with a stable 

quality performance for the indicated type of weld. Operators with higher ranks have smaller 

fraction nonconforming (i.e., better quality performance). The dashed line represents the average 

welding quality performance of the 17 operators (fraction nonconforming=0.062). The range of 

the median is relatively wide (0.031 to 0.147), indicating operator performance varies 

considerably for the same type of welding work.  
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Figure 3.4: Sorted side-by-side boxplot of operators' quality performance with pipe (STD, 2, A, 

BW). 

From this visualized output, practitioners can (1) infer operators' skill level for a specified type 

of work; (2) identify operators who consistently produce high-quality welds; and (3) support 

future decision-making processes aimed at improving production planning, employee training, 

and strategic recruiting. Informing decision-makers with results such as these are expected to 

positively impact company quality and productivity performance.  

Functionality 2: Project Quality Performance Forecast 

In pipe fabrication projects, the quality performance metric, fraction nonconforming, is measured 

at the project-level as specified in contracts by clients. Under this functionality, given the project 

design information, an empirical histogram for project fraction nonconforming can be generated 

through Monte Carlo Simulation. Practitioners can determine a proper project fraction 

nonconforming based on their risk attitude (i.e., commitment to achieving quality) by selecting 

an appropriate quantile. The quantile represents the probability of achieving the corresponding 

project fraction nonconforming as determined from the simulated project fraction nonconforming 
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histogram. For instance, practitioners may choose 10%, 50%, and 90% quantiles of the 

histogram to represent an aggressive, neutral, or conservative risk attitude, respectively. 

For illustrative purposes, historical project information is extracted to demonstrate the simulation 

result. Figure 3.5 depicts the empirical histogram (100 iterations) generated by the simulation 

module for a given project. Table 3.3 summarizes all 10% quantiles for the generated empirical 

histogram. The median value of this empirical histogram is 0.049, which indicates that the 

project will achieve a 4.9% fraction nonconforming with a neutral risk attitude. This project 

quality performance forecast functionality allows practitioners to gain insights into the 

complexity of the project and to perform risk analysis in terms of quality performance. 

Furthermore, the simulated result can assist companies to prepare strategic bids by assisting with 

the estimation of quality-induced rework costs. In practice, companies can specify their own 

quantiles of interest to support their decision-making processes.  

 

Figure 3.5: The empirical histogram for a historical project. 
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Table 3.3: Statistical summary of the simulated result of a historical project. 

Quantiles 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Fraction 

Nonconforming 
0.031 0.037 0.040 0.044 0.046 0.049 0.052 0.057 0.061 0.064 0.076 

The accurate and reliable forecasting of project fraction nonconforming provided by these 

functionalities can assist fabricators to better control quality performance uncertainty and to 

better estimate quality-induced rework costs. In addition, improved quality performance could 

benefit clients by enhancing health and safety during the operation phase of the project. 

3.4 Prototype System Development 

Based on the proposed research, a C#-based prototype system was developed to facilitate 

decision-making processes for a pipe fabrication company in Edmonton, Canada. All of the 

aforementioned functionalities were incorporated into the company’s current quality 

management system, ArcuTrack, through the developed prototype. During actual system 

implementation, all historical data and real-time collected data are incorporated using the auto-

calibrated input models. 

Development of prototype system replicates the same processes of the original work performed 

using R but is, instead, reprogrammed in C# language. Simphony core service (AbouRizk et al. 

2016) is utilized for statistical modelling and simulation purposes during the development 

process. The workflow of the prototype system is shown in Figure 3.6. The developed C# 

dynamic-link library (DLL) can connect and process data from the SQL server and can conduct 

all modules of the original research. A C# Graphical User Interface (GUI) is developed for 

creating user-friendly interfaces to achieve the previously described functionalities. 
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Figure 3.6: Relationship between the developed C# DLL and the original research. 

The developed decision-support prototype system for the current quality management system 

makes use of existing quality management and engineering design data, analytics-based 

techniques (i.e., Bayesian statistics and Monte Carlo Simulation), and computer programs (i.e., 

C# and Simphony) to reliably forecast pipe welding fraction nonconforming during both the 

planning and control phases of a project.  

Execution of the welding operator quality performance measurement functionality was selected 

to demonstrate the performance capabilities of the prototype system. The user interface and the 

decision-support metric are shown in Figure 3.7. Practitioners can specify the design attributes of 

the desired weld types. Pipe (STD, 2, A, BW) is selected as an example. The performance plot 

ranks operators’ quality performances in the format of side-by-side boxplots. On the right side of 

the performance plot, a numerical summary is provided, which details information such as 

welder ID, median, number of inspected welds, and number of repaired welds. Based on this 

output, the fabrication shop superintendent can perform day-to-day production planning 

activities by allocating weld types to the operators most competent at performing said welds. The 

performance plot and the numerical summary can also be exported for other reporting purposes.  
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Figure 3.7: Graphical User Interface (GUI) for the functionality of operator quality performance 

measurement. 

3.5 Conclusion 

Industrial construction companies, much like many manufacturing companies, have difficulty 

using data collected by their quality management systems to make decisive, purposeful 

improvements to their production system’s performance. Industrial construction companies find 

it difficult to manage, analyze, and transform data into useful information to improve decision-

making and competitiveness. Through the implementation of the proposed simulation-based 

analytics decision-support framework, this research is expected to assist practitioners to more 

effectively use quality management and engineering design data to improve pipe welding quality 

management practices.  

The simulation-analytics based system enables real-time data connection, wrangling, and 

cleaning. In addition, the present research proposes a feasible solution for the issue of input 

model recalibration to realign with new data in a dynamic manner. In terms of nonconforming 
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quality management, the proposed system provides two functionalities: (1) a visually informative 

operator quality performance uncertainty measurement (i.e. boxplot) at a product-level in a real-

time manner and (2) a project fraction nonconforming performance forecast that can assist 

practitioners with performing risk analysis during both project planning and control phases. 

Notably, the proposed system can be generalized for all nonconforming quality-related 

construction products across a multitude of construction types.  

A C#-based prototype system has been developed and implemented by an industrial pipe 

fabrication company in Edmonton, Canada. This prototype system substantially improves the 

descriptive and predictive capabilities of the studied company’s original quality management 

system. The Graphical User Interface (GUI) can generate accurate and reliable decision-support 

metrics in a real-time manner and considerably reduces the data interpretation load of 

practitioners.  

Although the proposed system substantially improves the practice for pipe welding quality 

control processes, it is limited to quality processes that utilize binary variables. Furthermore, 

while the proposed system can be used to inform decision-making processes, professional 

experience and knowledge are still required to ensure effective decisions are made. In the future, 

product quality performance will be used to quantitatively measure pipe welding product 

complexity. Additionally, estimation information can be incorporated into the proposed 

simulation-based analytics system to develop a novel analytical model to estimate quality-

induced rework costs for a given project. 
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4 CHAPTER 4: INTEGRATED DATA-DRIVEN APPROACH FOR ANALYZING 

PIPE WELDING OPERATOR QUALITY PERFORMANCE 

4.1 Introduction  

Due to its ability to improve overall project performance, many industrial construction projects 

have implemented a modularized approach to construction (O’Connor et al. 2016). Essential to 

modularization is pipe spool fabrication, which primarily involves pipe welding. Pipe weld 

quality can have a considerable impact on the overall performance of modularized construction 

projects: exceptional welding performance may enhance the quality and productivity of pipe 

fabrication processes, while poor quality performance may lead to quality-associated cost and 

schedule overruns. Reliable assessment and forecasting of pipe weld quality performance, 

particularly from an operator-by-operator perspective, can lead to improved overall project 

quality and enhanced management practices. 

In practice, pipe weld quality is often assessed by nondestructive examination (NDE), which 

detects discontinuities in welds without inducing pipe damage (ASME 2001). From this, a 

percentage repair rate, defined as the number of failed NDE over the number of NDE completed, 

can be used as an index to represent an operator’s quality performance. This repair rate is 

consistent with the concept of fraction nonconforming in statistical quality control theory, which 

is defined as the ratio of nonconforming items to the total number of items in a population 

(Montgomery 2007).  

The reliable estimation of operator quality performance, however, remains challenging for 

companies. Quality performance is impacted by the skill level of the operator but also by the 

complexity of the weld itself (as determined by the pipe attributes), which is further complicated 
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by the vast possible combinations of pipe attributes (e.g., NPS, pipe schedule, and material). 

Moreover, quality performance estimation may also be confounded by the inappropriate 

incorporation of sampling uncertainty, which arises when inspection data are collected from a 

representative sample rather than an entire population (Ji and AbouRizk 2017). However, 

methods capable of addressing these limitations have yet to be developed.  

The overall objective of this research is to devise an analytical approach for quantifying and 

comparing operator quality performance by incorporating uncertainties that arise as a 

consequence of pipe design attributes and inspection sampling. To facilitate the quantification of 

operator welding quality performance, this study proposes an integrated, data-driven approach 

that efficiently sources and classifies existing quality management and engineering design data, 

while concurrently incorporating both pipe design attribute and sampling uncertainty. 

Specifically, the proposed framework (1) fuses and transforms data from separate data sources 

(i.e., quality management system and engineering design system) into an interpretable dataset; 

(2) implements an MCMC-based approach to numerically estimate posterior distributions of 

operator welding quality performance; (3) utilizes an A/B testing algorithm to compute 

probabilistic differences between operator quality performance; and (4) proposes potential 

applications to comprehensively improve pipe welding quality performance for practitioners. 

Chapter 2 has advocated for the implementation of a MCMC-based numerical method to 

incorporate sampling uncertainty during nonconforming quality performance analyses. The 

proposed approach approximates a Bayesian posterior distribution that covers the true population 

fraction nonconforming of each pipe weld type. This method is capable of incorporating dynamic 

data and deriving additional statistical values, such as mean, median, and all quantiles (Weaver 
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and Hamada 2016), which can be used to assess historical welding quality performance and 

improve decision-making processes. 

Once the distributions for operator quality performance have been determined using the 

aforementioned approach, they can be compared using A/B testing. This method, also called 

controlled experimentation, has been widely implemented in various industries to guide product 

development and data-driven decisions (Gui et al. 2015). The goal of A/B testing is to determine 

if two distributions differ from one another. In this research, an A/B testing algorithm is 

implemented to quantify distribution differences of quality performance (i.e., fraction 

nonconforming) between operators, allowing users to quantitatively determine if one operator 

can be expected to outperform another operator for a certain pipe weld type. 

The remainder of this chapter is organized as follows: the framework of the proposed approach is 

introduced to demonstrate the workflow of this research. Then, a detailed explanation of data 

source identification and data adapter design are presented, and the data analysis module, which 

includes fraction nonconforming modelling, MCMC-based numerical approximation, and A/B 

testing algorithm, is explained. An illustrative example is also provided to demonstrate the 

sequence of the data analysis module, and main outputs from the proposed approach are 

discussed as decision-support metrics to support decision-making processes. Then, potential 

applications of the research outcomes from the perspectives of production planning, employee 

training, and strategic recruiting are discussed. Finally, conclusions regarding principle findings, 

contributions, and limitations of this research are summarized. 
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4.2 Research Framework 

A framework for an integrated data-driven approach for quantifying operator quality 

performance is proposed. Framework functionalities are demonstrated using quality management 

and engineering design data from a pipe spool fabrication company in Edmonton, Alberta. The 

framework consists of four components, namely the data source, data adapter, data analysis 

module, and decision support module. A workflow of the methodology developed to achieve the 

research objective is summarized in Figure 4.1. The data source component maps data from 

quality management and engineering design systems. Then, raw data are transformed into a 

single table format to allow for further analytical processes. The data analysis module provides a 

suite of algorithms to analyze the transformed data from the data adapter. Finally, decision-

support metrics are generated by the decision support module to facilitate decision-making 

processes. Each component of the research workflow is discussed in following sections.  

Quality Management 

System

ArcuTrack

Data Connection

  Microsoft ODBC Data 

Source Administrator

  R: RODBC Package

Data Wrangling

  R: dplyr/tidyr PackageEngineering Design 

System

Navisworks

Fraction Nonconforming 

Modelling

A/B Testing Algorithm

Data Visualization

R: ggplot2 Package

Metropolis-Hastings 

Algorithm

Operators  Welding 

Quality Performance 

Quantification and 

Ranking

Operators  Welding 

Quality Performance 

Comparison

Bayesian Inference for 

Fraction Nonconforming

 

Figure 4.1: A workflow of the proposed methodology. 
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4.3 Data Source 

4.3.1 Quality Management System 

As discussed previously, computer-based quality management systems have been widely 

implemented for quality management purposes within the construction industry (Chini and 

Valdez 2003). In practice, these systems are primarily used for quality inspection documentation 

and quality performance reporting purposes.  

Here, data stored in the quality management system SQL server (ArcuTrack) of a pipe 

fabrication company in Edmonton, Canada were used to demonstrate the application of the 

proposed methodology. NDE inspection results (e.g., no inspection performed, inspected and 

passed, or inspected and failed), weld types (e.g., Butt weld, Fillet weld, etc.), and operator IDs 

for each weld were extracted.  

4.3.2 Engineering Design System 

Building information modelling (BIM) is becoming increasingly implemented for its ability to 

improve information management of construction projects. Accordingly, detailed engineering 

models generated to facilitate quantity take-off, material information, and design specifications 

are accessible for many industrial construction projects. Pipe attributes, such as nominal pipe 

size (NPS; i.e., outside diameter), pipe schedule (i.e., wall thickness), and material, can be 

extracted from the engineering design system.  

In the present study, pipe attributes were extracted from the engineering design system of the 

studied company. Here, pipe format (NPS, schedule, material, weld type) is defined to represent 

one type of pipe weld. For example, pipe (40, 4, B, BW) represents butt welds with an NPS of 
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40, schedule of 4, and material B. Design information was then mapped to each pipe weld 

through primary key and foreign key relationships using the designed data adapter. 

4.4 Data Adapter 

The data adapter integrates information from various sources into a single, centralized database. 

This is particularly important for data that are collected from a variety of sources (e.g., multi-

relational databases). A data adapter must be developed to transform raw data, through data 

connection and data wrangling, into compatible, interpretable formats for further data mining 

procedures.   

In the studied company, required data are dispersed across quality management and engineering 

design systems. R was used to perform data connection and data wrangling tasks. For data 

connection, the R package for Open Database Connectivity (RODBC) package was used to 

connect to the SQL server of both the quality management and engineering design systems. The 

dplyr/tidyr package was used to perform data wrangling tasks, including data reshaping, 

grouping, and combining. The completed dataset was transformed into a table format, where 

each variable was saved in its own column and each observation was saved in its own row. 

4.5 Data Analysis Module 

A data analysis module is comprised of a suite of algorithms that facilitate the establishment of 

decision-support metrics required by the framework. To achieve functionalities of the decision 

support module, a series of algorithms have been integrated to model fraction nonconforming, 

derive posterior distributions of operator quality performance, and compare probabilistic 

differences of operator quality performance. First, fraction nonconforming is modelled using an 
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established statistical model. Second, the Bayesian inference for fraction nonconforming is 

introduced, and a Metropolis-Hastings algorithm is implemented to approximate the posterior 

distributions of operator quality performance. Then, an A/B testing algorithm is developed to 

compare probabilistic differences between operator quality performance distributions, and 

operator quality performance is visualized using the ggplot2 package in R. The integrated 

algorithms and the generated metrics used in the present study are detailed as follows. 

4.5.1 Fraction Nonconforming Modelling 

In statistical quality control, fraction nonconforming is defined as the ratio of the number of 

nonconforming items in a population to the total number of items in that population 

(Montgomery 2007). For details of nonconforming process modelling, please see Chapter 2, 

Section 2.3. 

4.5.2 Bayesian Inference for Fraction Nonconforming 

Inspection is an essential process in pipe spool fabrication to ensure pipe welds meet a specific 

standard of quality. As mentioned previously, binary inspection results can be modelled and 

measured by fraction nonconforming, which is a reliable indicator of welding operator quality 

performance. However, to precisely quantify operator quality performance, all manufactured 

products would be required for inspection, which would be a time- and cost-intensive process. 

An alternative solution is to select and inspect a representative sample for quality assurance 

purposes (Montgomery 2007). Although there are multiple ways to choose representative 

samples, uncertainties associated with inspection results still exist. To generate a more accurate, 

reliable, and interpretable result, an MCMC-based numerical approximation of the Bayesian 
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posterior distribution for fraction nonconforming has been developed (Ji and AbouRizk 2017). 

This approach utilizes Bayes' theorem to update a probability distribution for an interested 

parameter as more information becomes available.  

A Bayesian method involves two important distributions, namely the prior distribution and the 

posterior distribution. A prior distribution of the interested parameter is the probability 

distribution without knowing any information, while a posterior distribution is an updated 

version of the prior distribution that incorporates additional information as it becomes available. 

Due to its ability to dynamically incorporate new data, a Bayesian Inference-based approach is 

implemented in this study. Additionally, descriptive statistical information, such as mean, 

median, and all quantiles, can be derived from the generated posterior distribution, resulting in 

intuitive, informative outputs that are ready to be used for decision-making purposes. 

Prior Distribution 

In Bayesian statistics, a prior distribution is a rough estimation of the parameter’s probability 

distribution when no information is available (Berger 2013). Bayesian priors come with 

informative priors and non-informative priors. Informative priors utilize previous observations, 

experiences, or knowledge to derive parameters that best approximate the distribution of a 

studied object. Non-informative priors express vague, flat, and diffuse information, which is 

commonly used when previous data of the studied object are limited. In this case, the studied 

object is operator quality performance. The prior distribution of an operator's fraction 

nonconforming is derivable if there are enough inspections performed in the past. However, due 

to limited historical performance data, it is difficult to compute a comprehensive prior 

distribution for each operator. To solve this problem, a non-informative prior is used.   
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For the prior distribution determination, beta distributions are commonly used as the standard 

conjugate priors for variable p  in a binomial distribution (Gelman et al. 2014). The prior 

distribution is given by 

𝑃(𝑝) = 𝐵𝑒𝑡𝑎(𝑝|𝑎, 𝑏) =  
𝛤(𝑎 + 𝑏)

𝛤(𝑎)𝛤(𝑏)
𝑝𝑎−1(1 − 𝑝)𝑏−1 (4.4) 

Here, a and b are two positively shaped parameters that control the shape of the fraction 

nonconforming distribution. 𝛤(𝑧) is the gamma function. In this research, 𝐵𝑒𝑡𝑎 (
1

2
,
1

2
) is used as 

the non-informative prior to perform the posterior distribution approximation (Black and 

Thompson 2001).  

Posterior Distribution 

Bayesian inference calculates a posterior distribution through the integration of a prior 

distribution and a likelihood function (Black and Thompson 2001). In this research, the fraction 

nonconforming 𝑝 is the parameter of interest. The prior distribution of fraction nonconforming 𝑝 

is 𝑃(𝑝), which provides an estimation of distribution before any collected observation. The 

likelihood function 𝐿(𝑋|𝑝)  describes the distribution of the observation given the fraction 

nonconforming 𝑝 . 𝑃(𝑋)  is the marginal distribution of the observation 𝑋 . The posterior 

distribution 𝑃(𝑝|𝑋) represents information in observation x together with information expressed 

in the prior distribution. In general, a posterior distribution is obtained by updating a prior 

distribution using observed data. Based on Bayes’ Theorem, the posterior distribution 𝑃(𝑝|𝑋) 

can be derived as Eq. (4.5).  

𝑃(𝑝|𝑋) =
𝐿(𝑋|𝑝)  × 𝑃(𝑝)

𝑃(𝑋)
∝ 𝐿(𝑋|𝑝) 𝑃(𝑝) 

(4.5) 
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Keeping the factors that only depend on p, the prior distribution follows  

𝑃(𝑝) ∝ 𝑝𝑎−1(1 − 𝑝)𝑏−1 (4.6) 

And, the likelihood function follows 

𝐿(𝑋|𝑝) ∝ 𝑝𝑋(1 − 𝑝)𝑛−𝑋 (4.7) 

Therefore, the posterior distribution of fraction nonconforming 𝑝 can be obtained by multiplying 

the prior distribution by the likelihood function. Keeping only the factors dependent on 𝑝, the 

posterior distribution has the form 

𝑃(𝑝|𝑋) ∝ 𝐿(𝑋|𝑝) 𝑃(𝑝) ∝ 𝑝𝑋+𝑎−1(1 − 𝑝)𝑛−𝑋+𝑏−1 (4.8) 

In the next section, a Metropolis-Hastings algorithm-based numerical solution for fraction 

nonconforming estimation will be implemented to approximate the posterior distribution 𝑃(𝑝|𝑋).  

4.5.3 Metropolis-Hastings Algorithm 

The Metropolis-Hastings algorithm is an MCMC-based method of generating random samples 

from a probability distribution. It was developed by Metropolis et al. (Metropolis et al. 1953) and 

generalized by Hastings (Carlo et al. 1970). In the last decade, the Metropolis-Hastings algorithm 

has become increasingly popular within the statistical community for approximating distributions 

(Robert and Casella 2011).  

In Chapter 2, a specialised Metropolis-Hastings algorithm has been developed for determining 

the posterior distribution and credible interval for fraction nonconforming. The accuracy of the 

MCMC-based algorithm has been previously validated by comparing the derived analytical 
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solution to that obtained using criteria of Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE) (Figure 2.10/Table 2.5). Validation details and results have been previously 

described in Section 2.7.3. In the present study, this specialised algorithm is implemented to 

quantify operator welding quality performance (i.e., fraction nonconforming).  

The Metropolis-Hastings algorithm constructs a Markov chain of fraction nonconforming values 

for {𝑝(1), 𝑝(2), 𝑝(3), … , 𝑝(𝑁)} . The value 𝑝(𝑖+1)  is decided by proposing a random move 

conditional on the previous value 𝑝(𝑖) and on the ratio of 
𝑃(𝑝∗|𝑋) 

𝑃(𝑝(𝑖)|𝑋) 
. This acceptance ratio indicates 

the probably of the new proposed sample with respect to the current sample. The move is 

accepted if the new sample is more probable than the existing sample. Otherwise, the move is 

accepted with the acceptance probability, or the move is rejected. When these conditions are met, 

the Markov chain of parameter values will remain in the high-density region and will converge 

to the target distribution 𝑃(𝑝|𝑋). As the sampling effort is concentrated in the area with higher 

posterior density, the time required for obtaining an acceptable convergence is typically shorter 

than that of other sampling techniques.  

Here, the specialised Metropolis-Hastings algorithm is illustrated in a step-by-step algorithmic 

form with the initial value 𝑝(0) and repeated for 𝑖 = 1, 2, 3, … ,𝑁.  

Step 1. Choose a new proposed value 𝑝∗, such that 𝑝∗ = 𝑝(𝑖) + ∆𝑝 , where ∆𝑝~𝑁(0, 𝜎). 

Step 2. Calculate the ratio 𝜌 = min {1,
𝑃(𝑝∗|𝑋) 

𝑃(𝑝(𝑖)|𝑋) 
}, where 𝑃(𝑝|𝑋) is the posterior  

distribution. As discussed in the previous section, the posterior distribution has  

the form 
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𝑃(𝑝|𝑋) ∝ 𝐿(𝑋|𝑝) 𝑃(𝑝) ∝ 𝑝𝑋+𝑎−1(1 − 𝑝)𝑛−𝑋+𝑏−1 

Therefore, the ratio ρ can be calculated as 

𝜌 = 𝑚𝑖𝑛 {1,
𝑝∗𝑋+𝑎−1(1 − 𝑝∗)𝑛−𝑋+𝑏−1 

𝑝(𝑖)𝑋+𝑎−1
(1 − 𝑝(𝑖))𝑛−𝑋+𝑏−1 

} 

Step 3. Sample 𝜇~𝑈[0,1]. 

Step 4. If 𝜇 < 𝜌 

𝑝(𝑖+1) = 𝑝∗ 

 or else  

𝑝(𝑖+1) = 𝑝(𝑖) 

Step 5. Return the values {𝑝(1), 𝑝(2), 𝑝(3), … , 𝑝(𝑁)}. 

The draws {𝑝(1), 𝑝(2), 𝑝(3), … , 𝑝(𝑁)}  are regarded as a sample from the targeted distribution 

𝑃(𝑝|𝑋). Only after the chain has passed the transient phase can the impact of the initial value be 

ignored. After obtaining the fraction nonconforming values, {𝑝(1), 𝑝(2), 𝑝(3), … , 𝑝(𝑁)} , a 

frequency histogram plot is generated.  

4.5.4 A/B Testing Algorithm 

A/B testing has been widely used in many consumer-facing web technology companies to guide 

product development and data-driven decisions (Gui et al. 2015). A/B testing is an important 

algorithm to compare dissimilarities between two sampled distributions. In this study, A/B 
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testing is used to compare how much greater the fraction nonconforming (FN) of one operator is 

compared to another. This calculation can be mathematically expressed as a percentage 

probability 𝑃(𝐹𝑁𝐴 > 𝐹𝑁𝐵). The closer a probability is to 100%, the greater the probability that 

operator A has a greater fraction nonconforming than operator B (i.e., it is more likely that 

operator B has better quality performance). The closer a probability is to 50%, the smaller the 

probability that operator A has a greater fraction nonconforming than operator B (i.e., it is less 

likely that operator B has better quality performance). A detailed explanation is provided in the 

following paragraph to discuss how to implement an A/B testing algorithm to compare operator 

quality performance using the obtained empirical distributions.  

Typically, there are four ways to compute distributions’ dissimilarities using A/B testing: 

numerical integration, closed-form solution, closed-form approximation, and simulation of 

posterior draws (Robinson 2017). The first three methods require exact parameters or derivation 

of parameters to represent distributions. Since the proposed Metropolis-Hastings algorithm is 

only able to derive a numerical approximation of a fraction nonconforming distribution, an ideal 

method is to use simulation of posterior draws. Using an A/B testing method to solve 𝑃(𝐹𝑁𝐴 >

𝐹𝑁𝐵) essentially asks the question, “if a random draw is picked from operator A’s distribution, 

and a random draw is picked from operator B’s distribution, what is the probability operator A’s 

sampled fraction nonconforming is higher than Operator B?” Rather than deriving complicated 

mathematical equations, a simulation method is used to compare the generated empirical 

distributions and to calculate a percentage probability. Notably, the simulation method also 

allows the user to choose the sample size, thereby increasing the accuracy of the probabilistic 

comparison.  
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Here, the A/B testing algorithm is illustrated in a step-by-step pseudocode form as follows: 

Step 1. Input the run times 𝑛.  

Step 2. Initialize counter 𝑖 to zero.  

Step 3. Initialize comparison result 𝑚 to zero. 

Step 4. While (𝑖 < 𝑛) 

  Sample one value 𝑥𝑖 from Distribution A  

Sample one value 𝑦𝑖 from Distribution B 

If (𝑥𝑖 ≥ 𝑦𝑖) 

  increase 𝑚 by one 

End If 

End While 

Step 5. Calculate 𝑃(𝐹𝑁𝐴 > 𝐹𝑁𝐵) =
𝑚

𝑛
.  

In summary, sampled values from two distributions, A and B, are compared. 𝑃(𝐹𝑁𝐴 > 𝐹𝑁𝐵) is 

calculated based on the number of instances that a sampled value from distribution A is greater 

than a sampled value from distribution B divided by total number of comparisons. R is used to 

implement the A/B testing algorithm to quantify the probabilistic difference between two 

fraction nonconforming distributions. Practitioners can then use these values to gain a more 

quantitative and determinate understanding of operator quality performance.  

4.5.5 Illustrative Example  

In this section, data for two welding operators with the same type of pipe weld were used to 

illustrate the algorithm. After connecting and processing the data, it was determined that, for a 
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certain type of weld, 25 out of 180 welds were inspected as “failure” for operator A, while 10 out 

of 140 welds were inspected as “failure” for operator B. By performing the specialised 

Metropolis-Hastings algorithm, the empirical posterior distributions were calculated. The 

empirical frequency histogram plot and the corresponding boxplot of the results are depicted in 

Figure 4.2. 

 

Figure 4.2: Empirical fraction nonconforming distributions for operator A and B: (a) frequency 

histogram plot; and (b) boxplot. 

The frequency histogram plot [Figure 4.2(a)] is plotted based on posterior distributions generated 

using the Metropolis-Hastings algorithm. Then, the frequency histograms are transformed to 

boxplots as shown in Figure 4.2(b). A frequency histogram is a graphical representation of a 

frequency distribution of numerical data, while a boxplot is a graphical representation of a five-

number summary [Min, 25% Quantile (Q1), Median, 75% Quantile (Q3), Max]. For a boxplot, 

the upper whisker extends from the hinge to the highest value that is within 1.5 * IQR of the 
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hinge, where the IQR is the inter-quartile range or distance between the first and third quartiles. 

The lower whisker extends from the hinge to the lowest value within 1.5 * IQR of the hinge. 

Data beyond the end of the whiskers are outliers and are plotted as individual points. The minor 

overlapping region, as shown in Figure 4.2(a), visually indicates that there is a difference 

between these two distributions. The same pattern can be observed from the boxplot shown in 

Figure 4.2(b). 

As the Metropolis-Hastings algorithm is a numerical approximation to the true posterior 

distribution for operator welding quality performance, the numerical solution varies slightly 

during each run of the proposed algorithm. Once the posterior distribution has been generated, 

statistics such as mean, median, variance, and quantiles can be obtained from the distribution. 

Moreover, operator quality performance can be compared using the A/B testing algorithm. The 

statistical software R is utilized to calculate statistical summaries of interest and to perform the 

A/B testing algorithm. Statistical summaries of the above two operators are listed in Table 4.1.  

Table 4.1: Statistical summary of operator A and B quality performance. 

Operator ID Inspected Welds Repaired Welds Min Q1 Median Q3 Max 

Operator A 180 25 0.060 0.123 0.139 0.158 0.247 

Operator B 140 10 0.015 0.060 0.075 0.090 0.181 

By performing the A/B testing algorithm, 𝑃(𝐹𝑁𝐴 > 𝐹𝑁𝐵)  is calculated to quantify the 

probabilistic difference between two operators. It was found that there is 97.5% probability that 

operator A has higher fraction nonconforming than operator B. Therefore, a conclusion can be 

drawn that operator A has a greater fraction nonconforming than operator B, indicating that 

operator B has better performance than operator A for this particular weld type. 
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4.6 Decision Support 

In industrial pipe fabrication companies, practitioners are interested in comparing and identifying 

operators with exceptional quality performance for weld types. By using the proposed approach, 

analytical outputs, namely quantification, ranking, and comparison of each operator’s welding 

performance for each weld type, can be generated in a near real-time manner, dramatically 

reducing the data interpretation load of decision makers.   

In this section, data regarding pipe (STD, 2, A, BW), the most common work type in the studied 

company, is used to demonstrate the main outputs of the proposed methodology. 17 operators, 

who have each had over 100 welds inspected, were selected. Table 4.2 lists the performance 

records and the five-number summary (Min, Q1, Median, Q3, and Max) of their welding quality 

performance with respect to fraction nonconforming of these operators. Consistent with Figure 

4.2, the median value of their performance is sorted, in descending order, in Table 4.2. Operator 

IDs were reassigned to maintain employee anonymity.  
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Table 4.2: Statistical summary of operator welding performance of pipe (STD, 2, A, BW). 

Operator ID Inspected Welds Repaired Welds Min Q1 Median Q3 Max 

1 175 25 0.069 0.128 0.147 0.166 0.243 

2 111 11 0.029 0.085 0.103 0.123 0.225 

3 139 13 0.036 0.080 0.096 0.113 0.193 

4 307 27 0.046 0.078 0.089 0.099 0.157 

5 100 8 0.026 0.065 0.081 0.100 0.223 

6 207 16 0.028 0.068 0.080 0.093 0.159 

7 104 7 0.009 0.055 0.070 0.087 0.196 

8 119 8 0.015 0.054 0.069 0.086 0.182 

9 175 11 0.023 0.053 0.064 0.076 0.138 

10 175 9 0.017 0.040 0.052 0.067 0.133 

11 120 6 0.011 0.038 0.052 0.064 0.155 

12 316 16 0.020 0.043 0.051 0.059 0.097 

13 208 9 0.009 0.035 0.043 0.054 0.110 

14 123 5 0.006 0.033 0.043 0.057 0.119 

15 147 5 0.005 0.025 0.035 0.047 0.097 

16 264 9 0.013 0.029 0.035 0.043 0.080 

17 355 11 0.008 0.027 0.031 0.038 0.072 

To visually represent and compare operator welding performance, a side-by-side boxplot was 

generated, as in Figure 4.2(b), and is shown in Figure 4.3. Box height is inversely proportional to 

the stability of operator quality performance, where a shorter box is indicative of an operator 

with stable quality performance for the indicated type of weld. Operators with lower ranks have 

smaller fraction nonconforming (i.e., better performance). The dashed line represents the overall 

averaged welding quality performance of the 17 operators (fraction nonconforming = 0.062). The 

range of the median is relatively wide (0.031 to 0.147), indicating operator performance varies 

considerably for the same type of welding work. Although root cause analysis may identify 

factors affecting operator welding performance, it is beyond the scope of this study. 



90 

 

 

Figure 4.3: Sorted side-by-side boxplot of operators' welding performance with pipe (STD, 2, A, 

BW). 

The side-by-side boxplot only depicts a visual comparison between operators' quality 

performance and does not serve the purpose of quantitative comparison of performance 

differences. The A/B testing algorithm is utilized quantify the probabilistic differences between 

welding operators. Table 4.3 summarizes the probabilistic difference of quality performance 

between all operators. For example, the first column indicates the probability of operator 1 

having better performance than the other operators. Since all operators’ fraction nonconforming 

have been sorted in descending order, all celled numbers are equal to or larger than 50%. For 

instance, the second row in the first column demonstrates there is a probability of 87% that 

operator 1 has higher fraction nonconforming (i.e., reduced quality performance) than operator 2. 

Conversely, it was found that there was a probability of 51% that operator 7 has higher fraction 

nonconforming than operator 8. These results are consistent with the visualized outcome shown 

in Figure 4.3 (i.e., operator 7 and operator 8 have near identical boxplots). 
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Table 4.3: Probabilistic differences of pipe welding quality performance between operators with pipe (STD, 2, A, BW). 

Operator ID  

(i) 

1 > i 2 > i 3 > i 4 > i 5 > i 6 > i 7 > i 8 > i 9 > i 10 > i 11 > i 12 > i 13 > i 14 > i 15 > i 16 > i 17 > i 

1 0.50                 

2 0.87 0.50                

3 0.91 0.56 0.50               

4 0.97 0.64 0.57 0.50              

5 0.94 0.67 0.63 0.58 0.50             

6 0.98 0.74 0.69 0.64 0.54 0.50            

7 0.98 0.80 0.77 0.74 0.65 0.63 0.50           

8 0.98 0.80 0.77 0.75 0.64 0.63 0.51 0.50          

9 0.99 0.86 0.84 0.83 0.72 0.72 0.56 0.57 0.50         

10 1.00 0.94 0.92 0.93 0.84 0.85 0.72 0.73 0.69 0.50        

11 1.00 0.92 0.91 0.90 0.83 0.83 0.72 0.72 0.68 0.51 0.50       

12 1.00 0.96 0.96 0.97 0.87 0.89 0.76 0.77 0.74 0.54 0.52 0.50      

13 1.00 0.97 0.97 0.98 0.91 0.93 0.81 0.83 0.80 0.63 0.61 0.62 0.50     

14 1.00 0.96 0.95 0.96 0.90 0.91 0.80 0.82 0.80 0.64 0.62 0.64 0.53 0.50    

15 1.00 0.98 0.98 0.99 0.94 0.96 0.88 0.89 0.88 0.76 0.73 0.76 0.66 0.62 0.50   

16 1.00 0.99 0.99 1.00 0.96 0.98 0.92 0.93 0.92 0.81 0.79 0.82 0.70 0.66 0.54 0.50  

17 1.00 1.00 1.00 1.00 0.98 0.99 0.95 0.96 0.96 0.88 0.85 0.90 0.79 0.73 0.61 0.60 0.50 
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From these visualized and quantitative outputs, practitioners can (1) infer operators' skill level 

for a specified type of work; (2) identify operators who consistently produce high-quality welds; 

(3) understand the probabilistic difference between operators' performances; and (4) support 

future decision-making processes. These results can have considerable, positive impacts on 

company quality and productivity performance. Potential applications of the research outcomes 

are discussed in the following section. 

4.7 Potential Applications 

To strategically improve industrial pipe fabrication companies’ competitiveness and reputation 

within the construction market, operators with exceptional welding quality performance should 

be effectively and efficiently utilized. Here, three potential applications of the proposed research 

outcome are identified from the perspectives of (1) production planning; (2) employee training; 

and (3) strategic recruiting. These applications may lead to considerable improvements in pipe 

welding quality, while potentially reducing cost and schedule overruns induced by poor quality 

welds.  

4.7.1 Production Planning 

Operator welding quality performance varies between weld types due to differences in skill level. 

Development and implementation of an optimal, quality-driven production planning optimization 

engine, which would allocate welding work to operators with highest quality performance for 

that particular work/weld type, could directly improve overall welding quality performance.  
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4.7.2 Employee Training 

Following the implementation of the proposed methodology, practitioners will be able to 

determine which operators are most proficient for each weld type. These operators should be 

invited to demonstrate their production processes and share their professional knowledge for 

employee training purposes. Companies may also standardize the operation processes as per the 

high-performance operators' operation processes. Enhanced training programs are crucial for 

improving the welding quality performance of all operators.  

4.7.3 Strategic Recruiting 

Once high-performance operators are identified, their profiles can be examined to identify 

critical success factors common to this group. Data mining techniques may be implemented to 

facilitate complex analytical processes. Human resource teams may strategically conduct data-

driven recruiting to hire qualified welding operators who are characterized by these success 

factors.  

4.8 Conclusion 

Nowadays, huge amounts of project operation data are tracked and stored by construction 

companies via various enterprise resource planning (ERP) management systems, databases, and 

software solutions. However, due to the lack of analytically-based decision-support systems, 

many companies fail to extract valuable information to improve their performance. The 

construction industry is a labour-intensive industry whose quality performance is heavily 

dependent on operator performance. A more quantitative understanding of operator quality 



94 

 

performance is expected to enhance companies’ quality performance and to, in turn, improve 

market competitiveness.  

This chapter proposes an integrated data-driven approach to determine the posterior distribution 

for quantifying operator welding quality performance for a specific work type and utilizes the 

A/B testing algorithm to compare the probabilistic differences between operators' quality 

performances. Real quality management data and engineering design data from a pipe fabrication 

company, in Edmonton, Canada, were extracted and utilized to demonstrate the applicability and 

feasibility of the proposed approach. Operator welding quality performances were first 

represented by posterior distributions to incorporate uncertainty. Then, an A/B testing algorithm 

was applied to compare operators’ performances. Statistics, such as the five-point summary, 

were easily obtained from the posterior distribution to support decision-making processes. 

Practitioners can implement this approach to (1) infer operators' skill level for a specified type of 

work; (2) calculate probabilistic quality performance differences between operators; (3) identify 

operators who consistently produce high-quality welds; and (4) support future decision-making 

processes and improve production planning, employee training, and strategic recruiting.  

Although this research provides accurate and interpretable measurements for quantifying 

welding operator quality performance, it does not consider other types of performance factors, 

such as productivity performance and safety performance. Investigation of additional types of 

data to evaluate overall operation performance for welding operators will be required to obtain 

more comprehensive performance assessments.     
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5 CHAPTER 5: COMPLEXITY ANALYSIS APPROACH FOR PREFABRICATED 

CONSTRUCTION PRODUCTS USING UNCERTAIN DATA CLUSTERING  

5.1 Introduction  

As the implementation of modular construction expands, an increasing number of prefabricated 

construction products are being engineered and manufactured in fabrication shops. Construction 

products are heterogeneous in nature and are characterized by various combinations of design 

attributes, which, in turn, impacts the complexity involved in producing or assembling these 

products. As product complexity increases, so too do the skills, knowledge, management efforts 

(e.g. training and quality control), and resource support (e.g. specialized tools and technologies) 

required for successful performance. Inadequate management of product complexity, therefore, 

can result in cost and schedule overruns and can hamper overall project delivery.  

The heterogeneous nature of construction product design, together with various levels of 

production knowledge and skill, has made the quantification of product complexity difficult in 

practice. In recent years, researchers have successfully correlated product complexity with 

product quality performance in the manufacturing industry, indicating that, for practical purposes, 

product quality performance can be used as an indicator or surrogate marker of product 

complexity (Antani 2014; Novak and Eppinger 2001; Williams 1999). Recently, analytically-

based quality management systems, which facilitate quantitative quality performance 

measurements at a product-level with design information associated, have been developed (Ji 

and AbouRizk 2017a; Ji and AbouRizk 2017b). Integrating these systems to generate a single 

indicator of product quality performance from which product complexity can be inferred would 

alleviate the need of practitioners to perform detailed, time-consuming analyses of complex, 

unreliable, subjective factors (e.g. design information and operator knowledge and skill). A 
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quality performance-based product complexity indicator, however, has yet to be defined or 

developed within the construction domain. 

The aim of the chapter is to develop, validate, and implement an uncertain data clustering 

approach that is capable of quantifying and clustering quality performance-based product 

complexity indicators (hereafter referred to as product complexity indicators) from quality 

management and engineering design information. Specifically, the proposed approach has 

developed a framework that can provide (1) accurate and reliable measurements of product 

complexity indicator uncertainty; (2) meaningful assessments of product complexity indicator 

distribution similarity; and (3) an interpretable clustering of products with similar complexity 

indicators. The content of this paper is organized as follows: First, a comprehensive literature 

review is provided to demonstrate the rationale of the proposed research. Then, details of the 

methodology are introduced. To elaborate on the implementation of the proposed approach, an 

illustrative example is provided. Finally, the feasibility and applicability of the proposed 

approach are validated following a practical case study of industrial pipe weld complexity 

analysis. In addition to providing simplified, interpretable, and informative insights for 

understanding construction product complexity using quality management and engineering 

design information, this research also develops a novel Hellinger distance-based hierarchical 

clustering technique for grouping uncertain data (i.e., probability distributions).     

5.2 Rationale 

5.2.1 Product Complexity 

In the construction research domain, construction project complexity has been primarily 

investigated from four perspectives: (1) influencing factors contributing to project complexity; 
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(2) the impact of project complexity; (3) project complexity measurement methods; and (4) 

management of project complexity (Luo et al. 2017). Throughout these studies, product 

complexity has been found to influence overall project complexity (Baccarini 1996; Senescu et 

al. 2012; Williams 1999). In spite of these findings, product complexity has not been 

conceptually defined and thoroughly analyzed within construction management literature. In this 

study, the authors define product complexity as: 

“The level of constructing difficulty based on the product’s design and on the knowledge and 

ability of an operator to construct a product given its specific design information.” 

This definition is consistent with informal statements in product design and development 

literature (Baldwin and Clark 2000; Galvin and Morkel 2001; Novak and Eppinger 2001). For 

instance, Novak and Eppinger (2001) stated that “[t]he effect of this product design choice on the 

outsourcing decision can be profound, as greater product complexity gives rise to coordination 

challenges during product development.” 

Interviews conducted with five industrial construction companies in Edmonton, Canada, 

highlighted the difficulty that these organization have with determining product complexity from 

design information. Currently, complexity is assessed by examining the detailed design 

information of each product type. Given that there may be hundreds of product types in a single 

project, establishing product complexity is often a costly, time-intensive endeavor. Practitioners 

would benefit from the development of a framework that could rapidly generate a simple, 

reliable indicator of product complexity for estimating purposes. Several researchers in 

manufacturing literature have indicated that complexity can be reliably estimated from quality 

performance data (Antani 2014; Novak and Eppinger 2001).  
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While quality performance data are captured in practice, prefabricated products are often 

inspected as either conforming or nonconforming to specified quality standards and quality 

performance data cannot, therefore, be represented numerically (Ji and AbouRizk 2017a). 

Research conducted by Ji and AbouRizk (2017a) has quantitatively solved this issue by 

providing a Bayesian statistics-based analytical solution (i.e., a beta distribution) to estimate 

fraction nonconforming performance uncertainty at a product-level through the investigation of 

both quality management and engineering design information. The issue of assessing product 

complexity indicator in construction is further complicated by the myriad of prefabricated 

products that may be involved during project delivery. Although complexity of each product may 

be quantified, these data must be reduced into a format that is simple, interpretable, and 

informative for industry professionals (e.g. design and operations personnel). Notably, however, 

the uncertain nature of product complexity renders traditional clustering methods inappropriate 

for solving uncertain data clustering problems. A method capable of rapidly and reliably 

estimating product complexity and clustering hundreds of products of similar complexity into a 

manageable number of classification groups would improve the practice of product complexity 

analysis and management.  

5.2.2 Uncertain Data Clustering 

In data mining, cluster analysis or clustering is the process of partitioning a set of objects in such 

a way that objects in a cluster are more similar to one another than to the objects in other 

clusters. An advantage of data clustering is that clustering can, automatically, lead to the 

discovery of previously unknown groups within data. Clustering as a standalone tool can be 
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implemented to gain insights into the distribution of data and to observe the characteristics of 

each cluster (Han et al. 2011).  

For many application domains, the ability to unearth valuable knowledge from a dataset is 

impaired by unreliable, erroneous, obsolete, imprecise, and noisy data (Schubert et al. 2015; 

Züfle et al. 2014)—or, in other words, uncertain data that is commonly described by a 

probability distribution (Jiang et al. 2013; Pei et al. 2007). Uncertain data are found in modeling 

situations where a mathematical model only approximates the actual nonconforming quality 

control process. Clustering uncertain data (i.e., probability distributions) is associated with 

substantial challenges concerning modeling similarity between uncertain objects and regarding 

the development of efficient computational methods (Jiang et al. 2013). Traditional clustering 

methods, such as partitioning-based clustering methods (e.g. k-means) and density-based 

clustering methods (e.g. DBSCAN), are dependent on geometric distances (e.g. Euclidean 

distance and Manhattan distance) between observations (Han et al. 2011). Such distances are not 

capable of grouping uncertain objects that are geometrically indistinguishable, such as products 

with similar repair rates that vary in terms of quality performance.  

Jiang et al. (2013) were the first to use Kullback-Leibler (KL) divergence, which is a special type 

of ƒ-divergence to measure distribution similarity, for uncertain data clustering problems. 

However, computing KL divergence to measure the similarity between complex distributions is 

very time-consuming and may even be infeasible (Jiang et al. 2013). The derivation of KL 

divergence between two beta distributions involves calculations of complicated digamma 

functions, thereby requiring additional computational efforts. 
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The Hellinger distance is another type of ƒ-divergence that is widely used to quantify the 

similarity between two probability distributions in the field of statistics. The Hellinger distance, 

however, has yet to be used for solving uncertain data clustering problems in the data mining 

domain. In contrast to KL divergence, an analytical solution for measuring the similarity of beta 

distributions, which largely reduces the computational complexity of uncertain data clustering 

problems, exists. Therefore, the Hellinger distance is used in this research to model the similarity 

between distributions for product complexity indicator clustering purposes. The mathematical 

proof is provided in Appendix 1. Notably, the Hellinger distance-based uncertain data clustering 

method proposed here can be further generalized to other types of uncertain data (i.e., probability 

distributions). 

5.3 Methodology 

The proposed methodology is conducted following three steps. First, to measure the 

prefabricated construction product complexity indicator, a Bayesian statistics-based quality 

performance measurement (i.e., a posterior distribution of fraction nonconforming), which 

incorporates uncertainty, is introduced. Second, to develop a systematic product complexity 

indicator scoring approach, the Hellinger distance is used to measure complexity indicator 

similarity between various types of products. Finally, to cluster product complexity indicators 

into homogeneous groups, the agglomerative hierarchical clustering technique is adopted using 

the obtained Hellinger distance-based similarity measure. Details of the systematic and 

theoretical analysis of these steps are discussed as follows.  



103 

 

5.3.1 Step 1. Quality Performance-based Product Complexity Indicator  

To quantitatively measure product complexity, a quality performance indicator termed fraction 

nonconforming, which represents the ratio of the number of nonconforming items 𝑋  in the 

sample to the sample size 𝑛 , is utilized. Fraction nonconforming can be mathematically 

expressed as Eq. (5.1) (Montgomery 2007). 

�̂� =
𝑋

𝑛
 (5.1) 

To appropriately incorporate the sampling uncertainty of the population fraction nonconforming 

variable 𝑝 when data are obtained from a sample, a Bayesian statistics-based analytical solution 

has been developed to determine the posterior distribution of the fraction nonconforming 𝑝 (Ji 

and AbouRizk 2017a). The posterior distibution uses a non-informative prior distribution 

𝐵𝑒𝑡𝑎(1/2, 1/2). It is given as Eq. (5.2). 

𝑃(𝑝|𝑋) = 𝐵𝑒𝑡𝑎(𝑋 + 1/2, 𝑛 − 𝑋 +  1/2) (5.2) 

This Bayesian statistics-based solution, which is capable of updating the posterior distribution by 

combining previous knowledge and real-time data, has been demonstrated to be more accurate, 

reliable, and interpretable than the traditional statistical methods (Ji and AbouRizk 2017a).  

As discussed previously, product complexity has been found to be positively correlated with 

product quality performance. In this research, the fraction nonconforming 𝑝 is used to assess the 

product complexity indicator, termed 𝐶𝑝𝑙𝑥 . Therefore, the posterior distribution of 𝐶𝑝𝑙𝑥  is 

identical to the posterior distribution of the fraction nonconforming, as shown in Eq. (5.3). 
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𝑃(𝐶𝑝𝑙𝑥|𝑋) = 𝑃(𝑝|𝑋) = 𝐵𝑒𝑡𝑎(𝑋 + 1/2, 𝑛 − 𝑋 +  1/2) (5.3) 

This posterior distribution measures the product complexity indicator for a certain type of 

construction product. In the following step, the complexity indicator distribution similarity 

measurement and the complexity indicator scoring approach are introduced to evaluate product 

complexity in a systematic and interpretable way.  

5.3.2 Step 2. Product Complexity Indicator Scoring  

In this step, the product complexity indicator is scored by accounting for uncertainty. The 

Hellinger distance is introduced to measure the distribution similarity of product complexity 

indicators. The distances obtained for paired products are used to construct a Hellinger distance 

matrix, which is required for product complexity indicator clustering as follows.  

To score the product complexity indicator, the distribution similarity of product complexity 

indicators between all types of products should be measured. A significant challenge in modeling 

distribution similarity is that the distribution similarity cannot be captured by geometric 

distances, such as the Euclidean distance or the Manhattan distance. In statistics, ƒ-divergence is 

a function, 𝐷𝑓(𝑃||𝑄), that measures the similarity between two probability distributions (Liese 

and Vajda 2006). The Hellinger distance is a special case of ƒ-divergence, which was defined in 

terms of the Hellinger integral by Ernst Hellinger in 1909 (Hellinger 1909). The reason for 

choosing Hellinger distance is that, for measuring the similarity between two beta distributions, 

the Hellinger distance has a closed-form solution, which largely reduces the computational 

efforts compared to other cases of ƒ-divergences.  

Conceptually, the Hellinger distance between two distributions, 𝑃 = {𝑝𝑖}  i ∈ [n]  and  𝑄 =

{𝑞𝑖}  i ∈ [n], is defined as Eq. (5.4) (Hellinger 1909).  
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𝐻(𝑃, 𝑄) =
1

√2
‖√𝑃 − √𝑄‖

2
=

1

√2
√∫(√𝑝𝑖 − √𝑞𝑖)2 (5.4) 

To measure the product complexity indicator similarity, the specialized Hellinger distance 

between two Beta distributions, 𝑋𝑡 ~ 𝐵𝑒𝑡𝑎(𝑎1, 𝑏1)   and   𝑌𝑡 ~ 𝐵𝑒𝑡𝑎(𝑎2, 𝑏2), is derived as Eq. 

(5.5).   

𝐻(𝑋𝑡, 𝑌𝑡) = √1 −
𝐵𝑒𝑡𝑎(

𝑎1 + 𝑎2

2 ,
𝑏1 + 𝑏2

2 )

√𝐵𝑒𝑡𝑎(𝑎1, 𝑏1) × 𝐵𝑒𝑡𝑎(𝑎2, 𝑏2)
 

(5.5) 

Where 0 < 𝐻(𝑋𝑡, 𝑌𝑡) < 1 . The Hellinger distance represents the similarity measurement 

between two product complexity indicator distributions: the larger the distance, the smaller the 

similarity between the distributions. A detailed mathematical proof for the closed-form solution 

is provided in Section 5.8.  

Using the calculated Hellinger distances for all pairs of products, a two-dimensional distance 

matrix is constructed. The obtained Hellinger distance matrix (𝑀 = (𝑥𝑖𝑗) with 1 ≤ 𝑖, 𝑗 ≤ 𝑁 ) is 

a distance matrix containing all complexity indicator similarity measurements. The entry 𝑥𝑖𝑗 

represents the similarity measurement between product types 𝑖 and 𝑗. The obtained matrix always 

adheres to the following properties: (1) the entries on the main diagonal are all zero (i.e.  𝑥𝑖𝑗 = 0 

for all 1 ≤ 𝑖 ≤ 𝑁); (2) all the off-diagonal entries are in the range of 0 to 1 (i.e.  0 ≤ 𝑥𝑖𝑗 ≤

1 𝑖𝑓 𝑖 ≠ 𝑗); and (3) the matrix is symmetric (𝑥𝑖𝑗 = 𝑥𝑗𝑖). 

This Hellinger distance matrix, however, can only demonstrate the quantitative distribution 

similarity measurements for each pair of product types. To determine the sequence of the 
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complexity indicator scores of all product types, medians of the posterior distributions of 𝐶𝑝𝑙𝑥𝑖 

are compared. 𝑃(0.5, 𝐶𝑝𝑙𝑥𝑖|𝑋𝑖)  represents the 50% quantile (i.e., median) of the 𝐶𝑝𝑙𝑥 

distribtution. Therefore, the most non-complex product can be searched by indexing 

𝑀𝑖𝑛(𝑃(0.5, 𝐶𝑝𝑙𝑥𝑖|𝑋𝑖)). If multiple distributions possess the same median, the distribution with 

the smaller variation is considered the less complex product. 

Here, it is assumed that the ascendingly sorted product complexity indicator scores follow the 

sequence (𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒𝑛)𝑛∈𝑁 , which denotes a sequence whose 𝑛𝑡ℎ  element is given by the 

variable 𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒𝑛 . 𝑃𝑛  is the probability distribution of the 𝑛𝑡ℎ scored product complexity 

indicator in the sequence (𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒𝑛)𝑛∈𝑁, and the sequence of 𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒𝑛 is defined by the 

recurrence relation expressed as Eq. (5.6):  

𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒𝑛 = 𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒𝑛−1 + 𝐻(𝑃𝑛, 𝑃𝑛−1) 

With seed value 𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒1 = 0 

(5.6) 

Where, 𝐻(𝑃𝑛, 𝑃𝑛−1)  represents the Hellinger distance between the 𝑛𝑡ℎ  and (𝑛 − 1)𝑡ℎ 

distributions of the sequenced product complexity indicators. Explicitly, the recurrence yields the 

following equations: 

𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒2 = 𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒1 + 𝐻(𝑃2, 𝑃1) 

𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒3 = 𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒2 + 𝐻(𝑃3, 𝑃2) 

𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒4 = 𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒3 + 𝐻(𝑃4, 𝑃3) 

… 

(5.7) 
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All the involved Hellinger distances are available and can be indexed from the obtained 

Hellinger distance matrix. By using the recurrence relation defined as Eq. (5.6), complexity 

indicator scores for all types of products can be calculated. After all complex scores are derived, 

they are scaled to a range from 0 to 10, where a score of 10 represents the most complex product.  

While the complexity scoring is used for clustering purposes, it also has a practical benefit. 

Transformation of uncertain quality performance distributions (i.e., beta distributions) into 

deterministic numbers, ranging from 0 to 10, can also reduce the interpretation load of 

practitioners, particularly for non-quality associated industrial personnel.  

5.3.3 Step 3. Product Complexity Indicator Clustering 

A method capable of clustering products of similar complexity indicators would improve product 

analysis and management, especially when a vast number of product types are involved. A useful 

summarization tool, which provides an interpretable visualization of the data, is, therefore, 

needed. Among multiple clustering techniques, hierarchical clustering is selected due to its ease 

of use and to the interpretability of the results. In addition, compared with partitioning-based 

clustering methods (e.g., k-means) and density-based clustering methods (e.g., DBSCAN), 

hierarchical clustering avoids treating data as an outlier. This characteristic is desired in this 

product complexity clustering problem because each type of product should be clustered into a 

complexity group rather than be excluded as an outlier. In data mining, hierarchical clustering is 

a method of cluster analysis that works by grouping similar data objects into a hierarchy or “tree” 

of clusters (Han et al. 2011). Visualizing this hierarchy provides a useful visual summary of the 

data. The agglomerative hierarchical clustering method begins by treating each object as an 

individual cluster and then iteratively merging clusters into larger and larger clusters until all 
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objects are merged into a single cluster. To determine which clusters should be combined, a 

measure of similarity between sets of clusters is required. This is achieved by selecting an 

appropriate metric—in this case, the Hellinger distance—and a complete-linkage criterion that 

specifies the similarity of clusters as a function of the pairwise distances of the observations 

within the clusters. The complete-linkage criterion considers the distance between two clusters to 

be equal to the largest distance from any member of one cluster to any member of the other 

cluster. Complete-linkage tends to find compact clusters of approximately equal diameters and 

achieves more accurate clustering results. 

The hierarchy of clusters can be represented as a tree structure called a dendrogram. Leaves of 

the dendrogram consist of one item as an individual cluster, while the root of the dendrogram 

contains all items belonging to one cluster. Internal nodes represent clusters formed by merging 

clusters of children, and the algorithm results in a sequence of groupings. The user then selects a 

“natural” clustering from this sequence. 

5.4 Illustrative Example 

To demonstrate the proposed methodology, an illustrative example has been developed. Quality 

inspection results (i.e., the number of inspected items and the number of repaired items) of eight 

types of products are detailed in Table 5.1. Each product type represents products with the same 

combination of design attributes. These data and the proposed approach are used to assess 

product complexity indicator, score the product complexity indicator level, and cluster product 

complexity indicators. 

Table 5.1: Quality inspection results of eight types of products. 
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Product Type Number of Inspected Items Number of Repaired Items 

1 200 5 

2 170 4 

3 50 2 

4 48 2 

5 100 2 

6 99 2 

7 98 4 

8 101 4 

5.4.1 Step 1. Product Complexity Indicator  

Following Eq. (5.3), theoretical distributions of product complexity indicators and median values 

of these distributions are derived as indicated in Table 5.2. When comparing the center of non-

symmetric distributions, the median is the most appropriate statistical estimation. Accordingly, 

types 5 and 4 are the least and most complex products, respectively.  

Table 5.2: Product complexity distributions and median values. 

Product Type 𝑷(𝑪𝒑𝒍𝒙|𝑿) 𝑷(𝟎. 𝟓, 𝑪𝒑𝒍𝒙𝒊|𝑿𝒊) 

1 Beta (5.5, 195.5) 0.0258 

2 Beta (4.5, 166.5) 0.0245 

3 Beta (2.5, 48.5) 0.0432 

4 Beta (2.5, 46.5) 0.0450 

5 Beta (2.5, 98.5) 0.0217 

6 Beta (2.5, 97.5) 0.0219 

7 Beta (4.5, 94.5) 0.0424 

8 Beta (4.5, 97.5) 0.0412 

To visualize the theoretical beta distributions, a side-by-side box plot is developed by calculating 

the five-number summary (Min, Q1, Median, Q3, Max) and is illustrated in Figure 5.1.  Medians 

of types 1, 2, 5, and 6 are approximately 2%, while product types 3, 4, 7, and 8 are 

approximately 4%. For paired types 1+2, 3+4, 5+6, and 7+8, each group has similar distribution 

spreads. Therefore, to account for the uncertainty of these distributions, the expected clusters 

should be product types 1+2, 3+4, 5+6, and 7+8. 
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Figure 5.1: Side-by-side boxplot for eight types of product complexity measurements.  

5.4.2 Step 2. Product Complexity Indicator Scoring 

By implementing the derived Hellinger distance equation for the two beta distributions, an  8 × 8 

symmetric Hellinger distance matrix is constructed, as shown in Eq. (5.8). This matrix 

corresponds to all the previously discussed properties of the Hellinger distance matrix and is 

used to perform the product clustering analysis.   

𝑀 =

[
 
 
 
 
 
 
 
0.0000 0.0602
0.0602 0.0000

0.4100 0.4290
0.4023 0.4219

0.4100 0.4023
0.4290 0.4219

0.0000 0.0232
0.0232 0.0000

0.2109 0.2090
0.1566 0.1552

0.3900 0.3694
0.3989 0.3789

0.3737 0.3688
0.3937 0.3888

0.1604 0.1674
0.1703 0.1796

0.2109 0.1566
0.2090 0.1552

0.3737 0.3937
0.3688 0.3888

0.3900 0.3989
0.3694 0.3789

0.1604 0.1703
0.1674 0.1796

0.0000 0.0057
0.0057 0.0000

0.4100 0.3936
0.4046 0.3881

0.4100 0.4046
0.3936 0.3881

0.0000 0.0230
0.0230 0.0000]

 
 
 
 
 
 
 

 (5.8) 

As per the medians from 𝑃(0.5, 𝐶𝑝𝑙𝑥𝑖|𝑋𝑖) shown in Table 5.2, type 5 is characterized as the least 

complex. The product complexity indicator score can then be calculated through the recurrence 

relation as Eq. (5.6) by indexing the corresponding Hellinger distance matrix. The calculated 

complexity indicator scores, listed in Table 5.3, are within the range of 0 to 10. Several insights 
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can be extracted from this result. For example, although the complexity indicator distributions of 

products 2 and 5 have similar medians, their  𝐶𝑝𝑙𝑥 scores are quite different. This is primarily 

due to the variability in the spread of their complexity indicator distributions, which indicates 

that, even though products may possess similar median values, the product complexity may 

differ. This is also the reason for implementing a Hellinger distance to measure similarities 

among distributions.  

Table 5.3: Complexity scores for eight types of products. 

Product Type 𝑪𝒑𝒍𝒙 𝑺𝒄𝒐𝒓𝒆 𝑷(𝟎. 𝟓, 𝑪𝒑𝒍𝒙𝒊|𝑿𝒊) 

1 2.8 0.0258 

2 2.0 0.0245 

3 9.7 0.0432 

4 10.0 0.0450 

5 0.0 0.0217 

6 0.1 0.0219 

7 7.7 0.0424 

8 7.4 0.0412 

5.4.3 Step 3. Product Complexity Indicator Clustering 

To generate the dendrogram plot of the hierarchical clustering outcome, the statistical computing 

and graphics software, R (https://www.r-project.org), is used. Using the obtained Hellinger 

distance matrix, and following the introduced agglomerative hierarchical clustering algorithm, 8 

types of products are partitioned into clusters as shown in the dendrogram. To merge clusters of 

products, as opposed to individual products, the complete-linkage criterion is used to measure 

the distance between clusters. Products with small distance differences are grouped together. The 

heights (horizontal line) at which two clusters are merged represent the dissimilarity between 

two clusters in the data space. By specifying the expected number of clusters as four, types 1+2, 

https://www.r-project.org/
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3+4, 5+6, 7+8 are grouped together (Figure 5.2) in a manner that is consistent with the visually-

based prediction.  

Given this illustrative example, the inherent mechanism of the proposed hybrid data mining 

technique is comprehensively illustrated. The outcomes of all steps adequately verify the 

functionalities of this hybrid data mining approach. In the next section, a practical case study will 

be conducted to validate the feasibility and applicability of the proposed methodology.  

 

Figure 5.2: Cluster dendrogram of the illustrative example. 

5.5 Case Study 

Industrial construction is a construction method that involves large-scale use of offsite 

prefabrication and preassembly for building facilities, such as oil/gas production facilities and 

petroleum refineries. Pipe spool fabrication is crucial for the successful delivery of industrial 

projects. Pipe spool fabrication is heavily dependent on welding, which must be sampled and 

inspected to ensure that welding quality requirements are met. Typically, the difficulty (i.e., 

complexity) of pipe welds depends on various pipe attributes, such as nominal pipe size (NPS; 



113 

 

the outside diameter of a pipe), schedule (wall thickness of a pipe), and material. In this section, 

an industrial pipe spool fabrication company in Edmonton, Canada, is studied to analyze pipe 

weld complexity using the proposed uncertain data clustering approach.  

The case study is conducted following the data source identification, data adapter design, data 

analysis, and decision support procedures that are summarized in Figure 5.3. First, multiple data 

sources are investigated to extract useful information related to pipe weld quality performance 

and design attributes. Second, a data adapter is designed to efficiently connect data and map data 

into a single, tidy dataset. Then, the proposed hybrid data mining approach is implemented to 

perform the product complexity analysis. Finally, main outputs are generated to produce new 

information and to support decision-making processes. All four procedures are performed using 

the statistical computing and graphics software, R (https://www.r-project.org).  

 

Figure 5.3: Workflow of the case study. 

5.5.1 Data Source 

The quality management and engineering design systems of the studied company were used to 

extract the non-destructive examination (NDE) inspection and pipe weld design attributes 

https://www.r-project.org/
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information, respectively. In this chapter, only the inspection records of radiographic tests (RT) 

of butt welds were extracted from the quality management system. RT inspection results are 

tracked in three statuses for each pipe weld, namely: 0 – no inspection performed; 1 – inspected 

and passed; and 2 – inspected and failed. The engineering design system of the studied company 

stored pipe weld design attributes by the pipe format (NPS, schedule, material). For example, 

pipe (6, STD, A) represents butt welds with NPS of 6, schedule of STD, and material A. 

5.5.2 Data Adapter 

Since the multi-relational data required were dispersed across quality management and 

engineering design systems, a data adapter was required to collect useful information from 

various data sources into a single, centralized, tidy dataset. In this case, a data adapter was also 

necessary to transform raw data, through data connection and data wrangling, into compatible, 

interpretable data formats. This is particularly important for data that are collected from a variety 

of sources or databases.  

For data connection, the R package for Open Database Connectivity (RODBC) was used to 

connect to SQL server of both the quality management and engineering design systems (Ripley 

et al. 2016). The dplyr/tidyr package was used to perform data wrangling tasks, including data 

reshaping, grouping, and combining (Wickham et al. 2017; Wickham et al. 2017). The 

completed dataset was transformed into a table format, where each variable was saved in its own 

column and each observation was saved in its own row. A sample for the centralized dataset is 

listed in Table 5.4. This dataset combines the pipe design attributes and quality inspection 

results.  
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Table 5.4: A data sample for the centralized dataset. 

Weld Type NPS Schedule Material Inspection Result 

1 10 40S B 1 

2 2 40 C 0 

3 6 XS D 2 

… … … … … 

For inferring the fraction nonconforming quality performance of each type of weld, all pipe 

welds were required to be grouped by pipe attribute (i.e., NPS, schedule, and material). Then, the 

data was summarized to count the total number of welds, inspected welds, and repaired welds for 

each type of pipe weld. A sample of the wrangled dataset is provided as Table 5.5. Each row 

represents the historical quality inspection information for a certain type of pipe weld. This table 

is then used to perform the complexity analysis as follows.  

Table 5.5: The wrangled dataset of the top 35 weld types. 

Weld 

Type 

NPS Schedule Material Total 

Welds 

Inspected 

Welds 

Repaired 

Welds 

1 2 XS Material A 37059 7475 249 

2 3 STD Material A 19464 4495 173 

3 6 STD Material A 14866 3518 43 

4 4 STD Material A 13020 3078 66 

5 2 STD Material A 10304 4722 400 

6 6 XS Material A 9916 3705 70 

7 8 STD Material A 8722 2302 51 

8 4 XS Material A 8601 1774 28 

9 2 160 Material A 6044 2302 26 

10 2 80 Material A 5854 1055 41 

11 10 STD Material A 4822 1131 30 

12 12 STD Material A 4728 1069 34 

13 3 XS Material A 3733 1484 16 

14 8 XS Material A 3193 1318 10 

15 2 40S Material C 2431 555 21 

16 2 40 Material A 2088 271 38 

17 4 80 Material A 2056 638 5 

18 3 160 Material A 1676 510 5 

19 4 40 Material A 1550 592 17 

20 6 40 Material A 1673 333 5 

21 10 XS Material A 1676 529 14 
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22 12 XS Material A 1652 666 31 

23 2 10S Material C 1261 175 12 

24 3 40 Material A 1358 217 6 

25 8 40 Material A 1413 452 17 

26 3 40S Material C 1441 364 6 

27 4 40S Material C 1253 271 2 

28 3 80 Material A 1436 512 6 

29 6 80 Material A 1407 572 3 

30 16 STD Material A 1406 422 13 

31 3 10S Material C 1117 149 9 

32 6 40S Material C 1128 171 4 

33 6 10S Material C 912 154 4 

34 8 10S Material C 912 204 13 

35 16 80 Material A 961 634 9 

5.5.3 Data Analysis 

Prior to performing the comprehensive product complexity indicator clustering analysis, the 

wrangled dataset was examined and relevant information was extracted and analyzed. A total of 

224,298 welds comprised of 631 weld types were conducted over that last ten years. As per the 

cumulative frequency graph shown in Figure 5.4, the top 35 types of pipe welds represented the 

most common pipe welding products and accounted for 80% of the company’s business. Due to 

the frame limitation of graphing, only the top 35 types of pipe welds were selected to perform the 

product complexity analysis.  
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Figure 5.4: Cumulative percentage of the top 35 weld types. 

The first step of the proposed methodology was applied to determine the product complexity 

indicator, with incorporated uncertainty, for each pipe weld type. Here, “Inspected Welds” and 

“Repaired Welds” from Table 5.5 were used to construct beta distributions as per Eq. (5.3). To 

be consistent with Figure 5.4, a side-by-side box plot, shown in Figure 5.5, was generated with 

the same sequence to visualize the distributions of the product complexity indicators. Notably, 

although some types followed similar distribution patterns, the product complexity indicators of 

these products varied considerably.  

 

Figure 5.5: Complexity measurements of the top 35 weld types. 
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The complexity indicator distribution similarity between various groups of welding products was 

measured using the Hellinger distance metric. After obtaining the Hellinger distance matrix, 

welding products were scored based on the proposed scoring method. Also, the top 35 products 

were clustered into seven complexity groups, based on distribution similarity measurements, by 

using the agglomerative hierarchical clustering method (Figure 5.6). The name of each weld type 

is formatted as “Type ID.(NPS, schedule, material).[𝐶𝑝𝑙𝑥 𝑆𝑐𝑜𝑟𝑒]” to include all design attributes 

and complexity indicator score information. Clusters are labelled from A to G based on the 

corresponding complexity level of that cluster, where Cluster A is the most complex group. The 

total business percentage of that cluster is also summarized and shown in Figure 5.6. The height 

at which two clusters are merged represents the dissimilarity between the two clusters in the data 

space. This type of information is expected to enable practitioners to better understand product 

complexity in a more informative and thorough manner.  
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Figure 5.6: Complexity clustering dendrogram of the top 35 weld types. 

Once high-complex products are clustered, products design attributes can be examined to 

identify factors common to this group. For example, a thin NPS is characteristic of both pipe 

weld types belonging to Cluster A, which is consistent with expert professional experience and 

knowledge.  
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5.5.4 Validation 

To ensure that the proposed method is capable of reliably estimating product complexity, a 

systematic, expert evaluation-based validation was conducted. Eight welding operators, each 

with more than five-years working experience, were invited to evaluate the welding difficulty of 

selected weld types based on their own professional experience and knowledge. The authors 

excluded any “quality” related words from the evaluation description to eliminate any potential 

biases. The validation was conducted using the following protocol:  

Step 1. Pick one weld type that accounts for the largest business percentage of each cluster (i.e., 

A to G). This will ensure that welding operators have sufficient experience with each of the 

chosen welds.  

Step 2. Reshuffle the order of the selected weld types by changing the sequence in which they 

are presented to the welders. 

Step 3. Invite welding operators to rank the welding difficulty based on their professional 

experience and knowledge using integers 1 to 7, where 7 represents the most complex weld type 

and 1 represents the least complex weld type. 

Step 4. Once evaluations are collected, an average difficulty value is calculated for each type of 

pipe weld.  

Step 5. Assign letter levels (i.e., A to G) to the sorted types of pipe welds based on the results.   

Step 6. Compare the expert evaluation results with those obtained using the developed approach. 
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Table 5.6: Detailed validation results.  

Clustered Complexity Weld Type Design Attributes 
Welding Difficulty Evaluation 

Welder 1 Welder 2 Welder 3 Welder 4 Welder 5 Welder 6 Welder 7 Welder 8 Average Letter Level 

A 5 (2, STD, Material A) 7 7 7 7 7 7 7 7 7.0 A 

B 23 (2, 10S, Material C) 6 6 6 6 6 6 6 6 6.0 B 

C 1 (2, XS, Material A) 5 4 5 5 5 5 3 5 4.6 C 

D 11 (10, STD, Material A) 3 5 4 3 4 3 5 3 3.8 D 

E 4 (4, STD, Material A) 4 3 3 4 3 4 4 4 3.6 E 

F 8 (4, XS, Material A) 1 2 2 2 1 2 2 1 1.6 F 

G 3 (6, STD, Material A) 2 1 1 1 2 1 1 2 1.4 G 
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Table 5.6 demonstrates the detailed validation results. Although welding operator rankings were 

variable, the overall evaluated welding difficulty levels followed the same sequence that was 

obtained using the proposed framework. This validation outcome demonstrates the feasibility 

and applicability of the proposed product complexity approach and supports the hypothesis that 

product quality performance is associated with product complexity. 

5.5.5 Decision Support 

The management team from the studied company has confirmed that a data-driven decision 

support approach that enables the timely transformation of large datasets into useable knowledge 

is highly desirable in practice. To better support these practical needs, the product complexity 

analysis functionality has been incorporated into the previously developed simulation-based 

analytics framework (Ji and AbouRizk, 2017b). Once incorporated into the simulation-based 

analytics framework, product complexity levels, together with their detailed design information, 

can be targeted for management, design, and operation professionals who require this type of 

information in a timely manner. 

Results of the proposed research, such as those obtained in the case study, are expected to 

enhance decision-making with the overall aim of improving the competitiveness and reputation 

of organizations within the industry. Three detailed perspectives identified through interviews 

with industrial professionals, by which the proposed method is expected to enhance decision-

support processes, are described.  

Strategic Bidding 
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A better understanding of product complexity would assist practitioners in reducing uncertainty, 

which, in turn, could lead to improved cost performance. When bidding for new projects, 

practitioners may use the proposed framework to derive product complexity measurements in a 

relatively rapid manner that is conducive to the strict timelines associated with bid preparation. 

These measurements can then be used to allocate a contingency percentage that is more 

reflective of product complexity. For example, if a complex product is encompassing a majority 

of a bid, an organization should increase the contingency in their bid estimate. This would 

mitigate product complexity uncertainty and enhance the accuracy of bidding performance, 

thereby enhancing the company’s profitability.   

Complexity-driven Production Planning 

Previous research has developed a data-driven method to quantitatively identify exceptional 

operators for specific weld types (Ji and AbouRizk 2017b). Development and implementation of 

a complexity-driven production planning approach, which would allocate welding tasks to 

operators with high performance for each particular weld type, could directly improve overall 

welding quality performance and, consequently, reduce quality-induced rework cost and improve 

productivity. Such an automated production planning system, which incorporates both product 

complexity and detailed operator information, is expected to considerably increase the efficiency 

of industrial construction product prefabrication.      

Customized Training 

Enhanced training programs are crucial for improving product complexity management 

processes and overall project performance. The proposed research transforms vast amounts of 

data into valuable knowledge in a simplified, interpretable, and informative format that 
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efficiently improves practitioners’ understanding of product complexity and reduces the time 

required to familiarize practitioners with this process. Once high-complexity products are 

identified, practitioners would be able to determine which operators are most proficient for each 

high-complex product. These operators should be invited to demonstrate their welding technique 

and share their professional knowledge for customized training purposes. 

5.6 Conclusion 

Product complexity is a predominant, yet often uncertain, factor that affects the success of 

construction project delivery. In this research, a novel uncertain data clustering approach was 

proposed to improve product complexity analysis by extracting hidden, intricate product 

complexity patterns from product quality performance measures. This approach contributes to 

the improved understanding of product complexity and, consequently, reduces the interpretation 

load for practitioners. Systematic procedures were developed for product complexity indicator 

determination, scoring, and clustering purposes. A pre-established product quality performance 

measurement, which incorporates uncertainty, is introduced as an indicator of product 

complexity. To the best of our knowledge, this is the first time that prefabricated construction 

product complexity is conceptually defined and quantitatively interpreted from the aspect of 

product quality performance.  

The Hellinger distance is implemented to quantify the similarity of product complexity indicator 

distributions while considering uncertainty. In addition to providing a product complexity 

indicator score, the obtained Hellinger distance matrix is further utilized to perform the 

agglomerative hierarchical clustering method for intrinsically grouping products to achieve a 

better interpretation of product complexity. This novel Hellinger distance-based clustering 
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approach is capable of clustering beta distributions and can be generalized and implemented for 

other types of uncertain data (i.e., probability distributions) clustering problems.  

An industrial case study in Edmonton, Canada, was conducted to demonstrate the feasibility and 

applicability of the proposed uncertain data clustering approach. The achieved results indicate 

that the proposed method can appropriately cluster pipe weld types into homogeneous product 

complexity levels. Practitioners can implement this approach to enhance their product 

complexity management practices from the perspectives of (1) strategic bidding, (2) complexity-

driven production planning, and (3) customized training. 

Although this research proposes a novel approach to analyze construction product complexity, 

product complexity scores are, in fact, quality performance-based indicators of product 

complexity rather than a direct measure of complexity itself. In the future, additional indicators, 

such as productivity performance and safety performance, could be incorporated to measure 

product complexity in a more comprehensive and scientific way. Also, the authors would like to 

quantitatively correlate product complexity to design attributes and to forecast product 

complexity from product design information.  
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5.8 Analytical Proof - Hellinger distance for two beta distributions 

Let  𝑃 = {𝑝𝑖}  i ∈ [n] and  𝑄 = {𝑞𝑖}  i ∈ [n] be two probability distributions supported on [n]. 

The Hellinger distance between two probability distributions is defined by: 

𝐻(𝑃, 𝑄) =
1

√2
‖√𝑃 − √𝑄‖

2
 

=
1

√2
√∑(√𝑝𝑖 − √𝑞𝑖)2

𝑛

𝑖

 

=
1

√2
√∫(√𝑝𝑖 − √𝑞𝑖)2 

Let 𝑋𝑡 and 𝑌𝑡 be two independent Beta probability distributions where: 

𝑋𝑡 ~ 𝐵𝑒𝑡𝑎(𝑎1, 𝑏1)    𝑌𝑡 ~ 𝐵𝑒𝑡𝑎(𝑎2, 𝑏2) 
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[∫𝑋𝑡 𝑑𝑡 − 2∫√𝑋𝑡𝑌𝑡 𝑑𝑡 + ∫𝑌𝑡 𝑑𝑡] 



127 

 

The integral of a probability density over its domain equals to 1. 

𝐻2(𝑋𝑡, 𝑌𝑡) =  
1

2
[1 − 2∫√𝑋𝑡𝑌𝑡𝑑𝑡 + 1] 

𝐻2(𝑋𝑡, 𝑌𝑡) = 1 − ∫√𝑋𝑡𝑌𝑡 𝑑𝑡 

Probability density function of beta distribution is defined as: 

𝑓𝑡 =
(𝑡 − 𝑢)𝑎−1(𝑙 − 𝑡)𝑏−1

𝐵𝑒𝑡𝑎(𝑎, 𝑏)(𝑢 − 𝑙)𝑎+𝑏−1
 

Where 𝑎, 𝑏 are shape parameters and 𝑢, 𝑙 are upper and lower boundaries. 

Specify lower and upper boundaries, respectively, as 0 and 1, probability density function of 

Beta distribution becomes: 

𝑓𝑡 =
𝑡𝑎−1(1 − 𝑡)𝑏−1

𝐵𝑒𝑡𝑎(𝑎, 𝑏)
 

Beta function is defined as: 

𝐵𝑒𝑡𝑎(𝑎, 𝑏) =  ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑡
1

0

 

Based on the function of beta distribution, the squared Hellinger distance can be written as: 

𝐻2(𝑋𝑡, 𝑌𝑡) = 1 − ∫ √
𝑡𝑎1−1(1 − 𝑡)𝑏1−1

𝐵𝑒𝑡𝑎(𝑎1, 𝑏1)
×

𝑡𝑎2−1(1 − 𝑡)𝑏2−1

𝐵𝑒𝑡𝑎(𝑎2, 𝑏2)

1

0

 𝑑𝑡 
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𝐻2(𝑋𝑡, 𝑌𝑡) = 1 − 
1

√𝐵𝑒𝑡𝑎(𝑎1, 𝑏1) × 𝐵𝑒𝑡𝑎(𝑎2, 𝑏2)
∫ √𝑡𝑎1−1(1 − 𝑡)𝑏1−1 × 𝑡𝑎2−1(1 − 𝑡)𝑏2−1

1

0

 𝑑𝑡 

𝐻2(𝑋𝑡, 𝑌𝑡) = 1 − 
1

√𝐵𝑒𝑡𝑎(𝑎1, 𝑏1) × 𝐵𝑒𝑡𝑎(𝑎2, 𝑏2)
∫ √𝑡𝑎1+𝑎2−2 × (1 − 𝑡)𝑏1+𝑏2−2

1

0

 𝑑𝑡 

𝐻2(𝑋𝑡, 𝑌𝑡) = 1 − 
1

√𝐵𝑒𝑡𝑎(𝑎1, 𝑏1) × 𝐵𝑒𝑡𝑎(𝑎2, 𝑏2)
∫ √𝑡2( 

𝑎1+𝑎2
2

−1) × (1 − 𝑡)2( 
𝑏1+𝑏2

2
−1)

1

0

 𝑑𝑡 

𝐻2(𝑋𝑡, 𝑌𝑡) = 1 − 
1

√𝐵𝑒𝑡𝑎(𝑎1, 𝑏1) × 𝐵𝑒𝑡𝑎(𝑎2, 𝑏2)
∫ 𝑡( 

𝑎1+𝑎2
2

−1) × (1 − 𝑡)( 
𝑏1+𝑏2

2
−1)

1

0

 𝑑𝑡 

𝐻2 (𝑋𝑡, 𝑌𝑡) = 1 −
𝐵𝑒𝑡𝑎(

𝑎1 + 𝑎2

2 ,
𝑏1 + 𝑏2

2 )

√𝐵𝑒𝑡𝑎(𝑎1, 𝑏1) × 𝐵𝑒𝑡𝑎(𝑎1, 𝑏2)
 

𝐻(𝑋𝑡, 𝑌𝑡) = √1 −
𝐵𝑒𝑡𝑎(

𝑎1 + 𝑎2

2 ,
𝑏1 + 𝑏2

2 )

√𝐵𝑒𝑡𝑎(𝑎1, 𝑏1) × 𝐵𝑒𝑡𝑎(𝑎2, 𝑏2)
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6 CHAPTER 6: DATA-DRIVEN SIMULATION MODEL FOR QUALITY-INDUCED 

FABRICATION REWORK COST ESTIMATION AND CONTROL USING 

ABSORBING MARKOV CHAINS 

6.1 Introduction 

Rework is a predominant, uncertain factor that, when improperly managed, contributes to 

construction cost and schedule overruns (Love et al. 2010). In construction literature, rework is 

often represented by various terms such as “nonconformance” (Abdul-Rahman 1995), “quality 

deviation” (Burati Jr et al. 1992), “defect” (Josephson and Hammarlund 1999), and “quality 

failures” (Barber et al. 2000) and has been defined as “the unnecessary effort of redoing an 

activity or process that was incorrectly implemented the first time (Love 2002).” Although 

definitions of rework vary, it is commonly agreed that rework involves redoing work as a 

consequence of nonconformance of the original work to predefined requirements (Hwang et al. 

2009). In essence, rework occurs when construction products are inspected and recorded as 

“nonconforming” to specified quality standards.  

In practice, quality-induced rework costs are typically estimated by assuming a fixed percentage 

of the direct cost that is based on estimators’ expectations rather than on data-driven facts. 

However, due to variability in both product complexity and operator quality performance, it is 

difficult to appropriately and accurately estimate rework costs for construction prefabrication in 

the planning phase. Similarly, during project execution processes, it is difficult to update the 

original rework cost estimation periodically to better reflect actual rework cost performance. 

Practitioners, therefore, require more capable decision-support systems to facilitate rework cost 

estimation and control purposes for construction prefabrication processes.  
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With the implementation of the mature data-driven quality control system demonstrated in 

Chapter 3, it is becoming increasingly feasible to forecast quality performance for a given project 

in a more reliable way. The accurate product quality performance measurements generated by 

such systems can provide more reliable inputs for rework cost estimation and control; at the 

same time, cost management systems (Potts and Ankrah 2014) can track both estimated and 

actual costs of certain construction activities. By fusing quality- and cost-related information, 

this chapter aims to propose a novel, data-driven simulation model to estimate and control direct 

rework costs in a more systematic, objective manner for construction prefabrication processes. 

The proposed model can be integrated into previously developed simulation-based analytics 

systems, enhancing the ability of these systems to generate accurate and reliable decision-support 

metrics in real-time. Specifically, the proposed research has been able to accomplish this by (1) 

creating an absorbing Markov chain-based analytical model for performing direct rework cost 

(e.g., man-hours) estimation and control for prefabrication processes; (2) generating meaningful 

and reliable decision-support metrics (i.e., simulated rework man-hour estimation and  

dynamically updated rework man-hour control) for enhanced decision-making processes; and (3) 

integrating previously developed simulation-based analytics framework as the simulation 

environment to achieve a functional and feasible practical application.   

The content of this chapter is organized as follows: First, previous research on simulation-based 

analytics and Bayesian-based fraction nonconforming modelling are introduced, and the 

fundamental concept of the absorbing Markov chain is discussed. Then, a specialized absorbing 

Markov chain model is created to analytically simulate the construction product prefabrication 

process. Two types of decision-support metrics are developed to assist with rework cost 

estimation and control during project planning and execution. To elaborate on the functionalities 
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of these decision-support metrics, an illustrative example is provided. Then, the applicability and 

feasibility of the novel approach are validated by examining a practical pipe welding project. 

Finally, research contributions, limitations, and future work are disscussed. 

6.2 Previous Research 

In this section, previous research work is discussed to summarize the foundation on which the 

research described here is built. First, the simulation-based analytics framework, which has 

advanced real-time, data-driven construction simulation, is introduced. Afterwards, a more 

capable fraction nonconforming modelling technique for providing real-time auto-calibrated 

input models to data-driven, quality management systems is demonstrated.  

6.2.1 Simulation-based Analytics 

Static, statistical, distribution-based approaches are widely used to represent uncertainties in 

construction simulation. To improve reliability and accuracy of simulation outputs, simulation 

input models should be updated in a real-time manner using dynamically generated data from the 

actual system. Real-time input model recalibration, however, remains a challenge in construction 

decision-support system development.  

To overcome this limitation, a simulation-based analytics framework has been specialized and 

developed for pipe welding quality control decision supports (Chapter 3).  Specifically, this 

framework can be used to generate operator quality performance measurements and project 

quality performance forecasts. This framework consists of five modules, namely the data source, 

data adapter, data analysis, simulation, and decision-support modules. Feasibility and 

applicability of the simulation-based analytics approach have been proven through the 
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implementation of the prototyped decision support system (Section 3.5 and 4.6). This approach 

allows simulation models to be updated by incorporating real-time data, thereby enhancing the 

predictability of original models. An integrated simulation environment has been created using R 

(https://www.r-project.org/).  

In present research, the specialized, simulation-based analytics decision support environment is 

enhanced to incorporate cost information (i.e., man-hour) for rework cost estimation and control 

purposes. Therefore, the scope of this research will focus on introducing the newly developed 

simulation module and demonstrating its ability to provide powerful decision-support metrics.    

6.2.2 Bayesian-based Fraction Nonconforming Modelling 

As discussed above, achieving real-time parameter updating is the most challenging aspect of the 

simulation-based analytics framework. Bayesian theorem provides a method for computing the 

posterior probability distribution, allowing parameters to be updated when new data is acquired 

(Bishop 2006). Once the posterior distribution is derived, uncertainty can be quantified by 

measuring certain quantiles of the posterior distribution. The obtained posterior distributions 

provide more reliable and accurate inputs for enhanced predictability of simulation models.  

Construction products are inspected as either conforming or nonconforming to specified quality 

standards and, therefore, cannot be assessed numerically. In statistical quality control, fraction 

nonconforming is defined as the ratio of the number of nonconforming items in a population to 

the total number of items in that population (Montgomery 2007). Conventional fraction 

nonconforming modelling techniques (i.e., classic statistical models) are incapable of 

incorporating new data to derive more accurate and reliable distributions. To provide a more 

https://www.r-project.org/
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accurate, reliable, and interpretable estimation of fraction nonconforming that considers 

sampling uncertainty, both a Bayesian statistics-based analytical solution and a Metropolis-

Hastings algorithm-based numerical solution have been developed to derive posterior 

distributions and credible intervals of fraction nonconforming (Chapter 2). By fusing engineering 

design data and quality management data from a pipe fabrication company, the authors have 

implemented the proposed solutions to measure the quality performance (i.e., fraction 

nonconforming distributions) of various types of pipe welding products.  

In this research, these dynamically updated fraction nonconforming distributions are utilized to 

provide more accurate and reliable input models for rework cost simulation analyses.  

6.3 Absorbing Markov Chains 

A Markov chain can be described as a set of states, 𝑆 = {𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑟}. A process begins in 

one of these states and moves, successively, from one state to another. Each move is called a 

step. If the chain is currently in state 𝑠𝑖, it moves to state 𝑠𝑗 in the next step with a probability 

denoted by 𝑝𝑖𝑗. Notably, the probability does not depend upon which state(s) the chain was in 

prior to the current state.  

If it is impossible to leave the current state, a state 𝑠𝑖 of a Markov chain is called an absorbing 

state (i.e. 𝑝𝑖𝑗 = 1). A Markov chain is absorbing if it has at least one absorbing state and if, from 

every state, it is possible to proceed to an absorbing state (albeit, not necessarily in one step). 

If there are 𝑟 absorbing states and 𝑡 transient states in one Markov chain, the transition matrix 

will have the following canonical form, shown as Eq. (6.1). 
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𝐏 = [
𝐐 𝐑
𝐎 𝐈

] (6.1) 

𝐐 ∈ [0,1]𝑡×𝑡 contains the transition probabilities between any pair of transient states, while 𝐑 ∈

[0,1]𝑡×𝑟 contains the probabilities of moving from any transient state to any absorbing state. 𝐎 is 

the 𝑟 × 𝑡 zero matrix and 𝐈 is the 𝑟 × 𝑟 identity matrix.  

As per the theorem, for an absorbing Markov chain, the matrix 𝐈 − 𝐐  has an inverse 𝐍 called 

fundamental matrix, where 𝐍 = 𝐈 + 𝐐 + 𝐐𝟐 + ⋯ (Resnick 2013). Then, the fundamental matrix 

for the absorbing Markov chain is  

𝐍 = [𝐈 − 𝐐]−1 
(6.2) 

The fundamental matrix contains 𝑁𝑖𝑗, where 𝑁𝑖𝑗 is the expected number of times that the process 

is in the transient state 𝑗 if it begins in transient state 𝑖.  

6.4 Model Development 

In this section, a specialized absorbing Markov chain model, which is capable of considering 

rework uncertainty, is developed to model the construction product fabrication process. The 

probabilistic graphical model (Bishop 2006), which is comprised of nodes (also known as 

vertices) and is connected by links (also called edges or arcs), is depicted in Figure 6.1. For one 

project, it is assumed that a number of products 𝑛 need to be manufactured, and these 𝑛 products 

construct the 𝑛  transient states of the absorbing Markov chain. The only absorbing state  𝐹 

represents the completion of the project. The production process begins at transient state 1 and 

completes at the absorbing state 𝐹. A transient state 𝑖 indicates that the (𝑖 − 1)𝑡ℎ  product has 

been completed and that the 𝑖𝑡ℎ product is being manufactured. A product in transient state 𝑖 has 
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the probability 𝑝𝑖  to remain in this state, indicating that the product has failed the quality 

inspection, requires rework, and has the probability of (1 − 𝑝𝑖) to move forward to the (𝑖 + 1)𝑡ℎ 

transient state.  

1
1-p1

F

1.0

2 3 4 n    n-1

p1

1-p2 1-p3 1-pn-1 1-pn

p2 p3 p4 pn-1 pn

 

Figure 6.1: The specialized absorbing Markov chain model for construction product 

prefabrication considering rework. 

Here, 𝑝𝑖  is the estimation of fraction nonconforming (i.e., percent repair rate) for product 𝑖 , 

which represents the ratio of the number of nonconforming items 𝑋𝑖  in a sample of sample size 

𝑛𝑖. �̂�𝑖 can be mathematically expressed as Eq. (6.3) (Montgomery 2007).  

�̂�𝑖 =
𝑋𝑖

𝑛𝑖
 (6.3) 

The number of nonconforming items 𝑋𝑖 and the sample size 𝑛𝑖 can be obtained from historical 

quality inspection records. When new products are manufactured, these parameters are 

dynamically updated in the quality management system.  

To appropriately incorporate the sampling uncertainty of the population fraction nonconforming 

variable 𝑝𝑖 when data are obtained from a sample, a Bayesian statistics-based analytical solution 

has been developed to determine the posterior distribution of the fraction nonconforming 𝑝𝑖 (Ji 

and AbouRizk 2017c). The posterior distibution uses a non-informative prior distribution 

𝐵𝑒𝑡𝑎(1/2, 1/2), which is given in Eq. (6.4). 
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𝑃(𝑝𝑖|𝑋𝑖) = 𝐵𝑒𝑡𝑎(𝑋𝑖 + 1/2, 𝑛𝑖 − 𝑋𝑖 +  1/2) (6.4) 

This Bayesian statistics-based solution, which is capable of updating the posterior distribution by 

combining previous knowledge and real-time data, is more accurate, reliable, and interpretable 

than traditional statistical methods that have previously been established (Chapter 2). Once the 

posterior distribution is derived, a credible interval can be determined.  

As shown in Figure 6.1, there are 𝑛 transient states and one absorbing state in the specialized 

absorbing Markov chain model. Following Eq. (6.1), the transition matrix 𝐏 for the specialized 

model is derived as Eq. (6.5).  

𝐏 =

[
 
 
 
 
 
 
 
𝑝1 1 − 𝑝1 0 0 0 … 0 0
0 𝑝2 1 − 𝑝2 0 0 … 0 0
0 0 𝑝3 1 − 𝑝3 0 … 0 0
0 0 0 𝑝4 1 − 𝑝4 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮
0 0 0 0 0 𝑝𝑛−1 1 − 𝑝𝑛−1 0
0 0 0 0 0 0 𝑝𝑛 1 − 𝑝𝑛

0 0 0 0 0 0 0 1 ]
 
 
 
 
 
 
 

 (6.5) 

The 𝑛 × 𝑛 matrix Q, which contains transition probabilities between transient states, is shown as 

Eq. (6.6). 

𝐐 =

[
 
 
 
 
 
𝑝1 1 − 𝑝1 0 0 0 … 0
0 𝑝2 1 − 𝑝2 0 0 … 0
0 0 0 𝑝4 1 − 𝑝4 … 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 0 0 𝑝𝑛−1 1 − 𝑝𝑛−1

0 0 0 0 0 0 𝑝𝑛 ]
 
 
 
 
 

 (6.6) 

And the 𝑛 × 1 matrix R, containing transition probabilities from transient states to the absorbing 

state 𝐹, is shown as Eq. (6.7). 
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𝐑 =

[
 
 
 
 
 
 

0
0
0
0
⋮
0

1 − 𝑝𝑛]
 
 
 
 
 
 

 (6.7) 

𝐈 is the 1 × 1 identity matrix that is described as Eq. (6.8). 

𝐈 = [1] (6.8) 

Then, the fundamental matrix N can be derived following Eq. (6.2), shown as Eq. (6.9). 

𝐍 = [𝐈 − 𝐐]−1 =

[
 
 
 
 
 
 
 
 
 

1

1 − 𝑝1

1

1 − 𝑝2

1

1 − 𝑝3
…

1

1 − 𝑝𝑛

0
1

1 − 𝑝2

1

1 − 𝑝3
…

1

1 − 𝑝𝑛

0 0
1

1 − 𝑝3
…

1

1 − 𝑝𝑛

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0
1

1 − 𝑝𝑛]
 
 
 
 
 
 
 
 
 

 (6.9) 

As discussed, 𝑁𝑖𝑗  is the expected number of times that transient state 𝑗 is occupied when the 

initial state is the transient state 𝑖. From the derived matrix N for the specialized model, the 

expected number of times for remaining in state 𝑖 can be expressed as 
1

1−𝑝𝑖
, since 𝑝𝑖 ∈ [0, 1], 

1

1−𝑝𝑖
 ∈ [1, +∞]. Notably, when fraction nonconforming 𝑝𝑖 is 0, no rework occurs for product 𝑖. 

Conversely, when fraction nonconforming 𝑝𝑖 is 1, rework always occurs and product 𝑖 will never 

be completed.  
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6.5 Decision Support Metrics 

In this section, decision-support metrics derived from the proposed absorbing Markov chain 

model are introduced to achieve two objectives: (1) rework cost estimation during the planning 

phase and (2) rework cost control during the execution phase. Details of these two types of 

metrics are provided as follows.  

6.5.1 Rework Cost Estimation 

Practitioners are interested in estimating rework cost more reliably during the project planning 

phase for bidding preparation. A metric, capable of reliably forecasting the impact of rework on 

cost estimation, could considerably improve contingency estimates for rework. Here, the rework 

cost is defined as the rework man-hours required to complete a piece of product due to quality-

induced issues.  

From Eq. (6.9), 𝑁1𝑖 (i.e., 
1

1−𝑝𝑖
) is the expected number of times product 𝑖 is manufactured as a 

consequence of rework. Therefore, the estimated rework man-hours considering rework for each 

product can be calculated as Eq. (6.10).  

𝜂𝑖 × 𝑡𝑖 × (𝑁1𝑖 − 1) (6.10) 

Where 𝜂𝑖  is an efficiency factor that equals the required rework man-hours over the original 

estimated man-hours, and 𝑡𝑖 is the estimated man-hours for the 𝑖𝑡ℎ product. Then, 𝜂𝑖 × 𝑡𝑖 is the 

estimated rework man-hours. 𝑁1𝑖  is the expected number of times that the model remains in 

transient state 𝑖. Then, (𝑁1𝑖 − 1) is the expected times a piece is reworked for the 𝑖𝑡ℎ product.  
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Accordingly, the total estimated rework man-hours can be described as Eq. (6.11). 

𝑇𝑅𝑀𝐻 = ∑ 𝜂𝑖 × 𝑡𝑖 × (𝑁1𝑖 − 1)
𝑛

𝑖=1
 (6.11) 

Then, as per Eq. (6.9), Eq. (6.11) is derived as Eq. (6.12).  

𝑇𝑅𝑀𝐻 = ∑ 𝜂𝑖 × 𝑡𝑖 × (
1

1 − 𝑝𝑖
− 1)

𝑛

𝑖=1
 (6.12) 

Where 𝑝𝑖  is a randomly sampled number from the posterior distribution 𝑃(𝑝𝑖|𝑋𝑖) of fraction 

nonconforming (i.e., quality performance). This equation forecasts the total estimated rework 

man-hours and can be used to predict future project rework man-hours from the historical quality 

performance and estimated man-hours associated from related product information.   

By running the proposed absorbing Markov chain for multiple iterations (e.g. 1000 iterations), a 

frequency histogram is generated to represent the empirical distribution of the estimated rework 

man-hours considering uncertainty. From this, companies can specify their interested quantiles to 

support their decision-making processes.  For example, the 50% quantile (i.e., median value) 

represents a neutral risk attitude of the company. A detailed illustrative example is provided in 

Section 6.5.2.  

6.5.2 Rework Cost Control 

During the project execution phase, the rework cost should be periodically updated and 

monitored to accurately reflect the actual rework status of all products. The updated rework cost 

depends on the actual quality inspection results and the actual man-hours spent on reworked 

items.  
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As per International Organization for Standardization (ISO) 9000 requirements, actual quality 

inspection results can be obtained from the quality management information system, while actual 

rework man-hours are typically available in the timesheet tracking system.  

The updated rework man-hours prediction at state 𝑘 is comprised of the actual rework man-hours 

for the first (𝑘 − 1) states and the estimated man-hours for subsequent states. It can be described 

by Eq. (6.13).  

𝑇𝑅𝑀𝐻 𝑎𝑡 𝑆𝑡𝑎𝑡𝑒 𝑘 = 𝑇𝑅𝑀𝐻 𝐴𝑐𝑡𝑢𝑎𝑙 𝐻𝑎𝑝𝑝𝑒𝑛𝑒𝑑 + ∑ 𝜂𝑖 × 𝑡𝑖 × (
1

1 − 𝑝𝑖
− 1)

𝑛

𝑖=𝑘
 (6.13) 

For rework control purposes, the original rework man-hour estimation is utilized to construct a 

control chart. An example control chart is presented in Figure 6.2. The control chart contains a 

center line (CL) that represents the median value of the estimated rework man-hours. Two other 

horizontal lines, named the upper control limit (UCL) and the lower control limit (LCL), 

construct a control area to monitor the updated rework man-hours. Provided that the updated 

rework man-hours are within the control area, the production process is assumed to be in control, 

and no action is required. If the value of the updated rework man-hours is higher than the UCL, 

the production process is out of control and requires investigations and corrective actions to 

identify and mitigate the causes of the anomaly. If the value of the updated rework man-hours is 

lower than the LCL, the actual production performance in terms rework is better than previous 

historical performance.  
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Figure 6.2: Example control chart. 

Here, the value of the center line equals the median value of the rework man-hours estimated in 

the planning phase. As per the classic statistical control theory (Montgomery 2007), the values of 

LCL and UCL are established as the 95% credible interval (i.e., 2.5% and 97.5% quantiles) of 

the simulated histogram of the estimated rework man-hours. An illustrative example is provided 

in the following section to demonstrate the applicability of this rework cost control metric.  

6.6 Illustrative Example 

This example project involves ten construction welds. Here, three types of data information are 

provided to perform rework cost analyses; they are (1) historical quality performance of the 

corresponding ten types of welds, (2) estimated man-hours and actual rework man-hours (with 

three scenarios) of ten welds, and (3) actual quality inspection results of these ten welds (with 

three scenarios). Detailed information of these types of data are discussed as follows.  

Historical quality performance (i.e., number of inspected items, number of repaired items, and 

fraction nonconforming distributions) of the corresponding ten types welds are summarized in 
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Table 6.1. The column of fraction nonconforming 𝑃(𝑝𝑖|𝑋𝑖) is derived using Eq. (6.4) based on 

the summarized historical quality inspection records of the same type of welds. This information 

can be mapped from quality management systems.  

Table 6.1: Summarized historical quality performance of the corresponding ten types welds. 

Product 

Type 

Number of Inspected Items  

(𝒏𝒊) 

Number of Repaired Items  

(𝑿𝒊) 

Fraction Nonconforming 

𝑷(𝒑𝒊|𝑿𝒊) 

1 21 2 Beta (2.5, 19.5) 

2 23 1 Beta (1.5, 22.5) 

3 7 0 Beta (0.5, 7.5) 

4 14 2 Beta (2.5, 12.5) 

5 17 2 Beta (2.5, 15.5) 

6 37 3 Beta (3.5, 34.5) 

7 10 1 Beta (1.5, 9.5) 

8 41 4 Beta (4.5, 37.5) 

9 55 3 Beta (3.5, 52.5) 

10 51 6 Beta (6.5, 45.5) 

Estimated and actual man-hour information of the ten welds are summarized in Table 6.2. 

Estimated man-hours represent the original estimation during project planning phase, while 

actual rework man-hours represent the tracked rework man-hours during the project execution 

phase. To demonstrate how various rework conditions impact actual rework cost control 

processes, three scenarios (i.e., no rework, rework under control, and rework over control) are 

provided. In practice, the estimated and actual rework man-hour information are available in 

companies’ Enterprise Resource Planning (ERP) systems (e.g., Oracle JD Edwards). Here, it was 

assumed that the efficiency factor 𝜂𝑖 is 1.2, where the rework man-hours are 1.2 times that of the 

estimated man-hours for rework to account for extra work associated with the rework process, 

such as the disassembly of the nonconforming items.  
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Table 6.2: Estimated man-hours and actual rework man-hours (with three scenarios) of ten welds. 

Product ID Estimated Man-hours 
Actual Rework Man-hours (Hours) 

No Rework Rework Under Control Rework Over Control 

1 3.00 0.00 0.00 0.00 

2 2.50 0.00 0.00 0.00 

3 3.00 0.00 0.00 0.00 

4 1.50 0.00 1.80 1.80 

5 2.00 0.00 0.00 2.40 

6 1.00 0.00 1.20 1.20 

7 3.00 0.00 0.00 0.00 

8 3.00 0.00 0.00 0.00 

9 2.50 0.00 0.00 0.00 

10 2.00 0.00 2.40 0.00 

Table 6.3 summarizes the quality inspection results during the project execution phase. Value 

“0” indicates that the weld has passed quality inspection, while value “1” indicates that the weld 

has failed the quality inspection and was reworked. The three scenarios of inspection results are 

consistent with the three scenarios of actual man-hour tracking. The quality inspection records 

were obtained from the quality management system, as per ISO 9000 requirements.  

Table 6.3: Actual quality inspection results of ten welds. 

Product ID Inspection Results (0 = Pass, 1 = Fail) 

 No Rework Rework Under Control Rework Over Control 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 1 1 

5 0 0 1 

6 0 1 1 

7 0 0 0 

8 0 0 0 

9 0 0 0 

10 0 1 0 
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Given these data, the proposed approach is applied to demonstrate the analytical decision-

making processes for rework cost estimation and control purposes. The outcomes of these two 

decision-support metrics verify the functionalities of the proposed data-driven simulation model.  

Rework Cost Estimation 

For one iteration, the fraction nonconforming 𝑝𝑖 for weld 𝑖 is sampled from the beta distribution 

listed in Table 6.1. Then, the estimated rework man-hours for each state (i.e., product) and the 

total estimated rework man-hours are derived by Eq. (6.11) and Eq. (6.12), respectively.  

To obtain the frequency histogram of the total estimated rework man-hours, the proposed 

absorbing Markov chain model was run for 1,000 iterations. The simulated frequency histogram 

for the total estimated rework man-hours is shown in Figure 6.3. Visually, this frequency 

histogram is a non-symmetrical right-skewed distribution. With this obtained frequency 

histogram, practitioners can incorporate a proper number of estimated rework man-hours to the 

estimated man-hours at the project planning stages based on their risk attitude by selecting an 

appropriate quantile. The quantile represents the probability of achieving the corresponding 

rework man-hours as determined from the simulated frequency histogram. For instance, 

practitioners may choose 10%, 50%, or 90% quantiles of the histogram to represent an 

aggressive, neutral, or conservative risk attitude, respectively. Here, all 10% quantiles are 

derived and provided in Table 6.4 for the generated frequency histogram of the total estimated 

rework man-hours. The 50% quantile (median) of this frequency histogram is 3.4, which 

indicates the expected rework man-hours are 3.4 with a neutral risk attitude.  
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Figure 6.3: Frequency histogram of the total estimated rework man-hours. 

Table 6.4: Statistical summary of the simulated histogram. 

Quantiles 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Rework Man-hours 1.4 2.4 2.7 2.9 3.2 3.4 3.6 3.9 4.3 4.9 10.2 

From the simulated outcome, practitioners can increase their understanding of rework cost 

uncertainty, which can, in turn, improve overall estimation performance for bidding and cost 

control decision-support processes.  

Rework Cost Control 

During the project execution stage, uncertainty in rework man-hour estimation can be eliminated 

by incorporating the tracked, actual rework cost performance. For this illustrative example, the 

actual man-hours (Table 6.2) and inspection results (Table 6.3) for each weld are utilized to 

perform the rework cost control analysis. Following Eq. (6.13), control charts, as shown in 

Figure 6.4, are constructed for three different scenarios, namely, no rework, rework under 

control, and rework over control. The rework man-hour estimation is updated in each state, 
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which is represented by an error bar (2.5% and 97.5% quantiles) with the median value (50% 

quantile) marked. As the project proceeds to completion, the uncertainty (i.e., error bar) of the 

estimated rework man-hours contracts towards the median value. In the final state, the final 

rework man-hours are the actual number determined from the accumulation of all, actual rework 

man-hours.  

For scenario one, no rework was required for any of the ten welds. As expected, the rework man-

hour decreases continuously to zero [Figure 6.4(a)]. From state 2, the estimated man-hour 

decreases below LCL, which indicates that the actual prefabrication rework performance is 

improved compared to the historical, performance-based forecast. The absence of any rework is 

used for illustrative purposes; it is an ideal condition and is not realistic in practice.   

For scenario two, three welds are reworked (weld 4, 6 and 10). The rework man-hour values 

fluctuate within the control area [Figure 6.4(b)], indicating that the actual prefabrication process 

is under control, and no specific action is required.  

For scenario three, due to the consecutive rework for weld 4, 5 and 6, the forecasted rework man-

hours extend beyond the UCL at state 6 [Figure 6.4(c)]. The anomaly is detected and marked as a 

red dot at state 6. Although actions have been taken to improve rework performance, the 

forecasted rework man-hours are still higher than UCL at state 7 and 8. After that, the forecasted 

rework man-hours return within the control area. In real projects, such anomalies could arise as a 

consequence of unskilled operators, change of machines, or/and modified work procedures.  
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Figure 6.4: Rework man-hours control charts for three scenarios: (a) no rework, (b) rework under 

control, and (c) rework out of control. 



151 

 

This decision-support metric provides real-time updated rework cost prediction and monitoring, 

which can be utilized to detect issues during the product prefabrication process. It also provides a 

visualized tool for practitioners to further understand and investigate root causes of rework cost 

overrun.   

6.7 Case Study 

To validate the feasibility and applicability of the proposed data-driven simulation model, the 

pre-developed simulation-based analytics framework in Chapter 3 has been utilized as the 

simulation environment to incorporate the newly created absorbing Markov chain simulation 

model and decision-support metrics, as shown in Figure 6.5. The cost management system has 

been added into the data source module, while the data analysis and simulation modules have 

been reprogrammed using R to facilitate decision-support module function. A data adapter is 

developed to facilitate the processes of data connection, data wrangling, and data cleaning. This 

data adapter transforms multi-relational data into one, centralized dataset for further analytical 

processes. The data analysis module is comprised of algorithms that model fraction 

nonconforming, generate Bayesian-based input models, and create decision-support metrics. The 

simulation module utilizes input models for all types of products and creates simulated raw data 

for the establishment of decision-support metrics. Finally, the two types of decision-support 

metrics are generated by the decision-support module.  
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Figure 6.5: Simulation-based analytics for rework cost estimation and control. 

An industrial pipe fabrication company in Edmonton, Canada, was studied to implement the 

proposed system. First, their engineering design system was used to extract pipe weld design 

attributes, such as NPS (i.e., outside diameter), pipe schedule (i.e., wall thickness), and material 

type for all welds. A combination of these design attributes was used to define a weld type; for 

instance, pipe (80, 4, C, BW) represents butt welds with NPS of 80, schedule of 4, and material 

C. Each combination is treated as a type of product in the proposed system. Then, required 

quality inspection and cost information were extracted from quality management (e.g., 

ArcuTrack) and cost management (e.g., Oracle JD Edwards) systems.  

One historical pipe fabrication project from the studied company was selected to demonstrate the 

implementation of the proposed system. This particular project was chosen as it was considered 

an exceptional benchmark in terms of quality performance among historical projects. An 

improved rework cost performance, therefore, is expected for the selected project. For 

demonstration purposes, all 2,370 butt welds were used to perform the analytical analysis. From 
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the cost management system, the original man-hour estimation of the project was 11,766 hours, 

while the actual rework man-hours were 1,164 hours. As per the quality inspection records, 96 

out of 2,370 welds were reworked. Accordingly, the project fraction nonconforming is 96/2370 = 

4.1%. The project design information was mapped to historical quality inspection results to 

derive the fraction nonconforming distributions for all types of welds. Using the modified 

simulation-based analytics framework, two types of decision-support metrics were generated.  

Rework Cost Estimation 

Here, the rework cost of the selected project was estimated by running the specialized absorbing 

Markov chain model for 1,000 iterations. The running time for the entire automated analytical 

process was 218 seconds on a desktop with 3.20 GHz CPU and 24 GB random-access memory 

(RAM). The duration is acceptable for practical purposes. The simulated frequency histogram of 

estimated rework man-hours is a right-skewed, non-symmetrical distribution, as depicted in 

Figure 6.6. To quantitatively understand the simulation result, all 10% quantiles and the actual 

rework man-hours are summarized in  

Table 6.5 for illustrative purposes. The median value is 1,554 hours. This simulated result can be 

used to determine the company’s bidding strategy through a “what-if” scenario analysis. Once 

the appropriate quantile is selected, the corresponding rework man-hours can be derived and 

used to determine the rework-associated contingency for bid preparation.   
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Figure 6.6: The frequency histogram of the total estimated rework man-hours of the pipe welding 

project.  

 

Table 6.5: Summary of 10% quantiles of simulated rework man-hours and actual rework man-

hours. 

 
Simulated 

Actual 
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Rework  

Man-hours 
394 1066 1209 1342 1457 1554 1666 1782 1923 2129 4405 1164 

Actual rework man-hours were 1,164 hours and were within the 80% credible interval [1066, 

2129] of the simulated rework man-hours. Compared to actual rework man-hours, the simulated 

median value was much greater than the actual rework man-hours, demonstrating that project 

quality performance was superior to the historical performance. From the median value, it can be 

concluded that 390 (1,554 – 1,164) man-hours were saved due to improved quality performance, 

in turn, contributing to increased project profitability. Notably, these man-hours can be 

transformed into a dollar value by incorporating operators’ payment rates.   
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Rework Cost Control 

Utilizing the estimated rework cost and actual rework cost information, a control chart of rework 

man-hours was constructed using following the propsed approach. All 2,370 production states 

are depicted in Figure 6.7 to demonstrate the dynamically updated rework man-hour predictions 

during the execution phase of the project. The solid black line represents the median values of 

the forecasted rework man-hours over states, while the grey area represents the 95% credible 

interval of the forecasted rework man-hours over states. Values of UCL, CL, and LCL are shown 

in the figure.  

 

Figure 6.7: Rework man-hours control chart of the pipe welding project. 

The overall trend of the state-dependent rework man-hour prediction decreases, and the credible 

interval for predicted rework man-hours converges towards zero, as the proportion of finished 

products increases. Two obvious increments, near states 1,750 and 2,150, are observed. Through 

the investigation of production dates and design information of these welds, the authors have 

hypothesized two root causes for these two increments. The period around state 1,750 included 
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multiple consecutive rainy days. Professionals have confirmed that welding quality is directly 

impacted by the humidity of the welding environment. With regards to the increment around 

state 2,150, uncommon, specialty-shaped pieces were produced during that period, and welding 

operators may have lacked sufficient experience and skill for these types of welds.  

6.8 Conclusion 

The construction industry relies heavily on professionals’ knowledge and experiences while 

performing cost estimation and control. Although many ERP systems have been widely 

implemented to facilitate data collection processes, practitioners still struggle with efficiently 

sourcing, interpreting, and transforming existing data into valuable information to support 

rework cost-related decision-making.  

This research develops a data-driven simulation approach, which quantitatively addresses hard 

issues facing rework cost estimation and control by incorporating Bayesian-based quality 

performance measurements and a specialized absorbing Markov chain-based simulation model, 

to assist with decision-making regarding construction product prefabrication rework cost 

estimation and control. Utilizing the previously established Bayesian-based quality performance 

measurement, this approach achieves dynamic updating of model inputs, thereby providing more 

accurate and reliable decision-support metrics. Notably, the specialized model can be generalized 

for more complex production processes (e.g., CPM networks) to achieve rework cost estimation 

and control aims.  

To better facilitate practical needs, two types of decision-support metrics are derived for serving 

rework cost estimation and control purposes. These metrics provide quantifiable and 
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interpretable outcomes to augment the decision-making processes for practitioners. Companies 

can use this approach as a capable decision-support tool to perform rework cost estimation 

during the project planning phase and to monitor rework cost statuses during the project 

execution phase.  

To assess the functionalities of the proposed analytical model, an illustrative example is 

demonstrated in detail. This novel model has also been integrated into the pre-developed 

simulation-analytics framework to support decision-making processes for a pipe fabrication 

company in Edmonton, Canada. This practical application has demonstrated the feasibility and 

applicability of the proposed approach by providing expected, reasonable decision metrics of a 

project that was determined to be a benchmark project in rework performance.  

Although the proposed model can substantially enhance rework cost estimation and control 

practices, its accuracy and reliability largely depend on the quality and availability of companies’ 

data. For instance, more detailed design information (e.g. shapes of pipe spools) is not well 

documented in the studied company. With the implementation of mature quality, design, and cost 

management systems, better modelling inputs will be available to enhance simulation 

performance. In the future, the ability of additional and alternative data sources to improve input 

modelling strategies and to generalize the absorbing Markov chain model for more complex 

production processes should be explored. Also, the computational efficiency should be enhanced 

by deploying advanced data mining techniques.    
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7 CHAPTER 7: CONCLUSION 

7.1 Research Conclusions 

This research outlines the development of a simulation-based analytics decision-support system 

for nonconforming quality-associated decision supports.  

Chapter 2 proposes a Bayesian statistics-based analytical solution and an MCMC-based 

numerical solution to estimate the credible interval for fraction nonconforming. Both solutions 

provide a more accurate, reliable, and interpretable estimation of sampling uncertainty and can 

be used to improve the functionality of automated, nonconforming quality management systems. 

An industrial case study, from a pipe fabrication company in Alberta, Canada, is presented to 

demonstrate the feasibility and applicability of the proposed credible interval estimation 

methods.  

Chapter 3 develops a quantitatively-driven analytics approach that allows simulation models to 

be adjusted by real-time data and measurements. The approach implements a Bayesian statistics-

based fraction nonconforming estimation to recalibrate and realign models with real-time data, 

which are generated by actual quality control systems. The approach also develops descriptive 

and predictive analytical metrics, namely operator quality performance measurements and 

project quality performance forecasts, for supporting and improving decision-making processes. 

For practical purposes, a C#-based prototype is deployed to facilitate implementation at an 

industrial company in Edmonton, Canada. 

Chapter 4 proposes an integrated, data-driven approach to quantify pipe welding operators' 

quality performances for industrial construction projects by implementing a Markov Chain 
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Monte Carlo (MCMC)-based fraction nonconforming estimation and an A/B testing algorithm. 

The existing quality management data and engineering design data from a pipe fabrication 

company in Edmonton, Canada, are processed and analyzed to demonstrate the feasibility and 

applicability of the proposed approach. Potential applications of the research findings are also 

discussed from the perspectives of production planning, employee training, and strategic 

recruiting.  

Chapter 5 proposes a hybrid data mining approach to quantitatively analyze product complexity 

of prefabricated construction components from product nonconforming quality performance 

data. The proposed model is constructed in three steps, which (1) measure product complexity by 

introducing a Bayesian-based nonconforming quality performance indicator; (2) score each type 

of product complexity by developing a Hellinger distance-based distribution similarity 

measurement; and (3) cluster products into homogeneous complexity groups by using the 

agglomerative hierarchical clustering technique. An industrial company in Edmonton, Canada, is 

conducted to validate the feasibility and applicability of the proposed model.  

Chapter 6 develops a data-driven simulation model to quantitatively assist decision support in 

quality-induced rework cost estimation and control for construction product prefabrication. Two 

types of decision-support metrics are developed to support decision-making processes, namely 

(1) rework cost estimation during the project planning phase and (2) rework cost control during 

the project execution phase. The proposed approach is also integrated into the previously 

developed simulation-based analytics framework and is implemented at an industrial pipe 

fabrication company in Edmonton, Canada. 
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7.2 Academic Contributions 

The research outcomes have resulted in several academic contributions:  

• Provision of a novel Bayesian-based approach for fraction nonconforming uncertainty 

modelling to address hard issues in updating input models of simulation models to realign 

with the dynamic, real-time data that is generated by the actual system.  

• Advancement of conventional statistical quality control approaches using simulation-

based techniques to provide predicting and updating functionalities. 

• Provision of valuable insights regarding the implementation of MCMC-based numerical 

methods for complex and arbitrary probability distribution approximation, particularly, 

when closed-form solutions are difficult to derive or do not exist.  

• Development of an integrated dynamic simulation environment that utilizes real-time 

data to enhance the predictability of simulation models in the construction domain. This 

system integrates the transformation of real-time data, the creation of analytical models, 

and the generation of decision-support metrics. 

• Advancement of uncertain data clustering techniques using Hellinger distance-based 

distribution similarity measurement, which leads to improved computational efficiency 

for uncertain data clustering algorithms in the area of data mining. 

• Definition of construction product complexity and the proposal of a systematic approach 

for analyzing product complexity using the indicator of product quality performance.  

• Creation of a novel, absorbing Markov chain model for simulating construction product 

fabrication processes associated with rework. The proposed model has the potential to be 

generalized for more complex processes (e.g., CPM network). 
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7.3 Industrial Contributions 

The industrial contributions from the collaborative research efforts are as follows:  

• Development of a simulation-based analytics decision-support system to enhance several 

quality-associated decision-support processes, including project quality performance 

forecasting, operator quality performance measurement, construction product complexity 

determination, and rework cost management. Notably, the proposed system can be 

generalized for all nonconforming quality-related products across multiple industries.    

• Creation of reliable and interpretable decision-support metrics at product-, project-, and 

operator-levels for quality performance measurement, construction product complexity 

assessment, and rework cost management. These metrics reduce the data interpretation 

load of practitioners, allowing users to discover valuable knowledge and information 

from existing data sources.  

• This research also creates meaningful simulation results, which assist practitioners in 

performing quality and rework cost risk analyses during both the planning and execution 

phases of construction. 

7.4 Research Limitations 

Although the research findings in above chapters support the developed approaches, certain 

limitations of this research should be noted and explored.  

• The proposed fraction nonconforming distribution and credible interval estimation 

techniques in Chapter 2 are limited by the assumption of a fixed prior distribution. Prior 

determination is a complex problem that requires incorporation of historical data, 
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professional experience, and existing knowledge. To improve current computing 

performance, a systematic approach of determining the prior distribution should be 

further developed. 

• The proposed simulation-based analytics system in Chapter 3 is limited to quality 

processes that utilize binary variables (i.e., fraction nonconforming process). Furthermore, 

while the proposed system can be used to inform decision-making processes, professional 

experience and knowledge are still required to ensure effective decisions are made. 

• The developed operator performance measurement approach in Chapter 4 and the created 

product complexity analysis approach in Chapter 5 do not appropriately take other types 

of performance factors into account, such as productivity performance and safety 

performance. In future research, additional types of data should be investigated to 

improve the research work. 

• The accuracy and reliability of the developed simulation model in Chapter 6 still largely 

depend on the quality and availability of companies’ data. With the implementation of 

mature cost management systems (e.g., Oracle JD Edwards), better modelling inputs will 

be available to enhance simulation performance. 

7.5 Envisioned Future Research 

This section reveals the possible future directions based on this doctoral research work.  

• To develop an efficient, data-driven approach to systematically devise strategic quality 

inspection plan (i.e., sampling size) for various product types and operators, and 

consequently improve fabrication quality management performance.  
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• To investigate the modelling of individuals’ critical decision-making behaviors to 

incorporate impacts of human factors, thereby reducing simulated system variability.  

• To investigate and incorporate additional types of data sources, such as safety 

management systems, productivity management systems, and human resource systems, to 

comprehensively enhance the functionalities (e.g. operator competency assessment and 

product complexity analysis) of the proposed simulation-based analytics decision-support 

system. 

• To develop more integrated simulation models using distributed simulation technologies 

to systematically simulate the complex interactions between various project performance 

aspects (e.g. schedule, cost, quality, and safety) and critical impact factors (e.g. weather, 

labour, equipment, and human behavior). 

• To address the issue of automating the process of model topology (i.e. structure) updating 

to reflect complex changes in the actual project execution processes, thereby reducing the 

modification efforts of practitioners and modellers. 
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APPENDIX A: DATA ADAPTER DEVELOPMENT 

In practice, most information cannot be adequately represented by independent data tables; 

rather, multiple types of objects are linked together through various types of linkages. Such data 

are usually stored in relational databases. While multi-relational databases can provide richer 

information for data mining, the transformation of relational data into a single table largely 

improves the efficiency of data mining. A data adapter integrates real-time information from 

various data sources into one, centralized dataset. This is particularly important for data that are 

collected from a variety of sources or databases. 

Data Adapter

SQL Server

Data Connection

R: RODBC Package

Data Mapping

R: dplyr/tidyr Package

Data Cleaning

R

Compatible and 

Interpretable Data

Data Source

 

Figure A.1: The workflow of the developed data adapter. 
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In this research, a data adaptor was built using R for the purpose of multi-relational data 

connection, mapping, and cleaning tasks to generate a compatible and interpretable dataset, so it 

can be efficiently used in further data mining and simulation analysis. The developed data 

adapter is specific to the partner company involved in this research. As depicted in Figure A.1, 

isolated information, such as design attributes, quality inspection results, and operator 

information are stored in the company’s SQL server. Through the developed data adapter, the 

isolated tables are integrated into a compatible table, which summarizes each operator’s quality 

performance for a certain combination of design attributes. Here, detailed R codes for each data 

adapter function development is elaborated as follows.  

Data Connection 

For real-time data connection, the R package for Open Database Connectivity (RODBC) was 

used to connect to the SQL Server of the quality management and engineering design systems. 

The RODBC package provides access to databases (including Microsoft Access, Microsoft SQL 

Server, or Oracle Database) through an Open Database Connectivity (ODBC) interface. RODBC 

has two group of functions: the main internal odbc* commands, which implement low level 

access to the ODBC functions, and the sql* functions, which operate at a higher level to read, 

save, copy, and manipulate data between data frames and SQL tables. The data connection 

through RODBC was periodically redone to ensure that accessed data was up-to-date, thereby 

achieving real-time computation. The programming code for performing data connection and 

high-level data manipulation is listed as follows.  
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library(RODBC) 

#Connection to the Database 

Data <- odbcConnect("DatabaseName") 

#Use SQL to select columns from multi-relational tables 

A <- sqlQuery(Data,  

  "select wd.welder_id, pw.weld_abbreviation, ps.schedule, 

pd.diameter_imperial,pmc.category,p.proj_type,dbo.check_weld_detail_inspected

(wd.weld_id,wd.detail_id,wd.proj_id,4) as inspection_result from welds w 

            left join spools s on w.spool_id = s.spool_id and w.proj_id = 

s.proj_id 

            left join iso_dwgs iso on iso.iso_dwg_id = w.iso_dwg_id and 

iso.proj_id = w.proj_id 

            left join iso_dwg_main isom on isom.iso_dwg_main_id = 

iso.iso_dwg_main_id and isom.proj_id = iso.proj_id 

            left join line_classes lc on w.class_id = lc.class_id 

            left join pipe_welds pw on w.weld_type_id = pw.weld_id 

            left join pipe_schedules ps on ps.schedule_id = 

w.pipe_schedule_id 

            left join pipe_diameters pd on w.pipe_size_id = pd.diameter_id 

            left join pipe_materials pm on w.material_id = pm.material_id 

            left join weld_details wd on wd.weld_id = w.weld_id and 

wd.proj_id = w.proj_id 

            left join pipe_material_categories pmc on pm.category_id = 

pmc.category_id 

            left join pipe_material_groups pmg on pm.group_id = pmg.group_id 

            left join bays b on b.bay_id = s.bay_id 

            left join projects p on w.proj_id = p.proj_id 

            left join employees e on wd.welder_id = e.empl_id 

            left join weld_detail_inspections wdi on wdi.proj_id = wd.proj_id 

and wdi.weld_id = w.weld_id and wdi.detail_id = wd.detail_id and 

wdi.inspection_id = 4 and wdi.latest = 1") 

 

The initially connected data (top 20 rows of 675,512 entries) is shown as Figure A.2. Welder 

information and detailed design information are associated with each produced weld. In the next 

step, this initial data is cleaned, reshaped and summarized to support further analytical tasks.  
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Figure A.2: The initially connected dataset.  

Data Mapping 

The term “tidy data” has been used to refer to data that are maintained in a table form where each 

variable is saved in its own column and each observation is saved in its own row (Wickham 

2014). Tidy datasets are easy to manipulate, model, and visualize (Wickham 2014). Here, the 

dplyr and tidyr packages were used to perform data wrangling tasks. By making use of multiple 

processors, these packages can perform data wrangling tasks in relatively little time, which is 

critical for processing large-sized datasets, such as the ones used in the present study (Wickham 

2017; Wickham and Francois 2017). Here, the following code demonstrates the data mapping 

process for the functionality of operator quality performance measurement.  
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library(dplyr) 

library(tidyr) 

#Delete rows with NA and blank value 

A <- na.omit(A) 

A <- A[!A$schedule == "", ] 

#Delete rows with inspection result values other than 0 and 1 

A <- A[A$inspection_result == '0' | A$inspection_result == '1', ] 

A <- mutate(A, Count = 1) 

#Select welds with type of BW 

A <- filter(A, weld_abbreviation == 'BW') 

#Select welds from pipe shop 

A <- filter(A, proj_type == '0') 

#Treat Pipe Size as factor 

A$diameter_imperial <- as.factor(A$diameter_imperial) 

A <- dplyr::rename(A, Welder = welder_id, Schedule = schedule, PipeSize = 

diameter_imperial, Material = category, ProjectType = proj_type, WeldType = 

weld_abbreviation, InspectionResult = inspection_result) 

B <- summarise_each(group_by(A, Welder, WeldType, Schedule, PipeSize, 

Material, WeldType, InspectionResult),funs(sum)) 

#Replace numbers of inspection result with ABC 

Status = data.frame(s = c("A", "B", "C"),v = c(0, 1, 2)) 

B$InspectionResult <- with(Status, s[match(B$InspectionResult, v)]) 

B <- tidyr::spread(B, InspectionResult, Count) 

B[is.na(B)] <- 0   #Replace NA with 0 

B <- mutate(B, TotalWelds = A + B + C, InspectedWelds = B + C, RepairedWelds 

= C) 

B <- select(B, Welder, Schedule, PipeSize, Material, TotalWelds, 

InspectedWelds, RepairedWelds) 

#Select weld attributes and welders 

C <- filter(B, Schedule == 'STD') 

C <- filter(C, PipeSize == '2') 

C <- filter(C, Material == 'Material A') 

C <- filter(C, InspectedWelds > 99) 

C <- data.frame(C) 

D <- select(C, Welder, InspectedWelds, RepairedWelds) 

 

Here, the initially connected dataset is processed by performing the following cleaning and 

selection tasks. The transformed dataset A (top 20 rows of 224,294 entries) is shown as Figure 

A.3. 

• Omit all rows with “NA” or “ ”; 

• Delete rows with inspection results other than “0” and “1”; 

• Select “BW” as the weld type; 

• Select “0” as the project type, which means fabrication project. 
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Figure A.3: The transformed dataset A.  

Then, dataset A is processed to summarize the number of total welds, inspected welds, and 

required welds for each welder for a certain combination of design attributes. The summarized 

dataset B (top 20 rows of 9,709 entries) is depicted as Figure A.4.  
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Figure A.4: The transformed dataset B.  

In consistent with Chapter 4, weld type (STD, 2, A, BW) is selected. Welders, who were 

inspected more than 100 times, were selected for quality performance measurement. The 

processed dataset C is represented as Figure A.5 (17 entries).  
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Figure A.5: The transformed dataset C.  

Finally, the columns of “WelderID”, “InspectedWelds”, and “RepairedWelds” are selected as the 

finalized dataset for the purpose of welder quality performance measurement, as shown in Figure 

A.6.  
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Figure A.6: The finalized dataset D.  

Data Cleaning 

Omitted values, noise, and inconsistencies render data inaccurate and unreliable. Data cleaning, 

which can be used to improve data accuracy and reliability, is an essential step of the proposed 

approach. Although many mining routines have developed procedures for dealing with these 

types of data, these procedures are not always robust (Han et al. 2011). Therefore, specific data 

cleaning rules should be specified for each particular case.  

In this example, missing values are omitted by using the following code.  

#Delete rows with NA and blank value 

A <- na.omit(A) 

A <- A[!A$schedule == "", ] 
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Inconsistencies in quality inspection records are removed by using the following code.  

#Delete rows with inspection result values other than 0 and 1 

A <- A[A$inspection_result == '0' | A$inspection_result == '1', ] 
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