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Abstract

The first part of the thesis studies invariant subspaces of strictly singular oper-

ators. By a celebrated result of Aronszajn and Smith, every compact operator

has an invariant subspace. There are two classes of operators which are close

to compact operators: strictly singular and finitely strictly singular operators.

Pe lczyński asked whether every strictly singular operator has an invariant sub-

space. This question was answered by Read in the negative. We answer the

same question for finitely strictly singular operators, also in the negative. We

also study Schreier singular operators. We show that this subclass of strictly

singular operators is closed under multiplication by bounded operators. In

addition, we find some sufficient conditions for a product of Schreier singular

operators to be compact.

The second part studies almost invariant subspaces. A subspace Y of a

Banach space is almost invariant under an operator T if TY ⊆ Y + F for

some finite-dimensional subspace F (“error”). Almost invariant subspaces

of weighted shift operators are investigated. We also study almost invariant

subspaces of algebras of operators. We establish that if an algebra is norm

closed then the dimensions of “errors” for the operators in the algebra are

uniformly bounded. We obtain that under certain conditions, if an algebra

of operators has an almost invariant subspace then it also has an invariant

subspace. Also, we study the question of whether an algebra and its closure

have the same almost invariant subspaces.

The last two parts study collections of positive operators (including positive

matrices) and their invariant subspaces. A version of Lomonosov theorem

about dual algebras is obtained for collections of positive operators. Properties

of indecomposable (i.e., having no common invariant order ideals) semigroups

of nonnegative matrices are studied. It is shown that the “smallness” (in

various senses) of some entries of matrices in an indecomposable semigroup of

positive matrices implies the “smallness” of the entire semigroup.



Many of the results presented in this thesis were obtained jointly with other

people. The thesis is based on several papers published by the author of this

thesis and his co-authors. Among those papers are two single-author papers

and five joint papers.
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Chapter 1

Introduction

Many of results in this thesis were obtained jointly with other people. I give

appropriate credits in every section. The thesis is based on two papers of

mine [97] and [98] and five joint papers with my collaborators [13, 38, 53, 99,

100].

1.1 Invariant Subspace Problem

This thesis is concerned with the study of linear bounded operators and col-

lections of such operators on various Banach spaces. A Banach space is a

complete normed space. Banach spaces were introduced by Banach in 1920-s;

they form one of the central objects of study in Functional analysis. A lin-

ear bounded operator between Banach spaces X and Y is a linear continuous

map from X to Y . In this thesis, we will simply write operator for a linear

bounded operator between Banach spaces. An operator on a Banach space X

is an operator from X to X. The set of all operators from X to Y is denoted

by L(X, Y ). We write L(X) for L(X,X).

A fundamental question in the study of operators on Banach spaces is

understanding the structure of their invariant subspaces. A subspace Y (in

this thesis, a subspace of a Banach space always means a closed vector sub-

space; subspaces which are not necessarily closed will be referred to as linear

subspaces) of a Banach space X is called invariant under a bounded linear

operator T ∈ L(X) if Ty ∈ Y for every y ∈ Y . Invariant subspace is a natural
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replacement for a fundamental concept of analysis of matrices – eigenvector.

The set of all subspaces which are invariant for a given operator T ∈ L(X)

is denoted by Lat T . It is easy to see that Lat T forms a lattice under the

operations Y ∧ Z = Y ∩ Z and Y ∨ Z = span (Y ∪ Z).

It is clear that every operator on a Banach space X has at least two invari-

ant subspaces: X and {0}. These two subspaces are called trivial. An invariant

subspace is called non-trivial if it is different from {0} and X. A fundamental

question for the study of operators is the Invariant Subspace Problem which

was originally stated as the follows: Does every bounded operator on a Banach

space have a closed non-trivial invariant subspace?

Throughout this thesis, whenever we write invariant subspace, we always

mean (unless otherwise is stated explicitly) a non-trivial invariant subspace.

One can also ask about the existence of invariant subspaces for collections

of operators. Namely, given a collection C of operators acting on a Banach

space X, one might be interested if there exists a closed non-trivial subspace

of X which is invariant under every operator in C. This question is of partic-

ular interest when the collection C has certain properties, for example, forms

an algebra of operators. In particular, one could consider the algebra of all

operators which commute with a given operator T . This algebra is called the

commutant for T and is denoted by {T}′. Any invariant subspace for this

algebra is called a hyperinvariant subspace for T .

It is easy to show that if the underlying space X is not separable then

the problem of existence of invariant subspaces for any operator on X has an

immediate affirmative answer. Indeed, if T : X → X is any operator and

x ∈ X is an arbitrary non-zero vector then the space Y = span{T nx : n ≥ 0}

is a non-trivial closed invariant subspace for T . Another useful simple fact is

the following proposition (for proof, see, e.g., [1, Theorem 10.8]).

Proposition 1.1.1. If an operator T on a Banach space or its adjoint T ∗ has

an eigenvalue then T has an invariant subspace. If T is non-scalar (i.e., T is

an operator not of form αI) then this subspace is even hyperinvariant.

2



In particular, this shows that the question about invariant subspaces has an

immediate affirmative answer for any operator on a finite-dimensional complex

space of dimension greater than one. It can also be shown that any operator on

a real finite-dimensional space of dimension greater than two has an invariant

subspace, too.

Many results in the invariant subspace research are related in one way or

another to compact operators. This direction was started by von Neumann

who proved in the early thirties that every compact operator acting on a

Hilbert space has a closed non-trivial invariant subspace (his work, however,

was never published). Aronszajn and Smith [17] showed in 1954 that the

same applies to arbitrary Banach spaces. The technique used in these results

is an approximation method which allows to construct an invariant subspace

for a compact operator T from a sequence of invariant subspaces for finite-

dimensional operators closely related to T .

The approximation method of von Neumann–Aronszajn–Smith has been

used and refined by many mathematicians. In 1966, Bernstein and Robinson

proved that every polynomially compact operator has invariant subspaces:

Theorem 1.1.2. [26] Let T be an operator on a Banach space. If there is

a non-zero polynomial p such that p(T ) is compact then T has an invariant

subspace.

Bernstein and Robinson used Nonstandard Analysis in their work. Halmos

in [63] reproved this fact without using Nonstandard Analysis. A further

generalization of this result, using the same set of ideas, was given by Arveson

and Feldman [18] who proved that if for an operator T on the Hilbert space

lim ‖T nx‖1/n = 0 for some x 6= 0 and the norm closed algebra generated by T

contains a nonzero compact operator then T has an invariant subspace. This

result was extended to Banach spaces by Apostol [14] and Gillespie [54].

A very remarkable result which includes all of the aforementioned results

and is considered a breakthrough in the Invariant Subspace Problem appeared
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in 1973. It is due to Lomonosov.

Theorem 1.1.3. [75] If a non-scalar operator T on a complex Banach space

commutes with a non-zero compact operator, then T has a non-trivial closed

hyperinvariant subspace.

Originally, it was not clear whether this theorem solves the Invariant Sub-

space Problem in affirmative. However, Hadwin, Nordgren, Radjavi and Ro-

senthal [61] found an example of an operator that fails the assumptions of

Lomonosov’s theorem. Their operator, however, had plenty of invariant sub-

spaces.

Lomonosov used a technique of fixed points of continuous functions on com-

pact sets. This technique proved to be very useful and has subsequently been

employed by other authors. Hilden [84] proved a weaker form of Lomonosov’s

theorem using quite different “ping-pong” technique. He used the fact that,

when dealing with the Invariant Subspace Problem, one may assume that the

compact operator is quasinilpotent.

An interesting generalization of Lomonosov’s theorem was obtained by

Daughtry in [39]. He proved that if the commutator of operator T with a

compact operator has rank one then T has an invariant subspace.

It should be noted that in 2009, Argyros and Haydon [16] constructed a

separable Banach space X such that every operator on X can be written in the

form λI + K where I is the identity operator and K is a compact operator.

By the result of Aronszajn and Smith, every operator on this space has an

invariant subspace. This is the first known example of an infinite dimensional

separable Banach space with this property.

Examples of operators without closed non-trivial invariant subspaces (these

operators are called transitive operators) were constructed by Enflo [48, 49] and

Read [106]. Another example was published by Beauzamy [21] who simplified

Enflo’s example. Also, some simplifications of Read’s construction have been

published by Davie [22] and recently by Sirotkin [121, 122]. Atzmon [19]
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showed that there is an operator without invariant subspaces on a nuclear

Fréchet space (see, e.g., [52] for more information about nuclear spaces).

After constructing his first counterexample, Read produced different ver-

sions of his operator which satisfy some additional properties. In [107] he

constructed a transitive operator on `1. It was hoped that Hilden’s technique

mentioned above could be modifyed to apply to arbitrary quasinilpotent op-

erators. Read showed in [109] this to be false by constructing an example of a

transitive quasinilpotent operator. Another remarkable result of Read was a

construction [108] of an operator which is hypercyclic at every non-zero vector,

i.e., an operator without even invariant closed non-trivial subsets.

It was conjectured by Pe lczyński that every strictly singular operator (see

Chapter 2 for the definition) has an invariant subspace. The motivation for

this conjecture is the fact that strictly singular operators and compact oper-

ators share a lot of important properties. For example, both these classes of

operators form closed operator ideals; operators from both classes have iden-

tical spectral theory. Despite all these similarities, Read [110] constructed an

example of a strictly singular operator without invariant subspaces.

The operators for which all the invariant subspaces are known are very few.

Important examples are the right shift operator on `2, Donoghue operators and

the Volterra operator.

Definition 1.1.4. An operator S : `2 → `2, T : ei 7→ ei+1, is called the right

shift operator . A weighted left shift operator D : `2 → `2, De0 = 0, Dei =

wiei−1, i ∈ N, is called a Donoghue operator if the weights wi are non-

zero and satisfy the condition that the sequence (|wi|)∞i=1 is monotone and is

in `2. An operator V : L2[0, 1]→ L2[0, 1] is called the Volterra operator if

(V f)(x) =
∫ x
0
f(y)dy for all f ∈ L2[0, 1].

The right shift operator on `2 is one of the simplest operators; however the

structure of its invariant subspaces is not obvious at all. The characterization

of the invariant subspaces of the right shift operator was obtained by Beurl-
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ing [28] in 1949. In his result, Beurling used a particular representation of the

right shift operator which we will describe now. We use exposition from [102].

Consider the space L2(C, µ) where C is the unit circle and µ is the nor-

malized Lebesgue measure on C. For each n ∈ Z, denote en(z) = zn,

en ∈ L2(C, µ). Then (en)n∈Z is an orthonormal basis of L2(C, µ). Denote

H2 = span{en : n > 0} ⊆ L2(C, µ). The particular representation of the

right shift operator used by Beurling is the operator of multiplication by the

independent variable in H2. That is, (Sf)(z) = f(z) · z for all f ∈ H2.

Theorem 1.1.5. [28] A non-zero subspace M of H2 is invariant under the

right shift operator S on L2(C, µ) if and only if there is a function φ ∈ H2

such that |φ(z)| = 1 a.e. on C and

M = φH2 : = {φf : f ∈ H2}.

Moreover, φ1H2 = φ2H2 with |φ1(z)| = |φ2(z)| = 1 a.e. on C if and only if

φ1/φ2 is equal a.e. to a constant function.

It is a surprising corollary that the right shift operator has invariant sub-

spaces which are infinite dimensional and infinite codimensional simultane-

ously.

Theorem 1.1.6. (see, e.g. [102, Corollary 3.15]) If λ ∈ C is such that |λ| = 1

and φ(z) = exp
(
(λ + z)/(λ − z)

)
then the space M = φH2 is an invariant

subspace for the right shift operator having both infinite dimension and infinite

codimension.

Donoghue operators and the Volterra operator are examples of so-called

unicellular operators. An operator T on a Banach space X is called unicellular

if the lattice of its invariant subspaces LatA is totally ordered (that is, if

Y, Z ∈ Lat A then either Y ⊆ Z or Z ⊆ Y ).

The following theorem is due to Donoghue [43] in the case the weights of

a Donoghue operator from Definition 1.1.4 are wi = 2−i, and in full generality

to Nikol’skĭı [89], Parrot (unpublished), and Shields (unpublished).
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Theorem 1.1.7. A subspace M of `2 is invariant under a Donoghue operator

if and only if M is of form span{ek : k = 0, . . . , n} for some n ∈ N.

The following theorem was developed by Dixmier [42], Donoghue [43], and

Brodskĭı [29].

Theorem 1.1.8. If V is the Volterra operator, then

Lat V = {Mα : α ∈ [0, 1]},

where Mα = {f ∈ L2[0, 1] : f = 0 a.e. on [0, α]}.

Despite all the negative results, the Invariant Subspace Problem is far

from being closed. For Hilbert spaces, the problem is open. Even in the

Banach space setting, numerous questions remain unanswered. For example,

it is not known whether there are transitive operators on reflexive spaces.

With regard to this question, we would like to mention a conjecture proposed

by Lomonosov which asked whether every adjoint operator has an invariant

subspace. Notably, Schlumprecht and Troitsky showed in [118] that the Read’s

example in `1 is not adjoint.

In the rest of this introductory subsection, we will list some of the known

results about invariant subspaces which we will not use directly in the thesis.

This list is very incomplete and reflects the interests of the author of this

thesis.

Theorem of Lomonosov shows in particular that if an operator T commutes

with a non-scalar operator S which in turn commutes with a non-zero compact

operator K then T has an invariant subspace. A natural question to ask in this

regard is whether it is possible to make the chain of operators T ↔ S ↔ K

longer. This question was answered in the negative by Troitsky in [123].

Halmos introduced in [64] the notion of a quasitriangular operator. An

operator T on Hilbert space is called quasitriangular if there exists a sequence

(Pn) of finite-dimensional projections increasing to the identity operator such

that PnTPn − TPn → 0 in norm. It is a surprising result of Apostol, Foiaş,
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and Voiculescu [15] that the adjoints of non-quasitriangular operators have

eigenvalues, hence the operators themselves have hyperinvariant subspaces (see

Proposition 1.1.1).

An operator T ∈ L(X) is called doubly power bounded if supn∈Z ‖T n‖ <

∞. It was proved by Lorch [78] that every non-scalar doubly power bounded

operator on a complex Banach space has a hyperinvariant subspace. This

result, in particular, implies that every linear isometry on a Banach space has

invariant subspaces.

The result of Lorch was generalized by Wermer to a class of non-quasianaly-

tic operators. An invertible operator T ∈ L(X) is called quasianalytic if∑∞
n=−∞

| log ‖Tn‖|
1+n2 =∞. It is clear that every doubly power bounded operator is

not quasianalytic. Wermer [127] showed that every non-quasianalytic operator

whose spectrum σ(T ) is not a singleton has a hyperinvariant subspace. In

particular, it follows from this theorem that if T ∈ L(X) is such that σ(T ) is

not a singleton and there exists a constant M such that ‖T n‖ 6M |n|k for n =

±1,±2, . . . , then T has a hyperinvariant subspace. The result of Wermer was

subsequently generalized and improved by many authors in various directions.

An operator T : Lp(C, µ)→ Lp(C, µ), where C is the unit circle, µ the nor-

malized Lebesgue measure on C, and p ∈ [1,∞], is called a weighted composi-

tion operator if (Tf)(x) = w(x)f(αx) where α ∈ C and w is a weight function.

A weighted composition operator is called a Bishop operator if w(x) = x for

all x. Davie [40] showed that a Bishop operator has an invariant subspace pro-

vided α
π

is not a Liouville number (recall that a number a is called a Liouville

number if there exists a sequence (mn
kn

) of pairwise distinct rational numbers

such that (mn, kn) = 1 and |a − mn
kn
| < 1

n(kn)n
). Generalizations of Davie’s

result were obtained by MacDonald [79, 80].

In Hilbert spaces, the Spectral Theorem for normal operators provides a

large stock of invariant subspaces for such operators. In fact, Fuglede [51]

showed that if T is a normal operator and E is its spectral measure then the

range of the projection E(S) is T -hyperinvariant for every Borel subset S of C
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(see also [101]). Dunford [47] generalized this theorem to Banach spaces.

It has been an open question for a long time whether subnormal operators

(introduced by Halmos in [62]) on Hilbert spaces have invariant subspaces. An

operator T on the Hilbert space H is called subnormal If it is the restriction

of a normal operator to an invariant subspace. Brown [30] proved that every

subnormal operator has an invariant subspace. Ideas developed by Brown were

used in many other results.

A classical source about the invariant subspace problem is the book [102] by

Radjavi and Rosenthal (which is primarily focused on Hilbert spaces). General

treatments of this problem can be found in the book [22] by Beauzamy and in

the book [1] by Abramovich and Aliprantis. There is also a big survey [90] of

methods in the invariant subspace research with an extensive bibliography of

1253 items by Nikol’skĭı.

1.2 Transitive algebras

Recall that an operator has a hyperinvariant subspace if its commutant has

an invariant subspace. Observe that the commutant of an operator is an

algebra of operators. Similarly to the commutants, one can ask the question of

existence of a common invariant subspace for an arbitrary algebra of operators.

Analogously to the case of single operators, if A is an algebra of operators,

we write Lat A for the lattice of its invariant subspaces (including the trivial

ones).

In what follows, we will use several standard topologies in the space of

operators on a Banach space.

Definition 1.2.1. If X is a Banach space, T ∈ L(X), and Tα is a net in L(X),

then we say that Tα converges to T in the strong operator topology and

write Tα
SOT−→ T if Tαx

‖·‖−→ x for all x ∈ X. We say that Tα converges to T

in the weak operator topology and write Tα
WOT−→ T if Tαx

w−→ x for all

x ∈ X. If X is a dual Banach space (i.e., X = Z∗ for some Banach space Z)

9



then we say that Tα converges to T in the weak∗ operator topology and

write Tα
W ∗OT−→ T if Tαx

w∗−→ x for all x ∈ X.

It is clear that WOT is weaker than SOT , and SOT is weaker than the

norm topology in L(X). It is a very useful fact that the closures of a convex

subset of L(X) in SOT and in WOT are the same. In particular, an algebra

of operators is closed in SOT if and only if it is closed in WOT .

When working with invariant subspaces of algebras of operators, one can

always assume that the given algebra is closed in WOT . The following propo-

sition is well-known.

Proposition 1.2.2. The invariant subspaces of an algebra A and its closure

A
WOT

are the same.

Definition 1.2.3. An algebra of operators acting on a Banach space X is

called transitive if Lat A =
{
{0}, X

}
.

An example of a transitive algebra is the algebra of all operators on a Ba-

nach space X. The Transitive Algebra Problem is the analogue to the Invariant

Subspace Problem for the algebras of operators. It was stated originally as: if

A is a WOT -closed transitive algebra of operators acting on a Banach space,

must A be equal to the algebra of all operators on this space?

If the underlying space is finite dimensional then the transitive algebra

problem has an affirmative answer. This is the classical Burnside’s theorem.

Theorem 1.2.4. (see, e.g., [103, Theorem 1.2.2]) Every proper subalgebra of

Mn(C) is not transitive.

For infinite dimensional spaces, the situation is more complicated. In the

case of algebras of operators acting on general Banach spaces, the examples

of Enflo and Read provide negative solution to the transitive algebra problem

(this follows from the observation that the WOT -closed algebra generated by

a single operator must be commutative). Regarding the algebras of operators

10



acting on Hilbert spaces, the question is open. There are many partial affir-

mative results, both in the Hilbert and Banach spaces setting. We refer the

reader to [102, Chapter 8] for a detailed introduction to the topic. We would

like to mention a few results more closely related to our exposition.

The following result can be viewed as a generalization of Burnside’s theo-

rem. It is due to Lomonosov.

Theorem 1.2.5. [73] Let X be a complex Banach space and let A be a WOT -

closed subalgebra of L(X). If A is transitive and contains a non-zero compact

operator, then A = L(X).

Now we would like to present a “quantized” version of the preceding re-

sult. It is also due to Lomonosov and applies to algebras consisting of adjoint

operators. First, we mention a simple criterion of transitivity of an algebra of

operators which is a folklore in the theory of transitive algebras.

Proposition 1.2.6. For an algebra A of operators on a Banach space X, the

following statements are equivalent.

(i) The algebra A is non-transitive.

(ii) There exists a non-zero vector x ∈ X and a non-zero linear functional

f ∈ X∗ such that for each T ∈ A we have 〈f, Tx〉 = 0.

Now suppose that X is a dual space; that is, X = Y ∗ for some Banach

space Y . If T ∈ L(X) is a bounded adjoint operator on X then there is a

unique operator S ∈ L(Y ) such that S∗ = T . We will write S = T∗; there

is no ambiguity in this notation as T∗ is taken with respect to Y . We will

write ‖T‖e for the essential norm of T , i.e., the distance from T to the space

of compact operators. Note that in general, for an adjoint operator T , one has

‖T‖e 6 ‖T∗‖e. See [20] for an example of T such that ‖T‖e < ‖T∗‖e. The next

theorem is due to Lomonosov.
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Theorem 1.2.7. [76] Let X be a dual Banach space and A a proper W ∗OT -

closed subalgebra of L(X) consisting of adjoint operators. Then there exist

non-zero x ∈ X and f ∈ X∗ such that
∣∣〈f, Tx〉∣∣ 6 ‖T∗‖e for all T ∈ A.

A collection of operators on a Banach space is said to be a Volterra collec-

tion if each operator in the collection is compact and quasinilpotent.

The following theorem about Volterra algebras is due to Shulman.

Theorem 1.2.8. [119] Each non-zero Volterra algebra has a non-trivial closed

hyperinvariant subspace.

It was a long-standing question whether the same is true for Volterra semi-

groups of operators. It was solved by Turovskii in affirmative in 1999 by

proving that the algebra generated by a multiplicative Volterra semigroup is

a Volterra algebra.

Theorem 1.2.9. [125] Each non-zero multiplicative Volterra semigroup has a

non-trivial closed hyperinvariant subspace.

1.3 Overview of the results

The general thread of this thesis is the study of invariant subspaces of opera-

tors and collections of operators. We investigate the question of existence of

invariant subspaces of various operators. Also, we consider variations of the

notion of invariant subspace. First variation is algebraic (we call it almost

invariant subspace), the other is topological and originates from the theory of

transitive algebras. Finally, we study collections of operators (in particular,

semigroups of such operators) having no invariant subspaces of special kind,

called closed invariant ideals.

Chapter 2 of the thesis is concerned with the study of invariant subspaces

of variations of strictly singular operators. It was mentioned in Section 1.1

that the class of strictly singular operators is similar to the class of compact

operators in many respects. However, even though compact operators behave
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very well with respect to the invariant subspace problem, there exist strictly

singular operators without invariant subspaces.

The class of finitely strictly singular operators (see Chapter 2 for the def-

inition) is another class of operators close to the class of compact operators.

In fact, finitely strictly singular operators “sit” between the compact and the

strictly singular operators. They were introduced in 1970 by Milman and have

been studied by many authors since then. It is a natural question whether ev-

ery finitely strictly singular operator has an invariant subspace. In this thesis

(Section 2.2), we answer this question in the negative by showing that the

strictly singular operator without invariant subspaces constructed by Read

in [110] is, in fact, finitely strictly singular. As an intermediate result, we

prove that the formal inclusion operator from Jp to Jq with 1 6 p < q < ∞

is finitely strictly singular. This result, in turn, follows from the following

lemma: every k-dimensional subspace in Rn contains a vector x whose coordi-

nates “oscillate a lot”: |xk| 6 1 for all k, and there are at least k coordinates

whose value are the alternating 1 and −1, i.e., there is a sequence of coordi-

nates ki such that xki = (−1)i. We develop an original approach which uses

combinatorial properties of polytopes in n-dimensional spaces to prove this

lemma.

Another subclass of finitely strictly singular operators which we study in

this thesis is the class of Sξ-singular operators. It was introduced in [11] in

order to generalize the result of Milman [86] asserting that a product of two

strictly singular operators on Lp[0, 1] or C[0, 1] is compact. All Sξ-singular op-

erators are strictly singular, and each strictly singular operator is Sξ-singular

for some ξ; also each finitely strictly singular operator is Sξ-singular for all ξ

(see [11] for these results). It is a natural question whether Sξ-singular opera-

tors form an operator ideal. In this thesis, we show that the class of Sξ-singular

operators is closed under the left and right multiplication by bounded opera-

tors. The main theorem of [11] asserts that under certain conditions on the

underlying Banach space X, a product of finitely many Sξ-singular operators
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is compact. A consequence of this theorem is the fact that a power of any

such operator is compact, and, hence, the operator has invariant subspaces by

Theorem 1.1.2. We show that the conditions in this theorem can be slightly

relaxed. Also, we exhibit a simple example of a finitely strictly singular op-

erator (hence, an Sξ-singular operator for any ξ) which is not polynomially

compact.

In Chapter 3, we study the notion of an almost invariant subspace for an

operator. This notion was introduced in [13] by the author of this thesis and

his co-authors. A subspace Y of a Banach space is almost invariant under an

operator T if TY ⊆ Y + F for some finite-dimensional subspace F (“error”).

We develop an original technique of constructing almost invariant subspaces.

In particular, this technique works with a large class of weighted shift oper-

ators. A significant part of Chapter 3 is concerned with the study of almost

invariant subspaces of algebras of operators. We establish that if an algebra of

operators is norm closed then the dimensions of “errors” corresponding to the

given subspace Y for the operators in the algebra are uniformly bounded. We

obtain that if a norm closed singly generated algebra has a non-trivial almost

invariant subspace then it has an invariant subspace. This is achieved by de-

veloping an original geometric method of constructing an invariant subspace

from an almost invariant subspace. This method is also generalized to norm

closed algebras generated by finitely many commuting operators. Finally, we

study whether an algebra and its closure have the same almost invariant sub-

spaces. It turns out that the situation here is dramatically different from the

case of invariant subspaces.

In Chapter 4 we obtain a version of Theorem 1.2.7 of Lomonosov [76] about

algebras of adjoint operators for collections of positive operators on Banach

lattices. We find conditions on a collection C of positive adjoint operators

which guarantee the same conclusion as that of Theorem 1.2.7: there exist

non-zero x ∈ X and f ∈ X∗ such that |〈f, Tx〉| 6 ‖T∗‖e for all T ∈ A, where

T∗ is the predual for T . We show that in the case of collections of positive

14



operators, both x and f can be chosen positive. Our work has been inspired by

the paper [45] by Drnovšek. In our argument, we adapt techniques from [72]

and [84] to the Banach lattice setting. We also show that our result is in a sense

sharp: there exists a collection of positive operators satisfying the conditions

of our theorem which nevertheless fails to have an invariant subspace.

Chapter 5 is concerned with the study of properties of multiplicative semi-

groups of indecomposable semigroups of nonnegative matrices (see Chapter 5

for the definition). The central question for this chapter is: if a certain prop-

erty holds for a semigroup locally, then does it hold globally? In Section 5.2 we

show that if a positive functional is bounded on an indecomposable semigroup

of nonnegative matrices then, after a similarity via a positive diagonal matrix,

all entries of all matrices are in [0, 1]. We also obtain the following topological

version of this result. It is easy to see that the requirement that a positive

functional is small on an indecomposable semigroup of nonnegative matrices is

not enough for saying that the semigroup is topologically small itself. However,

we show that if we insist that all the diagonal entries of the matrices in the

semigroup are between 0 and ε then, after a simultaneous diagonal similarity,

all entries of the matrices in the semigroup are between 0 and
n√
ε where n

is the size of the matrices. We exhibit examples showing that our results are

sharp.

In Section 5.3 we study indecomposable semigroups of nonnegative ma-

trices with diagonal elements coming from a fixed finite set. We call such

semigroups semigroups with finite diagonals. We are concerned with the ques-

tion: when such semigroups are finite? In general, there exist infinite inde-

composable semigroups with finite diagonals. The main results assert that if

a semigroup with finite diagonals is self-adjoint or is constant-rank (see Sec-

tion 5.3 for the definitions) then it is finite. The first result does not even

require indecomposability. We also study the possible values that can appear

on the diagonal positions of semigroups with finite diagonals.
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Chapter 2

Strictly singular operators

In this chapter we show that finitely strictly singular operators need not have

invariant subspaces. Also, we study properties of Sξ-singular operators. The

results in this chapter have been published in paper [97] by the author of this

thesis and in the joint paper [38] by the author of this thesis and his co-authors.

2.1 Overview

Strictly singular operators were introduced by Kato in [68] while he was study-

ing certain questions in Perturbation Theory. Later, these operators and vari-

ations of them have been investigated by Pe lczyński [94], Milman [85, 86],

and others. Strictly singular operators turned out to be an interesting and

important class of linear operators.

Definition 2.1.1. [68] Let X and Y be Banach spaces. An operator T ∈

L(X, Y ) is called strictly singular if for any infinite-dimensional closed sub-

space Z of X, the restriction of T to Z is not an isomorphism.

In this chapter, we will always assume that the Banach space X is infinite-

dimensional whenever we talk about strictly singular operators.

It is easily seen that every compact operator on X is strictly singular. We

will see that the converse is not true; the relationship between compact and

strictly singular operators is more intricate.
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Theorem 2.1.2. [68] A bounded linear operator T : X → Y between Ba-

nach spaces with X infinite-dimensional is strictly singular if and only if for

each infinite-dimensional closed subspace X1 of X there exists an infinite-

dimensional closed subspace X2 of X1 such that T |X2 is compact.

It is a classical result that the perturbation of a Fredholm operators by

a compact operator preserves the index of the operator. The importance of

strictly singular operators stems in particular from the fact that they enjoy

the same property (see, for example, [1, Theorem 4.63]):

Theorem 2.1.3. Let S, T : X → Y be two bounded linear operators between

Banach spaces with X infinite-dimensional. If T is Fredholm and S is strictly

singular then T + S is again a Fredholm operator and i(T + S) = i(T ).

Another nice property of strictly singular operators is that they form a

closed algebraic ideal. Precisely (see, e.g., [1, Corollary 4.62]),

Theorem 2.1.4. The collection of strictly singular operators between Banach

spaces X and Y is a closed subspace of L(X, Y ). Moreover, if in a scheme of

bounded operators X
S−→ Y

T−→ Z between Banach spaces either S or T is

strictly singular, then TS is strictly singular.

Let us recall another classical result. Calkin [34] showed that the only

proper non-trivial closed ideal of L(`2) is the ideal of compact operators K(`2).

Gohberg, Markus and Feldman [55] showed that the same is true for `p with

1 ≤ p <∞ and c0. Combined with the theorem above, this showes that in `p,

1 ≤ p <∞, and c0 every strictly singular operator is compact.

A simple example of a non-compact strictly singular operator can be found

in sequence spaces. Namely, if 1 ≤ p1 < p2 <∞ then every operator T : `p1 →

`p2 is strictly singular; however, the natural embedding (also referred to as the

formal identity) i : `p1 → `p2 is clearly not compact.

The definition of strictly singular operators above can be reformulated in

the following form: T : X → Y is strictly singular if and only if for every
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infinite-dimensional closed subspace Z of X and for every ε > 0 there is x ∈ Z

such that ‖Tx‖ < ε‖x‖. This can be considered as a motivation for the

following definition.

Definition 2.1.5. [86] We say that an operator T : X → Y between Banach

spaces is finitely strictly singular (term superstrictly singular is also used

in the literature) if for every ε > 0 there exists n ∈ N such that for every

subspace W of X with dimW ≥ n there exists z ∈ W such that ‖Tz‖ < ε‖z‖.

Finitely strictly singular operators first appeared implicitly in [88], then

explicitly in [86]. Clearly, the class of finitely strictly singular operators is a

subclass of strictly singular operators. It is also not very difficult to show that

every compact operator is finitely strictly singular. The following fact (due

to Mascioni [81]) is important, though simple, as it allows to transfer certain

properties of strictly singular operators to finitely strictly singular operators.

Theorem 2.1.6. [81] An operator T : X → Y between Banach spaces is

finitely strictly singular if and only if for any free ultrafilter U , the operator

TU : XU → YU is strictly singular1.

In particular, similarly to strictly singular operators, finitely strictly singu-

lar operators from X to Y form a closed subspace of L(X, Y ), and the class of

finitely strictly singular operators is stable under multiplication by bounded

operators.

Milman showed in [86] that all the classes of operators mentioned above

(compact, finitely strictly singular, and strictly singular operators) are in

general different from each other by providing simple examples in spaces of

sequences. More examples of such operators can be found in the work of

Plichko [96].

To finish the section, we would like to mention some negative results. It is

well-known that the dual of any compact operator is again compact (see [117]).

1Here XU and YU are ultraproducts of X and Y , respectively, and TU is defined by
TU ([xi]U ) = [T (xi)]U ; see [65] for more information about ultraproducts of Banach spaces.
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Unfortunately, this nice property fails for both strictly singular and finitely

strictly singular operators. A simple example of a strictly singular operator

with non-strictly singular dual was found by Goldberg and Thorp [56]. It

can actually be shown that there are finitely strictly singular operators whose

adjoints are not even strictly singular (see [96] for details).

2.2 Invariant subspaces of finitely strictly sin-

gular operators

The results of this section have been published in [38]. They were obtained

simultaneously and independently by two research groups. One group included

Vladimir Troitsky and the author of this thesis; the other group consisted of

Isabelle Chalendar, Emmanuel Fricain, and Dan Timotin. The proofs obtained

by these two groups are very different; we will present the proofs invented by

the first group in this thesis.

2.2.1 Read’s strictly singular operator

Throughout this subsection, T will stand for the Read’s strictly singular op-

erator [110]. We start by describing the construction of T in [110]. In order

to outline the construction, we will need James’ p-spaces. James’ p-space is

a generalization of the classical James’ example of a non-reflexive space iso-

morphic to its second dual [66]. The James’ p-space Jp is a sequence space

consisting of all sequences x = (xn) in c0 satisfying ‖x‖Jp <∞ where

‖x‖Jp = sup
{(n−1∑

i=1

|xki+1
− xki|p

) 1
p

: 1 6 k1 < · · · < kn, n ∈ N
}

is the norm in Jp. Under the norm ‖ · ‖Jp , the space Jp is a Banach space. For

more information about these and similar spaces, we refer the reader to [35],

[71], [82], [120].

Definition 2.2.1. Let 1 6 p < q < ∞. The mapping ip,q : Jp → Jq is called
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the formal identity mapping and is defined by

ip,q

(
(xi)

∞
i=1

)
= (xi)

∞
i=1 ∈ Jq

for each (xi)
∞
i=1 ∈ Jp.

Let 1 6 p < q <∞. Observe that if x ∈ `p then x ∈ `q and ‖x‖`q 6 ‖x‖`p .

Indeed, this statement is trivial if x = 0. If x 6= 0, then define y = x
‖x‖`p

. In

particular, y satisfies |yi| 6 1 for all i, so that |yi|q 6 |yi|p. Then ‖y‖q`q =∑∞
i=1|yi|q 6

∑∞
i=1|yi|p = 1. Hence ‖y‖`q 6 1 = ‖y‖`p , and therefore ‖x‖`q 6

‖x‖`q .

Since ‖x‖Jp is defined as the supremum of `p-norms of certain sequences,

we can conclude that Jp ⊆ Jq whenever 1 6 p < q < ∞, and the formal

inclusion operator ip,q : Jp → Jq is well-defined and has norm 1.

The underlying space for the Read’s strictly singular operator T is defined

as the `2-direct sum1 of `2 and Y , X = (`2 ⊕ Y )`2 , where Y itself is the `2-

direct sum of an infinite sequence of Jp-spaces Y =
(⊕∞

i=1 Jpi
)
`2

, with (pi) a

certain strictly increasing sequence in (2,+∞). The operator T is a compact

perturbation of 0⊕W1, where W1 : Y → Y acts as a weighted right shift, that

is,

W1(x1, x2, x3, . . . ) = (0, w1x1, w2x2, w3x3, . . . ), xi ∈ Jpi

with the weights wi → 0. Note that one should rather write wiipi,pi+1
xi instead

of wixi.

The main result of the section is

Theorem 2.2.2. Read’s strictly singular operator without invariant subspaces

is finitely strictly singular.

The main step in proving Theorem 2.2.2 is the following theorem.

Theorem 2.2.3. If 1 6 p < q < ∞ then the formal identity operator ip,q :

Jp → Jq is finitely strictly singular.

1Recall that `2-direct sum of Banach spaces X and Y is the space X × Y endowed with
the norm ‖(x, y)‖ =

√
‖x‖2X + ‖y‖2Y .
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This theorem will be proved in the next subsection. We will now show how

Theorem 2.2.2 follows from Theorem 2.2.3.

Proof of Theorem 2.2.2. Since finitely strictly singular operators form a closed

algebraic ideal in L(X), to prove that the Read’s operator is finitely strictly

singular, it is enough to prove that the operator W1 is finitely strictly singular.

For n ∈ N, define Vn : Y → Y via

Vn(x1, x2, x3, . . . ) = (0, w1x1, . . . , wnxn, 0, 0 . . . ), xi ∈ Jpi .

It is clear that ‖Vn −W1‖ 6 sup{|wi| : i > n + 1}. Since wi → 0, we obtain

‖Vn − W1‖ → 0. Therefore it is enough to show that Vn is finitely strictly

singular for every n. Given n ∈ N, one can write

Vn =
n∑
i=1

wiji+1ipi,pi+1
Pi,

where Pi : Y → Jpi is the canonical projection, P (x1, x2, . . . ) = xi, and

ji : Jpi → Y is the canonical inclusion, ji(x) = ( 0, . . . , 0︸ ︷︷ ︸
i−1

, x, 0, . . . ). Since

finitely strictly singular operators are closed under multiplication by bounded

operators, Vn is a sum of finitely strictly singular operators by Theorem 2.2.3,

hence is finitely strictly singular itself.

2.2.2 Zigzag vectors

In this subsection we will prove Theorem 2.2.3. We use ideas of Milman [86]

which he developed to prove the following fact.

Theorem 2.2.4. [86, 112] If 1 6 p < q <∞, then the formal identity operator

i : `p → `q, i
(
(xi)

)
= (xi), is finitely strictly singular.

Milman’s proof is based on the fact that every k-dimensional subspace E

of Rn contains a vector x with sup-norm one having (at least) k coordinates

equal in modulus to 1. For such a vector, one has ‖x‖`q � ‖x‖`p . The proof

of our result is based on the following refinement of this observation. We will
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show that x can be chosen so that these k coordinates have alternating signs.

For this “highly oscillating” vector x one has ‖x‖Jq � ‖x‖Jp .

Definition 2.2.5. A finite or infinite sequence of real numbers in [−1, 1] is

called a zigzag of order k if it has a subsequence of the form (−1, 1,−1, 1, . . . )

of length k.

Our proof of Theorem 2.2.3 will be based on the following lemma.

Lemma 2.2.6. For every k 6 n, every k-dimensional subspace of Rn contains

a zigzag of order k.

This lemma can be found in the paper [126] of Voigt. Neither of the

groups working on the project [38] (mentioned in the beginning of this section)

was aware of the result of Voigt at the time; each of the groups developed

their own original proof of this fact. In what follows, we will prove Voigt’s

lemma using a technique involving combinatorial properties of n-dimensional

polytops. However, before presenting the general proof, we would like to show

an elementary proof of the partial case k = n−1 which only uses linear algebra

(this proof has not been published before).

Proof of Lemma 2.2.6 for k = n− 1. Let E ⊆ Rn be a subspace of dimension

n− 1. Pick a functional f = (fi)
n
i=1 such that ker f = E. For each 1 6 m 6 n

such that fm 6= 0, define a projection Pm : Rn → E by

Pm(x) = x− 1

fm
f(x)em,

where (ei) is the standard basis for Rn. Let x(m) stands for the vector defind

by

x(m) = (−1, 1, . . . , (−1)m−1, 0, (−1)m, . . . , (−1)n−1).

Then

Pm(x(m)) =
(
− 1, 1, . . . , (−1)m−1,− 1

fm
f(x(m)), (−1)m, . . . , (−1)n−1

)
.
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The m-th coordinate of this vector satisfies∣∣∣ 1

fm
f(x(m))

∣∣∣ =
∣∣∣ 1

fm

(m−1∑
i=1

(−1)ifi −
n∑

i=m+1

(−1)ifi

)∣∣∣.
Define gi = (−1)ifi, then the absolute value of the m-th coordinate is simply∣∣∣ 1
gm

(∑m−1
i=1 gi −

∑n
i=m+1 gi

)∣∣∣.
We will show by induction on n that there is m for which this expression

is less than 1. Then for this m the vector Pm(x(m)) is a k-zigzag in E.

If n = 2 then the statement is obvious, because one of the inequalities∣∣g1
g2

∣∣ 6 1,
∣∣g2
g1

∣∣ 6 1 always holds.

Suppose the statement is true for n > 2. Let’s establish it for n + 1. We

can assume that neither of gi-s is zero as otherwise we can just drop the zero

elements and get a smaller set of numbers. Define h1, . . . , hn ∈ R by

hi =

{
gi, if i 6 n− 1,

gn + gn+1, if i = n.

By the induction assumption, there is j such that
∣∣∣ 1
hj

(∑j−1
i=1 hi−

∑n
i=j+1 hi

)∣∣∣ 6
1. If i < n we are done. If i = n then we get

∣∣∣ 1
gn+gn+1

n−1∑
j=1

gj

∣∣∣ 6 1 (and, in

particular, gn + gn+1 6= 0).

Claim. If b, c, and b + c are non-zero real numbers, and
∣∣ a
b+c

∣∣ 6 1 then

either
∣∣a−c
b

∣∣ 6 1 or
∣∣a+b
c

∣∣ 6 1.

The proof of this Claim is a tedious check of several cases, each of which

is an elementary inequality, so we omit it. The lemma follows from the Claim

by letting a =
n−1∑
j=1

gj, b = gn, c = gn+1.

We will now introduce some objects needed for the general proof of

Lemma 2.2.6.

Definition 2.2.7. A polytope in Rk is the convex hull of a finite set.

A set is a polytope if and only if it is bounded and can be constructed as

the intersection of finitely many closed half-spaces (see [59] or [130] for more

details about properties of polytopes).
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Definition 2.2.8. Let P be a polytope. A supporting hyperplane for P is

a hyperplane H such that P is entirely contained in one of the two closed half-

spaces determined by the H and P ∩H 6= ∅. The intersection of a supporting

hyperplane with the polytope P is called a face of the P . A facet of P is a

face of (affine) dimension k − 1.

A polytope P is centrally symmetric (i.e., x ∈ P ⇐⇒ −x ∈ P ) if and only

if it can be represented as the absolutely convex hull of its vertices. That is,

P = conv{±ū1, . . . ,±ūn} where ±ū1, . . . ,±ūn are the vertices of P . Clearly, if

P is centrally symmetric and P = ∩ni=1Hi where each Hi is a half-space, then

P = ∩ni=1Hi

⋂
∩ni=1(−Hi). So, for a centrally cymmetric polytope P , there

are vectors ā1, . . . , ām ∈ Rk such that ū ∈ P ⇐⇒ −1 6 〈ū, āi〉 6 1 for all

i = 1, . . . ,m, and the facets of P are described by
{
u ∈ P : 〈ū, āi〉 = 1

}
or{

u ∈ P : 〈ū,−āi〉 = 1
}

as i = 1, . . . ,m.

Definition 2.2.9. A simplex in Rk is the convex hull of k + 1 points. A

polytope P in Rk is simplicial if all its faces are simplices (equivalently, if

all the facets of P are simplices).

Remark 2.2.10. Every polytope can be perturbed into a simplicial polytope

by an iterated “pulling” procedure, see e.g., [59, Section 5.2] for details. We will

outline a slight modification of this procedure that also preserves the property

of a polytope of being centrally symmetric. Suppose that P is a centrally

symmetric polytope with vertices, say ±ū1, . . . ,±ūn. Pull ū1 “away from”

the origin, but not too far, so that it does not reach any affine hyperplane

spanned by the facets of P not containing ū1; denote the resulting point ū′1.

Let Q = conv{ū′1,−ū1,±ū2, . . . ,±ūn}. By [59, 5.2.2, 5.2.3] this procedure

does not affect the facets of P not containing ū1, while all the facets of Q

containing ū′1 become pyramids having apex at ū′1. Note that no facet of P

contains both ū1 and −ū1. Hence, if we put R = conv{±ū′1,±ū2, . . . ,±ūn},

then, by symmetry, all the facets of R containing −ū′1 become pyramids with

apex at −ū′1, while the rest of the facets (in particular, the facets containing
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Figure 2.1: Pulling out the first pair of vertices.

ū′1) are not affected.

Now iterate this procedure with every other pair of opposite vertices. Let P ′

be the resulting polytope, P ′ = conv{±ū′1, . . . ,±ū′n}. Clearly, P ′ is centrally

symmetric and simplicial as in [59, 5.2.4]. It also follows from the construction

that if F is a facet of P ′ then all the vertices of P corresponding to the vertices

of F belong to the same facet of P .

Definition 2.2.11. A polytope P is called marked if the following conditions

are satisfied:

(i) P is simplicial, centrally symmetric, and has a non-empty interior.

(ii) Every vertex is assigned a natural number, called its index , such that

two vertices have the same index if and only if they are opposite to each

other.

(iii) All the vertices of P are painted in two colors, say, black and white, so

that opposite vertices have opposite colors.

Definition 2.2.12. A face of a marked polytope is said to be happy if, when

one lists its vertices in the order of increasing indices, the colors of the vertices

alternate.

For example, the front top facet of the marked polytope in the right hand

side of Figure 2.2 is happy. See Figure 2.3 for more examples of happy faces.
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Figure 2.2: Examples of marked polytopes in R2 and R3.

Figure 2.3: Examples of happy simplices in R2 and R3.

Definition 2.2.13. The color code of a face F of a marked polytope P is

the list of the colors of its vertices in the order of increasing indices.

For example, the color codes of the simplices in Figure 2.3 are (wbw) and

(bwbw) (where b and w correspond to “black” and “white”, respectively).

Definition 2.2.14. A face in P is said to be a b-face if its color code starts

with b and a w-face otherwise.

Definition 2.2.15. Suppose that R is a set of facets of a k-dimensional poly-

tope P . The face boundary of R is the set of all (k − 2)-dimensional faces

E of P satisfying E = F ∩ G for some facets F and G such that F ∈ R and

G /∈ R. We will denote the face boundary of R by ∂̃R. If F is a single facet,

we put ∂̃F = ∂̃{F}.

Lemma 2.2.16. Suppose that F is a facet of a marked polytope P . The

following are equivalent:

(i) F is happy;
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(ii) ∂̃F contains exactly one happy b-face;

(iii) ∂̃F has an odd number of happy b-faces;

Proof. Observe that since F is a simplex, every face of F can be obtained by

dropping one vertex of F and taking the convex hull of the remaining vertices.

Hence, the color code of the face is obtained by dropping one symbol from the

color code of F .

(i)⇒(ii) Suppose that F is happy, then its color code is either (bwbw. . . )

or (wbwb. . . ). In the former case, the only happy b-face of F is obtained by

dropping the last vertex, while in the latter case the only happy b-face of F is

obtained by dropping the first vertex.

(ii)⇒(iii) Trivial.

(iii)⇒(i) Suppose that ∂̃F has an odd number of happy b-faces. Let E be

a happy b-face in ∂̃F . Then the color code of E is the sequence (bwbw. . . ) of

length k − 1. The color code of F is obtained by inserting one extra symbol

into this sequence. Note that inserting the extra symbol should not result in

two consecutive b’s or w’s, as in this case F would have exactly two happy b-

faces (corresponding to removing each of the two consecutive symbols), which

would contradict the assumption. Hence, the color code of F should be an

alternating sequence, so that F is happy.

Lemma 2.2.17. If R is a set of facets of a marked polytope P , then the number

of happy facets in R and the number of happy b-faces in ∂̃R have the same

parity.

Proof. For a set Q of facets of P , denote the parity of the number of happy

b-faces in ∂̃Q by p(Q). It is easy to see that if Q and S are two disjoints sets of

facets of P , then p(Q∪S) =
(
p(Q)+p(S)

)
(mod 2). Hence p(R) =

∑
F∈R

p({F})

(mod 2). By Lemma 2.2.16, this is equal to the parity of the number of happy

facets in R.

If F is a face of P , then we write −F for the opposite face. If R is a set of

facets, we write −R = {−F : F ∈ R}.
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Lemma 2.2.18. Every marked polytope has a happy facet.

Proof. We will prove a stronger statement: every marked polytope in Rk has

an odd number of happy b-facets. The proof is by induction on k. For k = 1,

the statement is obvious. Let k > 1 and let P be a marked polytope in Rk.

Denote by F the set of all facets of P .

For every facet F ∈ F , let n̄F be the normal vector of F , directed outwards

of P . Fix a vector v̄ of length one such that v̄ is not parallel to any of the

facets of P (equivalently, not orthogonal to n̄F for any facet F ); it is easy to

see that such a vector exists. By rotating P we may assume without loss of

generality that v̄ = (0, . . . , 0, 1). Let T be the projection from Rk to Rk−1

defined by T (x1, . . . , xk−1, xk) = (x1, . . . , xk−1). Denote Q = T (P ). Since T is

linear and surjective, Q is a centrally symmetric convex polytope in Rk−1 with

a non-empty interior.

Figure 2.4: The images T (P ) of the polytopes in Figure 2.2.

It follows from our choice of v̄ that the k-th coordinate of n̄F is non-zero

for every facet F . Define a set of facets R by

R =
{
F ∈ F : the k-th coordinate of n̄F is positive

}
.

Clearly, a facet F is in −R if and only if the k-th coordinate of n̄F is negative.

Hence, −R ∩ R = ∅ and −R ∪ R = F . Observe that ∂̃R = ∂̃(−R); hence

∂̃R is centrally symmetric. Clearly, every vertical line (i.e., a line parallel to

v̄) that intersects the interior of P meets the boundary of P at exactly two

points and meets the interior of Q at exactly one point. It follows that the

restriction of T to
⋃
R is a bijection between

⋃
R and Q. The same is also true

for −R. Therefore, the restriction of T to
⋃
∂̃R is a face-preserving bijection
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between
⋃
∂̃R and the boundary of Q. Under this bijection, the faces in ∂̃R

correspond to the facets of Q. Hence, this bijection induces a structure of a

marked polytope on the boundary of Q, making Q into a marked polytope.

It follows, by the induction hypothesis, that the boundary of Q has an odd

number of happy b-facets. Hence, ∂̃R has an odd number of happy b-faces. It

follows from Lemma 2.2.17 that R has an odd number of happy facets.

Denote the number of all happy b-facets in R by m, and the number of all

w-facets in R by `. Then m + ` is odd. It is clear that that F is a happy

b-facet if and only if −F is a happy w-facet. Therefore −R contains ` happy

b-facets and m happy w-facets. Hence, the total number of happy b-facets of

P is m+ `, which we proved to be odd.

We are now ready to prove the main lemma.

Proof of Lemma 2.2.6. Suppose that k 6 n and E is a subspace of Rn with

dimE = k. Let {b̄1, . . . , b̄k} be a basis of E. We need to find a linear combi-

nation of these vectors x̄ := a1b̄1 + · · ·+ akb̄k such that x̄ is a zigzag. Let B be

the n× k matrix with columns b̄1, . . . , b̄k, and let ū1, . . . , ūn be the rows of B.

If ā = (a1, . . . , ak), then xi = 〈ūi, ā〉 as i = 1, . . . , n. Thus, it suffices to find

ā ∈ Rk such that the vector
(
〈ūi, ā〉

)n
i=1

is a zigzag of order k.

Consider the centrally symmetric convex polytope P spanned by ū1, . . . , ūn,

i.e., P = conv{±ū1, . . . ,±ūn}. Let ±ūm1 , . . . ,±ūmr be the smallest sequence

of vectors such that P = conv{±ūm1 , . . . ,±ūmr}. Then, in particular, each

umi (and −umi) is a vertex of P . Using the “pulling” procedure (see Re-

mark 2.2.10), construct a simplicial centrally symmetric polytope P ′ =

conv{±ū′m1
, . . . ,±ū′mr}. Every vertex of P ′ is either ū′mi or −ū′mi for some i.

Paint the vertex white in the former case and black in the latter case (this

defines the color uniquely by the minimality of the chosen sequence of vertices);

assign index i to this vertex. This way we make P ′ into a marked polytope.

By Lemma 2.2.18, P ′ has a happy facet. This facet (or the facet opposite

to it) is spanned by some −ū′mi1 , ū′mi2 , −ū′mi3 , ū′mi4 , etc, for some 1 6 i1 <

29



· · · < ik 6 r (recall that any facet is a (k−1)-simplex, so that there are exactly

k indices in this “chain”). It follows that −ūmi1 , ūmi2 , −ūmi3 , ūmi4 , etc, are

all contained in the same facet of P . Hence, they are contained in an affine

hyperplane, say L, such that P “sits” between L and −L. Let ā be the vector

defining L, that is, L =
{
ū : 〈ū, ā〉 = 1

}
. Since P is between L and −L, we

have −1 6 〈ū, ā〉 6 1 for every ū in P . In particular, −1 6 xi = 〈ūi, ā〉 6 1 for

i = 1, . . . , n. On the other hand, it follows from −ūmi1 , ūmi2 ,−ūmi3 , ūmi4 , · · · ∈

L that xmi1 = −1, xmi2 = 1, xmi3 = −1, xmi4 = 1, etc. Hence, x̄ is a zigzag of

order k.

Corollary 2.2.19. Let k ∈ N, then every k-dimensional subspace of c0 con-

tains a zigzag of order k.

Proof. Let F be a subspace of c0 with dimF = k. For every n ∈ N, define

Pn : c0 → Rn via Pn : (xi)
∞
i=1 7→ (xi)

n
i=1. We claim that there exists m such

that every vector in F attains its norm on the first m coordinates. Indeed,

define g : F \ {0} → N via g(x) = max
{
i : |xi| = ‖x‖∞

}
. Then g is upper

semi-continuous, hence bounded on the unit sphere of F , so that we put

m = max
{
g(x) : x ∈ F, ‖x‖ = 1

}
.

If x ∈ F is a nonzero vector then ‖x‖ is attained on some xi with 1 6 i 6 m,

so that xi 6= 0. In particular, Pm is one-to-one on F . Therefore Pm(F ) is a

k-dimensional subspace of Rm. Hence, by Theorem 2.2.6, there exists x ∈ F

such that Pmx is a zigzag of order k. It follows that x is a zigzag of order k

in F .

Proof of Theorem 2.2.3. If x ∈ Jp, then |xi − xj|q 6
(
2‖x‖∞

)q−p|xi − xj|p for

every i, j ∈ N. Therefore ‖x‖Jq 6
(
2‖x‖∞

)1− p
q ‖x‖

p
q

Jp
. Fix an arbitrary ε > 0.

Let k ∈ N be such that (k − 1)
1
p
− 1
q > 1

ε
. Suppose that E is a subspace of Jp

with dimE = k. By Corollary 2.2.19, there is a zigzag z ∈ E of order k. By

the definition of norm in Jp, we have ‖z‖Jp > 2(k − 1)
1
p .

Put y = z
‖z‖Jp

. Then y ∈ E with ‖y‖Jp = 1. Obviously, ‖y‖∞ 6 1
2
(k−1)−

1
p ,
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so that

‖ip,q(y)‖Jq = ‖y‖Jq 6 (k − 1)
1
q
− 1
p‖y‖

p
q

Jp
< ε.

Hence, ip,q is finitely strictly singular.

2.3 Sξ-singular operators

In this section, we investigate the class of Sξ-singular operators. The results

of this section were published in [97].

2.3.1 Definition and basic properties

Milman proved in [86] that a product of two strictly singular operators on

Lp[0, 1] (1 6 p < ∞) or on C[0, 1] is compact. The importance of this result

follows from the fact that compact operators are well-understood and have

many nice properties. In particular, this result and Theorem 1.1.2 imply that

any strictly singular operator on these spaces has an invariant subspace.

The Sξ-singular operators are defined in terms of Schreier families Sξ
which were originally introduced in [9]. These families are defined inductively

for every ordinal ξ < ω1 in the following way. Set

S0 =
{
{n} : n ∈ N

}
∪ {∅}.

After defining Sξ for some ξ < ω1, set

Sξ+1 =
{
∪ni=1Fi : n ∈ N, n 6 F1 < · · · < Fn, Fi ∈ Sξ

}
.

Here by A < B where A and B are two finite subsets of N we mean maxA <

minB, and by n 6 A we mean n 6 minA. It is a general convention that

∅ < F and F < ∅ for any non-empty finite set F ⊆ N . If ξ < ω1 is a limit

ordinal and Sα has been defined for all α < ξ then fix a sequence ξn ↗ ξ and

define

Sξ =
{
F : n 6 F and F ∈ Sξn for some n ∈ N

}
.
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Remark 2.3.1. In general, different choices of sequences ξn ↗ ξ in the

last part of the definition of the Schreier families produce different families.

Whereas this is not important for many constructions in the literature using

Schreier families, we will assume in our exposition that particular sequences

ξn have been fixed.

Definition 2.3.2. A family F of subsets of N is called spreading if whenever

{n1, . . . , nk} ∈ Sξ with n1 < n2 < · · · < nk and m1 < m2 < · · · < mk satisfies

ni 6 mi for i = 1, . . . , k, then {m1, . . . ,mk} ∈ F .

It can be shown that each class Sξ is spreading. Also, it is obvious that

Sξ ⊆ Sξ+1. However, ξ < ζ doesn’t generally imply Sξ ⊆ Sζ .

For a sequence (xn) in a Banach space and A ⊆ N we will write [xi]i∈A for

the closed linear span of {xi}i∈A.

Definition 2.3.3. [11] Let X and Y be two Banach spaces and ξ < ω1. We

say that an operator T ∈ L(X, Y ) is Sξ-singular and write T ∈ SSξ(X, Y )

if for every ε > 0 and every basic sequence (xn) in X there exist a set F ∈ Sξ
and a vector z ∈ [xi]i∈F such that ‖Tz‖ < ε‖z‖. If X = Y then we write

T ∈ SSξ(X).

Remark 2.3.4. It was pointed out in [11] that T is Sξ-singular if and only if

for every normalized basic sequence (xn) and ε > 0 there exist a subsequence

(xnk), F ∈ Sξ and w ∈ [xnk ]k∈F such that ‖Tw‖ < ε‖w‖.

It is easy to see that ifX and Y are Banach spaces then for every 1 6 ξ < ω1

we have the following chain of inclusions:

K(X, Y ) ⊆ FSS(X, Y ) ⊆ SSξ(X, Y ) ⊆ SS(X, Y ).

It has already been mentioned in Section 2.1 that compact, strictly singular,

and finitely strictly singular operators form closed operator ideals. It is a

natural question whether Sξ-singular operators have the same property. It

was shown in [11] that if the underlying Banach space X is reflexive then
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the class SSξ(X) is closed under the right and left multiplication by bounded

operators. We will extend this result to non-reflexive spaces. We will use the

following deep result of Rosenthal [111].

Theorem 2.3.5. [111] Let (xn)∞n=1 be a bounded sequence in a Banach space

X. Then (xn)∞n=1 has a subsequence (xnk)
∞
k=1 satisfying one of the two mutually

exclusive alternatives:

(i) (xnk)
∞
k=1 is equivalent to the unit vector basis of `1;

(ii) (xnk)
∞
k=1 is a weak Cauchy sequence.

The following corollary of Theorem 2.3.5 is a standard fact. We present its

proof for the convenience of the reader.

Lemma 2.3.6. Let (xn)∞n=1 be a bounded sequence in a Banach space X.

Then there is a subsequence (xnk)
∞
k=1 such that one of the following conditions

hold.

(i) (xnk)
∞
k=1 converges;

(ii) (xnk)
∞
k=1 is equivalent to the unit vector basis of `1;

(iii) The difference sequence (dk)
∞
k=1 defined by dk = xnk+1

− xnk has a semi-

normalized weakly null basic subsequence. Moreover, if X has a basis

then this subsequence can be chosen to be equivalent to a block sequence

of the basis.

Proof. If (xn)∞n=1 does not satisfy condition (ii) then (xn)∞n=1 has a weakly

Cauchy subsequence (xnk)
∞
k=1 by Theorem 2.3.5. Then the sequence of differ-

ences (xnk+1
−xnk)∞k=1 is weakly null. If (xn)∞n=1 does not contain a subsequence

satisfying condition (i) then (xnk+1
− xnk)∞k=1 is seminormalized. The condi-

tion (iii) now follows from the Bessaga-Pe lczyński selection principle [27].

If F is a finite set, we will use the symbol #F for the number of elements

in F .

We will use the following two technical lemmas.
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Lemma 2.3.7. Suppose that 1 6 ξ < ω1, A ∈ Sξ, and put A×2 = {2i, 2i+ 2 :

i ∈ A}. Then A×2 is also in Sξ.

Proof. The proof is by induction on ξ. For ξ = 1, if A ∈ S1 then #A 6 minA.

But then #(A×2) 6 2(#A) 6 2 minA = minA×2, so that A×2 ∈ Sξ. Suppose

that we have already proved the statement for ξ, and let A ∈ Sξ+1. Then

A =
n⋃
i=1

Fi where n ∈ N, n 6 F1 < · · · < Fn, and Fi ∈ Sξ for each i.

It follows that

A×2 =
n⋃
i=1

F×2i , and F×2i ∈ Sξ for each i by the induction hypothesis.

Let G1 = F×21 , Gi = F×2i \F×2i−1 for 2 6 i 6 n, then

A×2 =
n⋃
i=1

Gi, Gi ∈ Sξ for each i, and n < 2n 6 G1 < · · · < Gn,

so that A×2 ∈ Sξ+1. Finally, suppose that ξ is a limit ordinal and A ∈ Sξ.

Then A ∈ Sξn and n 6 A for some n ∈ N. It follows from the induction

hypothesis that n < 2n 6 A×2 ∈ Sξn , so that A×2 ∈ Sξ.

Lemma 2.3.8. Let (ni) be a strictly increasing sequence, 1 6 ξ 6 ω1, and

A ∈ Sξ. The the set A×2(ni)
= {2ni, 2ni+1 : i ∈ A} belongs to Sξ.

Proof. The lemma follows from Lemma 2.3.7 and the fact that Sξ is spreading.

Now we are ready to prove that the class of Sξ-singular operators is stable

under left and right multiplications.

Theorem 2.3.9. Suppose that X and Y are two Banach spaces and 1 6 ξ <

ω1. If T ∈ SSξ(X, Y ), A ∈ L(Y, V ), and B ∈ L(U,X) for some Banach spaces

U and V , then ATB ∈ SSξ(U, V ).

Proof. Assume that A and B are non-zero, as otherwise the statement is

trivial. Let (xn) be a basic sequence in X, and ε > 0. Since A 6= 0,
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there exists F ∈ Sξ and z ∈ [xn]n∈F such that ‖Tz‖ < ε
‖A‖‖z‖. Thus

‖ATz‖ 6 ‖A‖‖Tz‖ < ‖A‖ ε
‖A‖‖z‖ = ε‖z‖, so that AT ∈ SSξ(X, V ), hence

SSξ is stable under the left multiplication.

Let us show that that TB ∈ SSξ(U, Y ), so that SSξ(X, Y ) is stable under

the right multiplication. Let (xn) be a basic sequence in U and ε > 0. We

can assume by Remark 2.3.4 that (xn) is normalized. First, suppose that

(Bxn) has a basic subsequence, say, (Bxnk). Then there exists G ∈ Sξ and

y =
∑

k∈G αkBxnk such that ‖Ty‖ 6 ε
‖B‖‖y‖. Put x =

∑
k∈G αkxnk , then

Bx = y and x ∈ [xi]i∈F where F = {nk : k ∈ G}. We obtain

‖TBx‖ = ‖Ty‖ 6 ε

‖B‖
‖y‖ 6 ε‖x‖.

Finally, observe that F ∈ Sξ since Sξ is spreading.

Now suppose that (Bxn) has no basic subsequences. Then (Bx2n) has no

basic subsequences. By Lemma 2.3.6, (x2n) has a subsequence (x2nk) such that

either (Bx2nk) converges in norm or (Bx2nk+1
−Bx2nk) has a basic subsequence.

Denote yk = Bx2nk+1
−Bx2nk . Then either yk → 0 in norm or (yk) has a basic

subsequence.

Suppose that (yki) is basic. Then there exists G ∈ Sξ and z =
∑

i∈G αiyki

such that ‖Tz‖ 6 ε
‖B‖‖z‖. Put x =

∑
i∈G αi(x2nki+1

− x2nki ). Observe that

the set A = {ki : i ∈ G} belongs to Sξ since Sξ is spreading. Hence x ∈ [xi]i∈F

where F = A×2(nk)
∈ Sξ by Lemma 2.3.8. Also, z = Bx, so that

‖TBx‖ = ‖Tz‖ 6 ε

‖B‖
‖z‖ 6 ε‖x‖.

Finally, suppose that yk → 0. Then we can find m ∈ N such that {m} ∈ Sξ and

‖ym‖ < ε
C‖T‖ , where C is the basis constant of (xn). Put x = x2nm+1 − x2nm .

Note that {2nm, 2nm+1} = {m}×2(nk)
∈ Sξ and 1 = ‖x2nm‖ 6 C‖x2nm+1−x2nm‖,

so that

‖TBx‖ = ‖Tym‖ 6
ε

C
6 ε‖x2nm+1 − x2nm‖ = ε‖x‖.
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Remark 2.3.10. It is known (see, for instance, the remark before Lemma 5

in [96]) that there exists a finitely strictly singular operator whose adjoint is

not strictly singular. This already shows that the class of Sξ-singular operators

is not stable under taking adjoints.

2.3.2 Products of Sξ-singular operators

In this subsection, we will slightly improve Theorem 4.1 of [11] by relaxing

the assumption in that theorem. We will use some concepts of the asymptotic

theory of Banach spaces.

Definition 2.3.11. Given two sequences (xn)∞n=1 and (x̃n)∞n=1 in Banach spaces

X and Y , respectively, we say that (x̃n)∞n=1 is a spreading model for (xn) if

there exists a sequence of reals (εn) such that εn ↘ 0 and∣∣∣∥∥ n∑
i=1

aixki
∥∥− ∥∥ n∑

i=1

aix̃i
∥∥∣∣∣ < εn

whenever n 6 k1 < · · · < kn and a1, . . . , an ∈ [−1, 1].

Definition 2.3.12. A sequence (xn)∞n=1 in a Banach space X is called spread-

ing if ‖
∑m

n=1 anxn‖ = ‖
∑m

n=1 anxnk‖ for all scalars an and all n1 < n2 < · · · <

nm.

It follows from Definition 2.3.11 that spreading model for any sequence is

necessarily spreading. For more information about spreading models, we refer

the reader to [23], [31], [32], [91], [12], and [44].

Definition 2.3.13. A sequence (xn)∞n=1 in a Banach space X is called sup-

pression 1-unconditional if, whenever A ⊆ B are two finite sets of natural

numbers, ‖
∑

A anxn‖ 6 ‖
∑

B anxn‖ for all scalars an.

Theorem 2.3.14. [23, 31, 32] If X is a Banach space then every bounded se-

quence (xn)∞n=1 in X with no convergent subsequences has a subsequence with a

spreading model. Moreover, the spreading model is suppression 1-unconditional

if (xn)∞n=1 is weakly null.
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In particular, Theorem 2.3.14 applies to seminormalized basic sequences.

Following [12], we will denote the set of spreading models of all seminormalized

weakly null basic sequences of a Banach space X by SPw(X).

Definition 2.3.15. [11] We say that a seminormalized basic sequence (xn)∞n=1

in a Banach space X is Schreier spreading , if there exists 1 6 K <∞ such

that for every F ∈ S1, increasing sequence n1 < n2 < · · · of positive integers,

and scalars (ai)i∈F we have

1

K

∥∥∑
i∈F

aixni
∥∥ 6

∥∥∑
i∈F

aixi
∥∥ 6 K

∥∥∑
i∈F

aixni
∥∥.

The following lemma follows from Theorem 2.3.14.

Lemma 2.3.16. [11] Every bounded sequence without convergent subsequences

has a Schreier spreading subsequence.

Definition 2.3.17. We call two basic sequences (xn)∞n=1 and (yn)∞n=1 in Ba-

nach spaces X and Y , respectively, equivalent and write (xn)∞n=1 ≈ (yn)∞n=1

if
∑∞

n=1 anxn converges if and only if
∑∞

n=1 anyn converges. We will write

(xn)∞n=1 � (yn)∞n=1 if the convergence of
∑∞

n=1 anyn implies the convergence of∑∞
n=1 anxn. If (xn)∞n=1 � (yn)∞n=1 and (xn)∞n=1 and (xn)∞n=1 6≈ (yn)∞n=1 then we

will write (xn)∞n=1 ≺ (yn)∞n=1.

Following [11], we will denote the set of seminormalized weakly null Schreier

spreading basic sequences of a Banach space X by SP1,w(X). The set of equiv-

alence classes of elements of SP1,w(X) with respect to the equivalence relation

in Definition 2.3.17 will be denoted by SP1,w,≈(X). Clearly, the relation �

from Definition 2.3.17 defines a partial order relation on the set SP1,w,≈(X).

Definition 2.3.18. Let X be a Banach space and 1 6 ξ < ω1. Supppose that

(xn)∞n=1 and (yn)∞n=1 are two Schreier spreading sequences in X. For K > 1 we

write (xn)∞n=1

K
≈ξ (yn)∞n=1 if for every F ∈ Sξ and scalars (ai)i∈F we have

1

K

∥∥∥∑
i∈F

aiyi

∥∥∥ 6
∥∥∥∑
i∈F

aixi

∥∥∥ 6 K
∥∥∥∑
i∈F

aiyi

∥∥∥.
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We write (xn)∞n=1 ≈ξ (yn)∞n=1 if (xn)∞n=1

K
≈ξ (yn)∞n=1 for some K > 1. Similarly,

we write (xn)∞n=1 �ξ (yn)∞n=1 if there is a constant K > 0 such that∥∥∥∑
i∈F

aixi

∥∥∥ 6 K
∥∥∥∑
i∈F

aiyi

∥∥∥
for every F ∈ Sξ and every sequence (an)∞n=1 of reals. Also, we write (xn)∞n=1 ≺ξ
(yn)∞n=1 if (xn)∞n=1 �ξ (yn)∞n=1 and (xn)∞n=1 6≈ξ (yn)∞n=1

We will denote the set of equivalence classes of elements of SP1,w(X) with

respect to the relation ≈ξ by SP1,w,ξ(X). It is easy to see that “�ξ” induces a

partial order relation on SP1,w,ξ(X), which we will still denote “�ξ”.

Remark 2.3.19. Suppose that T ∈ L(X) and (xn)∞n=1 is in SP1,w(X) such that

(Txn)∞n=1 is also in SP1,w(X). Then (Txn)∞n=1 �ξ (xn)∞n=1 as
∥∥∑

i∈F aiTxi
∥∥ 6

‖T‖
∥∥∑

i∈F aixi
∥∥ for every F ∈ Sξ. Furthermore, if T ∈ SSξ(X) then

(Txn)∞n=1 ≺ξ (xn)∞n=1 as otherwise there would exist C > 0 such that∥∥∑
i∈F aiTxi

∥∥ > C
∥∥∑

i∈F aixi
∥∥ for every F ∈ Sξ and real (an)∞n=1, which

would contradict T being Sξ-singular.

Our next goal will be to present an extension of the following result (The-

orem 4.1 from [11]).

Theorem 2.3.20. Let X be a Banach space, and N ∈ N ∪ {0} be such that

the set SP1,w,≈(X) contains exactly N elements. Then the product of any

(N + 1) strictly singular operators on X is compact. Moreover, if `1 does

not isomorphically embed in X then the product of any N strictly singular

operators on X is compact.

If 1 6 ξ < ω and the set SP1,w,ξ(X) contains exactly N elements, then

for any T1, . . . , TN ∈ SSξ(X) and every strictly singular operator S the com-

position TNTN−1 . . . T1S is compact. Moreover, if `1 does not isomorphically

embed in X then TNTN−1 . . . T1 is compact.

The following lemma is a part of the proof of Theorem 4.1 in [11].
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Lemma 2.3.21. Let X be a Banach space and N > 0. Let T1, . . . , TN ∈

L(X) and S ∈ SS(X). If TNTN−1 . . . T1S is not compact or `1 6↪→ X and

TNTN−1 . . . T1 is not compact then there are N + 1 sequences (x
(1)
n )∞n=1, . . . ,

(x
(N+1)
n )∞n=1 ∈ SP1,w(X) such that x

(k)
n = Tk−1 . . . T1x

(1)
n , for each k 6 N + 1,

n ∈ N.

Now we will present the extension of Theorem 4.1 of [11]. We show that

the conclusion of this theorem stays valid when the set of equivalence classes

of spreading models of Schreier spreading sequences is infinite but contains no

infinite chains. This approach was motivated by studies of the order structure

of the set of spreading models of a Banach space in [12] and [44]. We would

like to thank Professor Troitsky for sharing his ideas about this approach.

Theorem 2.3.22. Let X be a Banach space and N > 0 be such that the

partially ordered set
(
SP1,w,≈(X),�

)
contains no chains of length greater

than N . Then the product of any (N + 1) strictly singular operators on X is

compact. Moreover, if `1 does not isomorphically embed in X then the product

of any N strictly singular operators on X is compact.

If
(
SP1,w,ξ,�ξ

)
contains no chains of length greater than N , then for any

T1, . . . , TN ∈ SSξ(X) and every strictly singular operator S the composition

TNTN−1 . . . T1S is compact. Moreover, if `1 does not isomorphically embed in

X then TNTN−1 . . . T1 is compact.

Proof. Suppose that the conclusion of the theorem is not true. When N = 0,

we just simply have that SP1,w = ∅, and this case was considered in [11].

Assume that N 6= 0. By Lemma 2.3.21, there are N + 1 sequences

(x
(1)
n ), . . . , (x

(N+1)
n ) ∈ SP1,w(X) such that x

(k)
n = Tk−1 . . . T1x

(1)
n , for each k 6

N + 1, n ∈ N. It is easy to see that (x
(N+1)
n ) ≺ (x

(N)
n ) ≺ · · · ≺ (x

(1)
n ) in

SP1,w,≈(X) because T1, . . . , TN are strictly singular. This gives a chain of

length N + 1 in SP1,w,≈(X), a contradiction.

The proof of the second part of the statement is analogous.
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To present another version of the last theorem, we will need two lemmas.

The first lemma is a standard fact, see e.g., [11, Lemma 3.1].

Lemma 2.3.23. Suppose that (xn)∞n=1 is a seminormalized basic sequence with

a spreading model (x̃n)∞n=1. Then for every K > 1 there exists n0 ∈ N such

that
1

K

∥∥∥ n∑
i=1

aixki

∥∥∥ 6
∥∥∥ n∑
i=1

aix̃i

∥∥∥ 6 K
∥∥∥ n∑
i=1

aixki

∥∥∥
whenever n0 6 n 6 k1 < · · · < kn and a1, . . . , an ∈ R.

Lemma 2.3.24. Suppose that (xn)∞n=1 and (yn)∞n=1 are two Schreier spreading

sequences in SP1,w(X) with spreading models (x̃n)∞n=1 and (ỹn)∞n=1, respectively.

Then (x̃n)∞n=1 � (ỹn)∞n=1 if and only if (xn)∞n=1 �1 (yn)∞n=1.

Proof. Let (x̃n)∞n=1 � (ỹn)∞n=1. Then there is 0 < C <∞ such that∥∥∥ n∑
i=1

aix̃i

∥∥∥ 6 C
∥∥∥ n∑
i=1

aiỹi

∥∥∥
for every ai ∈ R. By Lemma 2.3.23, there is n0 ∈ N such that∥∥∥ n∑

i=1

aix̃i

∥∥∥ 2
≈
∥∥∥ n∑
i=1

aixki

∥∥∥ and
∥∥∥ n∑
i=1

aiỹi

∥∥∥ 2
≈
∥∥∥ n∑
i=1

aiyki

∥∥∥
whenever n0 6 n 6 k1 < · · · < kn and a1, . . . , an ∈ R.

Since (xi)
∞
n=1 and (yi)

∞
n=1 are Schreier spreading, we have

(xi)
∞
n=1

K
≈1(xn0+i)

∞
n=1 and (yi)

∞
n=1

K
≈1(yn0+i)

∞
n=1

for some K.

Let F = {n1, . . . , nm} ∈ S1, and a1, . . . , am ∈ R. Then∥∥∥ m∑
i=1

aixni

∥∥∥ 6 K
∥∥∥ m∑
i=1

aixn0+ni

∥∥∥ 6 2K
∥∥∥ m∑
i=1

aix̃i

∥∥∥ 6 2CK
∥∥∥ m∑
i=1

aiỹi

∥∥∥
6 4CK

∥∥∥ m∑
i=1

aiyn0+ni

∥∥∥ 6 4CK2
∥∥∥ m∑
i=1

aiyni

∥∥∥.
For the converse, let now (xn)∞n=1 �1 (yn)∞n=1. Again, using Lemma 2.3.23,

we get: there is n0 ∈ N such that∥∥∥ m∑
i=1

aix̃i

∥∥∥ 6 2
∥∥∥ m∑
i=1

aixni

∥∥∥ 6 2C
∥∥∥ m∑
i=1

aiyni

∥∥∥ 6 4C
∥∥∥ m∑
i=1

aiỹi

∥∥∥
for every m ∈ N, every a1, . . . , am ∈ R, and n0 6 m 6 n1 < · · · < nm.
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Corollary 2.3.25. Let X be a Banach space, and n > 0 be such that(
SPw(X)/ ≈,�

)
contains no chains of length greater than n. Then for any

T1, . . . , Tn ∈ SS1(X) and every strictly singular operator S the composition

TnTn−1 . . . T1S is compact. Moreover, if `1 does not isomorphically embed in

X then TnTn−1 . . . T1 is compact.

To finish the section, we would like to exhibit an example showing that

in general there exist Sξ-operators on Banach spaces whose powers are never

compact. The results of Section 2.2.6 imply that the Read’s strictly singular

operator without invariant subspaces would be such an example. Indeed, by

Theorem 2.2.2, Read’s operator is finitely strictly singular and, hence, Sξ-

singular for any ξ. By Theorem 1.1.2, it even cannot be polynomially compact.

We would like, however, to present a much simpler example.

Example 2.3.26. There is a separable Banach space X and a finitely strictly

singular operator T : X → X such that no non-zero polynomial of T is com-

pact.

Proof. Fix a strictly increasing sequence or reals 1 6 p1 < p2 < . . . , and put

X =
(⊕∞

n=1 `pn
)
c0

. It can be easily verified that X is separable. Throughout

the proof, whenever we consider x ∈ X, we assume that x = (x1, x2, . . . ) where

xk ∈ `pk as k ∈ N.

Let T : X → X be defined via the following formula

T : (x1, x2, . . . ) 7→ (0, x1,
x2
2
, x3

3
, . . . ).

Recall that the formal identity i : `p → `q is finitely strictly singular if

1 6 p < q < ∞ (see [86]). Thus, by a reasoning analogous to the proof

of Theorem 2.2.3, T is finitely strictly singular.

Let Q(t) =
∑n

k=0 akt
k, where an 6= 0, be a non-zero polynomial. Suppose

for the sake of contradiction that Q(T ) is compact. Consider bounded op-

erators A : `p1 → X and B : X → `pn+1 given by A : h 7→ (h, 0, 0, . . . ) and

B : x 7→ xn+1. For every h ∈ `p1 we have

Q(T ) : (h, 0, 0, . . . ) 7→ (a0h,
a1
1!
h, a2

2!
h, . . . , an

n!
h, 0, 0, . . . ),

41



so that BQ(T )A(h) = an
n!
h. It follows that the compact operator n!

an
BQ(T )A

equals the formal identity operator from `p1 to `pn+1 , which is not compact

since p1 < pn+1, contradiction.
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Chapter 3

Almost invariant subspaces

In this chapter we introduce and study the notion of an almost invariant

subspace for an operator or a collection of operators. The results of this

chapter have been published in the joint paper of the author of this thesis and

Androulakis, Tcaciuc, and Troitsky [13] and in the single-author paper [98].

Sections 3.1 and 3.2 contain results from [13] whereas section 3.3 contains

results from [98].

3.1 Definitions and simple properties

The following definition due to Tcaciuc introduces a generalization of the no-

tion of an invariant subspace. We will study this generalization throughout

the chapter.

Definition 3.1.1. If T ∈ L(X) and Y is a subspace of X, then Y is called

almost invariant under T , or T -almost invariant , if there exists a finite

dimensional subspace F of X such that T (Y ) ⊆ Y + F .

One can ask the following natural version of the Invariant Subspace Prob-

lem: does every operator have an almost invariant subspace? This question,

however, has a very simple answer. Indeed, it is easy to see that if the sub-

space Y of a Banach space X is of finite dimension or of finite codimension

then Y is almost invariant under every operator on X. In order to avoid this

triviality, we introduce a special type of a subspace.
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Definition 3.1.2. A subspace Y of a Banach space X is called a half-space

if it is both of infinite dimension and of infinite codimension in X.

Then we can ask the following question which we will refer as the al-

most invariant half-space problem : Does every operator on an infinite

dimensional Banach space have an almost invariant half-space? We will obtain

partial solutions to this problem in the current section.

The natural question whether the usual right shift operator acting on a

Hilbert space has almost invariant half-spaces has an affirmative answer. In

fact, this operator has even invariant half-spaces (see Theorem 1.1.6).

It is natural to consider Donoghue operators as candidates for counter-

examples to the almost invariant half-space problem, as their invariant sub-

spaces are all finite-dimensional (see Theorem 1.1.7). Recall (cf. Defini-

tion 1.1.4) that a Donoghue operator D ∈ L(`2) is an operator defined by

De0 = 0, Dei = wiei−1, i ∈ N,

where (wi)
∞
i=1 is a sequence of non-zero complex numbers such that

(
|wi|
)∞
i=1

is monotone decreasing and in `2. We will show in Section 3.2 that Donoghue

operators have almost invariant half-spaces.

The following result is a characterization of almost invariant half-spaces of

an operator in terms of invariant subspaces of its finite-rank perturbations.

Proposition 3.1.3. Let T ∈ L(X) and H ⊆ X be a half-space. Then H is

almost invariant under T if and only if H is invariant under T +K for some

finite-rank operator K.

Proof. Suppose that T has an almost invariant half-space H. Let F be a

subspace of the smallest dimension satisfying the condition in Definition 3.1.1.

Then H ∩ F = {0}. Define P : H + F → F by P (h + f) = f . Since P is

a finite-rank operator, we can extend it to a finite-rank operator on X using

Hahn-Banach theorem. That is, there exists P̃ : X → F such that P̃ |H+F = P .

Define K : X → X by K := −iP̃ T where i : F → X is the embedding. Clearly
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K has finite rank. Also, for any h ∈ H the image Th ∈ H + F , so we can

write Th = h′ + f for some h′ ∈ H and f ∈ F . Thus

(T +K)(h) = Th− iP̃ Th = h′ + f − iP̃ (h′ + f) = h′ + f − f = h′.

Hence (T +K)H ⊆ H.

Conversely, if H is invariant under (T + K)(H) ⊆ H for some finite-rank

operator K, then T (H) ⊆ H+K(H). Since dim
(
K(H)

)
<∞, H is an almost

invariant half space for T .

Now we will study almost invariant half-spaces of adjoints of operators. We

will need two simple lemmas. Both of them are standard; we include proofs

for the convenience of the reader.

Lemma 3.1.4. Let X be a Banach space and Y be a subspace of X. Then Y

is infinite codimensional if and only if Y ⊥ is of infinite dimension. Thus Y is

a half-space if and only if both Y and Y ⊥ are of infinite dimension.

Proof. Suppose Y is of infinite codimension in X, that is, dim(X/Y ) =∞. If

n ∈ N then there exists a sequence (xk)
n
k=1 ⊆ X such that {[xk] : k = 1, . . . , n}

is linearly independent in X/Y , where [x] denotes the equivalence class in

X/Y containing x. Denote F = [xk]
n
k=1. For each k ∈ {1, . . . , n}, define

fk : Y +F → F by fk(xi) = δik and fk(y) = 0 for all y ∈ Y . Since dim(F ) <∞,

each fk is bounded. Extend fk from Y +F to X by the Hahn-Banach theorem.

It is easy to see, that each fk ∈ Y ⊥ and the set {fk : k = 1, . . . , n} is linearly

independent.

On the other hand, suppose that dim(X/Y ) < ∞, say, dim(X/Y ) = m.

Fix a basis {[xi] : i = 1, . . . ,m} for X/Y . Construct linear functionals fk ∈ Y ⊥

(k = 1, . . . ,m) as before. If f ∈ Y ⊥ is arbitrary, define ck = f(xk). It is easy

to see that f = c1f1 + · · · + cmfm, so that {fk : k = 1, . . . ,m} forms a basis

for Y ⊥.

Lemma 3.1.5. A subspace Y of X is a half-space if and only if Y ⊥ is a

half-space in X∗.
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Proof. Suppose Y is a half-space. By Lemma 3.1.4, Y ⊥ must be infinite-

dimensional. Also (Y ⊥)⊥ ⊇ j(Y ) where j : X → X∗∗ denotes the natural

embedding. Thus (Y ⊥)⊥ is infinite dimensional. Now Lemma 3.1.4 yields that

Y ⊥ is a half-space.

Let’s assume that Y ⊥ is a half-space. Since Y ⊥ is infinite codimensional,

Y must be infinite-dimensional (see, e.g. [8, Theorem 5.110]). On the other

hand, since Y ⊥ is infinite dimensional, by Lemma 3.1.4 we obtain that Y is of

infinite codimension, thus a half-space.

Remark 3.1.6. The statement dual to that of Lemma 3.1.5 is not true in

general. That is, if Z is a half-space in X∗ then Z⊥ need not be a half-space.

For example, c0 is a half-space in `∞ while (c0)⊥ = {0} ⊆ `1 is not.

Proposition 3.1.7. Let T be an operator on a Banach space X. If T has an

almost invariant half-space then so does its adjoint T ∗.

Proof. Let Y be a half-space in X such that Y is almost invariant under T ,

and F be a finite-dimensional subspace of X of smallest dimension such that

TY ⊆ Y + F . Then Y ∩ F = {0}. Denote Z = (Y + F )⊥. By Lemma 3.1.5 Z

is a half-space in X∗. For every z ∈ Z and y ∈ Y we have

〈y, T ∗z〉 = 〈Ty, z〉 = 0

since Ty ∈ Y + F . Therefore T ∗Z ⊆ Y ⊥.

Let’s prove that there exists a finite-dimensional subspace K of X∗ such

that Y ⊥ ⊆ Z+K. This will show that Z is T ∗-almost invariant: T ∗Z ⊆ Y ⊥ ⊆

Z + K. Let f1, . . . , fn be the vectors of a basis of F ∗. For each k, extend fk

to Y ⊕F by putting fk|Y = 0, then extend the obtained functional to all of X

by the Hahn-Banach theorem. Denote the latter extension by f̃k.

Put K = span{f̃1, . . . , f̃n}. Let f ∈ Y ⊥ be arbitrary. Denote g = f |F .

Write g =
∑n

i=1 aifi, where ai are some numbers. Now put g̃ =
∑n

i=1 aif̃i.

Clearly g̃ ∈ K. Observe that f − g̃ ∈ Z. Indeed, if u+ v ∈ Y ⊕F with u ∈ Y ,

v ∈ F then (f − g̃)(u+ v) = (f − g̃)(u) + (f − g̃)(v) = f(u) +
(
f(v)− f(v)

)
=
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f(u) = 0 since f ∈ Y ⊥. Thus, for every f ∈ Y ⊥, there exist f1 ∈ Z and

f2 ∈ K such that f = f1 + f2.

3.2 Almost invariant subspaces of a single op-

erator

All Banach spaces in this section are assumed to be complex. For a subset

A of C, we will write A−1 =
{

1
λ

: λ ∈ A, λ 6= 0
}

. For a Banach space X

and T ∈ L(X), we will use symbols σ(T ) for the spectrum of T , r(T ) for the

spectral radius of T , and ρ(T ) for the resolvent set of T .

3.2.1 Weighted shift operators

Here we will exhibit a technique of constructing almost invariant half-spaces

for operators developed in [13]. This technique is used to show that Donoghue

operators have almost invariant subspaces.

Definition 3.2.1. For a nonzero vector e ∈ X and λ ∈ ρ(T )−1, define a vector

h(λ, e) in X by

h(λ, e) :=
(
λ−1I − T

)−1
(e).

Note that if |λ| < 1
r(T )

then1 Neumann’s formula (see, e.g., [1, Theo-

rem 6.12]) yields

h(λ, e) = λ
∞∑
n=0

λnT ne. (3.1)

Also, observe that
(
λ−1I − T

)
h(λ, e) =

(
λ−1I − T

)(
λ−1I − T

)−1
(e) = e for

every λ ∈ ρ(T )−1, so that

Th(λ, e) = λ−1h(λ, e)− e. (3.2)

The last identity immediately yields the following result.

1In case r(T ) = 0 we take 1
r(T ) = +∞.
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Lemma 3.2.2. Let X be a Banach space, T ∈ L(X), 0 6= e ∈ X, and

A ⊆ ρ(T )−1. Put

Y = span
{
h(λ, e) : λ ∈ A

}
.

Then Y is a T -almost invariant subspace (which is not necessarily a half-

space), with TY ⊆ Y + span{e}.

Lemma 3.2.3. For any nonzero vector e in a Banach space X, we have

h(λ, e)− h(µ, e) = (µ−1 − λ−1)h
(
λ, h(µ, e)

)
whenever λ, µ ∈ ρ(T )−1.

Proof. Indeed,

h(λ, e)− h(µ, e) =
[
(λ−1I − T )−1 − (µ−1I − T )−1

]
(e)

= (µ−1 − λ−1)(λ−1I − T )−1(µ−1I − T )−1(e)

= (µ−1 − λ−1)(λ−1I − T )−1h(µ, e)

= (µ−1 − λ−1)h
(
λ, h(µ, e)

)

Lemma 3.2.4. Suppose that T ∈ L(X) has no eigenvectors. Then, for any

nonzero vector e ∈ X the set
{
h(λ, e) : λ ∈ ρ(T )−1

}
is linearly independent.

Proof. We will use induction on n to show that for any nonzero vector e ∈ X

and any distinct λ1, λ2, . . . , λn ∈ ρ(T )−1 the set

{
h(λ1, e), h(λ2, e), . . . , h(λn, e)

}
is linearly independent. The statement is obvious if n = 1; we assume it is

true for n− 1 and will prove it for n.

Fix e ∈ X and distinct λ1, λ2, . . . , λn ∈ ρ(T )−1. Let a1, a2, . . . , an be scalars

such that
∑n

k=1 akh(λk, e) = 0. It follows from formula (3.2) that

0 = T

( n∑
k=1

akh(λk, e)

)
=

n∑
k=1

akλ
−1
k h(λk, e)−

n∑
k=1

ake.
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If
∑n

k=1 ak 6= 0 then e ∈ span
{
h(λk, e)

}n
k=1

, so that span
{
h(λk, e)

}n
k=1

is T -

invariant by (3.2). Since this subspace is finite-dimensional, it follows that T

has an eigenvalue, which is a contradiction. Therefore
∑n

k=1 ak = 0, so that

a1 = −
∑n

k=2 ak.

By Lemma 3.2.3, we get

0 =
n∑
k=1

akh(λk, e) =
(
−

n∑
k=2

ak

)
h(λ1, e) +

n∑
k=2

akh(λk, e)

=
n∑
k=2

ak
(
h(λk, e)− h(λ1, e)

)
=

n∑
k=2

ak(λ
−1
1 − λ−1k )h

(
λk, h(λ1, e)

)
.

By the induction hypothesis, the set
{
h
(
λk, h(λ1, e)

)}n
k=2

is linearly indepen-

dent, hence ak(λ
−1
1 − λ−1k ) = 0 for any 2 6 k 6 n. It follows immediately that

ak = 0 for any 1 6 k 6 n, and this concludes the proof.

The discussion above results in the following approach of constructing al-

most invariant subspaces for an operator. Suppose that T has no eigenvalues.

Pick a non-zero e ∈ X and a sequence of distinct numbers (λn) in ρ(T )−1.

Then the space Y =
[
h(λn, e)

]∞
n=1

is almost invariant under T and is of infi-

nite dimension. If one can show that e can be chosen so that Y is of infinite

codimension then Y is a T -almost invariant half-space.

We will use the following numerical lemma.

Lemma 3.2.5. Given a sequence (ri) of positive reals, there exists a sequence

(ci) of positive reals such that the series
∑∞

i=0 ciri+k converges for every k.

Proof. For every i take ci = 1
2i

min{ 1
r1
, . . . , 1

r2i
}. For every i > k we have

k + i 6 2i, so that ciri+k 6 1
2i

. It follows that

∞∑
i=0

ciri+k 6
k−1∑
i=0

ciri+k +
∞∑
i=k

1
2i
< +∞.
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Recall that a sequence (xi) in a Banach space is called minimal if xk /∈

[xi]i 6=k for every k (see, e.g., [71, section 1.f]). It is easy to see that this is

equivalent to saying that for every k, the biorthogonal functional x∗k defined

on span{xi} by x∗k
(∑n

i=0 αixi
)

= αk is bounded. Indeed, suppose that (xk)

is minimal. For x =
∑n

i=0 αixi, we have: ‖x‖ > αkdist(xk, [xi]i 6=k), so that

‖x∗k‖ 6 1/dist(xk, [xi]i 6=k). On the other hand, if xk ∈ [xi]i 6=k for some k then

for each ε > 0 we can find z ∈ span{xi : i 6= k} such that ‖xk − z‖ < ε. But

then x∗k(xk − z) = x∗k(xk) = 1, hence ‖x∗k‖ > 1/ε.

Theorem 3.2.6. Let X be a Banach space and T ∈ L(X) satisfying the

following conditions:

(i) T has no eigenvalues.

(ii) The unbounded component of ρ(T ) contains {z ∈ C : 0 < |z| < ε} for

some ε > 0.

(iii) There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space.

Proof. Let e ∈ X be such that (T ie)∞i=0 is minimal. For each i put xi = T ie.

Then for each k, the biorthogonal functional x∗k defined on span{xi : i ∈ N}

by x∗k
(∑n

i=0 αixi
)

= αk is bounded. Let rk = ‖x∗k‖. Let (ci) be a sequence

of positive real numbers as in Lemma 3.2.5, so that βk :=
∑∞

i=0 ciri+k < +∞

for every k. By making ci’s even smaller, if necessary, we may assume that

i
√
ci → 0.

Consider a function F : C → C defined by F (z) =
∑∞

i=0 ciz
i. Then F is

entire. We claim that without loss of generality, the set
{
z ∈ C : F (z) = 0

}
is infinite. Indeed, since F (z) is entire and not constant, F has an essential

singularity at infinity. Hence, by the Picard Theorem there exists a negative

real number d such that the set
{
z ∈ C : F (z) = d

}
is infinite. Now replace

c0 with c0− d. This doesn’t affect our other assumptions on the sequence (ci).
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Fix a sequence of distinct complex numbers (λn) such that F (λn) = 0

for every n. Since F is non-constant, the sequence (λn) has no accumulation

points. Hence, |λn| → +∞.

Since the set {z ∈ C : 0 < |z| < ε} belongs to ρ(T ), we may assume, by

passing to a subsequence, if necessary, that each λn ∈ ρ(T )−1. In particular,

h(λn, e) is defined for each n. Put Y = [h(λn, e)]
∞
n=1. Then Y is almost

invariant under T by Lemma 3.2.2 and dimY =∞ by Lemma 3.2.4. We will

prove that Y is actually a half-space by constructing a sequence of linearly

independent functionals (fn) such that every fn annihilates Y .

For every k = 0, 1, . . . , put Fk(z) = zkF (z). Let’s write Fk(z) in the form

of Taylor series, Fk(z) =
∑∞

i=0 c
(k)
i zi. Then

c
(k)
i =

{
0 if i < k, and

ci−k if i > k.

Define a functional fk on span{T ie}∞i=0 via fk(T
ie) = c

(k)
i . Since T has

no eigenvalues, the orbit of T is linearly independent thus fk is well-defined.

We will show now that fk is bounded. Let x ∈ span{T ie}∞i=0, then x =∑n
i=0 x

∗
i (x)T ie for some n, so that

|fk(x)| =
∣∣∣fk( n∑

i=0

x∗i (x)T ie
)∣∣∣ 6 ( n∑

i=0

‖x∗i ‖c
(k)
i

)
‖x‖

=
( n∑
i=k

rici−k

)
‖x‖ 6

( ∞∑
i=k

rici−k

)
‖x‖ = βk‖x‖,

so that ‖fk‖ 6 βk. Hence, fk can be extended by continuity to a bounded

functional on [T ie]∞i=1, and then by the Hahn-Banach Theorem to a bounded

functional on all of X.

Now we show that each fk annihilates Y . Fix k. Denote by C the un-

bounded component of ρ(T )−1. Then C contains a neighborhood of zero. Re-

call that for each λ ∈ ρ(T )−1 such that |λ| < 1
r(T )

we have h(λ, e) = λ
∞∑
i=0

λiT ie.

Therefore

fk
(
h(λ, e)

)
= fk

(
λ

∞∑
i=0

λiT ie
)

= λ

∞∑
i=0

λic
(k)
i = λFk(λ) = λk+1F (λ).
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for every λ ∈ C such that |λ| < 1
r(T )

. The map λ 7→ h(λ, e) and, therefore, the

map λ 7→ fk
(
h(λ, e)

)
, is analytic on the set ρ(T )−1. Hence, by the principle of

uniqueness of analytic function, the functions fk
(
h(λ, e)

)
and λk+1F (λ) must

agree on C. Since λn ∈ C for all n, we have fk
(
h(λn, e)

)
= λk+1

n F (λn) = 0 for

all n. Thus, Y is annihilated by every fk.

It is left to prove the linear independence of {fk}∞k=1. Observe that fk 6= 0

for all k since fk(T
ie) 6= 0 for i > k. Suppose that fN =

∑N−1
k=M akfk with

aM 6= 0. However fN(TMe) = 0 by definition of fN while
∑N−1

k=M akfk(T
Me) =

aMc0 6= 0, contradiction.

Remark 3.2.7. Note that condition (ii) of Theorem 3.2.6 is satisfied by many

important classes of operators. For example, it is satisfied if σ(T ) is finite (in

particular, if T is quasinilpotent) or if 0 belongs to the unbounded component

of ρ(T ).

Corollary 3.2.8. Suppose that X = `p (1 6 p < ∞) or c0 and T ∈ L(X) is

a weighted right shift operator with weights converging to zero but not equal to

zero. Then both T and T ∗ have almost invariant half-spaces.

Proof. It can be easily verified that T is quasinilpotent. Clearly, T has no

eigenvalues, and the orbit of e1 is evidently a minimal sequence. By The-

orem 3.2.6 and Remark 3.2.7, T has almost invariant half-spaces. Finally,

Proposition 3.1.7 yields almost invariant half-spaces for T ∗.

The following statement is a special case of Corollary 3.2.8.

Corollary 3.2.9. If D is a Donoghue operator then both D and D∗ have

almost invariant half-spaces.

3.2.2 Operators with many almost invariant subspaces

Let X be a Banach space and T : X → X be a bounded operator. It is easy

to show that if every subspace of X is invariant under T then T must be

a multiple of the identity. In fact, it is enough that every one-dimensional
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subspace is invariant under T . Indeed, if every one-dimensional subspace is

T -invariant then for each x ∈ X there is λx ∈ F such that Tx = λxx. If λx is

not the same for all nonzero x, say, λx 6= λy for some nonzero x, y ∈ X, then

T (x+ y) = λx+y(x+ y) = λxx+λyy, so that x = αy, which is a contradiction.

In this subsection we will obtain a result of the same spirit for almost

invariant half-spaces. The ideas introduced in the proof will show to be useful

in Section 3.3 where they are developed to a much greater depth.

Proposition 3.2.10. Let X be a Banach space and T ∈ L(X). Suppose that

every half-space of X is almost invariant under T . Then T has a non-trivial

invariant subspace of finite codimension. Iterating, one can get a chain of such

subspaces.

Proof. Let’s assume that T has no non-trivial invariant subspaces of finite

codimension. We will construct a half-space that is not almost invariant un-

der T .

Let f ∈ X∗ be a nonzero functional. For each n ∈ N, define fn = f ◦T n−1,

and put Yn = ∩nk=1 ker fk. Denote also Y0 = X. Then clearly Yn+1 ⊆ Yn for

all n. Also, if y ∈ Yn+1 then f(T ky) = f(T k−1Ty) = 0 for all k = 1, 2, . . . , n.

Hence f
(
T k(Ty)

)
= 0 for all k = 0, 1, . . . , n − 1. Therefore TYn+1 ⊆ Yn. In

particular, since codimYn <∞ for all n, we get: Yn+1 6= Yn.

For each n = 0, 1, . . . , pick a vector zn ∈ Yn \ Yn+1. Then, in particular,

Yn+1 ∪ [zn] = Yn, and Yn+1 ∪ [zk]
n
k=0 = X. Also, it is easy to see that Yn+1 ∩

[zk]
n
k=0 = {0}, so that X = Yn+1 ⊕ [zk]

n
k=0. Let Pn be the projection along

[zk]
n
k=0 onto Yn+1. If gn = fn+1 ◦ Pn−1 then clearly gi(zk) = δki for all k, i. Put

Z = [z2k]
∞
k=1. Then obviously dimZ =∞ and g2k−1|Z = 0 for all k ∈ N. Thus,

Z is actually a half-space.

Suppose that there exists F with dimF <∞ such that TZ ⊆ Z + F . For

each k ∈ N, pick uk ∈ Z and vk ∈ F such that Tz2k = uk + vk. We claim that

if k ∈ N, then g2k−1(vk) 6= 0 and for all 1 6 i < k, g2i−1(vk) = 0. This will

lead to a contradiction because dimF <∞.
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To prove the claim, observe that since z2k ∈ Y2k and Tz2k ∈ Y2k−1, we

obtain 0 6= g2k(z2k) = f2k(z2k) = f2k−1(Tz2k) = g2k−1(Tz2k). Since g2k−1|Z =

0, it follows that g2k−1(vk) 6= 0. By the same reason, for all 1 6 i < k, we get

0 = g2i(z2k) = f2i(z2k) = f2i−1(Tz2k) = g2i−1(Tz2k), so that g2i−1(vk) = 0.

3.3 Almost invariant subspaces of algebras of

operators

3.3.1 Introduction

This section is concerned with the study of almost invariant subspaces of col-

lections of operators, most notably, algebras of operators. Just as the studies

of transitive algebras generalize the Invariant Subspace Problem for a single

operator, we introduce and study the notion of a subspace that is simultane-

ously almost invariant under every operator in a given algebra of operators.

The results of this section were published by the author of this thesis in [98].

Definition 3.3.1. Let C ⊆ L(X) be an arbitrary collection of operators and

Y ⊆ X a subspace of X. We call Y almost invariant under C, or C-almost

invariant if Y is almost invariant under every operator in C.

That is, a subspace is C-almost invariant if for each T ∈ C there exists a

finite-dimensional subspace FT of X (“error”) such that

TY ⊆ Y + FT . (3.3)

Like in the case of a single operator, every subspace that is not a half-space is

automatically almost invariant under every collection C of operators on X.

In Subsection 3.3.2, we study the finite-dimensional “errors” FT appearing

in formula (3.3). We prove that if A is an algebra without invariant half-

spaces then for an A-almost invariant half-space Y these finite-dimensional

subspaces cannot be the same (Proposition 3.3.4). On the other hand, we

prove (Theorem 3.3.9) that if A is norm closed then these finite-dimensional
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subspaces cannot be “too far apart”; the dimensions of these subspaces must

be uniformly bounded.

In Subsection 3.3.3, the invariant subspaces of algebras having almost in-

variant half-spaces are investigated. It is proved that if A is a norm closed

algebra generated by a single operator then existence of an A-almost invari-

ant half-space implies existence of an A-invariant half-space (Theorem 3.3.13).

This theorem then is generalized to the case of a commutative algebra gener-

ated by a finite number of operators (Theorem 3.3.15).

Finally, the last subsection is concerned with the question of whether the

almost invariant half-spaces of an algebra and its closure in various topologies

are the same. It turns out that the situation here is dramatically different

from the case of invariant subspaces.

3.3.2 Analysis of “errors”

Observe that the finite-dimensional subspace FT appearing in the equati-

on (3.3) is by no means unique. However we can consider the minimal di-

mension of a subspace satisfying this condition. We will find out that sub-

spaces of minimal dimension satisfying (3.3) are of big importance. We collect

some properties of such subspaces in the following lemma (see case (iii)). This

lemma also contains some facts used in Proposition 3.3.4.

Lemma 3.3.2. Let Y ⊆ X be a subspace, C be a collection of bounded opera-

tors on X and G ⊆ X be a finite-dimensional space of the smallest dimension

such that TY ⊆ Y +G for all T ∈ C. Then

(i) Y +G = Y ⊕G;

(ii) if P : Y ⊕G→ G is the projection along Y then

span
⋃
T∈C

PT (Y ) = G;
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(iii) if C consists of a single operator, that is C = {T}, and if P : Y ⊕G→ G

is the projection along Y then

PT (Y ) = G.

Moreover, in this case G can be chosen so that G ⊆ TY .

Proof. (i) Suppose that there exists a non-zero g ∈ G∩Y . Build g2, . . . gn ∈ G

such that {g, g2, . . . , gn} is a basis of G. Denote G1 = span{g2, . . . , gn}. It is

clear that TY ⊆ Y +G1 for all T ∈ C. However dimG1 < dimG.

(ii) Define F = span{g ∈ G : v + g ∈ TY for some v ∈ Y, T ∈ C}. Clearly

F = span
⋃
T∈C

PT (Y ).

We claim that TY ⊆ Y + F for all T ∈ C. Indeed, if y ∈ Y and T ∈ C

then Ty = v+ g for some v ∈ Y and g ∈ G. By definition of F we get: g ∈ F ,

hence Ty ∈ Y + F .

Since F ⊆ G and G has the smallest dimension among the spaces with the

property TY ⊆ Y +G for all T ∈ C, we get G = F .

(iii) The first part of this statement follows immediately from (ii). Let’s

prove the “moreover” part. Let g1, . . . , gn be a basis of G. By (ii), there exist

u1, . . . , un and y1, . . . , yn in Y such that Tui = yi + gi (i = 1, . . . , n). Put

fi = Tui and F = [fi]
n
i=1. Then clearly F ⊆ TY . Also Y + F = Y + G, so

that TY ⊆ Y + F .

The following example shows that
⋃
T∈C

PT (Y ) may not be a linear space

even in the case when C is an algebra of operators, so that it is necessary to

consider span
⋃
T∈C

PT (Y ) in the statement (ii) of Lemma 3.3.2.

Example 3.3.3. Let X = `2(Z). Define T, S ∈ L(X) by

Te0 = e1, T e−1 = e2, T ei = 0 if i 6= 0,−1,

and

Se0 = e3, Sei = 0 if i 6= 0.
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Since T 2 = S2 = TS = ST = 0, the algebra A generated by T and S consists

exactly of the operators of form aT + bS where a and b are arbitrary scalars.

Let Y = [ei]i60. Then clearly AY ⊆ Y + F where F = span{e1, e2, e3},

and F is the space of the smallest dimension satisfying this condition. If P :

Y ⊕F → F is the projection along Y then
⋃
R∈A PR(Y ) is not a linear space.

If it were, it would have been equal to F , by (ii) of Lemma 3.3.2. However

the vector e2 + e3 is not in this union. Indeed, if P (aT + bS)(
∑∞

i=0 xie−i) =

(aT + bS)(x0e0 + x1e−1) = e2 + e3 then bx0 = 1 and ax1 = 1. Hence x0 6= 0

and a 6= 0, so that e∗1[(aT + bS)(x0e0 + x1e−1)] 6= 0, which is impossible.

Suppose Y is a half-space that is almost invariant under a collection C of

operators on X, that is, formula (3.3) holds for every operator T in C with

some FT . One may ask if it is possible that FT does not depend on T . The

following simple reasoning shows that in the case of algebras of operators, this

can only happen if the algebra already has a common invariant half-space.

Proposition 3.3.4. Let Y ⊆ X be a half-space and A an algebra of operators.

Suppose that there exists a finite-dimensional space F such that for each T ∈ A

we have TY ⊆ Y + F . Then A has a common invariant half-space.

Moreover, if G is a space of the smallest dimension such that TY ⊆ Y +G

for all T ∈ A then Y +G is A-invariant.

Proof. Clearly, it is enough to prove the “moreover” part. Let G be a space

of the smallest dimension such that TY ⊆ Y +G for all T ∈ A.

Denote A(Y ) =
⋃
T∈A TY . Then A(Y ) is A-invariant. Hence, so is span

A(Y ). Denote Z = Y + spanA(Y ). Since TY ⊆ spanA(Y ) for every T ∈ A,

we obtain that Z is invariant under A.

Obviously, Z ⊆ Y + G. By Lemma 3.3.2, Y + G = Y ⊕ G, and if P :

Y ⊕G→ G is a projection along Y then P
(
spanA(Y )

)
= G. Hence Y ⊕G =

Y⊕P
(
spanA(Y )

)
= Y+spanA(Y ) = Z, so that Y⊕G is invariant under A.

Definition 3.3.5. Let T ∈ L(X) be an operator and Y ⊆ X be a linear

subspace. We will write dY,T for the smallest n such that there exists F with
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TY ⊆ Y + F and dimF = n.

The following observation is obvious.

Lemma 3.3.6. Let T ∈ L(X) be an operator and Y ⊆ X be a subspace. Let

q : X → X/Y be a quotient map. Then Y is T -almost invariant if and only if

(qT )|Y is of finite rank. Moreover, dim(qT )(Y ) = dY,T .

To proceed, we need the following two auxiliary lemmas.

Lemma 3.3.7. Let Y ⊆ X be a linear subspace and {ui}Ni=1 be a collection of

linearly independent vectors in X such that [ui]
N
i=1∩Y = {0}. Let {vi}Ni=1 ⊆ X

be arbitrary. Then for all but finitely many α the set {vi + αui}Ni=1 is linearly

independent, and [vi + αui]
N
i=1 ∩ Y = {0}.

Proof. Let F = span{ui, vi : i = 1, . . . , N}. Let G =
(
Y + F

)
/Y . Denote

xi = ui+Y ∈ G, zi = vi+Y ∈ G. Then the set {xi}Ni=1 is linearly independent.

Clearly, to establish the lemma it is enough to prove that the set {zi +αxi}Ni=1

is linearly independent for all but finitely many α.

Denote M = dimG. Let {bi}Mi=1 be a basis of G such that bi = xi for all

1 6 i 6 N . Denote the coordinates of vectors zi in this basis by zij. Let A

be the M ×M -matrix with the first N rows consisting of the coordinates of

zi (i = 1, . . . , N), and the last M −N rows being consisting of zeros:

A =



z11 z12 · · · z1,M−1 z1M
... · · · ...
zN1 zN2 · · · zN,M−1 zNM
0 0 · · · 0 0
... · · · ...
0 0 · · · 0 0


.

Since the spectrum of A is finite, det(A+ αI) 6= 0 for all but finitely many α.

For these α, the rows of A + αI must be linearly independent. In particular,

the first N rows are linearly independent. However, the first N rows of A+αI

are exactly the representations of the vectors zi +αxi in the basis {bi}Mi=1.
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Lemma 3.3.8. Let Y ⊆ X be a linear subspace and T ∈ B(X). Suppose that

f1, . . . , fn ∈ TY are such that no non-trivial linear combination of {f1, . . . , fn}

belongs to Y . Then n 6 dY,T .

Proof. Let q : X → X/Y be the quotient map. Then qf1, . . . , qfn are linearly

independent. Since qf1, . . . , qfn ∈ (qT )(Y ), we get n 6 dim(qT )(Y ) = dY,T by

Lemma 3.3.6.

The following theorem is the main statement in this section. Recall that,

according to our convention, the term “subspace” stands for a norm closed

subspace, while a “linear subspace” need not be closed.

Theorem 3.3.9. Let S be a subspace of L(X). Suppose that Y is a linear

subspace of X that is almost invariant under S. Then

sup
S∈S

dY,S <∞.

Proof. For every S ∈ S, fix a subspace FS ⊆ X such that SY ⊆ Y + FS and

dimFS = dY,S. By Lemma 3.3.2, Y +FS is a direct sum. Fix PS : Y ⊕FS → FS

the projection along Y . Also fix a basis (fSi )
dY,S
i=1 of FS and vectors (gSi )

dY,S
i=1 in

Y such that (PSS)gSi = fSi (this can be done by Lemma 3.3.2(iii)).

Suppose that the statement of the theorem is not true. Then there exists

a sequence of operators (Sk) ⊆ S such that the sequence (dY,Sk)
∞
k=1 is strictly

increasing. Without loss of generality, ‖Sk‖ = 1.

We will inductively construct a sequence (ak) of scalars such that the fol-

lowing two conditions are satisfied for every m.

(i) If Tm =
m∑
k=1

akSk then Nm := dY,Tm > dY,Sm .

(ii) Let

Cm = sup
b1,...,bNm∈[−1,1]

∥∥∥Nm∑
i=1

big
Tm
i

∥∥∥ · max
i=1,...,Nm

∥∥(fTmi )∗
∥∥,

where (fTmi )∗ is the i-th biorthogonal functional for (fTmi )Nmi=1 in F ∗Tm , and

Dm = min
{

1,
1

C1 · ‖PT1‖
, . . . ,

1

Cm · ‖PTm‖

}
.

Then 0 < a1 6 1
2

and 0 < am+1 <
1

2m+1Dm 6 1
2m+1 for all m > 1.
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Indeed, on the first step put a1 = 1
2
. Suppose that a1, . . . , am have been

constructed. Define Dm as in (ii). Denote for convenience N = dY,Sm+1 .

Let ui = f
Sm+1

i and vi = Tmg
Sm+1

i , i = 1, . . . , N . By Lemma 3.3.7 we can

find 0 < α < 1
2m+1Dm such that no non-trivial linear combination of vectors

from the set {vi + αui}Ni=1 is contained in Y . Put am+1 = α. This makes

both conditions (i) and (ii) satisfied for m + 1. Indeed, condition (ii) is sat-

isfied immediately. Let’s check condition (i). For each i = 1, . . . , N , we have

Tm+1g
Sm+1

i = Tmg
Sm+1

i + αSm+1g
Sm+1

i = vi + αui + wi where wi is some vector

in Y . Since no linear combination of {vi +αui}Ni=1 is contained in Y , the same

is true for {Tm+1g
Sm+1

i }Ni=1. Condition (i) now follows from Lemma 3.3.8.

Denote S =
∞∑
k=1

akSk. By condition (ii), ak 6 1
2k

for all k ∈ N, so that S is

well-defined. For every m ∈ N, denote Rm =
∞∑

k=m+1

akSk, so that S = Tm+Rm.

By condition (ii), we get: ‖Rm‖ < 1
Cm·‖Pm‖ for all m ∈ N.

Clearly, S ∈ S. By assumptions of the theorem, SY = Y ⊕ FS. Denote

n = dimFS < ∞. Pick m ∈ N such that Nm > n and put zi = SgTmi ,

i = 1, . . . , Nm. Since Nm > n, there exists a sequence (bi)
Nm
i=1 of scalars such

that maxi|bi| = 1 and

z :=
Nm∑
i=1

bizi ∈ Y.

Consider y =
Nm∑
i=1

big
Tm
i . We have

Tmy = Sy −Rmy = z −Rmy,

hence

(PTmTm)y = −(PTmRm)y.

Clearly, for each i = 1, . . . , Nm, we have bi = (fTmi )∗(PTmTmy). Let k be such

that |bk| = 1. Then

1 = |bk| =
∣∣(fTmk )∗(PTmTm y)

∣∣ 6
∥∥(fTmk )∗

∥∥ · ‖PTmTm y‖ =

=
∥∥(fTmk )∗

∥∥ · ‖PTmRm y‖ 6
∥∥(fTmk )∗

∥∥ · ‖PTm‖ · ‖Rm‖ ·
∥∥∥Nm∑
i=1

big
Tm
i

∥∥∥ 6

6 ‖PTm‖ · ‖Rm‖· Cm < ‖PTm‖
1

Cm · ‖PTm‖
Cm = 1
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which is a contradiction.

3.3.3 When algebras with almost invariant subspaces
have invariant subspaces

Now we will turn our attention to the study of invariant subspaces of algebras

having almost invariant subspaces.

The following lemma is obvious.

Lemma 3.3.10. Let X and Y be Banach spaces and T ∈ L(X, Y ) be of finite

rank. Then dim(Range T ) = codim(kerT ).

Let T ∈ L(X) be an operator and Y ⊆ X be a half-space. Consider two

procedures of constructing new linear spaces:

DT (Y ) = {y ∈ Y : Ty ∈ Y } “going downwards”,
UT (Y ) = Y + TY “going upwards”.

Clearly DT (Y ) ⊆ Y ⊆ UT (Y ).

If Y and Z are two subspaces of X and Y ⊆ Z then the symbol codimZ Y

will stand for the codimension of Y in Z.

Lemma 3.3.11. Let Y ⊆ X be a half-space and T ∈ L(X). If Y is T -

almost invariant then both DT (Y ) and UT (Y ) are half-spaces. Moreover,

codimY DT (Y ) = codimUT (Y ) Y = dY,T .

Proof. The statement about UT (Y ) follows immediately from the definition

of an almost invariant subspace. Let’s verify the statement about DT (Y ).

Obviously, we only need to verify the “moreover” part.

Let TY ⊆ Y + F where F is such that dimF = dY,T . By Lemma 3.3.2(i),

we have Y + F = Y ⊕ F . Let P : Y ⊕ F → F be the projection onto F

along Y . It is easy to see that DT (Y ) = ker(PT |Y ). By Lemma 3.3.10, we

obtain codimY DT (Y ) = dim(Range PT |Y ) = dimF = dY,T .

The following lemma is the key statement of this section. In this lemma, the

symbols Dk
T (Y ) and Uk

T (Y ) are defined for all k > 2 by Dk
T (Y ) = DT (Dk−1

T (Y ))
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and Uk
T (Y ) = UT (Uk−1

T (Y )), and for k = 1 by D1
T (Y ) = DT (Y ) and U1

T (Y ) =

UT (Y ).

Lemma 3.3.12. Suppose that Y is a half-space in X that is almost invariant

under an operator T ∈ L(X). If dY,T > 0 and dDkT (Y ),T > dY,T and dUkT (Y ),T >

dY,T for all k ∈ N then dY,Tm > m for all m ∈ N.

Proof. Denote for convenience N = dY,T . Let F ⊆ X be such that TY ⊆ Y +F

and dimF = N . Fix a basis f 0
1 , . . . , f

0
N ∈ X of F .

Suppose that dDkT (Y ),T > N and dUkT (Y ),T > N for all k ∈ N. Denote Y0 = Y

and Yk = Dk
T (Y ), k > 1. Since Yk = DT (Yk−1) for all k > 1, it follows that

Yk ⊆ Yk−1 and TYk ⊆ Yk−1 as k > 1.

We claim that for each k > 1 there exists an N -tuple (fk1 , . . . , f
k
N) in Yk−1

such that

(i) Yk ⊕ Fk = Yk−1 where Fk = [fki ]Ni=1, and

(ii) if Pk : Yk ⊕ Fk → Fk is the projection onto Fk along Yk (we also put

P0 : Y ⊕F → F the projection onto F along Y ), then (Pk−1T )fki = fk−1i

for all i = 1, . . . , N .

Let k = 1. By Lemma 3.3.2(iii), for each i = 1, . . . , N , we can find f 1
i ∈ Y

such that (P0T )f 1
i = f 0

i . Then (ii) is satisfied. Write F1 = [f 1
i ]Ni=1. Since Y1 ∩

F1 = {0} by definition of Y1 and dimF1 = N = codimY Y1 by Lemma 3.3.11,

Y1 ⊕ F1 = Y .

Suppose the claim is true for k > 1. Then Yk⊕Fk = Yk−1. Since TYk ⊆ Yk−1

and dYk,T > N = dimFk, we get dYk,T = N . Then from Lemma 3.3.2(iii) for

each i = 1, . . . , N there exists fk+1
i ∈ Yk such that (PkT )fk+1

i = fki , so that

(ii) is satisfied for k + 1. To show (i), write Fk+1 = [fk+1
i ]Ni=1, and observe:

Yk+1 ∩ Fk+1 = {0} by definition of Yk+1 and dimFk+1 = N = codimYk Yk+1 by

Lemma 3.3.11.

Observe that from condition (ii) of this claim we have: for each k > 1 there

exists y ∈ Y such that T kfki = y + f 0
i . That is, fki is a k-th “preimage” of f 0

i .

It follows that any f ∈ F has a k-th “preimage” in Yk−1.
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Denote Z0 = Y , Zk = Uk
T (Y ), k > 1. That is, Zk = UT (Zk−1). In

particular, TZk−1 ⊆ Zk for all k > 1. We claim that Zk = Y ⊕ F ⊕ TF · · · ⊕

T k−1F . Indeed, for k = 0 this is obvious. Suppose the claim is true for k > 1.

Let’s prove that Zk+1 = Y ⊕ F ⊕ TF · · · ⊕ T kF . We have Zk+1 = UT (Zk) =

Zk+TZk = (Y ⊕F ⊕TF · · ·⊕T k−1F )+(TY +TF +T 2F + · · ·+T kF ) = (Y ⊕

F⊕TF · · ·⊕T k−1F )+T kF since TY ⊆ Y ⊕F . In particular, Zk+1 = Zk+T kF .

We only have to prove that this sum is direct. We have dimT kF 6 N since

dimF = N . On the other hand, TZk ⊆ Zk+1 = Zk + T kF . Since dZk,T > N

for all k > 0, we get dimT kF = N = dZk,T . By Lemma 3.3.2(i), the sum must

be direct.

Observe that in particular, this means that if f ∈ F is non-zero then

T kf ∈ Zk+1 \ Zk (k > 0).

We will establish now that dY,Tm > m by constructing a sequence (wk)
m
k=1 in

TmY such that wk ∈ Zm−k+1 \Zm−k. This, in particular, will mean that TmY

contains m vectors {wk}mk=1 whose no non-zero linear combination belongs

to Y . The statement of the lemma will then follow from Lemma 3.3.8.

Let u ∈ F be a non-zero vector, m ∈ N be arbitrary, and k ∈ {1, . . . ,m}.

Put uk to be the k-th “preimage” of u, that is, such a vector in Yk−1 that

T kuk = vk +u for some vk ∈ Y . Then Tmuk = Tm−kT kuk = Tm−kvk +Tm−ku.

Since vk ∈ Y , it follows that Tm−kvk ∈ Zm−k. Also since u 6= 0, we get

Tm−ku ∈ Zm−k+1 \ Zm−k. It is left to put wk = Tm(uk).

As an immediate corollary we get the following theorem.

Theorem 3.3.13. Let T ∈ L(X) be an operator and A the norm closed algebra

generated by T . If A has an almost invariant half-space then A has an invariant

half-space.

Proof. If dY,T = 0 then there is nothing to prove. Let dY,T > 0. Since A is norm

closed, supS∈A dY,S <∞ by Theorem 3.3.9. In particular, supm∈N dY,Tm <∞.

By Lemma 3.3.12, it follows that either dDkT (Y ),T < dY,T or dUkT (Y ),T < dY,T for

some k ∈ N.
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Applying this finitely many times we get a half-space Z such that dZ,T = 0.

Since Z is T -invariant, it is A-invariant.

The method we developed can be used to generalize Theorem 3.3.13. We

will need a small lemma.

Lemma 3.3.14. Let T ∈ L(X) and Y ⊆ X is a T -almost invariant subspace.

If S ∈ L(X) is such that TS = ST and Y is S-invariant then DT (Y ) and

UT (Y ) are also S-invariant.

Proof. If y ∈ DT (Y ), then T (Sy) = STy ∈ Y since Ty ∈ Y and Y is S-

invariant. Hence Sy ∈ DT (Y ), so that DT (Y ) is S-invariant.

Let u + v ∈ UT (Y ) = Y + TY , with u ∈ Y and v = Ty for some y ∈ Y .

Then S(u + v) = Su + STy = Su + TSy ∈ UT (Y ) since Su, Sy ∈ Y , so that

UT (Y ) is S-invariant.

Theorem 3.3.15. Let A be the norm-closed algebra generated by a finite num-

ber of pairwise commuting operators. If A has an almost invariant half-space

then A has an invariant half-space.

Proof. Let A be generated by pairwise commuting operators T1, . . . , Tn and

let Y be an A-almost invariant half-space. We will prove that there exists a

half-space which is invariant under each Tk (k = 1, . . . , n).

Observe that if T ∈ A then both DT (Y ) and UT (Y ) are A-almost invari-

ant because codimY DT (Y ) < ∞ and codimUT (Y ) Y < ∞ by Lemma 3.3.11.

Clearly, Y is almost invariant under the norm closed algebra generated by T1.

Apply a finite sequence of procedures DT1 and UT1 to Y to obtain a T1-invariant

half-space Y1, as in the proof of Theorem 3.3.13. Then, Y1 is A-almost invari-

ant. Apply a finite sequence of procedures DT2 and UT2 to Y1 to obtain a

T2-invariant half-space. By Lemma 3.3.14, Y2 is also T1-invariant. Obviously,

it is still A-almost invariant. Repeat this procedure n − 2 more times to get

an A-invariant half-space.
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3.3.4 Almost invariant subspaces of closures of algebras

It is well-known that the invariant subspaces of an algebra and its WOT-

closure are the same. We will now study this question for almost invariant

subspaces.

First, we establish that if the algebra A is norm closed then almost invariant

subspaces of A and A
WOT

are the same. We need a lemma for this statement.

Lemma 3.3.16. Let Y be a subspace of X and A an algebra of operators

acting on X. Let N ∈ N be such that dY,T 6 N for all T ∈ A. Then dY,T 6 N

for all T ∈ A
WOT

.

Proof. Suppose that the conclusion is not true. Let T ∈ A
WOT

be an operator

with dY,T > N + 1. Let F ⊆ X be such that dimF = dY,T and TY ⊆ Y ⊕ F .

Fix N+1 linearly independent vectors (fi)
N+1
i=1 in F . By Lemma 3.3.2(iii), there

exist (ui)
N+1
i=1 ⊆ Y such that for each i = 1, . . . , N + 1 we have Tui = yi + fi

for some yi ∈ Y . Since Y ∩F = {0}, [Tui]
N+1
i=1 ∩ Y = {0} and Tu1, . . . , TuN+1

are linearly independent.

Since A
WOT

= A
SOT

, we can find a net (Tα) ⊆ A such that Tα
SOT→ T .

Let q : X → X/Y be the quotient map. Since [Tui]
N+1
i=1 ∩ Y = {0} and

Tu1, . . . , TuN+1 are linearly independent, the collection {(qT )ui}N+1
i=1 is linearly

independent. Observe that if ε > 0 is sufficiently small then each collection

{vi}N+1
i=1 satisfying ‖vi − (qT )ui‖ < ε as i = 1, . . . , N + 1 is again linearly

independent.

Fix α0 such that for all α > α0 we have ‖(Tα − T )(ui)‖ < ε for all i =

1, . . . , N + 1. Then ‖(qTα − qT )(ui)‖ < ε, so that the collection {(qTα)ui}N+1
i=1

is linearly independent for all α > α0. By Lemma 3.3.6, this, however, implies

that dY,Tα > N + 1 for all α > α0 which contradicts the assumptions.

Corollary 3.3.17. Let A be a norm closed algebra of operators on X and

Y be a half-space in X. Then Y is A-almost invariant if and only if Y is

A
WOT

-almost invariant.
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Proof. If Y is A-almost invariant then by Theorem 3.3.9 there exists N ∈ N

such that dY,S < N for all S ∈ A. By Proposition 3.3.16 the same is true for

all S ∈ A
WOT

. This implies that Y is A
WOT

-almost invariant. The converse

statement is obvious.

Remarkably, the condition that A is norm closed is essential for the above

result, as the next example shows. This example also exhibits that, unlike in

the case of invariant subspaces, there exists an operator whose almost invariant

half-spaces are different from those of the norm closed algebra generated by

this operator.

Example 3.3.18. Let D be a Donoghue operator on `2. Put A = {p(D) : p

is a polynomial such that p(0) = 0}. By Corollary 3.2.9 D has an almost

invariant half-space. Then A has an almost invariant half-space. However,

since all the invariant subspaces of D are finite dimensional and therefore

A has no invariant half-spaces, A
‖·‖

has no almost invariant half-spaces by

Theorem 3.3.13.
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Chapter 4

Transitive algebra techniques in
Banach lattices

In this chapter, we use techniques from [72] and [84] to obtain a lattice version

of Theorem 1.2.7 of Lomonosov which is valid for collections of positive oper-

ators. This is a joint work with Troitsky. The results from this chapter were

inspired by the paper of Drnovšek [45] about invariant subspaces of collections

of positive operators and were published in [100].

4.1 Invariant subspaces of positive operators

Throughout the chapter, X will stand for a Banach lattice. That is, X is a

Banach space endowed with a lattice order which is compatible with the linear

structure of X and satisfies the following two conditions:

(i) 0 6 x 6 y implies ‖x‖ 6 ‖y‖;

(ii)
∥∥|x|∥∥ = ‖x‖ for all x ∈ X, where |x| = x ∨ (−x).

For an extensive treatment of Banach lattices, we refer the reader to the mono-

graphs [83], [114], and [1]. We will write x > y if x > y and x 6= y.

There are many indications that compatibility of an operator with the

order structure can be useful in determining many properties of this operator.

Perhaps the most well-known result in this regard is the Perron-Frobenius

theorem [95, 50] (for a more accessible exposition, see, e.g., [1, Theorem 8.26])
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which (in the simplest form) asserts that a square matrix with strictly positive

entries has a unique largest real eigenvalue and the corresponding eigenvector

is unique (up to scaling) and has strictly positive entries. Another classical

result is the automatic continuity of positive linear mappings: every positive

linear map between two Banach lattices is continuous.

A very satisfactory extension of the Perron-Frobenius theorem to positive

compact operators on Banach lattices was obtained by Krein and Rutman [69].

Theorem 4.1.1. [69] If T is a compact positive operator on a Banach lattice

X with r(T ) > 0 then the spectral radius r(T ) is an eigenvalue having a positive

eigenvector x > 0.

For non-compact positive operators on Banach lattices, the statement of

Theorem 4.1.1 is not valid in general. For example, the right shift operator on

`2 is a positive operator without eigenvalues. However, even for non-compact

operators, positivity of the operator yields certain information about the spec-

trum.

Theorem 4.1.2. [69] The spectral radius of a positive operator on a Banach

lattice belongs to the spectrum of the operator.

It has been conjectured (see, e.g., [7, Conjecture 1]) that every positive

operator on a separable Banach lattice has an invariant subspace. This con-

jecture is still unsettled. None of the known examples of operators without

invariant subspaces is positive. It should be noted that Sirotkin [122] was able

to fine-tune the Read’s operator acting on `1 from [107] in such a way that the

resulting matrix has only one negative entry. Also, Troitsky showed in [124]

that the modulus of Read’s quasinilpotent operator [109] has an eigenvalue.

A classical result about invariant subspaces of operators acting on Banach

lattices of continuous functions is due to Krein [69].

Theorem 4.1.3. [69] If T is a positive operator on C(K) where K is a compact

Hausdorff space then the adjoint T ∗ of T has an eigenvalue.
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By Theorem 4.1.3, if T is a non-scalar operator on C(K) then T has a

hyperinvariant subspace (see Proposition 1.1.1). There are several proofs and

modifications of Krein’s theorem in the literature (see, e.g., [3, Theorems 6.3

and 7.1], [116, p.315], and [92]).

An important branch of the invariant subspace research for positive op-

erators originates from the Ando-Krieger theorem. To proceed, we will need

some terminology.

Definition 4.1.4. A subset A of a Banach lattice X is said to be solid if

|x| 6 |y| and y ∈ A imply x ∈ A. A solid vector subspace of X is called an

order ideal .

Definition 4.1.5. A net xα in a Banach lattice X converges in order to x ∈ X

(we write it as xα
o−→ x) if there are two nets yβ and zγ such that

(i) yβ ↑ x (i.e., yβ is increasing and sup yβ = x) and zγ ↓ x;

(ii) for each β and γ there exists α0 such that yβ 6 xα 6 zγ for all α > α0.

Definition 4.1.6. A set A in a Banach lattice X is order closed if xα
o−→ x

and xα ∈ A for all α imply x ∈ A. An order closed ideal of X is called a band .

According to this definition, we do not assume that an order ideal is a

closed subspace in the given Banach lattice. However, it is a well-known fact

that bands in Banach lattices are necessarily norm closed.

Definition 4.1.7. Let (Ω,Σ, µ) be a σ-finite measure space andX = L0(Ω,Σ, µ)

the set of (equivalence classes of) all µ-measurable functions. Let H ⊆ X be

a Banach lattice with order and linear structure inherited from X. A positive

operator T : H → H is called integral operator if there exists a µ × µ-

measurable function k(·, ·) such that

Tx(t) =

∫
k(s, t)x(s)dµ(s)

for all x ∈ H and for µ-almost all t ∈ Ω.
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The Ando-Krieger theorem is the following statement.

Theorem 4.1.8. [10, 70] (see also [1, Corollary 9.37]) Each quasinilpotent

positive integral operator has a non-trivial invariant band.

Theorem 4.1.8 has been generalized by many mathematicians. See, for

example, works of Caselles [36], Schaefer [113], and Zaanen [129, Section 136].

Grobler [57] found a simple proof of Theorem 4.1.8.

It was shown by Schaefer in [113] that the Ando-Krieger theorem is not

valid for general positive operators on Banach lattices. He found an example of

a quasinilpotent positive operator on Lp(µ) without non-trivial closed invariant

order ideals. Nevertheless, it turned out that under additional conditions,

versions of Theorem 4.1.8 hold for positive operators which are not integral.

The following theorem is due to de Pagter [41].

Theorem 4.1.9. [41] A positive compact quasinilpotent operator on a Banach

lattice has a non-trivial closed invariant order ideal.

The idea of de Pagter’s proof is an adaptation of Hilden’s technique [84] to

the context of positive operators on Banach lattices. The paper by de Pagter

caused a lot of subsequent research. Generalizations of Theorem 4.1.9 were

obtained by Grobler [58], Schaefer [115], Caselles [37], Abramovich, Aliprantis,

and Burkinshaw [4, 5], and others.

We would like to describe a generalization from [4] in more details. To

proceed, we need some defintions.

Definition 4.1.10. An operator T ∈ L(X) is quasinilpotent at a point

x ∈ X if lim
n→∞

‖T nx‖1/n = 0.

Definition 4.1.11. Let X be a Banach lattice and T ∈ L(X). We say that

an operator S ∈ L(X) is dominated by T (or that T dominates S) if

|Sx| 6 T (|x|) holds for all x ∈ X.

Observe that an operator T dominating any other operator is necessarily

positive.
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Definition 4.1.12. An operator T : X → Y between Banach lattices is called

AM-compact if T [a, b] is norm totally bounded for all a, b ∈ X.

It is clear that any compact operator is AM-compact. The converse is not

true (see, e.g., [2, Problem 10.3.7]).

Theorem 4.1.13. [4] Let X be a Banach lattice and T ∈ L(X) be a positive

operator. Suppose that there exists a positive operator S ∈ L(X) such that:

(i) ST 6 TS;

(ii) S is quasinilpotent at some x0 > 0;

(iii) S dominates a non-zero AM-compact operator.

Then T has a non-trivial closed invariant ideal.

Compared to Theorem 4.1.9, this result, instead of imposing all conditions

on one operator, shifts some of them to an operator the set {S : ST 6 TS}

(which is called super left commutant of T , see Definition 4.1.14). Therefore it

can be considered as a lattice version of Lomonosov’s theorem about compact

operators (Theorem 1.1.3).

This theorem was generalized by Drnovšek to collections of positive opera-

tors in [45]. He used an alternative to the notion of quasinilpotence at a point

which we will describe now.

Definition 4.1.14. Let C be a collection of positive operators on a Banach

lattice X. The super right commutant [ C〉 is defined by

[ C〉 = {S ∈ L(X) : S > 0 and ST − TS > 0 for all T ∈ C}.

The super left commutant 〈C] is

〈C] = {S ∈ L(X) : S > 0 and ST − TS 6 0 for all T ∈ C}.

Definition 4.1.15. For two collections C and D of operators acting on the

same space we write CD = {TS : T ∈ C, S ∈ D}. The symbol Cn is defined as

the product of n copies of C.
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Definition 4.1.16. If U is a subset of X then we write ‖U‖ = sup{‖x‖ : x ∈

U}. We call a collection C of operators finitely quasinilpotent at a vector

x ∈ X if limsupn‖Fnx‖
1
n = 0 for every finite subcollection F of C.

Clearly, finite quasinilpotence at x implies local quasinilpotence at x of

every operator in the collection.

Theorem 4.1.17. [45] If C is a collection of positive operators on a Banach

lattice X such that

(i) C is finitely quasinilpotent at some positive non-zero vector, and

(ii) some operator in C dominates a non-zero AM-compact operator,

then C and [C〉 have a common closed invariant order ideal.

Theorem 4.1.17 can be viewed to a certain extend as a lattice version of

Theorem 1.2.5. Combining it with [125, Corollary 7], Drnovšek also obtained

the following generalization of Theorem 4.1.9.

Theorem 4.1.18. A multiplicative semigroup of quasinilpotent compact pos-

itive operators on a Banach lattice of dimension at least two has a nontrivial

closed invariant ideal.

We would like to finish this introductory section with the following result

of Abramovich, Aliprantis, and Burkinshaw which applies, for example, to

positive operators acting on `p or c0.

Theorem 4.1.19. [6] Let X be a Banach lattice whose order is defined by an

unconditional basis, T : X → X be a positive operator. If T commutes with a

non-zero positive operator that is quasinilpotent at some x > 0 then T has a

non-trivial closed invariant ideal.

72



4.2 A version of Lomonosov theorem for col-

lections of positive operators

Observe that if a collection C of positive operators has a closed nontrivial

invariant ideal then there exist non-zero positive x ∈ X and f ∈ X∗ such that

〈f, Tx〉 = 0 for all T ∈ C. Indeed, let J be a closed nontrivial C-invariant

ideal. Pick a non-zero positive x ∈ J and a non-zero g ∈ X∗ such that

g|J = 0. Put f = |g|. Then by the Riesz-Kantorovich formula (see, e.g., [1,

p.16]) 〈f, Tx〉 = sup{g(Ty) : −x 6 y 6 x} = sup{0 : −x 6 y 6 x} = 0 for

all T ∈ C.

If C is a semigroup then the converse is also true. Indeed, let f ∈ X∗ and

x ∈ X be positive, non-zero elements, such that 〈f, Tx〉 = 0 for all T ∈ C.

Define J to be the ideal generated by the set A = {Tx : T ∈ C}. It is easy to

see that J ⊆ ker f , hence J
‖·‖ ⊆ ker f , so that J

‖·‖
is non-trivial. Also, A is

C-invariant since C is a semigroup. The claim now follows from the following

lemma.

Lemma 4.2.1. Let C be a collection of positive operators. If a set A is C-

invariant then the norm closure of the ideal generated by A is also C-invariant.

Proof. Let J be the ideal generated by A. It is enough to prove that J is

C-invariant. Let y ∈ J . There exists z ∈ A such that y is dominated by a

scalar multiple of z. That is, |y| 6 αz for some α > 0. If T ∈ C then Tz ∈ A.

Hence Ty ∈ J , as |Ty| 6 αTz. So, J is T -invariant for all T ∈ C.

The goal of this section is to “quantize” Theorem 4.1.17 in the same manner

that Theorem 1.2.5 was “quantized” into Theorem 1.2.7. Our proofs use ideas

from [72] and [84].

In the rest of this section, X will be a real Banach lattice. We will also

assume that X is a dual Banach space; that is, X = Y ∗ for some (fixed) Banach

space Y . We will start with a version of Theorem 1.2.7 for convex collections

of positive operators. Recall that if T ∈ L(X) is an adjoint operator then
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T∗ ∈ L(Y ) stands for a (unique) operator satisfying the condition T = (T∗)
∗

(cf. page 11 of this thesis).

In the following two lemmas, we collect several standard facts that we will

use later.

Lemma 4.2.2. Let Z be a vector lattice, x ∈ Z+. Then for each y, z ∈ Z one

has

(i) |x ∧ y − x ∧ z| 6 |y − z|;

(ii) if |y| 6 z then |x− x ∧ z| 6 |x− x ∧ y|;

(iii) |x− x ∧ y| 6 |x− y|.

Proof. It is easy to check that the formulas are valid in R. The validity of the

formulas in any Banach lattice follows from Yudin’s theorem.

Lemma 4.2.3. If K is a compact operator on Y then K∗ is w∗-‖·‖ continuous

on bounded sets.

Proof. It is enough to show that if xα
w∗−→ 0 and ‖xα‖ 6 1 then K∗xα

‖·‖−→ 0.

We have:

‖K∗xα‖ = sup
y∈BY
|〈K∗xα, y〉| = sup

y∈BY
|〈xα, Ky〉|.

Fix ε > 0. Let (yi)
n
i=1 ⊆ BY be such that K(BY ) ⊆ ∪ni=1B(Kyi, ε). There

exists α such that |〈xα, Kyi〉| < ε for all α > α and i ∈ {1, . . . , n}.

For y ∈ BY , pick i ∈ {1, . . . , n} such that ‖Ky −Kyi‖ < ε. Then

|〈xα, Ky〉| = |〈xα, Kyi〉+ 〈xα, Ky −Kyi〉| 6

6 |〈xα, Kyi〉|+ ‖xα‖ · ‖Ky −Kyi‖ < 2ε.

Hence ‖K∗xα‖ < 2ε for all α > α.

Theorem 4.2.4. Let C be a convex collection of positive adjoint operators

on X. If there is x0 > 0 such that every operator in C is locally quasinilpotent

at x0 then there exist non-zero x ∈ X+ and f ∈ X∗+ such that 〈f, Tx〉 6 ‖T∗‖e
for all T ∈ C.
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Proof of Theorem 4.2.4. Clearly, we may assume that ‖x0‖ = 1. Also, without

loss of generality, C is closed under taking positive multiples of its elements,

otherwise we replace C with {αT : T ∈ C, 0 < α ∈ R}. Fix 0 < ε < 1
10

. Define

Cε =
{
T ∈ C : ‖T∗‖e < ε

}
, and

Hε(x) =
{
z ∈ X : |z| 6 Tx for some T ∈ Cε

}
, x ∈ X+.

Clearly, Hε(x) is convex and solid for all x ∈ X+. Also, if T ∈ Cε, then

Tx ∈ Hε(x). In what follows, we will consider two cases.

Case 1. Suppose that Hε(x) 6= X for some nonzero x ∈ X+. Since Hε(x)

is convex, there is a nonzero g ∈ X∗ such that g(y) 6 1 for all y ∈ Hε(x).

Consider h = |g| ∈ X∗. Then for any y ∈ Hε(x) we have

h(y) 6 h
(
|y|
)

= sup
{
g(u) : − |y| 6 u 6 |y|

}
6 1

since Hε(x) is solid. In particular, 〈h, Tx〉 6 1 for all T ∈ Cε.

Put f = ε
2
h. We claim that 〈f, Tx〉 6 ‖T∗‖e for each T ∈ C. Indeed, if

T is compact, i.e., ‖T∗‖e = 0, then αT ∈ Cε for all 0 < α ∈ R. Therefore

〈h, αTx〉 6 1 for all 0 < α ∈ R, so that 〈f, Tx〉 = ε
2
〈h, Tx〉 = 0. If T is not

compact then εT
2‖T∗‖e ∈ Cε, whence

〈f, Tx〉 = ‖T∗‖e
〈
h,

εT

2‖T∗‖e
x
〉
6 ‖T∗‖e.

Case 2. Suppose that Hε(x) = X for all nonzero x ∈ X+. Then, in

particular, for each x ∈ X there is yx ∈ Hε(x) such that ‖x0 − yx‖ < ε. Fix

an operator Tx ∈ Cε such that |yx| 6 Txx. Then (ii) and (iii) of Lemma 4.2.2

yield ‖x0 − x0 ∧ Txx‖ 6 ‖x0 − x0 ∧ yx‖ 6 ‖x0 − yx‖ < ε.

Let U0 =
{
x ∈ X+ : ‖x−x0‖ 6 1

2

}
. Since

∥∥(Tx)∗
∥∥
e
< ε, there is an adjoint

compact operator Kx ∈ K(X) such that ‖Kx − Tx‖ < ε. By Lemma 4.2.3,

each Kx is w∗-‖ · ‖ continuous on norm bounded sets. It follows that there is a

relative (to U0) w
∗- open neigborhood Wx ⊆ U0 of x such that ‖Kxz−Kxx‖ < ε
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whenever z ∈ Wx. Then using Lemma 4.2.2 (i), for every z ∈ Wx we get:

∥∥x0 − x0 ∧ Txz∥∥ 6
∥∥x0 − x0 ∧ Txx∥∥+

∥∥x0 ∧ Txx− x0 ∧Kxx
∥∥

+
∥∥x0 ∧Kxx− x0 ∧Kxz

∥∥+
∥∥x0 ∧Kxz − x0 ∧ Txz

∥∥
6
∥∥x0 − x0 ∧ Txx∥∥+ ‖Txx−Kxx‖+ ‖Kxx−Kxz‖+ ‖Kxz − Txz‖

< ε+ ε‖x‖+ ε+ ε‖z‖ 6 5ε < 1
2
.

Together with Tx > 0 this yields (x0 ∧ Txy) ∈ U0 for each y ∈ Wx.

Note that U0 is w∗- compact since U0 is the intersection of X+ with a closed

ball. Hence, we can find x1, . . . , xn ∈ U0 such that U0 =
⋃n
k=1Wxk . Define

T = Tx1 + · · ·+ Txn ∈ C. Then by Lemma 4.2.2(ii), we have x0 ∧ Tx ∈ U0 for

every x ∈ U0.

Define a sequence (yn) ⊆ U0 by y0 = x0 and yn+1 = x0∧Tyn. Clearly 0 6 yn

for all n, and yn 6 Tyn−1 6 . . . 6 T ny0 = T nx0, so that ‖yn‖ 6 ‖T nx0‖. Thus

yn → 0 as n → ∞ by the local quasinilpotence at x0. This is a contradiction

by the definition of U0.

The next theorem shows that the conclusion of Theorem 4.2.4 is also true

for some collections of operators which are not necessarily convex. We will,

however, use a more restrictive quasinilpotence condition. We will need some

additional definitions.

Let C be a collection of positive operators. Following [1, p. 412], define

DC =
{
D ∈ L(X)+ : ∃T1, . . . , Tk ∈ [C〉 and

S1, . . . , Sk ∈
∞⋃
n=1

Cn such that D 6
k∑
i=1

TiSi

}
(see Definition 4.1.14 for the definition of the super-right commutant [C〉). In

other words, DC is the smallest additive and multiplicative semigroup which

contains the collection [C〉 · C (see Definition 4.1.15 for the definition of a

product of two sets) and such that T ∈ DC and 0 6 S 6 T imply S ∈ DC
(see [1, Lemma 10.41]).
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Let C be a collection of positive adjoint operators on X. Define

EC =
{
T ∈ DC : T = S∗ for some S ∈ L(Y )

}
.

Since adjoint operators are stable under addition and multiplication, EC is an

additive and multiplicative semigroup. It is also clear that C ⊆ EC.

Theorem 4.2.5. Let C be a collection of positive adjoint operators on X. If

C is finitely quasinilpotent at some x0 > 0 then there exist non-zero x ∈ X+

and f ∈ X∗+ such that 〈f, Tx〉 6 ‖T∗‖e for all T ∈ EC.

Proof. Clearly EC is convex. Note that the finite quasinilpotence of C at x0

implies the finite quasinilpotence of DC (and, therefore, of EC) at x0 (see,

e.g., [1, Lemma 10.43]). Finally, apply Theorem 4.2.4 to EC.

Now suppose, in addition, that Y is itself a Banach lattice. Then we can

improve the conclusion of Theorem 4.2.4.

Definition 4.2.6. An operator T on a Banach lattice Z is called AM-com-

pact if T ([a, b]) is compact for all a 6 b in Z.

The following fact is definitely well-known. We include a proof of it for

convenience of the reader.

Lemma 4.2.7. The set of all AM-compact operators on a Banach lattice Z

forms a closed subspace in L(Z).

Proof. It is clear that the set of AM-compact operators is a subspace in L(Z).

Suppose that (Tn) is a sequence of AM-compact operators such that Tn → T

in norm. Let’s prove that T is also AM-compact.

Let a 6 b ∈ Z. Denote M = max
{
‖a‖, ‖b‖

}
. Without loss of generality,

M 6= 0. Fix ε > 0. We will construct a finite ε-net in T ([a, b]).

Let m ∈ N be such that ‖Tm − T‖ < ε
3M

. Since Tm is AM-compact, there

exists a finite set {x1, . . . , xn} ⊆ [a, b] such that {Tmx1, . . . , Tmxn} is an ε
3
-net

for Tm([a, b]). Let x ∈ [a, b]. Pick i ∈ {1, . . . , n} such that ‖Tmxi − Tmx‖ < ε
3
.
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Then ‖Txi − Tx‖ 6 ‖Txi − Tmxi‖+ ‖Tmxi − Tmx‖+ ‖Tmx− Tx‖ 6M‖T −

Tm‖+ ε
3

+M‖Tm − T‖ < ε.

That is, {Tx1, . . . , Txn} is a finite ε-net in T ([a, b]).

For an operator T acting on Y , define

θ(T ) = inf
{
‖T −K‖ : K is AM-compact

}
.

Clearly, θ is a seminorm on L(Y ). Also, it follows from Lemma 4.2.7 that

θ(T ) = 0 if and only if T is AM-compact.

For ξ ∈ Y+, define a seminorm ρξ on X via ρξ(x) = |x|(ξ).

Lemma 4.2.8. If ξ ∈ Y+ and K ∈ L(Y ) is AM-compact, then K∗ : (BX , w
∗)→

(X, ρξ) is continuous.

Proof. Let xα
w∗−→ x, with xα, x ∈ BX . Write

ρξ
(
K∗xα −K∗x

)
=
∣∣K∗xα −K∗x∣∣(ξ) = sup

−ξ6ζ6ξ
〈xα − x,Kζ〉 = sup

ν∈A
〈xα − x, ν〉,

where A = K
(
[−ξ, ξ]

)
. By assumption, K is AM-compact, thus A is a ‖ · ‖-

compact set.

For ν ∈ A, fix αν such that
∣∣〈xα − x, ν〉∣∣ < ε

3
whenever α > αν . If µ ∈ Y

is such that ‖µ− ν‖ < ε
3

then for α > αν we have

∣∣〈xα − x, µ〉∣∣ 6 ε
3
‖xα − x‖+

∣∣〈xα − x, ν〉∣∣ < 2ε
3

+ ε
3

= ε.

Pick ν1, . . . , νn ∈ A such that A ⊆
n⋃
k=1

B(νk,
ε
3
). Then for every α >

max{αν1 , . . . , ανn} we must have ρξ(K
∗xα −K∗x) < ε.

Definition 4.2.9. An operator T ∈ L(X) will be said w∗-locally quasinilpo-

tent at a pair (x0, ξ0), where x0 ∈ X and ξ0 ∈ Y , if
∣∣T nx0(ξ0)∣∣ 1n → 0.

Clearly, if T is locally quasinilpotent at x0 then T is w∗-locally quasinilpo-

tent at (x0, ξ0) for every ξ0 ∈ Y .
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Theorem 4.2.10. Suppose that X = Y ∗ for some Banach lattice Y , and C

is a convex collection of positive adjoint operators on X. Suppose that there

exists a pair (x0, ξ0) ∈ X+ × Y+ such that x0(ξ0) 6= 0 and every operator from

C is w∗-locally quasinilpotent at (x0, ξ0). Then there exist non-zero x ∈ X+

and f ∈ X∗+ such that 〈f, Tx〉 6 θ(T∗) for all T ∈ C.

Proof. The proof of the theorem is similar to that of Theorem 4.2.4. We

may assume that ‖x0‖ = 1, ‖ξ0‖ = 1, and C is closed under taking positive

multiples. Put ρξ0(x) = |x|(ξ0). Evidently, ρξ0(x) 6 ‖x‖ for all x ∈ X. It is

also clear that |x| 6 |y| implies ρξ0(x) 6 ρξ0(y).

Fix 0 < ε < x0(ξ0)
8

. Define

Cε = {T ∈ C : θ(T∗) < ε} and

Gε(x) = {z ∈ X : |z| 6 Tx for some T ∈ Cε}, x ∈ X+.

Suppose that Gε(x) is not dense in X for some x ∈ X+. Analogously to

the proof of Theorem 4.2.4, we find a positive functional h ∈ X∗+ such that

〈h, Tx〉 6 1 for all T ∈ Cε. Considering separately the cases θ(T∗) = 0 and

θ(T∗) 6= 0, we get the conclusion of the theorem.

Thus, we may assume that Gε(x) = X for all x > 0. Define

U0 = {x ∈ X+ : ‖x‖ 6 1 and ρξ0(x− x0) 6
x0(ξ0)

2
}.

Clearly, U0 is w∗-compact.

Let x ∈ U0 be arbitrary. Since Gε(x) = X, we can find Tx ∈ Cε such

that ρξ0(x0 − x0 ∧ Txx) 6 ‖x0 − x0 ∧ Txx‖ < ε. Fix an operator Kx adjoint

to an AM-compact operator such that ‖Tx −Kx‖ < ε. By Lemma 4.2.8, we

can find a relative (to U0) w
∗-open neighborhood Vx ⊆ U0 of x such that
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ρξ0(Kxx−Kxz) < ε for all z ∈ Vx. Then for an arbitrary z ∈ Vx, we have

ρξ0
(
x0 − x0 ∧ Txz

)
6 ρξ0

(
x0 − x0 ∧ Txx

)
+ ρξ0

(
x0 ∧ Txx− x0 ∧Kxx

)
+ ρξ0

(
x0 ∧Kxx− x0 ∧Kxz

)
+ ρξ0

(
x0 ∧Kxz − x0 ∧ Txz

)
< ε+ ‖Txx−Kxx‖+ ρξ0(Kxx−Kxz) + ‖Kxz − Txz‖

< ε+ ‖Tx −Kx‖ · ‖x‖+ ε+ ‖Tx −Kx‖ · ‖z‖ < 4ε <
x0(ξ0)

2
.

Take x1, . . . , xm in U0 such that
m⋃
k=1

Vxk = U0. Then T = Tx1 + · · · + Txk ∈ C

satisfies ρξ0
(
x0− x0 ∧ Tz

)
6 x0(ξ0)

2
for all z ∈ U0. Since ‖x0 ∧ Tz‖ 6 ‖x0‖ = 1,

we have x0 ∧ Tz ∈ U0 for all z ∈ U0.

Put z0 = x0 and zn+1 = x0 ∧ Tzn. By the w∗-local quasinilpotence of T

at (x0, ξ0) we have ρξ0(zn) 6 ρξ0(T
nx0) =

∣∣T nx0(ξ0)∣∣ → 0 as n → ∞ which is

impossible by the definition of U0.

The following result is derived from Theorem 4.2.10 in the same way that

Theorem 4.2.5 was deduced from Theorem 4.2.4.

Theorem 4.2.11. Suppose that X = Y ∗ for some Banach lattice Y , and C is

a collection of positive adjoint operators on X. If C is finitely quasinilpotent

at some x0 > 0 then there exist non-zero x ∈ X+ and f ∈ X∗+ such that

〈f, Tx〉 6 θ(T∗) for all T ∈ EC.

As every operator on `p (1 6 p <∞) is AM-compact, this theorem can be

used as an alternative proof of the following (certainly known) result.

Corollary 4.2.12. Every collection of positive operators on `p, 1 < p < ∞,

which is finitely quasinilpotent at a non-zero positive vector, has a non-trivial

closed common invariant ideal.

Of course, Corollary 4.2.12 follows easily from Theorem 4.1.17 when 1 6

p <∞.

Corollary 4.2.13. Every collection of positive adjoint operators on `∞ which

is finitely quasinilpotent at a non-zero positive vector has a non-trivial closed

common invariant ideal.
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The following example shows that the assumptions in Theorems 4.2.5

and 4.2.11 in general do not guarantee the existence of an invariant subspace.

Example 4.2.14. There is a collection C of operators which satisfies all the

conditions of Theorem 4.2.11 and has no common non-trivial invariant sub-

spaces. Namely, in [46], the authors constructed a multiplicative semigroup

Sp of positive square-zero operators acting on Lp[0, 1], 1 6 p < ∞, having

no common non-trivial invariant subspaces. The semigroup Sp is constructed

to be the union of semigroups Sp,n (n = 0, 1, . . . ) satisfying the following two

conditions: Sp,n ·Sp,n = {0} for all n and Sp,m ·Sp,n ⊆ Sp,n, Sp,n ·Sp,m ⊆ Sp,n for

all m < n. We claim that Sp is in fact finitely quasinilpotent at every positive

vector, so that for each 1 < p <∞, the collection of operators C = Sp satisfies

the conditions of Theorem 4.2.11.

Indeed, let us show that if F ⊆ Sp has k elements, then F2k = {0}. The

proof is induction on k. If k = 1 then the conclusion is true since Sp consists of

square-zero operators. Suppose the statement is true for k−1; let us prove it for

k. Let T1T2 . . . T2k be a product of 2k operators, each belonging to F . Each Ti

belongs to some Sp,ni . Pick an operator Tm from the set {T1, . . . , T2k} such that

nm is the biggest. Clearly, we can assume that the product T1 . . . T2k contains

only one copy of Tm since otherwise this product belongs to Sp,m · Sp,m = {0}.

Define F0 = F \ {Tm}. Then F0 contains k − 1 elements. By the induction

assumption, F2k−1

0 = {0}, so that product of more than 2k−1 operators from

F0 is zero. It is easy to see that one of the products T1 . . . Tm−1 or Tm+1 . . . T2k

contains more than 2k−1 operators, and the operators in these two products

all belong to F0.

Remark 4.2.15. Even though Theorem 1.2.5 is not a special case of The-

orem 1.2.7, in the case of an algebra of adjoint operators the former can be

easily deduced from the latter, see [76, Corollary 1]. Similarly, we will show

that in case of adjoint operators, Theorem 4.1.17 can be deduced from The-

orem 4.2.11. Indeed, suppose that X = Y ∗ for some Banach lattice Y , and
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C is a collection of positive adjoint operators which is finitely quasinilpotent

at some x0 > 0 and some operator in it dominates a non-zero AM-compact

positive1 adjoint operator K. We will show that there is a non-trivial closed

ideal which is invariant under C and under all adjoint operators in [C〉.

Clearly, K ∈ EC. Let x and f be as in Theorem 4.2.11.

J1 =
{
z ∈ X : |z| 6 T1KT2x for some T1, T2 ∈ EC

}
,

J2 =
{
z ∈ X : T |z| = 0 for all T ∈ EC

}
, and

J3 =
{
z ∈ X : |z| 6 Tx for some T ∈ EC

}
.

It is easy to see that J1, J2, and J3 are ideals in X, invariant under C and

under all adjoint operators in [C〉. It is left to show that at least one of the

three must be non-trivial. Clearly, J2 is closed and J2 6= X. Suppose that

J2 = {0}. In particular, x /∈ J2. It follows that J3 6= {0}. Suppose that J3

is dense in X. It follows from Theorem 4.2.11 that J1 ⊆ ker f ; hence J1 is

proper. Assume that J1 = {0}. Hence, T1KT2x = 0 for all T1, T2 ∈ EC. Since

J2 = {0}, it follows that K vanishes on ECx and, therefore, on J3. Since J3 is

dense in X it follows that K = 0; a contradiction.

1Unlike in Theorem 4.1.17, we require that K > 0 here.
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Chapter 5

Indecomposable semigroups of
nonnegative matrices

In this chapter, we study properties of multiplicative semigroups of nonnega-

tive matrices. Results from this chapter are joint results of the author of this

thesis and his collaborators. They have been published in [53] and [99].

5.1 Introduction

The following general type of question has been of interest in various contexts,

including linear representations of groups and semigroups: if a certain property

about a group or a semigroup S holds locally, then does it hold globally? For

example, it is well known that if S is an irreducible (multiplicative) group of

matrices, and if the trace functional takes a finite number of values on S, then

S is itself finite (irreducible means no common invariant subspaces). Another

example of this type is the original version of Burnside’s theorem [33] (cf.

Theorem 1.2.4):

Theorem 5.1.1. [33] If G is a group of unitary matrices in Mn(C), and

for each nonzero vector v ∈ Cn, the set {Gv : G ∈ G} spans Cn, then G

spans Mn(C).

There have been a number of more recent results of this nature. Oknińs-

ky [93, Proposition 4.9] showed that if S is an irreducible semigroup of matrices

and {trS : S ∈ S} is a finite set, then S is finite. Radjavi and Rosenthal [104]
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replaced the trace functional in this statement with an arbitrary non-zero func-

tional. It is also shown in [104] that if S is an irreducible semigroup of matrices

and for some non-zero functional f the set {f(S) : S ∈ S} is bounded then S

is also bounded. An interesting result was obtained by Bernik, Mastnak, and

Radjavi in [25]: every irreducible group of matrices with nonnegative diagonal

entries is similar, via a positive diagonal matrix, to a group of matrices with

nonnegative entries.

In this work, we will mostly be interested in semigroups of matrices with

nonnegative entries.

Definition 5.1.2. A matrix A = (aij) ∈ Mn(R) is called nonnegative if

aij > 0 for all 1 6 i, j 6 n.

Definition 5.1.3. A collection C of positive operators is called indecom-

posable if C has no common closed non-trivial invariant order ideals (see

Definition 4.1.4). An operator A is indecomposable if the set {A} is inde-

composable.

In Rn, the order ideals are exactly subspaces spanned by a subset of the

standard basis. So, a collection C of nonnegative matrices is indecomposable if

any subspace spanned by a subset of the standard basis of Rn is not invariant

under C.

An example of a local-to-global result for semigroups of nonnegative ma-

trices is the work of Livshits, MacDonald, and Radjavi [74] which shows that

if the diagonal elements of all matrices in an indecomposable semigroup of

nonnegative matrices come from the set {0, 1}, then the entire semigroup is

similar, via a positive diagonal matrix, to a semigroup of matrices whose all en-

tries come from the set {0, 1}; semigroups with this property are called binary.

The authors also obtain generalizations to infinite dimensional lattices.

In this thesis we study structure of indecomposable semigroups of nonneg-

ative matrices satisfying one of the following conditions:

• a non-zero positive functional is bounded on the semigroup;
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• the diagonal entries of matrices in the semigroup are small (i.e., take

values in [0, ε] where 0 < ε 6 1);

• the diagonal entries of matrices in the semigroup come from a fixed finite

set.

We will also obtain generalizations of our results to operators acting on infinite-

dimensional Banach lattices.

In the rest of this section we will collect some relevant facts and definitions

about the structure of indecomposable semigroups of nonnegative matrices. A

good source about this topic is the book of Radjavi and Rosenthal [103]; many

statements in this section come from this source.

The following proposition is rather standard. The directions “(i) −→ (iii)”

and “(ii) −→ (i)” are obvious; for the direction “(iii) −→ (ii)”, see, e.g., [103,

Lemma 5.1.5].

Proposition 5.1.4. Let S be a semigroup in M+
n (R). Then the following

statements are equivalent.

(i) S is indecomposable;

(ii) for every i, j 6 n there exists S ∈ S with (S)ij > 0;

(iii) no permutation of the basis reduces S to the block form [ ∗ ∗0 ∗ ] .

The following fact which (in the case of matrices) can be found in many

books about nonnegative matrices (see, e.g., [24, Theorem 2.2.7]) is useful in

determining if a given matrix is indecomposable. It also applies to operators

on `p or c0 (see [105, Proposition 1.2]) which can be represented as infinite

matrices. For a nonnegative matrix (tij), we say that there is an arc from i to

j and write i→ j if tij 6= 0. We say that there is a path from i to j if there is

a sequence of arcs i = k0 → k1 → · · · → kn = j.

Proposition 5.1.5. Let T = (tij) be a matrix or a positive operator on `p

(1 6 p < ∞) of c0. Then T is indecomposable if and only if for every i, j,

there is a finite path from i to j.
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The following theorem is a generalization of the well-known Perron-Frobe-

nius theorem.

Theorem 5.1.6. [103, Corollary 5.2.13] Let A be an indecomposable nonnega-

tive matrix with r(A) = 1. Denote by r the minimal rank of nonzero members

of the semigroup R+S where S is the semigroup generated by A. Then the

following holds:

(i) There exists a nonnegative nonzero vector x, unique up to a scalar mul-

tiple, such that Ax = x;

(ii) the set {λ ∈ σ(A) : |λ| = 1} consists precisely of all the r-th roots of unity;

each member of this set is a simple eigenvalue (i.e., the corresponding

eigenspace has dimension one);

(iii) σ(A) is invariant under the rotation about the origin by the angle 2π/r;

(iv) if r > 1 then there is a permutation matrix P such that P−1AP has the

block form 
0 0 . . . 0 Ar
A1 0 . . . 0 0
0 A2 . . . 0 0
...

...
...

...
0 0 . . . Ar−1 0


(with square diagonal blocks).

The following corollary will be used in Section 5.3. Though it is standard,

we include the proof for convenience of the reader.

Corollary 5.1.7. Let S be a matrix such that r(S) = 1. Then the modulus-

one eigenvalues of S are roots of unity of degrees at most k where k is the

number of such eigenvalues.

Proof. If S is indecomposable then the statement follows immediately from

Theorem 5.1.6. If S is not indecomposable then, after a permuation of the

basic vectors, S can be represented in the upper block triangular form with
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indecomposable diagonal blocks (note that this procedure doesn’t change the

spectrum of a matrix). The result follows from the fact that the set of eigen-

values of the matrix

[
A C
0 B

]
is exactly the union of eigenvalues of matrices

A and B which follows from considering the Jordan canonical forms of A

and B.

Definition 5.1.8. A nonnegative matrix is said to be row (column) stoc-

hastic if each of its rows (columns) sums to 1. A matrix is doubly stochastic

if it is both row and column stochastic.

Definition 5.1.9. A collection of matrices C is block-monomial if each

member has only one nonzero block in each block row and block column under

a given block structure. We call C monomial if it is block-monomial relative

to blocks of size 1× 1.

Theorem 5.1.10. [103, Lemma 5.1.11] If G is a group of invertible nonneg-

ative matrices, then G is monomial. Furthermore, if G is bounded, then G is

similar, via a positive diagonal matrix, to a group of permutation matrices.

The next theorem is a very important structure result which will be used

many times.

Theorem 5.1.11. [103, Lemma 5.1.9] Let E be a nonnegative idempotent of

rank r.

(i) If E has no zero rows or columns then there exists a permutation matrix

P such that P−1EP has the block-diagonal form

E1 ⊕ · · · ⊕ Er,

where each Ei is an idempotent of rank one whose entries are all positive;

(ii) in general, there exists a permutation matrix P such that P−1EP has

the block-triangular form

E =

 0 XF XFY
0 F FY
0 0 0

 ,
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with square diagonal blocks, where F = F1 ⊕ · · · ⊕ Fr is an idempotent

without zero rows or columns as in (i) and X and Y are two nonnegative

matrices.

Definition 5.1.12. We call the (2,2) block, F , of the block representation of

E from Theorem 5.1.11, the rigid part of E.

5.2 Bounded and topologically small semigro-

ups

This section is concerned with the boundedness and topological smallness of

semigroups of nonnegative matrices or positive operators on Banach lattices.

All results from this section were published in [53].

5.2.1 Boundedness conditions

In this subsection we work with the question: if a non-zero positive functional

is bounded on a semigroup, is the semigroup bounded? We start by col-

lecting three simple statements about the diagonal similarities (Lemma 5.2.1,

Lemma 5.2.4, and Lemma 5.2.6). All statements are standard and straight-

forward, so we do not include proofs.

Lemma 5.2.1. Let A,D ∈ Mn(R) such that D is diagonal and invertible,

A = (aij) and D = diag(d1, . . . , dn). Then the ij-th entry of D−1AD equals

dj
di
aij. In particular, the diagonal entries of A and of D−1AD agree.

Definition 5.2.2. The matrix whose ij-th entry is sup{(S)ij : S ∈ S} is

denoted by supS.

Remark 5.2.3. Let S be a semigroup in M+
n (R). Since Mn(R) is finite-

dimensional, the following are equivalent:

(i) S is norm bounded;

(ii) S is bounded entry-wise, i.e., sup{(S)ij : S ∈ S} < +∞ for every pair

i, j 6 n;
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(iii) S is order bounded, i.e., there exists T ∈ Mn(R) such that S 6 T for

every S ∈ S. In this case, we write S 6 T .

It is clear that if (i)–(iii) are satisfied then supS is defined.

Lemma 5.2.4. Let S be a bounded semigroup in M+
n (R) and D a diagonal

matrix with positive diagonal entries. Then D−1SD is again a bounded semi-

group and sup(D−1SD) = D−1(supS)D.

Definition 5.2.5. A matrix T = (tij) will be called compressed if T > 0

and tijtjk 6 tik for all i, j, and k.

Lemma 5.2.6. (i) If T = (tij) is compressed then tii 6 1 for all i.

(ii) If S is a bounded semigroup in M+
n (R) then T = supS is compressed.

In this case, S is indecomposable if and only if tij > 0 for all i and j.

(iii) Let T be a compressed matrix and D a diagonal matrix with positive

diagonal entries. Then D−1TD is compressed.

Definition 5.2.7. Given r > 0, we write Mn

(
[0, r]

)
for the set of all n × n

matrices with entries in [0, r].

The next proposition shows that a compressed matrix can be made “smal-

ler” by applying a suitable diagonal similarity.

Proposition 5.2.8. Suppose that r > 1 and T ∈ Mn

(
[0, r]

)
is compressed.

Then there exists D = diag(dm)nm=1 with (dm) ⊂ [1
r
, r] such that D−1TD ∈

Mn([0, 1]).

Proof. Let T = (tij). Since T is compressed, tii 6 1 for all i. We will induc-

tively construct (dm)nm=1 in such a way that if for m 6 n we put

Dm = diag(d1, . . . , dm, 1, 1, . . . , 1),

then Dm ∈Mn([0, r]), and the upper left m×m-corner of Dm is in Mm([0, 1]).

Note that for every m > 1, D−1m TDm can be obtained from D−1m−1TDm−1 by
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scaling the m-th column of the latter by dm and the m-th row by 1
dm

. It follows

that if i 6= m and j 6= m, then the ij-entries of D−1m TDm coincide with those

of D−1k TDk, where k > m. In particular, the upper left m×m corners are the

same.

Put d1 = 1. Suppose that d1, . . . , dm−1 have already been constructed (in

the interval [1
r
, r]) so that U := D−1m−1TDm−1 is in Mn([0, r]) and its (m− 1)×

(m− 1) upper left corner is in Mm−1([0, 1]). Put U = (uij). Once we assign a

value to dm, we will write V = D−1m TDm, V = (vij). Put

a = max
i=1,...,m−1

uim and b = max
j=1,...,m−1

umj.

Suppose first that both a and b are less than or equal to 1. In this case, the

m × m upper left corner of U is already in Mm([0, 1]). Take dm = 1; then

V = U . Suppose now that max{a, b} > 1.

Case 1 : a > b. Then 1 < a 6 r and there exists k < m such that ukm = a.

In this case, we put dm = 1
a
, then 1

r
6 dm < 1. Since the m-th column of V

is obtained by dividing the m-th column of U by a (except vmm which equals

tmm 6 1), we have vim 6 1 as i = 1, . . . ,m and vim 6 uim 6 r as i > m. Also,

vkm = 1. Since V is compressed, for every j 6= m we have

vmj = vkmvmj 6 vkj = ukj,

because k 6= m. It follows that V is in Mn([0, r]) and its m × m upper left

corner is in Mm([0, 1]).

Case 2 : b > a. In this case the statement is obtained by transposing U

and applying Case 1. As a result, we choose the m-th entry of D−1m to be in

[1
r
, 1]. Hence, the m-th entry of Dm belongs to [1, r].

As a simple corollary, we get the following theorem about bounded semi-

groups of nonnegative matrices.

Theorem 5.2.9. Let r > 1 and S be a semigroup in Mn

(
[0, r]

)
. Then there

exists D = diag(dm)nm=1 with (dm) ⊂ [1
r
, r] such that D−1SD ∈Mn

(
[0, 1]

)
.
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Proof. Let T = supS. Then T is compressed. Let D be as in Proposition 5.2.8.

Now Lemma 5.2.4 yields D−1SD 6 D−1TD, and the result follows.

The next statement shows that if a semigroup is indecomposable then its

boundedness follows from boundedness of a positive functional on this semi-

group.

Proposition 5.2.10. Let S be an indecomposable semigroup in M+
n (R). Sup-

pose that there exists a non-zero positive functional φ ∈
(
Mn(R)

)∗
such that

the set {φ(S) : S ∈ S} is bounded. Then S is bounded.

Proof. First, let us show that for some k, l ∈ {1, . . . , n}, the set {(S)kl : S ∈ S}

is bounded. Write

φ(A) =
n∑

i,j=1

cijaij, A = (aij),

where cij > 0. Since φ is non-zero, there exist k, l such that ckl 6= 0. Since

φ(A) > cklakl for every positive matrix A = (aij) and the set {φ(S) : S ∈ S}

is bounded, the set {(S)kl : S ∈ S} is bounded, too.

Suppose that S is not bounded, that is, there exist two indices i, j 6 n

and a sequence (Sm) in S such that (Sm)ij → ∞ as m → ∞. There are two

matrices A = (aij) and B = (bij) in S such that aki 6= 0 and bjl 6= 0. Then

aki(Sm)ijbjl 6
(
ASmB

)
kl
6 sup{(S)kl : S ∈ S} <∞

holds for every m ∈ N, which is impossible.

Combining Theorem 5.2.9 with Proposition 5.2.10, we immediately get the

following results which answer the question raised in the beginning of this

section.

Corollary 5.2.11. Let S be an indecomposable semigroup in M+
n (R) such

that ϕ(S) is bounded for some positive functional φ ∈
(
Mn(R)

)∗
. Then there

exists a diagonal matrix D with positive diagonal entries such that D−1SD ⊆

Mn

(
[0, 1]

)
.
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The following corollary is a special case of Corollary 5.2.11

Corollary 5.2.12. Let S be an indecomposable semigroup in M+
n (R) such

that the set
{

(S)ij : S ∈ S
}

is bounded for some pair (i, j). Then there

exists a diagonal matrix D with positive diagonal entries such that D−1SD ⊆

Mn

(
[0, 1]

)
.

5.2.2 Topological smallness

We have proved that if S is bounded at a single entry then, after a positive

diagonal similarity, all its entries are bounded by 1. Now, we will try to replace

“bounded” with “small”.

First, we show that the direct analogue of Corollary 5.2.11 is not valid in

this setting.

Example 5.2.13. Let ε > 0. Generate a semigroup S by the following ma-

trices:

A =

[
ε 0
0 0

]
, B =

[
0 ε
0 0

]
, C =

[
0 0
ε 0

]
, D =

[
0 0
0 1

]
.

Clearly, S is indecomposable. Also, it can be easily checked that

B2 = C2 = AC = BA = DA = DB = CD = 0,

AB 6 B, CA 6 C, BC 6 A, CB 6 D, BD = B, DC = C, A2 6 A,

and D2 = D. Hence, (S)11 6 ε, (S)12 6 ε, and (S)21 6 ε for all S ∈ S.

Nevertheless, (D)22 = 1, and this cannot be made any smaller by applying a

diagonal similarity since a diagonal similarity does not change diagonal entries

of matrices.

The problem with Example 5.2.13 is that diagonal similarities do not

change the diagonal entries. It turns out, however, that smallness of diag-

onal entries is all we need to ensure the semigroup is small itself.

Lemma 5.2.14. Let T = (tij) be an n×n compressed matrix such that tij > 0

for all i and j. Let ε > 0. If tii < ε for all i then there exists a nonnegative

invertible diagonal matrix D such that D−1TD ∈Mn

(
[0, n
√
ε]
)
.
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Proof. If ε = 1, then the result follows immediately from Lemma 5.2.8. So we

assume for the rest of the proof that ε < 1. Let

δ = inf
D

{
max
i,j

(D−1TD)ij
}
, (5.1)

where the infimum is taken over all nonnegative invertible diagonal matrices D.

Let tmax = maxi,j tij and tmin = mini,j tij. Note that tmin > 0. Put

D =
{

diag(d1, . . . , dn) : 1 6 di 6
tmax

tmin

for all i = 1, . . . , n
}
.

We claim that the infimum in (5.1) can be taken over all D ∈ D. Indeed, let

D be a diagonal matrix with positive diagonal entries. Note that scaling D

by a positive scalar does not change D−1TD. Therefore we may assume that

min di = 1. Let i0 6 n be such that di0 = 1; put V = D−1TD, V = (vij).

If dj >
tmax

tmin
for some j then vi0j = ti0j

dj
di0

>
ti0jtmax

tmindi0
=

ti0jtmax

tmin
> tmax =

max
i,j

(I−1TI)ij. Since I ∈ D, the claim follows.

SinceD is compact, it follows that the infimum in (5.1) is, actually, attained

at some D. Let D = diag(d1, . . . , dn) and put V = D−1TD, V = (vij). Then

δ = maxi,j vij. Moreover, we may choose D so that the number of occurrences

of δ in V is the smallest possible. Note that V is compressed by Lemma 5.2.6.

It is left to show that δ 6 n
√
ε. Suppose that, on the contrary, δ > n

√
ε.

It follows that δ > ε, so that δ never occurs on the diagonal of V . Hence,

after a permutation of the basis, we may assume that v12 = δ. We claim that

v2j = δ for some j. Indeed, otherwise, we could slightly decrease d2 so that the

non-diagonal entries in the second row of V increase but stay below δ, but then

the non-diagonal entries in the second column of V would decrease, so that v12

would become less then δ; however, this would contradict our assumption that

V has the smallest possible number of occurrences of δ. Since δ never occurs

on the diagonal of V , we know that j 6= 2. Note also that j 6= 1 as, otherwise,

δn 6 δ2 = v12v21 6 v11 = t11 6 ε

would contradict our assumption that δ > n
√
ε. Thus, j > 2. Again, by a
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permutation of the basis vectors ~e3, . . . , ~en, we may assume that j = 3, so that

v23 = δ.

As in the preceding paragraph, we observe that v3j = δ for some j. Again,

we must have j > 3 because

if j = 1 then δn 6 δ3 = v12v23v31 6 v11 = t11 6 ε,

if j = 2 then δn 6 δ2 = v23v32 6 v22 = t22 6 ε,

if j = 3 then δn 6 δ = v33 = t33 6 ε;

each case contradicts δ > n
√
ε. Again, by a permutation of the basis vectors

~e4, . . . , ~en, we may assume that j = 4, so that v34 = δ.

Proceeding inductively, we show that for each m 6 n we have (after a

permutation of the basis) v12 = · · · = vm−1,m = δ, and that vmj = δ for

some j. Furthermore, j > m as, otherwise, we would get δn 6 δm 6 ε. But

this leads to a contradiction for m = n as j > n is impossible.

Theorem 5.2.15. Let S be an indecomposable semigroup in M+
n (R) and ε >

0. If all the diagonal entries in all the matrices in S are less than or equal

to ε then there exists a diagonal matrix D with positive diagonal entries such

that D−1SD ⊆Mn

(
[0, n
√
ε]
)
.

Proof. By Proposition 5.2.10, S is bounded. Let T = supS. Then T is positive

and compressed by Lemma 5.2.6. By Lemma 5.2.14, there exists a diagonal

matrix D with positive diagonal entries such that D−1TD ∈Mn

(
[0, n
√
ε]
)
. By

Lemma 5.2.4, D−1SD 6 D−1TD, so that D−1SD ⊆Mn

(
[0, n
√
ε]
)
.

The following example shows that the estimate obtained in Theorem 5.2.15

is sharp.

Example 5.2.16. Take any ε ∈ (0, 1] and put δ = n
√
ε. Let

P =



0 δ 0 0 . . . 0
0 0 δ 0 . . . 0
...

...
. . . . . . . . . 0

0 0 . . . 0 δ 0
0 0 . . . . . . 0 δ
δ 0 . . . . . . 0 0


.
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Let S = {P k : k = 1, 2, . . . }. By Lemma 5.1.5, P is indecomposable, so that

S is an indecomposable semigroup. The diagonal elements of P k are all zeros

for each 1 6 k 6 n− 1, and P n = δnI = εI. Also, P k+n = P kP n = εP k 6 P k.

Thus, the maximal value for every diagonal element over all the matrices in S

is ε. On the other hand, (P )i,i+1 = (P )n,1 = δ = n
√
ε for all 1 6 i < n. It is

clear that this bound cannot be decreased by a positive diagonal similarity.

5.3 Semigroups with finite diagonals

In this section we will study semigroups of nonnegative matrices with the

property that the diagonal entries of all matrices in the semigroup come from

a fixed finite set. The results from this section have been published in the joint

work of Radjavi, Williamson, and the author of this thesis [99].

5.3.1 Preliminary results

It has been shown recently in [74] that if all the diagonal entries of an indecom-

posable nonnegative semigroup consist of zeros and ones, then the semigroup

is finite (and furthermore, all entries are in {0, 1} after a suitable diagonal

similarity). The indecomposability condition is clearly necessary for this re-

sult. For example, the semigroup of all upper-triangular nonnegative matrices

whose diagonal elements are all equal to 1 is by no means finite.

We consider the following question: if all diagonal entries in an indecom-

posable nonnegative semigroup come from a fixed finite set, is the semigroup

itself finite? The following example due to Williamson [128] shows that in

general the answer is negative.

Example 5.3.1. Let

S =
{[ E 0

0 E

]
,

[
0 E
E 0

]
,

[
0 T
E 0

]}
,

where E =

[
1/2 1/2
1/2 1/2

]
and T runs over the set of all matrices of form[

p q
q p

]
where p, q > 0, p+ q = 1.
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The semigroup in Example 5.3.1 is indecomposable and is not very far from

having only zeros and ones on the diagonals: the set of all the diagonal entries

of matrices in S is {0, 1/2}. However, S is not finite, and incidentally, consists

of doubly stochastic matrices.

Although the answer in general is negative, we get affirmative results in two

significant cases: that of a self-adjoint semigroup, and that of constant-rank

semigroups.

Definition 5.3.2. A semigroup S of nonnegative matrices will be called a

semigroup with finite diagonals if all the diagonal entries of all the ma-

trices in S come from a finite set. We will call S a semigroup with finite

trace set if the set {tr(T ) : T ∈ S} is finite.

The exposition about constant-rank semigroups is based in part on the

work of Williamson [128]. Theorem 5.3.28 is stated there. However the proof

of Theorem 5.3.28 in [128] contains a mistake; we present a different proof

here.

The following lemma can be found in [128]; we chose to include a proof of

it for the sake of completeness.

Lemma 5.3.3. Let S be a semigroup of n × n matrices with finite trace set.

If S ∈ S then all the nonzero eigenvalues of S are roots of unity of degrees at

most n. In particular, r(S) 6 1 for all S ∈ S.

Proof. By [77, Proposition 2.2], r(S) 6 1. Let n be the size of S and (λi)
n
i=1

be the sequence of the eigenvalues of S (with multiplicities), ordered by

1 = |λ1| = · · · = |λk| > |λk+1| > . . . > |λn| > 0,

where 0 6 k 6 n. By Corollary 5.1.7, the modulus-one eigenvalues of S are

roots of unity of degree at most k. It is left to show that λk+1 = · · · = λn = 0.

Observe that the set {Σk
i=1λ

j
i : j ∈ N} is finite since sequences (λji )

∞
j=1 are

all periodic for each i ∈ {1, . . . , k}. Also, since |λi| < 1 for all i = k+ 1, . . . , n,
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for each ε > 0 there is N ∈ N such that for all j > N

ε > Σn
i=k+1|λi|j > |Σn

i=k+1λ
j
i | > 0.

Therefore, the sequence
(
|Σn

i=k+1λ
j
i |
)∞
j=1

either has a strictly decreasing subse-

quence or a constant zero tail. If the former were true, the set {Σn
i=k+1λ

j
i : j ∈

N} would be infinite. However, this set cannot be infinite because {Σk
i=1λ

j
i : j ∈

N} and {Σn
i=1λ

j
i : j ∈ N} are both finite. Thus, for some r ∈ N we have

Σn
i=k+1λ

rj
i = 0, j ∈ N.

By [67] (see also [103, Lemma 2.1.15(ii)]) this implies λri = 0, and hence λi = 0

for all i = k + 1, . . . , n.

Lemma 5.3.4. Let S be an indecomposable semigroup with finite trace set.

Then each S ∈ S is similar to a matrix of the form[
U 0
0 N

]
where U is a unitary diagonal matrix and N is a nilpotent matrix.

Proof. Let S ∈ S and let [
J 0
0 N

]
be the Jordan form of S where J is an invertible matrix and N is a nilpotent

matrix. Split J into the sum D + M of a diagonal matrix D and an upper

triangular matrix with zero diagonal M ; note that DM = MD.

We claim that M = 0. Indeed, suppose M 6= 0. By Proposition 5.2.10,

the semigroup S is bounded. Hence so is the set {Jm : m ∈ N}. Let k be such

that Mk 6= 0 and Mk+1 = 0. Since DM = MD we get

Jm = Dm +

(
m
1

)
Dm−1M + · · ·+

(
m
k

)
Dm−kMk

for all m > k. By Lemma 5.3.3, all the diagonal entries of D are of absolute

value 1, hence ‖Dm‖ = 1 for all m. This implies ‖Jm‖ → ∞ as m → ∞.

Therefore M = 0.
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This shows that S is similar to[
D 0
0 N

]
.

By Lemma 5.3.3, D is unitary.

Corollary 5.3.5. Let S be an indecomposable semigroup of n × n matrices

with finite trace set. Then there exists m ∈ N such that Sm is an idempotent

for each S ∈ S.

Proof. Put m = n! and let S ∈ S. By Lemma 5.3.4, S is similar to[
U 0
0 N

]
where U is a unitary diagonal matrix and N is a nilpotent matrix. By

Lemma 5.3.3, every diagonal entry of U is a root of unity of degree at most n.

Hence Sm is similar to [
I 0
0 0

]
where I is an identity matrix. Therefore Sm is an idempotent.

In the rest of this subsection we record some simple partial results re-

garding the main problem. Theorems 5.3.6, 5.3.7, and 5.3.10 were obtained by

Williamson in [128]. We present, however, different proofs of these statements.

Theorem 5.3.6. Let S be a commutative finitely generated indecomposable

semigroup with finite trace set. Then S is finite.

Proof. Let {Ai}ni=1 be a set of generators of S. By commutativity, each S ∈ S

can be written as S =
∏n

i=1A
ki
i for some ki > 0. By Corollary 5.3.5, there is

m ∈ N such that Ei := Ami is an idempotent for each i = 1, . . . , n. Thus kj’s

can be chosen in {0, 1, . . . , 2m− 1} and, therefore, S is finite.

Theorem 5.3.7. Let S be an indecomposable semigroup of invertible matrices

with finite trace set. Then S is finite and after a diagonal similarity, is in fact

a permutation group.
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Proof. First, we prove that S is actually a group of matrices. Indeed, clearly

the only possible idempotent in S is the identity matrix. If S ∈ S then by

Corollary 5.3.5 there is m ∈ N such that Sm is an idempotent, i.e., Sm = I.

Then S−1 = Sm−1 ∈ S.

By Proposition 5.2.10, S is bounded. By Theorem 5.1.10, S is similar to a

permutation group and thus is finite.

It should be noted that if we replace the condition about the trace in the

last theorem with the condition of finiteness of the diagonal entries of the

members of S then Theorem 5.3.7 becomes a special case of Theorem 5.3.28

which will be proved in the next section. The following simple example shows

that the finiteness of the trace does not in general imply the finiteness of all

the diagonal entries.

Example 5.3.8.

S =

{[
p q
p q

]
: p+ q = 1, p > 0, q > 0

}
.

Then {tr(S) : S ∈ S} = {1}, but the diagonal entries of members of S take

all values in [0, 1].

Before introducing our general results, we consider the case of 2 × 2 and

3× 3 matrices. We will need the following combinatorial lemma.

Lemma 5.3.9. Let A be an infinite set and n ∈ N. Suppose that the sets

B(i, j) ⊆ A (where i ∈ {1, . . . , n} and j ∈ {1, . . . , n + 1}) are such that for

each j the following two conditions are satisfied:

(i) B(i, j) ∩B(k, j) = ∅ for all i 6= k;

(ii) ∪ni=1B(i, j) = A.

Then there exist j1 6= j2 in {1, . . . , n+1} and i in {1, . . . , n} such that B(i, j1)∩

B(i, j2) is infinite.
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Proof. The proof is by induction on n. If n = 1 then B(1, 1) = B(1, 2) = A

by the assumptions of the lemma, so that B(1, 1) ∩B(1, 2) is infinite.

Suppose that the statement is true for n−1. Let’s prove it for n. We have:

∪ni=1B(i, n+ 1) = A. Relabeling, if necessary, we can assume that B(n, n+ 1)

is infinite.

If the statement is not true then B(n, n+1)∩B(n, j) is finite for all j 6 n.

Denote A1 = B(n, n + 1) \ (∪nj=1B(n, j)). It is clear that A1 is infinite. For

each i ∈ {1, . . . , n− 1} and j ∈ {1, . . . , n}, define C(i, j) = A1 ∩B(i, j). Then

for each j ∈ {1, . . . , n}, we have:

(i) if i 6= k in {1, . . . , n− 1} then C(i, j) ∩ C(k, j) ⊆ B(i, j) ∩B(k, j) = ∅;

(ii) ∪n−1i=1 C(i, j) = A1 ∩ (∪n−1i=1 B(i, j)) = A1 ∩ (∪ni=1B(i, j)) = A1 ∩ A = A1.

By the induction assumption, C(i, j)∩C(k, j) is infinite for some j and i 6= k.

Hence B(i, j) ∩B(k, j) is infinite, too.

Theorem 5.3.10. Let S be an indecomposable semigroup with finite diagonals

consisting of 2× 2 or 3× 3 matrices. Then S is finite.

Proof. For two indices i and j and a subset X of S, put Xij = {Sij : S ∈ X}

where Sij stands for the (i, j)-th entry of S.

Assume S consists of 2× 2 matrices. Suppose S is infinite. Then, without

loss of generality, we can assume that the set S12 is infinite (since the diagonal

entries are finite by the assumptions of the theorem). Fix A ∈ S such that

A21 6= 0. By the hypothesis, (SA)11 = {S11A11 + S12A21 : S ∈ S} should be

finite, which is impossible.

Now assume S consists of 3 × 3 matrices. Suppose S is infinite. Again,

we can assume that S12 is infinite. Fix A ∈ S such that A21 6= 0. Since

(SA)11 = {S11A11+S12A21+S13A31 : S ∈ S} is finite, the set S13 is necessarily

infinite. By considering (BS)33 where B31 6= 0, we see that S23 is infinite.

Analogously, S21 is infinite.
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Let F = {Sii : S ∈ S, 1 6 i 6 3} and F1 = {a − bc : a, b, c ∈ F}. Since

(ST )11 ∈ F and (ST )11 − S11T11 = S12T21 + S13T31 for all T, S ∈ S, we have

S12T21 + S13T31 ∈ F1 for all T, S ∈ S.

Let n be the cardinality of F1. That is, F1 = {a1, . . . , an}. Define a set

A to be such an infinite subset of S that satisfies the condition that S12 6= 0

for all S ∈ A and S ′12 6= S ′′12 for all S ′ 6= S ′′ in A (such exists since S12 is

infinite). Pick T1, . . . Tn+1 ∈ S such that (Ti)21 6= 0 for all i and (Ti)21 6= (Tj)21

for i 6= j (this is possible to do since S21 is infinite). For every i ∈ {1, . . . , n}

and j ∈ {1, . . . , n+ 1}, define

B(i, j) = {S ∈ A : S12(Tj)21 + S13(Tj)31 = ai}.

It is clear that for all j ∈ {1, . . . , n + 1} and all i 6= k ∈ {1, . . . , n}, we have

B(i, j) ∩ B(k, j) = ∅. Also, ∪ni=1B(i, j) = A for all j. By Lemma 5.3.9, it

follows that for some j1 6= j2 ∈ {1, . . . , n + 1} and i ∈ {1, . . . , n}, the set

B(i, j1) ∩B(i, j2) is infinite.

Denote T ′ = Tj1 , T
′′ = Tj2 , and a = ai. It follows that the system of

equations
S12T

′
21 + S13T

′
31 = a,

S12T
′′
21 + S13T

′′
31 = a

(5.2)

is satisfied for infinitely many S ∈ A. Therefore the matrix[
T ′21 T ′31
T ′′21 T ′′31

]
is not invertible. This means that the second line of (5.2) is in fact a scalar

multiple of the first line. However, since S12 6= 0 for all S ∈ A and T ′21 6= 0,

a 6= 0. Therefore T ′21 = T ′′21, which is impossible.

5.3.2 Self-adjoint semigroups

In this subsection we show that if a semigroup with finite diagonals is self-

adjoint then it is finite. Moreover, our argument reveals the structure of

such semigroups. In contrast with most statements in the other sections, the

semigroups in the present section are not assumed to be indecomposable.
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Definition 5.3.11. A collection C of matrices is called self-adjoint if for

each S ∈ C we have S∗ ∈ C. Note that for our purposes, S∗ is just the

transpose of S.

We start with two nice properties of self-adjoint semigroups with finite

trace set.

Lemma 5.3.12. Let S be a self-adjoint semigroup with finite trace set. Then

for each S ∈ S the matrix SS∗ is an idempotent.

Proof. By Lemma 5.3.3, every eigenvalue of SS∗ is either zero or a root of

unity. Since SS∗ is self-adjoint and positive definite, σ(SS∗) ⊆ {0, 1}. Since

SS∗ is also diagonalizable, the Lemma follows.

Lemma 5.3.13. If S is a self-adjoint semigroup with finite trace set then each

idempotent in S is self-adjoint.

Proof. Let E = E2 ∈ S. Then E is unitarily similar to the matrix in the

block form

[
I X
0 0

]
where I is an identity matrix. With the same similarity,

E∗ is similar to

[
I 0
X∗ 0

]
. Then EE∗ is similar to

[
I +XX∗ 0

0 0

]
. By

Lemma 5.3.12, EE∗ is an idempotent, hence (I +XX∗)2 = (I +XX∗). This,

however, can only happen when X = 0. Indeed, (I + XX∗)2 = (I + XX∗)

implies XX∗ = −(XX∗)2. Both XX∗ and (XX∗)2 are positive elements in

the C∗-algebra of all n × n-matrices over C. Since the intersection of the

positive cone in a C∗-algebra with its negation is zero, XX∗ = 0. Thus

‖X‖2 = ‖XX∗‖ = 0, so that X = 0.

The next theorem is one of our main results in this section.

Theorem 5.3.14. Let S be a (not necessarily indecomposable) semigroup with

finite trace set. If S is self-adjoint then all the entries of all matrices in S are

of the form
√
ξη where ξ and η are either diagonal values of some matrices in

S or zero.
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Proof of Theorem 5.3.14. Let F = {Sii : S ∈ S, i = 1, . . . , N}. We will prove

that every S ∈ S can be written in the block form

S = ∆1


u1v

∗
1 0 . . . 0

0 u2v
∗
2 0

...
. . .

...
0 0 . . . ukv

∗
k

∆∗2 (5.3)

where ∆1 and ∆2 are each permutations and ui, vi are vectors whose entries

are either of the form
√
ξ, with ξ ∈ F or are all zero (with no restrictions on

the size of ui and vi; that is, the blocks uiv
∗
i are in general rectangular).

Fix S ∈ S. Set P = SS∗ and Q = S∗S. By Lemma 5.3.12, both P and Q

are self-adjoint idempotents. Choose two permutations Γ1 and Γ2 such that

the matrices P1 = Γ1PΓ∗1 and Q1 = Γ2QΓ∗2 are block-diagonal with self-adjoint

blocks of rank one or zero. Since rank(P ) = rank(Q) = rank(S), we deduce

that P1 and Q1 have the same number of nonzero blocks. Denote this number

by r. That is, P1 = (P1)1 ⊕ · · · ⊕ (P1)r ⊕ 0 and Q1 = (Q1)1 ⊕ · · · ⊕ (Q1)r ⊕ 0,

where either of the last zero entries could be absent.

Put T = Γ1SΓ∗2. Then clearly TT ∗ = P1 and T ∗T = Q1. Write T in the

rectangular block form

T =


T11 . . . T1r T1r+1
...

...
...

Tr1 . . . Trr Trr+1

Tr+11 . . . Tr+1r Tr+1r+1


where the vertical sizes of blocks are those of the blocks of P1 and the horizontal

sizes are those of the blocks of Q1, and the (r+1)-th row or (r+1)-th column,

or both could be void.

Since P1 = TT ∗ has the same range as T , we get P1T = T . Analogously,

TQ1 = T . Therefore P1TQ1 = T . Observe that in fact T is a partial isometry

with corresponding projections P1 and Q1.

We claim that each block row and each block column of T has at most one

nonzero block. Indeed, since TT ∗ is block-diagonal, we get
∑r+1

k=1 TikT
∗
jk = 0

for all i 6= j. Hence for each k and i 6= j we have TikT
∗
jk = 0. This implies that
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if for some n and m the (n,m) entry of Tik is not zero then the m-th column

of each Tjk is zero for all j 6= i. Since P1TQ1 = T and the diagonal entries

of P1 and Q1 are strictly positive or zero, the entries of all Tij are either all

zero or are all nonzero simultaneously. It follows that each block column of

T can contain at most one nonzero block. Considering T ∗T , we get the same

conclusion about the block rows.

Changing the order of blocks in Q1 (by changing Γ2), if necessary, we can

assume that T is block-diagonal with rectangular diagonal blocks:

T =


T1 . . . 0 0
...

. . .
...

...
0 . . . Tr 0
0 . . . 0 0


where Ti = (P1)iTi(Q1)i for all i = 1, . . . , r. Also, TiT

∗
i = (P1)i and T ∗i Ti =

(Q1)i.

Recalling that every (P1)i and (Q1)i is a rank-one projection, write (P1)i =

xix
∗
i and (Q1)i = yiy

∗
i for some vectors xi and yi satisfying ‖xi‖ = ‖yi‖ =

x∗ixi = y∗i yi = 1 (i = 1, . . . , r). Clearly rank(Ti) = 1 for all i = 1, . . . , k. Hence

for each i there exist vectors ui and vi such that Ti = uiv
∗
i .

Fix i and denote for simplicity of notation x = xi, y = yi, u = ui, and

v = vi. Since P1T = T and TQ1 = T , we get xx∗uv∗ = uv∗ and uv∗yy∗ = uv∗.

Let α = x∗u and β = v∗y. Then uv∗ = αxv∗ = βuy∗. This is only possible

when u = αx and v = βy.

This shows that there is a scalar γ such that uv∗ = γxy∗. We claim that

γ = 1. Indeed, from the the equality TT ∗ = P1, we obtain γ2(xy∗)(xy∗)∗ =

γ2xy∗yx∗ = γ2xx∗ is equal to xx∗. Since γ > 0, we get γ = 1.

We have shown that Ti = xiy
∗
i for each i = 1, . . . , r. To establish for-

mula (5.3), it is left to note that since for all i and j the numbers (xi)
2
j and

(yi)
2
j are some diagonal entries of P1 and Q1, respectively, the entries of xi and

yi are all of the form
√
ξ with ξ ∈ F .

Corollary 5.3.15. Every self-adjoint semigroup with finite diagonals is finite.
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5.3.3 Constant-rank semigroups

In this subsection we will prove that if all nonzero matrices in an indecompos-

able semigroup with finite diagonals have the same rank, then the semigroup

must be finite. The key step in obtaining this result is proving that the idem-

potent matrices in such a semigroup form a finite set (Theorem 5.3.23). We

will need a series of lemmas to prove this.

Recall (see Theorem 5.1.11) that if E is a nonnegative idempotent matrix

with no zero rows or columns then there is a permutation of the basis which

makes E block-diagonal with each diagonal block being a square rank-one

idempotent matrix without zero entries.

Lemma 5.3.16. Let S be an indecomposable semigroup with finite trace set

and E a block-diagonal idempotent in S whose diagonal blocks are square rank-

one idempotents without zero entries. Then the set SE = {A ∈ S : rank(A) =

rank(E) and EAE = A} is a finite group with identity E. This group is block-

monomial relative to the block structure inherited from E.

Proof. First, we will show that SE is a group with identity E. Indeed, let

A,B ∈ SE. Then clearly EABE = AB. Also, in some basis, E can be

represented as

[
I 0
0 0

]
. Since EAE = A and EBE = B, and rank(A) =

rank(B) = rank(E), in this basis A and B will be represented as

[
A0 0
0 0

]
and

[
B0 0
0 0

]
, respectively, where A0 and B0 are invertible matrices. Then

the representation of AB is

[
A0B0 0

0 0

]
, and A0B0 is again invertible, so that

rank(AB) = rank(E). This shows that SE is a semigroup.

Let us show that SE is closed under inverses. Let A ∈ SE be arbitrary.

By Corollary 5.3.5, there is m ∈ N such that Am is an idempotent which we

will denote by F . Since SE is a semigroup, F ∈ SE. In particular, rank(F ) =

rank(E) and EFE = F . Therefore E = F . Thus the matrix Am−1 is the

inverse of A in SE, and hence SE is a group.

Let r = rank(E). That is, E = E1 ⊕ · · · ⊕ Er where each Ei is a rank-
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one idempotent without zero entries. Applying a suitable diagonal similarity

to S, we can assume without loss of generality that E is row stochastic. In

particular, since the blocks of E have rank one, each block of E is a strictly

positive matrix having all rows equal to each other.

Let K(r, s) stand for the r×s matrix having the value 1/
√
rs at each entry.

A straightforward calculation shows that K(r, s)K(s, t) = K(r, t) for all r, s,

and t ∈ N.

For each i = 1, . . . , r, denote the size of Ei by ri. Since each Ei is row

stochastic, we have EiK(ri, rj) = K(ri, rj) for all i, j ∈ {1, . . . , r}. Let Lij =

EiK(ri, rj)Ej=K(ri, rj)Ej. Then

LijLjk = EiK(ri, rj)EjEjK(rj, rk)Ek =

= EiK(ri, rj)K(rj, rk)Ek = EiK(ri, rk)Ek = Lik. (5.4)

Let A ∈ SE be arbitrary. Write A in the block form inherited from E:

A =

 A11 . . . A1r
...

...
Ar1 . . . Arr

 .
Since EAE = A, we get Aij = EiAijEj for all i, j ∈ {1, . . . , r}. The ranks

of Ei and Ej are equal to 1. Hence, Lij and Aij are rank-one matrices which

correspond to operators having the same range and null space. Thus for each

i, j ∈ {1, . . . , r} there exists a nonnegative λij such that Aij = λijLij.

This shows that every matrix A ∈ SE can be represented as a numerical

matrix Ã = (λij)
r
i,j=1. By formula (5.4) we also conclude that ÃB = ÃB̃.

Observe also that Ẽ is the r × r identity matrix. Therefore the set G =

{Ã : A ∈ SE} is a group of nonnegative invertible matrices.

Since S is an indecomposable semigroup with bounded trace, by Proposi-

tion 5.2.10, S itself is bounded. In particular, SE is bounded, and hence G is

bounded. Therefore, by [103, Lemma 5.1.11], G is a finite monomial group.

Hence SE is finite and block-monomial.
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The next lemma is a technical statement that allows us to work with the

upper-left corners of matrices in a semigroup.

Lemma 5.3.17. Let S be an indecomposable semigroup of n×n matrices. Let

k ∈ {1, . . . , n} and

Jk = {S ∈ S : rows k + 1 through n of S are zero}.

Put Sk = {A : A is the upper-left k × k corner of some S ∈ Jk}. If Sk has

no permanent zero rows, that is, if for each i ∈ {1, . . . , k} there is a matrix

A ∈ Sk such that the i-th row of A is not zero, then Sk is an indecomposable

semigroup.

Proof. A straightforward calculation shows that Sk is a semigroup for each k.

We now establish the indecomposability statement.

We need to show that for each i, j ∈ {1, . . . , k} there is a matrix A ∈ Sk
such that the (i, j) entry of A is different from zero. Pick a matrix U ∈ Sk
whose i-th row is not zero, say (U)im 6= 0 for some m ∈ {1, . . . , k}. There is

a matrix V such that T :=

[
U V
0 0

]
∈ Jk. Since S is indecomposable, there

is S ∈ S such that (S)mj 6= 0. Then (TS)ij 6= 0. Also, TS ∈ Jk. Clearly the

upper-left k × k corner of TS has a nonzero (i, j) entry.

The next lemma is the same statement about the lower-right corners of

matrices in a semigroup. Its proof is analogous to that of Lemma 5.3.17, so

we omit it.

Lemma 5.3.18. Let S be an indecomposable semigroup of n×n matrices. Let

k ∈ {1, . . . , n} and

J ′k = {S ∈ S : columns 1 through k of S are zero}.

Put S ′k = {A : A is the lower-right (n− k)× (n− k) corner of some S ∈ J ′k}.

If S ′k has no permanent zero columns then S ′k is an indecomposable semigroup.

The following two lemmas provide additional information about Sk and S ′k
in constant-rank semigroups.
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Lemma 5.3.19. Let S be an indecomposable semigroup of n × n matrices

whose every non-zero member has rank r. Let E =

[
F FX
0 0

]
∈ S be an

idempotent such that the matrix F does not contain zero rows, and k be the

size of F . Then every non-zero member of Sk (as in Lemma 5.3.17) has rank r.

Proof. First, observe that if A ∈ Sk is such that FAF 6= 0 then A has rank r.

Indeed, pick a nonnegative matrix B such that T :=

[
A B
0 0

]
belongs to S.

Then ETE =

[
FAF FAFX

0 0

]
is not zero, hence rank(ETE) = r. However,

this means that rank(FAF ) = r. Therefore r = rank(FAF ) 6 rank(A) 6

rank(T ) = r, so that rank(A) = r.

We claim that if A ∈ Sk is arbitrary then there are two matrices C1, C2 ∈ Sk
such that FC1AC2F 6= 0. Indeed, by Lemma 5.3.17, Sk is indecomposable.

Apply a permutation to Sk which makes F into a matrix of block form

[
0 ZG
0 G

]
where G is a block-diagonal matrix with diagonal blocks having no zero entries

(see Theorem 5.1.11). If D ∈ Sk is represented as

[
K L
M N

]
then FDF is

represented as

[
0 ZGMZG+ ZGNG
0 GMGZ +GNG

]
. Since the diagonal blocks of G do

not have zero entries, the product FDF is only zero when N = 0. It follows

from indecomposability of Sk that if A ∈ Sk is not zero then there exist

C1, C2 ∈ Sk such that the (2, 2)-block of C1AC2 is not zero.

This implies that for each non-zero A ∈ Sk, there are C1, C2 ∈ Sk such that

rank(C1AC2) = r. Therefore rank(A) > r. However the rank of any nonzero

matrix in S is r, hence rank(A) 6 r.

The proof of the next lemma is analogous to that of Lemma 5.3.19, so we

omit it.

Lemma 5.3.20. Let S be an indecomposable semigroup of n × n matrices

whose every non-zero member has rank r. Let E =

[
0 ZF
0 F

]
∈ S be an

idempotent such that the matrix F does not contain zero columns, and n − k

be the size of F . Then every non-zero member of S ′k (as in Lemma 5.3.18)

has rank r.
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Recall (see Theorem 5.1.11) that if E is a nonnegative idempotent matrix

then, after a permutation, E can be written as

E =

 0 XF XFY
0 F FY
0 0 0

 (5.5)

where F is a nonnegative idempotent without zero rows or zero columns and

X, Y are two nonnegative matrices. The block F is the rigid part of E (see

Definition 5.1.12).

The following lemma is the first step in establishing the finiteness of the

set of idempotents of an indecomposable constant-rank semigroup with finite

diagonals. Note that this lemma requires neither indecomposability nor con-

stancy of rank. In the proof of the lemma, we use ideas from [128].

Lemma 5.3.21. Let S be a semigroup with finite diagonals. Then the set{
F : F is the rigid part of some E = E2 ∈ S

}
is finite.

Proof. Let N be the size of matrices in S. Fix three numbers m,n, k > 0 such

that m+ n+ k = N . We will prove that the set

F =
{
F : F is the rigid part of some E = E2 ∈ S

whose diagonal blocks are of size m, n, and k, respectively
}

is finite. For each F ∈ F there exists a permutation matrix P such that

P−1FP = E1⊕· · ·⊕Er, where each Ei is an idempotent of rank one whose en-

tries are all positive. There are only finitely many choices for the permutation

P , the number of blocks, r, and the sizes of each block in this representation.

Therefore it suffices to show that, after a fixed permutation P , there are only

finitely many members in F having the same sequence of block sizes.

Let F ′, F ′′ ∈ F and a permutation P be such that P−1F ′P = E ′1⊕· · ·⊕E ′r,

P−1F ′′P = E ′′1 ⊕ · · · ⊕ E ′′r and the sizes of E ′i and E ′′i are the same for all
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i = 1, . . . , r. Fix i ∈ {1, . . . r}. We will prove that if the sequences of the

diagonal entries of E ′i and E ′′i are the same (that is, if (E ′i)jj = (E ′′i )jj for all

j) then E ′i = E ′′i . Since there are only finitely many choices for such diagonal

sequences, the conclusion will follow.

Relabel for convenience E ′i = Q, E ′′i = R. If Q and R have size 1, we

are done. Hence we can assume that the size is at least 2. Write Q = (qij),

R = (rij). Since Q and R are both positive rank-one matrices with equal

diagonals, there is a positive diagonal matrix D such that R = DQD−1 (for

example, the matrix D = diag(
r1j
q1j

) will do the job). Also, since Q and R are

both strictly positive, RQ is again of rank one. Thus, σ(RQ) = {tr(RQ), 0}.

Let D = diag(dj). Then

tr(RQ)− 1 = tr(DQD−1Q)− tr(Q2) =
∑
i,j

did
−1
j qijqji −

∑
i,j

qijqji =

=
∑
i,j

(did
−1
j − 1)qijqji =

∑
i<j

(did
−1
j + djd

−1
i − 2)qijqji.

We will be done if we prove that D is a multiple of the identity. Assume

otherwise. Fix i < j such that di 6= dj. Observe that for a > 0 we have

a+a−1 > 2 and the equality holds if and only if a = 1. Hence using a = did
−1
j ,

we get (did
−1
j +djd

−1
i −2)qijqji > 0, by strict positivity of elements of Q. Thus

tr(RQ) > 1, and therefore the spectral radius of RQ, r(RQ) > 1, so that

r(F ′′F ′) > 1. This is impossible by Lemma 5.3.3.

In the following lemma we establish finiteness of the set of idempotents of

a special kind in constant-rank semigroups with finite diagonals.

Lemma 5.3.22. Let S be an indecomposable semigroup with finite diagonals

such that all nonzero members of S have the same rank and

E =
{
E = E2 ∈ S : E =

[
F X
0 0

]
for some block X

}
where F is a fixed idempotent matrix without zero rows and columns. Then E

is finite.
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Proof. Denote by r the rank of all nonzero members of S. Applying a suitable

permutation to S we can assume that F is of the form F = F1⊕· · ·⊕Fr where

each Fi is an idempotent of rank 1 whose entries are all positive. Furthermore,

applying a diagonal similarity, we can assume that F is row stochastic.

Let k be the size of F . Define Jk and Sk as in Lemma 5.3.17. Since F does

not have zero rows, Sk is indecomposable. Also, by Lemma 5.3.19, all non-zero

members of Sk have rank r. Clearly, F is a nonzero idempotent in Sk. Define

S0 = FSkF.

By Lemma 5.3.16 we deduce that S0 is a finite group that is block-monomial

relative to the block structure inherited from F .

Consider the set

X =
{
X : X = FX and

[
F X
0 0

]
∈ S

}
.

To prove the lemma, we need to show that X is finite. Write every X ∈ X in

a block form compatible with the block form of F :

X =

 X1
...
Xr

 =

 F1X1
...

FrXr

 .
To prove the lemma, we need to establish that every entry of X can only

take finitely many values. We will prove this for the (1, 1)-entry. For other

entries, the argument is analogous.

Denote X1 = {X ∈ X : X11 6= 0}. To prove the Lemma, it is enough to

show that {X11 : X ∈ X1} is finite. Since S is indecomposable, there exists a

matrix S =

[
H K
R Q

]
in S such that the (1, 1) entry of R, R11, is not zero.

For each X ∈ X1 the upper-left block of the product[
F X
0 0

]
·
[
H K
R Q

]
·
[
F X
0 0

]
belongs to S0 and is equal to F (H + XR)F . Since S0 is block monomial

with respect to the block structure of F , so is the set {F (H + XR)F : X ∈
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X1}. However, H is fixed and all matrices in this expression are nonnegative.

Therefore the set Y1 = {FXRF : X ∈ X1} is finite and has the property that

every row of blocks in each matrix in Y1 has at most one nonzero block.

Write RF in a block form, conforming to the block columns of F :

RF =
[
L1 . . . Lr

]
.

For each X ∈ X1 we have

FXRF =

 X1L1 . . . X1Lr
...

...
XrL1 . . . XrLr

 .
Since X11 6= 0 for all X ∈ X1, the block X1L1 6= 0. Therefore X1Li = 0 for

all i ∈ {2, . . . , r}. Again, by X11 6= 0 this implies that the first row of each

Li is equal to zero (i = 2, . . . , r). Observe that, since the blocks of F are row

stochastic and have rank one, all rows of each Fi and, hence, of each Xi = FiXi

are the same (i = 1, . . . , r). In particular, the first entry in every row of

X1 = F1X1 is equal to X11. Thus the leading entry of RX = L1X1+· · ·+LrXr

is equal to s · X11 where s is the sum of elements from the first row of L1.

Observe that s 6= 0 by the choice of R. Also, RX is the lower-right block of

the product [
H K
R Q

]
and

[
F X
0 0

]
which belongs to S. Therefore there are only a finite number of values for

s · X11. Since s is independent of the choice of X, the set {X11 : X ∈ X1} is

finite which completes the proof.

Theorem 5.3.23. Let S be an indecomposable semigroup with finite diagonals.

If all nonzero elements of S have the same rank r then the set of idempotents

in S is finite.

Proof. Each idempotent in S is in the form of (5.5) after a suitable permuta-

tion. Since the number of possible permutations is finite, it is enough to prove

that for each permutation P , the indecomposable semigroup P−1SP contains

finitely many idempotents in the form of (5.5).
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Relabeling, if necessary, we can assume that the permutation P has already

been applied to S. For a fixed nonnegative idempotent F without zero rows

or zero columns, define

EF = {E = E2 ∈ S : the (2, 2) block of E in the block form of (5.5) is F},

XF = {XF : XF is the (1, 2) block in the form of (5.5) for some E ∈ EF},

YF = {FY : FY is the (2, 3) block in the form of (5.5) for some E ∈ EF}.

Fix the (2, 2)-block F . By Lemma 5.3.21, it suffices to show that XF and YF
are finite. Let us prove first that YF is finite. We assume that YF is not empty,

as otherwise there is nothing to prove.

Denote by k the number of rows in the (1, 1) block of the representa-

tion (5.5). Define J ′k and S ′k as in Lemma 5.3.18. We consider two cases.

Case 1. There exists FY ∈ YF which has no zero columns. Then there is

an idempotent in S ′k which has no zero columns. Then by Lemma 5.3.18 and

Lemma 5.3.20, the semigroup S ′k is a constant rank indecomposable semigroup.

By Lemma 5.3.22, the idempotents in S ′k form a finite set. Hence YF is finite.

Case 2. All FY in YF have zero columns. Let n be the number of columns

in each FY . For each C ⊆ {1, . . . , n}, define YF,C = {FY ∈ YF : exactly

columns numbered by members of C are zero }. We will prove that each YF,C
is finite.

There is a permutation Q such that if FY ∈ YF,C then Q−1
[
F FY
0 0

]
Q

is of form

[
0 0
0 E1

]
where E1 is of the form

[
F FY1
0 0

]
and Y1 has no zero

columns. Now the finiteness of YF,C follows from the argument in Case 1

applied to the semigroup Q−1SQ.

The finiteness of each XF is established by applying an analogous argument

to S∗.

The following example shows that the condition on the rank is important

in Theorem 5.3.23.
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Example 5.3.24. An indecomposable semigroup with finite diagonals having

infinitely many idempotents.

S =
{[ I S

0 0

]
,

[
E 0
0 E

]
,

[
0 E
E 0

]
,

[
E E
0 0

]
,

[
0 0
E E

]}
where E =

[
1/2 1/2
1/2 1/2

]
and S runs over all matrices of form

[
p q
q p

]
, with

p+ q = 1, p, q > 0.

Even though the next lemma is standard, we decided to include a proof

of it.

Lemma 5.3.25. Let N be a nonnegative n×n matrix such that N2 = 0. Then

there exists a permutation of the basis vectors such that N can be written as

N =

[
0 A
0 0

]
(with square diagonal blocks). Moreover, if N is nonzero then

A can be chosen to contain no zero columns or (alternatively) no zero rows.

Proof. Let F = {i : Nei = 0} where (ei) is the standard unit vector ba-

sis. We will first show that F cannot be empty. Suppose otherwise. Then

Ne1 = (a1e1 + · · · + anen) for some nonnegative ai, where at least one, say

ak, is positive. Then, by the nonnegativity of N and since Nakek 6= 0,

‖N2e1‖ ≥ ‖N(akek)‖ > 0, which is a contradiction. Therefore, applying a

suitable permutation, we can assume that F = {1, . . . , k} for some k. Since

N2 = 0, for each i ∈ {k + 1, . . . , n} we have Nei =
∑

j∈F aijej for some non-

negative aij. This shows that N can be represented in the desired form with

A having no zero columns (provided N 6= 0). If A has zero rows then, apply-

ing a permutation and partitioning the first diagonal block into two diagonal

subblocks, we obtain a new A with no zero rows (but some zero columns).

Lemma 5.3.26. Let S be an indecomposable semigroup with finite diago-

nals. If all nonzero members of S have the same rank, then the set {N ∈

S : N is nilpotent} is finite.
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Proof. Denote by r the rank of the nonzero elements in S. The proof is by

induction on the size n of matrices in S. If n = 1 then there are no nonzero

nilpotent matrices in S. Let n > 1.

Clearly, since the rank of all nonzero elements of S is the same, if N ∈ S

is nilpotent then N2 = 0. By Lemma 5.3.25, after a permutation of the basis,

we can write N =

[
0 A
0 0

]
for some nonnegative matrix A without zero

rows. Since the number of possible permutations is finite, it is enough, as in

Theorem 5.3.23, to show that S contains only finitely many nilpotent matrices

in this block form.

Define

Nk =
{[ 0 A

0 0

]
∈ S : A has k nonzero rows and no zero rows

}
.

(Note that we have to allow A to have zero columns in the definition above,

because the diagonal blocks have to be square.) For a matrix N ∈ Nk, we

will denote by aN the leading entry, A11, of the block A. As in the proof of

Theorem 5.3.23, it is enough to show that the set {aN 6= 0: N ∈ Nk} is finite.

Pick any matrix M =

[
H L
J K

]
∈ S such that the leading entry of J is

different from zero. If aN 6= 0 then NM is not nilpotent, and hence a power

of NM is a nonzero idempotent by Corollary 5.3.5. Denote this idempotent

by EN . Since N and EN have the same range, ENN = N . In particular, the

zero rows of EN and N are the same. Hence in the block form inherited from

N we get EN =

[
Q Z
0 0

]
. Clearly Q = Q2 and Z = QZ, so that Q has no

zero rows.

Case 1. Suppose that EN and N have common zero columns. After a

suitable permutation the matrices EN and N can be written in the block form
0 0 0 0
0 0 XF XFY
0 0 F FY
0 0 0 0

 and


0 0 0 0
0 0 0 B
0 0 0 C
0 0 0 0

 ,
respectively, where F has no zero columns and the fourth block column in

each of the two matrices has no common zero columns. Since ENN = N , we
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get B = XFC and C = FC. In particular FY and C have no common zero

columns. Let j be the number of zero columns in the first two block columns.

Define S ′j as in Lemma 5.3.18. Then S ′j is an indecomposable semigroup. We

will show now that the rank of nonzero elements in S ′j is equal to r.

Let F̃ =

[
F FY
0 0

]
, X̃ =

[
0 0
X 0

]
, and C̃ =

[
0 C
0 0

]
, then EN =[

0 X̃F̃

0 F̃

]
and N =

[
0 X̃C̃

0 C̃

]
. Let V ∈ S ′j be nonzero. Then there exists

T =

[
0 U
0 V

]
∈ S. Consider the products ENT =

[
0 X̃F̃V

0 F̃ V

]
and NT =[

0 X̃C̃V

0 C̃V

]
. Since V 6= 0 and the matrices F̃ and C̃ have no common zero

columns, one of the matrices ENT or NT is different from zero and hence has

rank r. It is left to note that rank(ENT ) = rank(F̃ V ), rank(NT ) = rank(C̃V ),

and r = rank(T ) > rank(V ) > rank(F̃ V ) ∨ rank(C̃V ) = rank(ENT ) ∨

rank(NT ) = r.

So, the semigroup S ′j is an indecomposable semigroup with finite diagonals

whose nonzero elements have constant rank. Also, the size of matrices in S ′j
is smaller than n. Thus, by the induction hypothesis, there are finitely many

nilpotent matrices in S ′j. Therefore the matrix C̃ comes from a finite set. By

Theorem 5.3.23, there are finitely many idempotents in S, hence the matrix

X̃ also comes from a finite set. Hence so does the matrix N .

Case 2. Suppose EN and N have no common zero columns. Then in

particular Q is an idempotent without zero rows and zero columns.

Write Q = Q1 ⊕ · · · ⊕Qr where each Qi is a rank-one idempotent without

zero entries. In this block structure, write

A =

 A1
...
Ar

 =

 Q1A1
...

QrAr

 and J =
[
J1 . . . Jr

]
.

Applying a suitable diagonal similarity (note that these diagonal similarities

come from a finite set since they depend on EN only, and the set of idempotents

in S is finite by Theorem 5.3.23), we can assume that Q is row stochastic.

Then the rows of A1 are all the same. Write NM =

[
AJ AK
0 0

]
. Clearly
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Q(AJ) = (AJ)Q and, since ENN = N , Q(AJ) = AJ . The size of Q is n− k.

Let Sn−k be as in Lemma 5.3.17. Then Sn−k is indecomposable. Therefore the

matrix AJ is block monomial by Lemma 5.3.16.

We have

AJ =

 A1J1 . . . A1Jr
...

...
ArJ1 . . . ArJr

 .
The leading block of AJ is different from zero. Hence A1Ji = 0 for all i ∈

{2, . . . , r}. The leading entry of A1 is nonzero. Hence the first row of each Ji(
i ∈ {2, . . . , r}

)
is zero. Denote the sum of elements in the first row of J1 by

s. By analyzing the product of

[
H L
J K

]
and

[
0 A
0 0

]
, we get: the value

saN is on the diagonal of this product, and hence can only take finitely many

values. Since s is independent of N and is different from zero, this shows that

aN can only take finitely many values, too.

Lemma 5.3.27. Let S be an indecomposable semigroup with finite diagonals

such that all nonzero members of S have the same rank. Let E ∈ S be a

nonzero idempotent. Then the set SE = {S ∈ S : ESE = S} is a finite group

with unit E.

Proof. By Lemma 5.3.3, r(T ) = 1 for all T ∈ SE. So, the statement follows

from [103, 5.2.2(iv)]. The condition in [103, 5.2.2(iv)] that S = R+S is not

essential since it is only used to establish that SE is bounded (which follows

from Proposition 5.2.10) and that for each S ∈ SE a sequence of powers of S

converges to an idempotent in SE (which follows from Lemma 5.3.4).

Theorem 5.3.28. Let S be an indecomposable semigroup with finite diagonals.

If all nonzero members of S have the same rank, then S is finite.

Proof. Let E be the set of all nonzero idempotents in S. For each E ∈ E ,

denote SE = {S ∈ S : ESE = S}. By Lemma 5.3.27, SE is a finite group with

unit E. We claim that each non-nilpotent member of S belongs to
⋃
E∈E SE.

Indeed, by Lemma 5.3.4, each S ∈ S is represented in some basis as

[
U 0
0 N

]
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where U is a unitary diagonal matrix and N is a nilpotent matrix. If S is not

nilpotent then N = 0 because the rank of all nonzero elements of S is the same.

Therefore a power Sm of any non-nilpotent S ∈ S is a nonzero idempotent E.

In this basis, E is represented as

[
I 0
0 0

]
, and hence ESE = S.

Since the set E is finite by Theorem 5.3.23, this shows that the set of non-

nilpotent matrices in S is finite. The finiteness of nilpotent elements in S is

shown in Lemma 5.3.26.

The natural (in view of Theorem 5.3.7) question whether the finiteness

of diagonal entries in the statement of Theorem 5.3.28 can be replaced with

finiteness of the trace has a negative answer, as Example 5.3.8 shows. In

fact, the semigroup in that example consists of idempotents only, so that

the corresponding question asked about Theorem 5.3.23 would already have a

negative answer.

5.3.4 Admissible diagonal values

In this subsection we analyze what values there could be on the diagonal

positions of a semigroup with finite diagonals.

Theorem 5.3.29. Let S be an indecomposable semigroup with finite diagonals.

Then for each S ∈ S the sequence (Sii) can be partitioned into subsequences

each of which either adds up to 1 or consists of zeros.

Proof. Let S ∈ S be fixed. By Lemma 5.3.3, the possible eigenvalues of S

are roots of unity and zero. After a permutation, S can be decomposed into

a block triangular form whose diagonal blocks are indecomposable matrices

S1, . . . , Sk. Pick any i ∈ {1, . . . , k} and denote for convenience T = Si. It is

enough to prove that the statement of Theorem is valid for T .

Since T is indecomposable, T is not nilpotent. Let r > 1 be the number

of nonzero eigenvalues (counting multiplicities) of T . Then r = rank(T ).

By Corollary 5.3.5, the minimal rank of nonzero matrices in the norm closed

semigroup generated by T is r. Hence by the Theorem 5.1.6 (iv), after a
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permutation, T can be written in the block form

T =


0 . . . 0 Tr
T1 0 . . . 0
...

. . . . . .
...

0 . . . Tr−1 0

 .
If r > 1 then all the diagonal elements are zero, since permutations only change

the order of diagonal elements. If r = 1 then zero has multiplicity n−1 (where

n is the size of T ). Since 1 ∈ σ(T ), we get tr(T ) = 1, hence the sum of the

diagonal elements of T is 1.

Definition 5.3.30. A finite set F ⊆ R+ is called admissible if F can be

written as a (not necessarily disjoint) union F = F1 ∪ · · · ∪ Fn where each

Fk = {x1, . . . , xik} satisfies the condition that

ik∑
j=1

mjxj = 1

for some mj ∈ N (j = 1, . . . , ik).

Example 5.3.31. The set {1
5
, 1
3
, 2
9
, 2
3
} is admissible since 5· 1

5
= 1, 1

3
+3 · 2

9
= 1,

and 2
3

+ 1
3

= 1. The sets {0} and {3
7
, 2
5
} are not admissible.

The following lemma is obvious.

Lemma 5.3.32. A finite union of admissible sets is admissible.

Theorem 5.3.33. Let F ⊆ R be such that 0 ∈ F . Then F is admissible if

and only if there exists an indecomposable semigroup S with finite diagonals

such that the set of diagonal values of all the matrices in S is equal to F .

Proof. If S is an indecomposable semigroup with finite diagonals and S ∈ S,

then the set FS of all the diagonal entries of S is admissible by Theorem 5.3.29.

Since S is a semigroup with finite diagonals, there are only finitely many

choices for the set FS. Therefore F = ∪S∈SFS is admissible by Lemma 5.3.32.

Let F be admissible. Write F = F1 ∪ · · · ∪ Fn as in the definition of

an admissible set. We will show that there exists a semigroup S as in the

statement of the theorem.
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For each k ∈ {1, . . . , n}, write Fk = {x(k)1 , . . . , x
(k)
ik
} and fix m

(k)
1 , . . . ,m

(k)
ik

such that
∑ik

j=1m
(k)
j x

(k)
j = 1. Put Nk =

∑ik
j=1m

(k)
j and define a vector y(k) =

(y
(k)
i )Nki=1 ∈ RNk by

y(k) =
(
x
(k)
1 , . . . , x

(k)
1︸ ︷︷ ︸

m
(k)
1

, x
(k)
2 , . . . , x

(k)
2︸ ︷︷ ︸

m
(k)
2

, . . . , x(k)n , . . . , x(k)n︸ ︷︷ ︸
m

(k)
n

)
.

Clearly,
∑Nk

i=1 y
(k)
i = 1. For each i, j ∈ {1, . . . , n}, define a rank-one Nj × Ni

matrix

Tij =

 y
(i)
1 . . . y

(i)
Ni

...
...

y
(i)
1 . . . y

(i)
Ni

 .
Since each Tij is row stochastic, a routine check shows that for all i, j, k ∈

{1, . . . , n} we have TijTjk = Tik.

Now let Eij be the block matrix with n vertical and n horizontal blocks

such that the (k, l) block of Eij is equal to the Nk ×Nl zero matrix if k 6= i or

l 6= j and is equal to Tij if k = i and l = j. Define

S = {Eij : 1 6 i, j 6 n} ∪ {0}.

Then clearly S is an indecomposable semigroup whose set of diagonal elements

is F .

The last statement to be proved in this section is the assertion that if

an admissible set F ⊆ R+ does not contain zero, then there may not be

an indecomposable semigroup of matrices whose diagonal entries form a set

which is exactly F . It will need an auxiliary lemma which may be of some

independent interest.

Lemma 5.3.34. Let S be a semigroup with finite diagonals such that no mem-

ber of S has zero on the diagonal. If the minimal rank mS of nonzero elements

in S is not one, then S is decomposable.

Proof. Suppose S is indecomposable and mS > 2. Fix a minimal idempotent

E ∈ S. Since E has no zeros on the diagonal, E = E1⊕ · · · ⊕EmS where each

Ei is a strictly positive idempotent.

120



Let S ∈ S be an arbitrary matrix. By Corollary 5.3.5, there is m ∈ N

such that (ESE)m is an idempotent which we will denote by F . Clearly

EF = FE = F . Since the diagonal values of matrices in S do not admit

zeros, E = F by minimality of E.

We claim that up to a permutation similarity, S is block-diagonal relative

to the block-structure inherited from E. Indeed, suppose that S is not block-

diagonal, say, (1, 2)-block of S is not zero. Write (ESE)m = ES[E(ESE)m−1].

Since members of S can only have non-zero elements on the diagonal, there

exist λ > 0 and µ > 0 such that E > λI and E(ESE)m−1 > µI. Then

E > λµS. That is, E has a non-zero (1, 2)-block, which is impossible.

Proposition 5.3.35. If F = {1
2
, 1
3
} then there is no indecomposable semi-

group, S, such that the set of diagonal entries of matrices in S is equal to F .

Proof. Suppose such a semigroup, S, exists. By Lemma 5.3.34, S contains

an idempotent E of rank one. Since E cannot have zeros on the diagonal, E

must be strictly positive. Since also tr(E) = 1, there are, up to a diagonal

similarity, only two choices for E:

either E =

[
1/2 1/2
1/2 1/2

]
or E =

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3.


That is, S consists of either 2× 2 matrices or 3× 3 matrices. We will consider

these two cases separately.

Assume the size of matrices in S is 2. Let A be a matrix having 1/3 on

the diagonal. That is, up to a permutation, A =

[
1/3 a
b c

]
for some a, b,

and c. By Lemma 5.3.3, the eigenvalues of A are either zero or roots of unity

of degree at most 2. Also, tr(A) > 0. Therefore the only possible values for

tr(A) are 0, 1, and 2. In either case, c cannot belong to F .

Now let the size of matrices in S be 3. Again, fix a matrix A with 1/2 on

the diagonal. Denote the two other diagonal entries of A by a and b. Observe

that in this case, the only possible values for tr(A) are 0, 1, 2 and 3, none of

which can be achieved by choosing a and b in F .
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[29] M. S. Brodskĭı, On a problem of I. M. Gel’fand, Uspehi Mat. Nauk (N.S.)

12 (1957) no. 2 (74), 129–132 (Russian).

[30] S. W. Brown, Some invariant subspaces for subnormal operators, Integral

Equations Operator Theory 1 (1978), no. 3, 310–333.

124



[31] A. Brunel, L. Sucheston, On B convex Banach spaces, Math. Systems

Th., 7 (1974), 294–299.

[32] A. Brunel, L. Sucheston, On J-convexity and some ergodic super proper-

ties of Banach spaces, Trans. Amer. Math. Soc. 204 (1975), 79–90.

[33] W. Burnside, On the condition of reducibility of any group of linear sub-

stitutions, Proc. London Math. Soc. 3 (1905), 430–434.

[34] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded

operators in Hilbert space, Ann. Math. 42 (2) (1941), 839–873.

[35] P. Casazza and R. Lohman, A general construction of spaces of the type

of R. C. James, Canad. J. Math., 27(1975), no. 6, 1263–1270.

[36] V. Caselles, On irreducible operators on Banach lattices, Nederl.

Akad.Wetensch. Indag. Math. 48 (1986), no. 1, 11–16.

[37] V. Caselles, On band irreducible operators on Banach lattices, Quaestiones

Math. 10 (1987), no. 4, 339–350.

[38] I. Chalendar, E. Fricain, A. I. Popov, D. Timotin, and V. G. Troitsky,

Finitely strictly singular operators between James spaces, J. Funct. Anal.

256 (2009), 1258–1268.

[39] J. Daughtry, An invariant subspace theorem, Proc. Amer. Math. Soc. 49

(1975), 267–268.

[40] A. M. Davie, Invariant subspaces for Bishop’s operators, Bull. London

Math. Soc. 6 (1974), 343–348.

[41] B. de Pagter, Irreducible compact operators, Math. Z. 192 (1986), no. 1,

149–153.
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[50] G. Frobenius, Über Matrizen aus nicht negativen Elementen, Sitzungs-

berichte der Preussischen Akademie der Wissenschaften zu Berlin (1912),

456–477.

[51] B. Fuglede, A commutativity theorem for normal operators, Proc. Nat.

Acad. Sci. U. S. A. 36, (1950). 35–40.

[52] I. M. Gelfand, N. Ya. Vilenkin, Generalized functions. Vol. 4. Applications

of harmonic analysis, Acad. Press (1968) (Translated from Russian).

126



[53] H. Gessesse, A. I. Popov, H. Radjavi, E. Spinu, A. Tcaciuc, and V. G.

Troitsky, Bounded indecomposable semigroups with non-negative matrices,

Positivity 14 (2010), no. 3, 383-394.

[54] T. A. Gillespie, An invariant subspace theorem of J. Feldman, Pacific J.

Math. 26 (1968) 67–72.

[55] I. Gohberg, A. Markus, I. Feldman, Normally solvable operators and ideals
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