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Abstract 

Localizing oneself and other objects in an environment is important in everyday life. 

Various visual features available in our surroundings can serve as spatial cues to support accurate 

localization. Encoding individual locations can be achieved by establishing a vector between a 

target location and a reference point chosen from the environmental features (e.g., the school is 

one kilometer north of my home). Representations of individual locations can further be 

integrated to compose a unified representation, which allows inferring novel spatial relations 

among the locations (i.e., a vector between two points). Such metric representations are referred 

to as cognitive maps (e.g., Tolman, 1948) and we refer to the integration process as cognitive 

mapping. Three sets of studies were carried out to investigate the contributions of different types 

of visual cues, mainly surface-based boundary cues (e.g., walls or river banks) and discrete-

object-based landmark cues (e.g., buildings or trees), in encoding individual locations and 

cognitive mapping of the locations, respectively.  

The studies in Chapter 2 demonstrated a more accurate cognitive map of multiple 

locations derived from learning locations relative to a single landmark than to a circular 

boundary. The studies in Chapter 3 revealed two factors that impeded cognitive mapping relative 

to a circular boundary: 1) that the boundary provided multiple reference points for encoding 

individual locations, leading to a more complex integration process of single-location 

representations whereas the integration process was relatively easier when the locations were all 

encoded relative to the single landmark which served as the common reference point; 2) that 

participants’ knowledge of the spatial relations among the chosen reference points from the 

boundary was limited, leading to less accurate cognitive maps. The results of the studies in 

Chapter 3 suggest that people might represent a bounded space in a fragmented fashion rather 
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than in a global fashion. Given the inconsistent roles of a boundary in encoding individual 

locations (the boundary advantage) and in cognitive mapping, the studies in Chapter 4 

investigated two potential factors contributing to the relative preference for the boundary cue in 

goal localization, mainly the perceived stability of an environmental feature and the 

distinctiveness of the potential reference points provided by the environmental feature. An 

overshadowing effect of landmark-related learning over boundary-related learning was observed 

when the perceived relative stability of the landmark array was increased; however the 

distinctiveness alone was insufficient to increase the cue reliance upon the landmark array. The 

results challenged the incidental characteristic of boundary-related learning. We postulate that 

boundary-related learning might also be subject to a reference-point selection process at the 

initial stage of goal localization, during which the usefulness of various environmental features 

are evaluated based on the navigation task and more learning resource would be assigned to the 

more “informative” feature selected as the reference points for encoding locations.  

In sum, our work has demonstrated an inferior role of a boundary cue in forming 

cognitive maps and the susceptibility of the boundary to the cue competition from other 

environmental features. We propose the segmentation hypothesis and the vector-addition model 

to conceptualize localization and cognitive mapping relative to a boundary cue. 
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Every year between September and October, big flocks of Monarch butterflies fly from 

Southern Canada/part of the United States to Central Mexico to escape from harsh winters. The 

cross-continent journey takes the butterflies over two months to finish. The vast plains of Africa 

witness the largest mammal migration during which hundreds and thousands of wildebeest take a 

nearly-two-month journey moving from Tanzania to Kenya. These large-scale migrations 

demonstrate some impressive navigation abilities. Although we humans, compared to our fellow 

inhabitants on earth, are less competitive regarding our ability to deal with such long-distance, 

self-initiated navigation, we do need to find our way in our surroundings to various places on a 

daily basis. To think about how we acquire knowledge of where things are in the environment, 

how we form memories of various locations in the physical space and eventually use such 

“mental map” to guide our navigation is fascinating. The quest to understanding the success of a 

variety of navigation triumphs, from the great migration on a large scale to our seemingly 

effortless home-to-work commute, would allow us a glimpse of how the mind forms, interacts 

with and utilizes representations of physical space.  

1.1 Place learning and response learning in navigation 

Successful navigation relies on accurate encodings and representations of task-relevant 

spatial information. Spatial information can be acquired in various approaches. One can use 

proprioceptive and sensorimotor information generated through the course of locomotion to 

update knowledge regarding one’s current location within the environment as well as spatial 

relations between oneself and the other entities in the environment (Philbeck & Sargent, 2013). 

Visual features of the environment can also inform an individual regarding one’s current 

location. The current thesis mainly focuses on how the visual features of our surroundings are 
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involved in one’s acquisition of spatial knowledge and forming spatial representation of a given 

environment. 

Multiple learning mechanisms and memory systems can contribute to learning of spatial 

information of an environment. In his seminal paper, Tolman (1948) distinguished two kinds of 

learning mechanisms that can lead to a spatial behavior (such as rats running towards a goal 

location in a maze), namely response learning and place learning. Response learning, as 

advocated by classic behaviorists, is a type of conditioning during which a certain response is 

associated with a given stimulus (response can be either strengthened by the presence of a 

positive stimulus/reward such as food or weakened by the presence of an aversive 

stimulus/punishment such as an electric shock in animal studies). For instance, when rats are 

learning to approach a food reward located at the end of the right arm of a T maze placed in the 

middle of an experiment room, one type of information they can learn is “turning right at the 

joint leads to food”. Alternatively, rats could also encode the location of the food reward in terms 

of the environment (e.g., the food is on the west side of the room) and use such location 

information to guide its behavior in the maze. Tolman referred to the latter as place learning (in 

which the “place” of an event rather than the action leading to the event was learned) 

According to Tolman, place learning is a form of learning fundamentally different from 

associative learning which includes response learning (Tolman, 1948; see also Nadel, 2013). 

Through a series of experiments, Tolman and colleagues demonstrated that, among all the 

results, that 1) rats could use “place” information to reach a goal location containing food 

reward, in that rats were able to take an alternative path to the goal location when the original 

trained path was blocked (Tolman, Ritchie & Kalish, 1946); 2) place learning was relatively 
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easier than response learning, in that the learning curve for approaching a specific location for 

food was steeper than the learning curve for making a consistent action (e.g., turning right at the 

joint of a T maze) for food in rats (Tolman, Ritchie & Kalish, 1946); 3) the occurrence of place 

learning was independent of external rewards such as food and immune to the rules of 

associative learning (Tolman & Honzik, 1930; see also Tolman, 1948). It is through place 

learning, proposed by Tolman, that rats could build up a comprehensive representation of the 

environment which stores the metric spatial relations (including distance and direction 

information) among the environmental features and locations of interest. Tolman termed this 

type of spatial representation of a given environment as a “cognitive map”, the notion of which 

stirred a first wave against the then-dominant view of behaviorism account on animal behaviors 

(which mostly regards animal behavior as a simple mapping between environmental stimuli and 

responses).  

One important property of place learning is that place learning is not subject to 

competition of associative strength (thus, a form of latent learning), which distinguishes it from 

associative learning (O’Keefe, & Nadel, 1978). According to the traditional views about 

associative learning (Rescorla & Wagner, 1972), various environmental stimuli compete for 

associative strength when an organism is learning to associate a particular stimulus with a 

specific consequence. As a result, interference such as overshadowing and blocking can be 

observed in learning the associations between different stimuli and a particular event. 

Overshadowing refers to the scenario that learning of a more salient stimulus would impair 

learning of a less salient one when the two stimuli can simultaneously predict an event (Kamin, 

1968). Blocking refers to the scenario that initial learning of one stimulus predicting an event 

interferes (blocks) subsequent learning of the association between a new stimulus and the same 



5 

 

 

event, if the previous stimulus can fully predict the event (Kamin, 1968). As discussed in more 

detail in the later part of the chapter, the immunity of place learning to overshadowing and 

blocking (hence, immunity of place learning to competition of associative strength) provides a 

diagnostic method for researchers to identify a particular navigation behavior/strategy as a form 

of place learning or associative learning (e.g., Doeller & Burgess, 2008). 

Since the original introduction of place learning by Tolman, much research has been done 

across species to investigate the learning mechanisms involved in goal-oriented navigation 

behaviors. Various spatial tasks have been developed to assess the acquisition of spatial or non-

spatial knowledge in animals and humans. One classic paradigm, the Morris Water Maze 

(MWM) task is reviewed here because the modification of the task is employed as the main 

method in the work of this thesis. The Morris Water Maze (MWM) task is one of the prevalent 

spatial tasks used in animal navigation studies, which has also been adapted for studies on human 

adults (e.g., Doeller & Burgess, 2008; Mou & Zhou, 2013) and children (e.g., Bullens et al., 

2010). The typical setting of the paradigm is that rats are trained to swim to a platform either 

visible or invisible (submerged) in a tank of opaque water (the shape of the tank can be circular, 

rectangular or of other forms depending on researchers’ interests). The desire to escape from the 

water would serve as a strong motivation for rats to find the platform. One critical advantage of 

the MWM task is, depending on the visual cues available during the experiment (either the 

visible platform itself served as a beacon cue, a visual intramaze landmark, the edge of the tank 

itself, or the distal visual cues within the room where the tank is located), it is possible to 

dissociate the roles of various environmental inputs in aiding rats to locate the platform, thus 

providing a window into understanding the contributions of different learning mechanisms in 

navigation. 
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For instance, Morris (1981) demonstrated that rats were able to use both a beaconing 

strategy (by approaching a visible platform at a fixed location in the tank) and a place learning 

strategy (by learning the location of a hidden platform at a fixed location in the tank) to locate a 

platform within the water tank. In this study, two groups of rats were trained to swim to a 

platform within a circular water tank. The water tank was placed in a room which provided distal 

visual cues for orientation. For one group (the “cue + place” group), the platform rose from the 

water surface at a fixed location within the tank, rendering a visible platform meanwhile the 

platform at the fixed location was submerged for the other group (“place” group). Both groups 

showed rapid acquisition of the task although the “cue + Place” group displayed faster learning 

(in terms of steeper decrease in escape latency). Interestingly, when the platform was removed 

(thus the beacon cue was no longer available for the “cue + place” group), rats in the “cue + 

place” group still spent more time searching in the correct quadrant than in the other parts of the 

pool, indicating acquisition of some place knowledge in the cue-place group despite the visibility 

of the platform as a strong associative cue. 

The MWM task not only has advantages in behaviorally disentangling different learning 

mechanisms underlying a goal-oriented behavior (Brandeis, Brandys & Yehuda, 1989), but also 

provides a possible means to observe dissociations of different brain systems involved in 

corresponding learning mechanisms (e.g., Morris, 1982; Packard & McGaugh, 1992; McDonald 

& White, 1994; Pearce, Roberts & Good, 1998). In general, the findings indicate that distinctive 

brain areas are involved in different learning mechanisms: notably, the hippocampal region 

seems to be responsible for place strategies whereas the striatal region seems to be responsible 

for response strategy when rats are navigating in the maze (for review, see Brandeis, Brandys & 

Yehuda, 1989; see also White & McDonald 2002).  
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For example, McDonald and White (1994) trained three groups of rats (hippocampal-

lesioned group, dorsal-striatal-lesioned group, and the normal control group) to swim to a visible 

platform at a fixed location within a circular water tank. Distal orientation cues were available in 

the room where the tank was located. After every three days of training, the visible platform was 

replaced with an invisible one occupying the same location to assess rats’ ability to locate the 

platform based on the place strategy (learning the physical location of the platform regardless of 

the visibility). It was found that the hippocampal-lesioned rats were not able to find the invisible 

platform still placed at the trained location. In contrast, the dorsal-striatal-lesioned rats were able 

to locate the platform just as the control rats were. On the last day of the experiment, the 

researchers moved the visible platform to a new location within the tank to assess rats’ ability to 

locate the platform using the beaconing strategy (visibility as an associative cue). Interestingly, 

the striatal-lesioned rats still swam to the old location of the platform (trained location) even 

though the platform was visible at the new location, indicating that the navigation behavior of 

these rats were controlled by a place strategy. However the hippocampal-lesioned group was able 

to swim directly to the new location while rats in the control group were split into adopting either 

a response strategy or a place strategy.  

The dissociation between the hippocampal-dependent navigation strategy and the striatal-

dependent navigation strategy demonstrates that different brain areas govern place learning and 

response learning respectively. More critically, these different learning systems seem to process 

different aspects of environmental information (visibility of the platform as a form of local cue 

vs. the spatial relation between the platform and the experiment environment as a form of distal 

cue) in a parallel fashion. Depending on individuals, these parallel learning mechanisms exert 

controls to different extent over the final spatial behavior displayed by the individuals (as 
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observed in the control group showing split navigation strategies). Such findings led to a theory 

postulating that multiple parallel memory systems take control of our learning of different 

aspects of environmental events (McDonald & White, 2002). Information processing within one 

system is somewhat independent of the processing within another system. As a result, we are 

able to form different types of memories of our surroundings. 

1.2 Visual cues aiding navigation 

Our environment has rich visual input, from the sun in the sky, urban buildings in the 

cities to massive mountain ranges and rivers in nature. We encounter various visual features 

during our navigation in the environment and naturally some of them are used to help us 

determine where we are (position) and where we are facing (heading). Two types of visual 

features and their functions in spatial navigation are identified by researchers (see Lew, 2011 for 

review), mainly the boundary cues consisted of continuous surface (such as an external wall of a 

large building or a mountain range) and the landmark cues based on discrete, stand-alone objects 

(such as a tower or a tree) 

1.2.1 Visual landmarks aiding navigation 

Visual landmarks are versatile in terms of their roles in aiding navigation. When a 

destination itself is marked by some visual feature, a beaconing strategy could be employed. For 

instance, when a prominent skyscraper (can be seen from afar) is the destination of a traveler 

new to a city, one can simply navigate by approaching the visual landmark. As is discussed 

before, this type of learning does not necessarily involve place learning (e.g., it is more like 

response learning of a visible platform in the MWM task).  A visual landmark, once registered in 

our mental representation of a particular space, can also be used for place recognition, that is 
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landmarks of significant navigation relevance can serve as a retrieval cue to notify us what 

spatial memories are relevant. For instance, upon seeing the familiar bookstore from exiting an 

underground subway station, we would be able to recognize which exit we took and in which 

part of the neighborhood we are currently located.  

Brain imaging studies have shown that one brain region, parahippocampal place area 

(PPA) seems to be responsive to objects that are more useful for navigation (Konkle & Oliva, 

2012) and to objects that can evoke a strong sense of the surrounding space (Mullaly & Maguire, 

2011; see Epstein & Vass, 2014 for review). In one neuroimaging study using the fMRI 

technique, Janzen and van Turennout (2004) had participants remember objects placed along a 

route while the participants watched a video footage of the route in a virtual maze. The 

placement of the objects was critical as some objects were put at the decision points along the 

route (e.g., at a turning point of the route) and some were not. Participants were later assessed on 

their memories of the objects in a recognition task. Although behavioral performance on the 

recognition task was equivalent for decision-point objects and non-decision-point objects, the 

PPA showed increased activation for decision-point objects than for non-decision-point objects 

regardless of whether the objects were identified as remembered or not. The results suggest that 

objects of navigational significance (i.e., landmarks) are processed in an additional stream apart 

from the processing of non-landmark objects.  

Other research has demonstrated that retrosplenial cortex (RSC) is involved in retrieving 

location and orientation information (i.e., where one is located in terms of a broad environment) 

based on the given landmark/scene information (e.g., knowing where one is in terms of a 

neighborhood when seeing the bookstore at the subway exit). In one fMRI study by Vass and 
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Epstein (2013), participants viewed pictures taken at several familiar campus locations, which 

consisted pictures from different facing directions at the same location and pictures from 

different facing directions at different locations. Their behavioral task was to identify the facing 

direction of the camera when the image was taken upon viewing each picture, which ensured that 

participants had to recognize the place depicted in a given image to give a correct response. 

Using multivoxel pattern analysis (MVPA), Vass and Epstein observed that different views 

across the same location (different facing directions at the same location) elicited more similar 

activity pattern in RSC than different views at different locations, suggesting a role of RCS in 

coding location identity (different views across one location indicating the same location). Such 

findings regarding the roles of different brain regions in response to visual landmarks and scenes 

reveal the ability of our brain to extract information of navigational significance from our 

surroundings. 

Beyond serving as a beacon cue or a retrieval cue for place recognition, a visual landmark 

is also useful in establishing stimulus-response associations in navigation. An organism could 

couple a series of actions with a series of visual landmarks at corresponding decision points to 

form a type of route knowledge (e.g., turning left at the post office and turning right next at the 

restaurant) (Siegel & White, 1978; see also Ishikawa & Montello, 2006). Such route knowledge 

might not involve encoding/representing metric relations among the landmarks, thus falling into 

the categories of response learning.  

As discussed above, discrete objects as visual landmarks of navigational relevance can 

aid navigation as a beacon cue, a retrieval cue for place recognition or an associative cue for 

response involved in navigation. Moreover, a single visual landmark can also serve as a 
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reference point for encoding individual locations (e.g., Pearce, Roberts & Good, 1998; Doeller & 

Burgess, 2008; Mou & Zhou, 2013) when precise knowledge of a location within the space is 

required (e.g., animals determining a foraging site in outdoor environments). Encoding and 

representing metric spatial relations between a chosen reference point (a specific landmark) and 

a target location (i.e., establishing a vector) is involved in this type of spatial learning. However 

both lesion studies on rats (Pearce, Roberts & Good, 1998) and neuroimaging studies in humans 

(Doeller, King & Burgess, 2008) have shown that hippocampus, the commonly-regarded locus 

of place learning, is not necessary in acquisition of this type of vector knowledge between a 

target location and a single landmark. 

In real-life environments, instead of a single landmark, often we find ourselves surrounded 

by multiple landmarks (e.g., multiple buildings on campus). A target location can, thus, be 

specified by different landmarks simultaneously. Whether animals can use multiple landmarks to 

specify a location was of interest in early spatial learning literature. Evidence for this ability has 

been provided in many species using a transformational paradigm. One typical setting involves 

subjects learning a target location in the presence of two or more landmarks and they would be 

later tested with one or some of the landmarks moved from their original spots (e.g., Spetch et al. 

1995, Collett et al., 1986). If subjects are just using one of the landmarks to specify the location, 

then their searching location would either be independent of the transformation (indicating 

complete reliance on the unmoved landmarks) or follow the shift of the moved landmarks. The 

in-between results would suggest an averaging strategy. Furthermore how much subjects’ 

searching locations have shifted away from the learning location would indicate the relative 

weights they assign to each landmark during encoding. The more dominant landmarks would 

have a greater influence in determining a target location.  



12 

 

 

Spetch (1995) demonstrated in a touch screen task carried out on both pigeons and humans 

that spatial learning relative to a landmark would be reduced with the presence of a closer 

landmark to the target location. On the other hand, it has been shown that rotating distal cues 

would lead to rats in a water maze task searching at locations corresponding to the rotation 

manipulation (e.g., McGauran et al., 2004; for review, see Knierim & Hamilton, 2011). Such 

results indicate that landmarks further away from a target location have more control over the 

target locations in terms of direction information. The observation that landmarks with different 

distances to a target location (which could be regarded as a type of cue salience) differ in their 

control over the spatial learning suggests that spatial learning relative to landmarks might follow 

some principles of associative learning (e.g., overshadowing) 

When learning a target location relative to multiple landmarks, one can establish multiple 

bearings or vectors between the location and each of the landmarks individually (Kamil & 

Cheng, 2001). Alternatively, one may also encode the configuration of multiple landmarks and 

employ this information when encoding a target location. In this approach, the individual identity 

of landmarks may not be as prominent as when multiple bearings/vectors are established 

(although Cheng and Spetch [1998] pointed out that the configural information could also be 

used to identify landmarks). 

The evidence for animals using the configuration of an array of landmarks is inconsistent 

across species. Pigeons were found to search at locations that kept the correct distance and 

direction from one landmark when an array of four landmarks in test was expanded (Spetch, 

Cheng & MacDonald, 1996; Spetch et al., 1997). Humans, on the other hand, were found to 

locate a target at the center of a square-shaped array after expansion when the original location 
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was in the middle of the array (Spetch, Cheng & MacDonald, 1996). Even stronger evidence that 

humans can use the configuration to locate a specific target completely void of the identity of 

individual landmark came from the “scramble” paradigm (Spetch, Cheng & MacDonald, 1996). 

In this experiment, participants were trained to locate a target using an array of visually 

distinctive landmarks. During testing the landmarks were scrambled so that a strategy of 

encoding individual vectors between the target locations and each landmark would lead to 

conflicts of the target locations. However, participants in this design still searched at the location 

corresponding to the global shape regardless the swapping of the landmarks. Such configuration 

information from an array of landmarks can be considered as a type of global geometry. To 

obtain this form of geometric information subjects are likely to extract shape information from 

the configuration (e.g. the square shape formed by four landmarks) of the landmark array and 

this shape representation would be independent of the properties of landmarks. 

1.2.2 Surface-based boundaries aiding navigation  

Apart from landmarks, another major type of spatial cue that draws attention in both 

reorientation and localization literature is a boundary, referring to a continuous surface forming 

fully or partially enclosed space in the environment. Geometric information, such as wall length 

and enclosure shape information derived from the bounded space is thought to be utilized by 

animals navigating within the boundary. The classic finding of animals encoding the overall 

shape for reorientation came from a series of experiments carried out in rats by Cheng (1986). It 

was observed that rats searched equally at both the correct location and the diagonally equivalent 

location (rotational error) after disorientation even when there was other feature information to 

unambiguously identify the target location. The exclusive use of the geometric shape (rotational 
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errors were geometrically equivalent to the original locations in a rectangular enclosure) when 

rats were disoriented led to the speculation that there should be a “metric frame” wired in rats’ 

mind that specifically processes the geometric properties of the bounded surfaces and this system 

should be impenetrable to feature information (such as a landmark). 

As later other evidence demonstrated that animals of various species adopted strategies 

other than solely relying on the geometric properties of enclosure shape, modifications to the 

original geometric module account and other theories have been proposed as well (e.g., view-

matching approach, see Cheung, Sturzl, Zeil & Cheng 2008; modularity theory, see Hermer & 

Spelke, 1994; adaptive combination theory, see Ratliff & Newcombe, 2008; for review, see 

Cheng, Huttenlocher & Newcombe, 2013). 

It is hypothesized that localization relative to a boundaries/extended surface is 

fundamentally different from localization relative to a single landmark (Doeller & Burgess, 

2008). Behaviorally these two kinds of learning are thought to obey principles from two learning 

mechanisms. Encoding individual locations with respect to an extended boundary falls in the 

domain of place learning and the process engages the hippocampal activities. In contrast, 

encoding individual locations relative to a single landmark is thought to be carried out through 

associative learning (or the response learning system) and the process seems to involve activities 

in the striatum (Doeller & Burgess, 2008; Doeller, King & Burgess, 2008). 

In one of a series of studies, Doeller and Burgess (2008) employed an elegantly designed 

cue-competition paradigm and a modified version of the WMW task in a desk-top virtual 

environment to dissociate the encoding process of individual locations relative to a boundary cue 

and that relative to a single-landmark cue. As discussed earlier, overshadowing and blocking 
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effects are assumed to be important properties of associative/response learning, but not of place 

learning. Hence, Doeller and Burgess predicted that overshadowing and blocking should be 

observed in spatial learning relative to a single landmark, whereas spatial learning task relative to 

a boundary should be immune to such cue competition. In their overshadowing experiment, 

participants learned four target locations either with the presence of a single landmark (L), a 

circular boundary (B) or the combination of the two cues (LB). During the subsequent testing 

phase, the single cue groups (either L or B) were tested with the original learning cues (L-L, B-

B), respectively. The two compound cue groups were tested with one of the cues removed (LB-L 

referred to the group tested with the landmark and LB-B to the group tested with the boundary 

alone). The results were consistent with the authors’ prediction that participants in LB-L group 

were less accurate localizing the targets during test compared to those in the L-L group, which 

indicates impaired learning relative to the landmark when the two cues were available. However 

such impairment was not observed in the LB-B group. A similar pattern of results was obtained 

in the blocking experiment where initial learning of locations relative to the boundary blocked 

the subsequent learning relative to the landmark but not vice versa. The authors hence concluded 

that environmental boundaries have privileged roles in encoding individual locations. 

Mou and Zhou (2013), however, hypothesized that in Doeller and Burgess’s (2008) 

study, in addition to the extended surface, boundaries and landmarks differed in the number of 

reference points. Boundaries contain infinite reference points, which allow vectors from multiple 

directions to be established between the boundary and a target location. However, a single 

landmark may provide only one reference point, and hence, allow for only one vector between 

the landmark and a target location. The number of reference points may be more important for 

defining a boundary than the extended surface the boundary provides. To test this hypothesis, 
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Mou and Zhou employed a similar overshadowing paradigm where a circular array of 36 

identical landmarks was used as the landmark array instead of a single landmark. The landmark 

array would thus, be regarded to provide more reference points. There were four conditions: L-L, 

B-B, LB-L and LB-B. The authors defined an impairment effect as the decrease in localization 

accuracy during testing of the compound-cue conditions compared to that during the learning 

phase of the same conditions. If participants relied more on one of the cues to encode target 

locations during learning, one would expect to see poorer performance during test when the more 

dominant cue was removed. The results surprisingly showed that participants were not affected 

by removal of either cue. Hence the authors proposed that a discrete landmark array consisting of 

multiple reference points (even though it did not contain a continuous surface) might be 

sufficient to invoke a boundary-like representation. 

Studies using single-cell recording techniques have also provided a window looking into 

how the hippocampus processes boundary information as an input to code “place”. Place cells, 

discovered in the hippocampus of both rats (O’Keefe & Dostrovsky, 1971; O’Keefe, 1976) and 

humans (Ekstrom et al., 2003), are shown to display place-specific firing, that is a place cell will 

reach its peak firing rate when an organism (a rat or a human) are in a specific region within a 

bounded space (the region is the place field of the particular cell). At least in rats, such firing 

seems to be controlled by the walls surrounding an enclosure in which rats are moving (O’Keefe 

& Burgess, 1996). A boundary-vector-cell (BVC) model was proposed to explain how place 

cells are tuned to respond to the continuous surfaces forming a bounded environment (Hartley et 

al., 2000, Barry et al. 2006, Barry & Burgess, 2007). Boundary vector cells (BVCs) are 

hypothesized to fire in response to a barrier (e.g., a piece of boundary or edge) subtending a 

visual angle from an observer’s location. Different BVCs are thought to tune to different barriers 
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located at their preferred distances and from preferred allocentric directions. The summed firings 

of subsets of BVCs serve as inputs to a corresponding place cell, whose firing is then responsive 

to relative locations of barriers around an animal. Both distance information and allocentric 

direction information are important to the firings of BVCs (Hartley et al., 2000), thus, to the 

firings of place cells. Later research has identified border cells in rats’ entorhinal cortex (Solstad, 

Boccara, Kropff, Moser & Moser, 2008) and boundary vector cells in the subiculum of rats’ 

hippocampal formation (Lever, Burton, Jeewajee, O’Keefe & Burgess, 2009), providing further 

evidence for environmental boundaries serving as a critical input in spatial representations 

formed by the hippocampal system. 

1.3 From scattering dots to cognitive maps 

When we use our memory of our home city to guide our daily commute, not only do we 

want to know where each of our destinations is with respect to some reference points (salient 

environmental features can serve as reference points, such as where the grocery store is in terms 

of one’s home), but most importantly how these isolated destinations are spatially connected 

with each other. In this sense, the mental map rooted in our mind should be able to integrate 

knowledge of individual locations acquired from separate navigation experience into a unified 

representation, which allows inferring spatial relations among the locations (i.e., a vector 

between two points). Such metric representations are referred to as cognitive maps (e.g., Tolman, 

1948) and we refer to the integration process as cognitive mapping. One of the major themes of 

the current thesis is to investigate the roles of different environmental features (such as 

boundaries and landmarks) and their corresponding processing streams (e.g., place learning vs. 
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response learning) in encoding individual locations (thus, the scattering dots on the “map”) as 

well as in forming cognitive maps. 

Tolman (1948) emphasized in his proposal that place learning led to a representation of 

our surroundings in a broad, flexible, map-like fashion which records not only the spatial 

properties of entities (e.g., locations of the entities) within the space but also the spatial relations 

among the entities. Therefore, one defining property (or one vital advantage) of such 

representation is that cognitive maps allow inference of novel spatial relations between two 

points in the space while direct navigation experience between the two points is not obtained 

previously (some researchers refer to such ability as taking a “short-cut”). 

As discussed in the previous section, place learning was hypothesized to contribute to 

forming cognitive maps. The idea is further developed by O’Keefe and Nadel (1978) in their 

cognitive map theory, which postulated that the hippocampal formation processes various 

information through the course of navigation (e.g., visual features of an environment, motor 

signals from locomotion) to form cognitive maps. Moreover the hippocampus is also responsible 

for storage of cognitive maps. In accordance with this theory, neuroimaging studies on humans 

have shown that the human hippocampus is involved in encoding navigation-related information 

(Maguire, Frackowiak & Frith, 1996), long-term representation of spatial layouts (Maguire, 

Frackowiak & Frith, 1997). Other studies using a spatial task which could be solved in two 

different approaches (the place-learning system or the response-learning system) demonstrated 

that adopting a place-learning strategy activated the hippocampus and allowed flexible 

navigation such as taking novel short cuts whereas adopting a response-learning strategy 
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activated the striatum (Marchette, Bakker, & Shelton, 2011; Iaria, Petrides, Dagher, Pike, & 

Bohbot, 2003). 

Although hippocampal formation has long been regarded as indispensable in encoding 

spatial information and in forming cognitive maps, different theories have been proposed 

regarding the role of hippocampus in the long-term storage of cognitive maps. The multiple trace 

theory proposed by Nadel and Moscovitch (1997, see also Moscovitch et al., 2005) hypothesized 

that the hippocampus might be important in constructing detailed or episodic spatial memory, 

which consists of a rich context, whereas extra-hippocampal structures might be important in 

semantic spatial memory. Studies on patients who suffered from brain damage provided 

supporting evidence for the argument. In particular, patients with hippocampal lesion still 

exhibited some maintenance of long-term spatial knowledge and in some case were even able to 

form new spatial memories (Corkin, 2002; Bohbot et al., 1998; Teng & Squire, 1999). 

1.4 Outline of the Thesis 

One of the main research interests of this thesis is to investigate the contributions of 

different types of visual cues, mainly surface-based boundary cues and discrete-object-based 

landmark cues in encoding individual locations and cognitive mapping of the locations, 

respectively. By understanding how the two types of environmental visual features engaged in 

our acquisition of spatial knowledge during the development of a cognitive map of a given 

environment, we reflect upon the dichotomous view towards the two learning systems 

(hippocampal place-learning vs. striatal response-learning) in terms of their contributions in 

forming spatial memories. 
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In Chapter 2, we investigate the relative quality of cognitive maps derived from a single 

landmark cue and from a surface-based boundary cue. As mentioned in the general introduction, 

boundary advantage has been observed in spatial tasks such as encoding individual locations and 

learning relative to a boundary cue is thought to engage hippocampal-dependent place learning. 

In contrast, learning locations relative to a single landmark seems to be processed through 

striatal-dependent response learning. It is not clear whether such boundary advantage would also 

benefit cognitive mapping given the importance of place learning and hippocampal-activity in 

forming cognitive maps. Participants learned four objects’ locations either relative to a circular 

boundary or to a single landmark. Their cognitive mapping knowledge was tested with two 

spatial tasks that required inference of novel spatial relations among the locations. The results 

indicate a landmark advantage in forming cognitive maps, that is a more accurate cognitive map 

of the four locations was derived from the landmark cue than from the boundary cue. 

In Chapter 3, recognizing the inferior cognitive maps derived from a surface-based 

boundary cue, we investigate whether the larger number of reference points provided by a 

boundary would lead to a worse cognitive map and whether a lack of knowledge about the direct 

spatial relations among the multiple reference points from a boundary would also lead to worse 

cognitive mapping. We manipulated the number of reference points available in the environment 

(from one, four to a boundary containing an infinite number of reference points in Experiment 1) 

and the degree of availability regarding the knowledge of the direct spatial relations among the 

reference points (Experiment 2) when participants were learning four locations. The results 

demonstrated that less accurate cognitive maps were developed when the number of reference 

points increased. Moreover a lack of knowledge about the spatial relations among chosen 

reference points impeded cognitive mapping relative to the boundary. Localization process 
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relative to a circular boundary is discussed under the segmentation hypothesis which postulates a 

global boundary might be segmented into local sections of reference points and only the most 

informative segments for a particular location are attended to when participants are encoding that 

location. 

In Chapter 4, recognizing the inconsistent findings regarding the boundary advantage in 

encoding individual locations and the single-landmark advantage in cognitive mapping, we 

investigate how boundary advantage occurs in representing individual locations. Experiment 1, 

using both an overshadowing paradigm and a cognitive mapping task, we replicated the findings 

that participants preferred a circular boundary to a four-landmark array for encoding four 

locations however the cognitive maps of these locations derived from the landmark array were 

more accurate. Using the overshadowing paradigm, we manipulated the relative stability and 

distinctiveness of the two cues in Experiment 2 and 3. The results showed that increasing the 

stability of the landmark array decreased the overall reliance on the boundary cue in encoding 

individual locations (overshadowing of the landmark array to the boundary was observed), 

providing supporting evidence that a boundary cue might also be subject to cue competition. 

Localization with the presence of multiple visual features is discussed under the reference-point 

selection hypothesis. We speculate that various environmental features are evaluated in terms of 

their perceived “usefulness” (cue validity) in completing a specific navigation task and learning 

resources are assigned accordingly to the environmental features.   

In Chapter 5, the results of the studies in the thesis are summarized. Localization 

processes relative to a homogenous boundary cue (including encoding individual locations and 
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cognitive mapping of multiple locations) are discussed. Furthermore I reflect upon the traditional 

dichotomous view towards place learning and response learning. 
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2.1 Abstract 

Cognitive mapping is assumed to be through hippocampus-dependent place learning rather than 

striatum-dependent response learning. However, we propose that either type of spatial learning, 

as long as it involves encoding metric relations between locations and reference points, could 

lead to a cognitive map; furthermore the fewer reference points to specify individual locations, 

the more accurate a cognitive map of these locations will be. We then demonstrate that 

participants have more accurate representations of vectors between two locations and of 

configurations among three locations when locations are individually encoded in terms of a 

single landmark than when locations are encoded in terms of a boundary. Previous findings show 

that learning locations relative to a boundary involves stronger place learning and higher 

hippocampal activation whereas learning relative to a single landmark involves stronger response 

learning and higher striatal activation. Recognizing this, we provide evidence challenging the 

cognitive map theory but favouring our proposal. 
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2.2 Introduction 

Navigation between two locations is a crucial task for everyday life and can rely on two 

different kinds of spatial knowledge. The first involves representing a sequence of responses 

(i.e., turns) along a path between locations; the other involves representing metric relationships, 

(i.e. straight-line distance and direction) among locations (Siegel & White, 1975). Tolman (1948) 

originally referred to the second type of knowledge, but not the first one, as a cognitive map, 

analogous to an external map representing metric relationships among places. In the current 

study, consistent with Tolman (1948) and other researchers (Bennett, 1996; Nadel, 2013; 

O’Keefe & Nadel, 1978), we consider a cognitive map as a mental representation of metric 

relations among individual locations. The hallmark functions of a cognitive map are to enable 

people to infer spatial relations between two locations (Levine, Jankovic, & Palij, 1982; Tolman, 

1948), and to judge the spatial configuration among multiple locations (Evans & Pezdek, 1980; 

Thorndyke & Hayes-Roth, 1982). In the current study, we examine a cognitive map of an 

environment in terms of these two hallmark functions. 

Tolman (1948) attributed the construction of cognitive maps to latent place learning in 

contrast with response learning through stimulus-response association. Tolman’s cognitive map 

theory was further developed by O’Keefe and Nadel (1978). They proposed that there are two 

systems involved in spatial learning: the locale system and the taxon system. The locale system, 

corresponding to place learning, is hypothesized to be a major contribution to cognitive mapping 

and to rely on the hippocampus. By contrast, the taxon system is assumed to be important in 

encoding a sequence of responses (e.g. turns along a route), corresponding to stimulus-response 

association and independent of the hippocampus. In the current paper, we refer to theories 
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claiming that the hippocampus and place learning are critical to cognitive mapping as the 

cognitive map theory. The cognitive map theory has been supported by many empirical studies 

(Iaria, Petrides, Dagher, Pike, & Bohot, 2003; Ekstrom, et al., 2003; Hartley, Maguire, Spiers, & 

Burgess, 2003; Marchette, Bakker, & Shelton, 2011; McDonald & White, 1994; O’Keefe & 

Dostrovsky, 1971).  

However, a growing body of evidence indicates that metric relations among locations 

might also be learned and stored independent of the hippocampus (Aguirre & D’Esposito, 1997; 

Bohbot et al., 1998; Corkin, 2002; Maguire, Nannery, & Spiers, 2006; Miller, Vedder, Law, & 

Smith, 2014; Moscovitch et al., 2005; Pearce, Roberts, & Good, 1998; Teng & Squire, 1999; 

Vass & Epstein, 2013; Wolbers & Büchel, 2005).  For example, Pearce et al. (1998) reported that 

rats with hippocampal lesions could find the target location that had a fixed metric relation to a 

movable landmark across trials. Vass and Epstein (2013; see also Epstein & Vass, 2014) 

proposed that the retrosplenial complex might be important in encoding locations and directions 

in a large-scale environment.  

Furthermore, some studies suggest that metric relations can be acquired through response 

learning and independent of the hippocampus. Doeller and Burgess (2008) demonstrated that 

learning locations relative to a single landmark was overshadowed and blocked by learning 

relative to a continuous boundary. They concluded that spatial learning relative to a landmark 

involves response learning whereas spatial learning relative to a boundary involves latent place 

learning. Moreover the same study demonstrated that participants localized objects with 

equivalent accuracy when learning with either cue alone, indicating that metric relations can be 

acquired through response learning. In another neuroimaging study (Doeller, King, & Burgess, 
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2008), the striatum was shown to be involved in encoding and remembering individual locations 

relative to a landmark, whereas the hippocampus was involved in boundary-related spatial 

learning, indicating that people encode individual locations relative to a landmark through 

response learning that is less hippocampal-dependent. 

Inspired by these findings, we hypothesize that as long as spatial learning produces the 

encodings of metric relations from locations to a common reference (e.g. a circular boundary, a 

landmark), regardless of the extent to which place learning and hippocampus are involved, it 

contributes to a cognitive map of the locations. Furthermore, we hypothesize that a cognitive 

map of locations is more accurate when the locations are encoded relative to a single reference 

point than when the locations are encoded relative to multiple reference points. When there is 

only one reference point, every location is encoded relative to the same reference point (see 

Figure 2.1A for illustrations). Suppose there are two locations, a and b, encoded relative to the 

single reference point, R. People can compute the vectors between any two locations (e.g., Va-b in 

Figure 2.1A) by adding the two vectors between each location and the reference point (e.g., Va-R 

+ (-Vb-R)). When there are multiple reference points (e.g. R1, R2 in Figure 2.1B), different 

locations might be encoded relative to different reference points (e.g., Va-R1, Vb-R2). When people 

compute the vectors between two target locations (e.g., Va-b), they have to add not only the two 

vectors between the individual locations and their corresponding reference points, but also the 

vector between the two reference points (e.g., Va-R1 + (-Vb-R2) + VR1-R2). Extra errors might be 

involved in encoding and adding the vectors between different reference points (e.g., VR1-R2), 

leading to a less accurate cognitive map of vectors between locations. We refer to this hypothesis 

as the vector addition model.  



36 

 

 

Two experiments were designed to distinguish this vector addition model from the 

cognitive map theory. These experiments were based on the findings that compared with single-

landmark-relative learning, boundary-related learning involves more place learning and stronger 

hippocampal activation (e.g., Doeller & Burgess, 2008; Doeller et al., 2008). According to the 

cognitive map theory, cognitive mapping relies on place learning and the hippocampus. 

Therefore, boundary-related spatial learning should lead to a better cognitive map of locations. In 

contrast, according to the vector addition model, people develop a better cognitive map when 

there is a single reference point than when there are multiple reference points. Because a 

boundary consists of multiple reference points and a single landmark has one reference point 

(Mou & Zhou, 2013), spatial learning relative to a single landmark should lead to a better 

cognitive map. 

 

 

 

 

 

 

 

 

Figure 2.1. Schematic illustrations of the vector addition model. A, inferring the spatial relations 

between locations a and b when both locations are encoded relative to a single reference point R. 

The solid lines show the vectors from target locations to the reference point, Va-R and Vb-R. The 

dashed line shows the inferred vector between the two locations, Va-b = Va-R + (-Vb-R); B, 
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inferring the spatial relations between locations a and b when a is encoded relative to the 

reference point R1 and b relative to R2. The solid lines with arrows show, respectively, the 

encoded vectors from a to R1 (Va-R1), from R1 to R2 (VR1-R2) and from b to R2 (Vb-R2). The 

dashed line shows the inferred vector between the two locations, Va-b  = Va-R + VR1-R2 + (-Vb-R). 

 

2.3 Experiment 1 

Participants learned four objects’ locations individually with either a boundary cue or a 

landmark cue. A task requiring inference of the spatial relation between two objects was 

employed to evaluate the accuracy of the cognitive map of objects’ locations in either learning-

cue condition. 

2.3.1 Method 

Participants. Forty-eight (24 males and 24 females) students from the University of 

Alberta participated to fulfill a course requirement. 

Materials and Design. An immersive virtual environment was displayed using an nVisor 

SX60 head-mounted display (HMD) (NVIS Inc., Virginia). Graphics were rendered using the 

Vizard software (WorldViz, Santa Barbara, California). Head orientation was tracked with an 

InterSense IS-900 motion tracking system (InterSense Inc., Massachusetts). Thus, through head 

rotation, participants could change their viewpoints. Participants used a joystick to translate, to 

pick up and to place back the objects in the virtual environment. 

 In the virtual environment (see Figure 2.2), participants learned four locations on infinite 

grassland by picking up four sequentially presented objects (a candle, a lock, a bottle and a wood 
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block) and then placing them at the correct locations. Two sets of locations were used (referred 

to as Configuration 1 and Configuration 2 respectively) and half of the participants learned 

Configuration 1. The object-location pair was randomized across participants. During the 

learning phase, either a visually homogeneous, circular wall (the boundary condition, referred to 

as B, Figure 2.2A) or a visually homogeneous traffic cone (the landmark condition, referred to as 

L, Figure 2.2B) was presented as the localization cue. Four different scenes (Ocean, Forest, 

Mountain and City) were set at infinity as distal orientation cues (indicated by the surrounding 

labels in Figure 2.2). Without distal orientation cues, it is impossible to specify an object’s 

location in terms of the traffic cone or the circular wall. In the testing phase (Figure 2.2C), the 

landmark in L or the wall in B was removed but one of the four objects was presented in each 

trial as the localization cue, together with the distal orientation cues. Participants needed to 

replace the other three objects. Because participants never saw the four objects simultaneously, 

the vectors between the cue objects and the probed objects must have been a product of cognitive 

mapping. Therefore, participants’ testing performance in L or B could reflect the relative 

accuracy of cognitive mapping in each condition.  

Procedure. Participants donned the HMD and sat on a swivel chair at the center of the 

experiment room. Each participant went through three phases: the pick-up phase, the learning 

phase and the testing phase. During the pick-up phase, participants collected the four objects one 

by one from their original locations (only one object appeared at its correct location for 

participants to collect each time). The localization cues (the wall in B and the traffic cone in L) 

as well as the distal orientation cues were presented during the pick-up phase. The learning phase 

comprised four blocks of four learning trials (one trial per object in each block). For each trial, 

one of the four objects was probed and participants replaced the probed object using their 
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memory. After the response, the probed object appeared at its original location. Participants were 

asked to collect it. Participants’ starting locations (within 40 virtual meters from the center of the 

wall) and facing directions at the beginning of each trial were randomized. During testing, the 

boundary in B and the landmark in L were removed. For each trial, one of the four objects was 

shown at its original location as a localization cue together with the distal orientation cues; 

participants replaced one of the other three objects. The testing phase comprised four blocks of 

three testing trials. In each block, one of the four objects served as the testing cue in all three 

trials and each of the other three objects was probed once. No feedback was given in the testing 

phase. 
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Figure 2.2. Top-view illustrations of the virtual environments used in Experiment 1 and 2. A, 

The learning phase of the boundary condition in both experiments. The circle illustrates the wall, 

50 virtual meters (vms) in radius which is also illustrated as the dashed line in the circle. The two 

dotted lines with arrows illustrate the coordinate axes where the (0, 0) is the origin of the 

coordinate system (also the center of the wall) used in the virtual-reality environment. The axes 

and the center are marked only for readers. The four dots illustrate the target locations from 

Configuration 1. The coordinates of the four locations in Configuration 1 are (19.94, 9.30), 
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(29.44, 32.70), (-33.92, 2.37), (29.35, 19.06) respectively; the coordinates of the four target 

locations in Configuration 2 (not depicted here) are (35.86, 19.88), (-7.74, -31.05), (-5.14, 6.13), 

(-18.02, -12.62) respectively (units in vms). The four labels (Ocean, Mountain, City, and Forest) 

illustrate the background scenes set at infinity from the center of the environment; B, The 

learning phase of the landmark condition in both experiments. The triangle illustrates the traffic 

cone used as the landmark cue, which was placed at (18, 18); C, The testing phase in Experiment 

1. The dot illustrates one of the four objects at its original location used as the testing cue for one 

particular trial. The original localization cue (the landmark or the boundary) was removed; D, 

The testing phase in Experiment 2. The two dots illustrate two of the four objects at their original 

locations used as the testing cues for one particular trial. Both the original localization cue and 

the original orientation cues (i.e. the background scenes) were removed.  
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2.3.2 Results and Discussion 

Response errors, measured as the distances between participants’ response locations and 

the corresponding correct locations, were recorded as the dependent variable. Participants’ 

performances during the learning and the testing phases were examined respectively. We 

combined the data from the two configurations in the analysis as the data showed the same 

pattern for these two configurations in this experiment and in Experiment 2. In both 

Experiments, there is no interaction between the configurations and the learning-cue conditions 

on localization accuracy in either the last learning block or the testing blocks. 

Performance during the learning phase. The learning effect was examined by mixed-

model ANOVA on average response errors over the four learning blocks. Learning block (1-4) 

was a within-subject variable, whereas learning cue (L or B) was a between-subject variable. The 

analysis revealed an interaction between the learning cue and the learning block, F (3, 138) = 

3.84, p = .01, ŋp
2 = .08. Illustrated in Figure 2.3A, a larger learning effect in the L group 

contributes to the interaction.  Repeated-measures ANOVA showed that participants in both 

groups improved their localization performances over the learning phase: for the L group, F (3, 

69) = 9.19, p < .001, ŋp
2 = .29, and for the B group, F (3, 69) = 4.10, p = .01, ŋp

2 = .15.  

Because of the learning effect, only the mean response errors in the last (i.e., fourth) 

learning block from the two conditions (L and B) were compared to ensure that participants were 

equally accurate at encoding individual locations relative to the respective cues. Performances 

were comparable between the two groups (ML = 20.05 vm, SDL = 13.22; MB = 19.82 vm, SDB = 

7.23), F (1, 46) = .006, p = .94, ŋp
2 = .0001 (Figure 2.4A). 
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Performance during the testing phase. The mean response errors during the testing phase 

as a function of the learning cue (L or B) were plotted in Figure 2.4A. Participants in L (ML = 

28.35 vm, SDL = 15.04) were significantly more accurate than those in B (MB = 55.60 vm, SDB = 

24.67), F (1, 46) = 21.36, p < .001, ŋp
2 = .32. This result implies that the cognitive maps formed 

in the landmark group allowed a more accurate inference of the vectors between two objects’ 

locations. 

The deviation scores of individual response locations (calculated by subtracting the x-y 

coordinates of the correct target locations from those of the individual response locations) are 

plotted for both learning-cue conditions (Figure 2.5A). A smaller distance between one data 

point and the origin (0, 0) suggests higher accuracy of the corresponding response. The 95% 

confidence ellipses of the deviation scores and of the mean of the deviation scores are also 

plotted for both learning-cue conditions. The ellipses indicate that participants in either L or B 

group had no systematic response bias whereas responses in the B condition were more dispersed 

than those in the L condition, confirming that the cognitive map in the landmark group was more 

accurate.  
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Figure 2.3. Response errors as a function of both the learning blocks (one to four) and the 

learning condition (L or B). A, in Experiment 1; B, in Experiment 2. Error bars are ± 1 standard 

error. 
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Figure 2.4. Response errors as a function of the learning condition (L or B) during the last (i.e. 

fourth) learning block and the testing phase, respectively. A, in Experiment 1; B, in Experiment 

2. Error bars are ± 1 standard error. 
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Figure 2.5. The deviations of all response locations from the correct location collapsed across the 

four objects and the 95% confidence ellipses of the individual deviations and of the mean of the 

individual deviations. The red dot at origin (0, 0) illustrates as the correct location. The green 

crosses represent all response deviations in the boundary condition. The yellow circles represent 

all response deviations in the landmark condition. The green ellipse in dashed line represents 

95% confidence ellipses in the boundary condition (the large one is for the deviations and the 

small one is for the mean of the deviations). The yellow ellipse in solid line represents 95% 

B 
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confidence ellipses in the landmark condition (the large one is for the deviations and the small 

one is for the mean of the deviations). A, in Experiment1; B, in Experiment 2. 

2.4 Experiment 2 

In Experiment 2, a task requiring inference of the spatial configuration among three 

objects was employed to evaluate the accuracy of the cognitive map of objects’ locations in 

either learning-cue condition. 

2.4.1 Method 

Participants. Forty-eight students (24 males and 24 females) from the University of 

Alberta participated to fulfill a course requirement.  

Materials, Design and Procedure. Experiment 2 was identical to Experiment 1 with the 

following exceptions. During testing, both the original localization cues (i.e. the wall, the traffic 

cone) and the distal orientation cues were removed. For each testing trial, two of the four objects 

were shown at their correct locations as the testing cues; participants replaced one of the other 

two objects. The combinations of six possible pairs of the cue objects and two possible probed 

objects for each cue pair yielded 12 testing trials. 

2.4.2 Results and Discussion 

Performance during the learning phase. Mixed-model ANOVAs were conducted on 

response errors across the four learning blocks to assess the learning effect. An interaction 

between the learning cue and the learning block was revealed, F (3, 138) = 5.67, p = .001, ŋp
2 = 

.11. As shown in Figure 2.3B, the L group again had a larger learning effect. Repeated-measures 

ANOVA on the response errors revealed a learning effect in each condition (L or B): for the L 
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group, F (3, 69) = 13.01, p < .001, ŋp
2 = .36, and for the B group, F (3, 69) = 3.13, p = .03, ŋp

2 = 

.12 (Figure 2.3B). Due to the learning effect, the response errors in the last learning block from 

the two conditions were compared. Localization accuracy did not differ between the two groups 

(ML = 20.11 vm, SDL = 15.73; MB = 21.78 vm, SDB = 9.23), F (1, 46) = 0.20, p = .66, ŋp
2 = .004 

(Figure 2.4B). 

Performance during the testing phase. The mean response errors during the testing phase 

as a function of the learning cue (L or B) were plotted in Figure 2.4B. The participants in L (ML 

= 31.68 vm, SDL = 11.09) were more accurate than the participants in B (MB = 42.24 vm, SDB = 

22.21), F (1, 46) = 4.35, p = .043, ŋp
2 = .09. This result indicates that the cognitive map in the 

landmark group allowed a more accurate inference of the configurations among three objects’ 

locations. 

The deviation scores and the 95% confidence ellipses of the deviation scores and of the 

mean of the deviation scores are plotted for both learning-cue conditions (Figure 2.5B). The 

ellipses indicate that participants in either L or B group had no systematic response bias whereas 

responses in the B condition were more dispersed than those in the L condition, confirming that 

the cognitive map in the landmark group was more accurate.  

2.5 General Discussion 

The current study demonstrated that participants acquired a more accurate cognitive map 

through spatial learning relative to a single landmark than relative to a boundary. This cognitive 

map allowed participants to infer the vector between two objects’ locations (Experiment 1) and 

the configuration among three objects’ locations (Experiment 2).  
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These findings raise questions about the cognitive map theory because the cognitive map 

theory predicts the opposite pattern of results. We speculate that the cognitive map theory might 

be primarily applied to the representation of an object’s location relative to a boundary. 

However, the representation of an object’s location relative to another object, including a 

landmark, may not require hippocampus-dependent place learning. Although there is significant 

evidence showing that hippocampal place cells are sensitive to locations specified in terms of 

boundaries (O’Keefe & Burgess, 1996; for review see Barry et al., 2006), there is no direct 

evidence showing that hippocampal place cells are sensitive to locations specified relative to a 

landmark within the boundary (Cressant, Muller, & Poucet, 1997).  

Our speculation is consistent with the proposal regarding the differential roles of 

hippocampus in different types of spatial memories. Nadel and Moscovitch (1997, see also 

Moscovitch et al., 2005) proposed that the hippocampus might be important to constructing 

detailed or episodic spatial memory, which consists of a rich context, whereas extra-hippocampal 

structures might be important to semantic spatial memory. In the current study, a boundary might 

have provided a rich context for locations within the boundary, whereas the metric relations 

between a location and a landmark might have lacked episodic or detailed information and 

therefore the representation of such spatial relations might be less hippocampal-dependent.  

The vector addition model could well explain the current findings. This model 

conjectures that people can form a cognitive map as long as they encode metric relations of 

individual locations to a reference point regardless the learning mechanisms. Furthermore this 

model hypothesizes that people develop a better cognitive map when the locations are learned 

relative to one reference point than to multiple reference points. These conjectures are consistent 
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with the findings of the current experiments. When participants encode four objects’ locations 

relative to the boundary, they might use multiple pieces of the boundary from a variety of 

directions as reference points for each location, with the larger contribution from the closer 

boundary pieces (O’Keefe & Burgess, 1996; Hartley, Trinkler, & Burgess, 2004). Participants 

could select reference points on the homogeneous circular wall using the distal orientation cues. 

They might segment the wall into pieces and use the orientation cues to differentiate the wall 

segments (e.g. the wall segment close to Forest).  

For simplicity, we assume that people only encode each location in terms of the closest 

boundary piece. Therefore, four different boundary pieces (reference points) are selected and 

four vectors between each object and the corresponding closest reference point are established. 

To infer the vector between any two objects, people have to add together the two reference-

point-object vectors, as well as the vector between the corresponding reference points (e.g., 

Figure 2.1B). In contrast, when participants encode four objects’ locations relative to a single 

landmark, the landmark serves as a common reference point and the inter-object vectors can be 

obtained by adding the two object-landmark vectors (e.g., Figure 2.1A). Because both encoding 

and adding the vectors between two reference points are prone to errors, participants in the 

boundary condition should have a less accurate cognitive map.  

Compared with the cognitive map theory, the vector-addition model offers a better 

explanation for the current findings. However it is not the only possible explanation. One other 

possible explanation is that the homogeneous boundary could not have provided any visually 

distinctive reference point1. To specify a location, reference points as well as a reference 
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direction are required (Klatzky, 1998). According to this explanation, participants in the 

boundary condition might have inferred a reference point, e.g. the center of the boundary. This 

explanation further assumes that the initial mental representation of a target’s location relative to 

the inferred reference point is comparable to the mental representation of the target’s location 

relative to a visual landmark; however the spatial representation relative to the inferred reference 

point is less robust and decays more quickly than that relative to the landmark. Therefore, this 

explanation is consistent with the finding of the comparably accurate localization in the last 

learning block in both cue conditions but more accurate localization in the testing blocks in the 

landmark condition. 

 This explanation differs from the vector-addition model in terms of the way in which 

participants used the boundary to localize targets. According to the former one, participants 

inferred a less robust reference point whereas according to the latter, participants selected 

multiple reference points (Mou & Zhou, 2013). However both explanations predict less accurate 

cognitive mapping in the boundary condition, therefore challenging the cognitive map theory. 

Future studies are needed to distinguish these two explanations to further understand how people 

use a boundary to localize objects. 

The finding that spatial learning relative to a landmark, rather than to a boundary, can 

lead to a better cognitive map strikingly contrasts with the superiority effect of a boundary cue 

over a landmark cue in learning individual locations when both cues were presented (Doeller & 

Burgess, 2008). This contrast indicates that the relative importance of a boundary cue and a 

landmark cue in spatial learning depends on encoding individual locations when both cues are 
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present or inferring inter-location spatial relations after encoding individual locations with the 

presence of either cue. 

We present evidence that a more accurate cognitive map for inferring inter-location 

spatial relations is acquired through learning individual locations relative to a single landmark 

than through learning individual locations relative to a boundary. We suggest that although 

spatial learning relative to a single landmark, compared to spatial learning relative to a boundary, 

might involve less place learning (i.e. more response learning) and depend less on the 

hippocampus (i.e. more on the striatum), because it involves encoding vectors between locations 

and the common reference (i.e. wall, traffic cone), it leads to a cognitive map; furthermore such 

representation is more accurate than that acquired through spatial learning relative to a boundary 

because cognitive mapping is more accurate relative to one reference point than to multiple 

reference points.  
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Chapter 3 

 

 

The limits of Boundary: Unpacking Localization and Cognitive Mapping Relative to a Boundary 

  



60 

 

 

3.1 Abstract 

The studies in Chapter 2 (Zhou & Mou, 2016) showed that learning individual locations 

relative to a single landmark, compared to learning the locations relative to a homogenous 

circular boundary, led to a better cognitive map of these locations. The current study investigated 

whether the larger number of reference points would lead to a worse cognitive mapping and 

whether lack of direct spatial relations among the multiple reference points from a continuous 

boundary would also lead to a worse cognitive mapping relative to a boundary. We manipulated 

the number of primary reference points (one piece of ten-degree arc, four pieces of ten-degree 

arcs taken from a circular boundary or the complete boundary) available when participants were 

localizing four objects sequentially (Experiment 1) and the extendedness of each of the four arcs 

(Experiment 2). The results showed that cognitive mapping was less accurate in the order of one 

arc, four arcs, and the whole boundary. However expanding the size of each of the four arcs did 

not affect the accuracy of cognitive mapping until the four arcs were connected to form a 

continuous boundary.  These findings indicate that when encoding individual locations relative 

to a homogenous circular boundary participants segmented the boundary into differentiating 

pieces and subsequently chose the most informative local part (i.e., the closest arc from the 

boundary to a location) as the primary reference point for a particular location. During this 

process the direct spatial relations among the reference points were likely unattended. These 

findings suggest that people might encode and represent bounded space in a fragmented fashion 

when localizing within in homogenous boundary.  
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3.2 Introduction 

In daily life, we constantly travel between locations based on our knowledge of the 

spatial relations among the points of interest (e.g., getting from home to office). Often times the 

spatial relations between the locations are not directly learned but instead are inferred from our 

spatial representations of the environment built upon previous learning experience. Such 

representations that allow integrating metric representations of individual locations and inference 

of novel spatial relations are generally regarded as a form of cognitive map (Tolman, 1948; 

Bennett, 1996; Levine, Jankovic, & Palij, 1982; Nadel, 2013). In the current chapter, we refer to 

the process of integrating individual representations of locations (i.e., the vector between a target 

location and its reference point) to infer novel spatial relations as cognitive mapping.  

Different environmental cues are proposed to contribute to the localization process 

(encoding individual locations) and the cognitive mapping process. In general, they are divided 

into two types. One type is a landmark cue based on discrete objects whereas the other type is a 

boundary cue based on continuous surfaces. These two cues are proposed to function differently 

in learning a single target location (Doeller & Burgess, 2008; Doeller, King, & Burgess, 2008). 

In particular, a landmark cue is involved in striatal-dependent response learning whereas a 

boundary cue is involved in hippocampus dependent place (latent) learning.  

The study in Chapter 2 (Zhou & Mou, 2016) investigated whether the cognitive maps 

(i.e., knowledge of novel spatial relations among individual locations) derived from the two cues 

would also be qualitatively different. In that study, participants first learned the locations of four 

objects sequentially with either a circular wall or a single traffic-cone as the localization cue 

(distal orientation cues were provided in both conditions). They were subsequently tested on 
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their knowledge of the spatial relations between two objects (Experiment 1) or of the spatial 

configuration among three objects (Experiment 2). The original localization cues (the traffic-

cone or the whole wall) presented during the learning phase were removed during the testing 

phase; however, one of the four objects (Experiment 1) or two of the four (Experiment 2) were 

presented at its/their original location(s) (the distal orientation cues were still present during the 

testing phase). The testing tasks were thought to reflect the quality of the cognitive map of inter-

location spatial relations derived from the respective cues (the boundary or the landmark) 

because participants had to infer novel spatial relations among the objects based on their 

memories. The results demonstrated a more accurate cognitive map (in terms of better 

knowledge about both novel spatial relations between two locations and spatial configurations 

among three locations) derived from a single landmark compared to that from a featureless 

circular wall. The finding is striking because it is believed that cognitive mapping relies on 

hippocampal-dependent place learning rather than striatal-dependent response learning (e.g., 

O’Keefe & Nadel, 1978; Tolman, 1948). 

Previous studies (e.g., Doeller & Burgess, 2008) have shown that localization relative to 

a boundary cue involves place learning and is hippocampal dependent whereas localization 

relative to a single landmark involves response learning and is striatal-dependent. It is proposed 

that environmental boundaries or barriers are one of the major inputs to drive neural activities in 

the hippocampus of humans (Hartley, Trinkler & Burgess, 2004; Bird et al., 2010, for review, 

see Barry et al., 2006) and of rats (e.g., Hartley et al., 2000; Barry & Burgess, 2007). Combined 

with the theories (e.g., O’Keefe & Nadel, 1978) and the relevant findings demonstrating the 

critical role of hippocampal activities in forming cognitive maps of surrounding environment 

(Iaria, Petrides, Dagher, Pike, & Bohbot, 2003; Ekstrom, et al., 2003; Hartley, Maguire, Spiers, 



63 

 

 

& Burgess, 2003; Marchette, Bakker, & Shelton, 2011; McDonald & White, 1994; O’Keefe & 

Dostrovsky, 1971), one would expect that learning individual locations relative to a boundary 

should yield more accurate knowledge of inter-location spatial relations (i.e., a better cognitive 

map). However this prediction was inconsistent with the findings of Zhou and Mou (2016). 

Zhou and Mou proposed a vector-addition model to articulate the cognitive mapping 

process. According to the model, when encoding a target location in the environment, one selects 

reference points from the available environmental cues and establishes a vector between the 

target location and its corresponding reference point. Furthermore, inference of inter-location 

spatial relations should be easier when the individual target locations are encoded relative to a 

common reference point than when the individual target locations are encoded relative to 

different reference points respectively. As illustrated in Figure 3.1A, to infer the vector va-b , 

between two points of interest a and b that are encoded to a common reference point R, one 

needs to add the vector between a and R, va-R, to the vector between b and R, vb-R. As illustrated 

in Figure 3.1B, to infer the vector va-b when a and b are encoded to two reference points R1 and 

R2 respectively, one needs to add three vectors together: the vector between a and R1 as denoted 

as va-R1, the vector between b and R2 as denoted as va-R2, and the vector between R1 and R2 as 

denoted as vR1-R2 . Zhou and Mou hypothesized that cognitive mapping was worse relative to the 

boundary because the circular boundary provided at least four non-overlapping reference points 

(i.e., different parts of the wall pieces) for encoding four individual locations, which resulted in a 

less accurate cognitive map of inter-location spatial relations. This account provided a starting 

point to understand why cognitive mapping relative to a homogenous circular boundary is a 

particularly challenging task. In the current study, we aimed to further unravel both the 
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localization process and the cognitive mapping process relative to a homogenous circular 

boundary. 

 

 

 

 

 

 

 

         

Figure 3.1. Schematic illustrations of the vector addition model. A, inferring the spatial relations 

between locations a and b when both locations are encoded relative to a single reference point R. 

The solid lines show the vectors from target locations to the reference point, va-R and vb-R. The 

dashed line shows the inferred vector between the two locations, va-b = va-R + (-vb-R); B, inferring 

the spatial relations between locations a and b when a is encoded relative to the reference point 

R1 and b relative to R2. The solid lines with arrows show, respectively, the encoded vectors 

from a to R1 (va-R1), from R1 to R2 (vR1-R2) and from b to R2 (vb-R2). The dashed line shows the 

inferred vector between the two locations, va-b  = va-R + vR1-R2 + (-vb-R). C inferring the spatial 
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relation between locations a and b when a is encoded relative to a reference point, R1, segmented 

out and chosen from a circular boundary and b relative to a different reference point, R2, chosen 

from the boundary. 

 

Following the vector-addition model proposed by Zhou and Mou (2016), we speculated 

two potential factors that might contribute to the difficulty in cognitive mapping process relative 

to a boundary. First is the number of the reference points. One chooses a part of the boundary 

(such as a wall segment that is close to a to-be-encoded location) as the reference point for 

encoding a particular location and different parts of the boundary are independently chosen when 

one learns different locations sequentially (e.g., R1 for a and R2 for b in Figure 3.1C). Thus, a 

circular boundary could be functionally equivalent to four separate wall segments when 

participants were learning four locations relative to the boundary in Zhou and Mou (2016). A 

cognitive map derived from four reference points is expected to be less accurate than that from a 

common reference point, which is the single landmark in Zhou and Mou (2016). Second, 

according to the vector-addition model, when multiple reference points are involved in encoding 

individual locations, knowing the spatial relations among the reference points (e.g., vR1-R2 in 

Figure 3.1B) would be crucial to infer the inter-location spatial relations. Lack of such 

knowledge should impede cognitive mapping. In Zhou and Mou’s study, participants in the 

boundary group learned the four locations one at a time and were not aware of the spatial 

inference tasks during test. It is thus, very likely that the straight-line spatial relations between 

any two reference points were not directly encoded although participants knew the reference 

points were from the same circular wall. Note that these two factors are not mutually exclusive, 
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either of them or the combination of the two would account for the worse cognitive maps derived 

from the homogenous circular wall. 

Our speculation that a circular boundary, when presented as a localization cue for 

encoding individual objects, could be functionally equivalent to local wall pieces rather than a 

homogenous boundary as a whole fits well with the boundary vector cell (BVC) model proposed 

by Burgess and colleagues (Barry et al., 2006; Burgess, 2008). The boundary vector cell model 

postulates that place cells in the hippocampus receives inputs from an ensemble of the boundary 

vector cells that are responsive to the presence of a barrier at a given distance along a given 

allocentric direction. Furthermore, the degree of the control of a barrier over a BVC is positively 

correlated with the distance between the barrier and a moving organism’s (in their model a rat’s) 

location. Translating the BVC model to the behavioral level of a human localization task within a 

homogenous boundary, we hypothesize that participants first segment the boundary into multiple 

pieces (with the help of distal orientation cues) so as to discern different parts of the enclosed 

space (e.g., I’m close to the North section of the wall) (Mou & Zhou, 2013; see also Chapter 2). 

To encode a particular location, participants have then to choose the most informative segment 

of the boundary (i.e., the closest segment to the location), as the primary reference point to 

encode the location (by establishing the vector between this reference point and the location, 

such as the red points and the straight-line arrows illustrated in Figure 3.2). We refer to this wall 

segment as the optimal wall segment for that specific location. Therefore four optimal reference 

points (i.e., four wall segments) would be drawn from the whole boundary for four target 

locations. Meanwhile, the wall segments that are adjacent to the optimal segment could still have 

influence on the encoding of the same location but with reduced encoding resources assigned to 

them (such as the pink dots and the dotted-line arrows illustrated in Figure 3.2).  
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Figure 3.2. Schematic illustration of encoding a single location, a, relative to a homogenous 

circular boundary. The closest wall segment on the whole boundary to a is chosen as the primary 

reference points, as denoted as the red dot, RP, in the figure. The straight-line arrow illustrates 

the vector established between a and RP. In addition, the wall segments adjacent to the primary 

reference point (the optimal wall segment) would also contribute to the encoding/representation 

as the secondary reference points but with reduced input. Two example secondary reference 

points are illustrated as the pink dots, RS1 and RS2. Two vectors were established between the 

two secondary reference points and a, illustrated as the two dotted-line arrows. The encodings of 

these two vectors would be assigned less computation resources than the one relative to RP. 

 

Experiment 1 examined the first factor, the number of reference points that might impede 

cognitive mapping relative to a homogenous circular boundary. The design was similar to that of 

Experiment 1 in Chapter 2. Participants learned the locations of four objects, one at a time, in 

three conditions differing in the localization cues available: one wall segment (ten degrees in 
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central angle) taken from a homogeneous circular wall (Figure 3.3A), four wall segments from 

the circular wall (Figure 3.3B), and the complete circular wall (Figure 3.3C). The same distal 

orientation cues were provided in all three conditions. During the testing phase, the original 

localization cues were removed (the wall segments or the whole wall, respectively); however, the 

distal orientation cues still remained. One of the four objects was presented at its correct location 

while the other three objects were probed (Figure 3.3D). Thus, the cognitive map of the spatial 

relations among the four locations was assessed by the localization accuracy during the testing 

phase where novel spatial relations among the four objects had to be inferred. 

The contrast in the cognitive mapping performance between the one-segment condition 

and the four-segment condition directly tested whether a larger number of reference points lead 

to a less cognitive map. If cognitive mapping relative to the four wall segments (multiple 

reference points) was shown to be less accurate than that relative to the one wall segment (a 

common reference point), the result would validate our assumption embedded in the vector-

addition model that multiple non-overlapping reference points involved in encoding individual 

locations would lead to more complex vector-addition process to infer inter-location spatial 

relations, thus less accurate cognitive maps.  

The comparison between the four-segment condition and the whole-wall condition tested 

whether a circular homogenous boundary would be treated as an inseparable unit or it would be 

functionally equivalent to four separate wall segments. If a circular homogenous boundary is 

treated as an inseparable unit, we would expect a better cognitive mapping process in the whole-

wall condition than that in the four-segment condition because the circular wall treated as a 

whole unit might provide less reference points than the four segments do. If a circular 
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homogenous boundary is functionally equivalent to four separate segments, we would expect 

equivalent cognitive mapping in these two conditions. Such a result would also explain the less 

accurate cognitive map derived from the whole boundary than that from the single landmark 

(Chapter 2; see also Zhou & Mou, 2016). Furthermore, as discussed in the segmentation 

hypothesis regarding localization relative to a homogeneous boundary, participants need to 

mentally segment out and choose an optimal reference point from the boundary for encoding 

each location whereas this segmentation and selection process was spared when there were 

already four separate wall segments available in the environment. Therefore locating four objects 

relative to the whole boundary could be more challenging compared to that relative to the four 

separate segments. Such challenge might even lead to less accurate encodings of the objects’ 

locations (thus worse performance even in the learning phase of the whole-boundary condition 

compared to that of the four-segment condition), which in turn would yield less accurate 

cognitive maps. 

 Experiment 2 was mainly aimed to examine the second factor, that a lack of knowledge 

about the spatial relations among the reference points chosen from a homogenous circular 

boundary might impede cognitive mapping relative to the boundary.  Participants learned the 

locations of four objects in terms of four segments drawn from a circular wall or in terms of the 

complete wall. They were then given the same cognitive mapping task as specified in 

Experiment 1.  The size of each of the four wall segment was gradually increased across four 

conditions by increasing the central angle of each segment. The direct spatial relations among the 

wall segments were always perceivable when the separate four segments were presented 

simultaneously. If participants failed to encode and represent the direct spatial relations (such as 

the straight-line spatial relations) among the reference points chosen from the continuous wall, 
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cognitive mapping performance would be less accurate in the complete-wall condition than in 

the four conditions of separate segments.  

The contrasts among the four conditions of separate segments, which varied in terms of 

the horizontal size of each wall segment, could determine whether a primary reference point 

(optimal wall segments corresponding to individual locations) of a location is sufficient for 

encoding that location. If the primary reference point is sufficient, increasing the central angle of 

each segment should not affect either the encodings of individual locations or cognitive mapping 

of the locations. 

3.3 Experiment 1 

 Participants learned four objects’ locations, one at a time, with either one optimal wall 

segment (the size of which based on a central angle of ten degrees, Figure 3.3A) drawn from a 

circular wall (50 virtual meters in radius), four such optimal segments (Figure 3.3B), or the 

whole homogenous circular wall (Figure 3.3C). How the optimal wall segments were created 

will be elaborated in the sections below. A task requiring inference of the spatial relation 

between two objects was employed to evaluate the accuracy of the cognitive map of objects’ 

locations in the above three conditions. The primary purpose of this experiment was to test 

whether the cognitive map derived from a larger number of reference points (e.g., four in the 

four-segment condition) would be less accurate than that derived from a smaller number (e.g., 

one in the one-segment condition). The secondary purpose was to test whether the continuous 

wall was treated as four reference points or an inseparable unit by comparing cognitive mapping 

performance in four-segment condition with that in the whole-wall condition. 
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3.3.1 Method 

Participants. Seventy-two (36 males and 36 females) students from the University of 

Alberta participated to fulfill a course requirement. 

Materials and Design. An immersive virtual environment was displayed using an nVisor 

SX60 head-mounted display (HMD) (NVIS Inc., Virginia). Graphics were rendered using the 

Vizard software (WorldViz, Santa Barbara, California). Head orientation was tracked with an 

InterSense IS-900 motion tracking system (InterSense Inc., Massachusetts). Thus, through head 

rotation, participants could change their viewpoints. Participants used a joystick to translate, to 

pick up and to place back the objects in the virtual environment. 

In the virtual environment (see Figure 3.3), participants learned four locations on infinite 

grassland by picking up four sequentially presented objects (a candle, a lock, a bottle and a wood 

block) and then placing them at the correct locations. All participants learned the same set of 

four locations but the location-object pair was randomized across participants. Three groups of 

participants were randomly assigned to three difference learning-cue conditions. In all three 

learning-cue conditions, four different scenes (Ocean, Forest, Mountain and City) were set at 

infinity as distal orientation cues (indicated by the surrounding labels in Figure 3.3).  

In the learning phase of the experiment, three different localization cues were presented 

according to the conditions: a homogenous circular wall with a radius of 50 virtual meters (vm), 

one wall segment drawn from the same circular wall and four wall segments from the circular 

wall. The first condition was referred to as B (Figure 3.3 C). The wall segments used in the latter 

two conditions are the wall segments which were closest to the four target locations compared to 

the remaining parts of the wall (each segment corresponding to one of the locations); the size of 
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each piece was determined by a central angle of ten degrees. These four wall segments are also 

referred to as the optimal wall segments. To create one optimal wall segment, we first found the 

point (the size of which based on a central angle of zero degrees) on the whole wall that was 

closest in distance to one of the four to-be-learned locations. For each location, a line could be 

drawn to connect this location and the center of the circular wall and this line, when elongated, 

would intersect with the wall with two points. One of the two points would have the shortest 

distance to the particular location compared to all the other points on the wall, the other having 

the longest distance. Thus, we could get the four points on the wall closest to the four target 

locations correspondingly. Once getting such four points, we expanded the central angle of each 

point until each segment was ten degrees in central angle (five degrees expended to both the left 

side and the right side of the closest point) and each target location would then have a 

corresponding ten-degree optimal segment from the circular boundary. In the four-segment 

condition, all the four optimal segments were presented at the same time when participants were 

learning one of the four locations during each learning trial and we referred to this condition as 

4OP (Figure 3.3B). Whereas in the one-segment condition, one of the four optimal segments (the 

same four used in 4OP) was randomly chosen to present to each participant but the same 

segment was presented throughout the learning phase for a particular participant; we refer to this 

condition as 1OP (Figure 3.3A). The localization cue in each condition (the wall segments in 

1OP and 4OP, the circular wall in B) was presented throughout the learning phase only. 

In the testing phase of the experiment (Figure 3.3D), the localization cues in the three 

conditions were removed; however, the distal orientation cues were still present. In addition, 

during each testing trial, one of the four objects was shown at its correct location to serve as the 
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localization cue in the testing phase. Participants would have to replace the other three objects 

based on their inference of the spatial relations between the probed object and the cue object. 
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Figure 3.3. Top-view illustrations of the virtual environments used in Experiment 1. A, The 

learning phase of the one-optimal-segment condition (1OP). The arc illustrates one of the four 

optimal segments that would be shown to the participants, the size of which based on a central 
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angle of ten degrees (one of the four segments was randomly chosen for each participant but the 

same segment would be presented throughout the learning phase of that particular participant). 

The two dotted lines with arrows illustrate the coordinate axes where (0, 0) is the origin of the 

coordinate system (also the center of the wall) used in the virtual-reality environment. The axes, 

the center and the central angle are marked only for readers. The four dots illustrate the target 

locations used in both Experiment 1 and 2. The coordinates of the four target locations are 

(35.86, 19.88), (-7.74, -31.05), (-5.14, 6.13), (-18.02, -12.62) (units in vms). The four labels 

(Ocean, Mountain, City, and Forest) illustrate the background scenes set at infinity from the 

center of the environment; B, The learning phase of the four- segment condition (4OP). The four 

arcs illustrate the four optimal wall segments drawn from the circular wall, each being the closest 

of the wall to one of the four locations correspondingly; C, The learning phase of the whole-wall 

condition (B). The circle illustrates the homogenous circular wall, 50 virtual meters (vm) in 

radius; D, The testing phase in Experiment 1. The dot illustrates one of the four objects at its 

correct location presented as the testing cue for one particular trial. The original localization cue 

(the single wall segment, the four wall segments or the boundary) was removed however the 

distal orientation cues were retained. 

 

Procedure. Participants donned the HMD and sat on a swivel chair at the center of the 

experiment room. Each participant went through three phases: the pick-up phase, the learning 

phase and the testing phase. During the pick-up phase, participants collected the four objects one 

by one from their original locations (only one object appeared at its correct location for 

participants to collect each time). The environment of the pick-up phase was the same as that of 

the learning phase. The learning phase comprised four blocks of four learning trials (one trial per 
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object in each block). During each learning trial, one of the four objects was probed and 

participants replaced the probed object based on their memory of its original location. After the 

response, the probed object appeared at its correct location (feedback). Participants were asked to 

collect it. Participants’ starting locations (could be anywhere within 40 virtual meters from the 

center of the wall used in B) and their facing directions at the beginning of each trial were 

randomized. During testing, the boundary in B and the separate wall segments in 1OP/4OP were 

removed. During each testing trial, one of the four objects was shown at its correct location as a 

localization cue together with the distal orientation cues; participants replaced one of the other 

three objects. The testing phase comprised four blocks of three testing trials. In each block, one 

of the four objects served as the testing cue in all three trials and each of the other three objects 

was probed once. No feedback was given in the testing phase. 

3.3.2 Results and Discussion 

Response errors, as measured by the distance between each of participants’ response 

locations and the corresponding correct location, were recorded as the dependent variable. We 

examined participants’ localization performance during the learning phase and the testing phase 

separately.  

Performance during the learning phase. The learning effect was examined by mixed-model 

ANOVAs on mean response errors over the four learning blocks. Learning block (1-4) was a 

within-subject variable, whereas learning cue (1OP, 4OP and B) was a between-subject variable. 

A main effect of learning block was revealed, F (3, 207) = 19.69, p < .001, ŋp
2 = .22; there was no 

interaction between learning cue condition and learning block, F (6, 207) = .52, p = .79, ŋp
2 =  .02. 
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Hence participants in all three groups improved their localization accuracy in terms of placing 

the objects with respective cues in the environment (Figure 3.4A). 

The mean response errors in the fourth learning block from the three conditions (1OP, 

4OP and B) were compared. The one-way ANOVA analysis revealed an effect of learning cue 

condition (Figure 3.4B), F (2, 69) = 3.35, p = .041, ŋp
2 = .09. Pairwise comparisons demonstrated 

that participants in the 4OP group (M4OP = 15.44 vm, SD4OP = 7.11, units in virtual meters [vm]) 

were more accurate replacing the objects than those in the 1OP condition (M1OP = 21.60 vm, 

SD1OP = 11.65), t (69) = 2.37, p =  .02, Cohen’s d = .68, and as well as those in the B condition 

(MB = 20.86 vm, SDB = 7.52), t (69) = 2.09, p = .04, Cohen’s d = .60. The localization accuracy in 

the 1OP group was comparable to that in the B group, t (69) = .29, p = .78, Cohen’s d = .08. 

Performance during the testing phase. The mean response errors during the testing phase as a 

function of the learning cue (1OP, 4OP and B) were plotted in Figure 3.4B. One-way ANOVA 

revealed an effect of learning cue condition: the accuracy of inferring spatial relations among the 

objects differed in the three groups, F (2, 69) = 8.13, p = .001, ŋp
2 = .19, suggesting that the 

cognitive maps of inter-object spatial relations derived from the three cues were different. 

Pairwise comparisons demonstrated that participants in the B condition (MB  = 51.25 vm, SDB = 

27.50) were less accurate inferring the inter-object spatial relations than those in the 1OP group 

(M1OP  = 30.20 vm, SD1OP = 10.54), t (69) = 3.85, p < .001, Cohen’s d = 1.11, and also less 

accurate than those in the 4OP condition (M4OP = 34.98 vm, SD4OP = 14.52), t (69) = 2.97, p = 

.004, Cohen’s d = 0.86. Meanwhile participants in the 1OP and the 4OP condition were 

equivalently accurate in inferring spatial relations among the objects, t (69) = .87, p = .39, Cohen’s 

d = .25.  
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Figure 3.4. Response errors during the learning phase and the testing phase in Experiment 1. A, 

Response errors during the learning phase as a function of both the learning blocks (one to four) 

and the learning-cue condition. The learning-cue conditions were 1OP, 4OP and B; B, Response 

errors as a function of the learning-cue condition during the last (i.e. fourth) learning block and 

during the testing phase, respectively. Error bars are ± 1 standard error. 
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The comparison between the 1OP and the B conditions replicated the finding in our 

previous study that learning individual locations relative to a homogeneous circular boundary led 

to a less accurate cognitive map than learning locations relative to a single landmark. Hence one 

piece wall segment (ten degrees in central angle) provided a common reference point for 

encoding the four objects’ locations, which benefits integrating the representations of the 

individual locations into a cognitive map of inter-location spatial relations.  

Learning-testing discrepancy in localization performance. To examine whether the difference in 

localization during testing was due solely to the difference in localization during learning, 

mixed-model ANOVAs were performed with experiment phase (the learning phase vs. the 

testing phase) as a within-subject variable and learning cue (1OP, 4OP and B) as a between-

subject variable.  

The mixed-model ANOVAs showed an overall interaction between learning phase and 

learning cue, F (2, 69) = 6.88, p = .002, ŋp
2 = .17, suggesting that there was varying discrepancy 

between learning and testing performance depending on the learning cue condition. Three sets of 

simple contrasts were carried out to unpacking the overall interaction effect, more specifically 

the learning-testing discrepancies between the 1OP and the 4OP condition, between the 1OP and 

the B condition, between the 4OP and the B condition respectively. As revealed by the analysis, 

the overall interaction mainly was driven by the larger learning-testing discrepancy in 

localization performance in the B condition than that in the 1OP condition, F (1, 69) = 13.76, p < 

.001, ŋp
2 = .17. There was a trend of larger learning-testing discrepancy in the whole-boundary 

condition than that in the four-segment condition, F (1, 69) = 3.41, p = .07, ŋp
2 = .05, and as well as 

a trend of larger learning-testing discrepancy in the four-segment condition than that in the in the 



80 

 

 

one-segment condition, F (1, 69) = 3.47, p = .07, ŋp
2 = .05. Hence it is tempting to hypothesize that 

the less accurate cognitive map of inter-location spatial relations derived from the boundary was 

not solely due to the less accurate representations of individual locations relative to the boundary 

but there were other contributing factors that impeded cognitive mapping relative to the 

homogenous circular wall. 

As revealed in the above analysis, localization in the learning phase was worse in the 

1OP condition than in the 4OP condition although localization in the testing phase in these two 

conditions was comparable. This demonstrated that using the common reference point for the 

four objects’ locations enables participants to integrate the representations of those locations into 

a cognitive map more easily than using separate reference points. Therefore it is consistent with 

the vector addition model in that the more non-overlapping reference points involved in 

encoding individual locations would lead to a less accurate cognitive map of these locations.   

The less accurate localization in both the testing and the learning phase of the B 

condition, and the fact that there was a larger learning-testing discrepancy in the B condition than 

in the 4OP condition, indicate that the homogenous circular wall was not equivalent to four 

optimal wall segments. In particular, integrating representations of individual locations relative 

to the homogenous circular wall were more difficult. There could be two reasons. First, 

participants might have chosen more than four reference points in the B condition. In this case 

people would still choose one optimal wall segment as the major reference point for encoding 

each location but they could also pick other segments as the secondary reference points for the 

same location. Thus, for each location, participants could have multiple reference points; as a 

result, integrating the locations into a cognitive map would be more complicated, leading to less 
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accurate knowledge of inter-location spatial relations. Secondly when learning the four locations 

sequentially relative to a featureless circular wall, participants would never have the chance to 

perceive the four major reference points (i.e. the four optimal reference points they had chosen) 

at the same time because they would only identify each optimal segment every time they were 

localizing one of the four objects. Consequently, the knowledge of the spatial relations among 

the reference points was limited in the whole-wall condition, which hindered cognitive mapping 

of the four locations. Experiment 2 was designed to dissociate these two possibilities. 

3.4 Experiment 2 

In Experiment 2, we aimed to test the two possibilities that might explain the fact that 

cognitive maps derived from a homogenous circular wall were less accurate than those derived 

from four separate wall segments: 1) the secondary reference points for encoding individual 

locations (and their associated vectors to the locations) were significantly involved in the vector-

addition process for inferring inter-location spatial relations in the whole-wall condition, leading 

to a more complex integration process; 2) the lack of knowledge of the direct spatial relations 

among the chosen reference points (i.e., the optimal wall segments) would impair inference of 

inter-location spatial relations. 

To test the first possibility, we retained the 4OP condition used in Experiment 1 (four 

optimal wall segments, the size of each segment based on a central angle of ten degrees, were 

presented during the learning phase as the localization cue) and enlarged the central angle of 

each segment to create another three conditions where the extendedness of the wall-segment 

array was increased across the conditions (Figure 3.5A-C). Through this manipulation, we 

expected to increase the number of potential reference points available in the environment for 
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localizing each object, making it more likely that participants would choose the secondary 

reference points given the increase in the extendedness of the wall-segment arrays. If the 

secondary reference points were involved in the vector addition process for inferring the inter-

object spatial relations, we would expect decreased accuracy in localization performance during 

the testing phase as a result of increasing the central angle of each optimal wall segment across 

the conditions. 

To test the second possibility, a fifth condition was employed where both the original 

circular wall (the same one used in Experiment 1) and one of the four optimal ten-degree wall 

segment placed on top of the wall were presented during each learning trial (Figure 3.5D). Hence 

participants in this condition would also see the optimal wall segment directly but never see the 

four separate segments simultaneously. 

3.4.1 Method 

Participants. 120 (60 males and 60 females) students from the University of Alberta 

participated to fulfill a course requirement. 

Materials, Design and Procedure. The overall paradigm in Experiment 2 is the same as 

that in Experiment 1 with the following exceptions. 

Five conditions were employed where different environmental cues were presented as the 

localization cues during the learning phase. The first learning condition was identical to the four-

optimal-segment condition used in Experiment 1 and we refer to this condition as 4OP_10 in the 

current experiment. The other two learning conditions were created by increasing the central 

angle of each segment in the 4OP_10 condition to 20 degrees (referred to as 4OP_20, Figure 
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3.5A) and to 30 degrees respectively (referred to as 4OP_30, Figure 3.5B). We enlarged the 

central angle of each ten-degree segment by extending the original angle by five degrees (in the 

4OP_20 condition) and ten degrees (in the 4OP_30 condition) both clockwise and 

counterclockwise. For the fourth condition, instead of extending the size of the wall segments in 

the 4OP_10 condition, we removed four wall segments (ten degrees in central angle) from the 

whole circular wall used in Experiment 1 such that the array of the remaining segments provided 

the largest number of potential reference points compared to the first three conditions. We 

referred to this condition as 4C (the letter C stands for cuts which means four ten-degree wall 

segments were cut out from the circular wall, Figure 3.5C). Each segment removed was the 

segment of the whole wall located furthest away from a corresponding object. As mentioned in 

the Method section of Experiment 1, the line connecting one target location and the center of the 

wall intersected the circular wall at two points. The closer point of the two was the point on the 

wall closest to this particular location, and the farther one was the point on the wall farthest from 

the target location. Thus, we obtained four farthest points for the four locations; each of these 

points could be regarded as a wall segment with zero degrees in central angle. By enlarging the 

central angle of each farthest point to ten degrees (five degrees clockwise and five degrees 

counterclockwise), we were able to get four ten-degree wall segments which were furthest away 

to the four objects’ locations (one corresponding to one of the four locations). These four 

segments were then removed from the circular wall to create the array used in 4C.  

The last condition was employed to test whether limited knowledge of the direct spatial 

relations among the reference points chosen from a homogenous circular wall impede cognitive 

mapping relative to the wall. We hypothesize that participants were only focusing their attention 

on one optimal wall segment when they were locating one object, as it would be the most 
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informative reference point for encoding the location of the current object. Hence the whole 

circular wall could be regarded as one wall segment during one learning trial and as four 

sequentially presented segments through four successive trials when participants learned four 

objects’ locations sequentially. Contrary to the conditions where four segments were presented 

simultaneously, participants might not have been aware of the direct spatial relations among the 

reference points on the homogenous boundary. To mimic this localization process in the 

homogenous circular wall condition, we placed one of the four optimal segments (the same four 

used in 4OP_10) on top of the whole circular wall (the same wall used in B in Experiment 1) 

when participants were learning one of the four locations during each learning trial (the optimal 

segment on top was always the closest to the target location during a particular trial). Across 

successive learning trials involving the task of locating different objects, participants would see 

four different higher segments (though not simultaneously) together with the original circular 

wall. Hence the optimal reference points for the four locations were made more salient compared 

to the remainder of the wall. We referred to this last condition as 1OPB_10 (Figure 3.5D). We 

anticipated that cognitive mapping performance (i.e., knowledge of inter-object spatial relations) 

in 1OPB_10 would be comparable to that relative to the circular wall, and less accurate than 

those in the first four conditions, where direct spatial relations among the optimal segments (such 

as forming a shape among the four separate segments) were perceivable. Furthermore, because 

the optimal reference points were made much more salient by having one of the four segments 

higher than the remainder of the wall during each learning trial, the localization performance in 

the learning phase of 1OPB_10 would be better than that relative to the homogenous circular 

wall alone (given that participants could spare the mental effort of segmenting and choosing the 
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appropriate optimal reference points). We also expected the localization performance in the last 

condition to be equivalent to those in the first four conditions.  
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Figure 3.5. Top-view illustrations of the virtual environments used in Experiment 2. A, The 

learning phase of the four-segment condition where each segment had a central angle of twenty 

degrees (4OP_20). The four arcs illustrate the four optimal wall segments, the size of each based 
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on a central angle of twenty degrees; B, The learning phase of the four-segment condition where 

each segment had a central angle of thirty degrees (4OP_30). The four arcs illustrate the four 

optimal segments, the size of each based on a central angle of thirty degrees; C, The learning 

phase of the four-segment condition in which the four segments of  the wall furthest from the 

four locations were cut out (4C). Each cut-out segment had a central angle of ten degrees; D, The 

learning phase of the condition where the whole wall, together with one of the four optimal ten-

degree segments on top of the wall, was presented in each trial (1OPB_10). Different optimal 

segments would be presented on top of the wall, corresponding to the location to be learned in a 

particular trial. The red arc illustrates one particular optimal segment on the top of the circular 

wall in a particular trial when participants were replacing an object, the correct location of which 

was at (-5.14, 6.13) (illustrated as the black dot). 

 

3.4.2 Results and Discussion 

As in Experiment 1, response error was used as the dependent variable to indicate the 

localization performance in the learning phase, which involves locating individual objects, and 

the knowledge of inter-object spatial relations in the testing phase. 

Performance during the learning phase. The mixed-model ANOVAs were carried out on 

the averaged response errors across four trials in each learning block to examine the learning 

effect across the four blocks. Learning-cue condition (4OP_10, 4OP_20, 4OP_30, 4C vs. 

1OPB_10) was the between-subject variable and learning block (1-4) was the within-subject 

variable. The analysis revealed a main effect of learning block, F (3, 345) = 31.13, p < .001, ŋp
2 = 

.21, but no effect of learning-cue condition, F (4, 115) = 1.32, p = .27, ŋp
2 = .04, nor an interaction 
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between the two variables, F (12, 345) = .83, p = .62, ŋp
2 = .03. The mean response errors of 

locating the four objects across the four blocks for each learning cue condition was plotted in 

Figure 3.6A. As shown in the figure, the mean response errors decreased as the learning phase 

progressed, indicating that knowledge of individual locations relative to the respective 

localization cues available in each condition was improved.  

Again we compared participants’ performance in the last learning block across all 

conditions to examine whether representations of individual locations relative to respective 

environmental cues were equally accurate. A one-way ANOVA was carried out on the mean 

response errors in the fourth block across the five conditions (4OP_10, 4OP_20, 4OP_30, 4C and 

1OPB_10, Figure 3.6B). The analysis revealed no effect of learning-cue conditions, F (4, 115) = 

1.18, p = .32, ŋp
2 = .04. Thus, the representations of the four objects’ locations relative to the 

respective cues in the five conditions were considered to be qualitatively comparable.  

Performance during the testing phase. A one-way ANOVA was carried out on the mean 

response errors (averaged across all the trials in the testing phase) to examine the quality of 

cognitive maps derived from respective cues in the five conditions (Figure 3.6B). A main effect 

of learning-cue condition was revealed, F (4, 115) = 4.23, p = .003, ŋp
2 = .13. Post-hoc comparisons 

showed that localization performances were equivalent across 4OP_10 (M = 40.58 vm, SD = 

11.18), 4OP_20 (M = 38.01 vm, SD = 18.22), 4OP_30 (M = 37.81 vm, SD = 14.16) and 4C (M 

= 38.47 vm, SD = 14.72). However localization performance was worse in the 1OPB_10 

condition than in the other four, t1OPB_10 vs. 4OP_10 = 2.83, p = 0.006, Cohen’s d = 0.82; t1OPB_10 vs. 

4OP_20 = 3.36, p = 0.001, Cohen’s d = 0.97; t1OPB_10 vs. 4OP_30 = 3.40, p < 0.001, Cohen’s d = 0.98; 

t1OPB_10 vs. 4C = 3.26, p = 0.001, Cohen’s d = 0.94. Hence participants’ knowledge of inter-location 
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spatial relations was less accurate when they were learning individual locations relative to the 

optimal segments with minimal knowledge of the direct spatial relations among these segments; 

whereas such knowledge was maintained when the direct spatial relations among the optimal 

reference points were perceivable (i.e., when the four separate segments were presented 

simultaneously). The results supported the speculation that limited knowledge of the direct 

spatial relations among the reference points chosen from a homogenous circular boundary 

impedes cognitive mapping relative to the boundary. 
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3.5 General Discussion 

Two experiments investigated the factors that impede cognitive mapping relative to a 

homogenous circular boundary, as distinct from cognitive mapping relative to the single 

landmark reported in our previous study (Zhou & Mou, 2016). Two factors were determined. 

First, people might select multiple reference points from a circular boundary for multiple targets, 

one for each target. The larger number of reference points—multiple reference points from a 

circular boundary compared to one reference point from a single landmark—might therefore lead 

to less accurate cognitive mapping relative to a homogenous circular boundary than relative to a 

single landmark. Second, people might not encode the direct (straight line) relations among the 

multiple reference points in a homogenous circular boundary, although they may know that all of 

the reference points are on the same circular boundary.  

Experiment 1 showed that more accurate representations of individual locations in the 

learning phase occur when participants use four wall segments (4OP_10) than when they must 

use one wall segment (1OP_10), but that, in the testing phase, equivalent accuracy in 

participants’ knowledge of inter-location spatial relations emerges under both conditions. This 

result suggests that a larger number of reference points lead to less accurate cognitive mapping. 

Experiment 1 also showed that the cognitive maps derived in the whole wall condition (B) were 

less accurate than those derived in both the 1OP_10 and the 4OP_10 conditions. The contrast 

between the B condition and the 4OP_10 condition, in particular, suggests two possible factors 

that might have impeded cognitive mapping relative to the boundary, compared to cognitive 

mapping relative to four wall segments. First, participants might have selected more than four 

reference points in the whole wall condition. Second, participants might have selected four 
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reference points from the whole wall but not encoded the direct relations among these four 

points. The results of Experiment 2 support the second possibility. Experiment 2 showed that 

when the extendedness of the wall segments increased, cognitive mapping performance remained 

stable, until the four wall segments were connected and became a continuous wall. When the 

four wall segments were separated, their direct relations were obvious and encoded. In contrast, 

participants in the continuous wall condition might not have encoded the direct relations among 

the four reference points, which led to less effective cognitive mapping. The findings of 

Experiment 2 also indicate that participants might have used four primary reference points (i.e., 

the optimal/closest wall segments) to encode the four targets. If they used more than four 

reference points, they would have been more likely to use a larger number of reference points 

when the extendedness of the wall segments increased; this would have led to less accurate 

cognitive mapping performance, which was inconsistent with the findings. 

These findings support and extend the vector-addition model proposed by Zhou and Mou 

(2016).  The vector-addition model stipulates that when multiple non-overlapping reference 

points are involved in encoding individual locations, the more complex addition process 

involved in inferring the spatial relations among the locations impairs cognitive mapping of 

inter-location spatial relations. One direct prediction of this model is that a larger number of 

reference points leads to less accurate cognitive mapping. The current study directly supports this 

prediction. Moreover, the finding that the direct spatial relations among the chosen reference 

points were not easily accessible to participants was also novel and consistent with the vector-

addition model. According to the vector-addition model, in order to infer inter-location spatial 

relations, people need to know the spatial relations of the reference points for individual 
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locations. Therefore, inferring inter-location spatial relations is easier when the spatial relations 

among the reference points are more accessible. 

There are numerous findings in the reorientation geometry literature suggesting that 

humans and some other species prefer global geometry provided by an enclosed boundary in 

space over feature cues to reorient themselves (Cheng, 1986; Hermer & Spelke, 1994; for 

review, see Cheng & Newcombe, 2005). However, our findings suggest that such global 

information (all of the chosen reference points being on the same circle) did not help participants 

to incorporate representations of individual locations within a boundary into a cognitive map. 

Most importantly, when participants were locating a single object relative to a circular 

homogenous boundary, it appears that  they broke down the global environment (segmenting the 

circular boundary) and attended more closely to the most relevant part of the environment so as 

to correctly encode the target location (e.g., choosing the optimal reference points). They were, 

however, less aware of the spatial relations between that particular part and the rest of the 

environment. Because the locations were sequentially learned and participants only attended to 

the local environment depending on the locations they were currently encoding, direct spatial 

links among the local parts were not formed; this impaired cognitive mapping relative to the 

boundary to a substantial extent. One possibility is that the knowledge of the global shape of the 

boundary would overshadow the process of encoding the direct spatial relations among the 

chosen four reference points, as participants were not explicitly motivated to learn the spatial 

relations among the chosen reference points (they were not told of the testing tasks beforehand).  

In addition, Experiment 1 demonstrated that localization performance in the learning 

phase (involving representations of individual locations with the original localization cues) was 
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less accurate in the whole-wall condition than in the four-segment condition. We hypothesized 

that localization relative to a homogenous circular boundary should be more challenging, as 

segmenting the boundary according to distal orientation cues consumes mental resources, 

whereas the segmentation process was spared when four separate wall segments were already 

available in the environment. To represent a particular location within the boundary (the 

localization process), participants needed to choose the most informative wall segments (in the 

case of localization, the segments of the whole boundary that were closest to a particular 

location) as the optimal/primary reference point for encoding the location. Although participants 

were able to segment the boundary and pick out the optimal or nearly optimal reference points 

for the four locations, this mental segmentation and selection process added to the work load 

involved in the localization task. Meanwhile in the 4OP_10 condition, the four optimal reference 

points were already identified in the environment, and participants just needed to assign the 

appropriate wall segments to the corresponding objects’ locations as the reference points (i.e., 

identifying which object was close to which one of the four wall segments), and to establish 

vectors between the locations and the reference points. Hence localization relative to a 

homogenous circular boundary is more difficult, as the optimal/primary reference points need to 

be mentally segmented out and chosen, which leads to poorer representations of individual 

locations relative to the whole boundary than relative to the four separate wall segments.  

The current study used a homogenous circular wall to investigate localization and the 

cognitive mapping process relative to a boundary. The use of such a boundary is likely to confine 

the generalizability of the current findings to situations involving boundaries of other shapes or 

boundaries with distinctive visual features on them. It is possible that boundaries of irregular 

shapes or boundaries with other visual features would already have distinctive segments 
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available, which would consequently spare participants’ efforts in the initial segmentation 

process. As a result, participants might be able to detect and encode the direct spatial relations 

among different segments of the boundary; the process of cognitive mapping in this case might 

be improved relative to the case of a homogenous circular boundary. Confirmation of this 

speculation, however, would demonstrate again that a localization process within a bounded 

space does not necessarily engage the global structure of the space.  

Following the current results of the study, we propose a two-stage localization process 

within a bounded space: first the boundary is segmented into sections and the sections are 

differentiated by an individual; second, to encode a specific location, the individual uses the most 

informative section of the boundary (e.g., the segment of the boundary closest to the location) as 

the reference point for the location. Thus, different locations have different sections as their 

respective reference points, and the locations are encoded within a fragment of the bounded 

space rather than relative to the whole space. Our study demonstrated that knowledge about the 

direct spatial relations among these separate fragments is not necessarily actively encoded. 
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Chapter 4 

 

 

When boundary-related learning is not incidental: Perceived stability modulates cue-selection 

process in goal localization 
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4.1 Abstract 

Two types of environmental visual cues have been identified as reference points used by 

individuals to encode locations: surface-based boundary cues and discrete-object-based landmark 

cues. Previous research has shown that learning locations relative to a boundary can overshadow 

learning relative to a landmark, but not vice versa, suggesting that boundary cues play a 

privileged role in representing individual locations (Doeller & Burgess, 2008). However, other 

research has revealed that a less accurate cognitive map is derived from the boundary than from 

the single landmark, suggesting that a boundary is a less privileged cue in representing inter-

location spatial relations (Zhou & Mou, 2016). The current study aims to reconcile these 

inconsistent findings. Experiment 1, using both an overshadowing paradigm and a cognitive 

mapping task, replicated the finding that participants preferred a circular boundary to a four-

landmark array for encoding four locations, but that the cognitive maps of the locations derived 

from the landmark array were more accurate. Using the overshadowing paradigm, Experiment 2 

and 3 manipulated the relative stability and distinctiveness of the two cues. The results showed 

that increasing the stability of the landmark array decreased the overall cue preference for the 

boundary in encoding individual locations. We propose that the boundary privilege occurs in 

selecting reference points for encoding individual locations due to the salience of the boundary, 

whereas the landmark advantage occurs in inferring inter-location spatial relations due to the 

common reference point provided by the single landmark. 
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4.2 Introduction 

Localizing oneself and other places of interest is important in our daily life. Successful 

navigation relies on accurate representations of individual location. Various cues from the 

physical environment (such as visual features in the surroundings) and during the course of 

navigation (such as the proprioceptive cues generated from locomotion through the environment) 

support the encodings and representations of individual locations. For the current study, we 

focused mainly on the visual features available in the environment. The localization literature has 

identified two types of environmental visual cues that can serve as reference points for encoding 

locations (Burgess, 2008; Lew, 2011), mainly surface-based boundary cues (e.g., walls, rivers) or 

discrete-object-based landmark cues (e.g., buildings, trees).  

Differences in the processing of the two cues in a localization task were initially found in 

lesion studies on rats using Morris Water Maze (MWM) tasks (Morris, 1981). In one typical 

setup, rats are trained to swim to a submerged platform in a circular water tank filled with 

opaque water (escaping from the water is a strong motivator for rats to find the platform). Distal 

visual features are provided outside the water tank so that rats can keep oriented but these 

orientation cues cannot offer the exact location information of the platform. Instead the platform 

location can be specified relative to the boundary of the tank (i.e., in certain distance away from 

a part of the wall, e.g., Morris, 1981; Hamilton, Akers, Weisend & Sutherland, 2007) or relative 

to an intramaze landmark (i.e., bearing a certain spatial relation relative to an intramze landmark, 

e.g., Pearce, Roberts & Good, 1998). Several studies showed that hippocampal lesion in rats 

resulted in failure of finding the submerged platform when the platform location was fixed in the 

circular water tank however the lesion did not prevent rats from using a beacon cue (e.g., a 

visible feature attached to the platform) to find the platform (Morris, 1982; Packard & McGaugh, 
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1992; McDonald & White, 1994). Moreover such lesion did not impair rats finding a platform 

that had a fixed spatial vector relative to a landmark even though the landmark moved within the 

water maze across trials (Pearce, Roberts & Good, 1998). Given these findings, it has been 

proposed that learning locations in relation to the extramaze distal cues and the boundary is  form 

of place learning and the process relies on hippocampus, whereas learning locations relative to 

the intramaze landmark might be hippocampal-independent (Burgess, 2008; see also Bullens et 

al., 2010). 

The proposal that boundary processing in spatial localization relies on hippocampal 

activities is further supported by the findings of places cell within rats hippocampus (O’Keefe & 

Dostrovsky, 1971; O’Keefe, 1976; see also Burgess, 2008); the firing of these cells corresponds 

to the locations of a rat in a given environment. Since the initial discovery of place cells, several 

models have been put forward to explain how they code spatial information (for review, see 

Redish, 1999). One of the influential models proposed by O’Keefe and Burges (1996) postulates 

that environmental boundaries act as a major input to drive the spatial-specific firings of the 

hippocampal place cells, based on their finding that a given place cell would reach its peak firing 

when the rat (moving in a rectangular or square enclosure) was at a fixed distance to an 

enclosure wall in a fixed allocentric direction (the reference system define by the main axes of 

the enclosure). A later modified version of the model, the Boundary Vector Cell (BVC) model, 

suggested that individual place cells received a summation of inputs from an ensemble of 

boundary vector cells (BVCs) whose firings were thought to be tuned to a barrier or a boundary 

at a given distance and allocentric direction from a rat (Hartley et al., 2000; Harley, Trinkler & 

Burgess, 2004; Barry et al., 2006; Burgess, 2008). The existence of the hypothetical BVCs was 

also confirmed in the subiculum of rats (Lever et al., 2009). Contrary to the finding that 
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environmental boundary information exerts control over the firing of place cells and 

hippocampal activities, landmark arrays placed in the center of a cylinder arena were shown to 

exert little control over the firing field of place cells (Cressant, Muller & Poucet, 1997). 

Apart from the models and single-neuron recording studies on rats, neruoimaging studies 

on human participants have given corroborating evidence that boundaries, rather than discrete 

local landmarks, are a major input driving human hippocampal activities. Using functional MRI 

to examine the neural bases of participants localizing four objects in a computerized version of 

the Morris Water Maze (MWM) task, Doeller, King and Burgess (2008) found that encoding 

locations relative to a circular boundary corresponded to the neural activation in hippocampus; 

meanwhile, encoding locations relative to a single landmark within the boundary was associated 

with the activation in the dorsal striatal area.  Another fMRI study demonstrated that imagining 

horizontal boundaries rather than vertical columns was associated with hippocampal activities 

(Bird, Capponi, King, Doeller & Burgess, 2010).  

The differing effects of the boundary cue and the landmark cue on behavioral localization 

tasks are also observed in human participants (Doeller & Burgess, 2008). Using a cue-

competition paradigm (shadowing and blocking), Doeller and Burgess adapted the MWM tasks 

in a desktop virtual-reality environment. In their overshadowing experiment, participants learned 

to place four objects relative to a featureless circular wall (the boundary condition), a single 

traffic cone (the landmark condition, the landmark was placed within the radius of the boundary) 

or with the presence of both cues (the two compound-cue conditions). Distal orientation cues 

were provided in all the conditions and participants had to rely on the respective localization 

cues to accurately encode the four objects’ locations. During the subsequent testing phase, 

participants in the boundary and the landmark conditions were tested with the presence of their 



105 

 

 

respective localization cues, without feedback, meanwhile those in the compound-cue conditions 

were tested with one of the two cues removed. Localization performance was measured as the 

distance between the response locations (where participants placed the objects) and the 

corresponding correct locations.  

The results revealed that participants in the compound-cue condition who were later 

tested with the landmark alone (i.e., with the boundary removed) were less accurate in locating 

the objects during the testing phase compared to those in the landmark condition (in which the 

traffic cone was presented in both the learning and the testing phase). Such inferior test 

performance was not observed in the compound-cue group who were tested with the boundary 

alone (i.e., with the landmark removed) in comparison to the boundary group (in which the 

boundary was presented in both the learning and the testing phase). Thus, learning locations 

relative to the boundary overshadowed learning locations to the single landmark when both cues 

were available in the environment (participants, however, were able to use the landmark as a 

localization cue when the landmark was the only cue available, as shown in the landmark 

condition). The authors suggested that boundary-related learning is incidental and governed by 

place learning mechanisms, whereas landmark-related learning obeys the rules of associative 

learning. Hence, according to the authors, the boundary advantage in encoding locations might 

be a result of the different learning mechanisms underlying the spatial learning relative to the 

two cues. 

In addition to gaining accurate representations of individual locations, in order to 

successfully navigate in a large environment that is beyond one’s vicinity, one has to integrate 

separate spatial memories (e.g., representations of individual locations) acquired at different 

points in time, and in different spaces, into a unified representation of the environment, much 
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like combining pieces of puzzles to make a whole picture. For example, knowing where one’s 

office and the grocery store are spatially situated in relation to one’s home will enable a 

successful trip between the office and the grocery store, even though one might never travel 

directly between the two locations before. Such integrated representations, which allow for the 

inference of spatial relations between two locations (i.e., a vector between two locations that 

specifies direction and distance information), are called cognitive maps (Tolman, 1948; see also 

Nadel, 2013; Bennet, 1996). We refer to this integration process as cognitive mapping.   

Although surface boundaries as a localization cue have been assigned a privileged role 

over object-based landmarks in encoding individual locations (it is thought, for example, that 

there is a lack of cue competition from landmark cues over boundary cues in goal localization), 

less is known regarding their roles in the cognitive mapping process. The study in Chapter 2 (see 

also Zhou & Mou, 2016) used both a novel-vector inference task (Experiment 1) and a 

configuration judgement task (Experiment 2) to assess the qualities of the cognitive maps 

derived from either a circular featureless boundary cue or a single landmark cue. Participants 

learned sequentially the locations of four objects in an immersive virtual-reality environment 

with either a circular wall (the boundary condition) or a traffic cone which was placed within the 

range of the boundary (the landmark condition). In addition to the localization cues, distal 

orientation cues were provided in both conditions. In the subsequent testing phase, the original 

localization cues were removed (the wall in the boundary condition and the traffic cone in the 

landmark condition). Instead one of the four objects (Experiment 1) or two of the four objects 

was/were shown at its/their correct locations as the localization cues and participants were asked 

to place the remaining objects back while the distal orientation cues were kept. The tasks directly 
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examined the relative quality of the cognitive maps derived from the learning phase with 

respective localization cues.  

The results revealed a less accurate map (in terms of inferior inferences of novel spatial 

vectors between two locations and inferior configuration judgment among three locations) of the 

four locations derived from the boundary than from the single landmark. Note that individual 

representations of the four locations acquired from the two cues were comparable (as revealed by 

participants’ equivalent accuracy in locating the four objects relative to either cue at the end of 

the learning phase). Thus, the inferior cognitive maps developed from the boundary-related 

spatial learning seem to be resulted from the differences in the cognitive mapping processes 

relative to the two cues. 

To explain such single-landmark advantage in cognitive mapping (more accurate 

cognitive maps derived from the landmark cue), Zhou and Mou (2016) proposed a vector 

addition model. The model posits that regardless of the underlying mechanisms, in order to 

successfully represent a location, a vector needs to be established between the location and a 

chosen reference point from the environment. When two locations are encoded relative to a 

common reference point (such as the single traffic cone), cognitive mapping is relatively simple, 

as one only needs to add the two individual vectors (each vector encodes the spatial relation 

between the common reference point and one of the two locations) together to infer the third 

vector between the two locations. However when two locations are encoded relative to two 

distinctive reference points (one reference point per location), cognitive mapping is relatively 

more difficult as one also needs to encode the spatial relation between the two chosen reference 

points and add this vector into the aforementioned addition process. The boundary cue (such as 

the circular wall) provides multiple reference points for encoding different locations within the 
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enclosure (see also Mou & Zhou, 2013), leading to a more complex vector addition process 

during cognitive mapping. 

The finding that a single landmark, rather than a boundary, was a more effective cue in 

cognitive mapping is surprising, given previous findings suggesting the superiority of the 

boundary over the single landmark (Doeller & Burgess, 2008; Mou & Zhou, 2013). Furthermore, 

given the important role of hippocampus rather than the striatal system in forming cognitive 

maps (O’Keefe & Nadel, 1978; Iaria, Petrides, Dagher, Pike, & Bohbot, 2003; Ekstrom, et al., 

2003; Hartley, Maguire, Spiers, & Burgess, 2003; Marchette, Bakker, & Shelton, 2011) and the 

control of boundaries on hippocampal activities, one would expect a more accurate cognitive 

map to be developed from the boundary cue.  

The major goal of the current study is to reconcile the inconsistent findings regarding the 

different advantages of a boundary cue and a landmark cue depending on the spatial tasks 

involved (Doeller & Burgess, 2008; Zhou & Mou, 2016). We hypothesize that encoding 

individual locations and inferring spatial relations among locations are two separate stages. The 

advantage of a boundary cue occurs in the former stage whereas the advantage of a single 

landmark occurs in the latter stage. The advantage of a boundary cue in encoding individual 

spatial locations might result from the perception that it provides “better” reference points during 

the initial stage of goal localization. Upon first encountering an environment, with a navigational 

goal in mind (e.g., to remember a certain location of interest), people evaluate the usefulness of 

different features provided in the environment in order to choose an appropriate cue to achieve 

their goal. Different weightings are then assigned to different environmental features depending 

on their evaluated usefulness, which determines the relative reliance upon a particular cue. In the 

case of encoding a particular location, it is likely that a stable, distinctive feature of the 
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environment would be favored as the reference point for the location. We refer to this process as 

reference-point selection.  We propose that two physical features of a boundary cue could 

potentially give rise to its advantageous role in cue competition with a landmark cue.  

 First, a boundary cue surrounding a navigator might be perceived more stable in 

comparison to a single intramaze landmark. Evidence from reorientation literature suggests that 

perceived cue validity, such as the perceived stability of an environmental cue, affects the degree 

of reliance on a particular environmental cue used in navigation (Newcombe & Ratliff, 2007). 

Single-neuron recording studies have shown that a less stable visual cue used as an orientation 

cue has weaker control over the place field and the head direction cell firings 

(Knierim, Kudrimoti & McNaughton, 1995; Jeffrey, 1998). Therefore a boundary cue perceived 

as a more stable environmental feature would exert more control on a spatial behavior in 

comparison to a single landmark.  

Second, a boundary cue based on continuous surface could provide multiple distinctive 

reference points for encoding individual locations within the boundary. In our previous work, we 

proposed a possible localization process relative to a circular boundary together with distal 

orientation cues (Mou & Zhou,  2013; see also Zhou & Mou, 2016). For instance, when 

participants were localizing within the circular wall (Figure 4.1), using the distal orientation cues 

allowed them to segment the continuous surface into different wall segments (e.g., the segment 

closest to the north). Participants could then use an appropriate wall segment (i.e., the wall 

segment closest to a target location compared to all the other segments) as the optimal reference 

point for a particular target location (e.g., the candle referred to be five meters south of the North 

wall). Thus, each target location within the boundary could be associated with a unique reference 

point (a wall segment distinguished by an aligning distal orientation cue). By contrast, a single 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Knierim%20JJ%5BAuthor%5D&cauthor=true&cauthor_uid=7891125
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kudrimoti%20HS%5BAuthor%5D&cauthor=true&cauthor_uid=7891125
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kudrimoti%20HS%5BAuthor%5D&cauthor=true&cauthor_uid=7891125


110 

 

 

landmark could only serve as a common reference point for encoding a set of locations, which 

would cause potential interference in location representation and retrieval. This postulate is 

inspired by the interference theory in associative learning and memory literature (for a brief 

review see Anderson, 2003) which proposed that forgetting can be induced by adding new 

memory trace to an old retrieval cue. Hence a single landmark would be evaluated as a less 

useful cue for encoding a set of individual locations than a boundary that provided distinctive 

reference points. Consequently, in order to ensure that representations of individual locations 

would be unique from each other (thus less interference), distinctive environmental cues would 

be favored. 

 

  

 

  

 

 

    

 

 

 

 

  

Figure 4.1. Schematic illustrations of encoding a single location relative to a circular 

homogeneous boundary. The target location is illustrated as the dot within the circle. The four 

shapes illustrated distal orientation cues. The two dashed lines illustrated segmentation based on 
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the distal orientation cues and the red wall segment chosen as the optimal reference point for 

encoding the target location. The dotted arrow illustrates the vector established between the 

location and the chosen wall segment.       

   

Three Experiments were employed to test the potential contributions of the 

aforementioned factors in modulating the relative degree of reliance upon a boundary cue and 

landmark cue in encoding individual locations. In a single experiment, Experiment 1 replicated 

the previous findings regarding the superiority of a boundary over four landmarks in encoding 

individual locations, and the superiority of four landmarks over the boundary in cognitive 

mapping. One group of participants were employed in an overshadowing paradigm (similar to 

Doeller & Burgess 2008, see also Mou & Zhou, 2013) to assess cue competition between a 

circular wall (the boundary) and an intramaze landmark array, consisting of four identical traffic 

cones, in the process of encoding four locations. The other group of participants were employed 

in a novel-vector inference task (similar to Experiment 1 in Zhou & Mou, 2016) to assess the 

relative accuracy of the cognitive map derived from the circular wall vs. that derived from the 

four-cone array. In Experiments 2 and 3, using the same overshadowing paradigm, we 

manipulated the relative stability and the distinctiveness of the landmark array to examine 

whether and how the two factors modulate the degree of reliance upon the two cues during the 

cue-selection process. 

4.3 Experiment 1 

Two spatial tasks were employed to assess the relative advantages of a boundary cue and 

a landmark cue in encoding individual locations and in cognitive mapping. The superiority of a 
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landmark in cognitive mapping and the superiority of a boundary in cognitive mapping had 

previously been reported in separate studies varying in many uncontrolled variables. By using a 

single experiment in the current study, we assured that the relative advantages of a boundary cue 

and a landmark cue in encoding individual locations and in cognitive mapping were caused 

specifically by the different tasks, rather than by other uncontrolled variables. Furthermore, we 

used four landmarks instead of one landmark in the current experiment. Each landmark was 

intentionally paired with one of the four target locations so that the distance between one 

landmark and its corresponding target location was the same as the shortest distance between that 

particular location and the boundary (for detailed illustrations see Figure 2). In this way, we 

eliminated the differences between the circular wall and the four-landmark array in terms of their 

distance to the four targets and the number of reference points. 

One group of participants (referred to as the Doeller & Burgess’ task group) learned the 

locations of four objects sequentially, in the presence of both a circular wall (the boundary) and a 

cone array consisting of four identical traffic cones (the landmark). In the subsequent testing 

phase, one of the two cues (the circular wall or the cone array) was removed and participants 

were asked to replace the four objects based on the remaining cue. Relative accuracy of the 

localization performance during testing compared to that during learning was thought to reflect 

the degree of reliance upon the remaining cues. 

The other group of participants (referred to as the Zhou & Mou’s task group) learned the 

locations of four objects sequentially, using as a localization cue either the circular wall (the 

boundary condition) or the cone array (the landmark condition). During the subsequent testing 

phase, participants were asked to infer the spatial relations between two of the four locations 
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based on their representation of the individual locations. Localization performance during testing 

was thought to reflect the quality of cognitive maps derived from the respective learning cues. 

4.3.1 Method 

Participants. Ninety-six (48 males and 48 females) students from the University of 

Alberta participated to fulfill a course requirement. Among them, 48 participants (24 males and 

24 females) participated in the Doeller & Burgess’ task and the other half (24 males and 24 

females) in the Zhou & Mou’s task. A criterion was set before the study that participant with a 

mean response errors larger than 100 virtual meters (vm) would be excluded (the boundary was 

50 vm in radius). 

Materials and Design. In the Doeller & Burgess’ task group, an immersive virtual 

environment was displayed using an nVisor SX60 head-mounted display (HMD) (NVIS Inc., 

Virginia). Graphics were rendered using the Vizard software (WorldViz, Santa Barbara, 

California). Head orientation was tracked with an InterSense IS-900 motion tracking system 

(InterSense Inc., Massachusetts). Thus, through head rotation, participants could change their 

viewpoints. Participants used a joystick to translate, to pick up and to place back the objects in 

the virtual environment. 

In the virtual environment (Figure 4.2A), participants learned four locations on infinite 

grassland by picking up four sequentially presented objects (a candle, a lock, a bottle and a wood 

block) and then placing them at the correct locations. A fixed set of locations was used for all the 

participants; however, the object-location pair was randomized across participants. During the 

learning phase, both a visually homogeneous, circular wall (the boundary cue) and a cone array 

consisting of four identical traffic cones (the landmark cue; each traffic cone was visually 
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homogeneous as well, illustrated as the triangles in Figure 4.2A) were presented as the 

localization cues. Four different scenes (Ocean, Forest, Mountain and City) were set at an 

infinite distance from participants as distal orientation cues (indicated by the surrounding labels 

in Figure 4.2). In the testing phase (Figure 4.2B), for half of the participants, the circular wall 

was removed and the participants were asked to place the objects to their correct locations based 

on the remaining cone array and the distal orientation cues (the condition is referred to as LB-L). 

For the remaining half of the participants (Figure 4.2C), the cone array was removed during 

testing, and the participants were asked to replace objects based on the remaining circular wall 

and the distal orientation cues (this condition is referred to as LB-B).  

Each traffic cone in the cone array was (unknown to the participants) intentionally paired 

with one of the four locations so that the distance between one cone and its corresponding target 

location was the same as the shortest distance between this particular location and the circular 

wall (for detailed illustrations see Figure 4.2). In addition, each traffic cone was also 

intentionally placed as far inwards from the circular wall as possible while still maintaining a 

distance from the other three unpaired locations. Hence the overall distance between the 

landmark array and the four locations was smaller than the overall shortest distance between the 

wall and the four locations, which increased the relative reliability of the landmark cue as the 

potential reference points for the four locations. Previous research has demonstrated that a 

landmark closer to a target location has more control as a reference point than a further-away 

landmark in encoding the particular location (Cheng, 1989; Spetch, 1995). One question we were 

also interested in was whether this increased reliability in the landmark cue could modulate the 

relative weightings assigned to the two cues, leading to an increased reliance upon the landmark 

cue. That is, we sought to determine whether we would see some overshadowing effect from the 
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landmark cue over the boundary cue, if increasing the reliability of the landmark cue, by 

positioning the cone array closer to the four locations, made the landmark array a more 

“competitive” set of reference points for encoding the four locations. 
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Figure 4.2. Top-view illustrations of the virtual environments used in Experiment 1. A, The 

learning phase of the Doeller & Burgess’ task group. The circle illustrates the wall, 50 virtual 

meters (vms) in radius which is also illustrated as the dashed line in the circle. The two dotted 

lines with arrows illustrate the coordinate axes where (0, 0) is the origin of the coordinate system 
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(and the center of the wall) used in the virtual-reality environment. The axes and the center are 

marked only for readers. The four dots illustrate the target locations. The coordinates of the four 

locations are (35.86, 19.88), (-7.74, -31.05), (-5.14, 6.13), (-18.02, -12.62) (units in vms). The 

four labels (Ocean, Mountain, City, and Forest) illustrate the background scenes set at an infinite 

distance from the center of the environment. The four-cone array is illustrated as the four red 

triangles. The dotted lines reveal that the shortest distance from each of the four locations to the 

circular wall is equivalent to one of the traffic cones paired with the particular location (these 

dotted lines were not marked in the experiment and participants were not aware of the pairings). 

The coordinates of the four traffic cones are (25.96, 13.08), (7.69, -21.78), (34.32, -8.24), and 

(8.29, -3.04); B, The testing phase of LB-L (the circular wall removed) in the Doeller & Burgess’ 

task group in Experiment 1 as well as the learning phase of L in the Zhou & Mou’s task group in 

Experiment 1; C, The testing phase of LB-B in the Doeller & Burgess’ task group in Experiment 

1 as well as the learning phase of B in the Zhou & Mou’s task group in Experiment 1; D, The 

testing phase of both conditions (B and L) in the Zhou & Mou’s task group in Experiment 1. The 

dot illustrates one of the four objects at its original location used as the testing cue for one 

particular trial. The original localization cue (the landmark or the boundary) was removed. 

 

The experimental setup used in the Zhou & Mou’s task group was mostly similar to that 

in the Doeller & Burgess’ task group, with the following exception. Participants were randomly 

assigned to two conditions which differed in terms of the localization cue presented during the 

learning phase. One group of participants (Figure 4.2C) learned the four locations relative to the 

circular wall (the same wall used in the Doeller & Burgess’ task group), together with the distal 
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orientation cues. We referred to this condition as B. The other group (Figure 4.2B) learned the 

four locations relative to the four-cone array (the same traffic-cone array used in the Doeller & 

Burgess’ task group), together with the distal orientation cues. We referred to this condition as L. 

During the testing phase of the Zhou & Mou’s task group (Figure 4.2D), the wall in B 

and the cone array in L were removed. However, one of the four objects was presented in each 

trial as the localization cue, together with the distal orientation cues. Participants needed to 

replace the other three objects. Because participants never saw the four objects simultaneously, 

the vectors between the cue objects and the probed objects had to be a product of cognitive 

mapping. Therefore, participants’ testing performances in L or B could reflect the relative 

accuracy of cognitive mapping in each condition. 

Procedure. In the Doeller & Burgess’ task group, participants donned the HMD and sat 

on a swivel chair at the center of the experiment room. Each participant went through three 

phases: the pick-up phase, the learning phase and the testing phase. During the pick-up phase, 

participants collected the four objects one by one from the objects’ original locations. The 

learning phase comprised four blocks of four learning trials (one trial per object in each block). 

During each learning trial, one of the four objects was probed, and participants replaced the 

probed object using their memory of its original location. After the response, the probed object 

appeared at its correct location. Participants were asked to collect it (this served as feedback 

allowing participants to learn the locations in a trial-and-error fashion). Participants’ starting 

locations (could be anywhere within a range of 40 virtual meters from the center of the wall) and 

facing directions at the beginning of each trial were randomized. During the testing phase, the 

circular wall in LB-L and the cone array in LB-B were removed; the orientation cues, however, 
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remained. With the exception of the removal of cues according to the conditions, the testing 

phase was conducted in exactly the same way as the learning phase. Participants replaced each of 

the four objects once in each block (thus four trials per block), over a total of four blocks. No 

feedback was given in the testing phase. 

 The procedure of the testing phase in the Zhou & Mou’s task group was mostly similar 

to that in the Doeller & Burgess’ task group, with the following exception. During testing, the 

wall in B and the cone array in L were removed. During each testing trial, one of the four objects 

was shown at its correct location as a localization cue together with the distal orientation cues; 

participants replaced one of the other three objects. The testing phase comprised four blocks of 

three testing trials. In each block, one of the four objects served as the testing cue in all three 

trials, and each of the other three objects was probed once. 

4.3.2 Results  

Response errors, measured as the distances between participants’ response locations and 

the corresponding correct locations, were recorded as the dependent variable for all of the 

experiments in the study. 

The Doeller & Burgess’ task group. We analyzed the overshadowing effect by comparing 

the response errors of each participant in the testing phase with the response errors of the same 

participant in the learning phase. Increased response errors in the testing phase compared to 

those in the learning phase would indicate an impairment effect resulting from the removal of 

one of the two cues, which would be equivalent to a typical overshadowing effect. We were also 

interested in the relative degree to which such an effect would result from the removal of either 

of the two cues, if we did observe increased response errors during testing in both LB-B and LB-
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L. As noted above, the particular arrangement of the cone array in the current experiment might 

increase the reliability of the landmark array compared to that of the landmarks used in the 

previous experiment (e.g., Doeller & Burgess, 2008; Mou & Zhou, 2013), which might lead to 

an impairment effect resulting from the removal of the cone array in LB-B. If a bi-directional 

overshadowing effect was observed, the relative degree of the two impairment effects (i.e., 

whether the increase in response errors in LB-L was larger than that in LB-B) might indicate the 

relative weightings assigned to the two cues. 

Across the four learning blocks, there was a significant learning effect through feedback, 

F (3, 138) = 12.65, p < .001, ŋp
2 = .22. Across the four testing blocks, however, there was no 

learning effect, F (3, 138) = .27, p = .85, ŋp
2 = .006.  This was expected, as no feedback was 

provided in the testing blocks. Similar results were observed in the subsequent experiments. 

Hence, only the response error in the last learning block was compared to the response error in 

the four testing blocks in this experiment and in Experiments 2 and 3. The mean response errors 

were averaged in the last learning block and in the four testing blocks for each participant.   

The mean response errors are plotted as a function of condition (LB-L vs. LB-B) and 

experimental phase (last learning block vs. all testing blocks) in Figure 3. The mixed-model 

ANOVAs were conducted to analyze the impairment effect from removing different cues, with 

condition (LB-L vs. LB-B) as a between-subject variable and experimental phase (the 4th 

learning block vs all testing blocks) as a within-subject variable. An interaction between 

condition and experimental phase was revealed, F (1, 46) = 6.52, p = .014, ŋp
2 = .12, as well as a 

main effect of experimental phase, F (1, 46) = 19.54, p < .001, ŋp
2 = .30. The main effect of 

condition was not significant, F (1, 46) = 1.33, p = .26, ŋp
2 = .03. Planned comparisons indicated 
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that response errors increased significantly during the testing phase in LB-L, t (23) = 4.93, p < 

.001, Cohen’s d = 1.42 (M4th_learning block  = 16.44 vm, SD4th_learning block = 6.84; Mtesting_average = 

28.10 vm, SDtesting_average = 14.86), whereas the response errors during the testing phase in LB-B 

did not differ significantly from those during the last learning block, t (23) = 1.32, p = .2, 

Cohen’s d = 0.38 (M4th_learning block  = 18.10 vm, SD4th_learning block = 8.76; Mtesting_average = 21.22 vm, 

SDtesting_average = 6.00) 

These results indicated that the boundary cue overshadowed the landmark array in 

encoding individual locations. Even though in the current setup, the relative reliability of the 

landmark cue was increased (as the four optimal landmarks were used), a boundary advantage in 

encoding individual locations were still observed. 

 

Figure 4.3. Response errors as a function of condition (LB-L or LB-B) and experimental phase 

(the fourth learning block or the average of all the testing blocks in the testing phase) in the 

Doeller & Burgess’ task group in Experiment 1. Error bars are ± 1 standard error. 
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The Zhou & Mou’s task group. The mean response error during the last learning block 

and the mean response error during the testing phase were examined separately, as we were 

interested in the relative quality of the cognitive maps derived from the respective learning cues 

between the two conditions. 

The mean response errors of the last learning block were plotted as a function of 

learning-cue condition (L vs. B) in Figure 4.4. To ensure that participants in the two conditions 

acquired comparable representations of individual locations from respective localization cues 

after the learning phase, a one-way ANOVA was conducted on the mean response errors of the 

last learning block, with learning-cue condition as the between-subject variable. Participants in 

the two groups did not differ in terms of their localization accuracy at the end of the learning 

phase, F (1, 46) = .0002, p = .99, ŋp
2 < .001 (ML-learning = 20.17 vm, SDL-learning = 11.20; MB-learning 

= 20.21 vm, SDB-learning = 8.36, units in virtual meters [vm]). Thus, representations of individual 

locations in the two conditions were comparable. 

The mean response errors across four testing blocks were plotted as a function of 

learning-cue condition (L vs. B) in Figure 4.4. A one-way ANOVA was conducted to examine 

the relative quality of cognitive maps derived from the two conditions. A main effect of learning-

cue condition was revealed, F (1, 46) = 6.59, p = .01, ŋp
2 = .13 (ML-testing = 33.40 vm, SDL-testing = 

11.14; MB-testing = 47.63 vm, SDB-testing = 24.76). Thus, participants who learned the locations 

relative to the landmark array developed a more accurate cognitive map, in terms of inferring 

spatial relations between two locations, than those who learned relative to the boundary. 
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Figure 4.4. Response errors during the fourth learning blocks and response errors during the 

testing phase, as a function of learning-cue condition (L or B) in the Zhou & Mou’s task group in 

Experiment 1. Error bars are ± 1 standard error. 

 

4.3.3 Discussion 

Experiment 1 replicated previous findings, demonstrating a boundary advantage over the 

four-landmark array in encoding and representing individual locations, as well as an advantage in 

using the landmark cue for the cognitive mapping of novel spatial relations. Note that the 

boundary advantage does not correspond to a higher accuracy of localization relative to the 

boundary cue, as the results of the Zhou & Mou’s task group clearly indicated that the 

representations of individual locations acquired from either of the two cues were equally 

accurate. The advantage of the landmark cue over the boundary cue in cognitive mapping was 

still prominent even though the cone array also provided multiple reference points (one for each 

target location) for encoding individual locations.  
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We hypothesize that the boundary advantage might have been prominent during the 

reference-point selection process at the initial stage of goal localization in the Doeller & 

Burgess’ task group. By contrast, participants in the Zhou & Mou’s task group only saw one type 

of cue, so they did not engage in the reference-point selection process. The representations of 

individual locations acquired from the landmark array were as accurate as those acquired from 

the boundary. 

The preference for the boundary cue during the reference-point selection process at the 

initial stage of goal localization might be due to the perceived physical characteristics of the 

boundary, which was further tested in the following experiment. 

4.4 Experiment 2 

As we proposed in the Introduction, the perceived higher stability of a boundary cue and 

the distinctiveness of the multiple reference points provided by the boundary could be key 

factors modulating the preference for the boundary cue over a landmark cue (i.e., more 

weightings/reliance are assigned to the boundary when participants are selecting reference points 

for encoding locations). In Experiment 2, we increased the relative stability and distinctiveness 

of the landmark array by moving each of the traffic cones in the cone array outwards and closer 

to the boundary. We did so in an effort to increase the perceived stability of the cone array, as 

well as make each cone more distinguishable from each other in terms of further distances. 

Participants learned the locations of four objects with the presence of both a circular wall 

(as that in Experiment 1) and a landmark array consisting of four identical traffic cones placed 

outwards (Figure 4.5A). During the testing phase, one of the two cues was removed. 
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Representations of individual locations were tested with the remaining cue depending on the 

conditions. 

4.4.1 Method 

Participants. Forty-eight (24 males and 24 females) students from the University of 

Alberta participated to fulfill a course requirement. 

Materials, Design, and Procedure  

The materials, design, and procedure were similar to those employed in the Doeller & 

Burgess’ task group in Experiment 1, except that each of the four traffic cones was moved 

towards the circular wall while the distance between each cone and its corresponding target 

location was mainted (see triangles in Figure 4.5A). Thus, for each target location, there would 

be one optimal reference point available from the circular wall (the point closest to a particular 

target location from all the points on the wall) as well as from one of the four traffic cones with 

equal distance. The group that was tested with the boundary alone was referred to as OLB-B (OL 

standing for Optimal Landmark) and the group tested with the landmark array alone was referred 

to as OLB-OL (Figure 4.5B). 
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Figure 4.5. Top-view illustrations of the virtual environments used in Experiment 2 and 3. A, 

The learning phase of Experiment 2. The four traffic cones (the same as those used in 

Experiment 1) were placed further outwards and closer to the wall than those in Experiment 1. 

Each traffic cone was kept at the same distance from its paired target location, which was the 
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shortest distance from the particular target location to the wall. The coordinates of the four traffic 

cones were (37.27, 10.99), (9.72, -35.40), (27.03, 33.13), and (-45.60, -7.76), respectively; B, 

The testing phase of LB-L (with the circular wall removed) in Experiment 2; C, The learning 

phase in Experiment 3. The circular wall as well as one of the four traffic cones was presented at 

a particular learning trial. The identity of the presented traffic cone varied across trials, 

depending on the target location that was to be learned in a particular trial. In this particular trial, 

the traffic cone presented to participants was located at (25.96, 13.08). The red dot illustrates the 

small object model (the candle, the bottle, the lock or the wood) attached to the top of the traffic 

cones, the function of which was to increase the distinctiveness of each traffic cone. For the 

purpose of illustration, the other three traffic cones and their corresponding objects were also 

depicted, though they were not seen by participants at this particular trial. The light-red triangles 

illustrated the other not-presented three traffic cones, which were located at (7.69, -21.78), 

(34.32, -8.24), and (8.29, -3.04) respectively. The light-red dots represent the three model objects 

attached to the top of the three traffic cones. 

 

4.4.2 Results and Discussion 

The mean response errors are plotted as a function of condition (OLB-B vs. OLB-OL) 

and experimental phase (last learning block vs. all testing blocks) in Figure 4.6A. Mixed-model 

ANOVAs were conducted to analyze the impairment effect resulted from the removal of 

different cues, with condition as a between-subject variable and experimental phase as a within-

subject variable. The analysis revealed a main effect of experimental phase, F (1, 46) = 24.01, p 

< .001, ŋp
2 = .34, but the interaction was not significant, F (1, 46) = .0001, p = .99, ŋp

2 < .001, 

nor was the main effect of condition, F (1, 46) = .92, p = .34, ŋp
2 = .02. Hence removing either of 
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the two cues, the boundary or the outward landmark array, impaired localization during testing; 

and more importantly, the impairments resulting from the removal of either cue were on the 

same magnitude, as indicated by a lack of interaction. It is likely that both the boundary and the 

landmark array were relied upon equally as the reference points for encoding the four locations. 

 

 

 

Figure 4.6. Response errors as a function of condition and experimental phase in Experiment 2 

and 3 respectively. A, in Experiment 2; B, in Experiment 3. Error bars are ± 1 standard error.  
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4.5 Experiment 3 

Experiment 2 demonstrated that increasing the perceived stability and distinctiveness of a 

landmark cue would raise the relative preference for the cue as a reference point for encoding 

locations. However, it is not clear whether distinctiveness alone could determine the modulation. 

In Experiment 3, we increased the distinctiveness of each traffic cone in the cone array but 

reduced the perceived stability of the cone array compared to those in Experiment 1. If the 

distinctiveness alone could explain the increased reliance upon the landmark cue in Experiment 

2, we would expect a similar pattern of bi-directional overshadowing to result from removing 

either cue in the current experiment. Alternatively, if perceived stability is essential in 

modulating reference-point selection, we would expect a pattern similar to the boundary 

advantage found among the Doeller & Burgess’ task group in Experiment 1. 

Participants learned the locations of four objects with the presence of both a circular wall 

(the one presented in the Doeller & Burgess’ task group in Experiment 1) and a landmark array 

consisting of four identical traffic cones (at the same locations as those used in Experiment 1). 

However the four cones were not presented simultaneously during each learning trial (Figure 

4.5C). Instead, depending on the target location to be learned in a particular learning trial, one 

corresponding traffic cone (always the one that was closest to the target location among the four 

cones) would be presented together with a unique visual feature added on top of the cone. 

Therefore, the association between one landmark and one target location would not interfere with 

the association between another landmark and another target location. During the testing phase, 

one group was tested with the boundary alone; this condition was referred to as 1LB-B.  The 

other group was tested with the four cones presented simultaneously (each traffic cone still had 
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the unique visual feature on top to maintain its distinctiveness); this condition was referred to as 

1LB-4L. 

4.5.1 Method 

Participants. Twenty-five students (12 males and 13 females) from the University of 

Alberta participated to fulfill a course requirement. One female participant was excluded, as her 

mean response error during testing was greater than 100 vm. 

Materials, Design, and Procedure 

The setup of Experiment 3 was identical to that of Experiment 1, with the following 

exceptions.  

During the pick-up phase, the four cones were presented simultaneously, and each traffic 

cone had a small model of one of the four objects on top, which was used to make the each cone 

identifiable from the others. The identity of the small objects on top of each cone depended on 

the identity of the target object (the candle, the wood, the bottle or the lock) whose location was 

paired with the particular traffic cone. During the learning phase, at each trial, depending on the 

target location to be learned at the trial, only the corresponding traffic cone (the closest one 

among the four to this particular target location) would be presented together with the 

corresponding small object model on top of the cone. The circular wall as the boundary cue was 

also presented throughout the pick-up and the learning phase for each participant. 

During the testing phase, one group of participants was tested with the boundary cue 

alone (the cone array removed); we refer to this group as LB-B. For the other group, denoted as 
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LB-L, the boundary cue was removed but the four traffic cones with their respective object 

models on top were presented throughout the testing phase. 

4.5.2 Results and Discussion 

The mean response errors are plotted as a function of experimental phase (the 4th learning 

block vs. all the testing blocks) and condition (LB-L vs. LB-B) in Figure 4.6B. Mixed-model 

ANOVAs were carried out to examine the impairment effect resulted from removing either cue 

during testing, with experimental phase as a within-subject variable and condition as a between-

subject variable. An interaction between the variables was revealed, F (1, 22) = 5.21, p = .03, ŋp
2 

= .19, as well as a main effect of experimental phase, F (1, 22) = 13.65, p = .001, ŋp
2 = .38. The 

main effect of condition was not significant, F (1, 22) = .7, p = .41, ŋp
2 = .03. Planned 

comparisons indicated a significant increase in response errors during the testing phase of LB-L 

compared to the last learning block, t (11) = 4.23, p = .001, Cohen’s d = 1.73 (M4th learning block  = 

16.08 vm, SD M4th learning block = 8.54; Mtesting average = 28.59 vm, SD Mtesting average = 11.19), whereas 

the response errors during testing were not significantly different from those during the last 

learning block in LB-B, t (11) = 1.00, p = .34, Cohen’s d = .41 (M4th learning block  = 18.69 vm, SD4th 

learning block = 6.72; Mtesting average = 21.65 vm, SDtesting average = 4.76).  

Thus, removing the boundary cue during testing impaired representations of the four 

locations; however, removing the landmark array did not have such an impairment effect on 

localization. This replicated the overshadowing effect of the boundary in the Doeller & Burgess’ 

task group in Experiment 1. The results of Experiment 2 and 3 combined suggested that 

distinctiveness alone was not sufficient to modulate the relative preference assigned to a 

landmark cue and a boundary in encoding individual locations; the perceived stability of an 
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environmental feature was critical in the evaluation of its usefulness as a potential reference 

point for encoding locations.   

4.6 General Discussion 

Three experiments were conducted to examine the potential factors contributing to the 

boundary advantage in encoding/representing individual locations, and in particular the 

perceived stability of an environmental feature and the distinctiveness of the potential reference 

points provided by the environmental feature for encoding a set of locations. Experiment 1 

replicated both the boundary privilege in encoding individual locations (the boundary cue 

overshadowed the four-cone array but not vice-versa) and the landmark-array advantage in 

cognitive mapping in a single well-controlled experiment. Experiment 2 and 3 demonstrated that 

increasing the perceived stability of the landmark-array cue could increase the relative reliance 

upon the landmark cue when both the boundary and the landmark were available as potential 

reference points for encoding locations. However, increasing distinctiveness alone was 

insufficient to modulate the reference-point selection process. 

The dissociation of a boundary cue and a landmark cue in terms of their respective 

advantages in encoding individual locations, and in forming cognitive maps of the locations, 

suggests that cognitive mapping might be a process independent from that of encoding individual 

locations. Boundary-related learning is thought to be hippocampus-dependent, whereas 

landmark-related learning is thought to be striatal-dependent (Doeller, King & Burgess, 2008). 

However, landmark-related learning was shown to benefit cognitive mapping in the current study 

(see also Zhou & Mou, 2016). This raises questions regarding the neural bases of the cognitive 

mapping process. Although it has long been proposed that the hippocampus is the major locus of 
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forming cognitive maps (O’Keefe & Nadel, 1978), there is ongoing debate about whether the 

hippocampus is also responsible for the storage of such cognitive maps (Teng & Squire, 1999; 

Corkin, 2002; Moscovitch et al., 2005). One possibility is that cognitive mapping can also be 

achieved through non-hippocampal learning. Alternatively, the storage of cognitive maps could 

occur independently of the hippocampus. The novel-vector inference task employed in the 

current study directly tests the quality of cognitive maps derived from a particular localization 

cue, as the ability to infer novel spatial vectors is one critical function of cognitive maps (Levine, 

Jankovic, & Palij, 1982; Tolman, 1948). It would be worthwhile to investigate the neural 

substrates involved in conducting such cognitive mapping tasks. 

Strikingly, the results of Experiment 2 showed that learning locations relative to a 

landmark array, which was placed close to the boundary, could impair the simultaneous learning 

of the same locations relative to a boundary cue. This finding challenges the proposal that 

boundary-related learning is incidental. Our result suggests that boundary-related learning might 

also be subject to the reference-point selection process, during which participants evaluate 

different environmental features to choose adequate reference points for encoding a particular 

location. Moreover, the relative reliance upon a certain environmental feature (or the relative 

weighting assigned to a certain environmental feature during reference-point selection) seems to 

be modulated by the physical characteristics of the feature, such as its perceived stability. In the 

current experiment, when the perceived stability of the four-cone array was increased, 

participants might have been more likely to evaluate the cones as adequate candidate reference 

points for encoding locations. As a result, bi-directional cue competition between the cone array 

and the circular boundary was observed.  
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Furthermore, the total computational resources devoted to learning locations relative to 

different environmental cues seems to be limited, as suggested by the reduced reliance upon the 

boundary cue when the relative stability of the boundary was decreased (increasing the relative 

stability of the landmark cue being equivalent to reducing the relative stability of the boundary) 

in the current study. This is in line with the associative model of geometry learning in 

reorientation (Buckley et al., 2014; Miller & Shettleworth, 2007). Abundant findings in 

reorientation literature have suggested that the geometric information provided by a surface 

boundary plays a privileged role in helping animals keep their bearings (for review of findings 

across different species, see Cheng & Newbombe, 2005). Thus, the learning of surface geometry 

provided by a boundary was thought to be exclusive of learning related to other environmental 

features. However, later evidence challenged the impenetrable characteristics of learning surface 

geometry, in that such learning was shown to be hindered or facilitated by learning of other 

environmental features (Buckley et al., 2014; Pearce, Graham, Good, Jones & McGregor, 2006; 

Wilson & Alexandar, 2008, 2010). Miller and Shettleworth adapted the Rescorla-Wagner model 

in associative learning to account for the inconsistent findings regarding cue competition 

between a boundary cue and other environmental features. According to their model, associative 

strength is assigned to enclosure geometry in terms of the probability that the cue can predict a 

reward location, and the strength is subject to competition from other environmental features.  

Although the current task is a localization task, we propose that a similar weighting 

process also happens at the initial stage of localization, when people evaluate different 

environmental features according to the physical characteristics of the features and the 

navigational goal they have in mind. The idea of the cue evaluation process is in line with the 

adaptive combination model proposed by Newcombe and colleagues (Ratliff & Newcombe, 
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2008; see also Cheng, Huttenlocher, & Newcombe, 2013). For instance, a stable environmental 

feature will be evaluated as a better reference point for encoding a target location. Once the 

environmental cues are selected as reference points for encoding locations, computational 

resources are devoted to spatial learning relative to the chosen reference point. Such an 

evaluation and reference-selection process is also involved in boundary learning. In the present 

study, therefore, when the landmark array was evaluated as a competitive cue for localization 

(such as being perceived as more stable), less weighting might have been assigned to encoding 

relative to the boundary, which led to an overshadowing effect from the landmark array over the 

boundary. The current study only used a circular boundary and manipulated the relative stability 

between the two cues. Future studies are needed to look into other factors that could modulate 

the reference-point selection process, such as the shape of the boundary or the configuration of 

the landmark array. 

In conclusion, the current study demonstrated a boundary advantage in encoding 

individual locations as well as a landmark advantage in cognitive mapping (Experiment 1). 

Moreover, we found that perceived relative stability can modulate the boundary advantage in 

encoding individual locations (Experiment 2 and 3)—that is, increasing the perceived relative 

stability of a landmark array induces an effect in which the landmark overshadows a boundary, 

and the magnitude of such an overshadowing effect is equivalent to that from the boundary cue, 

demonstrating that the two cues compete equally for the computational resources assigned to 

learning them. 
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5.1 Summaries 

The first major goal of the work carried out in the thesis is to understand the roles of 

different types of environmental features in the course of developing a cognitive map, from 

encoding individual locations to cognitive mapping of multiple locations. More specifically, we 

demonstrated a landmark advantage (either a single landmark in Chapter 2 or a four-landmark 

array in Chapter 3 and 4) in cognitive mapping of integrating individual-location representations 

and a surface-boundary advantage in encoding individual locations (Chapter 4). We then further 

investigated what gave rise to a landmark advantage in cognitive mapping (or in other words 

what impaired the cognitive mapping relative a boundary cue) and to a boundary advantage in 

encoding/representing individual location, respectively. The studies in Chapter 3 identified two 

factors that impeded cognitive mapping relative to a circular boundary: 1) that multiple reference 

points were chosen for encoding a set of locations (each location encoded relative to its own 

unique reference point, thus a lack of common reference point) and as a result, integrating 

individual representations of the multiple location was more challenging; 2) that a lack of 

knowledge about the direct spatial relations among the chosen reference point from the boundary 

impaired cognitive mapping relative to the boundary. In Chapter 4, we set out to investigate why 

a boundary cue is preferred over a landmark cue (a single landmark or a landmark array) in 

encoding individual locations and we demonstrated that perceived relative stability of an 

environmental feature could modulate cue preference when participants are choosing reference 

points among multiple environmental features. 

5.2 Main Findings and Discussions 

5.2.1 Visual environmental features in forming cognitive maps 
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Chapter 2 demonstrated that an object-based landmark, rather than a circular boundary, 

benefitted cognitive mapping of multiple locations. Participants learned the locations of four 

objects sequentially (learning one location at a time) either relative to a circular boundary or a 

single landmark (a traffic cone presented as the landmark cue) while distal orientation cues 

provided allocentric directions of the environment. Two cognitive mapping tasks were employed 

to assess the relative quality of the cognitive maps of the four locations derived from either cue. 

In particular, knowledge of direct spatial relations between two of the four locations was 

assessed in Experiment 1 and knowledge of configuration among three of the four locations was 

assessed in Experiment 2. Since one important function of a cognitive map is to assist inference 

of novel spatial relations among locations registered in the map, we consider performance on the 

two tasks could reflect the quality of the acquired cognitive maps in respective conditions. In 

both experiments, participants’ performance was superior when the locations were encoded 

relative to the landmark than to the boundary.  

The reason we focus on these two types of localization cues is that spatial learning 

relative to the two types of environmental features are thought to involve two distinctive learning 

systems, respectively. In particular, encoding a target location relative to a boundary cue is 

proposed to engage the place learning system supported by the hippocampal formation (Doeller 

& Burgess, 2008) whereas encoding a target location relative to a landmark based on discrete 

objects is proposed to be processed by the response learning system supported by the striatum. 

Hence the real question we are asking in Chapter 2 is how these two learning/memory systems 

contribute to forming a cognitive map of an environment. Cognitive map theories postulate that 

the hippocampal-dependent place-learning system would be critical in forming a cognitive map 

of a given environment and the hippocampus itself is likely the responsible for acquiring and 



145 

 

 

storing the cognitive map. Therefore according to the theories, learning locations relative to the 

boundary cue should yield a more accurate cognitive map than learning relative to the landmark 

cue. However the current finding demonstrated an opposite pattern of results. 

One possible explanation for inconsistency between the current results and the 

speculation from cognitive map theories is that learning locations relative to the landmark in the 

current study might be beyond simple stimulus-response association. In the current study, to 

locate the four objects as accurately as possible, one has to encode the exact spatial relation 

between each location and the landmark. In this case, the landmark is no longer a signal for a 

certain action but rather serving as a reference point upon which a spatial vector could be 

established to identify a target location. Indeed the equivalent accuracy in locating the four 

objects relative to either cue in the last learning block indicated that participants in the landmark 

condition did acquire the “place” information of the objects, just as those in the boundary 

condition did. Our vector-addition model further posits that a more accurate cognitive map of 

multiple locations would be yielded when all the locations are encoded relative to a common 

reference point rather than when the locations are encoded relative to different reference points. 

Hence the single landmark serving as the common reference point for the four locations led to a 

better cognitive map. In contrast, the circular boundary providing multiple reference points might 

be inferior cue for cognitive mapping. 

The findings in Chapter 2 also raise some question regarding the role of hippocampus in 

different aspects of forming a cognitive map. Extending from their multiple trace theory, 

Moscovitch and Nadel (Moscovitch et al., 2005; Nadel, Samsonovich, Ryan & Moscovitch, 

2000) proposed that long-term spatial representation entails detail spatial memory (similar to the 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Samsonovich%20A%5BAuthor%5D&cauthor=true&cauthor_uid=10985275
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ryan%20L%5BAuthor%5D&cauthor=true&cauthor_uid=10985275
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moscovitch%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10985275
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moscovitch%20M%5BAuthor%5D&cauthor=true&cauthor_uid=10985275


146 

 

 

concept of episodic memory, allowing for re-experiencing the environment) as well as more 

semantic spatial memory (similar to the concept of semantic memory); and the two types of 

memories might have differential dependence on the hippocampal function. That is, the detailed, 

episodic-like spatial memory is represented in the hippocampus whereas the semantic-like spatial 

memory in extra-hippocampal structures. Concurring with this theory, accumulating research 

evidence has pointed out a significant role of the retrosplenial cortex in allocentric spatial 

representation of a given environment by processing the spatial relations among environmental 

features (e.g., Parron & Save, 2004; Wolber & Buchel, 2005; Vass & Epstein, 2013; for review, 

see Miller, Vedder, Law & Smith, 2014). Hence we speculate that the two spatial tasks employed 

(assessing knowledge about spatial relations between two or among three objects) in Chapter 2 

might tap into the more semantic aspect of spatial memory and thus, are less reliant on the 

hippocampal place-learning system (such as learning relative to a boundary cue). 

Chapter 3 is built upon the findings from Chapter 2 in that we investigated potential 

factors impeding cognitive mapping relative to a continuous circular boundary.  Our previous 

work suggests that a circular boundary might be functionally equivalent to a collection of 

multiple reference points when used as a spatial cue for specifying locations (Mou & Zhou, 

2013). Furthermore we hypothesized that when participants are navigating themselves within a 

circular boundary surrounded by distal orientation cues, the boundary was segmented into pieces 

that are differentiated by the distal orientation cues (e.g., “I am currently at the edge closer to the 

Ocean direction”). We refer to this process as the segmentation process, the function of which is 

to keep one oriented in a given space (e.g., a circular space). To encode a specific location 

relative to the boundary, participants then choose a boundary segment that has the closest 

distance to the target location as the optimal reference point. We refer to this process as the 
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reference-point selection process. Thus, a circular boundary provided multiple reference points 

for encoding a set of multiple locations and each location would have its own reference point. 

Integrating such separate location memories (each location represented relative to its respective 

reference point) would be more challenging than integrating location memories sharing a 

common source (i.e., specified by a common reference point). In the first experiment of Chapter 

3 we compared the relative accuracy of cognitive maps derived from a single wall segment, from 

four optimal wall segments and from the whole circular boundary. The results demonstrated that 

cognitive mapping performance decreased as the number of reference points increased, 

supporting our speculation. 

Another critical factor that impeded cognitive mapping relative to the circular boundary 

is a lack of knowledge about the direct spatial relation among the chosen reference points, as 

indicated by Experiment 2 in Chapter 3. The cognitive mapping performances were significantly 

impaired when the direct spatial relations among the optimal wall segments were made less 

acceessible as compared to the condition where the spatial relations among the segments were 

directly perceivable. Combining the results of the two experiments, we draw upon an implication 

that when localizing within a bounded space, one seems to segment the space into different parts 

(e.g., the circular boundary were segmented into pieces) and only the most relevant part of the 

environment to one’s current navigation task is paid attention do (e.g., choosing the optimal 

reference points from all the segments). The spatial relations among the separate parts however 

are not actively encoded. Therefore we conclude that the global space enclosed by a boundary 

might be represented in a fragmented fashion in a goal localization task. This is in contrast in the 

representation of an enclosed space in a reorientation task in that the global shape of the bounded 

space is thought to be an important cue for an individual to gain their bearings (Cheng, 1986; 
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Gallistel, 1990). The finding that a circular space was parsed into separate regions in a goal 

localization task suggests that localization (or encoding locations within an environment) might 

be a separate process from orientation as an individual mainly attends to a limited part of the 

space that is relevant to the current spatial task. 

5.2.2 Place learning and response learning revisited 

In the first experiment of Chapter 4, we demonstrated the privileged role of a circular 

boundary over a four-landmark array in encoding a set of four locations sequentially 

(overshadowing effect of the boundary over the landmark array) as well as the landmark-array 

advantage in forming a more accurate cognitive map of the four locations. The result was 

inconsistent with the different privileged roles of the two cues in different spatial tasks (Doeller 

& Burgess, 2008; Zhou & Mou, 2016). Note that the privileged role of the boundary cues in 

spatial learning of individual locations does not lend to more accurate representations of 

individual locations compared to the landmark cues (as shown in the equivalent localization 

performances relative the boundary and the single landmark in Zhou & Mou, 2016; see also 

Doeller & Burgess, 2008). Therefore we aim to understand why a boundary cue is preferred as 

reference point for encoding locations even though the cue is not necessarily a more reliable cue 

for more accurate spatial representations.  

We hypothesize that upon encountering an environment, one evaluates the usefulness/the 

validity of various environmental features in order to complete a given navigation task. In the 

task of encoding a specific location, a stable and a distinctive visual feature in the environment 

might be perceived as a more reliable/valid cue to be used as the reference point for encoding the 

target location. We refer this process as the reference-point selection process (the proposal shares 
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some idea with adaptive cue combination model proposed by Newcombe and colleagues to 

explain the cue competition process in reorientation; see Ratliff & Newcombe, 2008). As a result 

of this selection process, different weights (or reliance) are assigned to the evaluated features. 

The more weights assigned to a particular feature would determine more computation resources 

designated to the feature. We speculate that surface-based boundary cue would be subject to this 

selection process as well as landmark cues. A boundary enclosing the environment might be 

perceived as more stable than a single object and thus, would be assigned more weights as a 

reference point for encoding a target location, leading to the boundary advantage in encoding 

individual locations. In Experiment 2 and 3 of Chapter 4, we manipulated the perceived relative 

stability of the boundary and the landmark array as well as the distinctiveness of the potential 

reference points provided by the two cues. The results demonstrated that the landmark array with 

increased stability overshadowed the boundary cue however increasing the distinctiveness of the 

landmark array alone was not sufficient to induce the overshadowing effect of the landmark 

array. The results suggest that even a boundary cue is subjected to the reference-point selection 

process, thus not immune to cue competition.  

The findings that a boundary cue can be overshadowed by a landmark-array cue is 

contradictory to the proposal that place learning is latent and incidental (Tolman, 1948; Nadel, 

2013; Doeller & Burgess, 2008) as encoding locations relative to a boundary is considered as a 

form of place learning (Doeller & Burgess, 2008). The results of Chapter 4 challenge the non-

associative nature of place learning (e.g., the immunity to cue competition). Indeed, some 

previous research has cast doubt on the non-associative property of place learning, the findings 

of which demonstrated blocking, overshadowing and potentiation in place learning (e.g., 
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Hamilton & Shettleworth, 1999; Roberts & Pearce, 1999; Pearce, Graham, Good, Jones 

& McGregor, 2006; see also Kelly & Gibson, 2007).  

5.3 Future Research 

The two cognitive mapping tasks employed in Chapter 2 of the current thesis are thought 

to directly assess the quality of a cognitive map derived from a specific localization cue. The first 

task requires one to infer novel spatial relations between two locations and the second task 

require one to infer spatial configuration among three locations. The assessed knowledge cannot 

be directly acquired from the spatial representation encoded during the learning phase but one 

has to infer from integrating the representations of individual locations. The ability to infer novel 

spatial relations is a defining property of a cognitive map. Hence it might be worthwhile to 

employ cognitive mapping tasks such as the two used in Chapter 2 in neural imaging studies in 

order to gain more insight into the underpinning neural substrates involved in forming and 

storing cognitive maps.  

The incidental and latent characteristics of cognitive maps implies that the acquisition 

and integration of some new information into the existing spatial knowledge of a cognitive map 

would be automatic (i.e., one would always automatically incorporate new spatial information 

into the current cognitive maps). Thus, another interesting question regarding the formation of 

cognitive maps might be how automatic this updating process would be. According to the results 

of the current thesis, it seems that one might not actively incorporate the representation of 

individual locations as localization relative to a boundary seemed to be processed in a 

fragmented fashion. Thus, do we compute novel spatial relations just on the fly or can we 

ultimately acquire and store a unified “mental map” of a large scale environment? In future 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Pearce%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=16834489
http://www.ncbi.nlm.nih.gov/pubmed/?term=Graham%20M%5BAuthor%5D&cauthor=true&cauthor_uid=16834489
http://www.ncbi.nlm.nih.gov/pubmed/?term=Good%20MA%5BAuthor%5D&cauthor=true&cauthor_uid=16834489
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jones%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=16834489
http://www.ncbi.nlm.nih.gov/pubmed/?term=McGregor%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16834489
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research, the cognitive mapping knowledge could be probed at different time points of spatial 

learning (such as giving the cognitive mapping tasks after different numbers of learning trials 

during which participants are learning the individual locations) so as to assess the developing 

curve of the cognitive maps. On the other hand, participants can also be made aware of the 

cognitive mapping tasks beforehand (as in the current thesis participants were never aware 

beforehand that their cognitive map knowledge would be tested) and the quality of the cognitive 

maps under such condition would be superior to that from the “innocent” participants.  

The boundary used in the current studies included in the thesis was a circular 

homogenous wall, which would be rarely seen in a natural setting. Future research could tap into 

localization and cognitive mapping relative to boundaries of irregular shapes, which would 

extend the current findings into more real-life scenarios. 

Environmental features are vital for successful navigation of an individual which in turn 

is critical for an individual’s survival and wellbeing through the life course. Understanding the 

roles played by various visual features in the course of developing a cognitive map of the 

surroundings would allow insight into how different learning mechanisms engage in and 

contribute to our mental maps. 
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