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Abstract

This thesis research concerns controlling viscous fingering instability when a less-viscous

fluid pushes another more-viscous one in a porous medium. This instability is called the

Saffman-Taylor instability and has been extensively studied, primarily for simple Newtonian

fluids. The resultant of such growing and wavy interfacial perturbation is the deterioration

of the efficiency of industrial processes (e.g., Enhanced Oil Recovery). For Newtonian fluids,

it has already been proved that adding a gap gradient to a Hele-Shaw cell is an efficient

method to suppress this interfacial instability. In our work, we focus on achieving a total

sweep displacement with complex (yield-stress) fluids. We demonstrate the viscous fingering

instability suppression using converging cells, whereby we add a negative depth gradient by

tapering the upper plate of both radial and rectangular Hele-Shaw cells.

Performing experiments in our homemade rectangularly tapered Hele-Shaw cell, we ob-

serve that a converging cell, implying a permeability gradient, can be used to inhibit the

viscous fingering instability of complex yield-stress fluids. We investigate, in particular,

the impact of the gap gradient (α) and the injection flow rate (Q) on the stabilization of

the interface of three complex yield-stress viscous fluids. For a fixed cell gradient, our ex-

perimental results show that a full sweep is achieved at a low flow rate, whereas a partial

displacement with fingering is obtained when the flow rate is over a critical value.

Furthermore, we develop a theoretical linear stability analysis generalized for common

complex fluids possessing a power-law varying viscosity and yield stress. From this analy-

sis, we establish a theoretical stability criterion that we tested which depends on the cell

geometry (α, the gap gradient, and W , the cell’s width), the interface’s gap thickness, and
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velocity (h0 and U0, respectively), the fluid’s viscosity (µ), surface tension (γ) and contact

angle (θc). Using the experimental values of h0 and U0 at the interface, we calculate the

value of our theoretical criterion and obtain a good agreement to separate both stable and

unstable experimental displacements.

We also carry out similar experimental and theoretical investigations using two complex

yield-stress viscous fluids for radially tapered Hele-Shaw cells. We obtain a stability dia-

gram for one of them depending on the gap gradient and the injection flow rate (α v.s Q).

Theoretically, we derive a linear stability analysis starting from an effective Darcy’s law and

the continuity equation replacing the constant viscosity, µ, by an effective viscosity µeff re-

specting the Herschel-Bulkley law. From the two governing equations, we obtain a criterion

depending on three important parameters. First, the fluid’s rheology and characteristics

µeff and the different constants, γ and θc. Then, the gap gradient (α) and lastly, the inter-

face radial position, gap thickness, and velocity (r0, h0 and U0, respectively). Once again,

using the experimental values of radius of the interface, gap thickness at the interface, and

velocity of the interface, we compare our theoretical stability criterion to the experiments.

We found good agreement between the two, but we observed a slight discrepancy which is

expected due to our assumptions.

As a consequence, we investigate the impact of one major assumption we made in our

first linear stability analysis in the radial geometry concerning the Bingham number (ratio

of the yield stress to the viscous stress). To do so, we develop a second more complex linear

analysis in a radially tapered Hele-Shaw cell. In this new derivation, we obtain another

stability criterion by avoiding to neglect the Bingham number. As in our first theoretical

derivation, the stability is dependent on the gap gradient (α), the interface position, gap

thickness and velocity (r0, h0 and U0), as well as the fluids’ viscosity, surface tension and

contact angle. We immediately compare this second criterion to our experimental results.

We are able to improve the agreement between them for low values of gap gradient. However,

for higher values of α, it seems that neglecting or not the Bingham number does not affect the

overall agreement between theoretical and experimental results, meaning other assumptions
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made during our stability analyses still undermine our work.
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vertical dashed lines represent the yield-stress (τc) values of the two fluids. . 44

xiii



3.2 Control of complex viscous fingering using a radially-tapered cell, with

a linearly varying gap thickness (h = hc + αr), schematically shown in (a),

the side-view of the experiment. (b) Experimental snapshots of a branched

viscous fingering pattern observed when a gas is pushing the complex solution

(S2) in a flat Hele-Shaw cell with hc = 0.5 mm and Q = 0.2 slpm. (c) By

contrast, snapshot of a stable interface obtained when the gas is pushing

(S2) in a tapered Hele-Shaw cell of the gap gradient α = −3.33 × 10−2, with

hc = 5.16 mm and Q = 0.2 slpm. The scale bars in (b) and (c) correspond

to a distance of 20 mm.(d) Experimental results of stability diagram, with

uniform stable (●) vs. fingering/wavy unstable interfaces ( ) under various

values of flow rate, Q, and the tapered gap gradient, α. Black squares (∎)

represent a transitional state where the interface starts to develop a wavy

profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Comparison between experimental and theoretical results: (a) The

growth rate of the perturbation at the most unstable mode of kmax, σ(k̄max)

using Eq. (3.17) and (3.18) for different experiments performed with various

gap gradient, ∣α∣. The values of U0, r0, and h0 are taken from the experiments.

The wavenumber here corresponds to the wavenumber of maximum growth,

k = k̄max [Eq. (3.18)]. On the one hand, the experiments with the more

viscous solution (S1) always show unstable wavy interface (with data points

◇). On the other, for the less viscous complex fluid (S2), stable displacement

(▲) and unstable interface (△) are observed with nearly-zero and relatively-

large growth rate σ, respectively. (b)-(d) are the overlays of experimental

snapshots, revealing the evolution of the fluid-fluid interface profiles for the

three big symbols (▲, △, ◇) in (a), respectively. The interfaces highlighted

in red or blue correspond to the data of these symbols analyzed in (a). The

time steps are δt = 22 s, δt = 0.6 s and δt = 1 s in (b), (c) and (d), respectively.

Each scale bar represent a length scale of 20 mm. . . . . . . . . . . . . . . . . 55

xiv



4.1 (a)−(b) Schematics of top-view and side-view fluid-fluid displacement experi-

mental setup, where a more-viscous complex fluid of viscosity µ2 varying with

shear rate (γ̇), is pushed by another immiscible one. (c) Representative ex-

perimental snapshot of complex viscous fingering obtained when the complex

yield-stress (PAA) solution (S1) is displaced by nitrogen gas injected with a

flow rate Q = 0.03 slpm in a flat Hele-Shaw cell. The scale bar corresponds

to 20 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Experimental Data of interfacial profiles obtained when a gas displaces

a yield-stress fluid using different cells. (a) Overlay of experimental snapshots

of a viscous fingering pattern observed when a gas is pushing complex solution

(S2) in a flat Hele-Shaw cell with hc = 0.5 mm and Q = 0.025 slpm (with the

time step of δt = 2 s). (b) By contrast, overlay of experiment snapshots of a

stable interface obtained when the gas is pushing (S2) in a radially-tapered cell

with a linearly converging gap-thickness: h = hc + αr, where α = −7.18 × 10−2

with hc = 10.39 mm and Q = 0.025 slpm. The time interval is δt = 40 s. Both

scale bars correspond to a distance of 20 mm. . . . . . . . . . . . . . . . . . . 61

4.3 Comparison between experimental and theoretical results of the per-

turbation’s growth rate of the most unstable mode, σ(k = k̄max) [Eq. (4.25)].

The values of U0, r0 and h0 are taken from the experiments. The wavenumber

corresponding to the wavenumber of maximum growth (k = k̄max) is obtained

numerically using Matlab. We compare with the experimental results per-

formed with various ∣α∣ and differentiate stable displacements (●), obtained

solely during experiments with the less-viscous fluid (S2), and unstable wavy

interface (△ and ○ for the fluid (S1) and (S2), respectively). . . . . . . . . . 70

xv



A.1 Viscosity versus shear rate for the solution (S2) after different number of

experiments. The symbols (○,○,○ and ○) correspond to the viscosity mea-

surements of the solution after 0, 1, 5 or 9 experiments, respectively. The

symbol (◇) corresponds to the mean rheological evolution we fitted with the

Herschel-Bulkley model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xvi



Nomenclature

α Gap gradient

k̄max Dimensionless perturbation’s wavenumber of maximum growth rate

δ Aspect ratio (ratio of the channel width to gap the gap thickness)

γ̇ Shear rate

γ Interfacial surface tension
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Chapter 1

Introduction

1.1 Porous Media Flow and Saffman-Taylor Instability

Displacement flows in porous media are vital to understand the working processes of many

applications in various industrial domains, such as groundwater hydrology, coating processes,

petroleum engineering, and electrochemistry applications, etc. [1, 2]. Even though the

theory of porous media flow is complex, primarily due to multiphase fluids and broad length

scales ranging from microscopic pores to field scales, the subject has been extensively studied

since the 19th century.

A porous medium is defined as a material matrix containing pores or voids, which gases

or liquids can fill. Some examples of porous media are sand or rocks. A porous medium is

primarily characterized by two parameters: porosity and permeability. The porosity, ϕ, is

the measure of the volume fraction occupied by connected void space (while isolated voids are

not taken into account) to the total volume of the medium. The permeability, characterized

by the permeability coefficient k, is the material’s ability to transmit fluid when applied

pressure difference. These parameters are dependent on the degree of interconnection of

void space, the pore sizes, and the pore distribution [1, 2, 3].

From the mass continuity equation and the momentum equation, one can theoretically

derive the correlation between the fluid flow rate (Q) in a porous medium to the pressure
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difference (∆P ) pushing this fluid [3] via

Q = −
kA

µL
∆P. (1.1)

This formula is known as the Darcy’s law. It is applied for a single-phase Newtonian fluid

without any elevation change. k is the permeability coefficient defined earlier, µ corresponds

to the fluid’s viscosity, A is the cross-section area of the medium, and L is the length whereby

the pressure difference is applied.

However, multiphase flows are particularly interesting for many applications. In this

case, the concept of relative permeability, ki, of the phase indexed i needs to be introduced.

The problems of two-phase flow in a porous medium are treated with Darcy’s extended law

[3]:

Ui⃗ = −k
ki
µi
∇⃗P. (1.2)

This expression works for an horizontal, one-dimensional, immiscible, two-phase flow in a

homogeneous and isotropic porous medium. Here, k is the absolute permeability of the

porous medium. ki and µi are the relative permeability and the viscosity of the fluid i,

respectively. From the Darcy’s extended law, it is possible to define the mobility of the fluid

i as Mi =
kki
µi . This mobility parameter is often used to characterize porous media flow [3].

When a more mobile fluid pushes a less mobile one in a porous medium, interfacial in-

stability occurs. This instability is called the Saffman-Taylor instability and was initially

discovered by Hill [4] in a vertical Hele-Shaw cell. Saffman and Taylor [5] studied in 1958 the

immiscible displacements of more viscous fluids (oil or glycerine) by less viscous ones (water

or air) due to pressure difference in a horizontal Hele-Shaw cell of constant permeability.

They found that the interface is unstable and dependent on the Capillary number Ca = µU
γ ,

with the fluid’s velocity, U , and the interfacial surface tension, γ. The Capillary number

is defined as the ratio of the viscous forces to surface tension. Furthermore, the instabil-

ity shaping as a finger gave the common name to the Saffman-Taylor instability: Viscous

fingering. Since then, numerous studies have been performed in order to understand and

control this instability.
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Figure 1.1. Experimental snapshot of air penetrating oil in a horizontal, rectangular Hele-
Shaw cell by Tabeling et al. [6].

1.2 Applications

The suppression or the enhancement of the viscous fingering instability is vital to achieving

important efficiency in many applications whereby fluids flow through a porous medium.

This abundance of applications triggered the motivation of many authors to study this phe-

nomenon. A few examples of applications include chromatographic separation of solvents,

fluid mixing in microfluidics, coating flows, and printing devices [7, 8, 9, 10, 11, 12, 13, 14].

Moreover, the Saffman and Taylor instability is an important issue for the geological sys-

tems. In this field, the applications impacted by the viscous fingering are numerous due to

the porosity of the underground soil. Underground fluid transportation is an ideal example

and the applications can be the control of groundwater contamination by a pollutant or any

natural element [15, 16], Enhanced Oil Recovery [17, 18, 19, 20, 21, 22, 23] or CO2 seques-

tration [2, 24, 25, 26, 23]. Coating flows, Enhanced Oil Recovery, and CO2 sequestration

are three application examples we will discuss in which the instability must, preferably, be

avoided.
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1.2.1 Coating and Printing Devices

For coating and printing devices, the control of the Saffman−Taylor instability is primordial.

Coating is a process by which thin liquid layers are formed and applied to a solid surface.

Flows utilized in coating processes are called coating flows. The flows that occur after

the coating until the fluid stops moving are also considered as coating flows. There is a

good extent of studies around the stability of interfacial flows for coating applications. For

example, Pitts et al. and Greener et al. observed that the appearance of ribbing (interfacial)

instability for rolling coating or printing experiments depends on the Capillary number

and the geometrical parameters of the rollers [7, 8]. These parameters, most famously,

are the radius of the rollers and the distance between them. As ribbing instability is a

major problem in the coating industry, stability criteria have been searched in all kinds of

geometries for years to get rid of the instability. For rolling coating, Savage determined that

the requirements are defined in terms of modified Capillary number [9]. In a co-rotating

cylinder, the occurrence of the viscous fingering instability depends on the velocity of the

cylinders found Rabaud et al. [10]. Grillet et al. and Lee et al. studied the gravity

stabilization as a control parameter on the onset of traditional Newtonian viscous fingering

in an eccentric cylinder for both Newtonian fluids and Boger fluids [12, 13]. Fig. 1.2 shows

a practical example of the ribbing instability in an eccentric cylinder [12].

Figure 1.2. Ribbing instability in an eccentric cylinder studied by Grillet et al. [12].
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1.2.2 Enhanced Oil Recovery

In the primary oil recovery method to extract oil, it is commonly estimated that around

75% of the light oil and 95% of the heavy oil still remain as residual oil in underground

reservoirs [17]. The use of Enhanced Oil Recovery (EOR) is necessary in order to drive

out the remaining viscous oil. The first idea used was the water flooding (WF) or water

injection (WI). Pushing the remaining oil to the extraction well with water injected via an

injection well (see Fig. 1.3). With this method, still, ≈ 60–70% of the original oil in place

cannot be mobilized through conventional water floods due to viscous fingering, estimated

by Xu et al. [21]. Solutions have been investigated to control the Saffman-Taylor instability

or to enhance the efficiency of the oil recovery.

Such an example can be the use of complex fluids such as surfactants [22] or polymers

[18, 20] as driving fluids. Surfactants are used to change the wetting properties. In contrast,

polymers are usually used to decrease the viscosity (mobility) difference between the driving

fluid and the oil and consequently stop the occurrence of fingers in the porous medium.

However, both technical and economic factors are essential for the industry and can restrict

the practical application of surfactant and polymer flooding. Furthermore, polymer flooding

is not recommended for heavy oils with an essential viscosity of thousands of centipoises [18].

With such viscous oils, to enhance the sweep efficiency and suppress viscous fingering, very

high concentrations of polymer solution are required to decrease the mobility ratio between

driving and receding fluid measurably. Hence, both the cost of chemicals and the difficulty

of injection can be drastically increased [18].

A second ingenious solution used for (EOR) is the injection of CO2. CO2 flooding is

more efficient than water flooding for the same injected volume due to the miscibility of CO2

with oil observed by Chukwudeme et al. [19]. They also found that the method efficiency

is gravely depending on temperature and the pressure of the gas. However, the method

has some drawbacks. For instance, it present a poor sweep efficiency attributed to the low

viscosity of CO2. Another issue is gravity segregation. The migration of the CO2 gas to the

top of the reservoir due to buoyancy forces.
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Figure 1.3. A schematic view of Enhanced Oil Recovery. Image from [27].

CO2 foam flooding water alternating gas (WAG) [22], simultaneous water alternating gas

(SWAG), low salinity water injection (LSWI), and carbonated water injection (CWI) [23]

are methods to overcome the issues. In terms of sweep efficiency and total recovery, Esene

et al. reported CWI as the most promising method [23]. During CWI, CO2 is dissolved into

the water and then injected into the reservoir as a single-phase fluid. Afterwards, the CO2

diffuse into the oil because both fluids are miscible and change the viscous properties of the

oil. This mass transfer of CO2 improves the mobility ratio and induces a stable displacement

of the oil, found by Esene et al. [23]. Moreover, this method shows an additional benefit

since with CWI a larger portion of CO2 is sequestrated into the ground as using a basic CO2

injection. The necessity of underground CO2 storage being discuss in the next subsection.

1.2.3 CO2 Sequestration

Compared to other gases, carbon dioxide is the gas with the highest potential to cause

greenhouse effects. CO2 also accounts for about two-thirds of the global warming potential

[23]. For all these environmental issues, it is essential to trap the CO2 underground instead of
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letting it flow into the atmosphere. Sequestration of CO2 in geologic formations has proved

to be technologically and financially viable to control CO2 concentration in the ambient

atmosphere [2]. Carbon dioxide sequestration into petroleum reservoirs is being explored

to avoid gas release into the atmosphere. This method, consisting of pushing the oil to the

extraction well using CO2, can provide additional efficiency up to 40% of the remaining oil

left in reservoirs following primary recovery, observed by Daneshfar et al. [24]. However, the

CO2 storage capability of this approach is very limited. A fraction of the injected CO2 can

eventually come back along with the produced oil at the extraction well. In addition, these

geological formations are not large enough to counter-balance the quantity of CO2 produced

by burning the extracted oil. Burning about 1 ft3 of petroleum product produces 2.2 ft3 of

carbon dioxide [24].

In order to solve this problem, the use of deep saline aquifers has gained interest to

sequestrate the CO2 [25, 26]. Injecting CO2 into a aqueous solution of Ca(OH)2 in a porous

medium, at high pressure, results in a chemical reaction to form CaCO3 deposits in which

CO2 is trapped. However, by injecting a less viscous and less dense gas underground,

viscous fingering will occur. It is crucial to control this instability in order to have the best

efficiency and store the maximum CO2. For this application, the control of the Saffman-

Taylor instability has already been under investigation. It has been showed by White et

al. that the pressure is the stability parameter [25]. At low pressure, the instability is less

pronounced, while it is clearly an issue at high pressure. However, the chemical reaction

between the CO2 and Ca(OH)2 being faster at high pressure, the key to efficient CO2

sequestration is to find the balance between chemical reaction dynamics and the physics of

fluid-fluid interfacial instability. To that extent, the use of supercritical CO2 is being highly

investigated in the quest of efficiency [26].

1.3 Immiscible Viscous Fingering in a Hele-Shaw Cell

We saw in the previous section that viscous fingering occurs in many industrial applications.

As a consequence, many studies have been done to investigate this instability in a Hele-
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Shaw cell. A Hele-Shaw cell consists of two parallel plates separated by a small gap that

recreates a quasi-two-dimensional (2D), homogeneous porous medium. This setup is widely

used to observe a porous medium flow where direct visualization is usually tricky. A Hele-

Shaw cell is characterized by a constant permeability: k = h2

12 , with h corresponding to

the gap thickness, as well as a porosity equal to the unity as only void is present. The

heterogeneous pore structure and distribution are essential aspects of a porous medium that

are not captured by Hele-Shaw flows. Nevertheless, this simple geometry is convenient to

visualize the quasi-2D pattern morphology and reflect on more complex problems.

Viscous fingering arises when the driving fluid is injected at a sufficient rate so that vis-

cous forces exceed surface tension forces causing the normally stable axisymmetric interface

between the two fluids to become linearly unstable to non-axisymmetric perturbations [28].

Different aspects have been studied, for instance, the impact of inertia [29], surface tension

[30, 31], gravity [32], three-layer displacement [33] or a chemical reaction at the interface

[34, 35]. The instability has been investigated in many different geometries, for example,

with rotating Hele-Shaw cells [36, 37, 38]. For our study, we will only focus on the work

with horizontal, rectangular (See Fig. 1.1) and radial (See Fig. 1.4) Hele-Shaw cells and two

immiscible fluids. The driving fluid is injected, and the receding fluid is pushed.

1.3.1 Newtonian Fluids

Saffman and Taylor were the first to find that a single finger is formed and propagates after

the initial instability when a Newtonian fluid of low mobility is pushing another Newto-

nian fluid of higher mobility in a horizontal rectangular Hele-Shaw cell. This newly named

Saffman-Taylor instability is characterized by a dependence of the relative width of the fin-

ger λw (i.e., the ratio of the finger-width to the channel width) with respect to the Capillary

number, Ca = µU
γ [5]. They found that the ratio of finger-width decreases as Ca increases

until it reaches a plateau of 1
2 . Afterward, Saffman observed that λw follows a unique curve

when scaled with the parameter 1/B = Caδ2, where the aspect ratio, δ, is the ratio of the

channel width to gap thickness between the two plates forming the Hele-Shaw cell [40]. This
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Figure 1.4. Radial pattern of viscous fingering when dyed oil is driving glycerine observed
by Chen [39].

observations highlight that viscous forces tend to narrow the finger while the Capillary forces

tend to widen it. However, Tabeling et al. did not observe a λw = 1/2 plateau in the λw vs.

1/B curve for large 1/B [6]. This deviation implies that another physical mechanism has

to be taken into account, and the authors noticed that the curvature of the meniscus keeps

changing with changing Ca.

Tabeling et al. (in 1987) also noticed that with an increasing gap thickness, the finger

grows wider, but the plateau value remains the same again, unless for large 1/B [6]. Fur-

thermore, they highlighted experimentally the apparition of a new phenomenon when the

Capillary number is high enough. The finger tip splits into two new fingers; This pattern is

so-called ”tip-splitting”. In the same year, Homsy defined the immiscible fingering processes

as three basic growth mechanisms: spreading, splitting, and shielding [41]. Spreading and

splitting have been observed at low and high Ca, respectively. The shielding phenomenon is

the reason why there is usually only a single finger at low Ca. In shielding, since the mobile

fingers tends to grow in the direction of the pressure gradient in the more viscous fluid, a
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finger slightly ahead of its neighbors quickly outruns them and shields them from further

growth [41].

The usual law of λw following a unique curve when scaled with 1/B for small values of

1/B is still used for Newtonian viscous fingering investigations. However, some started to

challenges the validation of such model. As an example, Moore et al. found that for high

aspect ratio (δ > 250) the mean finger width no longer scale as 1/B [42]. They observed

the average finger width narrows at low 1/B, while the maximum finger width increases.

Moreover, they noticed that the finger-width fluctuation (i.e., the difference between the

maximum and average finger width) follows a power-law with respect to the Capillary num-

ber in the form of CCa−0.64, where C is a constant [42].

In a radial Hele-Shaw cell, when a displacing less-viscous fluid is injected, an early circular

interface forms and then becomes wavy before several fingers eventually appear and develop

symmetrically [43]. The pattern grows forming fingers by successive tip-splitting. When

the flow rate increases, the interface becomes more unstable, and the number of fingers

increases. The fingers become narrower and side-branching can occur. Side-branching is the

apparition of secondary instabilities on the side of the fingers [43].

Paterson analyzed the linear instability of an expanding circular interface when an in-

viscid fluid is displacing an immiscible viscous fluid at a constant volumetric flow rate q in

a Hele-Shaw cell [44]. He defined the most rapidly growing linearly unstable wavelength as

a function of the interface radius, the outer fluid viscosity, the flow rate and the surface ten-

sion. Experimentally, it has been showed that as the flow rate increases, the fingers become

narrower and more side branching will occur [43]. However, he also observed that interfacial

tension disturbs the development of small-side finger. As a consequence, increasing the in-

terfacial tension will stop the side-branched fingers from developing. In another work, Chen

observed geometrically identical radial fingers patterns at the same dimensionless time and

length scales [39]. More detailedly, the two patterns being similar, they present the same

number of splitting as well [39].

Non-linear stability analysis reveals the role of sub-harmonic and harmonic perturbations
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at the onset of pattern formation such as the symmetry breaking [45]. Miranda and Widom

theoretically showed that finger splitting in a radial flow geometry is driven by curvature of

the unperturbed interface and may be controlled by adjusting this interfacial curvature [45].

They also investigated the relation between the interfacial asymmetry and a newly defined

viscosity contrast, µ2−µ1

µ2+µ1
with µ2 and µ1 the viscosity of the pushed and driving fluids,

respectively, in the Saffman-Taylor problem. They observed that the fingering pattern are

becoming more complex with more asymetric instabilities as the viscosity contrast increases

[45]. In short, Newtonian viscous fingering instability can generate a variety of patterns and

morphologies. Additionally, new and complex patterns can be observed using non-Newtonian

fluids, which will be discussed in the next subsection.

1.3.2 Non-Newtonian Fluids

Understanding the viscous fingering instability with Newtonian fluid is particularly essen-

tial to explain the fundamental physical phenomenon. However, nowadays, we observe an

increase in using complex fluids, such as polymers or surfactants, in industrial applications,

leading to research interest in Saffman-Taylor problems with complex, non-Newtonian fluids.

Generally, complex fluids are mixtures of two or more phases: solid-liquid such as sus-

pensions or polymers, solid-gas such as granular mixtures, liquid–gas such as foams [46], or

liquid-liquid such as emulsions [47]. Complex fluids exhibit unusual mechanical responses to

applied stress or strain due to the geometrical constraints imposed by the phase coexistence.

These fluids can be described as non-Newtonian and/or elastic fluids. A non-Newtonian fluid

is characterized by not following a linear Newtonian viscosity law regarding the shear rate.

For a Newtonian fluid, the shear stress (τ) linearly relates to the shear rate (γ̇) as τ = µγ̇. In

most cases, the viscosity of non-Newtonian fluids is not constant and can either increase for

shear-thickening fluids or decrease for shear-thinning fluids with an increasing shear rate.

The viscosity of a non-Newtonian fluid can be constant if the fluid requires finite yield stress

to start to flow. In this particular case, it is called a Bingham fluid.

Furthermore, complex fluids can show elastic properties. The fluids can deform when
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stress is applied and come back to their original state after the release of the applied stress.

Fluids exhibiting both elastic and viscous effects are characterized as viscoelastic fluids. In

the following subsection, we will describe the work done on the Saffman-Taylor instability

with some specific complex fluids.

1.3.2.1 Shear-Thinning, Shear-Thickening, and Flexible Polymers

Additive polymers can make complex fluids with interesting rheological behaviors. Here, we

focus on three types of complex fluids made with polymers: shear-thinning, shear-thickening,

and flexible polymers. Both shear-thinning and shear-thickening solutions show a strong

shear rate dependence of the viscosity, but the normal stresses can be neglected. The fluid is

said to be shear-thinning (shear-thickening) when the viscosity, µ, decreases (increases) with

increasing shear rate, γ̇. Changing the polymer concentration allows the complex fluid to

change from weak shear-thinning (shear-thickening) behavior at low concentrations to strong

behavior at high concentrations. The strength of the shear-thinning (shear-thickening) cor-

responds to the speed of the decrease (increase) of viscosity with respect to the shear rate.

In contrast, flexible polymer exhibits strong elastic effects (i.e., normal stresses) while its

viscosity is nearly independent of the shear rate.

As in the case of Newtonian fluids, Bonn et al. noticed that the finger width decreases

with increasing the finger velocity for shear-thinning solutions in a rectangular Hele-Shaw

cell [48]. However, the plateau value reached by λw (ratio of finger width over cell width)

is smaller than that for Newtonian fluids. Moreover, this plateau value decreases with

increasing polymer concentration. For low polymer concentrations, the finger width as a

function of the parameter 1/B falls on the universal curve for if the shear-dependent viscosity

of shear-thinning fluids replaces the constant viscosity of the Newtonian fluid, observed by

Lindner et al. [49]. However, their results of the finger width start to deviate from the

universal curve for greater polymer concentrations. The deviation is slight for small values

of 1/B but more pronounced as the value of 1/B increases. The final key observation from

Lindner et al. is that the fingers become narrower as the shear-thinning behavior becomes
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more pronounced.

The same phenomena is observed by Amar et al. with shear-thickening fluids, however,

this time, fingers are wider than Newtonian fluids, and the plateau value at high finger

velocity is more important than 1/2 [30]. Based on the findings by Lindner et al., anisotropy

is likely to cause the finger to narrow or widen for the polymer solution [50]. Taking the

example of a shear-thinning fluid, the fluid velocity is high in the region in front of the

fingertip, leading to high shear rates and a small viscosity, whereas the viscosity is more

important at the side of the finger. It results in the creation of a preferred growth direction

and an anisotropy.

For flexible complex fluids, the evolution of λw is rather different than for shear-dependent

complex fluids [48, 50]. For low polymer concentrations, λw decreases with increasing the

finger velocity to reach a higher plateau value than the classical value of 1/2 of Newtonian

fluids. For higher polymer concentrations, λw decreases first to a minimum and then in-

creases to a plateau value that is again higher than 1/2. They reasoned that normal stresses

are likely to cause the difference between the results for shear-dependent and flexible poly-

mers. The normal stress cause thickening of the thin wetting film between the viscous finger

and the glass plates of the Hele-Shaw cell. This extra pressure applied on the finger is

accountable for the finger widening [48, 50].

Focusing on the effects of polymers solutions, some noticed that shear-thinning (shear-

thickening) behavior significantly modifies the morphology of the viscous fingering pattern

[51, 52]. Generally, the viscous fingering pattern for shear-thinning and shear-thickening

fluids depends on four dimensionless groups: the mobility ratio, the Capillary number, the

Deborah number, and the power-law index or the strength of the shear-thinning (shear-

thickening) [52]. Fast et al. noticed for shear-thinning fluid, there is a delay or even a

suppression on the splitting at the tip of the finger. The delay or the suppression of such

a phenomenon depends on the strength of the shear-thinning behavior. At high Capillary

numbers, the growth of shorter wavelengths is enhanced, leading to more pronounced side

branching [51, 52]. As a result, dendritic structures can occur. These trends are only true
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for a small Deborah (De) number, shown by Lee et al. [53]. The Deborah number is the

ratio of the time it takes for a material to adjust to applied stresses or deformations over

the characteristic time scale of an experiment. They noticed that as De further increases,

new fingers are developed via multiple-tip splitting and side branching, resulting in more

complex interfacial structures. Interfacial instabilities also set in at an earlier time for high

values of De.

For shear-thickening solutions, an apparent change in viscous fingering patterns with

increasing De is also observed [53]. First, larger values of De tend to attenuate the instability,

resulting in an almost stable interface. This pseudo-stability does not last long as stronger

interfacial instabilities develop when the Deborah number further increases. The interface

becomes less unstable, and tip-splitting is delayed when the shear-thickening behavior is

weak. However, interfacial instabilities start to grow again and become stronger when shear-

thickening is getting stronger [53].

1.3.2.2 Surfactants

The addition of surfactants into a fluid creates a surfactant solution which can show complex

non-Newtonian behavior. Some surfactant solutions have been used to study viscous finger-

ing. Visually, the addition of surfactants has an effect on the unstable interface obtained

due to the Saffman-Taylor instability. The propagating VF finger is typically wider with

surfactants in a rectangular Hele-Shaw cell [54]. Just as in the case of Newtonian fluids, the

relative width of the finger decreases until reaching a plateau, noticed by multiple authors

[48, 50, 54]. However, the observed plateau value is larger than half the cell width. At low

surfactant concentration, the evolution of the relative width (λw) with respect to the fin-

ger velocity is surprising. First, λw decreases until reaching a minimum and then increases

towards the plateau value. Both the evolution of λw and the plateau value depend on the

surfactant’s concentration [48, 50, 54]. The widening of the finger is due to an anisotropic

surface tension. During the viscous fingering experiment, the hydrodynamic flow sweeps

away the surfactant film from the tip to the back of the finger whereas the interface is
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supplied with fresh surfactant by molecular diffusion from the bulk. The consequence is an

anisotropic surface tension, which decreases from the tip to the back of the finger, inducing

a widening of the finger [48, 50, 54].

Surfactants can be added to another complex fluid as well. It has been observed by

Ahmadikhamsi et al. that the injection of surfactant solutions affects fingering competition

and tends to produce fewer and broader fingers [55]. However, as the instability grows,

the fingertip is propagating away from the injection source, and the shear-thinning viscous

fluid behavior seems to prevail. As a consequence, the surfactant solutions recover the same

relative finger width as for the pure high-viscosity polymer [55].

1.3.2.3 Colloids and Suspensions

Some investigations on viscous fingering have been done using colloidal or suspensions so-

lutions. Starting with colloidal solutions such as clay water solution, different patterns of

interfacial instability are observed by Van Damme et al. and Lemaire et al. [56, 57]. On

the one hand, they noticed that the patterns are typical viscous fingering patterns with

side-branching and tip-splitting at low flow rate. On the other hand, the fingers resemble

cracks at high flow rates and have a sharp tip. The transition between these two different

regimes depends on the concentration of clay and the flow rate [56, 57].

For a water/clay paste displacement, the radial fingering development is intrinsically a

fractal growth process [58]. The interface between the two fluids is, in fact, a water/water

interface. Hence, the interfacial surface tension between the fluids is zero, and fractal pat-

terns with numerous tip-splitting and side-branching are easily obtained. Moreover, the

displacement efficiency is no longer a value dependent on the width of the finger. For col-

loidal solution, it is almost totally dominated by the branching, or tip-splitting cascade of

the fingers [58].

Two critical parameters for suspension flows are the initial volume fraction of particles

and the ratio of gap thickness to particle diameter. The distribution of suspensions is uniform

at low volume fraction; there are no deformations of the interface [59]. Whereas when the
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volume fraction increases, the particles accumulate on the meniscus and form clusters. This

increase in particle concentration correlates to the rise in the effective suspension viscosity.

The consequence of this increase in viscosity is the deformation of the interface, resulting

in miscible viscous fingering beyond a critical value of particle concentration. The forming

fingers are hence short and large, observed by Xu et al. [59]. The same type of fingers can be

observed by doing experiments in a Hele-Shaw cell with an elastic membrane (See Fig. 1.6).

In brief, the key to particle-induced viscous fingering is the unfavorable viscosity difference

of a less viscous fluid invading a more viscous one [59]. This viscosity difference is caused by

the non-uniform distribution of particles. Finally, the interface is deforming due to a greater

flow resistance through the viscous suspensions clusters relative to the surrounding medium

[59].

Luo et al. show another type of wider fingers using suspensions solutions [60]. They

are called band fingering and result from a very dense concentration of suspensions at the

interface inside the band. This way, the band resistance to the flow is entirely different from

the rest of the solution with dilute suspension. A condition to observe band fingering is

that the ratio between the Hele-Shaw cell gap thickness and the diameter of the suspension

particles must not exceed a critical value equal to 5 [60].

1.3.2.4 Yield-Stress Fluids

Complex fluids that require finite yield stress to start to flow are called yield stress fluids.

The shear stress of such fluids follows the Herschel-Bulkley law τ = τc + κ
.
γ
n. τc, κ, .

γ and n

corresponding to the yield stress, the consistency index, the shear rate, and the power-law

index, respectively [61]. When n = 1, it corresponds to a Bingham fluids. Studies about

viscous fingering with yield-stress fluids have been done in static Hele-Shaw cells, as well as

lifted Hele-Shaw cells [62, 63].

When a wetting yield-stress fluid is displaced by air, three different finger structures have

been observed [64, 65, 66, 67]. Firstly, ramified structures are observed at low velocities. The

process initially starts with a finger whose tip quickly splits, and hence asymmetric fingers
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are formed. The splitting continues until a ramified structure is obtained (See Fig 1.5). The

finger-width does not depend on the propagation velocity, according to Eslami et al. [67].

However, the finger width does increase with increasing the gap thickness. Since the yield

stress dominates over the viscous stress at low finger velocity, thereby in the yield-stress

regime.

Secondly, the vicious regime where a single but narrow finger is observed at larger veloc-

ities is reached. The shape of the finger is very similar to the classical viscous fingering of

Newtonian fluids (See Fig. 1.5). This regime will be named the viscous regime. Similar to

the cases for Newtonian fluids, the yield-stress fluid’s finger width decreases with fingertip

velocity, noticed by Eslami et al. [67]. However, as in the cases of the shear-thinning fluids,

the relative finger width λw plateau value is significantly below the limit of λw = 0.5 found

for Newtonian fluids. Lindner et al. found that the evolution of the finger width follows a

curve scaling as Caδ rather than 1/B = Caδ2 with δ, the aspect ratio [64]. This shows that

the dependence on Ca is stronger or the dependence on δ is weaker than for the Newtonian

case. Moreover, in this regime, tip-splittings are suppressed.

Thirdly, the authors observed fractal patterns at high speeds [64, 65, 67]. In the elasto-

inertial or side-branching regime, there is usually an asymmetric finger in the middle of the

channel with secondary instabilities at the finger sides, leading to a side-branching structure

(See Fig. 1.5). The side-branched fingers are attributed to the elastic effects of the yield-

stress fluid [67]. Moreover, they found that the finger width decreases and then increases

drastically until reaching a plateau value in this regime.

In the cases of non-wetting yield-stress fluid displaced by oil, a different regime or pattern

has been observed by Eslami et al. with a wide finger with a smooth and uniform interface

formed at very low velocity [68]. This pattern corresponds to the capillary regime due to the

importance of interfacial tension stresses at very low velocities. In this regime, the finger

width seems to be constant. The limits between the yield-stress and the viscous regimes has

been expressed in terms of modified Capillary number (Ca∗) and Bond number (Bo∗) for

all rectangular channels either the gravity is neglected or not [68, 69].
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a)

b)

c)

Figure 1.5. Viscous fingering pattern of using Yield stress fluids in a rectangular, flat Hele-
Shaw cell, captured by Eslami et al. [67]. (a), (b), and (c) correspond to the yield-stress,
viscous, side-branching regimes, respectively.

Besides the impact of finger velocity on the fingering pattern, discussed above, the gap

thickness has an impact [69]. When the gap thickness increases, resulting in increasing

buoyancy, the finger goes from the yield stress-dominated regime to one in which buoyancy

dominates, where a unified wide finger is observed. An opposite effect than the gap thickness

and the finger velocity is noticed with the cell width. For small width values, the unified

wide finger is observed while the finger is destabilized at higher values. The appearance

of the ramified fingering pattern is due to the dominance of the yield stress over the other

forces, according to [69]. However, for important values of Bo∗ (Ca∗), the buoyant (viscous)

stress dominates, resulting in the unified fingering pattern. The modified Capillary number

and Bond number being expressed as Ca∗ = Ca
Bn and Bo∗ = Bo

δ , with Bn and δ the Bingham

number and aspect ratio, respectively. The ramified finger is observed by the authors at

small values of Bo∗ and Ca∗. In contrast, the unified fingering can be investigated when Bo∗

is superior to a critical value, regardless of the value of Ca∗. A similar transition happens

when Ca∗ is superior to a critical value. Finally, both the yield stress and the geometrical

18



properties of the channel have an impact on the pattern evolution [69].

Other studies with yield-stress fluids has been done this last few years. Most notably,

Coussot did a linear stability analysis for flows of yield-stress fluids through an uniform

radial Hele-Shaw cell [70]. In the cell, the interface between a pushing Newtonian fluid and

a driven yield stress fluid will be stable if τw > 2γh
r20

, with the τw the shear stress at the wall

expressed as τw = τc[1 + c(
κUn

τchn )
d], where c and d two parameters which depend on n, the

power-law index in the Herschel -Bulkley law [70].

1.4 Miscible Viscous Fingering in a Hele-Shaw Cell

In addition to the viscosity or mobility ratio, the Peclet number (Pe) plays an important role

in miscible fluid displacement in a Hele-Shaw cell. The Peclet number corresponds to the

ratio between inertia and diffusion. This dimensionless number is expressed as Pe = hU
D for

a rectangular cell of gap thickness h, with U and D, the flow velocity and the mass diffusion

coefficient, respectively. An increase of the Peclet number almost always acts to increase

interfacial instability, where an increase of the mobility ratio increases the growth rate of

perturbations just like immiscible viscous fingering [71, 72]. Previous studies noted that

advection is necessary for viscous fingering, but diffusion stabilizes the interfacial instability

in miscible systems. Linear stability analyses have been performed for rectangular [71] and

radial Hele-Shaw cell [72] to study the interfacial stability of miscible viscous fingering.

Ledesma et al. showed that the interface between the two miscible fluids remains stable

for low Capillary number and Peclet number, when surface tension and diffusion dominate

over viscous stresses and advection, respectively [71]. For radial geometry, the stability is

achieved for low values of Peclet number and the mobility ratio [72]. Moreover, Fu et al.

observed that fluid dissolution or exsolution due to partial miscibility can either hinder or

enhance viscous fingering, respectively [73].

Overall, like immiscible viscous fingering, the phenomena of shielding, spreading, and

splitting are all important in determining the fingering dynamics in miscible displacements.

However, the miscible fingering patterns can be somewhat different from those of immiscible
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a) b)

Figure 1.6. Radial patterns of miscible and immiscible viscous fingering in a identical Hele-
Shaw cell at the same flow rate. a) Miscible displacement: dyed water is drivig glycerine b)
Immiscible displacement: dyed oil is pushing glycerine by Chen [43].

ones, as observed many authors [39, 41, 43, 74]. The number of splitting is much more, and

the size of the fingers is much less for miscible displacement (See Fig. 1.6). Maes et al.

differentiated two different regimes of fingering patterns or shapes [16]. One is an advective

regime where the length of the finger is proportional with time, and the other is a dispersive

regime where the finger length evolves as a square root of time. The Peclet number is the

essential parameter to determine which regime dominates [16].

At larger Peclet number and mobility-ratio, exciting and complex behavior are observed

[41, 72]. Maes et al. showed that the larger the mobility ratio or the injection speed, the

larger the distortion of the sample [16]. They observed more tip-splitting happening, and

the viscous fingering can form a dendritic pattern. Other mechanisms become dominant

for miscible fluids at high viscosity ratio. These non-linear effects are double coalescence,

side-branching, gradual coalescence, single-sided tip-splitting, stretched coalescence, trailing

lobe detachment, alternating side-branching, and skewering. All these mechanisms have

been observed by Sesini et al., and they added that dense branching is the reason for the
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complexity of the fingering patterns of miscible displacement in comparison with immiscible

displacement [75].

1.5 Controlling Viscous Fingering

It is vital to control viscous fingering, suppress it, or enhance it to increase the potential

efficiency of industrial applications. Theoretical studies are essential in helping industries to

decide the best injection rate, the best geometry, or the best fluid to use for the application.

Different methods have been studied to control this interfacial instability. Firstly, one of

them is the use of a time-dependent variational scheme for the flow rate instead of a constant

flow rate. It has been found effective both theoretically and experimentally [76, 77, 78, 79].

Secondly, another way is to modify the geometry of the setup. Using a Hele-Shaw cell

modified with edged pattern, dendritic or chaotic fingering is observed for both miscible or

immiscible VF by Chen [43]. Thirdly, the use of a Hele-Shaw cell that can be lifted has

an impact on the interface stability for both Newtonian and a power-law complex fluid by

Amar and Bonn [80]. Fourthly, having a structured porous media with a pore size gradient

or a deformable porous media by adding beads in a Hele-Shaw cell are imaginative ways to

control viscous fingering [81, 82]. The presence of Capillarity in the porous medium increases

the capillary forces and plays a positive effect on the stability by slowing down the growth of

VF instabilities [83]. Finally, adding a low dose of nanoparticles can help to control the flow

[84]. Among all the different solutions possible to control the Saffman-Taylor instability, we

will focus on using a tapered plate and an elastic membrane in Hele-Shaw cells.

1.5.1 Utilization of a Tapered Hele-Shaw Cell

The use of converging or diverging tapered Hele-Shaw cells has been a significant research

subject for the past decade. The apparition of a gap gradient can either negatively affect

the propagation of the instability or can enhance the fingering phenomenon. Al-Housseiny

and Stone [78] derived theoretically a stability criterion for Newtonian fluid in rectangular

and radial geometry with a gap gradient: α. Using the depth-averaged Darcy law and the
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mass conservation to perform linear stability analysis, they found the two stability criterion.

For the rectangular geometry, it is 1 − λ + 2αcosθc
Ca ≤ 0 where λ is the viscosity ratio of the

pushing fluid over the receding fluid, and θc is the contact angle of the wetting fluid. From

this expression, they were able to estimate a critical Capillary number at which the interface

undergoes a change in stability. For the radial geometry, the interface is always stable, for

all perturbation’s wavenumber, if 1 + 2α+h2
0/r

2
0

Ca < 0 where this time r0 and h0 correspond to

the radius of the interface and the gap thickness in the Hele-Shaw cell at the interface.

These criteria have been put to the test experimentally by Housseiny et al. and Bongrand

et al. for rectangular [85] and radial geometry [86] and show good agreement. From the

experiments and the theory, it is possible for the interface to become stable when the cell

becomes shallower. However, above the critical Capillary number, the interface destabilize

and fingers are forming. Housseiny et al. noticed that the fingers are wider than half the

cell, the plateau obtained for the usual homogeneous Hele-Shaw cell [85]. Moreover, using

the same converging cell, they demonstrated the possibility to destabilize an interface even

when it should be stable in terms of the viscosity ratio.

Anjos et al. performed a nonlinear analysis of the viscous fingering patterns in tapered

(converging and diverging) and flat radial cells and found that the interface is stabilized

at lower Ca in a converging cell, compared to the case of the uniform cell interface [87].

However, they noticed that the interface is even more destabilized than homogeneous cells

at higher Ca. Interestingly, the effects are exactly reversed in the diverging cell cases. In

addition, the shape of the finger does not change from converging to diverging cell. They

observed fingers with round tips at low Capillary number. The tips are flattened when the

dimensionless Ca increases, and tip-splitting will occur above a specific value of Ca. This

nonlinear analysis [87] shows good agreement with a recent numerical simulation by Jackson

et al. [88].

The studies of complex fluid displacement in a tapered Hele-Shaw cell are recent and

rare. The topic of complex fluid displacement in a flat Hele-Shaw cell has be investigated

for decades but never in the idea of controlling the Saffman-Taylor instability.
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Eslami et al. experimentally noticed two pattern structures when using a rectangular

tapered cell [89]. They observed, on one hand, a ramified structure pattern with several

asymmetric air fingers that frequently splits. On the other hand, a single narrow viscous

finger in the middle of the cell at higher velocities [89]. The critical velocity characterizing

the transition between the two patterns of finger being dependent on the gap gradient, α.

Moreover, the finger becomes wider and narrower in the diverging and converging cells,

respectively, compared with the case of flat Hele-Shaw cells [89].

They justified that observation saying that in a converging cell, the finger starts moving

slowly through but speeds up as the cross-section becomes narrower. Consequently, as the

finger tip velocity increases, its local width decreases. In the diverging configuration, the

presence of a positive gap gradient leads to the opposite scheme. In the presence of a gap

gradient, the cross-sectional area of the cell increases or decreases in the flow direction. It

results in the finger tip velocity to decrease (increase) in the diverging (converging) cell but

also affects the surface tension at the tip of the finger, which can modify the flow patterns

in the nonuniform cells [89].

Similar to the cases with Newtonian fluid, the converging cell has a stabilizing effect

on the interface at lower velocities or Capillary number for complex yield-stress fluids. The

mean finger width in the converging cell is larger than that in the diverging cell [89]. However,

the roles are swapped between converging and diverging cells after a critical velocity or

Capillary number. Finally, they observed that the flow pattern becomes nearly independent

of the gap gradient as the velocity reached a critical value, when the viscous stresses starts

to dominate the flow. The same transition is observed for uniform cell [68]. The method of

using Hele-Shaw cell with a gap gradient to control the viscous fingering is still an active

research topic nowadays.

1.5.2 Utilization of an Elastic Membrane

Wall elasticity can affect the onset of the instability. As a consequence, modified Hele-Shaw

cells replacing one of the plates by an elasic sheet has been used, and elastic boundaries
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are effective to delay the onset of viscous fingering. It has been proven theoretically [90]

experimentally and observed with numerical simulations [91, 92] that at low radius and low

flow rate, the viscous fingering instability can be suppressed in a Hele-Shaw cell with elastic

membrane. They found three reasons for this phenomenon. First, a decrease of the velocity

of the fluids interface because a fraction of the injected volume is accommodated by the

deflection of the elastic upper boundary. Secondly, as the fluid is injected, the membrane

will deform and tends towards creating a converging tapered geometry. The Hele-Shaw

upper plate will inflate starting by the center, implying that the gap thickness will decrease

in the direction of the flow. With this taper, the destabilizing effects of an increase (decrease)

in the driving pressure gradient are counteracted by the variation, decrease or increase in

the gap thickness. The final stabilizing effect is that with the modification of the interface

curvature, Pihler et al. observed an increase in the stabilizing capillary forces [92].

The wall elasticity equally impacts the structure of the fingers that develop. Using this

particular Hele-Shaw set-up, less or almost zero tip-splitting and no dendrite form has been

observed [91]. The entire interface propagates so that a large number of very short fingers

grow. This type of interfacial instability is reminiscent of the printer’s instability [91]. In

another work, Pihler et al. argued that the severity of the Saffman-Taylor instability is

impacted by the wrinkling instability of the membrane [93]. A non-dimensional number,

I, is defined as the ratio of the typical viscous stresses in the fluid to the bending stiffness

of the elastic membrane. This number provides a measure of the importance of the fluid-

structure interaction. It has already been used by Pihler et al. to study the competition

and interaction between the Saffman-Taylor instability and the wrinkling instability of the

membrane [92]. An increase in I increases the transverse deflection of the membrane. This

deformation weakens (and ultimately suppresses) the viscous fingering instability. However,

for sufficiently thin membranes, an increase of the parameter I leads to an earlier onset of

wrinkling and an increase in the severity of the fluids’ interfacial instability [92].
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Figure 1.7. Suppression of viscous fingering due to a change of cell geometry. On the left
hand side, effect of a converging gap gradient [86]. On the right hand side, impact of the
addition of an elastic membrane [93].

1.6 Overview of the Thesis

The primary objective of this thesis work is to give a better understanding of the viscous

fingering phenomenon for complex, yield-stress fluids. We use both radial and rectangular

heterogeneous porous media of modified Hele-Shaw cells. In Chapter 2, we perform experi-

ments with an inviscid, Newtonian fluid pushing a yield-stress fluid in rectangular tapered

cells. We also carry out linear stability analysis using an effective Darcy’s law model. Our

first study investigates the control of viscously-unfavorable fluid-fluid immiscible displace-

ments of a yield-stress fluid by a Newtonian fluid in rectangularly tapered Hele-Shaw cells.

We study the flow stability diagram of the viscous fingering instability depending on the flow

rate, depth gradient, the interface coordinates. We compare our experimental results with

the stability criterion derived theoretically. Subsequently, in Chapter 3, we investigate very

similar complex fluid displacement to the first study, but we extend the both experiments

and theory to a radial tapered Hele-Shaw cell. In Chapter 4, we investigate the impact of
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the Bingham number on the interface stability by performing a more complex linear stability

analysis within the boundaries of a radially tapered Hele-Shaw cell.
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Chapter 2

Controlling Viscous Fingering of

Complex Yield-Stress Solutions in a

Tapered Rectangular Hele-Shaw Cell

1

2.1 Introduction

Occurring in many natural and industrial processes, the displacement of a more viscous

fluid by a less viscous one is common in many applications such as coating flows [8, 12, 13],

chromatographic separation [11], printing devices [7], oil well cementing [94], enhanced oil

recovery (EOR) [19, 22] or even CO2 sequestration [24, 25, 26]. However, the unfavor-

able mobility or viscosity contrast in a porous medium leads to an interfacial instability

between the two fluids. This instability manifested in a fingering shape is responsible for a

loss of efficiency in many industrial applications. This viscous fingering or Saffman-Taylor

instability has been extensively studied for decades with Hele-Shaw cells, used to simulate
1The material presented in this chapter is based on a manuscript in preparation by Alban Pouplard

and Peichun Amy Tsai, “Control of Viscous Fingering Instability of Complex Yield-Stress Fluids using a
Rectangular Tapered Cell Geometry,” in preparation, 2021.
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a homogeneous porous medium [5, 40, 41, 43, 44, 74]. In recent years, the studies have been

extended to complex fluids whereby more complex and wider fingers are observed [49, 54].

With yield-stress fluids, a new pattern of side-branching fingers has been observed with

smaller fingers forming to the side of the major one [50, 67, 68, 70].

To increase the efficiency of the aforementioned industrial processes, the control or in-

hibiting of the viscous fingering is essential. Several strategies have been studied recently

to suppress the fingering instability for simple Newtonian fluids. Some examples include

the use of time-dependent flow rate [76, 77, 79], an elastic membrane as the top plate of a

Hele-Shaw cell [90, 91, 92], or a tapered cell [78, 85, 86]. However, such control has never

been investigated for complex fluids, which are commonly present in industrial settings.

Very recently, it has been showed that for a yield-stress fluid the side-finger appearance can

be affected by the addition of a converging or diverging gap gradient [89], but the total

annihilation of the perturbation and total sweep efficiency have never been achieved yet.

In this chapter, using a rectangular tapered Hele-Shaw cell, we examine the possibility

of inhibiting the primary viscous fingering instability of complex, yield stress fluids in a

narrow confinement. First, we investigate the effects of flow rates and depth gradients

on the Saffman-Taylor instability with experiments of a gas pushing a yield-stress, shear-

thinning fluid. Secondly, we theoretically derive a linear stability criterion generalized for

two complex yield-stress fluids pushing one another in a gap-converging cell. Finally, using

the experimental results of interface velocity and gap thickness, good agreement between

the theoretical stability criterion and the experimental results is found.

2.2 Experimental

Three different aqueous solutions of PolyAcrylic Acid solution (PAA, SigmaAldrich, Mw ≈

1,250,000) were prepared and used as a wetting yield-stress fluid to investigate complex

fluids’ viscous fingering. PAA is a water-soluble polyelectrolyte and widely used as a fluid

thickener and a dispersing, suspending, and emulsifying agent in pharmaceuticals and cos-

metics [95, 96]. For the experiments, we first fill in one complex PAA solution in a rectangular
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Figure 2.1. (a) Schematics of a fluid-fluid displacement experiment where one more viscous
complex fluid (of viscosity, µ2, varying with shear rate, γ̇), is pushed by another immiscible
one. The cell length and width are L = 458 mm and W = 153 mm, respectively. (b)
Experimental snapshots of complex viscous fingering produced by a complex yield-stress
(PAA) solution (S2) displaced by a gas injected with a flow rate Q = 0.2 slpm and Q =
0.02 slpm in a flat Hele-Shaw cell. (c) Flow curves of shear stress (τ) and viscosity (µ),
depending on the shear rate (γ̇) for the three complex yield-stress fluids: (S1, ◻), (S2, △),
and (S3, ○). The lines correspond to the Herschel-Bulkley model parameters fitted to data.
(d) Oscillation amplitude sweep test at constant frequency (ŵ = 1 rad/s). Loss factor, ratio
of the loss modulus (G′′) to the storage modulus (G′) with respect to the shear stress (τ).
The dashed lines represent the yield stress values of the fluids.

Hele-Shaw or tapered cell and subsequently inject a gas (nitrogen, viscosity µ1 = 1.76× 10
−5

Pa.s at 20 ° C) as a pushing fluid (see Fig. 2.1(a)). The gas is injected at a constant flow

rate, Q, ranging from 0.02 slpm to 2 slpm (Alicat mass flow controller) with an accuracy of

1 ml/min.

The three aqueous solutions of PAA are prepared to obtain various viscosity contrast, λ,

spanning 4.47×104−1.68×106, 1.55×104−2.64×105, and 5.83×102−3.13×103 for the complex

fluids (S1), (S2), and (S3), respectively. The procedures of preparing the solutions include,

first, slowly adding the polymer powder in water and, subsequently, stirring the mixture at
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high speed for 1 hr. The mixture generates an acid solution that can be neutralized using

a basic solution. To do so, sodium hydroxyde (NaOH) is added to the solution and then

stirred for another 10 hours at medium speed. Finally, after the agitation, the solution is

rest for a day before performing any rheological measurements.

The rheological measurements of the three complex solutions with a rheometer (Anton-

Paar MCR302) are presented in Fig. 2.1(c). Neglecting the elastic properties, the common

rheological model of the Herschel−Bulkley (HB) model [61] reveals an excellent fit of the

shear stress (τ) varying with shear rate:

τ = τc + κγ̇
n, (2.1)

with τc, κ and n corresponding to the yield stress, the consistensy index, and the power-

law index, respectively. The fluid’s viscosity (µ) varying with γ̇ and its variation is well

described by the corresponding HB model with µ = τc
γ̇ + κγ̇

n−1. Shown in Table 2.1 are

the best nonlinear fit results of the rheological measurements of τ = f(γ̇) from our three

complex solutions for the experimental range of γ̇ (between 0.014 and 93 1/s). Overall, all

the complex solutions are shear-thinning, with decreasing viscosity with increasing shear

rate γ̇, i.e., n < 1.

Yield-stress PAA NaOH τc κ n
solution (wt %) (wt %) (Pa) (Pa.sn)
(S1) 0.025 0.0106 0.2940 0.8641 0.4623
(S2) 0.10 0 0.0552 0.1442 0.6286
(S3) 0.015 0.008 7.51e-5 0.0231 0.8208

Table 2.1

Rheological parameters found for the three complex, yield-stress fluids with the HB model
[Eq. (2.1)].

Oscillation amplitude sweep tests at constant frequency (ω̂ = 1 rad/s) is perform to

validate negligible elasticity of the complex fluids. In Fig. 2.1(d), the results of the loss

factor, the ratio of G′′, the loss modulus, representing the viscous properties of the complex

fluids over the storage modulus G′ corresponding to the fluid elasticity is plotted with respect

to the shear stress τ . When the G′′/G′ is more important than the unity, the viscous behavior
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prevails while the elasticity of the fluid is prevailing when the ratio is less than 1. The dashed

lines in the figure represent the values of the yield-stress for the fluids (S1), (S2) and (S3).

We will only focus on the fluids when they are flowing, i.e, τ > τc. Whenever this condition

is respected, The loss factor is more or less superior to 1, meaning the viscous prevails. From

this observation, we are able to neglect the elastic effects of the three complex yield-stress

fluids.

During our experiments, a rectangular cell consisting of two glass plates with a converging

gap is used to control the interfacial instability (see Fig. 2.1(a)). Spacers of different thickness

(ranging from 0 to 23.0 mm) are placed at the four corners to form a taper with a negative

gradient, α = dh(x)/dx, the ratio of the height to length of the tapered area. The plates are

surrounded by rubber bands to make an hermetic set-up. The gap thickness inside the cell

evolves linearly as h(x) = he + αx, with he the gap thickness at the edge of the cell, where

the thicker spacers are placed and the thickness of cell gap is greatest. The experimental

snapshots are captured, via bottom view, with a camera (Canon EOS 70D) at 30 fps (frames

per second). To enhanced contract at the interface, a light is placed and used above the cell.

We use ImageJ and Matlab to analyse the experimental snapshots and track the interface

position. The interface velocity, U0 is calculated by deriving the interface position over a

short period of time (t). The values of h0 and α are determined from image analysis using

the values of the interface velocity (U0) and flow rate (Q). The Reynolds number in our

experiments ranges from 4.27 × 10−4 to 10.9 and the corresponding cell permeability values

are between 2.08 × 10−8 and 1.77 × 10−5 m2.

2.3 Results and Discussions

Using flat and tapered rectangular Hele-Shaw cells, we performed approximately 550 exper-

iments of viscous fingering. With the flat Hele-Shaw cell of a constant gap thickness, we

always observe unstable interface with one or multiple fingers of the complex fluid developing

at the interface, consistent with previous similar observations using more viscous complex

fluids [67, 68]. Shown in Fig. 2.1(b) are two representative snapshots obtained in our ex-
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Figure 2.2. Control of complex viscous fingering using a rectangular tapered cell, with
a linearly varying gap thickness (h = he +αx), demonstrated by the overlay of experimental
snapshots from a stable and an unstable displacement in (a) and (b), respectively. (a) the
stable displacement is obtained when nitrogen is pushing complex fluid (S2) in a tapered
Hele-Shaw cell with he = 23.24 mm, α = −5.03e−2 and Q = 0.05 slpm. The time step between
the snapshots is δt = 100 s. (b) the unstable displacement is observed when a gas is pushing
complex solution (S2) in another tapered Hele-Shaw cell with he = 3.76 mm , α = −8.20e− 3
and and Q = 0.05 slpm. The time step is equal to δt = 20 s. (c), (d), and (e) are experimental
results of stability diagrams for fluids (S1), (S2) and (S3), respectively, with uniform stable
(∎, ▲ and ●) vs. fingering/wavy unstable interfaces (◻, △ and ○) under various Q and α
values. Finally, green diamonds (⧫) correspond to the transitional state where the interface
starts to develop a wavy profile.

periments when the complex yield-stress fluid (S2) is pushed by nitrogen at a constant flow

rate Q = 0.2 slpm and Q = 0.02 slpm, respectively. Furthermore, for the two more viscous

fluids (S1) and (S2) and with greater flow rates, small fingers are forming on the side of

the major one. This observed pattern corresponds to the side-branching regime [65] or the

elasto-inertial regime [67]. The side-fingering pattern is observed when the injection flow

rate is above a critical value, Qc. For our fluids, Qc = 0.5 slpm for (S1), whereas Qc = 1 slpm

for (S2).

By contrast, we do not observe the side-branching patterns when the converging cells are
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used. Instead, the interfacial patterns observed either resembling the usual viscous fingers

with Newtonian fluids or stable interface, which occurs at a low flow rate but depends on

viscosity contrast and depth gradient. The critical flow rates, below which we observe a sta-

ble displacement, for each complex fluid and α are summarized in Fig. 2.2(c-e). The stable

displacement being characterized by a perfect sweep efficiency as illustrated by Fig. 2.2(a).

Such inhibition of the primary viscous fingering instability is only possible for suitable rhe-

ological and flow parameters, as revealed by the stability phase diagram of Fig. 2.2(c-e) for

the complex fluids (S1) to (S3), respectively. The essential experimental finding includes,

for all the fluids (S1) to (S3), stable interfaces are observed for higher flow rate (Q) as the

gap gradient (∣α∣) increases. For a constant gap gradient, the stable interfaces occur at low

Q. These similar trends concerning the phase diagrams in Fig. 2.2 have been observed in

previous investigation of viscous fingering using Newtonian fluids [86].

Here, we differentiate three types of experimental results made using the complex fluids:

first, uniform and stable displacements represented represented by filled symbols (S1, ∎),

(S2, ▲), and (S3, ●); second, unstable displacements with fingering or wavy interfaces

by open symbols: (S1, ◻), (S2, △) and (S3, ○); third, the transitional state when the

interface starts to develop a wavy profile (⧫ for all the fluids). The contrast between the

stability diagrams of the three different complex solutions highlight not only the complicity

of controlling complex viscous fingering but also the importance of rheological parameters

via τc, κ, n, and the local shear rate (γ̇).

2.4 Theoretical Background

To obtain a better understanding of the important parameters to control the viscous fingering

instability of complex fluids, we carry out a linear stability analysis using two yield-stress,

complex fluids (Fluid 1 pushing Fluid 2) of viscosity µ1 and µ2, respectively, in a rectangular,

tapered cell of a length, L, and width, W (see Fig. 2.1(a)). The introduction of gap gradient

produces a linearly varying height (h) between the two plates of the cell. We consider

a lubrication flow confined in the thin gap, whose height varies linearly in x direction as
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h(x) = h0 + αx. h0 denotes the gap thickness at the two fluids’ interface, located at x = 0.

In the theoretical derivation, we use the effective Darcy’s law replacing the constant

viscosity, µ, by the effective shear-dependent viscosity, µeff. This approach has been used

in modeling the problems of non-Newtonian fluid-fluid displacement in a flat Hele-Shaw cell

[30, 49, 54], but here we extend the approach to a tapered geometry. Neglecting the elastic

properties of the two yield-stress fluids [70], the governing equations are 2D-depth-average

Darcy’s law and the depth-average continuity equation, given below:

Uj = −
h2

12µeffj
∇⃗Pj , (2.2)

∇ ⋅ (hUj) = 0. (2.3)

Uj(x, y) = (uxj , uyj) and Pj(x, y) are the depth-average velocity and pressure fields of the

fluid indexed j, respectively. j represents the two complex fluids during the fluid-fluid

displacement process; j = 1 (2) denotes the pushing (displaced) complex fluid.

The complex fluid’s viscosity (µeffj) is modeled using the Herschel-Bulkley law [61] for

yield-stress fluids, with the local shear rate γ̇ =
uxj

h , and expressed as:

µeffj =
τcj
.
γ
+ κj

.
γ
nj−1, (2.4)

where τcj , κj , and nj correspond to the yield stress, the consistensy index, and the power-law

index of the complex fluid j, respectively.

The Bingham number is defined as the ratio of the yield to viscous stress: Bnj =

τcj

κj(
uxj
h
)

nj , we hence can express τcj
h
12

∂Pj
∂x

= − 1
1+ 1

Bnj

. Assuming small ratio of gap change,

i.e, αx
h0
<< 1, we can linearize the expression of the gap thickness as h = h0 (1 +

αx
h0
) and

neglect the terms of O (α2). With Eqs. (2.2)−(2.4), the depth-average continuity Eq. (2.3)

can be expressed using pressure field (Pj) and simplified into:

∂2Pj

∂x2
+
(2nj + 1)α

h0

∂Pj

∂x
+
24njατcj

h0
2
+
∂2Pj

∂y2
⎛

⎝
1 −

1

1 + 1
Bnj

⎞

⎠
nj

+
∂Pj

∂y

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(1 − nj)

∂2Pj

∂y∂x

∂Pj

∂x

− nj

τcj
∂2Pj

∂y∂x

h
12 (

∂Pj

∂x )
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0. (2.5)
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If nj = 1 and τcj = 0, we find the following equation: ∂2Pj

∂x2 +
3α
h

∂Pj

∂x +
∂2Pj

∂y2
= 0, recovering

to the one found by Al-Housseiny and Stone for the case of Newtonian fluids [78].

In our linear stability analysis, the pressure is expressed as the addition of base state

and perturbation:

Pj(x, y, t) = fj(x) + gkj(x)ϵ(y, t), (2.6)

where fj(x) corresponds to the base-state, pressure field when the interface is stable and does

not depend on y. The term gkj(x)ϵ term represents the perturbation that propagates along

the interface, with the perturbation ϵ(y, t) = ϵ0 exp (iky + σt) depending on the wavenumber

(k) and the growth rate (σ) of the perturbation.

When the interface is stable, i.e, ϵ = 0 the base-state pressure obeys the following equa-

tion:

f ′′j (x) +
(2nj + 1)α

h0
f ′j(x) +

24njατcj

h20
= 0. (2.7)

When the interface is unstable, focusing at the moment when the perturbation starts to

propagate, implying a small perturbation (ϵ << 1), g′kj(x)ϵ << f ′j(x) and the higher-order

terms of O (ϵ2) can be neglected. We then obtain the following ODE for solving the per-

turbed states by substituting Eq. (2.6) in Eq. (2.5):

g′′kj(x) +
(2nj + 1)α

h0
g′kj(x) − njk

2gkj(x)
⎛

⎝
1 −

1

1 + 1
Bnj

⎞

⎠
= 0. (2.8)

At the interface, for x = 0, from the Darcy’s law and with the fact that g′kj(x)ϵ << f
′

j(x),

the solution of the base-state pressure, fj , in Eq. (2.7) is:

fj(x) = Fj exp(
− (2nj + 1)α

h0
x) −

24njτcj

(2nj + 1)h0
x. (2.9)

Fj =
12

(2nj + 1)α
[τcj + κj (

U0

h0
)

nj

] −
24njτcj

(2nj + 1)
2 α

,

where U0 is the velocity of the interface.

To solve the perturbation Eq. (2.8) analytically, we assume 1
1+ 1

Bnj

<< 1. This assumption

is equivalent to suppose Bnj << 1, when the yield stress is negligible compared to the viscous
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stress, i.e., the fluid is totally yielded. Furthermore, we assume that the characteristic length

scale over which the depths varies (i.e., ∣h0

α ∣) is much larger than the characteristic length

scale of the perturbation scaling as 1
k , we have ∣kh0

α ∣ >> 1. We obtain a simplified, general

solution for a small Bnj << 1 as:

gkj(x) = Bkj exp (rkj+x) +Ckj exp (rkj−x),

rkj+ = −
√
njk, rkj− =

√
njk. (2.10)

Moreover, physically, it is impossible for the perturbation to grows in space from its origin.

This implies the following constraints: gk1∣x→−∞ = 0 and gk2∣x→+∞ = 0, for a fluid indexed 1

pushing a fluid indexed 2.

As a consequence, the solution can be written as:

gkj = Bkj exp (mkjx),

mkj+ = (−1)
j+1√njk, (2.11)

By linearizing the above exponential terms in Eq. (2.9)-(2.11), we can evaluate the pressure

at the interface, for x = ϵ:

Pj ∣x=ϵ = Fj −
(2nj + 1)α

h0
Fjϵ −

24njτcj

(2nj + 1)h0
ϵ +Bkjϵ +O (ϵ

2) . (2.12)

To determine the coefficient Bkj , we use the velocity continuity condition at the interface

for x = ϵ:

U0 +
∂ϵ

∂t
= uxj ∣x=ϵ +

∂ϵ

∂y
uyj .

Focusing on the vicinity of the perturbation, we assume that the perturbation is relatively

small, i.e., ϵ << 1, allowing us to linearize the exponential terms of the pressure’s derivatives.

By neglecting the higher-order terms of O (ϵ2), assuming U0 >> σϵ and αϵ
h0
<< 1, we find the

final expression of Bkj as:

Bkj = −
12κjnjU0

nj

mkjh0
nj+1

(
σ

U0
+

α

h0
) . (2.13)
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For simple Newtonian fluids with nj = 1 and κj = µj , we find the same expression for

Bkj = −
12µjU0

mkjh0
2 (

σ
U0
+ α

h0
) as previously found by Al-Housseiny and Stone [78].

The Capillary pressure jump at the interface is described by the Young-Laplace equation,

which accounts for both the lateral curvature, Ψ, and the curvature, 1/h, due to the depth

of the Hele-Shaw cell. Here, we neglect the viscous stresses. At the interface, x = ϵ(y, t),

for a fluid indexed 1 pushing a fluid indexed 2, the pressure difference across the interface

hence is expressed as:

P1 − P2 =
2γ cos θc
h0 + αϵ

+ γΨ, (2.14)

Ψ =

∂2ϵ
∂y2

(1 + ( ∂ϵ∂y)
2
)

3
2

, (2.15)

where θc is the contact angle of the wetting fluid to the side wall, and γ corresponds to the

interfacial tension between the two fluids.

With the assumptions ϵ << 1 and αϵ
h0
<< 1 and by neglecting the terms O (α2), the second

term can be simplified to:

γΨ = −γ
(ik)2 ϵ

(1 + (ik)2 ϵ2)
3/2

.

Since ϵ2 (ik)2 << 1, γΨ = γk2ϵ + O (ϵ2). Finally, the pressure jump at the interface, for

x = ϵ(y, t) can be expressed as

P1 − P2 =
2γ cos θc

h0
+ γϵ(k2 −

2α cos θc

h0
2
) +O (ϵ2) . (2.16)

The term 2γ cos θc
h0

corresponds to the base state, that is the pressure difference at the inter-

face between the two fluids when the interface is stable. The second term is the additional

Laplace pressure due to the perturbation at the interface.

By substituting the expression of the linearized pressure Eq. (2.12), along with Eqs. (2.9)

and (2.13), into the pressure jump Eq. (2.16) and removing all the base state components,
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the Laplace pressure Eq. transforms into the following dimensionless dispersion-relation with

the dimensionless growth rate of the perturbation defined as σ = σh0

U0
, and the dimensionless

wavenumber of the perturbation, k = h0k:

12σh0 (κ1
√
n1 (

U0

h0
)
n1

+ κ2
√
n2 (

U0

h0
)
n2

)

γ
= −

12αh0
γ
(κ1
√
n1 (

U0

h0
)

n1

+ κ2
√
n2 (

U0

h0
)

n2

)

+ k (2α cos θc +
12U0

γ
(µ2∣x=0 − µ1∣x=0)) − k

3

(2.17)

To find the wavenumber at the maximum growth, we take the derivative of Eq. (2.17)

w.r.t. k and find:
∂σ

∂k
= 2α cos θc +

12U0

γ
(µ2∣x=0 − µ1∣x=0) − 3k

2
.

As a consequence, by setting ∂σ
∂k
= 0, we find the wavenumber of maximum growth (k̄max)

equal to:

k̄max =
⎛

⎝

2α cos θc +
12U0

γ (µ2∣x=0 − µ1∣x=0)

3

⎞

⎠

1
2

. (2.18)

The resultant wavelength of maximum growth, λmax =
2πh0

k̄max
, is:

λmax = 2πh0
⎛

⎝

3

2α cos θc +
12U0

γ (µ2∣x=0 − µ1∣x=0)

⎞

⎠

1
2

.

The viscous fingering instability of complex fluids will be apparent when λmax < W

(where W is the width of the Hele-Shaw cell), leading to the following criterion for a visible

fingering pattern:

−3(
2πh0
W
)

2

+ 2α cos θc +
12U0

γ
(µ2∣x=0 − µ1∣x=0) > 0. (2.19)

We conveniently define a dimensionless term (C∗) using the above stability criterion:

C∗ = −3(
2πh0
W
)

2

+ 2α cos θc +
12U0

γ
(µ2∣x=0 − µ1∣x=0) . (2.20)

so that unstable displacement would occur when C∗ > 0, whereas stable when C∗ < 0

theoretically.
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Figure 2.3. Comparison between experimental and theoretical results: (a) Dimen-
sionless term C∗ [Eq. (2.20)] for different experiments performed with different gap gradient
(α). The values of U0 and h0 are taken from the experiments. The stable experiments with
solution (S1), (S2) and (S3) are represented by (∎, ▲ and ●), respectively. The unstable
interfaces for the three complex solutions by ◻, △ and ○. (b) and (c) show the overlay of
experimental snapshots with one stable and one unstable displacement, respectively. The
interfaces highlighted in green correspond to the two symbols used in (a). The time steps
are δt = 150 s and δt = 4 s in (b) and (c), respectively.

Alternatively, from the dispersion-relation Eq. (2.17), the interface would always be

stable for a negative growth rate of the perturbation (σ < 0) when the following stability

criterion is fulfilled:

[−
12αh0

γ
(κ1
√
n1 (

U0

h0
)

n1

+ κ2
√
n2 (

U0

h0
)

n2

)

+ k (2α cos θc +
12U0

γ
(µ2∣x=0 − µ1∣x=0)) − k

3
]

γ

12h0 (κ1
√
n1 (

U0

h0
)
n1

+ κ2
√
n2 (

U0

h0
)
n2

)
< 0.

(2.21)
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2.5 Comparing experimental vs. Theoretical results

In the linear stability analysis, we use the effective Darcy’s law and obtain a criterion

concerning the wavelength for a visible viscous fingering, i.e., Eq. (2.19). This criterion

depends on the local rheological properties of the fluids (κj , nj , τcj), the gap gradient (α)

as well as the velocity (U0) and gap thickness (h0) at the interface, in addition to various

factors such as the wetting angle (θc) and the interfacial tension between the pushing and

the driven fluid. We further compare our experimental results with this theoretical criterion

Eq. (2.19) for a visible complex viscous finger. Using the experimental values of U0, h0, and

α, we plot the values of our dimensionless term [Eq. (2.20)] in Fig. 2.3(a). Here, we consider

a stable displacement when the fluid-fluid interface is uniform and stable throughout the

entire experiment.

Shown in Fig. 2.3(a), in accordance with our theory, a clear separation between stable

(∎, ▲ and ●) and unstable displacements (◻, △ and ○) for a criterion around 0. However,

for the more viscous fluid (S1), we observe stable experiments that are off the expected

chart. This deviation can be explained by the few assumptions we made. The impact of the

gravity, the elastic properties have been ignored. We are using the constant static contact

angle in our theoretical derivation. Moreover, whenever the gap gradient α is getting bigger,

the assumptions of small ratio of gap change (αxh0
<< 1) as well as the characteristic length

scale over which the depths varies being much larger than the characteristic length scale of

the perturbation scaling (kh0

α >> 1) are starting to be unjustified. Finally, we neglected the

yield stress with respect to the viscous stress. We can expect the differences to be explained

by these assumptions.

2.6 Concluding remarks

We demonstrate experimentally and theoretically a useful and powerful method of inhibiting

the viscous fingering (or Saffman-Taylor) instability for complex yield-stress fluids by using a

converging tapered rectangular cell. We perform a linear stability analysis using an effective
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Darcy’s law and derive a stability criterion concerning the perturbation wavelength. For the

Newtonian fluids, the stability of the interface is determined by four parameters, namely the

gap gradient, the contact angle to the side wall, the viscosity contrast, and the Capillary

number (α, θc, λ and Ca, respectively). In contrast, for complex yield-stress fluids, in addi-

tion to the above four parameters, the width of the cell (W ), the interface’s velocity and gap

thickness (U0 and h0), as well as the Herschel-Bulkley coefficients (τc, κ and n) determining

the local fluid viscosity influence the viscous fingering stability through Eq. (2.19).

For various gap gradient, α, ranging from −5.03 × 10−2 to 0, we observe a transition

from stable and unstable interfaces when the dimensionless term C∗ in Eq. (2.20) is approx-

imately equal to 0 in Fig. 2.3(a). However, for the more viscous fluid (S1), we observe a

discrepancy when the gap gradient (α) is greater. This drifting of values might be due to

some assumptions we made in the derivation. The impact of the gravity, the elastic proper-

ties of the fluids and the Bingham number (ratio of yield stress over the viscous stress) have

all been neglected. Moreover, we made assumptions by using of the static contact angle

and a small gap gradient (α). All these assumptions are important for the final criterion

and are surely playing a role in our discrepancy. In addition to our theoretical criterion,

in a more simplistic way, we were able to plot a stability diagram (α v.s Q) and observe a

transition, above a critical injection flow rate, between a complete sweep experience and the

experiences where unstable interfaces appears for our three complex fluids. A more complex

derivation without neglecting the impact of the yield stress should be investigated to provide

more accurate prediction of the viscous fingering stability criterion for the complex fluids.
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Chapter 3

Controlling Viscous Fingering of

Complex Yield-Stress Solutions in a

Tapered Radial Hele-Shaw Cell 1

3.1 Introduction

The displacement of a more viscous fluid by another less viscous one in a porous medium

is a common theme occurring in a myriad of natural and industrial processes, ranging from

small-scale applications such as chromatographic separation [11], coating flows [8, 12, 13],

printing devices [7], oil well cementing [94], to large-scale technologies of groundwater [15,

16], enhanced oil recovery (EOR) [19, 22], as well as carbon capture, utilization and storage

[24, 25, 26]. The unfavorable mobility or viscosity contrast, λ, triggers a fingering pattern

during fluid-fluid displacement, hindering a full swipe and impeding oil recovery in EOR.

This classical fingering (so-called Saffman-Taylor) instability [40, 41, 43, 44, 74] has been

extensively studied for decades, particularly for Newtonian fluids using a paradigm of Hele-

Shaw cell consisting of two parallel plates with a constant and narrow gap thickness. The

influences of inertia [29], surface tension [31], and complex geometry such as rotating Hele-
1The material presented in this chapter is based on a manuscript in preparation by Alban Pouplard and

Peichun Amy Tsai, “Controlling Viscous Fingering of Complex Fluids,” in preparation, 2021.
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Shaw cell [38] on the viscous fingering instability have been studied. More specifically, the

inertia has a tendency to increase the width of the fingers above a critical Weber number [29];

the effect of a curvature-dependent surface tension can theoretically lead to the stabilization

(destabilization) of conventionally unstable (stable) situations [31]. In recent two decades,

studies of viscous fingering have been extended to complex fluids, usually leading to wider

fingers compared to the Newtonian counterparts [46, 49, 54]. Intriguing side-branching

patterns, with multiple small fingers forming on the side of the major ones, are often observed

with complex, yield-stress fluids [50, 67, 68, 70].

The control of the fingering instability is significant to enhance the efficiency of various

industrial applications. For simple Newtonian fluids, several strategies have been recently

developed to suppress the fingering instability, e.g., using time-dependent injection flow rate

[76, 77, 79], an elastic confinement [90, 91, 92], a gap-gradient cell [78, 85, 86], and an external

electric field [97]. Nevertheless, such control of the primary viscous fingering instability has

not been reported for complex fluids. In this chapter, we demonstrate the feasibility of

inhibit a viscous fingering instability of complex, yield stress fluids using a radially-tapered

Hele-Shaw cell. First, we systematically carry out experiments of a gas pushing a yield-

stress, shear-thinning fluid to investigate the effects of flow rates and gap gradients on the

viscous fingering patterns. Subsequently, we analytically derive a linear stability criterion

for two immiscible yield-stress fluids pushing one another in a radially-converging cell. In

comparison, the analytical prediction is in fair agreement with the experimental results,

highlighting the local rheological parameters plays a crucial role in altering the viscous

fingering stability, in addition to the viscosity contrast (λ) and Capillary number (Ca) for

the simple Newtonian fluid cases.

3.2 Experimental

To examine complex fluids’ viscous fingering, we use two different aqueous solutions of

PolyAcrylic Acid (PAA, SigmaAldrich, molecular weight: Mw ≈ 1,250,000) as a wetting

yield-stress fluid. PAA is a water-soluble polyelectrolyte that has wide applications as a
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Figure 3.1. (a) Top-view schematic of the fluid-fluid displacement experiment where one
less viscous complex fluid 1 of varying viscosity (µ1) with shear rate (γ̇) is pushing another
immiscible one, denoted as complex fluid 2 with changing viscosity µ2. (b) Representative
experimental snapshot of complex viscous fingering produced with a complex yield-stress
(PAA) solution (S1) displaced by a gas injected with a flow rate Q = 0.2 slpm in a flat Hele-
Shaw cell, under the viscosity contrast λ = µ2/µ1 = 5.58 × 10

4 and at the interface velocity
U0 = 14.3 mm/s. The scale bar corresponds to 20 mm. (c) Flow curves of shear stress, τ ,
and viscosity, µ, depending on the shear rate, γ̇, for the two complex yield-stress solutions
used: (S1, ◇) and (S2, △) . The lines in (c) correspond to the best fits of the data to the
Herschel-Bulkley model described by Eq. (3.1). (d) The data of loss factor, the ratio of the
loss modulus (G′′) to the storage modulus (G′), varying with the shear stress, τ , obtained
during oscillation amplitude sweep test at constant frequency (ŵ = 1 rad/s). The vertical
dashed lines represent the yield-stress (τc) values of the two fluids.

fluid thickener as well as a dispersing, suspending, and emulsifying agent in pharmaceuticals

and cosmetics [95, 96]. Experimentally, we first fill in one complex PAA solution in a radial

cell and subsequently inject a gas (Nitrogen, viscosity µ1 = 1.76 × 10−5 Pa.s at 20°C) as a

pushing fluid (see Fig. 3.1(a)). The gas is injected at a constant flow rate, Q, ranging from

0.02 to 2 slpm (standard liter per minute) by a flow controller (Alicat) with an accuracy of

1 ml/min.

The two aqueous solutions of PAA are prepared to produce different viscosity contrasts.
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Both solutions have the same polymer concentration, by slowly adding the polymer powder

in water and subsequently stirring the mixture at high speed for 1 hr. The mixture generates

an acid solution that can be neutralized using a basic solution. The two PAA solutions are

prepared with (S1) and without NaOH (S2), stirred for another 10 hours at medium speed.

Finally, after the agitation, the solution is rest for a day before performing rheological

measurements.

Fig. 3.1(c) shows the rheological measurements (AntonPaar MCR302) of the two com-

plex solutions. Neglecting the elastic properties, we use the common rheological model of

Herschel−Bulkley (HB) to fit the shear stress (τ) varying with the shear rate (γ̇) [61]:

τ = τc + κγ̇
n, (3.1)

with τc, κ and n corresponding to the yield stress, the consistensy index, and the power-

law index, respectively. The complex fluids’ viscosity data (µ = τ
γ̇ ) varying with γ̇ is well

described by the corresponding HB model of µ = τc
γ̇ + κγ̇

n−1. Table 3.1 summarizes the best

nonlinear fit results of the rheological measurements of τ = f(γ̇) for the experimental range

of γ̇ between 0.025 and 86 s−1, and the corresponding fits are plotted as lines in Fig. 3.1(c).

Overall, both complex solutions are shear-thinning, with decreasing viscosity with increasing

shear rate γ̇, i.e., n < 1. However, the neutralized PAA solution with NaOH (S1) is more

viscous, has a greater yield-stress (τc) but a smaller power-law index (n).

Yield-stress PAA NaOH τc κ n
solution (wt %) (wt %) (Pa) (Pa.sn)
(S1) 0.10 0.034 3.2857 7.1179 0.3721
(S2) 0.10 0 0.0596 0.1413 0.6333

Table 3.1

Rheological parameters for the two complex, yield-stress fluids with the HB model [Eq. (3.1)].

We further perform oscillation amplitude sweep tests at constant frequency (ω̂ = 1 rad/s)

to validate negligible elasticity of the complex fluids. Shown in Fig. 3.1(d) are the results

of the loss factor–the ratio of the loss modulus (G′′) to the storage modulus (G′). The

former (G′′) represents the viscous properties of the complex fluids, while the latter (G′)
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fluid elasticity with respect to the shear stress, τ . The fluid’s viscous behavior prevails when

the loss factor (G′′/G′) is greater than the unity, whereas elastic for G′′/G′ less than 1. The

vertical dashed lines represents the yield-stress values for the both fluids (S1) and (S2). We

only focus on the regime when fluids are flowing, i.e, τ > τc, where the loss factor is more

or less greater than 1, meaning that the viscous prevails and we could neglect the elastic

effects of the fluids.

In our experiments, a radial Hele-Shaw cell with a converging gap is used to control the

interfacial viscous fingering instability (see Fig. 3.2(a)). The bottom plate is made of glass,

while the upper of Acrylic cast. The upper plates are tapered with a negative gradient,

α = dh/dr < 0, the ratio of the height (h) to the radial length (r) of the tapered cell. Spacers

of constant thickness hf = 0.5 mm are placed at the edges of the upper cell to create a

separation between the two plates’ edges. The gap thickness inside the cell evolves linearly

as h = hc + αr, with hc the gap thickness at the central injection point. The experimental

snapshots are captured, from below, with a camera (Canon EOS 70D) at 30 fps (frames per

second). To enhanced contract at the interface, a light is placed and used above the cell.

We use ImageJ and Matlab to analyze the experimental snapshots and track the interface

position. The interface velocity, U0 is calculated by deriving the interface radius position

over a short period of time (t). The values of the Reynolds number for our experiments are

ranging from 5.90 × 10−6 to 1.33. The permeability of the cell ranges from 2.08 × 10−8 to

5.46 × 10−6 m2.

3.3 Results and Discussions

We carry out over 700 experiments using both flat Hele-Shaw and tapered cells. With flat

Hele-Shaw cells, as illustrated by Fig. 3.2(b), we can observe classical primary fingers similar

to those for Newtonian fluids. However, more complex patterns in the form of tiny fingers as

secondary instability at the side of the major fingers are found (See Fig. 3.1(b)). Such side-

fingering patterns are consistent with previous Non-Newtonian fluid data and are referred

to as a side-branching regime [65] or the elasto-inertial regime [67, 68]. These side-branched
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Figure 3.2. Control of complex viscous fingering using a radially-tapered cell, with
a linearly varying gap thickness (h = hc + αr), schematically shown in (a), the side-view
of the experiment. (b) Experimental snapshots of a branched viscous fingering pattern
observed when a gas is pushing the complex solution (S2) in a flat Hele-Shaw cell with
hc = 0.5 mm and Q = 0.2 slpm. (c) By contrast, snapshot of a stable interface obtained when
the gas is pushing (S2) in a tapered Hele-Shaw cell of the gap gradient α = −3.33 × 10−2,
with hc = 5.16 mm and Q = 0.2 slpm. The scale bars in (b) and (c) correspond to a
distance of 20 mm.(d) Experimental results of stability diagram, with uniform stable (●) vs.
fingering/wavy unstable interfaces ( ) under various values of flow rate, Q, and the tapered
gap gradient, α. Black squares (∎) represent a transitional state where the interface starts
to develop a wavy profile.

fingers are being obtained only at a high flow rate (Q ≥ 1.5 slpm) for the fluid (S2) but

observed for every injection flow rate explored (0.02 − 1.5 slpm) for the more-viscous fluid

(S1). In the rest of the paper, we will not differentiate the classical finger pattern and the

side-branching pattern; both will be considered as unstable displacement.

When using converging cells, we stopped observing side-branched fingers but smooth

classical viscous fingers under the flow rate ranging from 0.02 slpm to 1.5 slpm. This

observation is consistent with a recent experimental study [89] revealing mitigation of side-

branching (but not inhibition of the primary VF) for a complex yield-stress fluid in a rect-
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angular tapered cell. However, with suitable rheological and flow parameters, remarkably

we can control or inhibit the primary fingering instability and observe complete stable and

flat interfaces between the pushing Newtonian gas and the yield-stress fluid, as illustrated

by Fig. 3.2(c). During our experiments, we often observe a stable interface at the earlier

times of the injection as it takes time to develop a flow instability. However, in most cases,

the Saffman-Taylor instability propagates after a steady-state is reached. For our analysis,

a displacement will be considered stable if the interface is uniform and stable throughout

the entirety of the experiment.

The first crucial observation is that the fluid-fluid interface is stable at lower injection

flow rate when keeping α and hc constant. Revealed in Fig. 3.2(d) is a phase diagram of

three flow patterns observed under different α and Q. We differentiate the three types of

patterns observed during the experiments with the complex fluid (S2), namely uniform stable

interfaces and displacements (●), fingering/wavy unstable interfaces ( ), and transitional

state ( ) where the interface starts to develop a wavy profile.

The addition of a converging gap gradient helps the interface to stabilize and the transi-

tion between stable and unstable interfaces happens at higher flow rate. Such figures can be

observed in previous papers with Newtonian fluids [86]. Here, we are only able to plot the

stability diagram for the fluid (S2) because a complete sweep has never been observed with

the more viscous complex fluid (S1) of a viscosity contrast λ = µ2/µ1 ranging from 2.68×104

to 1.16 × 107, with µ1 = 1.76 × 10−5 Pa.s as the nitrogen viscosity. The viscosity contrast

for the fluid (S2) ranges from 1.61 × 103 to 1.67 × 105 in our experiments. These contrast

results between the two complex solutions (S1 and S2) highlight not only the complicity

of controlling complex viscous fingering but also the importance of rheological parameters

through κ, n, and the local shear rate, γ̇.

3.4 Theoretical Background

To gain physical insights into crucial parameters controlling the primary complex viscous

fingering instability, we develop a linear stability analysis generalized to both yield-stress,
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power-law complex fluids (Fluid 1 pushing Fluid 2) in a radial, tapered Hele-Shaw cell (see

Fig. 3.2(a)). The introduction of a constant gap gradient (α) produces a linearly-varying

height h(r) = hc +αr between the two plates of the cell. Considering the fluids’ interface at

r = r0, the height h can be expressed as h(r) = h0 + α (r − r0), with h0 the gap thickness at

the interface.

In the theoretical derivation based on the lubrication theory, we use the effective Darcy’s

law replacing the constant viscosity, µ, by the effective shear-dependent viscosity, µeff. This

approach has been used in other derivations to model non-Newtonian flow in a homogeneous

porous medium or a uniform Hele-Shaw cell [30, 49, 54]. Neglecting the fluids’ elastic

properties [70], the governing equations are the continuity equation and 2D depth-average

Darcy’s law:

∇ ⋅ (hUj) = 0, (3.2)

Uj = −
h2

12µeffj
∇⃗Pj . (3.3)

Uj(r, θ) = (urj , uθj) and Pj(r, θ) are the depth-average velocity and pressure fields of the

fluid indexed j, respectively. j represents the two complex fluids during the fluid-fluid

displacement process; j = 1 (2) denotes the pushing (displaced) complex fluid.

The complex fluid’s viscosity (µeffj) is modeled using the Herschel-Bulkley law [61] for

yield-stress fluids, with the local shear rate γ̇ = urj/h, and expressed as:

µeffj =
τcj
.
γ
+ κj

.
γ
nj−1, (3.4)

where τcj , κj and nj correspond to the yield stress, the consistensy index, and the power-law

index, respectively.

By defining the Bingham number as the ratio of the yield to viscous stress: Bnj =

τcj

κj(
urj
h
)

nj , we express τcj
h
12

∂Pj
∂r

= − 1
1+ 1

Bnj

. Assuming a small ratio of gap change, i.e., α(r−r0)
h0

<<

1, we can linearize the expression of the gap thickness as h = h0 (1 +
α(r−r0)

h0
) and neglect the

higher-order terms of O (α2). With Eqs. (3.3)−(3.4), the depth-average continuity Eq. (3.2)
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can be expressed using pressure field (Pj) and simplified into:

∂2Pj

∂r2
+
nj

r

∂Pj

∂r
+
(2nj + 1)α

h0

∂Pj

∂r
+
12njατcj

h20
+
12njτcj

h0r
+
12njτcjα

h0
2

r0
r

+
nj

r2
∂2Pj

∂θ2
(1 −

1

1 + 1
Bn

) +
1

r2
∂Pj

∂θ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(1 − nj)

∂2Pj

∂θ∂r
∂Pj

∂r

− nj

τcj
∂2Pj

∂θ∂r

h
12 (

∂Pj

∂r )
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0. (3.5)

By setting nj = 1 and τcj = 0, the above Eq. recovers to the simple Newtonian fluid case:
∂2Pj

∂r2
+ 1

r
∂Pj

∂r +
3α
h

∂Pj

∂r +
1
r2

∂2Pj

∂θ2
= 0, reported by Al-Housseiny and Stone [78].

In the linear stability analysis, the pressure field is expressed as the solutions of the base

state and the perturbation, ϵ(θ, t) = ϵ0r0(t) exp (ikθ + σt):

Pj(r, θ, t) = fj(r) + gkj(r)ϵ(θ, t). (3.6)

Here, fj(r) corresponds to the base-state pressure when the interface is stable and inde-

pendent of θ. The term of gkj(r)ϵ represents the perturbation that propagates along the

interface, with wavenumber (k) and the growth rate (σ) of the perturbation.

We focus at the moment when the perturbation starts to propagate, implying small

perturbation (ϵ << 1), g′kj(r)ϵ << f
′

j(r), and negligible high-order terms of O (ϵ2). Since we

are interested in the solution of Pj in the vicinity of the perturbed interface, we can linearize

around the base state such that: r = r0 (1 + ϵ0z) with ϵ0 << 1. Substituting Eq. (3.6) into

Eq. (3.5), using ϵ0 << 1 to linearize terms and neglecting O (ϵ0
2) but not O (ϵ0

2k2), the

solutions of the base and perturbed states can be found with the following Eqns:

∂2fj(z)

∂z2
+ njϵ0

∂fj(z)

∂z
+
(2nj + 1)α

h0
ϵ0r0

∂fj(z)

∂z
= 0. (3.7)

∂2gkj(z)

∂z2
+ njϵ0

∂gkj(z)

∂z
+
(2nj + 1)α

h0
ϵ0r0

∂gkj(z)

∂z
− njk

2ϵ0
2gkj
⎛

⎝
1 −

1

1 + 1
Bnj

⎞

⎠
= 0. (3.8)

At r = r0, from the Darcy’s law and with the fact that g′kj(r)ϵ << f
′

j(r), we solve for the

specific solution for the base-state pressure, fj(r), expressed with z = r−r0
ϵ0r0

:
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fj(r) = Fj exp(−(nj +
(2nj + 1)αr0

h0
)
r − r0
r0
),

Fj =
12 [τcj + κj (

U0

h0
)
nj

]

h0

r0

nj +
(2nj+1)αr0

h0

. (3.9)

To solve the perturbation Eq. (3.8) analytically, we assume (1+ 1
Bnj
)−1 << 1 , equivalent to

small Bnj(<< 1) situation when the yield stress is negligible compared to the viscous stress.

Let’s assume that the length scale of the interfacial perturbation (i.e, ∣ r0k ∣) is much smaller

than the length scale over which the depth varies scaling as ∣h0

α ∣. Under this assumption, we

have ∣αr0kh0
∣ = O (ϵ). We then obtain a simplified solution for a small Bnj (<< 1) as

gkj(z) = Bkj exp (rkj+z) +Ckj exp (rkj−z),

rkj+ = −ϵ0
√
njk, rkj− = ϵ0

√
njk.

Moreover, physically, it is impossible for the perturbation to grows in space from its origin. It

means that for a fluid indexed 1 pushing a fluid indexed 2, we have the following constraints:

gk1∣r→0 = 0, gk2∣r→+∞ = 0, gk1∣z→−∞ = 0, gk2∣z→+∞ = 0. As a consequence, the solution can

be expressed with z = r−r0
r0ϵ0

:

gkj = Bkj exp(mkj
r − r0
r0
), (3.10)

mkj = (−1)
j+1√njk. (3.11)

By linearizing the exponential terms in Eq. (3.9)-(3.10), we can evaluate the pressure at

the interface (rint = r0 + ϵ).

Pj ∣r=r0+ϵ =
12 [τcj + κj (

U0

h0
)
nj

]

h0

r0

nj +
(2nj+1)αr0

h0

−
12 (τcj + κj (

U0

h0
)
nj

)

h0
ϵ+Bkjϵ+O (ϵ

2) . (3.12)

To determine the coefficient Bkj , we use the velocity continuity condition at the interface

for r = rint = r0 + ϵ, i.e. ∂rint
∂t = urj ∣r=r0+ϵ. By linearizing ∂Pj

∂r at the interface, using the

assumptions of U0 >> σϵ and αϵ
h0
<< 1, but neglecting O (ϵ2), we find the expression for

Bkj :

Bkj = −
12κj

mkjh0
nj+1
(njσU0

nj−1r0+njU0
nj
αr0
h0
+nj

h0
njτcj

κj
+2nj

h0
njτcj

κj

αr0
h0
+njU0

nj). (3.13)
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For simple Newtonian fluids as nj = 1 and κj = µj , we find the same expression for

Bkj = −
12µjU0

mkjh0
2 (

σr0
U0
+ αr0

h0
+ 1) as the solution found previously by Al-Housseiny and Stone

[78].

The Capillary pressure jump at the interface is described by the Young-Laplace equation,

which accounts for both the lateral curvature (Ψ) and the curvature because of the cell depth

( 1
h
). However, we will neglect the viscous stresses. At the interface, r = r0 + ϵ(θ, t), for a

fluid indexed 1 pushing a fluid indexed 2, the pressure difference across the interface is:

P1 − P2 =
2γ cos θc
h0 + αϵ

+ γΨ, (3.14)

Ψ =
r2 + 2 (∂r∂θ)

2
− r ∂2r

∂θ2

(r2 + (∂r∂θ)
2
)

3
2

, (3.15)

where γ is the interfacial tension, and θc corresponds to the contact angle of the wetting

fluid to the side wall. Since r0
2 >> ϵ2, using the linearization around r0, and neglecting

O (ϵ2), the second term in Eq. (3.14) can be simplified to:

γΨ = γ (
1

r0
−

ϵ

r02
+
k2ϵ

r02
) .

Finally, the pressure jump at the interface r = r0 + ϵ(θ, t) can be expressed by:

P1 − P2 =
2γ cos θc

h0
+

γ

r0
+ γϵ(

k2 − 1

r02
−
2α cos θc

h0
2
) +O (ϵ2) . (3.16)

The terms 2γ cos θc
h0

+
γ
r0

corresponds to the base state, that is the pressure difference at the

interface between the two fluids where the interface is stable. The rest are the additional

Laplace pressure due to the perturbation at the interface.

We substitute the expression of the linearized pressure Eq. (3.12), along with (3.13),

into the pressure jump Eq. (3.16), and remove all the base state components, the Laplace

pressure equation transforms into the following dimensionless dispersion-relation with the

dimensionless growth rate of the perturbation, σ̄ = σr0
U0

, and the dimensionless wavenumber
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of the perturbation, k̄ = k:

12σh0
γ
(κ1
√
n1 (

U0

h0
)

n1

+ κ2
√
n2 (

U0

h0
)

n2

) = −
12U0

γ
(
√
n1µ1∣r=r0 +

√
n2µ2∣r=r0)

−
12αr0
γ
(2
√
n1τc1 + 2

√
n2τc2 +

√
n1κ1 (

U0

h0
)

n1

+
√
n2κ2 (

U0

h0
)

n2

)

+ k (
12U0

γ
(µ2∣r=r0 − µ1∣r=r0) + 2α cos θc +

h0
2

r02
) −

h0
2

r02
k
3
. (3.17)

Consequently, with τcj = 0, nj = 1, κj = µj for simple Newtonian fluids, and defining

λ = µ1

µ2
and Ca = 12U0µ2

γ , the dispersion relation transforms into:

σCar0
U0

(λ + 1) = −Ca (1 + λ) (1 +
αr0
h0
) + k(2α cos θc +

h0
2

r02
+Ca (1 − λ))−

h0
2

r02
k
3
,

which is the same relation found by Al-Housseiny and Stone for simple Newtonian fluids [78].

To find the wavenumber at the maximum growth, we take the derivative of above

Eq. (3.17) w.r.t. k̄ by setting ∂σ
∂k
= 0, we find the wavenumber of maximum growth (k̄max)

equal to:

k̄max =
⎛
⎜
⎝

h0
2

r02
+ 2α cos θc +

12U0

γ (µ2∣r=r0 − µ1∣r=r0)

3h0
2

r02

⎞
⎟
⎠

1
2

. (3.18)

The resultant wavelength of maximum growth, λmax = 2πr/k̄max, hence is:

λmax = 2πr
⎛
⎜
⎝

3h0
2

r02

h0
2

r02
+ 2α cos θc +

12U0

γ (µ2∣r=r0 − µ1∣r=r0)

⎞
⎟
⎠

1
2

.

The viscous fingering instability of complex fluids would be apparent when λmax < 2πr,

leading to the following criterion for a visible fingering pattern:

−2
h0

2

r02
+ 2α cos θc +

12U0

γ
(µ2∣r=r0 − µ1∣r=r0) > 0. (3.19)

Alternatively, from the dispersion-relation Eq. (3.17), the interface would always be stable

for a negative growth rate of the perturbation (σ < 0) when the following stability criterion
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is fulfilled:

[−
12U0

γ
(
√
n1µ1∣r=r0 +

√
n2µ2∣r=r0) −

12αr0
γ
(2
√
n1τc1 + 2

√
n2τc2 +

√
n1κ1 (

U0

h0
)

n1

+
√
n2κ2 (

U0

h0
)

n2

)

+ k (
12U0

γ
(µ2∣r=r0 − µ1∣r=r0) + 2α cos θc +

h0
2

r02
) −

h0
2

r02
k
3
]

γ

12h0 (κ1
√
n1 (

U0

h0
)
n1

+ κ2
√
n2 (

U0

h0
)
n2

)
< 0.

(3.20)

3.5 Comparison between experimental and theoretical results

Using the linear stability analysis with an effective Darcy’s law model, we derive the ex-

pression of the dimensionless perturbation growth rate (σ) depending on the dimension-

less wavenumber of the perturbation (k) in Eq. (3.17), rheological properties of the fluids

(κj , nj , τcj), the gap gradient (α) as well as the velocity, radius, and gap thickness at the

interface (U0, r0, h0, respectively), in addition to various factors affecting simple Newtonian

fluid counterpart, such as viscosity contrast λ, Ca, γ and wetting angle (θc).

If the pertubation’s growth rate is less than zero for every dimensionless wavenumber,

k, the interface will always be stable. We obtain the growth rate at the most unstable mode

by substituting the wavenumber of maximum growth k̄max [Eq. (3.18)] and into [Eq. (3.17)].

Taking the values of viscosity (µ1 and µ2), U0, r0 and h0 from the experiments, we plotted

the σ(k̄max) using Eq. (3.17) in Fig. 3.3(a). Theoretically, we would expect the transition

between stable and unstable experiments around 0 as the perturbation decays (or grow) for a

negative (positive) growth rate. Fig. 3.3(a) shows a clear transition from stable to unstable

interfaces for (S2), revealing unstable interfaces with fingering pattern when σ(k̄max) > 7.5.

The deviation between our experimental results and the theory can be explained by the

few assumptions made. The impact of the gravity and the elastic properties have been

neglected. Moreover, whenever the gap-gradient, α, is sufficiently large, the assumptions of

small ratio of gap change (α(r−r0)h0
<< 1) as well as the characteristic length scale over which

the depths varies being much larger than that of the perturbation scaling (i.e., kh0

αr0
>> 1)
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Figure 3.3. Comparison between experimental and theoretical results: (a) The
growth rate of the perturbation at the most unstable mode of kmax, σ(k̄max) using Eq. (3.17)
and (3.18) for different experiments performed with various gap gradient, ∣α∣. The values of
U0, r0, and h0 are taken from the experiments. The wavenumber here corresponds to the
wavenumber of maximum growth, k = k̄max [Eq. (3.18)]. On the one hand, the experiments
with the more viscous solution (S1) always show unstable wavy interface (with data points
◇). On the other, for the less viscous complex fluid (S2), stable displacement (▲) and
unstable interface (△) are observed with nearly-zero and relatively-large growth rate σ,
respectively. (b)-(d) are the overlays of experimental snapshots, revealing the evolution of
the fluid-fluid interface profiles for the three big symbols (▲, △, ◇) in (a), respectively.
The interfaces highlighted in red or blue correspond to the data of these symbols analyzed
in (a). The time steps are δt = 22 s, δt = 0.6 s and δt = 1 s in (b), (c) and (d), respectively.
Each scale bar represent a length scale of 20 mm.

are not fulfilled. Finally, we also neglect the yield stress with respect to the viscous stress.

All these assumptions could explain the shift of the experimental critical σ(k̄max) from the

theoretical value of 0 to 7.5.
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3.6 Conclusions

The stabilization of the viscous fingering instability of complex, yield-stress fluids using

a tapered cell has been demonstrated experimentally and theoretically for the first time.

Notably, for the less-viscous complex fluids (S2), we obtain a stability diagram (α v.s Q)

that shows a clear transition from a stable interface regime showing a complete sweep to an

unstable regime with fingering pattern. With a linear stability analysis using an effective

Darcy’s law, we derive the dispersion relation for the perturbation, Eq. (3.17), and a stability

criterion Eq. (3.20). The latter depends on three important types of parameters: first, the

fluid’s rheological parameters, namely κ, τc and n, γ, θc; second, the gap gradient (α); lastly,

the interface position, gap thickness and velocity (r0, h0 and U0, respectively). Taking the

experimental values of U0, r0 and h0, we calculate the perturbation’s growth rate (σ) for

the most unstable mode of the perturbation (k̄max), we compare this theoretical criterion

to the experimental results using two distinct yield-stress fluids.

For the very viscous fluid (S1), our theory always predicts unstable displacements which

is in total agreement with our experimental results. For the second fluid (S2), we observe

a transition between stable and unstable interfaces for σ(k̄max) = 7.5. Theoretically, one

would expect the transition to be around 0, as a negative perturbation’s growth rate for

a stable interface. This discrepancy may be due to some assumptions we made in the

analytical derivation. For example, the impact of the gravity, the elastic properties of the

fluids, and the yield stress with respect to the viscous stress have been neglected. Further

assumptions include the use of the static contact angle, small relative perturbation, and

small gap-thickness change. All these assumptions may play a role in the final criterion of

the derivation and cause the discrepancy and require future investigations.
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Chapter 4

Viscous Fingering of Yield-Stress

Fluids in a Tapered Radial Hele-Shaw

Cell: Impact of the Bingham Number

1

4.1 Introduction

When a less viscous fluid is pushing another more viscous one in a porous medium, an

interfacial instability occurs producing an incomplete sweep of displaced fluid. This insta-

bility, so-called viscous fingering due to the wavy finger-like shape of the interface, was first

observed in an horizontal Hele-Shaw cell by Saffman and Taylor [5]. Such perturbation of

the interface is detrimental for many applications in various natural and industrial fields.

Some examplary applications include chromatographic separation of solvents [11], coating

flows [8, 12, 13], printing devices [7], groundwater pollution [15, 16], enhanced oil recovery

(EOR) process [19, 22], or CO2 storage and sequestration technologies [24, 25, 26]. Due
1The material presented in this chapter is based on a manuscript in preparation by Alban Pouplard and

Peichun Amy Tsai, “On the Linear Stability Criterion of Viscous Fingering Instability for Complex Fluids
in a Tapered Geometry,” in preparation, 2021.
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to its extensive impact on myriads of industrial processes, the classical viscous fingering

has been extensively studied for the past decades. However, most investigations concern

Newtonian fluids in a Hele-Shaw cell, consisting of two parallel plates with a constant gap

thickness, as set-up [40, 41, 44, 43, 74]. Recently, the investigation of the phenomenon has

been extended to complex non-Newtonian fluids. Using shear-thinning (shear-thickening)

fluids, the fingers are getting thicker (wider) than the usual fingers for simple Newtonian

fluids [30, 48, 49, 64]. With the addition of surfactants, viscous fingers become wider as

well [54]. Moreover, previous experiments with colloidal solutions or with yield-stress fluids

show new interesting pattern with multiple small fingers forming on the side of the major

ones [50, 57, 67, 68, 70].

In order to enhance the efficiency of various industrial applications, the feasibility of

controlling or inhibiting the viscous fingering has been investigated with simple Newtonian

fluids. Several strategies have already been developed to suppress the primary Saffman-

Taylor instability, e.g., using time-dependent injection flow rate [76, 77, 79], the use of

an elastic membrane [90, 91, 92], and a thickness-gradient [78, 85, 86]. However, such

primary control has not been reported for complex fluids. In this chapter, we study the

feasibility of inhibiting the apparition of the viscous fingering instability for nitrogen pushing

a complex yield-stress solution in a radially-tapered cell. To this end, we perform a linear

stability analysis generalized for two complex, yield-stress fluids pushing one another in

a converging gap. We start from the continuity equation and the Darcy’s law in which

we replaced the constant viscosity, µ, by an effective shear-dependent viscosity, µeff . In

addition to Chapter 3, without any assumption regarding the Bingham number, we obtain

a new expression for the dimensionless perturbation’s growth rate, which depends on the

fluid’s rheology, the gap gradient (α), and the interface’s local parameters such as the gap

thickness, velocity and radius. We further compare the theoretical prediction with our very

recent experimental results presented in Chapter 3 and find good agreement.
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(a)

(b)

(c)

Figure 4.1. (a)−(b) Schematics of top-view and side-view fluid-fluid displacement experi-
mental setup, where a more-viscous complex fluid of viscosity µ2 varying with shear rate (γ̇),
is pushed by another immiscible one. (c) Representative experimental snapshot of complex
viscous fingering obtained when the complex yield-stress (PAA) solution (S1) is displaced
by nitrogen gas injected with a flow rate Q = 0.03 slpm in a flat Hele-Shaw cell. The scale
bar corresponds to 20 mm.

4.2 Experimental

The experiments are conducted using both flat Hele-Shaw and converging-tapered cells under

a radial injection (See Fig.4.1(a)-(b)). We use two aqueous solutions of PolyAcrylic Acid

(PAA) of different concentrations, denoted as (S1) and (S2), for the wetting and receding

fluid to examine complex fluids’ viscous fingering. The displacing fluid is gaseous nitrogen

of viscosity µ1 = 1.76 × 10
−5 Pa.s (at 20 °C), achieving the viscosity contrast of λ = µ2/µ1

ranging from 2.68 × 104 to 1.16 × 107 and from 1.61 × 103 to 1.67 × 105 for (S1) and (S2),

respectively. Other major control parameters are the gap gradient of the cell, α, and the

constant flow injection rate, Q, ranging from 0.02 slpm to 2 slpm. The detailed experimental

setup and procedures can be found in Chapter 3.

The two yield-stress solutions possess different viscosity values, but both can be modeled
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Yield-stress PAA NaOH τc κ n
solution (wt %) (wt %) (Pa) (Pa.sn)
(S1) 0.10 0.034 3.2857 7.1179 0.3721
(S2) 0.10 0 0.0596 0.1413 0.6333

Table 4.1

Empirical rheological parameters of the two complex, yield-stress fluids, (S1) and (S2), with
the Herschel−Bulkley (HB) model [Eq. (4.1)].

well by the Herschel−Bulkley (HB) model [61] of shear stress (τ) varying with shear rate (γ̇)

as:

τ = τc + κγ̇
n, (4.1)

with τc, κ and n corresponding to the yield stress, the consistensy index, and the power-law

index, respectively. The different parameters constituting the (HB) model, for both fluid

(S1) and (S2), are summarized in Table 4.1.

With flat Hele-Shaw cells we observe side-branched fingering pattern (see Fig. 4.1(c)),

as typical characteristic for yield-stress fluids by previous studies [65, 67, 68] as well as more

usual viscous fingers pattern (Fig. 4.2(a)). This second type of viscous fingering having

already been observed with Newtonian fluids in earlier works. By contrast, using converg-

ing cells we observe the elimination of side-branching fingers for both fluids (S1) and (S2),

replaced by typical smoother classical VF, as also found lately by Eslami et al. [89]. More

significantly, we are able to experimentally observe the inhibition the primary viscous fin-

gering instability under suitable rheological and flow parameters (Q, α, hc), as illustrated

by Fig. 4.2(b). The detailed experimental stability diagram of controlling VF under various

α and Q for the complex fluid (S2) can be found in our previous chapter (Ch. 3).

The significant observations of our recent experiments using complex fluids include, first,

the interface can become stable at lower Q while keeping α and hc constant. Second, the

transition between stable and unstable displacements occurs at higher Q as the converging

gap gradient becomes steeper. Finally, the controlling criterion of the Viscous Fingering

instability with yield-stress fluids is rather complex in that α, Q, and the rheological pa-

rameters (via κ, n, and local γ̇) all have a crucial influence on the stabilizing effort of the
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(b)(a)

Figure 4.2. Experimental Data of interfacial profiles obtained when a gas displaces
a yield-stress fluid using different cells. (a) Overlay of experimental snapshots of a viscous
fingering pattern observed when a gas is pushing complex solution (S2) in a flat Hele-Shaw
cell with hc = 0.5 mm and Q = 0.025 slpm (with the time step of δt = 2 s). (b) By contrast,
overlay of experiment snapshots of a stable interface obtained when the gas is pushing
(S2) in a radially-tapered cell with a linearly converging gap-thickness: h = hc + αr, where
α = −7.18 × 10−2 with hc = 10.39 mm and Q = 0.025 slpm. The time interval is δt = 40 s.
Both scale bars correspond to a distance of 20 mm.

fluid-fluid interface.

4.3 Theoretical Analysis

We carry out a linear stability analysis to shed light on the feasibility of controlling the

viscous fingering instability for complex, yield stress fluids using a radial tapered Hele-Shaw

cell. The problem considered is one complex yield-stress fluid (Fluid 1) of viscosity (µ1)

pushing another yield-stress fluid (Fluid 2) of viscosity (µ2) in a radially-tapered cell (see

Fig. 4.1). The gap gradient (α) introduced produces a linearly-varying height (h) between

the two plates of the cell. We consider a lubrication flow confined in the thin gap, whose

height varies linearly in r direction as h(r) = hc +αr. Here, hc denotes the gap thickness at
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the center of the cell. Considering the fluids’ interface at r = r0, the height h is expressed as

h(r) = h0 + α (r − r0), where h0 the gap thickness between the two plates at the fluid-fluid

interface.

In the theoretical derivation, we use the effective Darcy’s law replacing the conventional

Newtonian fluid’ constant viscosity with the effective shear-dependent viscosity, µeff, for

complex fluids. This approach has been used to model non-Newtonian flow in a homoge-

neous porous medium [30, 49, 54], but here we extend the approach to a tapered geometry.

Neglecting the fluids’ elastic properties [70], the governing equations of the problem are

2D-depth-average Darcy’s law and continuity equation:

Uj = −
h2

12µeffj
∇⃗Pj , (4.2)

∇ ⋅ (hUj) = 0. (4.3)

Uj(r, θ) = (urj , uθj) and Pj(r, θ) are the depth-average velocity and pressure fields of the

fluid indexed j, respectively. j represents the two complex fluids during the fluid-fluid

displacement process; j = 1 (2) denotes the pushing (displaced) complex fluid.

The complex fluid’s viscosity (µeffj) is modeled using the Herschel-Bulkley law for yield-

stress fluids [61], with the local shear rate γ̇ =
urj

h , and expressed as

µeffj =
τcj
.
γ
+ κj

.
γ
nj−1, (4.4)

where τcj , κj and nj correspond to the yield stress, the consistensy index, and the power-law

index, respectively.

By defining the Bingham number as the ratio of the yield to viscous stress: Bnj =

τcj

κj(
urj
h
)

nj , we express τcj
h
12

∂Pj
∂r

= − 1
1+ 1

Bnj

. Assuming a small ratio of gap-thickness change, i.e.,

α(r−r0)
h0

<< 1, we can linearize the expression of the gap thickness as h = h0 (1 +
α(r−r0)

h0
)

by neglecting the high-order terms of O(α2). With Eqs. (4.2)−(4.4), the depth-average
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continuity Eq. (4.3) can be expressed using the pressure field (Pj) and simplified into

∂2Pj

∂r2
+
nj

r

∂Pj

∂r
+
(2nj + 1)α

h0

∂Pj

∂r
+
12njατcj

h20
+
12njτcj

h0r
+
12njτcjα

h0
2

r0
r

+
nj

r2
∂2Pj

∂θ2
(1 −

1

1 + 1
Bn

) +
1

r2
∂Pj

∂θ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(1 − nj)

∂2Pj

∂θ∂r
∂Pj

∂r

− nj

τcj
∂2Pj

∂θ∂r

h
12 (

∂Pj

∂r )
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0. (4.5)

For the simple Newtonian fluids with nj = 1 and τcj = 0, we find the following equation:
∂2Pj

∂r2
+ 1

r
∂Pj

∂r +
3α
h

∂Pj

∂r +
1
r2

∂2Pj

∂θ2
= 0, which is identical and recovered to the case found by Stone

et al. [78] for Newtonian fluids.

To solve for the pressure field, Pj , we decompose the solutions into the base and perturbed

states with

Pj(r, θ, t) = fj(r) + gkj(r)ϵ(θ, t), (4.6)

where the perturbation ϵ(θ, t) = ϵ0r0(t) exp (ikθ + σt). Here, fj(r) corresponds to the base-

state, pressure field when the interface does not depend on θ. The gkj(r)ϵ term represents

the perturbation propagating from the interface with wavenumber, k, and growth rate, σ,

of the perturbation.

Focusing on the moment when the perturbation starts to propagates, the perturbation

is still small (ϵ << 1) so that g′kj(r)ϵ << f ′j(r). Linearizing around the base state, we can

express r = r0 (1 + ϵ0z) with ϵ0 << 1. Substituting the pressure expression Eq. (4.6) into

Eq. (4.5), neglecting higher-order terms of O(ϵ2) but not O(ϵ02k2), and linearizing 1
1+ϵ0z

and 1
(1+ϵ0z)

2 , the solutions of the base and perturbed states can be found with the following

Eqns:
∂2fj(z)

∂z2
+ njϵ0

∂fj(z)

∂z
+
(2nj + 1)α

h0
ϵ0r0

∂fj(z)

∂z
= 0. (4.7)

∂2gkj(z)

∂z2
+ njϵ0

∂gkj(z)

∂z
+
(2nj + 1)α

h0
ϵ0r0

∂gkj(z)

∂z
− njk

2ϵ0
2gkj
⎛

⎝
1 +

τcj
h
12

∂Pj

∂r

⎞

⎠
= 0. (4.8)

From the Darcy’s law, with the fact that g′kj(r)ϵ << f ′j(r) at r = r0, and z = r−r0
ϵ0r0

, we
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solve Eqn. (4.7) for the base-state pressure solution:

fj(r) = Fj exp(−(nj +
(2nj + 1)αr0

h0
)
r − r0
r0
),

Fj =
12 [τcj + κj (

U0

h0
)
nj

]

h0

r0

nj +
(2nj+1)αr0

h0

, (4.9)

where U0 is the velocity at the interface.

Assuming ϵ0 << 1, we have ∂Pj

∂r ≈ f
′

j(r), linearizing h0+α (r − r0) = h0 (1 +
αr0ϵ0z

h0
) around

h0, and neglecting the terms O (ϵ2), O(ϵ03k2) but not O (ϵ02k2), Eq. (4.8) transforms into:

∂2gjk(z)

∂z2
+ njϵ0

∂gkj(z)

∂z
+
(2nj + 1)α

h0
ϵ0r0

∂gkj(z)

∂z

− njk
2ϵ0

2gkj
⎛
⎜
⎝
1 −

τcj

τcj + κj (
U0

h0
)
nj

exp((nj +
(2nj + 1)αr0

h0
) ϵ0z)

⎞
⎟
⎠
= 0. (4.10)

We define the following constants to simplify the above expression:

Aj = (nj +
(2nj + 1)αr0

h0
) ,

Bj = njk
2, (4.11)

Cj =
τcj

(τcj + κj (
U0

h0
)
nj

)
=
τcj

τtj
,

where Aj , Bj and Cj correspond to the characteristic length of the exponential term of the

base-state pressure [see Eq. (4.9)], the impact of the perturbation’s wavenumber, and the

ratio of the yield stress (τc) to the total stress (τt), respectively.

The general solution (uSol j) for the above Eq. (4.10) is a linear combination of the

first-order and second-order Bessel functions, J(β, z) and Y (β, z), respectively. By defining

Nj =

√

Aj
2 + 4Bj

Aj
,

Mj(z) =
2
√
BjCj

Aj
exp(

Ajϵ0z

2
), (4.12)
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the general solution is:

uSol j(z) = C1kj exp(
−Ajϵ0z

2
) J (Nj ,Mj(z)) +C2kj exp(

−Ajϵ0z

2
) Y (Nj ,Mj(z))

+C3kj exp(
−Ajϵ0z

2
) J (−Nj ,Mj(z)) +C4kj exp(

−Ajϵ0z

2
) Y (−Nj ,Mj(z))

+C5kj exp(
−Ajϵ0z

2
) J (−Nj ,−Mj(z)) +C6kj exp(

−Ajϵ0z

2
) Y (−Nj ,−Mj(z))

+C7kj exp(
−Ajϵ0z

2
) J (Nj ,−Mj(z)) +C8kj exp(

−Ajϵ0z

2
) Y (Nj ,−Mj(z)) . (4.13)

Note that J (β, z) or Y (β, z) are regular functions throughout the z-plane cut along the

negative real axis [98], meaning J(β,M(z)) or Y (β,M(z)) are only defined forM(z) > 0.

We can then simplify the solution for Eq. (4.13) as

uSol j(z) =C1kj exp(
−Ajϵ0z

2
) J
⎛

⎝
Nj ,

2
√
exp (Ajϵ0z)BjCj

∣Aj ∣

⎞

⎠

+C2kj exp(
−Ajϵ0z

2
) Y
⎛

⎝
Nj ,

2
√
exp (Ajϵ0z)BjCj

∣Aj ∣

⎞

⎠

+C3kj exp(
−Ajϵ0z

2
) J
⎛

⎝
−Nj ,

2
√
exp (Ajϵ0z)BjCj

∣Aj ∣

⎞

⎠

+C4kj exp(
−Ajϵ0z

2
) Y
⎛

⎝
−Nj ,

2
√
exp (Ajϵ0z)BjCj

∣Aj ∣

⎞

⎠
.

Moreover, physically, it is impossible for the perturbation to grows in space from its

origin, implying that for a fluid indexed 1 pushing a fluid indexed 2 we have

uSol 1∣r→0 = 0,

uSol 2∣r→+∞ = 0,

uSol 1∣z→−∞ = 0,

uSol 2∣z→+∞ = 0.

Performing analyses on the functional limits as z approaching to −∞ and +∞, we observe

that only exp (
−Ajϵ0z

2 )J (Nj ,
2
√

exp (Ajϵ0z)BjCj

∣Aj ∣
)→ 0 as z → −∞, and only

exp (
−Ajϵ0z

2 ) J (−Nj ,
2
√

exp (Ajϵ0z)BjCj

∣Aj ∣
)→ 0 as z → +∞. In summary, the final solution of

r-dependent perturbed state of pressure, gkj(r), fulfilling Eq. (4.10) is expressed by uSol j
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below:

uSol j(z) = C1kj exp(
−Ajϵ0z

2
) J((−1)j+1Nj , ∣Mj(z)∣), (4.14)

where Aj , Bj , and Cj are defined in Eq. (4.11), while Nj and Mj in Eq. (4.12) above.

Assuming that the length scale of the interfacial perturbation (∣ r0k ∣) is much smaller

than that of the depth variation characterized by ∣h0

α ∣, i.e., ∣αr0kh0
∣ = O (ϵ), and transforming

z = r−r0
r0ϵ0

, Eq. (4.14) can be further simplified to

usol j(r) = C1kj exp(
−Aj

2

r − r0
r0
)J
⎛
⎜
⎝
(−1)j+1

2
√
njk

Aj
,
2
√
njk
√

τcj
τtj

exp (
Aj

2
r−r0
r0
)

∣Aj ∣

⎞
⎟
⎠
. (4.15)

The final solution of the pressure field is then expressed as

Pj(r, θ, t) = fj(r) + usol j(r)ϵ(θ, t).

We linearize the pressure expression around the interface, rint = r0 + ϵ, neglect the higher-

order terms of O(ϵ2), and obtain

Pj ∣r=r0+ϵ =
12τtjr0

Ajh0
−
12τtj

h0
ϵ +C1kj J

⎛
⎜
⎝
(−1)j+1

2
√
njk

Aj
,
2
√
njk
√

τcj
τtj

∣Aj ∣

⎞
⎟
⎠
ϵ. (4.16)

We further use the properties of the Bessel functions of the first order (J) and the second

order (Y ) [98]:

J ′(Nj ,Mj(z)) =M
′

j(z)(
Nj

Mj(z)
J(Nj ,Mj(z)) − J(Nj + 1,Mj(z))) , (4.17)

2Nj

Mj(z)
J(Nj ,Mj(z)) = J(Nj + 1,Mj(z)) + J(Nj − 1,Mj(z)). (4.18)

We linearize the first derivative of Pj at the interface, r = rint = r0+ϵ, neglect the higher-order

terms of O(ϵ2), and obtain

∂Pj

∂r
∣
r=r0+ϵ

= −
12τtj
h0
+
12τtj

h0
Aj

ϵ

r0
− C1kj

Aj

2r0
J
⎛
⎜
⎝
(−1)j+1

2
√
njk

Aj
,
2
√
njk
√

τcj
τtj

∣Aj ∣

⎞
⎟
⎠
ϵ

+ (−1)j+1C1kj

√
njk

r0
J
⎛
⎜
⎝
(−1)j+1

2
√
njk

Aj
,
2
√
njk
√

τcj
τtj

∣Aj ∣

⎞
⎟
⎠
ϵ

− C1kj

√
njk

r0

√
τcj

τtj

Aj

∣Aj ∣
J
⎛
⎜
⎝
(−1)j+1

2
√
njk

Aj
+ 1,

2
√
njk
√

τcj
τtj

∣Aj ∣

⎞
⎟
⎠
ϵ. (4.19)
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To obtain the values of the different constants C1k1 and C1k2, we will use the velocity

continuity condition at the interface:

∂rint

∂t
= urj ∣r=r0+ϵ,

∂r0
∂t
+
∂ϵ

∂t
= urj ∣r=r0+ϵ, (4.20)

U0 + σϵ = urj ∣r=r0+ϵ.

With the assumption of ϵ << 1, neglecting the higher order terms of O(ϵ2), linearizing

h∣r=r0+ϵ = h0 (1 +
αϵ
h0
) with αϵ

h0
<< 1, and using the previous approximation ∣kh0

αr0
∣ >> 1 to

assume (−1)j+1 2
√
njk

Aj
+ 1 to be equal to (−1)j+1 2

√
njk

Aj
, we obtain:

J
⎛
⎜
⎝
(−1)j+1

2
√
njk

Aj
,
2
√
njk
√

τcj
τtj

∣Aj ∣

⎞
⎟
⎠
≈ J
⎛
⎜
⎝
(−1)j+1

2
√
njk

Aj
+ 1,

2
√
njk
√

τcj
τtj

∣Aj ∣

⎞
⎟
⎠
.

Finally, the constant C1kj can be expressed as

C1kj =
12κj

h0
nj+1

(njσr0U
nj−1
0 + 2njh0

nj τcj
κj

αr0
h0
+ njh0

nj τcj
κj
+ njU0

nj + njU0
nj αr0

h0
)

J
⎛
⎜
⎝
(−1)j+1

2
√
njk

Aj
,
2
√
njk
√

τcj
τtj

∣Aj ∣

⎞
⎟
⎠
(
Aj

2 + (−1)
j√njk +

√
njk
√

τcj
τtj

Aj

∣Aj ∣
)

. (4.21)

The Capillary pressure jump at the interface is described by the Young-Laplace equation,

which accounts for both the lateral curvature (Ψ) and the curvature due to the depth of the

Hele-Shaw cell ( 1h). However, here we neglect the contributions of the viscous stresses to the

pressure difference across the interface. At the interface, r = r0 + ϵ(θ, t), for a fluid indexed

1 pushing a fluid indexed 2, the pressure difference across the interface is approximated by

the Young-Laplace pressure [78]:

P1 − P2 =
2γ cos θc
h0 + αϵ

+ γΨ, (4.22)

Ψ =
r2 + 2 (∂r∂θ)

2
− r ∂2r

∂θ2

(r2 + (∂r∂θ)
2
)

3
2

, (4.23)

with γ and θc corresponding to the interfacial tension and the contact angle of the wetting

fluid to the side wall, respectively.
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With the assumptions of ϵ << 1 and αϵ
h0
<< 1, neglecting the higher-order terms of O (α2),

we can linearize the term 2γ cos θc
h0+αϵ

. Moreover, with the fact that r0
2 >> ϵ2, by linearizing

around r0 and neglecting O(ϵ2), the Young-Laplace equation at the interface for r = r0 +

ϵ(θ, t) transforms into

P1 − P2 =
2γ cos θc

h0
+

γ

r0
+ γϵ(

k2 − 1

r02
−
2α cos θc

h0
2
) +O (ϵ2) . (4.24)

The first two terms on the right hand side (RHS) correspond to the base state, i.e., the

pressure difference at the interface between the two fluids when the interface is stable.

The third term on the RHS of Eq. (4.24) is the additional Laplace pressure due to the

perturbation at the interface.

We substitute the expression of the linearized pressure Eq. (4.16) into Eq. (4.24) and

remove all the components corresponding to the base state. With the result of Eq. (4.21),

we finally derive the dimensionless dispersion-relation with the dimensionless growth rate of

the perturbation (σ = σr0
U0

) and the dimensionless wavenumber of the perturbation (k = k):

σ = [
γk

2
h0

2

12r02U0
−

γh0
2

12r02U0
−
2γα cos θc

12U0
+ (µ1∣r=r0 − µ2∣r=r0) +

n2µ2∣r=r0 + n2
αr0
U0
(τt2 + τc2)

A2

2 +
√
n2k (1 +

√
τc2
τt2

A2

∣A2∣
)

+
n1µ1∣r=r0 + n1

αr0
U0
(τt1 + τc1)

−A1

2 +
√
n1k (1 −

√
τc1
τ1

A1

∣A1∣
)
]

−1

n1κ1(
U0
h0
)

n1−1

−
A1
2
+
√
n1k(1−

√
τc1
τt1

A1
∣A1 ∣)
+

n2κ2(
U0
h0
)

n2−1

A2
2
+
√
n2k(1+

√
τc2
τt2

A2
∣A2 ∣)

. (4.25)

By setting ∂σ
∂k
= 0 in the dispersion relation Eq. (4.25), we can find the dimensionless

wavenumber of maximum growth (k̄max). Furthermore, for each unstable k̄, the corre-

sponding dimensionless growth rate (σ̄) is given by Eq. (4.25) and depends primarily on

the rheological parameters of the two complex fluids and the shear rates at the fluid-fluid

interface.

From the dispersion-relation Eq. (4.25), the interface would always be stable for a neg-
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ative perturbation’s growth rate (σ < 0) when the following stability criterion is fulfilled:

[−
γk

2
h0

2

12r02U0
+

γh0
2

12r02U0
+
2γα cos (θc)

12U0
+ (µ2∣r=r0 − µ1∣r=r0) −

n2µ2∣r=r0 + n2
αr0
U0
(τt2 + τc2)

A2

2 +
√
n2k (1 +

√
τc2
τt2

A2

∣A2∣
)

−
n1µ1∣r=r0 + n1

αr0
U0
(τt1 + τc1)

−A1

2 +
√
n1k (1 −

√
τc1
τ1

A1

∣A1∣
)
]

1

n1κ1(
U0
h0
)

n1−1

−
A1
2
+
√
n1k(1−

√
τc1
τt1

A1
∣A1 ∣)
+

n2κ2(
U0
h0
)

n2−1

A2
2
+
√
n2k(1+

√
τc2
τt2

A2
∣A2 ∣)

< 0. (4.26)

4.4 Comparing Experimental vs. Theoretical Results

The linear stability analysis performed above gives a complex expression of the dimensionless

perturbation’s growth rate (Eq.(4.25)) depending on the dimensionless wavenumber (k) of

the perturbation, rheological properties of the fluids (κj , nj , τcj), the gap gradient (α) as

well as the velocity, radius, and gap thickness at the interface (U0, h0, r0, respectively).

Additional factors such as the wetting angle (θc), the interfacial tension (γ) also affect the

VF stability. Whenever the growth rate is less than 0, the interface would remain stable for

the decaying perturbation.

With the experimental values of U0, h0 and r0, we use Matlab to determine numerically

the wavenumber of maximum growth (k̄max) with an accuracy of 0.001. We then substitute it

into the dispersion Eq. (4.25) to obtain the growth rate at the most unstable mode, σ(k̄max).

We plot such results for different converging gap gradients (α) in Fig. 4.3. Theoretically,

one would expect a transition between stable (●) and unstable displacements (△ and ○)

at σ(k̄max) = 0. From Fig. 4.3, we find and highlight the lowest boundary for unstable

displacement. The value being for σ(k̄max) ≈ 4. For lower values of ∣α∣ and up to 1.49 ×

10−2, this boundary could be used as a border to differentiate the stable and the unstable

displacements.

However, from Fig. 4.3, one can notice that σ(k̄max) is superior to 4 for stable dis-

placements for higher values of α. This difference may be explained by the assumptions we

made concerning α. We assume a small ratio of gap change (α(r−r0)h0
<< 1) as well as much

larger characteristic length scale over which the depth varies than that of the perturbation

(kh0

αr0
>> 1). Such deviation between theoretical and experimental results for higher values
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Figure 4.3. Comparison between experimental and theoretical results of the per-
turbation’s growth rate of the most unstable mode, σ(k = k̄max) [Eq. (4.25)]. The values
of U0, r0 and h0 are taken from the experiments. The wavenumber corresponding to the
wavenumber of maximum growth (k = k̄max) is obtained numerically using Matlab. We
compare with the experimental results performed with various ∣α∣ and differentiate stable
displacements (●), obtained solely during experiments with the less-viscous fluid (S2), and
unstable wavy interface (△ and ○ for the fluid (S1) and (S2), respectively).

of α has already been noticed in the past when the theoretical stability criterion derived by

Stone et al. [78] has been used and compared to radial experimental results from Bongrand

et al. [86]. In such work, they compared their experimental results obtained in radially-

tapered Hele-Shaw cells with the theoretical stability criterion derived by Stone et al. [78].

They were able to find good agreement for smaller values of α. However, once the absolute

value of the gap gradient increases, they found a clear deviation between experiments and

theory. Finally, the discrepancy observed by the experimental result of σ(k̄max) ≈ 4 may

stem from few assumptions made as we neglect the influence of the gravity and the fluid’s

elastic properties in our linear stability analysis.
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4.5 Concluding Remarks

We theoretically derive the stability criterion for the viscous fingering instability of complex

yield-stress fluids using a tapered narrow cell. Experimentally, for the very viscous fluid

(S1) of viscosity contrast, λ, ranging from 2.68 × 104 to 1.16 × 107, we could observe the

elimination of small side-branching fingers but not the primary finger with the tapered cells.

However, stable interfaces with the inhibition of the primary VF instability can be achieved

for the less-viscous one (S2), λ spanning 1.61×103−1.67×105. The experimental observation

of stability diagram (under various α v.s Q) studied in Chapter 3 shows a clear transition

between a complete and incomplete sweep.

Using a linear stability analysis with an effective Darcy’s law, we obtain a stability

criterion corresponding to the perturbation’s growth rate of the most unstable mode. The

stability criterion derived for the complex fluids depends on the following three types of

important parameters summarized below. First, the fluid’s rheology and characteristics and

the different constants κ, τc and n, γ, θc. Second, the gap gradient (α). Lastly, the interface

velocity, position gap thickness and velocity (r0, h0 and U0, respectively). We examine

this theoretical criterion with the experiments done with the two distinct yield-stress fluids.

Taking the experimental values of U0, r0 and h0, we calculated the perturbation’s growth

rate for the most unstable mode. From the different values obtained, we observe a transition

between stable and unstable interfaces for σ(k̄max) = 4, which slightly deviated from the

theoretically expected transition around 0. This discrepancy may stem from the assumptions

we made in the derivation. For instance, the impact of the gravity and the elastic properties

of the fluids have been neglected. We also use a static contact angle for moving fluids and

make few assumptions related to the gap gradient (α). Notably, we assume a small ratio

of gap change and the characteristic length scale over which the depth varies being much

larger than the characteristic length scale of the perturbation. Both assumptions especially

impact the results for the larger values of α.
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Chapter 5

Conclusions, Recommendations, &

Future Works

In this work, we investigate the viscous fingering instability in a rectangular and a radial

tapered Hele-Shaw cell both experimentally and theoretically. We are the first to demon-

strate the possibility of inhibiting the apparition of the interfacial instability with complex

yield-stress fluids by adding a converging taper to the confined cell.

From our experiments, we distinguish two distinct regimes of displacements—a stable and

an unstable one. The former stable one is characterized by a straight or a circular interface

for the rectangular and radial geometry, respectively. These stable displacements result in

a full sweep of the more-viscous complex yield-stress fluids. On the contrary, the unstable

displacements can be recognized by their wavy finger-like interfaces. Experimentally, the

stable displacements only occur in tapered cells for low values of injection flow rate, Q. In

fact, for each gap gradient (α) and complex fluid, we can define a critical flow rate, Qc, over

which the interface destabilizes and the viscous fingering occurs. This value of Qc depends

on the gap gradient and increases as the converging gradient (α) becomes steeper.

Another important observation from our experimental database is that the fluid’s vis-

cosity is crucial to stabilize the interface and the displacement. It is harder to obtain a full

sweep if the complex yield-stress fluid is too viscous in the first place. That’s why we do
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not see any stable displacements for the most-viscous fluid in Chapter 3, and that previous

studies were not able to observe the same stable interfaces as we did.

Besides experiments, another significant part of our work was theoretical. We perform

three different stability analyses which applies solely for Darcy’s flow in porous media using

an effective Darcy’s law and the continuity equation as governing equations. We replace

the constant viscosity of Newtonian fluids, µ, by an effective shear-dependent viscosity, µeff,

following the Herschel-Bulkley law. In the theoretical analyses, we start with the above

governing equations, make the same assumptions, e.g., small relative gradient and pertur-

bation as well as the Bingham approximation, for both radial and rectangular geometries.

We obtain two following types of stability criteria for the different cell geometries.

Firstly, from our theoretical derivation, we obtain the expression of the dimensionless

perturbation’s growth rate (σ̄) whereby we can calculate the dimensionless wavenumber

(k̄max) and wavelength (λmax) of the maximum growth mode. For the rectangular geometry,

by comparing λmax to the cell width, we obtain an important dimensionless term, C∗ =

−3 (2πh0

W
)
2
+ 2α cos θc +

12U0

γ (µ2∣x=0 − µ1∣x=0), which is used as the stability criterion for a

visible fingering pattern.

Secondly, knowing the wavenumber-dependent growth rate, we substitute k̄max into σ

to obtain the growth rate of the most unstable mode. If the latter is less than zero, the

interface should always be stable whatever the wavenumber of the perturbation. We use

σ(k̄max) as the stability criterion for the analyses in the radial geometry. In this particular

geometry, we also investigate the impact of one key assumption concerning the Bingham

number and perform another linear stability analysis without simplification of the Bingham

number. We obtain a brand new expression for the dimensionless growth rate of the most

unstable mode (σ(k̄max)) and observe some improvement of the prediction.

To conclude, we can see a clear separation between the stable and the unstable displace-

ments for the experiments using the theoretical stability criteria. We obtain good agreement

between our theoretical analyses and experimental results for both geometries. Our theo-

retical criteria can be used with pretty good accuracy to estimate whether an interface
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destabilizes and deforms into a wavy-finger-like shape. However, slight discrepancy exists,

mainly due to all the assumptions we made throughout the theoretical derivations to ensure

the equations are analytically solvable.

Concerning future work, although we are the first to observe stable displacements for

yield-stress fluids, the experimental database of experiments is still limited. To expand the

existing parameter space, one can perform more experiments with different gap gradients,

different injection flow rates, and various yield-stress fluids. These additional experimental

results are also beneficial to test out our theoretical stability criteria truly. For the present,

good agreement is found for two or three yield-stress fluids and with a small number of gap

gradients. More data is needed to affirm these criteria are accurate entirely.

Finally, it will be interesting to develop a theoretical solution without various assump-

tions concerning the sizes of the relative perturbation and the relative taper gradient, the

impact of gravity, the elastic properties of the fluid, and the use of a static contact angle.

However, this analytical work is rather challenging and may not be feasible to obtain ana-

lytical results without any assumptions because of complex partial derivative equations that

we obtain from the effective Darcy’s law and the continuity equation.
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Appendix A

Viscosity Measurements and

Variations of Poly(Acrylic) Acid

Solutions

This appendix reports the measurements and observations about the viscosity changes for

the (same) solution (S2) used in our rectangular and radial experiments. This solution is

an aqueous solution of Poly(Acrylic acid) (PAA) with a concentration of polymer equal to

cp = 0.10% wt. The only difference between this solution (S2) and all the others used for our

experiments is that we did not used Sodium Hydroxide to neutralize the (S2) acid solution.

This solution is a mixture of water and (PAA) polymer only, and somehow the freshly-made

solution reveals high viscosity than that used after one or more times of the viscous fingering

experiments.

As with all the other solutions, the rheological measurements have been performed with

(S2) using an Anton Paar MCR302 rheometer with a concentric cylinder. For each fluid,

we performed measurements on freshly-made solutions and after each experiment to see the

impact of time and usage rate on the rheological characteristic of the solution.

For the other fluids, we observe their viscosity values stayed nearly unchanged. However,

this was not the case for the fluid (S2) shown in Fig. A.1. The figure shows that the fresh
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Figure A.1. Viscosity versus shear rate for the solution (S2) after different number of ex-
periments. The symbols (○,○,○ and ○) correspond to the viscosity measurements of the
solution after 0, 1, 5 or 9 experiments, respectively. The symbol (◇) corresponds to the
mean rheological evolution we fitted with the Herschel-Bulkley model.

solution is more viscous than the same after performing experiments, even after just one.

Hopefully, we can notice that the decrease in viscosity is direct from one value to another.

After this drastic decrease, we can see small changes in the viscosity evolution between

different sets of measurements. Still, the viscosity values stay inside the error margin of our

Herschel-Bulkley fitting in Ch. 3.

This solution has been the only one to show such variation with time, and it seems this

issue has never been encountered before. From previously published papers, it is possible to

imagine two reasons why this variation happens. First, some authors have already noticed

that the viscosity of the Poly(acrylic) acid solution is very sensitive to the ionic strength and

the neutralization degree [99, 100, 101]. In these articles, they noticed that the variation

of viscosity due to a variation of neutralization degree is more important for low values of

neutralization degree. When the degree of neutralization is above 0.5, the viscosity stops

increasing and reaches nearly a plateau.
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It means that if the nitrogen has the capacity to reduce the neutralization degree of the

solution when the solution is not neutralized, the viscosity can drastically change; when the

solution is neutralized, the viscosity decrease due to the nitrogen being negligible. However,

a point is difficult to justify with this hypothesis. We did not notice any major pH changes

in the solution before and after the experiments.

The second hypothesis concerns the difference in the microscopic arrangement of the

Poly(acrylic acid) polymer between a non-neutralized and a neutralized solution. Indeed, the

polymeric chains and the hydrogen bonds are different between the two solutions [102, 103].

Todica et al. found that water clusters exist at the vicinity of the polymeric chains, and we

do not necessarily find them for the neutralized solution [103]. Now, knowing that nitrogen

dissolves in water, it is possible to assume that the nitrogen is dissolving in this water

cluster, reducing the viscosity of the all solution. The viscosity reaches a plateau afterward

because the water clusters are saturated with nitrogen. Those clusters do not seem to exist

for neutralized solution justifying why the viscosity of the other used solutions remained

invariable with time and use.

Finally, we only present the above assumptions and reasoning in this Appendix. Finding

the correct reasons for this viscosity change needs a deeper study. We kept using the (S2)

solution in subsequent experiments since its viscosity didn’t show any significant changes

after the first experiment and we were able to find a model of Herschel-Bulkley viscosity law

that fits our experimental measurements.
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