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Abstract 

Independent walking is a significant challenge for stroke patients, and improving mobility is of 

crucial importance for them. Supervised walking training is the standard rehabilitative program 

for this population; however, it can often be performed for only a few hours a week due to limited 

resources. Beyond these short periods, patients have to perform training independently, which can 

affect the training quality. The biofeedback-based therapeutic training has been shown to expedite 

the re-learning process for walking training. However, this approach requires dedicated laboratory 

equipment, which is rarely available at hospitals. As such, there is a lack of a practical motion 

capture system for walking training post-stroke. 

To address this issue, this thesis aimed to develop a novel wearable technology using 

inertial measurement units (IMUs) to measure walking patterns during therapeutic training 

sessions. Then, the measured walking patterns can be compared to normal walking patterns, and 

the differences can be translated into auditory/visual biofeedback for the patient and therapist.  

First, we proposed two simple, yet effective, sensor-to-segment calibration procedures, 

including (1) quiet standing and (at least) ten hip flexion/extension and (2) quiet standing and 

straight walking for (at least) eight steps. Using these calibration procedures, we transformed the 

measured quantities such as joint angles from the IMU sensor frame to the segment anatomical 

frame with high accuracy and repeatability to obtain clinically meaningful parameters. 

Second, we performed a comprehensive survey of sensor fusion algorithms (SFAs) for 

body segment orientation tracking using IMUs. Using SFAs, we can combine the recordings of 
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the accelerometer, gyroscope, and magnetometer embedded in an IMU to obtain an accurate and 

robust estimate of body segment orientation. This survey identified efficient SFAs in the literature 

and techniques for obtaining robust performance under various motion patterns and intensities. 

Third, we developed a framework for adaptive gain regulation of SFAs. We showed that 

the performance of SFAs depended highly on their chosen gains, and poor initialization of the 

gains would degrade their performance. Our experimental study showed that an optimized gain 

regulation scheme based on switching gains between two/three levels obtained sufficient accuracy. 

Fourth, we proposed a novel linear Kalman filter and a novel robust extended Kalman filter 

for orientation tracking with IMUs. We included error sources in the raw IMU readouts in the state 

vector of our proposed Kalman filters so that the raw IMU readouts could be corrected before 

orientation estimation. Our experimental study showed that our proposed Kalman filters obtained 

more accurate and robust estimation in long-duration dynamic tasks. Also, in a benchmarking 

study, we compared the accuracy and robustness of our proposed SFAs to those of more than 30 

SFAs in the literature and identified the most efficient choices for different applications. 

Fifth, using the estimated foot orientation in the sagittal plane obtained with our proposed 

SFA, we proposed a novel real-time algorithm for gait event detection. Foot orientation provides 

physiologically meaningful features corresponding to our observational recognition of the foot’s 

initial and terminal contacts with the ground. Our experimental study showed that using our 

proposed biomechanically meaningful rules and constraints resulted in (1) sensitivity and precision 

of 100% and (2) a temporal accuracy higher than or comparable with the literature. 

Finally, using a single chest-mounted IMU, we developed a novel method for the detection 

and classification of a wide range of physical activities, including standing, sitting, lying, level 

walking, and walking upstairs and downstairs. The trunk inclination angle and variation of the 
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gravitational component of the accelerometer readout were used for the detection and classification 

of postural transitions and walking modalities. Our experimental study showed that the proposed 

method had higher accuracy, sensitivity, and specificity in detecting postural transitions and 

walking modalities than other methods in the literature. 

Our research outcomes based on the steps above enable us to develop wearable sensor 

technology for gait training. In the future, a biofeedback control system should be designed to 

report the measured gait kinematics and the difference between the pathological movement 

patterns and the targeted normal ones to the patient and therapist. Also, our proposed daily activity 

recognition technology can reveal the efficacy of the training by assessing the users’ activity in 

their natural living environment. 



v 

 

Preface 

This thesis is an original work by Milad Nazarahari. This thesis received research ethics approval 

from the Health Research Ethics Board of the University of Alberta, Project Name “accuracy 

assessment of wearable technologies for objective clinical outcome evaluation,” study ID 

Pro00065804. 

Chapter 2 of this thesis has been published as: M. Nazarahari, H. Rouhani, “40 years of 

sensor fusion for orientation tracking via magnetic and inertial measurement units: Methods, 

lessons learned, and future challenges,” Information Fusion, Vol. 68, pp. 67-84, 2021. I was 

responsible for conceptualization, methodology, investigation, writing the original draft, and 

visualization. H. Rouhani was the supervisory author and was involved with conceptualization and 

study design, structuring the review study and reviewing and editing the manuscript. 

Chapter 3 of this thesis has been published as: M. Nazarahari, H. Rouhani, “Semi-

automatic sensor-to-body calibration of inertial sensors on lower limb using gait recording,” IEEE 

Sensors Journal, Vol. 19(24), pp. 12465 - 12474, 2019; and M. Nazarahari, A. Noamani, N. 

Ahmadian, H. Rouhani, “Sensor-to-body calibration procedure for clinical motion analysis of 

lower limb using magnetic and inertial measurement units,” Journal of Biomechanics, Vol. 85, pp. 

224-229, 2019. I was responsible for conceptualization, methodology, data collection, software 

development, investigation, writing the original draft, and visualization. A. Noamani and N. 

Ahmadian assisted with the data collection and contributed to manuscript edits. H. Rouhani was 

the supervisory author and was involved with conceptualization and study design, methodology, 

interpretation of the results, and reviewing and editing the manuscript. 

Chapter 4 of this thesis has been published as: M. Nazarahari, H. Rouhani, “Adaptive Gain 

Regulation of Sensor Fusion Algorithms for Orientation Estimation with Magnetic and Inertial 

Measurement Units,” IEEE Transactions on Instrumentation and Measurement, Vol. 70, 2020. I 

was responsible for conceptualization, methodology, data collection, software development, 

investigation, writing the original draft, and visualization. H. Rouhani was the supervisory author 



vi 

 

and was involved with conceptualization and study design, methodology, interpretation of the 

results, and reviewing and editing the manuscript 

Chapter 5 of this thesis has been published as: M. Nazarahari, H. Rouhani, “Sensor Fusion 

Algorithms for Orientation Tracking via Magnetic and Inertial Measurement Units: An 

Experimental Comparison Survey,” Information Fusion, Vol. 76, pp. 8-23, 2021; and M. 

Nazarahari, H. Rouhani, “A Full-State Robust Extended Kalman Filter for Orientation Tracking 

During Long-duration Dynamic Tasks Using Magnetic and Inertial Measurement Units,” 

Submitted to IEEE Transactions on Neural Systems and Rehabilitation Engineering, In-press, 

2021. I was responsible for conceptualization, methodology, data collection, software 

development, investigation, writing the original draft, and visualization. H. Rouhani was the 

supervisory author and was involved with conceptualization and study design, methodology, 

interpretation of the results, and reviewing and editing the manuscript. 

Chapter 6 of this thesis has been submitted as an original article: M. Nazarahari, A. 

Khandan, H. Rouhani, “Foot Kinematic Features Measured with Inertial Measurement Units: An 

Inherently Robust Approach to Real-time Gait Event Detection,” Submitted, 2021. I was 

responsible for conceptualization, methodology, data collection, software development, 

investigation, writing the original draft, and visualization. A. Khandan assisted with the data 

collection and contributed to manuscript edits. H. Rouhani was the supervisory author and was 

involved with conceptualization and study design, methodology, interpretation of the results, and 

reviewing and editing the manuscript 

Chapter 7 of this thesis has been published as: M. Nazarahari, H. Rouhani, “Detection of 

Daily Postures and Walking Modalities Using a Single Chest-mounted Tri-axial Accelerometer,” 

Medical engineering & physics, Vol. 57, pp. 75-81, 2018. I was responsible for conceptualization, 

methodology, data collection, software development, investigation, writing the original draft, and 

visualization. H. Rouhani was the supervisory author and was involved with conceptualization and 

study design, data collection, methodology, interpretation of the results, and reviewing and editing 

the manuscript.  

 

 



vii 

 

 

 

 

 

 

 

 

 

Dedicated to my lifelong mentor and beloved uncle 

Yousef Asgariyan 

whom without 

I was not the person I am today! 

 

 

 

 

 

 

 



viii 

 

Acknowledgements 

I would like to express my sincere gratitude to my supervisor, Dr. Hossein Rouhani, for his 

guidance and support on every single step of my Ph.D. studies. I would also like to thank him for 

helping me go beyond what was required of me and explore, experience, and grow as a researcher 

and a teacher. 

I would like to thank Drs. Jason Carey and Albert Vette for their invaluable insights as 

members of my supervisory committee. Also, I would like to thank Dr. Albert Vette for his support 

during all stages of my Ph.D. journey. Moreover, I would like to thank Drs. Edmond Lou and Bijan 

Najafi for serving on my Ph.D. thesis exam committee, and Dr. Ehsan Hashemi as my thesis exam 

chair. 

The generous financial support of the Vanier Canada Graduate Scholarship, Alberta 

Innovates Graduate Student Scholarship, Izaak Walton Killam Memorial Scholarship, and other 

awards provided by the University of Alberta made my Ph.D. an enjoyable journey. Also, I had 

the privilege of collaborating with researchers at the Neuromuscular Control & Biomechanics 

Laboratory at the University of Alberta, including Alireza Noamani, Aminreza Khandan, and 

Niloufar Ahmadian, among many others. 

In the end, I would like to thank my loving wife and family for their care, support, 

encouragement, and patience. Without any doubt, this journey would not be possible without them. 

 

 



ix 

 

Table of Contents 

Abstract ..................................................................................................................................... ii 

Preface ........................................................................................................................................v 

Acknowledgements ................................................................................................................. viii 

Table of Contents ...................................................................................................................... ix 

List of Tables .......................................................................................................................... xiii 

List of Figures ..........................................................................................................................xvi 

List of Algorithms ....................................................................................................................xxi 

Nomenclature ......................................................................................................................... xxii 

Chapter 1 Introduction .............................................................................................................1 

1.1 Gait Rehabilitation Training..............................................................................................1 

1.2 Thesis Objectives ..............................................................................................................2 

1.3 Thesis Significance ...........................................................................................................3 

1.4 Thesis Outline...................................................................................................................3 

Chapter 2 Background and Literature Survey ........................................................................6 

2.1 Gait Rehabilitation Training..............................................................................................6 

2.2 Wearable Inertial Measurement Units (IMUs) ...................................................................7 

2.3 Body Segment Orientation Tracking with IMUs ...............................................................8 

2.3.1 Orientation Parametrization .......................................................................................8 

2.3.1.1 Previous Surveys on Sensor Fusion Algorithms .................................................9 

2.3.2 IMU Model ............................................................................................................. 12 

2.3.3 Strap-down Integration ............................................................................................ 13 

2.3.4 Vector Observation Algorithms ............................................................................... 14 

2.3.5 Complementary Filters (CFs) .................................................................................. 15 

2.3.5.1 Foundations ..................................................................................................... 15 

2.3.5.2 Literature survey of CFs .................................................................................. 17 

2.3.5.3 Modified Complementary Filters ..................................................................... 19 

2.3.6 Kalman Filters (KFs) ............................................................................................... 23 

2.3.6.1 Foundations ..................................................................................................... 23 

2.3.6.2 Linear Kalman Filters (LKF) ........................................................................... 24 

2.3.6.3 Extended Kalman Filters (EKF) ....................................................................... 26 



x 

 

2.3.6.4 Complementary Kalman Filters (CKF) ............................................................ 27 

2.3.6.5 Modified Kalman Filters .................................................................................. 35 

2.3.6.6 Adaptive gain tuning of Kalman Filters............................................................ 35 

2.3.7 Lessons learned ....................................................................................................... 36 

2.3.7.1 Gyroscope and Strap-down Integration ............................................................ 36 

2.3.7.2 Accelerometer and magnetometer .................................................................... 38 

2.3.7.3 Dealing with magnetic disturbance .................................................................. 38 

2.3.7.4 Adaptive gain tuning ........................................................................................ 39 

2.3.7.5 Beyond EKF .................................................................................................... 39 

2.4 Conclusions .................................................................................................................... 40 

Chapter 3 Sensor-to-Segment Calibration ............................................................................. 41 

3.1 Introduction .................................................................................................................... 41 

3.2 Measurement Setup ........................................................................................................ 43 

3.3 Sensor-to-Segment Calibration ....................................................................................... 44 

3.4 Experimental Study ........................................................................................................ 46 

3.5 Data Analysis ................................................................................................................. 47 

3.5.1 Performance Evaluation of the Calibration Using MCS ........................................... 47 

3.5.2 Test/Retest Repeatability ......................................................................................... 48 

3.5.3 Effect of Quiet Standing Duration on Vertical Calibration ....................................... 48 

3.5.4 Effect of the Number of Repetitions/Steps and Performance Comparison with the 

Literature        .................................................................................................................. 48 

3.5.5 Effect of the Calibration on 3D Joint Angle Measurement ....................................... 49 

3.5.6 Statistical Analysis .................................................................................................. 50 

3.6 Results     ........................................................................................................................ 50 

3.7 Discussions  .................................................................................................................... 55 

3.7.1 Repeatability and Accuracy of the Calibration Procedure ........................................ 57 

3.7.2 3D Joint Angle Estimation ...................................................................................... 58 

3.7.3 Limitations and Future Works ................................................................................. 58 

3.8 Conclusion...................................................................................................................... 58 

Chapter 4 Adaptive Gain Regulation of SFAs  ...................................................................... 60 

4.1 Introduction .................................................................................................................... 60 

4.2 Materials and Methods .................................................................................................... 62 

4.2.1 Sensor Fusion Algorithms ....................................................................................... 62 

4.2.2 Adaptive Gain Regulation Schemes ......................................................................... 65 

4.2.2.1 Hard-switch Between Two or Three Levels ..................................................... 65 

4.2.2.2 Fuzzy Inference System ................................................................................... 67 

4.2.2.3 Innovation Adaptive Estimation ....................................................................... 69 

4.2.3 Gain Optimization Framework ................................................................................ 70 

4.2.4 Experimental Procedure .......................................................................................... 73 

4.2.5 Data Analysis .......................................................................................................... 73 



xi 

 

4.2.6 Computation Complexity ........................................................................................ 74 

4.3 Results     ........................................................................................................................ 74 

4.4 Discussions ..................................................................................................................... 77 

4.4.1 Adaptive Gain Regulation Technique Selection ....................................................... 79 

4.4.2 SFAs Execution Time ............................................................................................. 82 

4.4.3 Overfitting During Optimization ............................................................................. 83 

4.4.4 Limitations and Future Works ................................................................................. 83 

4.5 Conclusions .................................................................................................................... 84 

Chapter 5 Novel Linear/Extended Kalman Filter for Orientation Tracking with IMUs ..... 85 

5.1 Introduction .................................................................................................................... 85 

5.1.1 Benchmarking Sensor Fusion Algorithms ................................................................ 86 

5.1.2 Contributions .......................................................................................................... 87 

5.2 Experimental Comparison ............................................................................................... 87 

5.2.1 Selected Sensor Fusion Algorithms (SFAs) ............................................................. 88 

5.2.1.1 Proposed Full-state Linear Kalman Filter ......................................................... 89 

5.2.1.2 Proposed Full-state Robust Extended Kalman Filter......................................... 92 

5.2.2 Sensor Fusion Algorithms’ (SFAs’) Gains ............................................................... 95 

5.2.3 Gain Optimization for Sensor Fusion Algorithms .................................................... 99 

5.2.4 Measurement setup................................................................................................ 100 

5.2.5 Comparing Estimated and Reference Orientations ................................................. 100 

5.2.6 Experimental Procedure ........................................................................................ 100 

5.2.7 Gain Optimization vs. Testing ............................................................................... 101 

5.2.8 Performance Evaluation ........................................................................................ 102 

5.3 Results and Discussions ................................................................................................ 103 

5.3.1 Gyroscope Static Bias Removal............................................................................. 103 

5.3.2 Sensor Fusion Algorithms Comparison ................................................................. 105 

5.3.3 Selecting the Best Sensor Fusion Algorithm .......................................................... 110 

5.3.4 Conceptual Comparison Between Families ............................................................ 113 

5.3.5 Limitations and Future Works ............................................................................... 114 

5.4 Conclusions .................................................................................................................. 115 

Chapter 6 Temporal Gait Event Detection .......................................................................... 116 

6.1 Introduction .................................................................................................................. 116 

6.2 Materials and methods .................................................................................................. 118 

6.2.1 Measurement setup................................................................................................ 118 

6.2.2 Gait Event Detection ............................................................................................. 119 

6.2.3 Experimental study................................................................................................ 123 

6.2.4 Data analysis ......................................................................................................... 124 

6.3 Results     ...................................................................................................................... 124 

6.4 Discussion .................................................................................................................... 128 

6.4.1 A robust signal for event detection ........................................................................ 129 



xii 

 

6.4.2 Heuristic algorithms for event detection ................................................................ 131 

6.5 Conclusion.................................................................................................................... 132 

Chapter 7 Daily Activity Monitoring with IMUs ................................................................. 133 

7.1 Introduction .................................................................................................................. 133 

7.2 Materials and Methods .................................................................................................. 135 

7.2.1 Experimental Method ............................................................................................ 135 

7.2.2 Data Collection ..................................................................................................... 136 

7.2.3 Postural Transition Detection and Classification .................................................... 137 

7.2.4 Lie-to-sit (LySi) and Sit-to-lie (SiLy) .................................................................... 137 

7.2.5 Stand-to-sit (StSi) and Sit-to-stand (SiSt) .............................................................. 139 

7.2.6 Walking ................................................................................................................ 140 

7.2.7 Data Analysis ........................................................................................................ 141 

7.3 Results     ...................................................................................................................... 142 

7.3.1 Study I: Experiments in Laboratory Environment .................................................. 142 

7.3.2 Study II: Experiments in Free-living Environment................................................. 145 

7.4 Discussion .................................................................................................................... 146 

7.4.1 Postural Transition Detection and Classification .................................................... 146 

7.4.2 Detection of Level, Upstairs, and Downstairs Walking .......................................... 147 

7.5 Conclusions .................................................................................................................. 148 

Chapter 8 Wearable Technology for Therapeutic Gait Training ....................................... 149 

Chapter 9 Conclusions and Future Perspectives ................................................................. 153 

9.1 Conclusions .................................................................................................................. 153 

9.1.1 Sensor-to-Segment Calibration .............................................................................. 153 

9.1.2 Adaptive Gain Regulation of SFAs........................................................................ 153 

9.1.3 IMU Orientation Tracking with Sensor Fusion ...................................................... 154 

9.1.4 Gait Event Detection ............................................................................................. 154 

9.1.5 Daily Activity Monitoring ..................................................................................... 154 

9.2 Future Perspectives ....................................................................................................... 155 

9.2.1 IMU Orientation Tracking with Sensor Fusion ...................................................... 155 

9.2.2 Gait Event Detection ............................................................................................. 155 

9.2.3 Lower Limb Position Tracking .............................................................................. 155 

9.2.4 Technical Validation with Clinical Population ....................................................... 156 

9.2.5 Biofeedback Display System ................................................................................. 156 

9.2.6 Clinical Validation with Clinical Population .......................................................... 156 

References.............................................................................................................................. 157 

 

 



xiii 

 

List of Tables 

Table 1 Review of the previous literature surveys of the SFAs, including the tested algorithms, the 

gain selection procedure, the used reference system for validation, the type experiments, and the 

algorithm(s) concluded to have the best performance. Abbreviations used in the table are described 

in the table footnotes. ................................................................................................................ 10 

Table 2 Review of the state-of-the-art SFAs with a Complimentary Filter (CF) structure, including 

linear CF (LCK) and nonlinear CF (NCF). Abbreviations used in the table are described in the 

table footnotes. .......................................................................................................................... 20 

Table 3 Review of the state-of-the-art SFAs with a Kalman Filter (KF) structure, including linear 

KF (LKF), extended KF (EKF), and Complimentary KF (CKF). Abbreviations used in the table 

are described in the table footnotes. ........................................................................................... 29 

Table 4 Mean (standard deviation) values of the offset and RMSE of the joint angle errors and 

range-of-motion of the estimated and reference joint angle time-series. The offset error and RMSE 

values present the difference between the estimated joint angles with calibration ((a) Hip FE and 

(b) PC8) or without calibration (None), and the reference joint angles obtained based on anatomical 

frames measured by MCS. ........................................................................................................ 57 

Table 5 Gains of each (SFA, gain regulation scheme) optimized via the Particle Swarm 

Optimization (MF: membership function). ................................................................................ 66 

Table 6 Optimal gains of the Madgwick(2011) [64] (FOG) or adaptive gain regulation schemes 

(VST1 and VST2) for thigh, shank, and foot IMUs associated with the estimated angles shown in 

Figure 14. .................................................................................................................................. 77 

Table 7 Statistical comparison of the accuracy and robustness of different gain regulation schemes 

for (a,b) Madgwick(2011) and (c,d) Mahony(2008). Each gain regulation scheme significantly 

(p<0.05) outperformed the methods named in its associated column. The gain regulation scheme 

names were summarized as F: fixed optimal gain (FOG), V1: hard-switch between two levels 

(VST1), V2: hard-switch between three levels (VST2), V3: fuzzy inference system (VST3). .... 78 

Table 8 Statistical comparison of the accuracy and robustness of different gain regulation schemes 

for (a,b) Guo(2017) and (c,d) Roeternberg(2005). Each gain regulation scheme significantly 

(p<0.05) outperformed the methods named in its associated column. The gain regulation scheme 



xiv 

 

names were summarized as F: fixed optimal gain (FOG), V1: hard-switch between two levels 

(VST1), V2: hard-switch between three levels (VST2), V3: fuzzy inference system (VST3), I: 

innovation adaptive estimation (IAE). ....................................................................................... 81 

Table 9 Execution times (in milliseconds) of different (SFA, gain regulation scheme) 

combinations. N/A shows that the (SFA, gain regulation scheme) combination was not evaluated.

 ................................................................................................................................................. 82 

Table 10 The list of the implemented SFAs and their gains. Abbreviations/symbols used in the 

table are described in the table footnotes. Please see the original paper related to each SFA for 

details of the algorithms and gains. Subscripts 1 and 2 show that the gain value was adaptively 

tuned to level 1 or 2 as described in Section 5.2.2, while for gains with no number subscript, the 

fixed optimal values were used. ................................................................................................. 96 

Table 11 The selected the state-of-the-art SFAs with (a) a CF structure (including linear CF (LCF) 

and nonlinear CF (NCF)), and (b) KF structure (including linear KF (LKF), extended KF (EKF), 

complimentary KF (CKF), square-root unscented KF (SRUKF), and square-root cubature KF 

(SRKKF)). Abbreviations/symbols used in the table are described in the table footnotes. .......... 98 

Table 12 [25%,50% (median),75%] percentiles of the RMS of the quaternion angle difference 

(QAD) for all testing data in Phase I and Phase II with and without (removed) gyroscope static 

bias. For each SFA in each Phase, significantly (p<0.05) lower RMS(QAD), i.e., higher accuracy, 

between with and without static bias is indicated with †. ......................................................... 104 

Table 13 Statistical comparison of the RMS of the quaternion angle difference (QAD) among 

SFAs in one family for all testing data in Phase I and Phase II after gyroscope static bias removal. 

Significantly (p<0.05) lower RMS(QAD), i.e. higher accuracy, for an SFA in a row compared to 

the ones in columns are identified with † for Phase I and with and ‡ for Phase II. * shows SFAs 

from each family with the lowest maximum error. The last column (score) shows the number of 

times an SFA significantly outperformed other SFAs in its family for Phase I and Phase II 

cumulatively. .......................................................................................................................... 108 

Table 14 Median of the execution times (in milliseconds) for the three SFAs with the highest 

accuracy in each family reported in diagonal elements. Also, for each SFA (each row), other SFAs 

with significantly longer execution times are identified with †. The last column (score) shows the 

number of times one SFA was significantly faster than other SFAs (the higher, the better). ..... 113 

Table 15 Temporal accuracy (in terms of the number of samples, Fs = 100 Hz), sensitivity, 𝑆𝑒, and 

precision, 𝑃𝑟, of the implemented algorithms for IC and TC detection during various walking 

modalities, presented as mean±standard deviation among participants. Positive mean errors 

correspond to delays in the event detection with respect to the reference pressure insoles. ....... 127 



xv 

 

Table 16 Comparison between the proposed method and other methods in detection of postural 

transitions: (a) accuracy, sensitivity, and specificity for detection and classification of StSi and 

SiSt transitions, (b) accuracy for detection of level walking and step counting, and (c) time 

difference between the LySi/SiLy and StSi/SiSt instants obtained by the accelerometer and those 

obtained by MCS. The results are presented as mean±standard deviation among all participants.

 ............................................................................................................................................... 143 

Table 17 Performance of the proposed method for (a) detection and classification of postural 

transitions (StSi, SiSt, SiLy, LySi), and (b) level/non-level walking detection and step counting, 

outdoor (study II). The results are presented as mean±standard deviation among all participants.

 ............................................................................................................................................... 145 

 

 

 



xvi 

 

List of Figures 

Figure 1 Development of a wearable system for biofeedback-based over-ground gait training of 

stroke patients. The grey box shows the impaired function of the central nervous system. The 

developed technology is shown in red. The dashed line shows the learning process in the central 

nervous system using biofeedback from wearable sensors. ..........................................................2 

Figure 2 Elements of the proposed wearable sensor technology and their relation........................5 

Figure 3 Flowchart and frequency response of a Complimentary Filter (CF). (a) The general 

structure of a CF; (b) Flowchart of the CF with low-pass filter transfer function defined as ℒ𝑠 =
𝒞(𝑠)

𝒞(𝑠)+𝑠
 where 𝒞(𝑠) = 𝑘𝑃 +

𝑘𝐼

𝑠
, and 𝑘𝑃 and 𝑘𝐼 are the proportional and integral gains, respectively; 

(c) Frequency response of the proportional CF, (d) Frequency response of the proportional-integral 

CF. ............................................................................................................................................ 16 

Figure 4 Flowchart of a general (a) Linear Kalman Filter and (b) Extended Kalman Filter. 𝓍 is the 

state vector, 𝓏 is the measurement vector. 𝒫 is the state error covariance matrix. ℱ and 𝒻 ∙ are the 

state transition matrix and equation, respectively. ℋ and 𝒽 ∙ are the measurement prediction matrix 

and equation, respectively. 𝒬 and ℛ are the system and measurement model covariance matrices, 

respectively. 𝒦 is the Kalman gain. ........................................................................................... 25 

Figure 5 Flowchart of a general SFA containing offline calibration of sensors, vector selection for 

imperfect measurement rejection, and adaptive gain tuning. Block 1 and 4 show the offline 

calibration of the gyroscope, accelerometer, and magnetometer; block 2 shows the online 

estimation of the gyroscope bias; block 3 shows strap-down integration (SDI); block 5 shows the 

online estimation of the external non-gravitational acceleration and magnetic disturbance; block 6 

shows the orientation estimation with accelerometer and magnetometer; blocks 7 and 8 show the 

adaptive gain tuning of the SFA; and block 9 shows the fusion gains. ....................................... 37 

Figure 6 (a) and (b) The measurement system, including IMUs, plates, and retro-reflective markers 

on anatomical landmarks of sacrum, thigh, shank, and foot, (c) hip flexion/extension, (d) hip 

abduction/adduction, and (e) IMU sensor frame and foot AF. .................................................... 44 

Figure 7 The helical angle (𝜃) between calibration matrices obtained by the sensor-to-segment 

calibration and the gold-standard MCS, obtained with a different number of repetitions of hip 

flexion/extension (FE) and abduction/adduction (AA) for (a) thigh and (b) shank IMUs calibration 



xvii 

 

during the Test session. The results are presented as mean and standard deviation among 

participants................................................................................................................................ 51 

Figure 8 Changes in 𝜃𝑘+1 − 𝜃𝑘(𝜃 represents the helical angle between calibration matrices 

obtained by the sensor-to-segment calibration and the gold-standard MCS) for different number of 

repetitions of hip flexion/extension (FE) and abduction/adduction (AA) for all participants during 

the Test session. The same pattern was observed for the Retest session. Each curve represented the 

results obtained for one participant. ........................................................................................... 52 

Figure 9 Comparison of the accuracy and inter-participant repeatability of the proposed calibration 

procedures (indicated by FE, and PC5 and PC8 for five-step (PC5) and eight-step (PC8), 

respectively) with the calibration procedures proposed in the literature; a combination of standing 

and sitting postures indicated by L1 [300], and passive knee FE and AA indicated by L2 [301]. 

The metric 𝜃 for thigh, shank, and foot IMUs is presented as box-plot for all participants (the 

central mark, bottom, and top edges, and + sign show the median, 25th and 75th percentiles, and 

outliers, respectively). Significant differences (p<0.05) between the accuracy and repeatability of 

two groups of data are shown with ⋇ and †, respectively. .......................................................... 53 

Figure 10 (a) 3D angular velocities of thigh, shank, and foot during active hip FE in IMU (before 

calibration) and AF (after calibration) frames; (b) 3D estimated (with and without calibration) and 

reference joint angles of knee and ankle during a representative gait trial. In both figures, straight 

walking was used for the calibration. ......................................................................................... 56 

Figure 11 Block diagram of two families of SFAs implemented in this paper where SAF gains and 

adaptive gain regulation schemes are shown with red and green, respectively. (a) Madgwick(2011) 

[64] and Mahony(2008) [65], (b) Guo(2017) [195] and Roeternberg(2005) [88]. 𝑦𝐺,𝑘 , 𝑦𝐴,𝑘 , 𝑦𝑀,𝑘, 

𝑞𝑘, and 𝑧−1 are the angular velocity, acceleration, magnetic field, estimated orientation and delay 

operator, respectively. ............................................................................................................... 63 

Figure 12 Structure of the three general-purpose adaptive gain regulation schemes: (a) VST1: hard-

switch between two levels, (b) VST2: hard-switch between three levels, and (c) VST3: a general 

approximator using a Mamdani fuzzy inference system. ............................................................ 67 

Figure 13 (a) Structure of the proposed framework for optimizing the parameters of the adaptive 

gain regulation schemes, (b) Experimental setup including three IMUs attached to the thigh, shank, 

and foot along with plate-mounted reflective markers tracked by the MCS. ............................... 72 

Figure 14 A representative graph of the errors in 3D-angle-estimation obtained for thigh, shank, 

and foot IMUs and Madgwick(2011) [64] using FOG, VST1, VST2 (test data of one participant). 

The trial includes walking, vertical jumping, and hopping. ........................................................ 75 



xviii 

 

Figure 15 Boxplot of the RMSE (difference between true and estimated orientation) for (a) 

Madgwick(2011) [64], (b) Mahony(2008) [65], (c) Guo(2017) [195], and (d) Roeternberg(2005) 

[88]. Each boxplot presents the RMSE values of all testing data set (18 samples = data of six study 

participants for each cross-validation × 3-fold cross-validation). Also, Table 7 and Table 8 show 

the significant differences resulted from the statistical analysis for each SFA. ........................... 80 

Figure 16 The proposed taxonomy of the SFAs benchmarked in this study. .............................. 88 

Figure 17 Boxplot ([25%, 50%, 75%] percentiles, red + shows outliers) of the RMSE obtained by 

the implemented SFAs from the complementary filter (CF) family presented in Euler angle 

parametrization for (a) Phase I and (b) Phase II. Each boxplot presents the RMS values of all 

testing data set (18 samples for Phase I and 24 samples for Phase II). ..................................... 106 

Figure 18 Boxplot ([25%, 50%, 75%] percentiles, red + shows outliers) of the RMSE obtained by 

the implemented SFAs from the linear Kalman filter (LKF) family presented in Euler angle 

parametrization for (a) Phase I and (b) Phase II. Each boxplot presents the RMS values of all 

testing data set (18 samples for Phase I and 24 samples for Phase II). ..................................... 109 

Figure 19 Boxplot ([25%, 50%, 75%] percentiles, red + shows outliers) of the RMSE obtained by 

the implemented SFAs from the extended, complementary, unscented, and cubature Kalman filter 

families presented in Euler angle parametrization for (a) Phase I and (b) Phase II. Each boxplot 

presents the RMS values of all testing data set (18 samples for Phase I and 24 samples for Phase 

II). ........................................................................................................................................... 111 

Figure 20 Boxplot ([25%, 50%, 75%] percentiles, red + shows outliers) of the RMSE obtained by 

three SFAs with the highest accuracy from each family presented in Euler angle parametrization 

for (a) Phase I and (b) Phase II. Each boxplot presents the RMS values of all testing data set (18 

samples for Phase I and 24 samples for Phase II). ................................................................... 112 

Figure 21 Experimental setup including foot- and shank-worn IMUs and pressure insoles 

(underneath the foot) to detect the true gait events (i.e., IC and TC). ....................................... 118 

Figure 22 A representative time-series of the angular velocity of the shank (𝑦𝐺𝑆,𝑦) and foot (𝑦𝐺𝐹,𝑦) 

in the sagittal plane, foot acceleration in the anterior-posterior (𝑦𝐴𝐹,𝑥) and vertical (𝑦𝐴𝐹,𝑧) 

directions, and sine of the foot pitch angle, −sin𝛽. Ture IC (   ) and TC (   ) events obtained from 

reference pressure insoles are identified in the figure. .............................................................. 120 

Figure 23 (a) Temporal events during a gait cycle: MSt: mid-stance, TC: terminal contact, MSw: 

mid-swing, IC: initial contact; (b) the resultant ground reaction force profile measured with 

pressure insoles; and (c) the sine of foot pitch angle measured by an IMU. True events are 

identified in the figure. The foot angle threshold, which determines what event to be detected, is 



xix 

 

shown with a dashed line. The yellow shades identify the time constraint, which prohibits detecting 

new gait events for a period of time after one event has been detected. .................................... 121 

Figure 24 Representative patterns of sine of foot pitch angle for (a) over-ground walking; (b) over-

level-treadmill walking; (c) over-level-treadmill running; and (d) over-inclined-treadmill walking. 

True and detected events are identified in the figure. ............................................................... 125 

Figure 25 Bland-Altman plots of initial contact (IC) and terminal contact (TC) for four different 

walking modalities. Errors were calculated based on the number of samples (Fs = 100 Hz). Positive 

errors correspond to delays in detecting events using our real-time algorithm with respect to the 

reference pressure insoles. Mean error and limits of agreement (mean±1.96×standard deviation) 

are identified with a green line and red lines, respectively. ...................................................... 128 

Figure 26 Representative patterns of the resultant ground reaction force profile measured with 

pressure insoles and mid-foot vertical position measured with IMU. Reference events are identified 

in the figure. ............................................................................................................................ 130 

Figure 27 The flowchart of the proposed method for determining the body posture from the raw 

data obtained from a chest-mounted accelerometer. SVM refers to signal vector magnitude, PT to 

postural transition, and GA to the gravitational component of the accelerometer recordings. ... 138 

Figure 28 Representative time-series of the accelerometers recording in the vertical (𝑦𝐴,𝑣) and 

frontal (anterior-posterior) (𝑦𝐴,𝑓) directions, signal vector magnitude (SVM), and cumulative 

numerical integration of SVM during StSi and SiSt transitions. During a StSi transition (when the 

negative peak in the SVM time-series occurs before the positive peak), a large negative peak can 

be observed in the cumulative integration of SVM at the StSi instant, while the reverse occurs at 

the SiSt instant. The vertical dashed lines represent the detected postural transitions using the 

proposed method. .................................................................................................................... 140 

Figure 29 Representative time-series of the gravitational component of the accelerometer 

recordings (GA) during level walking (LW), walking upstairs (WU), and walking downstairs 

(WD). The variance of the vertical GA component is higher in WU/WD periods in comparison to 

LW. The frontal GA component values are positive during WU, while both positive and negative 

values were observed during WD. The vertical dashed lines represent the detected postural 

transitions using the hand-held proposed method. .................................................................... 142 

Figure 30 A representative acceleration pattern obtained with the accelerometer and associated 

vertical displacement of the trunk obtained with the MCS. The data were collected from a young, 

healthy participant in the laboratory. The detected and classified postural transitions, sit-lie (SiLy), 

lie-sit (LySi), stand-sit (StSi), and sit-stand (SiSt) are shown with circles, pentagons, downward 

triangles, and upward triangles, respectively. Steps during level walking periods are presented with 



xx 

 

stars. The vertical dashed lines represent the detected postural transitions using the proposed 

method. ................................................................................................................................... 144 

Figure 31 Wearable technology for gait rehabilitation. The blue rectangles show the IMUs. Seven 

IMUs attached to the lower limb will be used to track segments’ orientation (and thus, joint angles) 

and gait temporal parameters. The chest-mounted IMU will track the daily activities of the patients 

in their natural living environment. IMU data will be transferred to a computer/tablet in real-time 

to perform the calculations and compute the measured biofeedback parameters. Then, a 

biofeedback control system must be designed to report the biofeedback parameters via a visual or 

auditory display. ...................................................................................................................... 152 

 

 



xxi 

 

List of Algorithms 

Algorithm 1 Pseudocode of the proposed heuristic algorithm for gait event detection .............. 123 

 

 



xxii 

 

Nomenclature 

3D : Three-dimensional 

AA : Abduction/adduction 

AF : Anatomical frame 

CF : Complementary filter 

CKF : Complementary Kalman filter 

EKF : Extended Kalman filter 

FE : Flexion/extension 

FOG : Fixed optimal gain 

FQA : Factored quaternion algorithm 

GDA : Gradient descent algorithm 

GNA : Gauss-Newton algorithm 

IC : Initial contact 

IMU : Inertial measurement units 

ISB : International society of biomechanics 

KF : Kalman filters 

LySi : Lie-to-sit transition 

MCS : Motion capture system 

PC5/8 : Proposed calibration (straight walking for 5/8 steps) 

PF : Plate frame 

PT : Postural transition 

QUEST : Quaternion estimator 

RMS : Root-mean-square 

RMSE : Root-mean-square-error 

SF : Sensor frame 

SFA : Sensor fusion algorithm 

SiSt : Sit-to-stand transition 

SiLy : Sit-to-lie transition 

SRUKF : Square-root unscented KF 

SRCKF : Square-root cubature KF 

StSi : Stand-to-sit transition 

SVM : Signal vector magnitude 

TC : Terminal contact 

TRIAD : TRi-axial attitude determination 

VST : Vector selection technique 



1 

 

Chapter 1  

Introduction 
Chapter 1 presents the motivation and objectives of this research as well as the outline of the 

thesis. 

1.1 Gait Rehabilitation Training 

In 2013, it was estimated that over 400,000 Canadians were dealing with the consequences of 

stroke, and this number could grow to more than half a million in 2021 [1]. Independent walking 

is a major challenge for more than 85% of stroke survivors [2], and improving mobility is one of 

their priorities [3]. To help this population achieve a walking pattern close to normal, the standard 

rehabilitative procedure includes performing guided practice steps under therapist supervision to 

facilitate the re-learning process [4]. For efficient re-learning, the practice steps need to be 

completed with a proper technique in all training sessions. However, as the therapists are available 

for only a few hours a day, patients usually have to perform walking training independently. This 

can lead to reinforcement of an abnormal walking pattern that oftentimes leads to secondary health 

complications. 

It has been shown that real-time movement feedback, including visual or auditory 

biofeedback, can help patients modify their abnormal walking patterns and accelerate the re-

learning process [5], [6]. However, this approach requires an expensive camera motion-capture 

system (MCS), which is rarely available in small clinics. Moreover, laboratory space usually limits 

the length of the walking training platform and affects the natural walking pattern of the patient 
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[7]–[9]. Therefore, there is a lack of viable motion measurement technology for the instrumented 

biofeedback-based walking training of stroke survivors. 

Wearable inertial measurement units (IMUs) have been widely used to assess human 

motion for movement disorder diagnosis [10]–[16], emergency conditions, such as fall detection 

[17], [18], and in-home rehabilitation [19], [20]. However, there is still a lack of wearable sensor 

technology for biofeedback-based walking training. As a result, this research aims to develop a 

wearable sensor technology that can provide quantitative and clinically relevant biofeedback on 

the walking pattern of stroke survivors and thus facilitate rehabilitative programs in small clinics 

and homes.   

1.2 Thesis Objectives 

This research aims to develop innovative wearable technology to measure the lower limb motion 

during walking in real-time. The primary application of this technology will be providing real-

time biofeedback on the walking pattern of stroke patients during therapeutic training sessions, as 

shown in Figure 1. The two phases of this research project are to: 

1. Develop a wearable sensor technology to accurately monitor the lower limb’s three-

dimensional (3D) motions, including joint angles and temporal gait events, in real-time during 

walking training. 

2. Validate the accuracy of the gait kinematics measured by the developed wearable technology 

against those measured by MCS as a gold-standard reference. 

 
Figure 1 Development of a wearable system for biofeedback-based over-ground gait training of 

stroke patients. The grey box shows the impaired function of the central nervous system. The 

developed technology is shown in red. The dashed line shows the learning process in the central 

nervous system using biofeedback from wearable sensors. 
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1.3 Thesis Significance 

Canada’s healthcare system is facing new challenges in increasing healthcare costs due to a rapidly 

aging population. The direct financial burden of stroke is estimated to be $2.8B annually for the 

Canadian healthcare system [21]. Therefore, millions of dollars can be saved by introducing 

technological advancements in rehabilitative care. Although efforts have been made to develop 

technologies for rehabilitative care with a focus on walking training, the literature survey shows 

that: 

1. Most of these technologies are based upon MCS, with the limitations mentioned in the previous 

sections. 

2. Previously introduced wearable sensors were developed for motion monitoring of a single 

body joint or segment. 

Therefore, for the first time, we propose wearable sensor technology for walking training by 

monitoring the motion of the whole lower limb toward providing real-time personalized 

biofeedback to the therapist and patient. The outcome of this research will provide the opportunity 

to:  

1. Expedite the mobility function restoration of stroke survivors, thus enhancing the quality of 

life for these patients by providing personalized training and reducing recuperation time. 

2. Decrease the financial burden of stroke for the Canadian healthcare system by reducing 

patients’ hospitalization and minimizing the strain placed on therapists.  

1.4 Thesis Outline 

The remainder of this thesis is organized as follows and describes different steps toward the 

development of wearable sensor technology for walking training (Figure 2): 

• Chapter 2 provides a background on gait rehabilitation training and a literature survey on how 

sensor fusion algorithms (SFA) have been used for orientation estimation using wearable 

IMUs. This chapter is partially based on publication [22]. 

• SFAs estimate the IMU’s orientation in the sensor frame. Chapter 3 describes two innovative 

sensor-to-segment calibration procedures for transforming the measured quantities from the 
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IMU sensor frame to the body segment anatomical frame. This chapter is partially based on 

publications [23], [24]. 

• Following a sensor-to-segment calibration and to obtain accurate and robust estimations of the 

IMU sensor frame orientation, Chapter 4 details a novel technique for adaptive gain regulation 

of SFAs. This chapter is partially based on publication [25]. 

• The adaptive gain regulation of SFAs can typically ensure high accuracy and robustness for 

short-duration tasks. Chapter 5 describes the formulation of a linear Kalman filter (LKF) and 

a robust extended Kalman filter (EKF) for orientation tracking with IMUs during long-duration 

dynamic tasks. This chapter is partially based on publications [26], [27]. 

• After computing the lower limb joint angles using the methods proposed in Chapters 3, 4, and 

5, Chapter 6 presents an accurate and reliable technique for temporal gait parameter detection 

with IMUs. This chapter is partially based on a submitted journal publication. 

• Chapter 7 provides a method for daily activity monitoring using IMUs toward evaluating the 

efficacy of the gait rehabilitation training post-stroke. This chapter is partially based on 

publication [28]. 

• Chapter 8 presents the procedure for integrating the developed techniques toward creating 

wearable sensor technology for real-time measurement of lower limb joint angles and detection 

of gait events. 

• Chapter 9 provides the conclusions and future directions. 
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Figure 2 Elements of the proposed wearable sensor technology and their relation. 
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Chapter 2  

Background and Literature Survey 

This chapter provides an overview of the gait rehabilitation training and survey of SFAs proposed 

for orientation tracking with IMUs. Portions of this chapter have been adopted and/or edited from: 

M. Nazarahari, H. Rouhani, “40 years of sensor fusion for orientation tracking via magnetic and 

inertial measurement units: Methods, lessons learned, and future challenges,” Information 

Fusion, Vol. 68, pp. 67-84, 2021. 

2.1 Gait Rehabilitation Training 

Sensory and/or motor impairments may limit the walking abilities of patients who suffer from 

stroke. Restrictions in intrinsic biofeedback to the central nervous system caused by injury can 

lead to an altered gait and severely affect motor control [29]. Therefore, these patients are 

susceptible to unstable gait patterns, often accompanied by falls [30], [31].  

If intrinsic biofeedback is impaired, external biofeedback provided by therapists or 

intelligent systems may compensate for the impaired sensory function. It has been shown that real-

time movement biofeedback, including visual or auditory display, can help patients modify their 

abnormal walking pattern and accelerate the re-learning process [5], [6]. For example, a 

biofeedback system that demonstrated the deviations of the gait pattern from normal walking for 

patients with cerebral palsy helped them normalize their pathological gait pattern [32]. Also, the 

gait pattern of patients with spinal cord injury improved in short and medium terms by visualizing 

the mean knee angle from a speed-matched reference during walking training [5]. More recently, 
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it has been shown that real-time computer-generated verbalized biofeedback can normalize gait in 

individuals with spinal cord injury and stroke [33].  

Traditionally, instrumented biofeedback-based gait training was performed by analyzing 

lower limb motion using a stationary camera-based MCS [34]–[36]. However, this method has 

limited clinical application for the following reasons:  

1. Requiring a complex gait lab that is rarely available to clinicians/patients in most rehabilitation 

hospitals and clinics [8], [9]. 

2. A stationary MCS is usually limited to the confined space of a laboratory that may affect the 

gait pattern of the patient [8], [9], [37]. 

3. A stationary MCS was designed and developed originally for offline motion analysis; thus, it 

requires long preparation and post-processing time under the supervision of an experienced 

operator. The most recent MCSs can obtain only a few motion parameters in real-time rather 

than a continuous display of lower limb motion. 

4. A common problem encountered in a camera-based MCS is information loss, i.e., some marker 

positions are often missed due to occlusions or ambiguities.   

Therefore, there is a lack of reliable and practical technology for real-time motion measurement 

toward implementing an instrumented biofeedback-based walking training of stroke patients. 

2.2 Wearable Inertial Measurement Units (IMUs) 

Affordable wearable IMUs with lightweight, long battery life and large memory capacity have 

become increasingly popular for ambulatory human motion analysis [38], [39]. IMUs are 

comprised of a tri-axial accelerometer, gyroscope, magnetometer, as well as other aiding sensors 

such as barometer, and can measure acceleration, angular velocity, and the Earth’s magnetic field. 

By measuring the acceleration and angular velocity of a rigid body, e.g., body segment, as well as 

the surrounding Earth’s magnetic field, 3D orientation and position of the rigid body can be 

tracked. Because of their lightweight, small size, and long battery life [40], [41], IMUs have been 

used extensively as an ideal tool in aerospace, unmanned vehicle navigation, robotics, and human 

motion tracking. However, in almost all applications, whether the 3D joint angle measurement in 

an ambulatory human motion tracking system [42] or displacement estimation in a dead-reckoning 

system [43], the IMU orientation must be first calculated using an SFA. 
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2.3 Body Segment Orientation Tracking with IMUs 

Raw IMU data can be used to estimate the sensor’s orientation under specific conditions. In 

particular, the IMU’s accelerometer measures the gravitational acceleration and can be used to 

compute the attitude. Also, in a magnetically neutral environment, the magnetometer measures the 

geomagnetic field, which can be used to estimate the yaw angle. Furthermore, the gyroscope 

measures the angular velocity (rate of change of orientation), which can be used to calculate the 

change in orientation using numerical strap-down integration.  

However, using the accelerometer, gyroscope, and magnetometer alone may yield poor 

estimations in terms of accuracy or robustness due to various sources of error [44]. For example, 

accelerometers are not suitable for orientation estimation during dynamic tasks as they measure 

the external non-gravitational acceleration (due to motion) in addition to the gravitational 

acceleration. Also, the geomagnetic field could be distorted by ferrous materials, specifically 

during indoor motion tracking, which makes magnetometer-based estimations inaccurate. 

Moreover, because the cumulative error of the strap-down integration increases unboundedly over 

time, gyroscopes are not suitable for orientation estimation during long-duration tasks. Thus, 

various SFAs have been proposed in the literature to achieve an accurate and reliable estimation. 

2.3.1 Orientation Parametrization 

Rigid body orientation can be expressed via one of the following parametrizations: (1) Euler 

angles, i.e., roll and pitch (also known as the attitude) and yaw (also known as the heading); (2) 

quaternions; or (3) direction cosine matrix [45], [46]. Euler angles can be used when an intuitive 

physical meaning of the estimated orientation is needed. For example, controlling an unmanned 

vehicle [47], measuring human joint angles, or tracking in an augmented reality device [48]. 

However, under certain configurations, there are singularities associated with this parametrization 

that make Euler angles unsuitable for most control or tracking applications.  

Quaternion or direction cosine matrix parametrization could be used to express/calculate 

the orientation without singularity in a computationally efficient manner [49], [50]. However, the 

unconstrained estimation of these parametrizations would lead to an ambiguous and meaningless 

representation. In particular, a quaternion parametrization of orientation is an element of the 

quaternion group, i.e., homeomorphic to rotation group SO(3), with S3 as its domain [51]. 

Therefore, to reduce its degrees of freedom from four to three, consistent with the dimension of 
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the SO(3), a constrained quaternion estimation is required, such as enforcing the unit norm 

constraint after estimation. See more on constrained estimation in [51], [52]. A similar hard 

constraint must be used when using direction cosine matrix parametrization [53], [54].  

2.3.1.1 Previous Surveys on Sensor Fusion Algorithms 

Previous surveys have reviewed the literature related to IMUs with a focus on applications [55]–

[60], technical developments [43], [56], [61], [62], and/or experimental comparison. However, in 

line with the aim of the present paper, in this section, we review the previous surveys of SFAs for 

IMU orientation estimation only. Table 1 summarizes the surveys with a focus on the experimental 

comparison. Table 1 identifies the filter with the best performance in each survey and provides the 

details of the SFAs tested, parameter tuning strategies, and experimental validations. 

Cavallo et al. [63] compared the estimation accuracy of three SFAs, their proposed EKF 

and SFAs in [64], [65], using an IMU mounted on the KUKA Youbot robot while the 

accelerometer and magnetometer were calibrated using a 3D-ellipsoid fitting method [66]. The 

robot measured the reference (true) orientation during slow (18 degrees/s) and fast (45 degrees/s) 

trajectory tracking motions. Filippeschi et al. [49] performed an experimental study to compare 

five SFAs [67]–[71] for wrist position tracking. They used orientation and length of the trunk, 

upper arm, and forearm to estimate the wrist position. However, the accuracy of the SFAs was not 

directly comparable for the following reasons: (1) one method required visual reference for 

position tracking; (2) methods were different in terms of constraints of the kinematic chain; and 

(3) parameters of the methods were not selected systematically. 
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Table 1 Review of the previous literature surveys of the SFAs, including the tested algorithms, the gain selection procedure, the used reference 

system for validation, the type experiments, and the algorithm(s) concluded to have the best performance. Abbreviations used in the table are 

described in the table footnotes. 

Study SFAs 
Filter 

Parameters 
Reference Experiments (duration in seconds) Selected Filter 

[63] PEKF, [64], [65] EC Robot [72] Slow & fast motions of robotic arm (≤45s) PEKF 

[49] [67]–[71] EC MCS Elbow, forearm & shoulder functional tasks (≤15s) Acc.: [67] Corr.: [70] 

[73] [68], [74]–[76] EC MCS Random motions (≤20), Treadmill walking (≤30s) [74] 

[77] PEKF, KF EC MCS Random head motions (≤35s) PEKF 

[78] [64], [79]–[81] EC MCS 
Static and dynamic tests in magnetically clean & 

disturbed environments (≤60s) 
[81] 

[82] SDI, [64], [77] EC MCS Daily routine tasks (≤60s), Walking (≤180s) [77] 

[83] [64], [84] EC None Single axis rotations (≤250s) [84] 

[79] [85], [86] EC MCS Daily routine tasks (≤60s), Walking (≤180s) [85] 

[87] [64], [77], [88], XKF OP MCS Slow, medium & fast random rotations (≤70s) Slow/medium: XKF, Fast: [77] 

[89] [64], [65], [90] OP MCS Quadcopter motion adopted from [91] [65] 

[92] [64], [65], [93]–[96] EC MCS Smartphone data during various activities (≤180s) [96] 

[97] [64], [65] EC MCS Various walking tests, adopted from [98] [64] 

[99] 
[64], [65], [100], 

[101] 
OP Synthetic - [64], [65] 

[102] [103], modified [104] EC MCS Material handling task (≤60s) Modified [104] 

- Sensor Fusion Algorithms: PEKF: Proposed Extended Kalman Filter by the study; XKF: Xesne proprietary Kalman Filter; SDI: Strap-down integration. 
- Filter Parameters: EC: Selecting the sensor fusion algorithm’s gain(s) by trial-and-error; OP: Selecting the sensor fusion algorithm’s gain(s) by a rigorous search. 

- Reference: MCS: Gold-standard camera motion-capture system. Synthetic: used synthetic IMU data. 
- Selected Filter: Acc: Selected based on accuracy; Corr: Selected based on correlation. 
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Young [73] compared the EKF proposed in [68] with different Complementary Filters 

(CFs) presented in [74]–[76]. After calibrating sensors for offset and scale errors, the accuracy of 

the SFAs was evaluated during gentle random motions and over treadmill walking at a normal 

pace. They concluded that, in general, CFs with lower computational complexity could outperform 

KFs for human motion tracking, as CFs have no assumption about the process dynamics. Also, 

they showed that because of the lower computational complexity and minimal loss of accuracy, 

the use of non-optimal vector observation algorithms, such as TRi-axial Attitude Determination 

(TRIAD), is preferred compared to optimal ones such as the QUaternion ESTimator (QUEST). 

More recently, Sabitini [77] provided a general survey of SFAs, including algorithms based on 

vector observations and KFs, with great emphasis on practical aspects such as SFA gain selection.  

Fan et al. [78] performed a systematic review of standard strategies for reducing the effect 

of magnetic disturbance on the accuracy and robustness of SFAs. They also compared the accuracy 

of five SFAs, [64], [79]–[81], and concluded that a “good” filter must have the following three 

features: (1) gyroscope drift compensation; (2) decoupling attitude from yaw estimation; and (3) 

an adaptive strategy to reject magnetic distortions. Similarly, Ligorio and Sabatini [79] reviewed 

the main magnetic disturbance compensation strategies used in KFs and showed that model-based 

approaches (estimating the magnetic disturbance at each iteration using a stochastic model) had 

the best performance. 

Bergamini et al. [82] used routine manual tasks such as teeth/hair brushing and walking 

along a ∞-shaped pathway to compare the accuracy of strap-down integration with the CF 

proposed by Madgwick et al. [64] and the KF proposed by Sabatini [77]. This study showed that 

the tested CF and KF were significantly more accurate than strap-down integration for yaw 

estimation and that the two SFAs achieved similar accuracy. Using the optimal SFAs gains, Caruso 

et al. [87] analyzed the performance of four SFAs ([64], [77], [88], and Xesne proprietary KF) and 

concluded that the performance of SFAs depends on the experimental conditions, such as the rate 

of rotations during experiments. Michel et al. [92] compared the accuracy and robustness of six 

SFAs ([64], [65], [93]–[96]) using smartphone data during a variety of daily routine activities. 

They showed that the overall performance of the nonlinear CF proposed by Martin and Salaun 

[96] was best, but SFAs with a simpler structure and lower computational complexity, such as [64] 

and [65], could be highly beneficial for saving the battery life of the smartphone. See [105] for a 

more detailed study on the energy characterization of CF and KF. 
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However, the mentioned works only surveyed a limited number of SFAs, i.e., in total, 30 

filters were tested in the abovementioned works, and only 4 of them were used in more than two 

studies. Therefore, in this chapter, we reviewed a wide range of SFAs for orientation tracking with 

IMUs, including vector observation algorithms, CFs, Linear KFs (LKFs), EKFs, and 

Complementary KFs (CKFs). However, we did not review fusing strategies such as the Unscented 

KF, Cubature KF, and Particle filter, or other technologies for orientation tracking, whether alone 

or together with IMUs. In summary, this review sought to answer the following question: how can 

IMU signals be fused for orientation tracking? To answer this question, we provided a survey on 

state-of-the-art strategies, including SFAs based on vector observation algorithms, CF, and 

LKF/EKF/CKF families.  

2.3.2 IMU Model 

This section presents the IMU model commonly used in developing SFAs [106], [107]. Gyroscope 

readout, 𝑦𝐺 , can be modelled as the summation of the true angular velocity, 𝜔, the bias 𝑏𝐺 , and a 

white noise term, 𝓋𝐺, as in Equation 1, 

 

𝑦𝐺,𝑘 = 𝐾𝐺𝜔𝑘 + 𝑏𝐺,𝑘 + 𝓋𝐺,𝑘  Equation 1 

𝑏𝐺,𝑘 = 𝑏𝐺,𝑘−1 + 𝓌𝑏,𝑘  Equation 2 

where 𝐾𝐺  is the scale factor matrix, and Equation 2 models 𝑏𝐺  as a first-order Markov process 

driven by white Gaussian noise, 𝓌𝑏. Accelerometer readout, 𝑦𝐴, can be modelled as the 

summation of the external non-gravitational acceleration, 𝒶, the gravitational acceleration, 𝑔, the 

bias 𝑏𝐴, and a white noise term, 𝓋𝐴, as in Equation 3,  

𝑦𝐴,𝑘 = 𝐾𝐴[𝒶𝑘 + 𝑔𝑘] + 𝑏𝐴,𝑘 + 𝓋𝐴,𝑘 Equation 3 

𝒶𝑘 = 𝑐𝑎𝒶𝑘−1 + 𝓌𝒶,𝑘  Equation 4 

where 𝐾𝐴 is the scale factor matrix, and Equation 4 models 𝒶 as a first-order low-pass filtered (0 ≤

𝑐𝒶 < 1 is the cut-off frequency of the filter) white Gaussian noise process. The bias term 𝑏𝐴 was 

commonly obtained through a calibration procedure [66], [108] or estimated during orientation 

tracking as part of the KF state vector [109], [110]. Finally, the magnetometer readout, 𝑦𝑀 , can be 
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modelled as the summation of the true geomagnetic field, 𝑚, magnetic distortion, 𝒹, and a white 

noise term, 𝓋𝑀, as in Equation 5, 

𝑦𝑀,𝑘 = 𝐾𝑀𝑚𝑘 + 𝒹𝑘 + 𝓋𝑀,𝑘 Equation 5 

𝒹𝑘 = 𝑐𝑑𝒹𝑘−1 + 𝓌𝒹,𝑘  Equation 6 

where 𝐾𝑀 is the scale factor matrix, and Equation 6 models 𝒹 as a first-order low-pass filtered 

(0 ≤ 𝑐𝒹 < 1 is the cut-off frequency of the filter) white Gaussian noise process. 

2.3.3 Strap-down Integration 

While strap-down integration is not an SFA on its own, we dedicate a separate section to it as it is 

the core of almost all CFs and KFs. The numerical strap-down integration of gyroscope readout, 

𝑦𝐺 , can be used to update the orientation with respect to a known orientation as in Equation 7 

[111], 

{
𝑞𝑘+1 = exp(Ω(𝑦𝐺,𝑘)𝑇𝑠) 𝑞𝑘

𝑞0 = 𝑞(0)                            
 Equation 7 

Ω(𝑦𝐺) =
1

2
[

0
𝑦𝐺,𝑥

𝑦𝐺,𝑦

𝑦𝐺,𝑧

  

−𝑦𝐺,𝑥

0
−𝑦𝐺,𝑧

𝑦𝐺,𝑦

  

−𝑦𝐺,𝑦

𝑦𝐺,𝑧

0
−𝑦𝐺,𝑥

  

−𝑦𝐺,𝑧

−𝑦𝐺,𝑦

𝑦𝐺,𝑥

0

 

] Equation 8 

where 𝑞 is the quaternion parametrization of orientation, Ω(𝑦𝐺) is a 4×4 skew-symmetric matrix 

shown in Equation 8, exp(∙) is the matrix exponential operator, which can be estimated using the 

Taylor series or Padé approximation, 𝑇𝑠 is the sampling period of the IMU, and 𝑞(0) is the known 

initial orientation. Lee and Choi [112] showed that when using the Taylor series to 

calculate exp(∙), the approximation order highly depends on (1) the sampling rate of the IMU; and 

(2) the magnitude of the 𝑦𝐺 . Equation 7 can also be extended to account for the relative angular 

velocity of (1) the Earth’s frame with respect to the inertial frame; and (2) the navigation frame 

with respect to the Earth’s frame [113].  

Nevertheless, strap-down integration has two disadvantages: (1) the initial orientation must 

be known; and (2) the gyroscope bias, 𝑏𝐺 , results in an increasing cumulative error in the estimated 

orientation due to the numerical integration (see [114] for comparison of the drifts obtained from 

the strap-down integration and a KF). To address the former, 𝑦𝐴 and 𝑦𝑀 , along with a vector 
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observation algorithm (described in Section 2.3.4), can be used to calculate 𝑞(0). To address the 

latter, various SFAs have been developed to use 𝑦𝐴 and/or 𝑦𝑀  to correct the strap-down integration 

drift over time. Also, using SFAs, 𝑏𝐺  can be estimated at each time instant based on a stochastic 

model, as in Equation 2, to correct the 𝑦𝐺  before the strap-down integration. However, one must 

note that 𝑏𝐺  is a function of environmental conditions, such as ambient temperature, and extra 

caution must be exercised when environmental conditions change drastically during data 

acquisition [115]. 

2.3.4 Vector Observation Algorithms 

Vector observation algorithms, commonly used in spacecraft SFAs, estimate the rigid body 

absolute orientation with respect to a reference frame. To this end, two or more vectors measured 

in the local rigid body frame, as well as their counterpart in the desired reference frame, are 

required. In this setting, almost all vector observation algorithms are based on minimizing the cost 

function 𝒥(𝐴) =  
1

2
∑ 𝑎𝑖|𝑏𝑖 − 𝐴𝑟𝑖|

2
𝑖 , known as the Wahba’s problem [116], where 𝐴 is the 

direction cosine matrix representing the rigid body orientation (to be estimated), 𝑏𝑖 is a unit vector 

measured in local rigid body frame, 𝑟𝑖 is the corresponding unit vector in the reference frame, and 

𝑎𝑖 is the weight associated with each vector observation. Markley and Mortari [117] provided an 

overview of the most popular algorithms for solving Wahba’s problem and compared their 

accuracy and speed.  

For orientation tracking with IMUs, vector observations (𝑏𝑖) are the normalized 𝑦𝐴 and 𝑦𝑀 , 

and their reference counterparts (𝑟𝑖) are the gravitational acceleration, 𝑔𝐺 , and the Earth’s 

geomagnetic field vector, 𝑚𝐺 , respectively, where 𝐺 represents the Earth’s reference frame. In 

this setting, the TRIAD algorithm calculates the direction cosine matrix 𝐴 using Equation 9 [76], 

[118], 

𝑤1 = 𝑏1 |𝑏1|⁄ , 𝑤2 = (𝑤1 × 𝑏2) |𝑤1 × 𝑏2|⁄ , 𝑤3 = 𝑤1 × 𝑤2 

Equation 9 𝑣1 = 𝑟1 |𝑟1|⁄ , 𝑣2 = (𝑣1 × 𝑟2) |𝑣1 × 𝑟2|⁄ , 𝑣3 = 𝑣1 × 𝑣2 

𝐴 = 𝑤1𝑣1
𝑇 + 𝑤2𝑣2

𝑇 + 𝑤3𝑣3
𝑇  

In TRIAD, attitude is calculated using 𝑔𝐺  and is immune to magnetic disturbance. In contrast to 

TRIAD, QUEST [119] can accommodate more than two vector observations by selecting proper 
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weights 𝑎𝑖 for sensors with different accuracies. However, in QUEST, magnetic disturbance can 

affect the attitude estimation as well as yaw angle. 

Along with TRIAD, the Factored Quaternion Algorithm (FQA) [74] was designed to 

decouple 𝑦𝐴 and 𝑦𝑀  and cancel the effect of magnetic disturbance on attitude calculation. TRIAD 

and FQA produce similar solutions to the Wahba’s problem, with the exception that the former 

produces a direction cosine matrix and the latter produces a quaternion [74]. Other variants of 

vector observation algorithms include: Davenport 𝑞-method [120]; fast optimal attitude matrix 

[121]; singular value decomposition-based method [122]; filter QUEST [123]; recursive QUEST 

[124]; fast linear quaternion attitude estimator [125]; recursive linear continuous quaternion 

attitude estimator [126]; quaternion-based iterated least-square [127]; and algebraic quaternion 

algorithm [128], [129]. The main advantage of the vector observation algorithms is that they can 

estimate the absolute orientation. However, as the vector observations (𝑦𝐴 and 𝑦𝑀) could be 

corrupted by 𝒶 and 𝒹, these algorithms are not suitable for indoor orientation tracking during 

highly dynamic tasks.  

2.3.5 Complementary Filters (CFs) 

2.3.5.1 Foundations 

For an accurate estimate of orientation, the accelerometer and magnetometer should be used during 

static conditions (low-frequency), while the gyroscope should be used during dynamic conditions 

(high-frequency). To do this, the CF structure includes a low-pass filter ℒ(𝑠) to remove the high-

frequency estimations obtained by the accelerometer and magnetometer and a high-pass filter 

ℋ(𝑠) to remove the low-frequency estimations obtained by the gyroscope, as shown in Figure 

3(a). Commonly, the two filters’ structures have been selected such that ℒ(𝑠) =
𝒞(𝑠)

𝒞(𝑠)+𝑠
 and ℒ(𝑠) +

ℋ(𝑠) = 1, where 𝒞(𝑠) is a transfer function.  

The simplest choice for ℒ(𝑠) and ℋ(𝑠) is a first-order low-pass and high-pass filter, 

respectively, with a cut-off frequency of 𝑘𝑃. To achieve this, we can set 𝒞(𝑠) = 𝑘𝑃 in ℒ(𝑠), which 

results in the basic CF structure shown in Figure 3(b) with solid lines in the time domain. Figure 

3(c) shows the frequency response of the basic CF for three different values of 𝑘𝑃. The optimal 

value of 𝑘𝑃 depends on the dynamics of motion. This is, for relatively slow motions, a larger 𝑘𝑃 

is preferred while for high dynamics, a smaller 𝑘𝑃 should be chosen [130]. As shown in Figure 
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3(c), the slope of the frequency response plot of the low- and high-pass filters is not steep, and 

thus, the filter output contains components of both filters. To address this issue and to achieve 

steeper slopes with frequency responses in Figure 3(d), we can add an integrator with gain 𝑘𝐼 to 

the basic CF structure, i.e., 𝒞(𝑠) = 𝑘𝑃 +
𝑘𝐼

𝑠
, as shown with the dashed line in Figure 3(b).  

  

  
Figure 3 Flowchart and frequency response of a Complimentary Filter (CF). (a) The general structure of a CF; (b) 

Flowchart of the CF with low-pass filter transfer function defined as ℒ(𝑠) =
𝒞(𝑠)

𝒞(𝑠)+𝑠
 where 𝒞(𝑠) = 𝑘𝑃 +

𝑘𝐼

𝑠
, and 𝑘𝑃  and 

𝑘𝐼 are the proportional and integral gains, respectively; (c) Frequency response of the proportional CF, (d) Frequency 

response of the proportional-integral CF. 
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Strap-down 
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ℋ(𝑠)
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(a)

  

𝑘𝑃

𝑘𝐼
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  , 

   
     

Gyroscope Bias 
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Delay

Delay(b)
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𝑘𝑃= 1

𝑘𝑃= 0.1

𝑘𝑃= 0.01
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𝑘𝑃= 0.1, 𝑘𝐼= 1

𝑘𝑃= 0.1, 𝑘𝐼= 0.1

𝑘𝑃= 0.1, 𝑘𝐼= 0.01
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2.3.5.2 Literature survey of CFs 

As the strap-down integration was used in almost all CFs developed for IMU orientation tracking, 

this section is focused on various approaches for (1) estimating the orientation via accelerometer 

and magnetometer; and (2) low- and high-pass filters’ structure. See Table 2 for a comparison of 

CFs in the literature. Bachmann et al. [131] used the Gauss-Newton Algorithm (GNA) to modify 

the strap-down integration output based on a corrective term that minimized the error between the 

measured 𝑦𝐴 and 𝑦𝑀  and the projection of the 𝑔𝐺  and 𝑚𝐺  in IMU’s sensor frame, SF, as in 

Equation 10, 

𝑞𝐴,𝑀( �̂�𝐺
𝑆𝐹

𝑘 ) = [𝑦𝐴, 𝑦𝑀] − [ �̂�𝐺
𝑆𝐹

𝑘
∗ ⊗ 𝑔𝐺 ⊗ �̂�𝐺

𝑆𝐹
𝑘 , �̂�𝐺

𝑆𝐹
𝑘
∗ ⊗ 𝑚𝐺 ⊗ �̂�𝐺

𝑆𝐹
𝑘 ] Equation 10 

where �̂�𝐺
𝑆𝐹  is the orientation of the IMU sensor frame with respect to the Earth’s reference frame, 

∗ and ⊗ are the quaternion conjugate and multiplication operations, respectively. Close variants 

of the same approach have been used in other works, including fast quaternion-based orientation 

optimizer [132]; Gradient Descent Algorithm (GDA)-based CF [64]; Levenberg-Marquardt 

algorithm-based CF [95], [133], [134]; GNA-based adaptive-gain CF [101]; geometrically-

intuitive CF [135]; adaptive quaternion-based CF [136]; generalized linear quaternion-based CF 

[137]; and others [138]–[144].  

 The CF structure, which is shown in Figure 3(b), has been extensively revisited in the 

literature [65], [130], [145]–[149]. For instance, Calusdian et al. [130] used the proportional gain 

𝑘𝑃 to correct the strap-down integration output using the weighted error between the estimated 

orientations by CF at the previous time instant and the FQA. In CF proposed by Lai et al. [145], 

first, attitude was estimated using  𝑦𝐴 as in Equation 11, 

𝑟𝑜𝑙𝑙𝑎𝑐𝑐 = tan−1(𝑦𝐴,𝑦 𝑦𝐴,𝑧⁄ ) , 𝑝𝑖𝑡𝑐ℎ𝑎𝑐𝑐 = tan−1 (𝑦𝐴,𝑥 √𝑦𝐴,𝑦
2 + 𝑦𝐴,𝑧

2⁄ ) Equation 11 

then, the proportional-integral CF in Figure 3(b) was employed to correct the strap-down 

integration output. Similarly, Liu and Zhu [111] proposed a CF based on the proportional-integral 

and multi-sample rotation vector concepts to eliminate the cumulative and noncommutativity 

errors of strap-down integration in high dynamics.  

Mahony et al. [65] formulated the CF as a deterministic observer posed on the special 

orthogonal group SO(3). The proposed explicit CF does not require an algebraic reconstruction of 
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the attitude, as in vector observation algorithms, and due to its low computational complexity, it 

is ideal for embedded hardware platforms. Also, the explicit CF can work with only one vector 

observation (𝑦𝐴 or 𝑦𝑀). Similarly, Khosravian and Namvar [150] presented a nonlinear observer 

with asymptotic convergence based on a single vector observation (𝑦𝐴 or 𝑦𝑀). In general, a single 

vector observation can be used along with a thresholding scheme as in [142], [147] (also known 

as vector selection [106], [132]), or with fuzzy logic [151], [152], to reject imperfect 

measurements, such as rejecting 𝑦𝐴 during high dynamic tasks or 𝑦𝑀  during magnetic disturbance.  

The stability properties of the explicit CF proposed in [65] were proven when the reference 

vectors are (1) stationary or (2) time-varying but the  𝑦𝐺  is bias-free. Later, Grip et al. [153] 

proposed an improved explicit CF for cases when the reference vectors are time-varying and 𝑦𝐺  is 

corrupted by bias. Also, Jensen [154] proposed a generalized version of the explicit CF by 

replacing the constant scalar gains with time-varying matrix gains. Because the gain tuning 

procedure for the explicit CF was based on trial-and-error, to provide a Kalman-like gain tuning 

capability for the filter, De Silva et al. [155] proposed the right-invariant formulation for the 

explicit CF with an intuitive gain tuning procedure based on the system’s noise parameters. 

Martin and Salaun [96] and Hua et al. [156] developed nonlinear observers by decoupling 

the yaw angle estimation from attitude estimation to minimize the effect of 𝒹 on attitude. Fan et 

al. [157] and Wu et al. [158] proposed quaternion-based two-step CFs (step 1: estimate attitude by 

fusing 𝑦𝐺  and 𝑦𝐴, step 2: estimate yaw using 𝑦𝑀). This allowed them to make attitude estimations 

immune to 𝒹 and enable the filter to use two separate gains to minimize the effect of 𝒶  and 𝒹 in 

steps 1 and 2, respectively. Valenti et al. [128] introduced a vector observation algorithm for 

solving the Wahba’s problem without singularity and, accordingly, developed a quaternion-based 

CF with attitude estimation immune to 𝒹. Marantos et al. [159] developed a CF based on a new 

analytical solution for Wahba’s problem complemented with a gyroscope propagation and an 

adaptive gain regulation scheme to provide smooth orientation tracking in high dynamics. Yang et 

al. [160] formulated a linearly discrete dynamic model to relate the attitude to 𝑦𝐴 and then 

developed a computationally efficient adaptive gain CF to combine the estimated attitude with 

strap-down integration output.  

Chang et al. [161] first developed a smooth sliding-mode observer for attitude estimation 

using 𝑦𝐴, and then improved the observer estimations by including measurement noise and biases 
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[162]. El Hadri and Benallegue [163] proposed a nonlinear sliding-mode CF to achieve robust 

orientation tracking and 𝑏𝐺  estimation under parametric uncertainties and modelling errors. 

Vasconcelos et al. [164] introduced a CF using Euler angle parametrization (stable for non-singular 

configurations) and 𝑏𝐺  compensation and tuned the filter gains in the frequency domain to account 

for unmodeled disturbances found in the experimental setup. By estimating a virtual angular 

velocity for the rigid body using 𝑦𝐴 and 𝑦𝑀 , Tayebi et al. [165] developed a quaternion-based CF 

to track the orientation as well as an asymptotic estimate of 𝑏𝐺 . Sheng and Zhang [166] proposed 

the application of a neural network-based proportional-integral-derivative controller for 

calculation of 𝑏𝐺  based on the error between estimated orientation by strap-down integration and 

a vector observation algorithm. In the nonlinear CF introduced by Wu et al. [167], the error 

between 𝑦𝐴 and the projection of 𝑔𝐺  in IMU sensor frame was used to estimate the 𝑏𝐺  and correct 

the angular velocity before strap-down integration. However, this method does not provide an 

estimate of 𝑏𝐺  when the IMU is motionless or 𝑦𝐴 is parallel to 𝑔𝐺 .  

2.3.5.3 Modified Complementary Filters 

Because the performance of a CF highly depends on its gains, Alves Neto et al. [168] proposed a 

CF using Euler angle parametrization and adaptive gains with values proportional to exp(-| 𝑔𝐺  - 

||𝑦𝐴|||). Kottath et al. [169] presented the application of an ensemble of linear CFs with different 

gains to minimize the effect of gain value on the estimated orientation. In the proposed ensemble, 

the weighting factor associated with each CF was adaptively calculated based on the difference 

between the CF’s and the ensemble’s estimates. To adaptively compute the CF gains based on the 

error between the orientation obtained from 𝑦𝐴 and 𝑦𝑀  and CF output, Poddar and Narkhede [170] 

developed a non-linear CF aided with a Particle Swarm Optimization gain tuning scheme. It should 

be noted that the application of an adaptive gain tuning scheme or thresholding method for 

rejecting 𝒶  and 𝒹 cannot guarantee an accurate and robust estimation. For example, if gain tuning 

is used for an extended period of time to cancel the estimation errors from 𝑦𝐴 during high 

dynamics, drift in attitude estimations will eventually occur because of 𝑏𝐺 . 
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Table 2 Review of the state-of-the-art SFAs with a Complimentary Filter (CF) structure, including linear CF (LCK) and nonlinear CF (NCF). 

Abbreviations used in the table are described in the table footnotes. 

Study Year Application Method 
Parametriz

ation 

𝒃 , 𝓪, 𝓭 

compensation 
Notes (gain tuning or thresholding, etc.) 

[131] 1999 HMT GNA+CF Q - - 

[171] 2003 STC NCF Q 𝑏𝐺 - 

[84] 2006 AVTC NCF DCM 𝑏𝐺 - 

[165] 2007 - NCF Q 𝑏𝐺 - 

[65] 2008 RATC NCF DCM 𝑏𝐺 - 

[148] 2008 AVTC NCF Q 𝑏𝐺 - 

[168] 2009 MRTC LCK EA - 𝑘𝑝 ∝ exp(−| 𝑔𝐺 − ‖𝑦𝐴‖|) 

[163] 2009 - Sliding mode observer EA 𝑏𝐺 - 

[132] 2009 HMT GNA+CF Q - 𝒶 & 𝒹 rejection with thresholding 

[141] 2009 - Azimuth-level detector CF Q & DCM - - 

[96] 2010 AVTC NCF Q 𝑏𝐺 - 

[145] 2010 - NCF EA - - 

[64] 2011 HMT GDA+CF Q - - 

[130] 2011 - FQA+CF Q - - 

[133] 2011 Bio-logging LMA+CF Q - - 

[164] 2011 SVTC LCK EA - - 

[154] 2011 - NCF DCM 𝑏𝐺 Time-varying gains 

[146] 2011 MRTC NCF EA 𝑏𝐺 - 

[147] 2011 SVTC NCF EA 𝑏𝐺 CF gain ∝ | 𝑔𝐺 − ‖𝑦𝐴‖|  

[150] 2012 STC NCF DCM - - 

[153] 2012 AVTC NCF DCM 𝑏𝐺 & 𝑏𝐴 - 

[172] 2012 - LCK DCM - Using inverse sensor models to widen the frequency range 

[173] 2012 - TRIAD+LCK  DCM 𝑏𝐺 - 

[174] 2012 HMT GDA+CF Q 𝑏𝐺 - 

[175] 2012 HMT LCK DCM - CF gain ∝ duration of the experiment 
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Study Year Application Method 
Parametriz

ation 

𝒃 , 𝓪, 𝓭 

compensation 
Notes (gain tuning or thresholding, etc.) 

[176] 2012 MRTC NCF Q - - 

[151] 2015 - TRIAD+NCK DCM - Adaptive gain tuning using fuzzy logic 

[101] 2013 HMT GDA+CF Q 𝑏𝐺 𝒶 & 𝒹 rejection with thresholding 

[134] 2014 HMT Two-layer LMA+CF Q - - 

[81] 2011 HMT GDA+CF Q 𝑏𝐺 - 

[177] 2014 AVTC PI controller+CF EA - - 

[156] 2014 AVTC NCF DCM 𝑏𝐺 - 

[152] 2014 HMT LCK EA - Adaptive gain tuning using fuzzy logic  

[178] 2014 HMT LCK DCM 𝑏𝐺 - 

[143] 2015 
Bicycle crank 

angle tracking 

NCF + vertical 

acceleration update  
Q - - 

[166] 2015 AVTC LCK DCM 

𝑏𝐺 estimation by 

neural network 

PID controller 

- 

[161] 2015 AVTC 
Smooth 2nd order sliding 

mode observer 
EA - - 

[142] 2015 HMT GDA+CF Q - 𝒹 rejection with thresholding 

[128] 2015 AVTC AQA+CF Q - 𝒶 rejection using LERP or SLERP + adaptive gain tuning 

[179] 2015 AVTC NCF DCM - - 

[135] 2016 
HMT with 

smartphone 
Geometrically-intuitive CF Q - - 

[158] 2016 - Two-layer LCK Q - 𝒹 rejection with thresholding 

[159] 2016 AVTC Nonlinear SVD+CF DCM - - 

[167] 2016 RATC NCF DCM 𝑏𝐺 - 

[136] 2017 - GDA+CF Q - 𝒹 rejection with thresholding 

[169] 2017 AVTC LCK EA 𝑏𝐺 
Combining output of multiple fixed-gain CFs with 

MMAE 

[170] 2017 AVTC NCF EA - Adaptive gain turning via Particle Swarm Optimization 

[138] 2018 - GDA+CF Q - 𝒹 rejection with thresholding 
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Study Year Application Method 
Parametriz

ation 

𝒃 , 𝓪, 𝓭 

compensation 
Notes (gain tuning or thresholding, etc.) 

[157] 2018 HMT LCK Q - 𝒶 & 𝒹 rejection with finite state machine 

[139] 2018 RATC FQA+CF Q - Adaptive gain turning via GDA 

[162] 2018 AVTC 
Smooth 2nd order sliding 

mode observer 
EA 𝑏𝐺 - 

[155] 2018 AVTC Right invariant NCF Q & DCM 𝑏𝐺 CF gain ∝ system noise parameters 

[160] 2018 AVTC LCK Q - CF gain ∝ ‖𝑦𝐺‖  

[180] 2018 - MSRVA+CF Q 𝑏𝐺 - 

[140] 2018 - GDA+CF Q - - 

[137] 2019 AVTC GDA+CF Q - 𝒶 & 𝒹 rejection with thresholding 

[144] 2019 - GDA+CF DCM 𝑏𝐺 - 

[181] 2019 
Robot 

teleoperation 
GDA+CF Q 𝑏𝐺 - 

[149] 2019 AVTC NCF EA 𝑏𝐺  
Identified reliable 𝑦𝐺 based on interquartile range of 𝑦𝐺 

previous samples  

[182] 2020 HMT GDA+CF Q - 𝒹 rejection 

[183] 2020 HMT GDA+CF Q - 𝑦𝐺 rejection during “no motion” state 

[184] 2020 HMT Two-layer LCK Q - - 

[185] 2020 - LCF Q - - 

[186] 2020 AVTC NCF Q - 𝒶 compensation by thresholding 

[187] 2020 HMT Extended CF Q 𝑏𝐺  𝒹 rejection with thresholding 

- Application: STC: Spacecraft (satellite) tracking/control; HMT: Human motion tracking; MRTC: Mobile robot tracking/control; RATC: Robotic arm tracking/control; AVTC: Aerial 
vehicle tracking/control; SVTC: Surface vehicle tracking/control.  

- Method: GNA: Gauss-Newton algorithm; GDA: Gradient descent algorithm; LMA: Levenberg-Marquardt algorithm; FQA: Factored quaternion algorithm; AQA: algebraic quaternion 
algorithm; LERP: Linear intERPolation; SLERP: Spherical Linear intERPolation; SVD: Singular value decomposition; MSRVA: Multi-sample rotation vector algorithm; MMAE: 
Multiple-model adaptive estimation. 

- Parametrization: Q: Quaternion parametrization of orientation; EA: Euler angle parametrization of orientation; DCM: Direction cosine matrix parametrization of orientation. 

- Compensation: 𝑏𝐺: Gyroscope bias; 𝑏𝐴: Accelerometer bias; 𝒶: external non-gravitational acceleration; 𝒹: magnetic disturbance. 
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2.3.6 Kalman Filters (KFs) 

2.3.6.1 Foundations 

Suppose that we describe the orientation tracking problem using linear or nonlinear discrete-time 

systems in Equation 12 and Equation 13, respectively, 

𝓍𝑘+1 = ℱ𝑘𝓍𝑘 + ℬ𝑘𝓊𝑘 + 𝓌𝑘 

𝓏𝑘+1 = ℋ𝑘+1𝓍𝑘+1 + 𝓋𝑘+1 
Equation 12 

𝓍𝑘+1 = 𝒻𝑘(𝓍𝑘 , 𝓊𝑘 ,𝓌𝑘) 

𝓏𝑘+1 = 𝒽𝑘+1(𝓍𝑘+1, 𝓋𝑘+1) 
Equation 13 

where 𝓍, 𝓊, and 𝓏 are states of the system (commonly the IMU orientation), input to the system 

(commonly 𝑦𝐺), and sensor measurements (commonly 𝑦𝐴 and 𝑦𝑀), respectively; 𝓌 and 𝓋 are 

white Gaussian noise processes associated with system and measurement models with covariances 

𝒬 and ℛ, respectively; ℱ and 𝒻(∙) are the state transition matrix and equation, respectively (also 

known as state propagation); and ℋ and 𝒽(∙) are the measurement prediction matrix and equation, 

respectively. Now, suppose that we show the estimation error, i.e., the error between the true state 

and the estimated state, of the linear system in Equation 12 by �̃� and our aim is to find the estimator 

that minimizes the weighted 2-norm of the expected value of �̃�, i.e., min𝐸[�̃�𝑇𝒯�̃�], where 𝒯 is a 

positive definite weighting matrix. Then: 

• If 𝓌𝑘 and 𝓋𝑘 are uncorrelated zero-mean white Gaussian processes, KF is the solution. 

• If 𝓌𝑘 and 𝓋𝑘 are uncorrelated zero-mean white processes, KF is the best linear solution. 

• For other cases, such as correlated/coloured noise or nonlinear system in Equation 13, the KF 

can be modified to answer the above problem [188]. 

In other words, the aim of using a KF is to estimate the state vector, 𝓍, based on our knowledge of 

the system model and the availability of the noisy input, 𝓊, and measurements, 𝓏. To this end, we 

can use LKF and EKF, as shown in Figure 4(a) and (b), to estimate the orientation using the linear 

and nonlinear systems in Equation 12 and Equation 13, respectively [188].  

For orientation tracking applications, rigid body orientation is commonly considered to be the 

state vector. Also, (1) the strap-down integration is used to model the time-update equation, i.e., 

ℱ or 𝒻(∙); and (2) the difference between the measured and estimated acceleration and 

geomagnetic field is used to model the measurement-update equation, i.e., ℋ or 𝒽(∙). More 
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complex KFs have been introduced by including 𝒶, 𝑏𝐺 , and/or 𝒹 in the state vector (see Table 3 

for a comparison of various KFs introduced in the literature).  

2.3.6.2 Linear Kalman Filters (LKF) 

Barshan and Durrant-Whyte [189] used 𝑦𝐺  to build an LKF for estimating the yaw angle of a 

planar mobile robot. By inspection, they found an exponential model for 𝑏𝐺  during the warm-up 

period and showed that the inclusion of this model reduced the estimation error by a factor of 5. 

Qi and Moore [47] proposed an LKF for GPS/IMU data fusion, where the GPS readouts were 

taken as the LKF measurements, and IMU readouts were taken as the additional information 

required for state propagation. Yun et al. [190]  and Yean et al. [191] introduced LKFs where strap-

down integration was used to build the time-update equation and the error between 𝑦𝐴/𝑦𝑀  and the 

projection of 𝑔𝐺 / 𝑚𝐺  in IMU sensor frame, as in Equation 10, along with GNA and GDA were 

used to construct the measurement-update equation. Whole and Gebhard [192] extended this 

approach by switching between calculating the gradient of 𝑦𝐴 and 𝑦𝑀  under homogenous magnetic 

condition to calculating the gradient of 𝑦𝐴 only under magnetic disturbance. 

Lee and Park [86] used the optimal two-observation quaternion estimation method 

proposed in [193] along with a vector selection technique to estimate the orientation from 𝑦𝐴 and 

𝑦𝑀  under quasi-static motions in magnetically homogeneous conditions and correct the predicted 

orientation by strap-down integration in an LKF structure. Seo et al. [194] proposed the application 

of the FQA to calculate the orientation using 𝑦𝐴 and 𝑦𝑀  and correct the strap-down integration 

output in a standard LKF. They also suggested a correction scheme using quaternion linear 

interpolation to combine the LKF and FQA outputs during static conditions which would eliminate 

the effect of 𝑏𝐺 . Similarly, Valenti et al. [129], Guo et al. [195], Feng et al. [80], and Wu et al. 

[126] developed new algebraic quaternion estimators using 𝑦𝐴 and 𝑦𝑀  to formulate the 

measurement-update equation of a standard LKF. Some of these algebraic quaternion estimators 

made the attitude estimation immune to magnetic disturbance while providing higher 

computational efficiency compared to FQA. 
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Figure 4 Flowchart of a general (a) Linear Kalman Filter and (b) Extended Kalman Filter. 𝓍 is the state vector, 𝓏 is the 

measurement vector. 𝒫 is the state error covariance matrix. ℱ and 𝒻(∙) are the state transition matrix and equation, respectively. 

ℋ and 𝒽(∙) are the measurement prediction matrix and equation, respectively. 𝒬 and ℛ are the system and measurement model 

covariance matrices, respectively. 𝒦 is the Kalman gain. 

Kim and Golnaraghi [196] proposed a magnetometer-free LKF in which the angular 

velocity used in strap-down integration and its bias were modelled as first-order Markov processes 

and included in the state vector. Also, the measurement-update equation was constructed using the 

error between (1) 𝑦𝐺  and the estimated angular velocity, 𝜔 , plus bias; and (2) 𝑦𝐴 and the projection 

of 𝑔𝐺  in IMU sensor frame. Also, Ligorio and Sabatini [104] developed a magnetometer-free LKF 

to estimate the attitude from the estimated gravitational acceleration, �̂�𝐺 . However, these 

magnetometer-free LKFs limit the tracking to attitude only. Thus, other works [85], [197], [198] 

proposed two separate LKFs, or dual filtering, for estimating gravitational acceleration and 

geomagnetic field to compute the 3D orientation while eliminating the errors in yaw estimation 

from those of attitude estimation. For instance, Zhu and Zhou [67] and Zhu et al. [199] used an 
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LKF to estimate the gravitational acceleration, �̂�𝐺 , and geomagnetic filed, 𝑚 𝐺 , by propagating 

the state vector using 𝑦𝐺  in time-update step and then comparing the state vector with 𝑦𝐴 and 𝑦𝑀  

during measurement-update. Batista et al. [200], [201] extended the previous LKF structure by 

including 𝑏𝐺  in the state vector and correcting the 𝑦𝐺  accordingly during the time-update step.  

Jurman et al. [202] constructed an adaptive LKF with Euler angles in its state vector. In 

this LKF, the state vector was propagated in time using strap-down integration and the Euler angles 

calculated from 𝑦𝐴 (using Equation 11 for attitude) and 𝑦𝑀  (using tan−1(𝑦𝑀,𝑦 𝑦𝑀,𝑥⁄ ) for yaw) 

were used as the measurements. Sun et al. [203] included 𝒶 with a first-order Markov process 

model in the state vector of their proposed LKF and used the modified acceleration ( 𝑔𝐺  + 

estimated 𝒶) in Equation 10 to build the measurement-update equation. In another approach, 

instead of an explicit modeling of 𝒶, Makni et al. [204], [205] proposed an adaptive LKF where 

the part of ℛ associated with the accelerometer was estimated adaptively in real-time based on the 

LKFs accelerometer residual. Also, the proposed LKF was structured with energy consumption 

considerations in mind such that the gyroscope was turned off and re-activated alternately while 

the 𝒬 was adaptively tuned to compensate for the errors. Also, Rehbinder and Hu [206] proposed 

an SFA by switching between two LKFs similar to the high gain observer previously proposed by 

the same authors in [207], i.e., one for tracking under low accelerations and one for high 

accelerations. 

2.3.6.3 Extended Kalman Filters (EKF) 

Lefferts et al. [208] investigated the effect of constructing an EKF with different variations of 

quaternions as the state vector and concluded that including all elements of the quaternions and 𝑏𝐺  

could lead to singularity in calculating 𝒬. Koifman and Merhav [209] proposed the application of 

an EKF for real-time attitude estimation using 𝑦𝐺  and 𝑦𝑀 , investigated the effect of piecewise 

constant modeling of 𝑏𝐺  on estimation error, and then devised a method for updating the 

corresponding elements of the covariance matrix when required. Vaganay and Aldon [210] 

proposed an EKF in which the state vector included roll and pitch angles as well as their drift rates, 

while the strap-down integration was performed out of EKF and as a part of the measurement 

update. 
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 Marins et al. [90] and Yun and Bachmann [68], [211] investigated two approaches for EKF 

design using different measurement vectors: (1) using IMU readouts as the measurement; and (2) 

using the orientation (in quaternion) obtained by applying GNA or QUEST to 𝑦𝐴 and 𝑦𝑀 . They 

showed that in the former, the measurement-update equations were highly nonlinear functions of 

the state vector while in the latter, linear equations could be used to relate measurements to the 

state vector, which made the EKF suitable for real-time applications due to lower computational 

complexity. Also, Mazza et al. [212] introduced a similar magnetometer-free EKF but included 𝑏𝐺  

in the state vector. Sabatini [106] and Zhang et al. [213] included the accelerometer and 

magnetometer bias terms in the state vector of their proposed EKF and used their estimated values 

to correct the projection of 𝑔𝐺  and 𝑚𝐺  in IMU sensor frame during calculation of the predicted 

measurements.  

Also, Sabatini [214] developed a similar EKF by substituting the bias terms in the previous 

EKF by 𝑏𝐺  and 𝒹. Later, Sabatini [215] extended this work by introducing a variable-state-

dimension EKF. This EKF switched between an EKF where a first-order Markov process was used 

to model 𝒹 and a higher-order EKF where a second-order Markov process modeled the time rate 

of change of the magnetic field. This approach could make the propagation of state vector and 

calculation of the predicted measurements more realistic, particularly for long-duration tracking 

under magnetic disturbances. Following the same concept, Xu et al. [216] used a decision tree-

based switching technique to develop an EKF capable of changing its measurement model between 

three modes (high 𝑦𝐺 , high 𝑦𝐴, moderate 𝑦𝐴) to achieve robust tracking performance under 

different conditions.  

2.3.6.4 Complementary Kalman Filters (CKF) 

While it is common to use the KF structure to estimate the primary states directly, some works 

proposed the CKF structure, also known as the error-state KF [217], [218], to estimate the errors 

in the primary states [45], [219]. By defining the state vector as an error process, the a priori 

estimate of the state vector is always zero, and thus, the state transition, ℱ or 𝒻(∙), is zero, which 

simplifies the standard KF formulation. For instance, Foxlin [220], Setoodeh et al. [221], and 

Gebre-egziabher et al. [222] proposed CKFs by estimating the errors in gyroscope bias and Euler 

angles to correct 𝑦𝐺  and the strap-down integration output before and after the strap-down 

integration, respectively. Gebre-egziabher et al. [222] also used the quaternion errors to develop a 
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similar CKF and showed that the quaternion parametrization has advantages such as more efficient 

gain tuning process and computations as compared to Euler angle parametrization. To achieve 

more robust estimates for indoor orientation tracking, Zhang and Reindl [223] added a magnetic 

disturbance rejection step to the CKF by Foxlin [220]. 

Roumeliotis et al. [217] introduced a smoothing filter, comprised of two CKFs, where the 

first CKF propagated the attitude estimate forward and then updated it via the absolute orientation 

obtained from the accelerometer and sun sensor, while the second CKF propagated the most recent 

estimate back in time to lower the uncertainty of the estimation. To estimate the errors in the 

attitude of a mobile robot moving on uneven terrains using 𝑦𝐴 and the strap-down integration, Fuke 

and Krotkov [224] proposed the application of a CKF. Luinge and Veltink [109] developed an 

accelerometer-based CKF to estimate the error in gravitational acceleration and accelerometer 

offset by deriving the relationship between 𝑦𝐴 and the state vector as well as calculating the angular 

velocity based on the direction of the 𝑦𝐴 at each two successive time instants. Luinge and Veltink 

[114] also used both accelerometer and gyroscope to estimate the orientation error and gyroscope 

bias using the CKF structure. Later, the magnetometer was included in the CKF to prevent drift in 

the yaw angle, even under magnetic disturbances [107].  

 Hall et al. [225] proposed a CKF where 𝑦𝐺  was used to propagate the error in orientation 

while 𝑦𝐴 and GPS were used to perform the measurement-update. However, as the accelerometer 

and GPS had different sampling rates and reference frames, the proposed CKF took advantage of 

the incremental update concept [226], where the measurement update could be performed 

independently for each sensor. Kang et al. [227] developed a CKF to fuse a gyroscope and a vision 

system where a fading factor, tuned using fuzzy logic, has been applied to the Kalman gain, 𝒦, to 

tune the tracking performance of the filter in response to the quality of the vision system data. 

Kannan [228] proposed a linear CKF where the compensation of the drift in the estimated 

orientation was performed via the time-update equation (using the orientation obtained by TRIAD 

from 𝑦𝐴 and 𝑦𝐺) instead of the measurement-update equation. This approach resulted in a 

substantial improvement of the response and settling times of the proposed CKF.  
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Table 3 Review of the state-of-the-art SFAs with a Kalman Filter (KF) structure, including linear KF (LKF), extended KF (EKF), and Complimentary KF (CKF). 

Abbreviations used in the table are described in the table footnotes. 

Study Year Application Method State vector components Measurement-update Notes (gain tuning or thresholding, etc.) 

[208] 1982 STC EKF [Q, 𝑏𝐺] [Line-of-sight attitude sensor] - 

[209] 1991 SVTC EKF 
[Velocity, 𝜔, EA, altitude, 

wind gust velocity] 

[𝑦𝐺, 𝑦𝑀, airspeed sensor, barometric 

altimeter] 
- 

[210] 1994 MRTC EKF [Attitude] [𝑦𝐴, gyrometric attitude] - 

[189] 1995 MRTC LKF [Yaw] [𝑦𝐺] - 

[220] 1996 HMT CKF [ℯEA, ℯ𝑏𝐺] [𝑦𝐺, 𝑦𝑀] 
𝒬 ∝ max(𝑦𝐺) 

ℛ ∝ slosh in fluid acc. 

[224] 1996 MRTC CKF [ℯAttitude] [𝑦𝐴] - 

[217] 1999 MRTC CKF [ℯEA, ℯ𝑏𝐺] [𝑦𝐴, sun sensor] - 

[90] 2001 - EKF [Q, 𝜔 ] [𝑦𝐺, 𝑦𝐴, 𝑦𝑀] - 

[90] 2001 - GNA+EKF [Q, 𝜔 ] [�̂�, 𝑦𝐺], �̂� from GNA(𝑦𝐴,𝑦𝑀) - 

[47] 2002 SVTC LKF 

[GPS position, GPS 

receiver’s clock range bias, 

𝑏𝐺, 𝑏𝐴] 

[Position, velocity, clock] errors 

from the algebraic GPS equations 
- 

[190] 2003 - GNA+LKF [Q, 𝜔 ] [�̂�, 𝑦𝐺], �̂� from GNA(𝑦𝐴,𝑦𝑀) - 

[196] 2004 - LKF [Q, 𝜔 , 𝑏𝐺] [𝑦𝐺, 𝑦𝐴] - 

[67] 2004 HMT LKF [𝑔, 𝑚 ] [𝑦𝐴, 𝑦𝑀] - 

[206] 2004 
Walking robot 

motion tracking 

Ensemble of 

two LKFs 
[DCM(3)] [𝑦𝐴] Switching between LKFs by |𝑦𝐴| 

[94] 2004 - LKF [Q, 𝑏𝐺] [𝑦𝐴] or [𝑦𝑀] Adaptive 𝒬 

[109] 2004 HMT CKF [ℯ𝑔, ℯ𝑏𝐴] [𝑦𝐴] - 

[229] 2004 - LKF [1D angle, 𝜔] [1D-𝑦𝐺] - 

[221] 2004 - CKF [ℯEA, ℯ𝑏𝐺]  [EA from 𝑦𝐴 & 𝑦𝑀] - 

[222] 2004 SVTC CKF [ℯEA, ℯ𝑏𝐺] OR [ℯQ, ℯ𝑏𝐺] [EA from 𝑦𝐴 & 𝑦𝑀] Switching 𝒬 & ℛ between two levels 

[114] 2005 HMT CKF [ℯHelical angle/axis, ℯ𝑏𝐺] [Attitude from 𝑦𝐴 & 𝑦𝐺] - 

[45] 2005 - CKF [ℯQ, ℯ𝑏𝐺] [Sun sensor] - 

[107] 2005 HMT CKF 
[ℯHelical angle/axis, ℯ𝑏𝐺, 

ℯ𝒹] 

[Attitude from 𝑦𝐴 & 𝑦𝐺, magnetic 

vector from 𝑦𝑀 & 𝑦𝐺] 
- 
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Study Year Application Method State vector components Measurement-update Notes (gain tuning or thresholding, etc.) 

[106] 2006 HMT EKF [Q, 𝑏𝐴, 𝑏𝑀] [𝑦𝐴, 𝑦𝑀] Switching ℛ between two levels 

[68] 2006 HMT QUEST+EKF [Q, 𝜔 ] [�̂�, 𝑦𝐺], �̂� from QUEST(𝑦𝐴,𝑦𝑀) - 

[230] 2006 - EKF [Attitude, 𝜔 ] [𝑦𝐴,𝑥, 𝑦𝐴,𝑦, 𝑦𝐺] Adaptive acc. measurement equation 

[199] 2007 - LKF [𝑔, 𝑚 ] [𝑦𝐴, 𝑦𝑀] Abandoning past estimations by forgetting factor 

[202] 2007 - LKF EA [EA from 𝑦𝐴 & 𝑦𝑀] Switching ℛ between two levels 

[218] 2007 - CKF [ℯQ, ℯ𝑏𝐺] [𝑦𝐴, 𝑦𝑀] - 

[225] 2008 AVTC CKF [ℯQ] [ℯ�̂� from 𝑦𝐴 & GPS] Tuning ℛ based on ‖𝑦𝐴 − 𝑔𝐺 ‖ 

[231] 2008 SVTC CKF [ℯQ, ℯ𝑏𝐺] [𝑦𝐴, 𝑦𝑀] - 

[232] 2008 HMT EKF [ℯEA, 𝑏𝐺, 𝑏𝐴, 𝒹] [𝑦𝐴, 𝑦𝑀] 
𝒶 & 𝒹 rejection using vector selection + tuning 𝒬 

& ℛ  

[233] 2009 
Surgical tool 

motion tracking 
EKF [Q, 𝑏𝐺] [𝑦𝐴, 𝑦𝑀] - 

[86] 2009 HMT LKF [Q] [�̂� from 𝑦𝐴 & 𝑦𝑀 using [193]] 𝒶 & 𝒹 rejection using vector selection 

[48] 2009 
Augmented 

Reality  
- [EA, 𝜔 , 𝜔  , 𝑏𝐺] [�̂�, 𝑦𝐺], �̂� from 𝑦𝐴 & 𝑦𝑀 - 

[234] 2009 HMT EKF 
[Velocity, �̂�𝐴, 𝜔 , 𝑏𝐺, 

Attitude] 
[𝑦𝐺, 𝑦𝐴] - 

[200] 2009 - LKF [𝑔, 𝑚 , 𝑏𝐺] [𝑦𝐴, 𝑦𝑀] - 

[110] 2010 - CKF [ℯQ, 𝑏𝐺, 𝑏𝐴] [𝑦𝐴, 𝑦𝑀] 
Tuning ℛ using residual in acc. measurement-

update 

[235] 2010 HMT 
EKF+Particle 

Filter 
[EA, 𝑏𝐺] [EA from 𝑦𝐴 & 𝑦𝑀] - 

[236] 2010 HMT CKF [ℯQ] [𝑦𝐴, 𝑦𝑀] Tuning ℛ based on ‖𝑦𝐴 − 𝑔𝐺 ‖ & ‖𝑦𝑀 − 𝑚𝐺 ‖ 

[237] 2011 - CKF [ℯEA, ℯvelocity, ℯ𝑏𝐺, ℯ𝑏𝐴] Velocity from GPS 
𝒦 tuning by innovation-based adaptive 

estimation technique 

[194] 2011 - LKF [Q] [�̂� from FQA(𝑦𝐴,𝑦𝑀)] - 

[203] 2011 HMT LKF [Q, 𝒶] [𝑦𝑀, 𝑦𝐴, ‖𝑦𝐴‖] Switching 𝒬 between two levels 

[238] 2011 HMT EKF [Q, 𝑏𝐺] [𝑦𝐴, 𝑦𝑀] - 

[239] 2011 HMT CKF 
[ℯEA, ℯposition, ℯvelocity, 

ℯ𝑏𝐺, 𝑏𝐴] 

[Yaw from 𝑦𝑀, ℯ𝑏𝐺, Velocity from 

ZUPT] 
Heuristic heading reduction [240] 
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[214] 2011 HMT EKF [Q, 𝑏𝐺, 𝒹] [𝑦𝐴, 𝑦𝑀] - 

[241] 2011 - EKF [Q] [𝑦𝐴] - 

[242] 2011 - CKF [ℯQ, ℯ𝑏𝐺, ℯ𝐾𝐺] [ℯEA from 𝑦𝐴 & 𝑦𝑀] - 

[243] 2011 - EKF [Q, 𝑏𝐺] [𝑦𝐴, 𝑦𝑀] Tuning ℛ based on ‖𝑦𝐴 − 𝑔𝐺 ‖ 

[244] 2011 - EKF [DCM(1), DCM(3), 𝑏𝐺] [𝑦𝐴, 𝑦𝑀] - 

[245] 2011 HMT CKF [ℯEA, ℯ𝑏𝐺] [𝑦𝑀] Quasi-static geomagnetic field detection 

[246] 2012 
Surgical tool 

motion tracking 

Two LKFs + 

EKF 

LKF1: [𝑔], LKF2: [𝑚 ], 

EKF: [Q, 𝑏𝐺] 

LKF1: [𝑦𝐴], LKF2: [𝑦𝑀], EKF: [�̂� 

from 𝑦𝐴 & 𝑦𝑀] 
- 

[201] 2012 - LKF [𝑔, 𝑚 , 𝑏𝐺] [𝑦𝐴, 𝑦𝑀] - 

[212] 2012 HMT EKF [Q, 𝑏𝐺] [�̂� from 𝑦𝐴 & 𝑦𝑀] Switching ℛ a piecewise linear function 

[247] 2012 HMT/ SVTC LKF [𝑔] [𝑦𝐴] - 

[248] 2012 AVTC EKF [DCM(3), 𝜔 , 𝑏𝐺] [𝑦𝐴, 𝑦𝐺] Switching ℛ between two levels 

[249] 2012 HMT LKF [Q] [�̂� from 𝑦𝐴 & 𝑦𝑀] 𝒶 & 𝒹 rejection using vector selection 

[215] 2012 - 
Variable state 

EKF 

EKF1: [Q, 𝑏𝐺, 𝒹] 

EKF2: [Q, 𝑏𝐺, 𝒹, 𝒹 ] 
[𝑦𝐴, 𝑦𝐺] - 

[250] 2013 - CKF [ℯEA, ℯ𝑏𝐺, 𝐾𝐺] [ℯEA from 𝑦𝐴 & 𝑦𝑀] Switching ℛ between three levels 

[251] 2013 - EKF 
EKF 1: [DCM(3), 𝒶] 

EKF 2: [DCM(1), 𝒹] 
EKF1: [𝑦𝐴], EKF2: [𝑦𝑀] Resetting 𝒶 and 𝒹 by thresholding 

[252] 2013 SVTC CKF 
[ℯposition, ℯvelocity, ℯEA, 

𝑏𝐺, 𝑏𝐴] 
[Position, velocity] from GNSS - 

[213] 2013 HMT EKF [Q, 𝑏𝐴, 𝑏𝑀] [𝑦𝐴, 𝑦𝑀] Switching ℛ between two levels 

[253] 2013 - EKF [Q] [𝑦𝐴, 𝑦𝑀] - 

[204] 2014 - LKF [Q] [𝑦𝐴, 𝑦𝑀] Tuning ℛ based on acc. residuals 

[254] 2014 HMT 
Two-layer 

LKF 
EKF1: [𝑔], EKF2: [Yaw]  EKF1: [𝑦𝐴], EKF2: [𝑦𝑀] 

Innovation-based adaptive estimation tuning of ℛ 

using fuzzy logic 

[93] 2014 
HMT with 

smartphones 
EKF [Q, 𝑏𝐺, 𝒶] [𝑦𝐴, 𝑦𝑀] - 

[255] 2014 AVTC EKF [Q, 𝜔 , 𝑏𝐺] [�̂� from 𝑦𝐴 & 𝑦𝑀] - 

[256] 2014 HMT 
Two-layer 

LKF 

EKF1: [DCM(3)], EKF2: 

[DCM(1)] 
EKF1: [𝑦𝐴], EKF2: [𝑦𝑀] Switching ℛ between two levels 
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[257] 2014 AVTC CKF [ℯEA, ℯ𝑏𝐺, ℯ𝒶, ℯ𝒹] [𝑦𝐴, 𝑦𝑀] 𝒫𝐴 ∝ 𝐸𝑟𝑟𝑜𝑟(𝒶), 𝒫𝑀 ∝ 𝐸𝑟𝑟𝑜𝑟(𝒹) 

[258] 2015 

Marine Satellite 

Tracking 

Antenna 
LKF [Q] [𝑦𝐴, 𝑦𝑀] 𝒬 = 𝛼𝒬0, ℛ = (1 − 𝛼)ℛ0 

[104] 2015 HMT LKF [𝑔, 𝒶] [𝑦𝐴] - 

[85] 2015 HMT LKF+LKF LKF1: [𝑔, 𝒶], LKF2: [𝑚 , 𝒹] LKF1: [𝑦𝐴], LKF2: [𝑦𝑀] - 

[259] 2015 AVTC GDA+LKF [Q] [𝑦𝐴] GDA step size ∝ 𝑦𝐺𝑇𝑠  

[260] 2015 HMT EKF [Q] [𝑦𝐴] Switching ℛ between three levels 

[261] 2015 HMT LKF [ℯYaw, ℯ𝐾𝐺, 𝑏𝐺] [Yaw from 𝑦𝑀] - 

[228] 2015 HMT LKF [ℯEA, ℯ𝑏𝐺] - - 

[53] 2015 - 
Constrained-

LKF 
[𝜔 , DCM, 𝒶, 𝒹] [𝑦𝐺, 𝑦𝐴, 𝑦𝑀] - 

[54] 2015 - 
Constrained-

EKF 
[DCM(3), 𝑏𝐺,𝑘] [𝑦𝐴] Tuning ℛ based on ‖𝑦𝐴‖ 

[205] 2016 - LKF [Q] [𝑦𝐴, 𝑦𝑀] Tuning ℛ based on accelerometer residuals 

[262] 2016 AVTC CF-EKF 
[ℯposition, ℯvelocity, ℯEA, 

ℯ𝑏𝐺, ℯ𝑏𝐴, ℯ𝒹] 
[Position, velocity] from GNSS - 

[129] 2016 - LKF [Q] [Position, velocity] from GNSS - 

[263] 2016 HMT/ SVTC 
Two-layer 

LKF 
EKF 1: [𝑔], EKF 2: [𝑚 ] EKF1: [𝑦𝐴], EKF2: [𝑦𝑀] Switching ℛ between three levels 

[227] 2016 HMT CKF [ℯEA, ℯ𝑏𝐺] [EA from vision system] Adaptive fading factor by fuzzy logic 

[264] 2016 HMT LKF [EA, 𝑏𝐺] [Attitude from 𝑦𝐴] ℛ = ℛ𝑛𝑜𝑚𝑖𝑛𝑎𝑙 + ‖𝒶‖2 

[265] 2016 HMT CKF [ℯEA, ℯ𝑏𝐺] [𝑦𝐴, 𝑦𝑀] Tuning ℛ using Hidden Markov Model  

[216] 2017 AVTC EKF [Q] [𝑦𝐴] - 

[266] 2017 SVTC CKF [EA, 𝑏𝐺] [𝑦𝐴, velocity from GPS] - 

[267] 2017 AVTC EKF [Q, 𝑏𝐺] [𝑦𝐴, 𝑦𝑀] - 

[195] 2017 AVTC LKF [Q] [�̂� from 𝑦𝐴 & 𝑦𝑀] - 

[80] 2017 SVTC LKF [Q] [�̂� from 𝑦𝐴 & 𝑦𝑀] 𝒹 rejection using vector selection 

[198] 2017 - 
Two-layer 

LKF 
LKF1: [𝑔], LKF2: [𝑚 ] LKF1: [𝑦𝐴], LKF2: [𝑦𝑀] ℛ1 ∝ ‖𝒶‖2, ℛ2 ∝ ‖𝒹‖2 
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[268] 2017 - EKF [Q, 𝜔 ] [𝑦𝐴, 𝑦𝐺] - 

[269] 2017 

Marine satellite 

tracking 

antennas  
CKF [ℯQ, ℯ𝑏𝐺] [𝑦𝐴, 𝑦𝑀] - 

[270] 2017 
Wearable 

robotic systems 
EKF [𝜔 , 𝜔 , Q, Q , Q̈, 𝒹, 𝒹 ] [𝑦𝐺, 𝑦𝐴, 𝑦𝑀] - 

[191] 2018 
HMT with 

smartphones 
GDA+LKF [Q] [�̂�], �̂� from GDA(𝑦𝐴,𝑦𝑀) - 

[271] 2018 - CKF [ℯEA, ℯ𝑏𝐺] [𝑦𝐴, 𝑦𝐺] Tuning ℛ using Hidden Markov Model  

[126] 2018 - LKF [Q] [�̂� from 𝑦𝐴 & 𝑦𝑀] - 

[192] 2018 - GDA+LKF [Q] [�̂�], �̂� from GDA(𝑦𝐴,𝑦𝑀) 
ℛ = ℛ𝑛𝑜𝑚𝑖𝑛𝑎𝑙 + 𝛼𝑘  

𝒹 rejection using vector selection 

[272] 2018 HMT 
Two-layer 

CKF 

CKF1: [ℯAttitude], CKF2: 

[ℯYaw] 

CKF1: [ℯ�̂� from 𝑦𝐴], CKF2: [ℯ�̂� 

from 𝑦𝑀] 
Tuning ℛ by variances of errors 

[273] 2018 SVTC EKF 
[Position, velocity, Q, 𝑏𝐺, 

𝑏𝐴] 
[Position from GPS, �̂� from 𝑦𝐴] - 

[274] 2018 SVTC Two-step LKF [Q, 𝑏𝐺] Step1: [𝑦𝐴, 𝑦𝐺,𝑧], Step2: [𝑦𝑀] 
ℛ𝐴 ∝ exp (‖𝑦𝐴 − 𝑔𝐺 ‖

2
) 

ℛ𝑀 ∝ exp (‖𝑦𝑀 − 𝑚𝐺 ‖
2
) 

[197] 2019 - LKF+LKF LKF1: [𝑔], LKF2: [𝑚 ] LKF1: [𝑦𝐴], LKF2: [𝑦𝑀] - 

[275] 2019 HMT CKF [ℯEA, 𝑏𝐺, 𝒹] [𝑦𝐴, 𝑦𝑀]  

[276] 2019 SVTC CKF [ℯEA, ℯvelocity, ℯposition] [Velocity, Position] from GPS 
Combined Sage-Husa [277] and Strong Tracking 

[278] KFs  

[279] 2019 HMT EKF [Q] [𝑦𝐴, 𝑦𝑀] 

𝒬 ∝  𝑐𝑜𝑠𝑛𝑡 + max (‖𝜔‖ − 𝑡ℎ𝑟, 0)  

ℛ𝐴 ∝  𝑐𝑜𝑠𝑛𝑡 + max (|‖𝑦𝐴‖ − ‖ 𝑔𝐺 ‖| − 𝑡ℎ𝑟, 0) 

ℛ𝑀 ∝ 𝑐𝑜𝑠𝑛𝑡 + max (|‖𝑦𝑀‖ − ‖ 𝑚𝐺 ‖| − 𝑡ℎ𝑟, 0)  

[280] 2020 HMT EKF [EA] [EA] obtained by NCF Innovation-based adaptive estimation tuning of ℛ  

[281] 2020 MRTC EKF [Q, 𝑏𝐺] [�̂�], �̂� from TRIAD(𝑦𝐴,𝑦𝑀) Tuning ℛ by fuzzy logic 

[282] 2020 HMT LKF [Q] [𝑦𝐴] - 

[283] 2020 HMT Cascade LKF 
LKF1: [DCM(3)], LKF2: 

[𝑏𝐺] 
LKF1: [𝑦𝐴], LKF2: [𝑦𝐴] ℛ𝐴 ∝ ‖𝒶‖2 + ‖𝑦𝐴 − 𝑔𝐺 ‖

2
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[284] 2020 HMT GDA+EKF [Q, 𝑏𝐺] [�̂�], �̂� from GDA(𝑦𝐴,𝑦𝑀) GDA step size ∝ ‖𝑦𝐺‖, 𝑒𝑟𝑟𝑜𝑟(𝑦𝐴, 𝑦𝑀)  

[285] 2020 SVTC EKF [Q] [𝑦𝐴, 𝑦𝑀] 
Post-EKF error reduction by the proportional-

integral controller 

[286] 2020 AVTC EKF 
[Position, velocity, Q, 𝑏𝐺, 

𝑏𝐴, LiDAR bias] 
[Position, velocity, 𝑦𝐴] - 

[287] 2020 RATC CKF [ℯEA, ℯ𝑏𝐺] [𝑦𝐴, 𝑦𝑀] Adaptive tuning of ℛ using ellipsoidal method 

- Application: STC: Spacecraft (satellite) tracking/control; HMT: Human motion tracking; MRTC: Mobile robot tracking/control; RATC: Robotic arm tracking/control; AVTC: Aerial vehicle 
tracking/control; SVTC: Surface vehicle tracking/control; GNSS: Global Navigation Satellite System. 

- Method: GNA: Gauss-Newton algorithm; GDA: Gradient descent algorithm; FQA: Factored quaternion algorithm, QUEST: QUaternion ESTimator; TRIAD: TRi-axial Attitude Determination; 
ZUPT: Zero-Velocity-Update strategy. 

- State vector components: Q: Quaternion parametrization of orientation; EA: Euler angle parametrization of orientation; DCM: Direction cosine matrix parametrization of orientation. 

- Measurement-update: 𝑏𝐺: Gyroscope bias; 𝑏𝐴: Accelerometer bias; 𝑏𝑀: Magnetometer bias; 𝒶: external non-gravitational acceleration; 𝒹: magnetic disturbance; �̂�: Orientation used in 

measurement-update of KF; 𝜔 : Estimated angular velocity; 𝑔: Estimated gravitational acceleration;  𝑚 : Estimated geomagnetic field. 

- Notes: 𝒬: System model covariance matrix; ℛ: Measurement model covariance matrix; 𝒫: State error covariance matrix; 𝒦: Kalman filter gain. 
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2.3.6.5 Modified Kalman Filters 

Ren and Kazanzides [233], [246] proposed a two-layer filtering scheme such that two LKFs in the 

first layer were designed to estimate �̂�𝐺  and 𝑚 𝐺  from 𝑦𝐴 and 𝑦𝑀 , respectively, and an EKF in the 

second layer was used to correct the predicted orientation by strap-down integration using the 

orientation calculated by vector observations from the first layer. Music et al. [235] introduced a 

two-layer filter where in the first layer, a standard EKF estimated orientation using strap-down 

integration and direct Euler angle calculation from 𝑦𝐴 and 𝑦𝑀 , while the estimated orientation in 

the second layer (calculated using a Particle Filter) was used to present extra information to EKF 

and improve the overall performance. Sabatelli et al. [253] developed a two-layer filter where the 

first and second layers used 𝑦𝐴 and 𝑦𝑀 , respectively, to correct the propagated orientation by the 

strap-down integration. Also, Dang and Nguyen [251] proposed a two-layer filter where in the first 

layer, an EKF estimated the third column of direction cosine matrix (associated with attitude) and 

𝒶 while in the second layer, an EKF with similar structure estimated the first column of direction 

cosine matrix (associated with yaw angle) and 𝒹. Such structures have the benefit of eliminating 

the effect of magnetic disturbance from the attitude estimations.  

2.3.6.6 Adaptive gain tuning of Kalman Filters 

KF performance highly relies on an accurate definition of the system and measurement models, as 

well as noise covariance matrices (commonly, 𝒬 and ℛ are defined before the estimation starts 

and remain fixed during the tracking process). However, in reality, 𝒬 and ℛ could change over 

time due to the time-varying nature of the errors, such as orientation tracking during slow (quasi-

static) and fast motions. Therefore, adaptive KFs have been proposed to respond to the changes in 

the nature of the error by tuning 𝒬 and ℛ in real-time [288].  

For example, in the covariance scaling technique, 𝒬 or ℛ are scaled by the factor 𝒮𝑘 > 1 to 

put more weight on the a priori state vector 𝓍−, or measurements, respectively [289]. 𝒮𝑘 can be 

tuned using the magnitude of 𝑦𝐴, 𝑦𝐺 , and/or 𝑦𝑀  at some predefined levels [106], [212], or the 

magnitude of the predicted residuals [289]. For example, Suh [110] and Suh et al. [230] customized 

the application of the covariance scaling technique for a CKF and EKF, respectively, such that 

instead of applying a small 𝒮𝑘 to all elements of  𝒬 or ℛ to guard against 𝒶 (and rely more on 𝑦𝐺), 

first, the direction of the 𝒶 was estimated, and small weights were supplied only for the affected 

axes. Sun et al. [236] included an adaptive scheme in their standard CKF to weight ℛ based on the 
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error between magnitude and direction of 𝑦𝐴 (𝑦𝑀) with its reference value recorded during static 

(magnetically undisturbed) condition. Later, this method was extended by Johnson and Sathyan 

[290] to include 𝑏𝐺  estimation. Tong et al. [271] proposed the application of a hidden Markov 

Model recognizer to identify the measurement disturbances and adjust ℛ of their proposed CKF 

adaptively. Also, Jamil et al. [291] used an Artificial Neural Network to eliminate the errors in 𝑦𝐴 

and 𝑦𝐺  by adjusting ℛ. 

In the innovation adaptive estimation technique, the innovation sequence, that is, the 

difference between the real measurement and its predicted value by the KF, is used in an algorithm 

known as the covariance matching to tune the value of 𝒬, ℛ, or 𝒦 such that the actual value of the 

innovation sequence covariance matrix matches its theoretical value [237], [292]. Finally, in the 

multiple-model adaptive estimation technique, a bank of KFs (each using a different 𝒬 or ℛ) runs 

in parallel to calculate the a posteriori state estimate 𝓍+ based on the weighted combination of the 

predicted state by each KF (KF weights could be obtained based on the probability density function 

of the innovation sequence covariance matrix) [293].  

2.3.7 Lessons learned 

Numerous works proved the efficiency of SFAs in compensating the limitations associated with 

the strap-down integration or vector observation algorithms for orientation tracking with IMUs. In 

this section, we listed the lessons learned during the literature survey. The general flowchart of an 

SFA in Figure 5 includes features that could improve the accuracy and robustness of the orientation 

estimation. 

2.3.7.1 Gyroscope and Strap-down Integration 

strap-down integration of 𝑦𝐺  is the core of almost all CFs and KFs. Therefore, the accuracy of the 

propagated orientation in time via strap-down integration is vital to the accuracy and robustness of 

any SFA, especially when aiding sensors’ recordings, i.e., 𝑦𝐴 and 𝑦𝑀 , are not reliable, such as 

tracking under high dynamics or magnetically disturbed environments. To improve the accuracy 

of strap-down integration, the following must be considered: 
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Figure 5 Flowchart of a general SFA containing offline calibration of sensors, vector selection for imperfect measurement 

rejection, and adaptive gain tuning. Block 1 and 4 show the offline calibration of the gyroscope, accelerometer, and 
magnetometer; block 2 shows the online estimation of the gyroscope bias; block 3 shows strap-down integration (SDI); 

block 5 shows the online estimation of the external non-gravitational acceleration and magnetic disturbance; block 6 shows 

the orientation estimation with accelerometer and magnetometer; blocks 7 and 8 show the adaptive gain tuning of the SFA; 

and block 9 shows the fusion gains. 

1. Use a gyroscope with low bias.  

2. Correct the gyroscope’s static bias and scale factor (block 1 in Figure 5). For the static bias, 

before any data acquisition, the IMU must be turned on and put at rest for a while 

(commonly specified by the manufacturer, and if not, at least 20 minutes according to [82]). 

This will ensure that the gyroscope has reached ambient temperature, and the estimated 

static bias will not change significantly due to temperature change. Then, 𝑦𝐺  must be 

measured when the IMU is at rest to obtain an estimate of the static bias. Finally, the 

estimated static bias must be removed from 𝑦𝐺  recorded during data acquisition.  

3. Use stochastic models [107], [214] or heuristics [81] to estimate the time-varying 𝑏𝐺  in 

real-time (block 2 in Figure 5). A first-order Markov process, as in (1b), can be used for 

this purpose. According to the principle of pseudo-noise injection, estimating 𝑏𝐺  can 
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improve the accuracy and robustness of the orientation tracking, even for short trials where 

𝑏𝐺  does not have time to change drastically [104].  

4. Use an accurate estimation of exp(∙) for the strap-down integration in Equation 7 (block 3 

in Figure 5). For example, using a first-order Taylor series showed inaccurate results under 

low sampling frequencies [112].  

2.3.7.2 Accelerometer and magnetometer 

During long-duration trials, the use of an accelerometer and magnetometer are crucial to an SFA, 

as they can correct the cumulative error of the strap-down integration. Thus, consider the following 

for these aiding sensors: 

1. Evaluate the calibration of these sensors (blocks 4 in Figure 5). Various procedures have 

been introduced in the literature to verify and possibly re-calibrate accelerometers [66], 

[108], [294] and magnetometers [295]. These procedures use ad hoc tests to estimate the 

scale factors 𝐾𝐴 and 𝐾𝑀 (in Equation 3 and Equation 5), as well as the bias terms of these 

sensors, which can be later used to correct 𝑦𝐴 and 𝑦𝑀 .  

2. Use online stochastic models, e.g., first-order Markov processes as in Equation 4 and 

Equation 6, to estimate 𝒶 and 𝒹, respectively, and correct 𝑦𝐴 and 𝑦𝑀  (blocks 5 in Figure 

5). This correction is effective for motions with high dynamics or in magnetically disturbed 

environments [104], [106], [107].   

2.3.7.3 Dealing with magnetic disturbance 

Magnetic disturbance can significantly affect the yaw angle estimation, which in turn may affect 

the attitude estimation. Thus, consider the following when formulating an SFA: 

1. Decouple the attitude estimation from 𝑦𝑀  or yaw angle (block 6 in Figure 5). For example, 

use TRIAD, instead of QUEST, as the vector observation algorithm in CF or KF, or use 

two-layer filters as in [134], [158], [198], [263], [274].  

2. Use vector selection to detect and reject imperfect measurements (block 7 in Figure 5). 

When the geomagnetic field is disturbed, the field strength and dip angle change 

significantly. Therefore, magnetic disturbance can be identified by applying thresholds to 

the field strength and/or dip angle. In such cases, the propagated orientation by strap-down 

integration can be declared as the estimated orientation without any correction, see [78] for 
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more details. A similar approach can be applied to 𝑦𝐴 to reduce the effect of non-

gravitational acceleration.  

2.3.7.4 Adaptive gain tuning 

Gain tuning plays a significant role in the performance of any SFA; if gains are selected 

improperly, the SFA could even diverge. Therefore, consider the following regarding SFA gains: 

1. Use an online gain turning strategy to adaptively put more weight on the most reliable 

source of information (block 8 in Figure 5). For instance, to reduce the effect of correction 

via the magnetometer and rely more on the gyroscope, when the magnetic disturbance is 

detected using a vector selection, the CF gain or KF measurement covariance matrix should 

be adjusted accordingly.  

2. Decouple the gains associated with the gyroscope, accelerometer, and magnetometer 

(blocks 9 in Figure 5). Generally, developing a KF with a different gain for each sensor is 

easy. However, in most well-recognized CFs, such as [64], [65], the same gain is used to 

weight accelerometer and magnetometer. In such cases, both sensors will be declared 

reliable or unreliable at the same time, while one can be more reliable than the other one.  

3. Select the filter gains rigorously. Although filter gains found by trial-and-error might result 

in acceptable estimations under certain working conditions, the filter performance will not 

be guaranteed for other situations. Therefore, filter gains must be evaluated under various 

motion patterns, intensities, and durations. 

2.3.7.5 Beyond EKF 

Violation of the assumptions that were used to formulate a filter can degrade its performance. 

Thus, consider the following two extensions for KFs: 

1. When execution time is not a consideration, use unscented KF instead of EKF. As EKF 

uses linearization to propagate the mean and covariance of the state vector, its performance 

can deteriorate for highly nonlinear systems.  

2. Use robust filtering techniques when adaptive gain tuning is not possible. For example, the 

𝐻∞ filter formulates an estimation strategy that bounds the worst-case estimation error by 

adaptively weighting the state error covariance matrix [188]. Also, the 𝐻∞ filter assumes 
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that the process and measurement noises are energy bounded signals, and drops the 

Gaussian distribution assumption for noises in formulating the standard KF. 

2.4 Conclusions 

A survey of the literature showed that IMUs could track the orientation of the body segments using 

SFAs. Also, we concluded that for an SFA to be effective, the embedded sensors must be calibrated 

(offline), error sources of the embedded sensors must be estimated and removed from the sensors’ 

readouts (online), and the gains of the SFA must be tuned adaptively. Moreover, we identified the 

need for benchmarking studies as the main gap in the literature. 

Thus, to ensure that the estimated orientation has high accuracy and robustness under 

various motion patterns and intensities, Chapter 4 introduces a general framework for adaptive 

gain regulation of SFAs. Also, to ensure high accuracy for long-duration tasks, Chapter 5 presents 

two new SFAs that estimate the error sources of the sensors embedded in an IMU and correct the 

IMU readouts before being used for orientation estimation. Chapter 5 also contains a 

comprehensive benchmarking study to identify the most effective fusing strategy.  

Nevertheless, the estimated orientation with SFAs describes the IMU sensor frame 

orientation with respect to a global reference frame. Thus, before delving into orientation 

estimation with IMUs, Chapter 3 introduces two procedures for sensor-to-segment calibration. 

Using these procedures, we can track the orientation of the body segments (i.e., anatomical frames 

of the segments) using IMUs. 
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Chapter 3  

Sensor-to-Segment Calibration 

This chapter provides two methods for sensor-to-segment calibration, enabling us to transform 

IMU data from its sensor frame to the anatomical frame of the body. Portions of this chapter have 

been adopted and/or edited from: 

M. Nazarahari, H. Rouhani, “Semi-automatic sensor-to-body calibration of inertial sensors on 

lower limb using gait recording,” IEEE Sensors Journal, Vol. 19(24), pp. 12465 - 12474, 2019. 

M. Nazarahari, A. Noamani, N. Ahmadian, H. Rouhani, “Sensor-to-body calibration procedure 

for clinical motion analysis of lower limb using magnetic and inertial measurement units,” Journal 

of Biomechanics, Vol. 85, pp. 224-229, 2019. 

3.1 Introduction 

IMUs have been extensively used as an ideal tool for ambulatory human motion analysis because 

of their lightweight, small size, and long battery life [39], [57], [296], [297]. Also, the accuracy 

and reliability of IMUs have been validated in various biomedical applications against gold-

standard in-lab MCSs [298]. However, Anwary et al. showed that proper selection of attachment 

site/orientation of the IMU would affect the inter-participant repeatability of the gait assessment. 

Therefore, an effective methodology is required for virtual re-orientation of the IMU to obtain 

accurate and repeatable results, particularly for IMU applications in the free-living environment 

when an inexperienced user attaches the IMU over body segments. Also, IMUs measure the body 
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acceleration and angular velocity in their frame of reference instead of the anatomical frame (AF) 

of body segments, as recommended by the International Society of Biomechanics (ISB) [299]. 

Thus, to obtain clinically meaningful joint angles, the sensor frame (SF) of the IMU must be 

transformed into the AF of its corresponding segment through a calibration procedure.  

Information provided by the IMU during a specific functional task, e.g., single-axis rotation 

of a segment (e.g., knee flexion) or static posture (e.g., quiet standing), can be used for sensor-to-

segment calibration. For example, Palermo et al. presented a calibration approach based on two 

predefined static postures to align IMUs attached to the lower limb with their corresponding AFs 

[300]. Favre et al. proposed passive flexion/extension (FE) and abduction/adduction (AA) of the 

knee for shank IMU calibration [301]. Then, they calibrated the thigh IMU such that the anatomical 

knee joint angle was equal to zero during the standing posture. “Outwalk” procedure proposed a 

comprehensive protocol for IMU attachment, AF definition, and a multi-step calibration [302]. 

Seel et al. proposed an optimization-based approach to calibrate thigh and shank IMUs based on 

arbitrary motions of the leg [303]. Recently, estimation of IMUs’ orientations during a T-pose or 

N-pose was suggested to align IMU frames with the “known” orientation of each segment in that 

posture [304], [305].  

The main limitations of the above-mentioned sensor-to-segment calibration procedures 

could be summarized as follows: (1) an experienced operator was required to perform specific, 

usually demanding, procedures [300], [302]; (2) an IMU was calibrated based on another IMU 

readout [303]; (3) IMU orientation had to be estimated, which could be error-prone, especially 

when a magnetometer was used [304]–[306]; or (4) an ad hoc tool was required [307]. Therefore, 

the mentioned procedures limit the ambulatory measurement capabilities of the IMUs for human 

motion analysis in a free-living environment.  

Considering the limitations of the previously introduced calibration procedures, the first 

objective of this chapter was to develop and validate an accurate and repeatable calibration 

procedure for IMUs attached to the pelvis, hip, knee, and foot. Then, we aimed to investigate 

whether it is at all necessary to perform an extra, calibration-specific, functional movement for 

sensor-to-segment calibration of the IMUs attached to the thigh, shank, and foot, or whether it is 

sufficient to use the data collected during the main gait analysis trials for sensor-to-segment 

calibration. In particular, this chapter aimed at filling the gap between developed technologies for 
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human lower limb motion analysis using IMUs and clinical gait analysis in the free-living 

environment by introducing simple yet effective sensor-to-segment calibration procedures.  

For this purpose, we hypothesized that if the IMUs were aligned with their corresponding 

AFs, hip FE or walking along a straight line could replicate a single-axis rotation in the sagittal 

plane for the thigh, shank, and foot IMUs. This hypothesis was based on (1) the definition of AFs 

according to the ISB recommendation [16]; and (2) the thigh, shank, and foot motion pattern during 

straight walking. Thus, the proposed calibration procedures included (1) hip FE or AA; or (2) 

straight walking for eight steps together with three to five seconds of quiet standing. Also, to assess 

the effect of the number of steps on calibration accuracy and repeatability, straight walking for 

five steps was also considered. The accuracy and repeatability of the proposed calibration 

procedures were evaluated in an experimental study with ten able-bodied participants to validate 

the mentioned hypothesis. Also, the results were compared with the literature. Finally, the effect 

of the proposed calibration procedures on clinical joint angle measurement was evaluated during 

over-ground walking.  

3.2 Measurement Setup 

Three IMUs (MTws, Xsens Technologies, The Netherlands) were attached to rigid plastic plates 

equipped with four retro-reflective markers (Figure 6(a)). Each IMU included a tri-axial 

accelerometer (range: ±16g) and a tri-axial gyroscope (range: ±2000 degrees/s). The plates were 

fixed over the thigh, shank, and foot segments using medical tape. IMUs recorded data with a 

sampling frequency of 100 Hz synchronously and transferred wirelessly to a computer. After data 

collection and before performing the calibration, the axes of the sensor frames of all three IMUs 

were rotated to match the coordinate system shown in Figure 6(a). Also, a MCS (VICON, Oxford 

Metrics Group, UK) with eight cameras was used as the reference system to record the 3D position 

of the plate markers and 11 markers attached on anatomical landmarks of the thigh, shank and foot 

segments (according to [308]), synchronized with IMUs. The MCS was used for validation of the 

purposed calibration only. 
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Figure 6 (a) and (b) The measurement system, including IMUs, plates, and retro-reflective markers on 

anatomical landmarks of sacrum, thigh, shank, and foot, (c) hip flexion/extension, (d) hip 

abduction/adduction, and (e) IMU sensor frame and foot AF. 

3.3 Sensor-to-Segment Calibration 

The AFs, which were obtained using anatomical landmarks [308] along with the joint coordinate 

system defined in [309], were utilized to measure clinically meaningful 3D rotations of lower limb 

joints, as recommended by the ISB [299]: (1) knee: flexion/extension (KFE), abduction/adduction 

(KAA), and internal/external rotation (KIE); and (2) ankle: dorsi/plantar flexion (ADP), 

inversion/eversion (AIV), and internal/external rotation (AIE). 
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In general, an IMU’s sensor frame, SF, (shown in green in Figure 6(e)) must be aligned 

with the AF of its corresponding segment (shown in purple in Figure 6(e)) using a calibration 

procedure to measure clinically meaningful kinematics: 𝑅𝑆𝐹
𝐺𝐹  and 𝑅𝐴𝐹

𝐺𝐹  represent the rotation 

matrices of SF and AF with respect to the global frame of the laboratory (GF). To align SF with 

AF, this chapter presents the following calibration procedures: (1) quiet standing for three to five 

seconds followed by twenty hip FE or AA as seen in Figure 6(c) and (d); and (2) quiet standing 

for three to five seconds followed by eight steps of level walking (with arbitrarily selected speed) 

on a straight line. Then, Vertical Calibration followed by Heading Calibration is required to obtain 

the rotation matrix of the sensor-to-body calibration ( 𝑅𝑆𝐹
𝐴𝐹 )𝐼𝑀𝑈 using IMUs’ readouts (Figure 6(e)). 

Vertical and Heading Calibration procedures are described below [23]. 

I) We defined Vertical Calibration as finding the required transformation ( 𝑅𝑆𝐹
𝑉𝐹 ) for 

aligning IMU’s vertical axis with the gravitational acceleration during the quiet standing period 

(Figure 6(e)). 𝑅𝑆𝐹
𝑉𝐹  was composed of rotations around the x-axis and z-axis of the original IMU SF 

(shown with 𝛼 and 𝛽 in Figure 6(e), respectively) and was obtained by Equation 14: 

𝑦𝑉𝐹 = (𝑦𝐴,𝑥 , 𝑦𝐴,𝑦 , 𝑦𝐴,𝑧) → 𝑦𝑉𝐹 = 𝑦𝑉𝐹/‖𝑦𝑉𝐹‖ 

𝑧𝑉𝐹 = [1 0 0]𝑇 × 𝑦𝑉𝐹 → 𝑧𝑉𝐹 = 𝑧𝑉𝐹/‖𝑧𝑉𝐹‖ 

𝑥𝑉𝐹 = 𝑦𝑉𝐹 × 𝑧𝑉𝐹 → 𝑥𝑉𝐹 = 𝑥𝑉𝐹/‖𝑥𝑉𝐹‖ 

𝑅𝑆𝐹
𝑉𝐹 = [𝑥𝑉𝐹 𝑦𝑉𝐹 𝑧𝑉𝐹] 

Equation 14 

where (𝑦𝐴,𝑥 , 𝑦𝐴,𝑦, 𝑦𝐴,𝑧) was the mean value of the accelerometer readouts during the quiet standing 

period. 𝑅𝑆𝐹
𝑉𝐹  was an orthogonal matrix that aligned the y-axis of the IMU with the gravitational 

acceleration, assuming that the x-axis of the IMU lies in the sagittal plane of the body during the 

quiet standing period [310], [311]. The possible errors caused by assuming an x-axis in the sagittal 

plane of the body during Vertical Calibration will be canceled out by Heading Calibration 

automatically. Also, it should be noted that Equation 14 was similar to other static orientation 

estimation methods which use accelerometer readouts. However, in contrast to similar methods 

which calculate the Euler angles required for 𝑅𝑆𝐹
𝑉𝐹  (shown with 𝛼 and 𝛽 in Figure 6(e)), Equation 

14 was formulated to calculate the rotation matrix required for Vertical Calibration directly and 

eliminate the extra step of converting Euler angles to the rotation matrix. Next, Heading 

Calibration must be performed. 
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II) We defined Heading Calibration as finding a single-axis rotation ( 𝑅𝑉𝐹
𝐴𝐹 ) around the y-

axis (shown with 𝛾 in Figure 6(e)) to align the x-axis and z-axis of the vertically aligned IMU 

frame ( 𝑅𝑉𝐹
𝐺𝐹 ) with the sagittal and frontal planes of the AF, respectively. We hypothesized that if 

each IMU was aligned with its corresponding AF, hip FE or walking along a straight line could 

replicate a single-axis rotation (around z-axis) for the thigh, shank, and foot IMUs. Thus, the 

angular velocity recorded by each IMU during repetitive hip FE or straight walking in its x-z plane 

was used to determine the optimal single-axis rotation around the y-axis, which aligns the x-axis 

and z-axis of the IMU with the sagittal and frontal planes of the AF, respectively. For this purpose, 

Principal Component Analysis [33] was used to determine the single-axis rotation around the y-

axis, which maximized the variations of angular velocity around the z-axis during repetitive hip 

FE or straight walking as in Equation 15: 

𝛾 =  tan−1 (
𝐶(2,1)

𝐶(1,1)
) 

𝑅𝑉𝐹
𝐴𝐹 = [

cos 𝛾 0 sin 𝛾
0 1 0

− sin 𝛾 0 cos 𝛾
] 

Equation 15 

where 𝐶 is the Principal Component coefficient matrix, 𝛾 is the single-axis rotation around the y-

axis (Figure 6(e)), and 𝑅𝑉𝐹
𝐴𝐹  is the Heading Calibration matrix. The Principal Component 

coefficient matrix can be obtained with the “pca” function in MATLAB. Since the gyroscope 

readouts were not used to estimate the IMU orientation, gyroscope drift will not affect the proposed 

calibration [312]. Then, the final calibration matrix (( 𝑅𝑆𝐹
𝐴𝐹 )𝐼𝑀𝑈) was calculated by Equation 16 

[23]:   

( 𝑅𝑆𝐹
𝐴𝐹 )𝐼𝑀𝑈 = 𝑅𝑉𝐹

𝐴𝐹 ∙ 𝑅𝑆𝐹
𝑉𝐹  Equation 16 

Finally, the orientation of the AF obtained from IMU was determined by Equation 17:  

( 𝑅𝐴𝐹
𝐺𝐹 )𝐼𝑀𝑈 = ( 𝑅𝑆𝐹

𝐺𝐹 )𝐼𝑀𝑈 ∙ ( 𝑅𝑆𝐹
𝐴𝐹 )𝐼𝑀𝑈

𝑇  Equation 17 

3.4 Experimental Study 

The accuracy and repeatability of the proposed calibration procedures were evaluated through an 

experimental study with ten able-bodied participants (all male, 24+3 years old, 75+6 kg, 178+5 

cm). The Research Ethics Board Committee of the University of Alberta approved the study 
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protocol, and written consent was obtained from all participants. During the experimental study, 

participants performed the following movements twice (two repetitions): straight walking for five 

steps, straight walking for eight steps, active hip FE (20 times), passive knee FE (performed by 

study coordinator), passive knee AA (performed by study coordinator), quiet standing for five 

seconds, and quiet sitting for five seconds. Knee FE/AA and quiet standing/quiet sitting data were 

used to compare the proposed calibration procedures with the literature [300], [301] when applied 

to the AF definitions identical to those in the present study. To avoid any bias in the walking 

pattern of the participants, they were not informed that their movement would be used for 

calibration. At the end of the session, participants walked in an oval-shaped path for 40 seconds. 

The above procedure was recorded as the Test session. Then the sensors were removed and 

attached again to the body, and the same procedure was repeated as the Retest session. 

3.5 Data Analysis 

3.5.1 Performance Evaluation of the Calibration Using MCS 

A plate frame (PF) was constructed based on the three markers of each rigid plate. Then the 

orientations of the three plates (( 𝑅𝑃𝐹
𝐺𝐹 )𝑀𝐶𝑆) were recorded at each time instant by the MCS. The 

misalignment between the IMU’s SF and the plate frame ( 𝑅𝑆𝐹
𝑃𝐹 ) for each body segment was 

estimated according to [313]. To this end, the misalignment between the normal vector to the plate 

(using plate markers and MCS) and the gravitational acceleration (using accelerometer) were 

calculated when the plate was placed over a level surface horizontally and vertically. Then the 

rotation matrix ( 𝑅𝑆𝐹
𝑃𝐹 ) which would correct this misalignment was computed. Additionally, the true 

orientation of the AF of each segment ( 𝑅𝐴𝐹
𝐺𝐹 )𝑀𝐶𝑆 was determined based on markers on anatomical 

landmarks according to [308]. Therefore, a reference for the calibration matrix (( 𝑅𝑆𝐹
𝐴𝐹 )𝑀𝐶𝑆) was 

obtained using the MCS to transform each IMU’s SF to its corresponding AF during the quiet 

standing period as in Equation 18: 

( 𝑅𝑆𝐹
𝐴𝐹 )𝑀𝐶𝑆 = ( 𝑅𝐴𝐹

𝐺𝐹 )𝑀𝐶𝑆
𝑇 ∙ ( 𝑅𝑃𝐹

𝐺𝐹 )𝑀𝐶𝑆 ∙ 𝑅𝑆𝐹
𝑃𝐹  Equation 18 

Then the difference between the estimated calibration matrix (( 𝑅𝑆𝐹
𝐴𝐹 )𝐼𝑀𝑈) obtained from IMU 

readouts and the reference (( 𝑅𝑆𝐹
𝐴𝐹 )𝑀𝐶𝑆) obtained using the MCS was quantified as a helical angle 

[23] as in Equation 19: 
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𝜃 = cos−1(
trace(( 𝑅𝑆𝐹

𝐴𝐹 )𝑀𝐶𝑆
𝑇 ∙ ( 𝑅𝑆𝐹

𝐴𝐹 )𝐼𝑀𝑈) − 1

2
) Equation 19 

The smaller the 𝜃, the closer ( 𝑅𝑆𝐹
𝐴𝐹 )𝐼𝑀𝑈 and ( 𝑅𝑆𝐹

𝐴𝐹 )𝑀𝐶𝑆 . Note that the above approach provides a 

fair assessment of calibration accuracy and repeatability by isolating the calibration errors from 

other sources of error, such as IMU orientation estimation, as discussed in [23].  

3.5.2 Test/Retest Repeatability 

𝜃 was calculated for each repetition during Test and Retest sessions for hip FE and AA, and straight 

walking for five-step (PC5) and eight-step (PC8) cases to assess the Test/ Retest repeatability. Then 

the obtained 𝜃 was compared between the two repetitions of each session and between the Test 

and Retest sessions.  

3.5.3 Effect of Quiet Standing Duration on Vertical Calibration 

To assess the effect of quiet standing duration on the repeatability of Vertical Calibration, the 

helical angle associated with the Vertical Calibration rotation matrix 𝑅𝑆𝐹
𝑉𝐹  (see Equation 14) was 

calculated for different durations of quiet standing (1, 2, 3, and 4 seconds) for foot IMU of all 

participants and compared via statistical test. 

3.5.4 Effect of the Number of Repetitions/Steps and Performance Comparison 

with the Literature  

Participants were asked to perform hip FE (or AA) 20 times continuously. Then, Principal 

Component Analysis was applied to every 𝑘 (𝑘 = 1, ⋯, 20) consecutive motions starting from the 

first motion. The mean and standard deviation values of 𝜃 associated with each 𝑘 consecutive 

motion were calculated to evaluate the effect of the number of repetitions of active hip FE (or AA) 

on the accuracy and repeatability of functional calibration. Also, participants were asked to walk 

for (1) five steps (PC5); and (2) eight steps (PC8) to investigate the effect of the number of steps 

on calibration accuracy and repeatability. Statistical analysis (see Section 3.5.6) was employed to 

compare the accuracy and repeatability of the proposed calibration procedures with the literature 

[300], [301]. 
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3.5.5 Effect of the Calibration on 3D Joint Angle Measurement 

The orientations of the thigh, shank and foot AFs were obtained based on both IMU and MCS 

recordings during 40 seconds of walking. Then knee and ankle clinical joint angles were obtained 

using both systems. To isolate the error in 3D joint angle estimation due to the calibration from 

other sources of error, such as errors of the algorithm that estimate orientation using IMU readouts 

[64], [212], [314], we used orientation estimations based on the plate frames (( 𝑅𝑃𝐹
𝐺𝐹 )𝑀𝐶𝑆) measured 

by the MCS instead of using IMU readouts to determine the orientation of IMUs as in Equation 

20: 

( 𝑅𝑆𝐹
𝐺𝐹 )𝑀𝐶𝑆 = ( 𝑅𝑃𝐹

𝐺𝐹 )𝑀𝐶𝑆 ∙ 𝑅𝑆𝐹
𝑃𝐹   Equation 20 

where ( 𝑅𝑆𝐹
𝐺𝐹 )𝑀𝐶𝑆 is the orientation of an IMU obtained from the plate frame measured by the MCS. 

To this end, the plate frame orientation was transformed into the IMU orientation by applying the 

previously calculated misalignment between the plate and IMU frames. To calculate ( 𝑅𝑃𝐹
𝐺𝐹 )𝑀𝐶𝑆, 

the direction of the vectors connecting three plate markers was calculated in the MCS reference 

coordinate system. The vector cross product of these vectors was calculated at each time instant to 

obtain the orientation of the plate frame (( 𝑅𝑃𝐹
𝐺𝐹 )𝑀𝐶𝑆). Finally, the orientation of each AF was 

obtained by the proposed calibration as in Equation 21: 

( 𝑅𝐴𝐹
𝐺𝐹 )𝐼𝑀𝑈 = ( 𝑅𝑆𝐹

𝐺𝐹 )𝑀𝐶𝑆 ∙ ( 𝑅𝑆𝐹
𝐴𝐹 )𝐼𝑀𝑈

𝑇  Equation 21 

where ( 𝑅𝑆𝐹
𝐴𝐹 )𝐼𝑀𝑈 is the calibration matrix calculated by Equation 16 using IMU readouts. To assess 

the accuracy of the proposed calibration on 3D lower limb joint angle measurement, these angles 

were calculated based on the following: (1) IMU SFs when no calibration was applied (( 𝑅𝑆𝐹
𝐺𝐹 )𝑀𝐶𝑆 

according to Equation 20); (2) IMU SFs when the proposed calibration was applied (( 𝑅𝐴𝐹
𝐺𝐹 )𝐼𝑀𝑈 

according to Equation 21); and (3) AFs constructed by anatomical landmark markers (( 𝑅𝐴𝐹
𝐺𝐹 )𝑀𝐶𝑆) 

(served as reference angles). 

The error between the reference and estimated (with/without calibration) joint angles was 

calculated during walking trials for the knee (KFE, KAA, KIE), and ankle (ADP, AIV, AIE) joints. Then 

the offset error (mean value of the error during quiet standing) and root-mean-square of the error 

time-series (RMSE) were calculated for each joint as in Equation 22: 
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𝑅𝑀𝑆𝐸 = √
1

𝑇 − 1
∑(𝐽𝑀𝐶𝑆,𝑖 − 𝐽𝐼𝑀𝑈,𝑖 − 𝜇)

2
𝑇

𝑖=1

 Equation 22 

where 𝑇 is the duration of the trial, 𝐽𝑀𝐶𝑆 and 𝐽𝐼𝑀𝑈  are the reference and estimated joint angles time-

series, respectively, and 𝜇 is the offset between 𝐽𝑀𝐶𝑆  and 𝐽𝐼𝑀𝑈 . Also, the reference and the 

estimated range of motions were determined for each joint [314]. Finally, statistical analysis (see 

Section 3.5.6) was performed on the offset error, RMSE, and range-of-motion values to assess the 

effectiveness of the calibration for clinical gait analysis [23].  

3.5.6 Statistical Analysis 

We compared the accuracy and repeatability of the (1) calibration procedures (based on metric 𝜃) 

and (2) joint kinematic measurement (based on offset error, RMSE, and range-of-motion). To this 

end, we used the Jarque-Bera test [315] to verify the normality of the distribution of 𝜃 (significance 

level = 5%). Jarque-Bera test is a two-sided goodness-of-fit test for evaluating the hypothesis that 

the test data comes from a normal distribution with an unknown mean and variance. Then, we 

evaluated the equality of the variance for two data sets with normal distributions using the Bartlett 

test. Next, based on the tested normality and equality of variance, the following statistical tests 

were applied to detect significant differences among calibration procedures. Repeatability of the 

metric 𝜃 between Test/ Retest sessions was tested via paired t-test (significance level = 5%). Paired 

t-test determines whether the mean difference between Test and Retest sessions is zero. Accuracies 

of each two calibration procedures were compared together via Wilcoxon signed-rank test 

(significance level = 5%). Inter-participant repeatability of the calibration procedures (variance of 

the obtained metric 𝜃 among all participants) was compared via a two-sample F-test.  

3.6 Results 

Calibration using hip FE tended to be more accurate (smaller mean value of 𝜃) and repeatable 

(smaller standard deviation of 𝜃) than hip AA for both thigh and shank IMUs (Figure 7). That is, 

by increasing the number of repetitions, a decreasing trend can be observed in the mean value and 

standard deviation of 𝜃 for the thigh and shank IMUs. However, a significant difference was not 

observed.  



51 

 

 
Figure 7 The helical angle (𝜃) between calibration matrices obtained by the sensor-to-segment calibration and 

the gold-standard MCS, obtained with a different number of repetitions of hip flexion/extension (FE) and 

abduction/adduction (AA) for (a) thigh and (b) shank IMUs calibration during the Test session. The results 

are presented as mean and standard deviation among participants.  

Figure 8 shows the changes in the pattern of 𝜃𝑘+1 − 𝜃𝑘  (𝑘 is the number of hip FE or AA 

repetitions, and each curve represents one participant). By increasing the number of repetitions, 

the dependency of the functional calibration outcome (𝜃) to the number of repetitions decreases 

for both thigh and shank IMUs. Specifically, by performing ten or more calibration movements, 

the change in the metric 𝜃 (𝜃𝑘+1 − 𝜃𝑘) was less than 0.5 degrees for more than 90% of the 

participants for both thigh and shank IMUs. Therefore, for calibration of the thigh and shank IMUs, 

we recommend five seconds of quiet standing followed by at least ten active hip FE. 

A paired t-test showed no significant difference among Vertical Calibration rotation 

matrices associated with different durations of quiet standing for the straight walking calibration 

procedure. Thus, recording of quiet standing for 1 second is enough for the calibration; however, 

to cancel out the effect of small motions during quiet standing on IMU readouts, we recommend 

recording an extended period of quiet standing (three to five seconds) to capture the IMUs’ 

readouts in a motionless period. 

For hip FE, except for the thigh IMU, no significant difference was observed in metric 𝜃 

between either two repetitions in a session or between Test and Retest sessions. For the straight 

walking procedure, for all IMUs, no significant difference (p<0.05) was observed in metric 𝜃 

neither between the two repetitions in a session nor between Test and Retest sessions. 
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Figure 8 Changes in 𝜃𝑘+1 − 𝜃𝑘  (𝜃 represents the helical angle between calibration matrices obtained by 
the sensor-to-segment calibration and the gold-standard MCS) for different number of repetitions of hip 

flexion/extension (FE) and abduction/adduction (AA) for all participants during the Test session. The same 

pattern was observed for the Retest session. Each curve represented the results obtained for one participant. 
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Comparing straight walking for five and eight steps, Figure 9 shows that similar accuracies 

were obtained with both PC5 and PC8; medians of the accuracies (PC5, PC8) for the thigh, shank, 

and foot segments were (5.8, 6.2), (16.3, 16.5), and (12.1, 11.8) degrees, respectively. Thus, it can 

be concluded that taking three more steps would not improve the calibration accuracy. However, 

standard deviations of the accuracies (PC5, PC8) for the thigh, shank and foot segments were (9.9, 

9.6), (19.3, 17.5), and (5.4, 4.8) degrees, respectively. Therefore, straight walking for eight steps 

(PC8) showed more reliable results, and thus, it was selected as the proposed calibration movement 

in this work. According to Figure 9, calibration of thigh IMU resulted in the lowest calibration 

error, while the highest calibration error (in terms of both median and standard deviation of 

accuracy) was obtained for shank IMU. This result was expected as the shank IMU SF has the 

highest misalignment with the shank AF.  

 

Figure 9 Comparison of the accuracy and inter-participant repeatability of the proposed calibration procedures 

(indicated by FE, and PC5 and PC8 for five-step (PC5) and eight-step (PC8), respectively) with the calibration 

procedures proposed in the literature; a combination of standing and sitting postures indicated by L1 [300], and 

passive knee FE and AA indicated by L2 [301]. The metric 𝜃 for thigh, shank, and foot IMUs is presented as box-
plot for all participants (the central mark, bottom, and top edges, and + sign show the median, 25th and 75th 

percentiles, and outliers, respectively). Significant differences (p<0.05) between the accuracy and repeatability of 

two groups of data are shown with ⋇ and †, respectively. 

As outlined in Figure 9, while there was no significant difference between PC8 and hip FE 

accuracy for the thigh IMU, PC8 aligned the thigh IMU significantly more accurately than the 
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combination of static postures (L1) [300]. Additionally, for thigh IMU, PC8 tended to have lower 

inter-participant repeatability than hip FE while it tended to have higher inter-participant 

repeatability than L1 [300]; standard deviations of the calibration accuracy were 9.6, 7.5, and 15.2 

degrees for PC8, hip FE, L1 [300], respectively. 

For shank IMU, both hip FE and L1 [300] performed significantly more accurate 

calibration than the PC8; medians of the calibration accuracies were 16.4, 11.7, and 15.6 degrees 

for PC8, hip FE, L1 [300], respectively. However, PC8 tended to be more repeatable than L1 [300] 

for the shank IMU; standard deviations of the calibration accuracy were 17.5 and 23 degrees for 

PC8 and L1 [300], respectively. Also, hip FE obtained significantly higher inter-participant 

repeatability compared to all other procedures. For the foot IMU, PC8 was significantly more 

accurate than hip FE and L1 [300]; medians of the calibration accuracies were 11.8, 13.1, and 20 

degrees for PC8, hip FE, and L1 [300], respectively. Also, PC8 resulted in the highest inter-

participant repeatability for foot IMU compared to hip FE and L1 [300]. Finally, foot IMU, hip FE 

performed significantly more repeatable than the method in L1 [300]. 

Although the study coordinator tried to align IMUs visually with body segments, Figure 

10(a) shows that PC8 was still needed to reduce the crosstalk among IMU axes during active hip 

FE (i.e., a single-axis rotation around the z-axis), particularly for shank and foot IMUs. It is worth 

mentioning that the combination of Vertical and Heading alignments ensures highly accurate and 

repeatable calibration even for randomly placed IMUs. Figure 10(b) and Table 4 show that the 

proposed calibration procedures improved the accuracy and repeatability of the clinical joint angle 

estimation significantly. Using hip FE, the offset errors of HIE, KAA, KIE, AIV, and AIE were 

significantly lower (p<0.05) than not performing the calibration (Table 4(a)). In addition, Table 

4(a) shows that hip FE resulted in more repeatable results for HAA, HIE, KIE, ADP, AIV, and AIE, 

indicated by the smaller standard deviation (among participants) of the offset error. Moreover, by 

applying hip FE calibration, KAA, ADP, AIV, and AIE angles were estimated with significantly lower 

RMSE than not performing the calibration. According to Table 4(b), using PC8, the offset errors 

for KAA, KIE, AIV, and AIE angles reduced from 8.6, 26.3, 23.3, 21.2 to 4.2, 17.1, 9.1 and 14.8 

degrees, respectively. Also, RMSE values significantly reduced for KAA, ADP, AIV, and AIE angles 

after applying PC8. Furthermore, Table 4(b) shows that PC8 made joint angle estimation 

significantly more repeatable for KAA, ADP, and AIE angles. Finally, as outlined in Table 4(b), 

although the range-of-motions of the estimated joint angles with calibration were still significantly 
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different from the reference ones, they tended to be more repeatable and accurate than those 

estimated without calibration. 

3.7 Discussions 

This chapter presented two sensor-to-segment calibration procedures to align IMUs attached to the 

thigh, shank, and foot segments with their corresponding AFs for IMUs applications in the free-

living environment. The proposed procedures consisted of (1) three to five seconds of neutral 

standing followed by twenty hip FE; or (2) three to five seconds of neutral standing followed by 

straight walking for eight steps. Acceleration readouts during quiet standing were used for Vertical 

Alignment (aligning the vertical axis of the IMU frame with the gravitational acceleration), while 

the planar angular velocity of IMUs during hip FE/straight walking was utilized for Heading 

Alignment (aligning the x-axis and z-axis of IMUs with sagittal and frontal planes of the body).  

PC8 (calibration using straight walking), unlike the previously suggested ones [300]–[302], 

[316], [317], did not need any calibration-specific movement or presence of an expert operator or 

utilizing an ad hoc tool, which limits the out-of-lab capabilities of the IMUs. Indeed, the precision 

of performing calibration-specific movements such as hip FE, which sometimes require the 

supervision of an experienced operator, may considerably affect the calibration accuracy and 

repeatability. Our experimental validation showed that IMU motion during verbally instructed 

‘straight’ walking could be used as ‘single-axis rotation’ for sensor-to-segment calibration without 

further supervision, at least for able-bodied participants. Therefore, we recommended the PC8 as 

a reliable procedure for sensor-to-segment calibration in free-living environments. However, the 

application of a semi-automatic motion such as walking for patients with gait impairment must be 

further investigated. In particular, for such patients, alternative procedures such as the proposed 

hip FE or passive knee FE/AA [301] can be utilized. 
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Figure 10 (a) 3D angular velocities of thigh, shank, and foot during active hip FE in IMU (before 
calibration) and AF (after calibration) frames; (b) 3D estimated (with and without calibration) and 

reference joint angles of knee and ankle during a representative gait trial. In both figures, straight walking 

was used for the calibration. 
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Table 4 Mean (standard deviation) values of the offset and RMSE of the joint angle errors and range-of-motion of the 

estimated and reference joint angle time-series. The offset error and RMSE values present the difference between the 
estimated joint angles with calibration ((a) Hip FE and (b) PC8) or without calibration (None), and the reference joint 

angles obtained based on anatomical frames measured by MCS.  

(a) Hip FE versus no calibration 

 Offset error  RMSE  Range-of-motion 

 Hip FE None  Hip FE None  Hip FE None Reference 

KFE 4.7 (3.6) 4.5 (2.6)  2.7 (0.8) 2.8 (1.0)  85.0 (5.8)† 85.7 (7.3)† 76.7 (4.5) 

KAA 4.2 (2.8) 8.6 (4.0)⋆  3.6 (1.0) 6.1 (1.9)⋆‡  28.0 (5.3)† 33.9 (7.1)† 10.3 (2.5) 

KIE 12.8 (9.4) 26.3 (13.9)⋆‡  8.0 (3.3) 8.3 (3.0)  40.4 (7.9)† 45.2 (8.9)† 27.5 (4.5) 

ADP 2.8 (1.8) 4.8 (3.3)‡  3.2 (1.0) 5.5 (1.0)⋆  53.3 (13.3)† 60.4 (18.3)† 38.5 (10.1) 

AIV 9.4 (3.0) 23.3 (4.9)⋆‡  2.7 (1.1) 5.7 (1.3)⋆  35.7 (5.3) 46.1 (9.9)† 32.0 (6.1) 

AIE 8.9 (5.0) 21.2 (9.9)⋆‡  4.7 (2.0) 7.0 (2.7)⋆  24.7 (11.7)† 35.1 (14.7)† 16.6 (7.8) 

(b) PC8 versus no calibration 

 Offset error  RMSE  Range-of-motion 

 PC8 None  PC8 None  PC8 None Reference 

KFE 3.5 (2.5) 4.5 (2.6)  2.6 (0.8) 2.8 (1.0)  85.1 (5.4)† 85.7 (7.3)†‡ 76.7 (4.5) 

KAA 4.2 (2.9) 8.6 (4.0)⋆  3.5 (1.0) 6.1 (1.9)⋆‡  30.2 (5.2)†‡ 33.9 (7.1)†‡ 10.3 (2.5) 

KIE 17.1 (9.1) 26.3 (13.9)⋆  8.1 (3.5) 8.3 (3.0)  42.1 (3.8)† 45.2 (8.9)†‡ 27.5 (4.5) 

ADP 2.7 (1.9) 4.8 (3.3)‡  3.6 (1.0) 5.5 (1.0)⋆  51.1 (13.1)† 60.4 (18.3)†‡ 38.5 (10.1) 

AIV 9.1 (3.5) 23.3 (4.9)⋆  3.3 (1.4) 5.7 (1.3)⋆  38.4 (7.0)† 46.1 (9.9)†‡ 32.0 (6.1) 

AIE 14.8 (5.3) 21.2 (9.9)⋆‡  4.7 (1.9) 7.0 (2.7)⋆  26.6 (10.7)† 35.1 (14.7)†‡ 16.6 (7.8) 

⋆ indicates the procedure with significantly lower accuracy (p<0.05)  

‡ indicates the procedure with significantly lower repeatability (p<0.05) 

† indicates the range-of-motion which is significantly different from its corresponding reference range of motion 

(p<0.05) 

3.7.1 Repeatability and Accuracy of the Calibration Procedure 

The accuracy of the proposed calibration procedures was not affected by the marker and IMU 

attachments during Test and Retest sessions, except for the thigh IMU with hip FE. Also, our 

results showed that performing at least ten consecutive hip FE movements will reduce the 

dependency of the calibration outcome on the number of repetitions. Moreover, taking eight steps 

during straight walking (PC8) only improved the repeatability of the calibration and did not affect 

the calibration accuracy. Also, Figure 9 shows that both hip FE and PC8 had comparable accuracy 

and inter-participant repeatability with more sophisticated procedures proposed in the literature 

[300], [301]. In contrast to some previous studies, our proposed procedures calibrated each IMU 

independently and as such, errors in the calibration of one IMU will not propagate to another one. 

Finally, it is worth mentioning that the accuracy of calibration depends on the choice of AF 
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definition. Thus, inter-participant repeatability is a better metric for comparing calibration 

procedures, as it does not depend on the definition of AFs.   

3.7.2 3D Joint Angle Estimation 

Although the IMUs were visually aligned with segments during attachment, both hip FE and PC8 

significantly reduced the offset error of KAA, KIE, AIV, and AIE angles, and RMSEs of KAA, ADP, 

AIV, and AIE angles, see Table 4. It should be noted that erroneous identification of AFs can lead 

to propagation of error in joint kinetics estimation as well [318], [319]. In particular, as the shank 

IMU was placed over the bony surface of the tibia (significant misalignment with the shank AF), 

the effect of the calibration was prominent for knee and ankle joint angle estimation, suggesting 

the necessity of a calibration procedure at least for the shank IMU.  

3.7.3 Limitations and Future Works 

The accuracy and repeatability of proposed sensor-to-segment calibration procedures were 

investigated for only ten able-bodied participants and should be further investigated with more 

participants, specifically for individuals with various movement disorders. Also, considering the 

planar cyclic motion of the arms during walking, the application of straight walking for sensor-to-

segment calibration of IMUs attached to the hand, forearm, and upper arm should be investigated. 

Finally, considering the current developments in the areas of machine learning [320], [321] and 

optimization [303], [322][323], [324], as an alternative to analytical procedures such as the 

presented calibration procedure, a machine-learning-based procedure can be employed to obtain 

the sensor-to-segment transformation matrix. For this purpose, the orientation of the true AF 

obtained by the MCS can be used in the training phase. 

3.8 Conclusion 

We showed that twenty consecutive hip FE movements or eight steps of straight walking, together 

with three to five seconds of quiet standing, can be used as an effortless yet accurate and repeatable 

sensor-to-segment calibration to obtain clinically meaningful lower limb joint angles using IMUs. 

Straight walking is not the most accurate calibration for the shank segment; the medians of the 

calibration accuracies were 16.4 and 11.7 degrees for straight walking and hip FE. However, the 

calibration accuracy and repeatability obtained by straight walking are still comparable with most 

of the suggested calibration-specific movements/postures in the literature. Also, as the functional 
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movements and the calculations required for obtaining the segment-to-segment transformation are 

performed before the main trial (where biofeedback is provided), the proposed procedures can be 

implemented in real-time. Nevertheless, the proposed procedures’ ability to achieve more accurate 

and repeatable transformations must be validated for a clinical population in the future.  Having a 

reliable sensor-to-segment calibration, in Chapter 4, we introduce a general framework for 

adaptive gain regulation of SFAs to obtain an accurate and robust estimation of IMU sensor frame 

orientation.  
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Chapter 4  

Adaptive Gain Regulation of SFAs 

This chapter provides the details of a general framework for optimal adaptive gain regulation of 

SFAs for accurate and robust body segment orientation tracking with IMUs. Portions of this 

chapter have been adopted and/or edited from: 

M. Nazarahari, H. Rouhani, “Adaptive Gain Regulation of Sensor Fusion Algorithms for 

Orientation Estimation with Magnetic and Inertial Measurement Units,” IEEE Transactions on 

Instrumentation and Measurement, Vol. 70, 2020. 

4.1 Introduction 

Using sensor-to-segment calibration methods discussed in Chapter 3, the readouts of IMUs can be 

used to obtain the lower limb joint angles in anatomically meaningful frames. However, to 

calculate joint angles, first, we have to estimate the orientation of the body segments using IMU 

readouts. To achieve an accurate and robust estimation of the IMU orientation, as discussed in 

Section 2.3, many studies have introduced SFAs that combine accelerometer, gyroscope, and 

magnetometer readouts. Nevertheless, the performance of such SFAs depends highly on their 

gains, and poor initialization or incorrect adjustment of the gains would degrade the SFAs’ 

performance. 

Although the statistical properties of the sensors could be used to estimate the gains of 

some SFAs, due to the complexity of the (1) noise mechanism; and (2) SFA structure, there is not 
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always a clear one-to-one relationship between statistical properties and SFA gains. Therefore, to 

obtain the optimal gains of SFAs with various structures, a general framework is needed. 

Furthermore, while one set of SFA gains may result in good accuracy for a certain motion, 

another set of gains may be required for a different condition [325]. To address this issue, previous 

works have proposed two adaptive gain regulation schemes with a focus on KFs: (1) vector 

selection technique (VST); and (2) innovation adaptive estimation (IAE). 

In VST, the magnitude of the accelerometer, gyroscope, and magnetometer readouts will 

be used to change the value of the process and/or measurement noise covariance matrices between 

two predefined levels using a hard-switch [106], [326]. However, to the best of the authors’ 

knowledge, no one has (1) presented a general framework for finding the optimal levels; or (2) 

assessed the effect of using a hard-switch with more than two levels, or more complex switching 

schemes on accuracy and robustness of SFAs, specifically CFs. 

In IAE, the process or measurement noise covariance matrix evolves with time, based on 

the statistical information obtained from the innovation sequence (the difference between real and 

estimated measurements) [327]. Commonly, the IAE approach has been coupled with a fuzzy 

system to adjust one of the noise covariance matrices [328], [329]. However, the IAE approach is 

limited to KFs and is only able to adjust the covariance matrix associated with process or 

measurement noise while the other one is constant. Moreover, all adjustments in the IAE approach 

are made around the predefined nominal covariance matrix. Thus, there is still a need for a general 

framework to determine the nominal process and measurement noise covariance matrices. 

Therefore, the main contribution of this chapter is the development of a general framework 

for structuring an optimal gain regulation scheme for any SFA. For this purpose, we optimized the 

SFA gains toward minimizing the error between the estimated (obtained from an SFA) and true 

(obtained from an MCS) orientations. We employed Particle Swarm Optimization [330] to solve 

the optimization problem. In particular, we implemented four adaptive gain regulation schemes: 

(1) VST1: hard-switch between two levels; (2) VST2: hard-switch between three levels; (3) VST3: 

a general approximator using a Mamdani fuzzy inference system; and (4) IAE: innovation-based 

tuning of process noise covariance matrix. The first three schemes have been tested for two KFs 

and two CFs from the literature, while the last scheme has been evaluated for a KF only.  
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4.2 Materials and Methods 

4.2.1 Sensor Fusion Algorithms 

The performance of four different SFAs [64], [65], [88], [107], [195] was evaluated using the 

optimal fixed value of their gains (hereafter, referred to as fixed optimal gain (FOG)) or adaptive 

gain regulation schemes, VST1, VST2, VST3, and IAE. The selected SFAs included 

representatives of both KF and CF families with structures and gains in Figure 11 and Table 5, 

respectively. The SFA gains in Table 5 are described in the following paragraphs of this section 

and identified with red symbols in Figure 11. Here, we avoided describing the selected SFAs in 

detail and refer the interested reader to the original articles. However, we used the same notation 

as it was used in the original articles. Also, to distinguish these SFAs from one another, we named 

them as first author(year). It should be noted that not all SFA gains can be tuned intuitively, e.g., 

the initial error covariance matrix 𝒫0 in KFs. Therefore, in the current work, we applied adaptive 

gain tuning to the gains that directly control the effect of the accelerometer, gyroscope, and 

magnetometer on the estimated orientation while using the optimal fixed value for other gains. 

In Madgwick(2011) [64], first, the estimated orientation at the previous time step was 

projected forward in time using strap-down integration of angular velocity (block 1 in Figure 

11(a)). Then, a single-iteration gradient-descent algorithm was used to estimate the orientation 

from accelerometer and magnetometer readouts (block 2 in Figure 11(a)). Finally, the latter 

estimation, weighted by gain 𝛽 (block 3 in Figure 11(a)), was used to correct the former estimation 

and compute the SFA output at the current step. Moreover, the gyroscope drift was estimated at 

each time step and then weighted by gain 𝜁 to correct the angular velocity before strap-down 

integration (block 4 in Figure 11(a)). Therefore, gains 𝛽 and 𝜁 control the performance of the 

Madgwick(2011), i.e., gain 𝛽 plays the role of both process and measurement covariance matrices 

in a KF. However, through several preliminary tests, we concluded that the effect of gain 𝜁 on 

performance was negligible for the tested IMUs. Therefore, in the present work, we applied the 

adaptive gain regulation scheme to gain 𝛽 only, while using an optimal fixed value for gain 𝜁 

(Table 5). 

The general structure of the Mahony(2008) [65] is similar to Madgwick(2011), as shown 

in Figure 11(a), except for using a different formulation for calculating the orientation from 
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accelerometer and magnetometer readouts (block 2 in Figure 11(a)). Mahony(2008) uses two 

gains: 𝑘𝑝 adjusts the weight of the correction via accelerometer and magnetometer, and 𝑘𝑖 adjusts 

the weight of the estimated gyroscope drift [65]. Therefore, similar to Madgwick(2011), we 

applied the adaptive gain regulation scheme to 𝑘𝑝 only, while using the optimal fixed value for 

gain 𝑘𝑖 (Table 5). 

 

 
Figure 11 Block diagram of two families of SFAs implemented in this paper where SAF gains and 
adaptive gain regulation schemes are shown with red and green, respectively. (a) Madgwick(2011) [64] 

and Mahony(2008) [65], (b) Guo(2017) [195] and Roeternberg(2005) [88]. 𝑦𝐺,𝑘, 𝑦𝐴,𝑘, 𝑦𝑀,𝑘, 𝑞𝑘, and 𝑧−1 

are the angular velocity, acceleration, magnetic field, estimated orientation and delay operator, 

respectively. 
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To assess the effectiveness of the adaptive gain regulation schemes for KFs, two KFs were 

tested, a direct KF (Guo(2017)) [195] and an indirect KF (Roeternberg(2005)) [88], [107]. While 

there are more complex forms of KFs for estimation of nonlinear systems, e.g., 

Unscented/Cubature KF, or systems with periodic nature, Taylor-Fourier KF [331], in the present 

work, we only evaluated Guo(2017) and Roeternberg(2005) as they were designed for orientation 

tracking where linear state-space model can be used to describe the tracking equations and signals 

are non-periodic in general. 

In Guo(2017), the quaternion parametrization of the orientation was considered as the state 

vector, and the quaternion-based strap-down integration was used to develop the process model 

(block 1 in Figure 11(b)). Also, the measurement model was obtained by solving Wahba’s problem 

formed by accelerometer and magnetometer readouts (block 2 in Figure 11(b)). Moreover, the 

gains, i.e., process and measurement noise covariance matrices (blocks 3 and 4 in Figure 11(b)), 

were defined as 𝒬 =  [ 𝐺
2 ×  3×3] and ℛ = [ 𝐴

2 ×  3×3 03×3;  03×3  𝑀
2 ×  3×3], respectively, 

where  𝐺 ,  𝐴, and  𝑀 represent the variance of the gyroscope, accelerometer, and magnetometer 

readouts, respectively. Therefore, we applied the adaptive gain regulation scheme to  𝐺 ,  𝐴, and 

 𝑀, to control the effect of the three sensors on the estimated orientation, while using the optimal 

fixed value for the other Guo(2017) parameter, i.e., the initial error covariance matrix 𝒫0 (Table 

5). 

The Roeternberg(2005) implemented in the “ahrsfilter” system object in MATLAB Sensor 

Fusion and Tracking Toolbox (MathWorks, USA) is based on the Indirect Complementary KF 

proposed in [107]. Roeternberg(2005) used a 12-element state vector to track the orientation error, 

the gyroscope bias, the linear acceleration error, and the magnetic disturbance error. These 

elements were considered to account for the possible errors in the general-purpose IMU model that 

has been commonly used in the literature, e.g., see [106], [107]. This model contains terms 

representing the error level associated with the gyroscope bias, non-gravitational acceleration, and 

magnetic disturbance. These errors depend not only on the IMU manufacturing quality but also on 

the motion’s pattern and intensity during the movement. Thus, they cannot be estimated via an 

offline calibration and must be estimated during orientation tracking. 

In Roeternberg(2005), the a priori estimate, and therefore the state transition matrix, was 

always zero. This is because the state vector was defined in terms of the error of the mentioned 



65 

 

quantities and not the quantities themselves. Also, the measurement model was developed by 

considering the effect of the gyroscope bias, orientation error, and magnetic disturbance on the 

inclination and magnetic vector estimates (block 2 in Figure 11 (b)). Similar to Guo(2017), we 

applied the adaptive gain regulation scheme to gains  𝐺 ,  𝐴, and  𝑀, while using the optimal fixed 

value for other Roeternberg(2005) parameters, i.e., the initial error covariance matrix 𝒫0, 

gyroscope drift noise 𝜁 (variance of the gyroscope offset drift), linear acceleration noise 𝜉 

(variance of the linear acceleration noise), magnetic disturbance noise 𝛾 (variance of the magnetic 

disturbance noise), magnetic disturbance decay factor  , and expected magnetic field strength 

𝑚𝑒𝑥𝑝 [332] (Table 5).  

4.2.2 Adaptive Gain Regulation Schemes 

4.2.2.1 Hard-switch Between Two or Three Levels 

As the simplest case of adaptive gain regulation, we implemented a hard-switch between two 

(VST1) or three (VST2) levels, as shown in Figure 12(a) and (b), respectively. In VST1 and VST2, 

each SFA gain changes between two or three predefined levels, i.e., 𝐺1, 𝐺2, and 𝐺3, based on a 

predefined threshold value 𝑆 (or 𝑆1 and 𝑆2). As the IMU readouts are the only information 

available during orientation tracking (for a general SFA), we applied the threshold to the deviation 

of IMU readouts from a (recorded) reference value to select the proper gain at each time instant. 

Notably, as described in Table 5, for Madgwick(2011) and Mahony(2008), we tuned the gains 𝛽 

and 𝑘𝑝, respectively, based on the deviation of the sensed acceleration and magnetic field from 

their reference value at the beginning of the test. For Guo(2017) and Roeternberg(2005), we tuned 

 𝐺 ,  𝐴, and  𝑀 in the same manner. Thus, for Madgwick(2011) and Mahony(2008) with one 

tunable gain, only one hard-switch was designed for each SFA; whereas, for KFs, three separate 

hard-switches were designed to regulate the gains  𝐺 ,  𝐴, and  𝑀. 

For instance, a hard-switch with two levels (Figure 12(a)), formulated as Equation 23, was 

used to regulate the gain 𝛽 for Madgwick(2011): 

𝛽 = {
𝛽1, |‖y𝐴,𝑘‖ − ‖𝑦𝐴,𝑠𝑡𝑎𝑡‖| < 𝑆𝐴 ∩ |‖y𝑀,𝑘‖ − ‖y𝑀,𝑠𝑡𝑎𝑡‖| < 𝑆𝑀

𝛽2, otherwise
 Equation 23 
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Table 5 Gains of each (SFA, gain regulation scheme) optimized via the Particle Swarm Optimization (MF: membership function). 

SFA 
Gain 

regulation  

# decision 

variables 
Description of SFA gains 

Madgwick(2011) [64]  

FOG 2 (𝛽, 𝜁) 

VST1 5 (𝛽1, 𝛽2, 𝑆𝐴, 𝑆𝑀, 𝜁) 

VST2 8 (𝛽1, 𝛽2, 𝑆𝐴1, 𝑆𝑀1, 𝛽3, 𝑆𝐴2, 𝑆𝑀2, 𝜁) 

VST3 24 Parameters of the MFs (𝐿1, 𝐿2, 𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝐻1, 𝐻2) for 2 inputs and 1 output 
    

Mahony(2008) [65] 

FOG 2 (𝑘𝑝, 𝑘𝑖) 

VST1 5 (𝑘𝑝1
, 𝑘𝑝2

, 𝑆𝐴, 𝑆𝑀, 𝑘𝑖)  

VST2 8 (𝑘𝑝1
, 𝑘𝑝2

, 𝑆𝐴1, 𝑆𝑀1, 𝑘𝑝3
, 𝑆𝐴2, 𝑆𝑀2, 𝑘𝑖) 

VST3 24 Parameters of the MFs (𝐿1, 𝐿2, 𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝐻1, 𝐻2) for 2 inputs and 1 output 
    

Guo(2017) [195] 

FOG 4 (𝒫0,  𝐺,  𝐴,  𝑀) 

VST1 10 (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀) 

VST2 16 (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺1,  𝐺3, 𝑆𝐺2,  𝐴1,  𝐴2, 𝑆𝐴1,  𝐴3, 𝑆𝐴2,  𝑀1,  𝑀2, 𝑆𝑀1,  𝑀3, 𝑆𝑀2) 

VST3 48 Parameters of the MFs (𝐿1, 𝐿2, 𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝐻1, 𝐻2) for 3 inputs and 3 outputs 

IAE 51 Parameters of the MFs (𝐿1, 𝐿2, 𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝐻1, 𝐻2) for 3 inputs and 3 outputs + (𝒫0,  𝐴,  𝑀) 
    

Roeternberg(2005) [88] 
FOG 9 (𝒫0,  𝐺,  𝐴,  𝑀, 𝜁, 𝜉, 𝛾,  , 𝑚𝑒𝑥𝑝)  

VST1 15 (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1, 𝑀2, 𝑆𝑀, 𝜁, 𝜉, 𝛾,  , 𝑚𝑒𝑥𝑝) 
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where 𝛽1 and 𝛽2 are the values of gain 𝛽 at each level, ‖y𝐴,𝑘‖ and ‖y𝑀,𝑘‖ are the norm of the 

acceleration and magnetic field at each time instant, respectively, ‖𝑦𝐴,𝑠𝑡𝑎𝑡‖ and ‖𝑦𝑀,𝑠𝑡𝑎𝑡‖ are the 

norm of the acceleration and magnetic field at rest (measured when the IMU was motionless at the 

beginning of the experiment), and 𝑆𝐴 and S𝑀 are the switching thresholds for the acceleration and 

magnetic field, respectively. Then, the values of gains 𝐺𝑖 and switching thresholds 𝑆𝑖 were 

optimized based on the framework described in Section 4.2.3. For VST2, a hard-switch with three 

levels (Figure 12(b)) can be designed similarly. 

  

 
Figure 12 Structure of the three general-purpose adaptive gain regulation schemes: (a) VST1: hard-switch 

between two levels, (b) VST2: hard-switch between three levels, and (c) VST3: a general approximator 

using a Mamdani fuzzy inference system. 

4.2.2.2 Fuzzy Inference System 

Theoretically, there are two disadvantages with a hard-switch gain regulation scheme: (1) the 

resolution in which the SFA gain can be tuned is always limited by the number of switching levels; 
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and (2) the change in the value of the gain(s) is sudden and significant which may result in SFA 

instability. To address these limitations, we have to increase the number of switching levels, which 

will increase the number of decision variables of the optimization problem. Therefore, we 

proposed the application of a general approximator using a Mamdani fuzzy inference system [333] 

for adaptive gain regulation, as shown in Figure 12(c). Theoretically, the fuzzy inference system 

can tune the SFA gain(s) with significantly higher resolution and provide a soft-switch between 

different levels. However, the fuzzy inference system-based gain regulation is computationally 

more expensive than hard-switching parameters. Also, the fuzzy inference system has more 

parameters to be tuned compared to VST1 and VST2. Thus, more data with higher variability is 

required to optimize these parameters and avoid overfitting. 

To construct the targeted relationship between the inputs (IMU readouts) and outputs (SFA 

gain(s)), we customized the fuzzy inference system structure for each SFA. For Madgwick(2011) 

and Mahony(2008), we combined accelerometer and magnetometer readouts using fuzzy rules to 

tune the SFA gain 𝛽 and 𝑘𝑝, respectively. For example, as shown in Figure 12(c), the following 

rules were used for Madgwick(2011) and Mahony(2008): 

• IF accelerometer belongs to 𝐿𝑎𝑐𝑐 AND magnetometer belongs to 𝐿𝑚𝑎𝑔 THEN gain belongs to 

𝐻𝑔𝑎𝑖𝑛 . 

• IF accelerometer belongs to 𝑀𝑎𝑐𝑐 AND magnetometer belongs to 𝑀𝑚𝑎𝑔 THEN gain belongs 

to 𝑀𝑔𝑎𝑖𝑛. 

• IF accelerometer belongs to 𝐻𝑎𝑐𝑐  OR magnetometer belongs to 𝐻𝑚𝑎𝑔  THEN gain belongs to 

𝐿𝑔𝑎𝑖𝑛. 

where 𝐻, 𝑀, and 𝐿 show high, medium, and low membership function, and subscripts acc/mag 

and gain show the deviation of the accelerometer/magnetometer readout from its reference value 

(similar to Equation 23) and gain value, respectively. Therefore, at each time instant, the degree to 

which the IMU readouts belong to each membership function 𝐻, 𝑀, and 𝐿 will be determined, and 

rules will be fired accordingly to determine the filter gain. For KFs, we used each of the gyroscope, 

accelerometer, and magnetometer readouts separately to tune the SFA gains, i.e.,  𝐺 ,  𝐴, and  𝑀 

(three rules were defined for each gain  𝐺 ,  𝐴, and  𝑀). 
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As mentioned previously, three membership functions were used to describe fuzzy 

inference system input and output variables: 𝐿 for small magnitudes; 𝑀 for medium magnitudes; 

and 𝐻 for large magnitudes of the input and output values, as shown in Figure 12(c). The three 

membership functions, 𝐿, 𝑀, and 𝐻, were created using S-shape, Π-shaped, and Z-shaped spline-

based functions, respectively. As shown in Figure 12(c), the S- and Z-shape functions allow 

obtaining infinitely low and high gain values (compared to a bell- or Π-shaped, which only covers 

a limited range of parameters), respectively, while the Π-shaped covers the medium range for gain 

values; see [334] for more details on the selected functions. Also, the final value of SFA gain will 

be obtained based on the Aggregation and Defuzzification methods mentioned at the end of this 

section. These S-shaped, Π-shaped, and Z-shaped functions were defined by eight parameters (𝐿1, 

𝐿2, 𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝐻1, 𝐻2), as shown in Figure 12(c). The initial structure of the fuzzy inference 

system was generated using the fuzzy c-means clustering technique with the following parameters.  

• AND operator: minimum of the fuzzified input values.  

• OR operator: maximum of the fuzzified input values. 

• Implication method: minimum (truncating the consequent membership function at the 

antecedent result value). 

• Aggregation method: maximum of the consequent fuzzy sets. 

• Defuzzification method: centroid of the area under the output fuzzy set. 

4.2.2.3 Innovation Adaptive Estimation 

In IAE, the value of 𝒬𝑘 or ℛ𝑘  can be tuned at each time step by calculating the discrepancy matrix 

𝐷𝑘 as in [335], [336]. In this work, we applied the IAE to the process noise covariance matrix 𝒬𝑘, 

while using the optimal fixed value for measurement noise covariance matrix ℛ𝑘  and initial error 

covariance matrix 𝒫0. Also, the IAE was only implemented for Guo(2017), as the covariance 

matrix 𝒬𝑘 was not directly accessible in Roeternberg(2005).  

To implement IAE, after calculating the 𝐷𝑘, a fuzzy inference system was used to update 

the value of 𝒬𝑘 to reduce the discrepancy between actual and predicted measurements at step 𝑘 as 

follows. 

• IF 𝐷𝑘(𝑖, 𝑖) ≅ 0 THEN do not change 𝒬𝑘(𝑖, 𝑖). 

• IF 𝐷𝑘(𝑖, 𝑖) > 0 THEN decrease 𝒬𝑘(𝑖, 𝑖). 
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• IF 𝐷𝑘(𝑖, 𝑖) < 0 THEN increase 𝒬𝑘(𝑖, 𝑖). 

As mentioned previously, in the Guo(2017), 𝒬𝑘 was defined as 𝒬𝑘 =  [ 𝐺
2 ×  3×3]. 

Therefore, three single-input single-output fuzzy inference systems were designed with the three 

rules mentioned above to adjust the value of each diagonal element of 𝒬𝑘 based on the 

corresponding diagonal element of 𝐷𝑘. It should be noted that there was no direct correspondence 

between the dimensions of 𝐷𝑘 and 𝒬𝑘, i.e., 𝐷𝑘 was 4×4 while 𝒬𝑘 was 3×3. Therefore, we used  

only the first three diagonal elements of the 𝐷𝑘 as inputs of fuzzy inference systems similar to 

[335], [336].  

4.2.3 Gain Optimization Framework 

We proposed the following general framework to optimize (1) the gains of the four mentioned 

SFAs (FOG); or (2) the gains (𝐺𝑖) and switching thresholds (𝑆𝑖) of the gain regulation schemes 

(VST1, VST2, VST3, and IAE). This framework optimized the desired decision variables (Table 

5) by comparing the estimated orientation by an SFA and the true orientation obtained by the 

reference MCS, as shown in Figure 13(a). Notably, gain regulation between a set of experimentally 

selected (and not optimal) values can generate inaccurate results. For example, previous 

comparative studies, e.g., Valenti et al. [128], Del Rosario et al. [135], and Feng et al. [80], 

obtained lower accuracy and robustness for SFAs with non-optimized parameters compared to the 

results presented by their developers, as they used experimentally selected gains. 

As shown in Figure 13(a), to optimize the gain regulation schemes, the error between 

estimated and true orientations must be calculated. This error was defined as in Equation 24, 

𝑅𝐸 𝑘 = ( 𝑅𝑃𝐹
𝐺𝐹𝑀𝐶𝑆

𝑘)
𝑇

∙ 𝑅𝐺𝐹𝐼𝑀𝑈

𝐺𝐹𝑀𝐶𝑆 ∙ 𝑅𝑆𝐹
𝐺𝐹𝐼𝑀𝑈

𝑘 ∙ ( 𝑅𝑆𝐹
𝑃𝐹 )𝑇 Equation 24 

where 𝑅𝑆𝐹
𝐺𝐹𝐼𝑀𝑈

𝑘 and 𝑅𝑃𝐹
𝐺𝐹𝑀𝐶𝑆

𝑘 are the estimated orientation (obtained by IMU) and true orientation 

(obtained by MCS), respectively, at time step 𝑘 with respect to their global coordinate system 

(superscript: GF). 𝑅𝑃𝐹
𝐺𝐹𝑀𝐶𝑆

𝑘 was calculated from three markers on each plate using the MCS. Also, 

𝑅𝐺𝐹𝐼𝑀𝑈

𝐺𝐹𝑀𝐶𝑆  is the fixed transformation matrix between global coordinate systems of IMU and MCS 

and was calculated according to Equation 25, 

𝑅𝐺𝐹𝐼𝑀𝑈

𝐺𝐹𝑀𝐶𝑆 = 𝑅𝑃𝐹
𝐺𝐹𝑀𝐶𝑆

𝑘𝑎𝑣𝑔
∙ 𝑅𝑆𝐹

𝑃𝐹 ∙ ( 𝑅𝑆𝐹
𝐺𝐹𝐼𝑀𝑈

𝑘𝑎𝑣𝑔
)

𝑇

 Equation 25 
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where 𝑅𝑆𝐹
𝐺𝐹𝐼𝑀𝑈

𝑘𝑎𝑣𝑔
 and 𝑅𝑃𝐹

𝐺𝐹𝑀𝐶𝑆
𝑘𝑎𝑣𝑔

 are the orientations of the IMU and plate, averaged over the 

quiet standing period at the beginning of the test, and obtained according to [337]. Finally, to 

account for the possible fixed misalignment between IMU and plate local frames due to the IMU 

attachment inaccuracies, 𝑅𝑆𝐹
𝑃𝐹  was calculated according to [24]. 

Then, the estimation error rotation matrix obtained by Equation 24, 𝑅𝐸 𝑘, was converted to 

Euler angles (roll, pitch, yaw), and the estimation error value equal to Errorroll + Errorpitch + Erroryaw 

was fed back to a Particle Swarm Optimization routine as the cost function value. The Particle 

Swarm Optimization routine was selected for optimization as it was shown to be a powerful solver 

for continuous problems with non-convex search space [321], [338]. Particle Swarm Optimization 

has a stochastic nature in which the particles can be perturbed randomly to avoid local minima. 

The parameters of the Particle Swarm Optimization were selected as follows: maximum number 

of iterations = 50; population size = 50; inertia weight = 0.73; inertia weight damping ratio = 0.99; 

personal learning coefficient = 1.50; and global learning coefficient = 1.50.  

As indicated in Table 5, for FOG, VST1, and VST2, the gains of the SFA or gain regulation 

schemes were directly used as the decision variables of the Particle Swarm Optimization routine. 

However, for VST3 and IAE, parameters of the membership functions (𝐿1, 𝐿2, 𝑀1, 𝑀2, 𝑀3, 𝑀4, 

𝐻1, 𝐻2) were used as the decision variables. Additionally, the membership functions of each 

input/output of the fuzzy inference system in VST3 and IAE were subject to the following seven 

constraints: (1) IF 𝐿2 < 𝐿1 THEN 𝐿2 = 𝐿1; (2) IF 𝐿2 < 𝑀1 THEN 𝐿2 = 𝑀1; (3) IF 𝑀2 < 𝑀1 

THEN 𝑀2 = 𝑀1; (4) IF 𝑀3 < 𝑀2 THEN 𝑀3 = 𝑀2; (5) IF 𝑀4 < 𝑀3 THEN 𝑀4 = 𝑀3; (6) IF 𝑀4 <

𝐻1 THEN 𝑀4 = 𝐻1; (7) IF 𝐻2 < 𝐻1 THEN 𝐻2 = 𝐻1. These constraints ensure that the 

membership functions maintain the targeted shape, and there is an overlap between the stretches 

of the consecutive membership functions to cover the whole range of inputs/outputs. 

The described optimization procedure was performed for 16 rounds for each (SFA, gain 

regulation scheme). In the first four optimization rounds, random numbers were used as the initial 

population and range for decision variables. Then, the obtained results were used as a part of the 

initial population (plus random initial population to avoid premature convergence) for the next 

optimization rounds. Also, the optimized gains were used to adjust the acceptable range for the 

gains in future optimization rounds. After 16 separate rounds of optimization, the optimized values 
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(minimum error for the training data set) for FOG, VST1, VST2, VST3, or IAE for each SFA were 

selected and applied to the testing data set (training and testing sets are described in Section 4.2.5). 

 

 
Figure 13 (a) Structure of the proposed framework for optimizing the parameters of the adaptive gain 

regulation schemes, (b) Experimental setup including three IMUs attached to the thigh, shank, and foot 

along with plate-mounted reflective markers tracked by the MCS. 
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4.2.4 Experimental Procedure 

The effectiveness of the FOG, as well as the four gain regulation schemes, VST1, VST2, VST3, 

and IAE, were assessed by measuring the orientation estimation error (roll, pitch, yaw) through an 

experimental study with nine able-bodied participants (all male, 26±2 years old, 74±6 kg, 177±4 

cm). The Research Ethics Board Committee at the University of Alberta approved the study 

protocol, and written consent was obtained from all participants. During the experiments, 

participants performed the following movements: quiet standing (60 seconds); straight walking (5 

meters); turning; straight walking (2.5 meters); vertical jumping (two times); straight walking (2.5 

meters); turning; hopping with both legs (three times); turning; walking the 5-meter corridor back-

and-forth three times with U-turns at the end; quiet standing (30 seconds). Participants were 

instructed to take 2 seconds of quiet standing after each task (one complete trial was 131±7 seconds 

on average). 

We aimed to evaluate the accuracy and robustness of orientation estimation accuracy of 

SFAs together with adaptive gain regulation under a wide range of motion intensities and patterns 

and in long durations. Therefore, we had to recruit only able-bodied individuals for our 

experimental study. Nevertheless, we made no assumption about the performed motions for 

orientation estimation. Thus, the same level of accuracy is expected for other applications, such as 

the motion tracking of participants with motor dysfunction. Experiments were performed on three 

separate days, three participants each day, while the same IMUs were attached to each segment 

during all experiments. This procedure was performed to assess the accuracy and robustness of 

orientation estimation in different environmental conditions, e.g., room temperature. In addition 

to keeping the IMUs motionless for 10 minutes before each data collection (to allow them to reach 

a stable condition), the first 30 seconds of each experiment were used to allow the SFAs to 

converge to a stable condition without the need for a drastic change in SFA gain(s) during motion. 

4.2.5 Data Analysis 

Three-fold cross-validation was performed using the experimental data recorded in three separate 

days to assess the effectiveness of the FOG, VST1, VST2, VST3, and IAE. In other words, the 

IMU data of the three participants in each day were used to perform the optimization (training data 

set), and the data of the remaining six participants (testing data set) were used to evaluate the 
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performance of each SFA combined with each gain regulation scheme. This procedure was 

repeated for all combinations of (IMU, SFA, gain regulation scheme). 

The performance of each combination was quantified as the RSME (the difference between 

true and estimated angles) of the roll, pitch, and yaw angles associated with orientation estimation 

error 𝑅𝐸 𝑘. Then, for each (IMU, SFA) combination, we compared the performance of the gain 

regulation schemes in terms of accuracy (median of RMSE among all testing data set) and 

robustness (standard deviation of RMSE among all testing data set). The non-parametric Wilcoxon 

rank-sum test (significance level = 5%) was employed to find the significant differences between 

the obtained errors of each two schemes as the equality of variance and/or normal distribution 

conditions have not been met. Also, standard deviations of RMSEs were compared via the two-

sample F-test. 

4.2.6 Computation Complexity 

The execution time for each SFA combined with FOG, VST1, VST2, VST3, and IAE was 

measured in milliseconds by measuring the total execution time of one trial and dividing the result 

by the number of samples in that trial. This procedure was repeated 500 times for each (SFA, gain 

regulation) combination, and the average value was recorded. Also, the execution time of other 

operations, such as loading the data or allocating memory to variables, which were performed at 

the initialization phase of running each SFA and not repeated per sample, were recorded separately 

and included in the runtime per sample. All codes were executed with MATLAB R2018b 

(MathWorks, USA) on a desktop PC with the following characteristics: CPU: Intel Core i7-4770; 

and RAM: 12 GB. 

4.3 Results 

Figure 14 shows a representative graph of the 3D-angle-estimation errors obtained from the thigh, 

shank, and foot IMUs using Madgwick(2011) combined with FOG, VST1, and VST2. According 

to Figure 14, Madgwick(2011) errors depended on the location of the IMU under investigation, 

i.e., the errors of the shank and foot IMUs were generally larger compared to the errors of the thigh 

IMU. Using FOG, the Madgwick(2011) performance depended on both the IMU location and trial 

duration. For instance, for the foot IMU, 3D errors were small during the first 10 seconds and then 

increased over time. However, both VST1 and VST2 resulted in reduced tracking error (during 
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motion) and convergence error (during motionless periods) compared to the FOG for all three 

IMUs. This observation could be because VST1 and VST2 enabled the Madgwick(2011) to rely 

more on accelerometer and magnetometer during short periods with little motion between 

activities to reduce the drift caused by strap-down integration. 

 
Figure 14 A representative graph of the errors in 3D-angle-estimation obtained for thigh, shank, and foot IMUs and 
Madgwick(2011) [64] using FOG, VST1, VST2 (test data of one participant). The trial includes walking, vertical jumping, and 

hopping.   

Table 6 shows the gain values of the Madgwick(2011) optimized for IMUs on each body 

segment using the data of the first three participants. According to Table 6, the optimized value of 

the gains varies among IMUs, and the optimal gains for one IMU may result in poor performance 

for another IMU. Thus, the gains for each IMU must be optimized separately. Additionally, by 

comparing the SFA gains, 𝛽, obtained for FOG, VST1, and VST2, we observed that the adaptive 

gain regulation allowed the Madgwick(2011) to use higher values of 𝛽 during motionless and 

magnetically undisturbed situations (𝛽1: which resulted in rapid convergence and gyroscope drift 

cancellation) and use low values of 𝛽 during intensive activities (𝛽2: to rely on gyroscope mainly). 

According to Table 7(a) and Figure 15(a), adaptive gain regulation not only significantly 

(p<0.05) reduced the RMSE of the orientation estimation but often resulted in significantly more 

robust estimation for Madgwick(2011). For example, while the RMSEs reported as median 

(interquartile range) across participants for foot IMU using FOG were 7.7(3.3), 5.3(2.9), and 

7.5(3.6) degrees for roll, pitch, and yaw angles, respectively, applying the VST1 to 

Madgwick(2011) reduced the errors to 4.6(1.8), 3.1(0.8), and 4.3(1.2) degrees, respectively. 
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Moreover, for shank and foot IMUs, Madgwick(2011) with FOG resulted in poor performance for 

some participants, shown as outliers in Figure 15(a).  

According to Table 7(b), for Mahony(2008), for the shank IMU, all adaptive gain 

regulation schemes resulted in significantly (p<0.05) higher accuracy and robustness compared to 

FOG. For the foot IMU, VST1 and VST2 obtained significantly higher accuracy compared to FOG 

and VST3. For example, the estimation errors were decreased from 9.3(1.6), 7.3(1.0), and 8.2(1.2) 

degrees for FOG to 4.2(2.4), 3.1(0.7), and 4.5(2.1) degrees for VST2 for roll, pitch, and yaw 

angles, respectively (Figure 15(b)). For the thigh IMU, a trend was not observed, and adaptive gain 

regulation schemes did not always perform better than FOG.  

Table 8(a) shows that, for Guo(2017), VST2 achieved significantly (p<0.05) lower RMSE 

compared to FOG and often other adaptive gain regulation schemes. Specifically, the maximum 

RMSE among participants did not exceed 4.9 degrees (yaw) for VST2, while FOG and IAE 

resulted in maximum RMSEs of 9.3 (yaw) and 8.1 (roll) degrees, respectively (Figure 15(c)). 

Moreover, VST1 to VST3 often showed significantly more accurate and robust performance than 

both FOG and IAE, except for the yaw angle of the thigh IMU. According to Table 8(b), for 

Roeternberg(2005), unlike for the thigh IMU, VST1 significantly (p<0.05) outperformed FOG in 

terms of accuracy, robustness, or both for shank and foot IMUs. For example, for the shank IMU, 

the maximum RMSEs among participants were decreased from 4.3, 9.0, 7.8 degrees for FOG to 

3.1, 3.5, 4.5 degrees for VST1 for roll, pitch, and yaw angles, respectively (Figure 15(d)). 

Table 9 shows that for both Madgwick(2011) and Mahony(2008), while the execution 

times of VST1 and VST2 were similar, the highest execution times were associated with VST3 

and, in both cases, less than 0.5 milliseconds, which is 20 times faster than the sampling period of 

the IMUs (10 milliseconds). For Guo(2017), while the VST1 and VST2 were nearly 7 times slower 

than FOG, they were still 10 times faster than the sampling period of the IMUs. As was expected, 

the highest execution times were recorded for Roeternberg(2005), which were still nearly 5 times 

faster than the sampling period of the IMUs. Also, according to Table 9, the obtained execution 

times are comparable to the internal sampling period (1 millisecond) of the IMU embedded 

systems. Therefore, wireless data transfer from IMU to the computer is the slowest link (sampling 

period of 10 milliseconds). Thus, the worst-case scenario for the total time required to sample and 

transfer data and calculate the orientation will be 13.1 (1+10+2.1) milliseconds. 
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Table 6 Optimal gains of the Madgwick(2011) [64] (FOG) or adaptive gain regulation schemes 
(VST1 and VST2) for thigh, shank, and foot IMUs associated with the estimated angles shown in 

Figure 14. 

Gain regulation  IMU Gain values 

FOG 

 𝛽, 𝜁 

Thigh 0.073, 6e-04 

Shank 0.004, 6e-06 

Foot 0.003, 1e-12 
   

VST1 

 𝛽1, 𝛽2, 𝑆𝐴, 𝑆𝑀, 𝜁 

Thigh 0.082, 1e-05, 0.122, 0.051, 1e-12 

Shank 0.050, 1e-05, 0.064, 0.085, 9e-05 

Foot 0.045, 1e-12, 0.019, 0.404, 1e-25 
   

VST2 

 𝛽1, 𝛽2, 𝑆𝐴1, 𝑆𝑀1, 𝛽3, 𝑆𝐴2, 𝑆𝑀2, 𝜁 

Thigh 0.089, 0.005, 0.135, 0.052, 1e-18, 0.200, 0.201, 2e-14 

Shank 0.082, 1e-03, 0.067, 0.086, 1e-18, 0.150, 0.128, 1e-04 

Foot 0.050, 0.006, 0.100, 0.200, 1e-18, 0.204, 0.207, 1e-25 

4.4 Discussions 

IMUs are an accurate and robust alternative for stationary MCSs, with promising out-of-lab 

applications. However, for applications such as joint angle measurement or segment 

velocity/position estimation, the orientation of the body segments must first be estimated using an 

SFA. These SFAs have been validated for real IMU data in applications such as tracking and/or 

control of spacecraft (satellite), human motion, mobile robots, robotic arms, and aerial vehicles. 

Previously, Nez et al. [325] showed that the KF gains must be selected rigorously. 

Otherwise, its performance could deteriorate. They also showed that the values of these gains, 

which could be identified through optimization, were relatively different from those obtained by 

the Allan Variance method [339]. The reason could be that the optimized gains implicitly account 

for sources of error, such as modeling or calibration errors [325]. However, their approach was 

only suitable for specific activities with a similar movement intensity. To address this issue, some 

researchers have proposed switching the gain values between different levels [340]–[342]. 
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Table 7 Statistical comparison of the accuracy and robustness of different gain regulation schemes for (a,b) Madgwick(2011) and (c,d) 

Mahony(2008). Each gain regulation scheme significantly (p<0.05) outperformed the methods named in its associated column. The gain 
regulation scheme names were summarized as F: fixed optimal gain (FOG), V1: hard-switch between two levels (VST1), V2: hard-switch 

between three levels (VST2), V3: fuzzy inference system (VST3). 

(a) Accuracy of Madgwick(2011) [64] 

 Roll  Pitch  Yaw 

 FOG VST1 VST2 VST3  FOG VST1 VST2 VST3  FOG VST1 VST2 VST3 

Thigh - F F F  - F, V2 F F, V2  - F F F 

Shank - F F, V1 F, V2  - F F F  - F F F 

Foot - F F F  - F F F  - F F F 

(b) Robustness of Madgwick(2011) [64] 

 FOG VST1 VST2 VST3  FOG VST1 VST2 VST3  FOG VST1 VST2 VST3 

Thigh - - F -  - - - -  - - F, V1 F, V1 

Shank - F F F  - F F F  - F F F 

Foot - F F F  - F F F  - F F F 

(c) Accuracy of Mahony(2008) [65] 

 FOG VST1 VST2 VST3  FOG VST1 VST2 VST3  FOG VST1 VST2 VST3 

Thigh - - F, V1, V3 F  - - - -  V2 V2 - V2 

Shank - F F F  - F F F  - F F F 

Foot - F, V3 F, V3 -  - F, V3 F, V3 -  - F, V3 F, V3 - 

(d) Robustness of Mahony(2008) [65] 

 FOG VST1 VST2 VST3  FOG VST1 VST2 VST3  FOG VST1 VST2 VST3 

Thigh - - V1 -  V2 V2 - V2  V3 - - - 

Shank - F F, V1, V3 F  - F F F  - F F F, V1, V2 

Foot V1 - V1 V1  V1 - V1 V1  V1 - V1 V1 
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However, in all of these works, the structure of the switching schemes was designed for 

KFs, and the gains were not selected systematically, which could deteriorate the SFA’s 

performance [325]. Therefore, we proposed a general framework to optimize the structure and 

parameters of adaptive gain regulation schemes for SFAs (KFs and CFs). Through an extensive 

experimental study, we showed that adaptive gain regulation of SFAs is of crucial importance, 

regardless of the SFA structure or complexity. To ensure that the results were not affected by the 

experimental setup, we used (1) three different IMUs attached to three different body segments; 

and (2) collected the data of nine participants during various activities in three different days (to 

minimize the effect of environmental condition on IMU readouts).  

4.4.1 Adaptive Gain Regulation Technique Selection 

A gain regulation scheme can be selected based on (1) highest estimation accuracy (lowest median 

RMSE across all participants); (2) highest estimation robustness (lowest standard deviation of 

RMSE across all participants); (3) simplest structure (lowest number of tunable parameters), see 

Table 5. According to Table 7(a,b) and Figure 15(a), the application of all adaptive gain regulation 

techniques for Madgwick(2011) resulted in significantly higher accuracy (and oftentimes 

robustness) compared to FOG for all IMUs and angles. Therefore, we concluded that for 

Madgwick(2011), VST1 with the simplest structure would suffice. Table 7(c,d) shows that no 

technique outperformed others in all angles for the thigh IMU for Mahony(2008). However, VST2 

resulted in significantly higher accuracy (and oftentimes robustness) compared to FOG for all 

estimated angles of the shank and foot IMUs. Therefore, we concluded that for Mahony(2008), 

VST2 is the best choice. 

When Guo(2017) was implemented for the shank and foot IMUs, VST2 achieved 

significantly lower RMSEs compared to FOG and IAE for all angles, and some angles compared 

to VST1 and VST3 (Table 8(a,b)). Additionally, for both shank and foot IMUs, VST2 was 

significantly more robust than FOG and IAE. For thigh IMU, VST2 resulted in significantly lower 

RMSEs compared to FOG and other gain regulation schemes except for pitch angle estimation via 

VST1 and VST3. Therefore, we recommend VST2 as the gain regulation scheme for Guo(2017).  
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Figure 15 Boxplot of the RMSE (difference between true and estimated orientation) for (a) Madgwick(2011) [64], (b) 
Mahony(2008) [65], (c) Guo(2017) [195], and (d) Roeternberg(2005) [88]. Each boxplot presents the RMSE values of all 

testing data set (18 samples = data of six study participants for each cross-validation × 3-fold cross-validation). Also, Table 7 

and Table 8 show the significant differences resulted from the statistical analysis for each SFA. 

(a) FOG VST1 VST2 VST3 FOG VST1 VST2 VST3 FOG VST1 VST2 VST3 (b) FOG VST1 VST2 VST3 FOG VST1 VST2 VST3 FOG VST1 VST2 VST3

(c) FOG VST1 VST2 VST3 IAE FOG VST1 VST2 VST3 IAE FOG VST1 VST2 VST3 IAE 

(d) FOG          VST1 FOG          VST1 FOG          VST1
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Table 8 Statistical comparison of the accuracy and robustness of different gain regulation schemes for (a,b) Guo(2017) and (c,d) 
Roeternberg(2005). Each gain regulation scheme significantly (p<0.05) outperformed the methods named in its associated column. The gain 

regulation scheme names were summarized as F: fixed optimal gain (FOG), V1: hard-switch between two levels (VST1), V2: hard-switch 

between three levels (VST2), V3: fuzzy inference system (VST3), I: innovation adaptive estimation (IAE). 

(a) Accuracy of Guo(2017) [195] 

 Roll  Pitch  Yaw 

 FOG VST1 VST2 VST3 IAE  FOG VST1 VST2 VST3 IAE  FOG VST1 VST2 VST3 IAE 

Thigh - F,I F,V1,V3,I I -  - F,I F,I I -  V3 - F,V1,V3,I - - 

Shank - F,I F,I F,I -  - F,I F,V1,I F,V1,I -  - F,I F,I F,I - 

Foot - F,I F,I F,I -  - F,V3,I F,V3,I F, I -  - F,I F,V1,I F,I - 

(b) Robustness of Guo(2017) [195] 

 FOG VST1 VST2 VST3 IAE  FOG VST1 VST2 VST3 IAE  FOG VST1 VST2 VST3 IAE 

Thigh I I V1,V3,I I -  I F,I I F,I -  - - - - - 

Shank - F,I F,V1,I F,I -  - F F,V1,I F,V1,I -  - - F,V1,I F,V1 V1 

Foot - F,I F,I F,I -  - F,I F,I F,I -  I F,I F,I F,I - 

(c) Accuracy of Roeternberg(2005) [88] 

 FOG VST1  FOG VST1  FOG VST1 

Thigh - -  - -  - - 

Shank - F  - -  - F 

Foot - F  - -  - F 

(d) Robustness of Roeternberg(2005) [88] 

 FOG VST1  FOG VST1  FOG VST1 

Thigh - -  - -  - - 

Shank - F  - F  - F 

Foot - -  - F  - - 
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Table 9 Execution times (in milliseconds) of different (SFA, gain regulation scheme) 
combinations. N/A shows that the (SFA, gain regulation scheme) combination was not 

evaluated. 

SFA  FOG  VST1  VST2  VST3  IAE 

Madgwick(2011) [64]  0.185  0.201  0.198  0.401  N/A 
           

Mahony(2008) [65]  0.137  0.186  0.185  0.403  N/A 
           

Guo(2017) [195]  0.111  0.675  0.716  1.028  0.478 
           

Roeternberg(2005) [88]  1.644  2.100  N/A  N/A  N/A 

As executing the proposed optimization framework for finding the Roeternberg(2005) 

gains required considerably longer runtimes compared to other SFAs, we did not assess VST2 and 

VST3 for Roeternberg(2005). Figure 15(d) and Table 8(c,d) show that while FOG and VST1 

performed almost the same in terms of accuracy and robustness for the thigh IMU, VST1 

outperformed FOG significantly in terms of accuracy, robustness, or both, for the shank and foot 

IMUs. Also, as shown in Figure 15(d), for both shank and foot IMUs, the maximum RMSEs were 

decreased, and the interquartile ranges were also reduced while using VST1, indicating higher 

robustness of VST1 compared to FOG. Therefore, we recommend the application of VST1 with 

Roeternberg(2005) for segment orientation estimation. 

Also, according to Figure 15, for all SFAs, the thigh and foot IMUs had the smallest and 

highest errors, respectively. Notably, higher errors for foot IMU orientation tracking was expected 

as the SFA performance could be negatively affected by the following: (1) the foot IMU was closer 

to the ground, thus, the metals used in the building structure caused higher magnetic disturbances 

(see [343] for more details); and (2) the foot IMU experienced a higher acceleration compared to 

the other two IMUs which could affect the accelerometer's ability in the orientation estimation. 

Yet, VST1 and VST2 showed to be effective in achieving high performance for the foot IMU. 

4.4.2 SFAs Execution Time 

According to Table 9, the execution time of Madgwick(2011), Mahony(2008), Guo(2017), and 

Roeternberg(2005) with FOG was at most 0.016, 0.049, 0.605, and 0.456 milliseconds faster than 

employing VST1 or VST2. However, in the worst-case scenario, such as Roeternberg(2005) with 

VST1, the SFA execution time was 2.1 milliseconds. At the same time, a normal gait motion has 

a frequency content of up to 6 Hz [344] and is usually tracked at a sampling rate of around 100 Hz 
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(sampling period of 10 milliseconds). Therefore, even the most time-consuming SFA, 

Roeternberg(2005) with VST1, will be able to track the gait motion in real-time. 

4.4.3 Overfitting During Optimization 

One may expect the adaptive gain regulation schemes to perform the same or better than FOG. 

This is because if FOG has the best performance for an SFA, the adaptive gain regulation schemes 

could also converge to the FOG structure. However, in some cases, the adaptive gain regulation 

schemes performed poorly for the testing data set, shown as outliers with larger error values in 

Figure 15. A possible reason for this condition is overfitting. As adaptive gain regulation schemes 

have more parameters than FOG, they can be more flexible during optimization with the training 

data set, resulting in overfitting. In other words, while the SFA, together with adaptive gain 

regulation, had a very small error during training, it will not be able to track the orientation with 

high accuracy during testing. To address this issue, in practical applications, in addition to the 

training data set, a validation data set must be used to check whether overfitting happened during 

training, similar to the training of supervised classifiers [321]. 

4.4.4 Limitations and Future Works 

First, the performance of the adaptive gain regulation schemes was evaluated for four 

representative SFAs and should be further investigated for others, specifically Unscented KF, 

Cubature KF, and Particle Filter. Also, the application of SFAs such as Taylor-Fourier KF, which 

showed to be effective in state estimation of periodic systems combined by adaptive gain tuning, 

must be investigated. Second, the accuracy and robustness of the adaptive gain regulation schemes 

were investigated for four activities (quiet standing, walking, vertical jumping, and hopping) and 

should be further investigated in other activities with various intensities and patterns. In particular, 

the performance assessment must be carried out for trials with longer durations, e.g., a standard 6-

minute walking test. Third, gain regulation was performed only based on the 

accelerometer/gyroscope/magnetometer signal magnitude. In the future, more complex schemes 

that combine signal magnitude with other measures, such as the statistical properties of the SFA, 

must be developed. Specifically, time or temperature-dependent models could be developed to 

regulate the gyroscope-related gains. Finally, for VST3, the effect of using other membership 

functions used in the literature on the performance of the adaptive gain regulation must be 

evaluated.  
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4.5 Conclusions 

We presented a general framework for designing an optimal adaptive gain regulation scheme 

applicable to both families of SFAs: CFs (Madgwick(2011) [64] and Mahony(2008) [65]) and KFs 

(Guo(2017) [195] and Roeternberg(2005) [88], [107]). Our experimental study proved that the 

performance of all four tested SFAs highly depended on the selection of SFA gains, regardless of 

the SFA structure or complexity. Also, in almost all cases, optimal adaptive gain regulation based 

on IMU signal intensity, i.e., determining which source of information (gyroscope, accelerometer, 

and/or magnetometer) can be relied on at each time instant, resulted in significantly more accurate 

and repeatable results. Moreover, for the first time, our experimental study results showed that an 

optimized simple gain regulation scheme such as switching gains between two or three levels was 

sufficient, and there was no need for a more complex scheme such as a Mamdani fuzzy inference 

system. While adaptive grain regulation can improve the SFA performance for short-duration 

tasks, there is still a need for estimating the error sources of sensors embedded in an IMU to 

achieve acceptable performance for long-duration dynamic tasks. Thus, Chapter 5 presents two 

KFs in which the error sources of the sensors were estimated and the IMU readouts were corrected 

using these estimations before orientation tracking.  
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Chapter 5  

Novel Linear/Extended Kalman Filter for 

Orientation Tracking with IMUs 

This chapter provides the details of a linear Kalman filter and a robust extended Kalman filter for 

accurate and robust body segment orientation tracking with IMUs. Portions of this chapter have 

been adopted and/or edited from: 

M. Nazarahari, H. Rouhani, “Sensor Fusion Algorithms for Orientation Tracking via Magnetic 

and Inertial Measurement Units: An Experimental Comparison Survey,” Information Fusion, Vol. 

76, pp. 8-23, 2021.  

M. Nazarahari, H. Rouhani, “A Full-State Robust Extended Kalman Filter for Orientation 

Tracking During Long-duration Dynamic Tasks Using Magnetic and Inertial Measurement 

Units,” Submitted to IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 

29, pp. 1280 - 1289, 2021. 

5.1 Introduction 

Our survey of SFAs found three main limitations in the literature: (1) constant gains were used for 

the developed SFAs; (2) the effect of gyroscope bias (Equation 2), external non-gravitational 

acceleration (Equation 4), and magnetic disturbance (Equation 6) on the estimation orientation was 

ignored; and (3) performance of every newly developed SFA was evaluated only in a specific 
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testing condition. Thus, in Chapter 4, we introduced a general framework for online gain tuning 

of SFAs to adaptively put more weight on the most reliable source of information. Also, in this 

chapter, we present two novel full-state KFs (an LKF and a robust EKF) and a comprehensive 

benchmarking study that compares our proposed SFAs with previously developed SFAs using a 

common experimental setting. We also published the codes and part of the dataset to enable other 

researchers to compare their works with the literature toward creating a comprehensive online 

repository for SFAs. 

5.1.1 Benchmarking Sensor Fusion Algorithms 

Our survey study identified a need for benchmarking studies for orientation tracking with IMUs 

[22]. The reason is that each SFA’s performance was assessed in limited test scenarios in terms of 

motion duration, pattern, and intensity. Also, other contributing factors, such as the optimal SFA 

gains or manufacturing quality of the tested IMUs, were not considered in assessments. As a result, 

contradictory results on the performance of SFAs have been reported in various studies. In Section 

2.3.1.1, we surveyed 14 benchmarking studies [49], [63], [92], [97], [99], [102], [73], [77]–[79], 

[82], [83], [87], [89] that had a focus on the experimental comparison of SFAs. However, one 

cannot make a general conclusion about the SFAs’ accuracy and robustness based on these works, 

as each of them showed at least one of the following limitations: 

1. They assessed the accuracy of only a limited number of SFAs (maximum of six filters in [92]). 

In total, 30 filters were tested in these works, while only 4 were compared with other filters in 

more than two studies.  

2. They used different IMU technologies. IMUs can have different sensitivities to various sources 

of error, which affect the accuracy and robustness of the SFAs, e.g., the thermal gradient can 

make an IMU less suitable for outdoor orientation tracking [44].  

3. They selected the SFAs gains experimentally. As shown in the literature [25], [325], SFA gains 

must be selected rigorously. Otherwise, the SFA performance may deteriorate severely. Only 

3 (out of 14) of the previous experimental comparison studies reported a rigorous search for 

finding the SFAs gains. 

4. They evaluated SFAs in different testing conditions, i.e., motions with various patterns and 

intensities or evaluated SFAs in tasks with different durations. Notably, some SFAs do not 

contain effective strategies to compensate for the cumulative errors of the strap-down 
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integration in long-duration trials and perform poorly after a short period. Thus, the test results 

from one study could not be directly compared to another study. 

5. They have not published all the data/codes online. Thus, other researchers cannot compare the 

newly developed SFA against the previous ones.  

5.1.2 Contributions 

This chapter aims to build upon our survey and present an experimental comparison among a wide 

range of well-recognized and highly cited SFAs from the literature. Notably, the following 

procedure was considered to address the limitation of the previous surveys: we evaluated the 

performance of 37 SFAs from the literature, including examples of CFs, LKFs, EKFs, CKFs, 

against the gold-standard MCS in an extensive experimental study with multiple trials including 

various short- and long-duration dynamic tasks using optimal adaptive gain tuning for each SFA 

(obtained using Particle Swarm Optimization [330]). In addition, in this chapter, we proposed a 

novel full-state LKF, full-state robust EKF, square-root unscented KF (SRUKF) with four different 

sigma-point definitions [345], and square-root cubature KF (SRCKF) [346], [347] for IMU 

orientation estimation. In contrast to analyzed KFs, the novel proposed full-state LKF/EKF state 

vector includes all accelerometer, gyroscope, and magnetometer source noises to enable 

orientation tracking under dynamic activities in long-duration trials. The SRCKF and SRUKF were 

also purposed to address the challenges related to the linearization of orientation estimation 

equations performed in EKF. We compared the performance of these LKF, EKF, SRUKF, and 

SRCKF against the MCS during the same short- and long-duration dynamic tasks. However, fusing 

strategies such as Particle Filters or the use of other technologies alone or together with IMUs for 

orientation tracking were not included in this comparison. In the end, sample IMU and MCS data, 

as well as the SFAs implementations, were shared via an online repository 

(https://www.ncbl.ualberta.ca/codes).  

5.2 Experimental Comparison 

The details of the orientation parametrization and IMU mathematical model are described in 

Section 2.3.1 and Section 2.3.2, respectively.  

https://www.ncbl.ualberta.ca/codes
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5.2.1 Selected Sensor Fusion Algorithms (SFAs) 

To conduct an experimental comparison among SFAs from all families shown in Figure 16, we 

had to ensure that the selected algorithms were implemented correctly. To this end, we performed 

an exhaustive search in online repositories to find SFAs implemented by their authors or requested 

the codes of highly-cited SFAs from their corresponding authors. All codes have been converted 

to MATLAB functions (if implemented initially with another coding language). Also, to 

distinguish these SFAs from one another, we named them as first author(year) 

 
Figure 16 The proposed taxonomy of the SFAs benchmarked in this study.  

In addition to the SFAs previously introduced in the literature, we proposed a novel full-

state LKF, robust EKF, SRUKF, and SRCKF. Our proposed LKF (hereafter referred to as 

Nazarahari(2020)) and EKF (hereafter referred to as Nazarahari(2021)) were designed by 

including 𝑏𝐺 , 𝒶, and 𝒹 in the IMU model (see Equation 2, Equation 4, and Equation 6) in the state 

vector as described in Section 5.2.1.1 and Section 5.2.1.2, respectively. With this new formulation, 

the raw IMU readouts (i.e., 𝑦𝐺 , 𝑦𝐴, 𝑦𝑀) can be corrected before being used for orientation 

estimation. We hypothesized that this correction would make the proposed SFAs more accurate 

for long-duration dynamic tasks where the Earth’s magnetic field is disturbed. Also, we 

implemented SRUKF and SRCKF, which have been little implemented in the past for IMU 

orientation estimation. In the SRUKF (with four different sigma point definitions) and SRCKF 

formulation, time- and measurement-update equations were adopted from an implemented EKF 

[348] with mediocre performance. Then, instead of linearization steps in the EKF [348], we 

implemented SRUKF and SRCKF, according to [349] and [347], respectively, to investigate the 

effect of unscented transform and spherical-radial cubature rule in dealing with nonlinear 

orientation estimation equations. 

Table 10 presents the list of implemented SFAs (37 in total), sorted based on their 

publication year. Although we acknowledge that providing the details of these algorithms in this 

Sensor fusion algorithms (SFA)

Deterministic SFA

Linear 
Complementary 

Filter (LCF)

Nonlinear 
Complementary 

Filter (NCF)

Stochastic SFA

Linear 
Kalman

Filter (LKF)

Extended 
Kalman Filter 

(EKF)

Complementary  
Kalman Filter 

(CKF)

Squre-root 
Unscented Kalman 

Filter (SRUKF)

Squre-root 
Cubature Kalman 

Filter (SRCKF)
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paper can be useful, due to a large number of implemented/tested SFAs, we refer the interested 

reader to the original articles for algorithm details. Nevertheless, we categorized the implemented 

SFAs in Table 11 and briefly described their general structure, orientation parametrization, time- 

and measurement-update in case of a KF, and modifications proposed to improve their 

performance. The implemented SFAs in this paper can be divided into two general families: CFs 

and KFs, and a detailed survey and flowchart of these families can be found in Section 2.3 [22]. 

5.2.1.1 Proposed Full-state Linear Kalman Filter 

The IMU model in Section 2.3.2 was used to develop a novel full-state LKF.  

LKF Prediction Model 

Figure 4(a) shows the flowchart of an LKF. The state vector of the proposed LKF, 𝓍, was 

composed of the estimated orientation of the IMU, expressed as a unit quaternion 𝑞𝑘 =

(𝑞0,𝑘
 𝑞1,𝑘

 𝑞2,𝑘
 𝑞3,𝑘

 )
𝑇
, non-gravitational acceleration, gyroscope drift, and magnetic disturbance, 

as in Equation 26. Then, the evolution of the state vector was written based on the strap-down 

integration of angular velocity, 𝜔𝑘:  

𝓍𝑘+1
− = [𝑞𝑘+1 𝒶𝑘+1 𝑏𝐺,𝑘+1 𝒹𝑘+1]𝑇 = ℱ𝑘𝓍𝑘

+ 

          = [

exp(Ω(𝜔𝑘)𝑇𝑠)

03×4

03×4

03×4

 

04×3

𝑐𝑎 3×3

03×3

03×3

 

04×3

03×3

 3×3

03×3

 

04×3

03×3

03×3

𝑐𝑑 3×3

 

] 𝓍𝑘
+ 

Equation 26 

where ℱ𝑘  is the state transition matrix and 𝑇𝑠 is the sampling period of the IMU. Ω(𝜔𝑘) is a 4×4 

skew-matrix defined as in Equation 27, 

Ω(𝜔𝑘) =
1

2
[

0
𝜔𝑥,𝑘

𝜔𝑦,𝑘

𝜔𝑧,𝑘

  

−𝜔𝑥,𝑘

0
−𝜔𝑧,𝑘

𝜔𝑦,𝑘

  

−𝜔𝑦,𝑘

𝜔𝑧,𝑘

0
−𝜔𝑥,𝑘

  

−𝜔𝑧,𝑘

−𝜔𝑦,𝑘

𝜔𝑥,𝑘

0

 

] Equation 27 

where 𝜔𝑘  is the corrected angular velocity, i.e.,  𝑦𝐺,𝑘 − 𝑏𝐺,𝑘
+ . Also, exp(∙) in Equation 26 is the 

matrix exponential operation, which can be approximated by Padé approximation [350] or Taylor-

series. Next, the a priori error covariance matrix, 𝒫𝑘+1
−  was calculated according to Figure 4(a). 

To this end, the system model covariances matrix, 𝒬𝑘, was obtained under the assumption that 
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𝓌𝑞, 𝓌𝒶, 𝓌𝑏𝐺
, and 𝓌𝒹 are uncorrelated with one another, see [80], [106] for more details, as in 

Equation 28, 

𝒬𝑘 =

[
 
 
 𝑇𝑠

2 4⁄ Ξ𝑘 𝐺
2 3×3Ξ𝑘

𝑇

03×4

03×4

03×4

  

04×3

 𝒶,𝓌
2𝑇𝑠 3×3

03×3

03×3

  

04×3

03×3

 𝑏𝐺,𝓌
2𝑇𝑠 3×3

03×3

  

04×3

03×3

03×3

 𝒹,𝓌
2𝑇𝑠 3×3

  

]
 
 
 

 Equation 28 

where  𝐺 ,  𝒶,𝓌,  𝑏𝐺,𝓌, and  𝒹,𝓌 are the variance of the white Gaussian noises affecting gyroscope 

readouts, estimated non-gravitational acceleration, estimated gyroscope drift, and estimated 

magnetic disturbance, respectively.  

LKF Correction Model 

The a posteriori estimate of orientation 𝑞𝑘
+ corrected via the accelerometer (𝑦𝐴) and magnetometer 

(𝑦𝑀) readouts was considered as the measurements, 𝓏𝑘+1. To calculate 𝓏𝑘+1, the gradient descent 

optimization technique was used similar to [64]: the difference between the estimated acceleration 

and geomagnetic field and the accelerometer and magnetometer readouts expressed in Equation 

29 and Equation 30 should be minimized when the a posteriori state 𝓍𝑘
+ have an accurate estimate,  

𝒻𝐴 = (𝒶 + 𝑞𝐺
𝑆𝐹 ∗ ⊗ 𝑔𝐺 ⊗ 𝑞𝐺

𝑆𝐹 ) − 𝑦𝐴 Equation 29 

𝒻𝑀 = (𝒹 + 𝑞𝐺
𝑆𝐹 ∗ ⊗ 𝑚𝐺 ⊗ 𝑞𝐺

𝑆𝐹 ) − 𝑦𝑀  Equation 30 

where 𝒻 = [𝒻𝐴 𝒻𝑀]𝑇 is the objective function which should be minimized, 𝑔𝐺  and 𝑚𝐺  are the 

gravitational acceleration and the reference geomagnetic vector in the Earth reference frame 

(𝐺), 𝑞𝐺
𝑆𝐹  is the orientation of the IMU sensor frame with respect to the Earth’s reference frame, 

and ⊗ is the quaternion multiplication [64]. By simplifying Equation 29 and Equation 30, the 

objective function 𝒻 can be obtained as in Equation 31, 

𝒻 =

[
 
 
 
 
 
 
 

𝒶𝑥 + 2(𝑞1𝑞3 − 𝑞0𝑞2) − 𝑦𝐴,𝑥

𝒶𝑦 + 2(𝑞0𝑞1 + 𝑞2𝑞3) − 𝑦𝐴,𝑦

𝒶𝑧 + 2(0.5 − 𝑞1
2 − 𝑞2

2) − 𝑦𝐴,𝑧

𝒹𝑥 + 2𝑚𝑥(0.5 − 𝑞2
2 − 𝑞3

2) + 2𝑚𝑦(𝑞0𝑞3 + 𝑞1𝑞2) + 2𝑚𝑧(𝑞1𝑞3 − 𝑞0𝑞2) − 𝑦𝑀,𝑥

𝒹𝑦 + 2𝑚𝑥(𝑞1𝑞2 − 𝑞0𝑞3) + 2𝑚𝑦(0.5 − 𝑞1
2 − 𝑞3

2) + 2𝑚𝑧(𝑞0𝑞1 + 𝑞2𝑞3) − 𝑦𝑀,𝑦

𝒹𝑧 + 2𝑚𝑥(𝑞0𝑞2 + 𝑞1𝑞3) + 2𝑚𝑦(𝑞2𝑞3 − 𝑞0𝑞1) + 2𝑚𝑧(0.5 − 𝑞1
2 − 𝑞2

2) − 𝑦𝑀,𝑧

 

]
 
 
 
 
 
 
 

 
Equation 31 

Then, the a posteriori state 𝓍𝑘
+ could be corrected via one iteration of gradient descent optimization 

as in Equation 32 to obtain 𝓏𝑘+1, 
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𝓏𝑘+1 = 𝓍𝑘
+ − 𝜇∇𝒻(𝓍𝑘

+) = 𝓍𝑘
+ − 𝜇 ∙ 𝒥𝒻

𝑇 ∙ 𝒻(𝑥𝑘
+) Equation 32 

where 𝜇 is the learning rate of the gradient descent and 𝒥𝒻 is the Jacobian of the function 𝒻 as in 

Equation 33,  

𝒥𝒻 =
 𝒻

 𝓍
= [

𝐻𝐴  3×3 03×6

𝐻𝑀 03×6  3×3
]  Equation 33 

and 𝐻𝐴 and 𝐻𝑀  were derived based on Equation 31 as in Equation 34, 

𝐻𝐴 = 2 [
−𝑞2

𝑞1

0
  

𝑞3

𝑞0

−2𝑞1

   

−𝑞0

𝑞3

−2𝑞2

   
𝑞1

𝑞2

0
] 

Equation 34 𝐻𝑀

= 2 [

𝑚𝑦𝑞3 − 𝑚𝑧𝑞2

−𝑚𝑥𝑞3 + 𝑚𝑧𝑞1

𝑚𝑥𝑞2−𝑚𝑦𝑞1

 

𝑚𝑦𝑞2 + 𝑚𝑧𝑞3

𝑚𝑥𝑞2−2𝑚𝑦𝑞1 + 𝑚𝑧𝑞0

𝑚𝑥𝑞3 − 𝑚𝑦𝑞0−2𝑚𝑧𝑞1

  

−2𝑚𝑥𝑞2 + 𝑚𝑦𝑞1 − 𝑚𝑧𝑞0

𝑚𝑥𝑞1 + 𝑚𝑧𝑞3

𝑚𝑥𝑞0+𝑚𝑦𝑞3−2𝑚𝑧𝑞2

  

−2𝑚𝑥𝑞3 + 𝑚𝑦𝑞0 + 𝑚𝑧𝑞1

−𝑚𝑥𝑞0−2𝑚𝑦𝑞3 + 𝑚𝑧𝑞2

𝑚𝑥𝑞1 + 𝑚𝑦𝑞2

] 

Equation 32 shows that the measurement vector is in fact a corrected version of the a posteriori 

state 𝓍𝑘
+. Therefore, the measurement transition matrix 𝐻𝑘+1 is equal to the identity matrix. Finally, 

the measurement covariance matrix, ℛ𝑘+1 must be determined to calculate the Kalman gain, 𝒦𝑘+1. 

To this end, first, we calculate the covariance matrix associated with accelerometer and 

magnetometer as in Equation 35, 

Σ𝐴,𝑀 = [
 𝐴

2 3×3 03×3

03×3  𝑀
2 3×3

] Equation 35 

where  𝐴 and  𝑀 are the standard deviation of the accelerometer and magnetometer readouts, 

respectively [106]. Then, as 𝓏𝑘+1 is a nonlinear function of accelerometer and magnetometer 

readouts, we used the first-order Taylor series using the Jacobian of 𝓏𝑘+1 to measurement 

covariance matrix as in Equation 36 [351], 

ℛ𝑘+1 = ℒ ∙ Σ𝐴,𝑀 ∙ ℒ𝑇 Equation 36 

where ℒ is the Jacobian matrix of 𝓏𝑘+1 and could be obtained as in Equation 37, 

ℒ =
 𝓏𝑘+1

 [𝑦𝐴, 𝑦𝑀]
=

[
 
 
 
𝜇𝐻𝐴

𝑇

𝜇 3×3

03×3

03×3

 

 

𝜇𝐻𝑀
𝑇

03×3

03×3

𝜇 3×3 ]
 
 
 
 

Equation 37 
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5.2.1.2 Proposed Full-state Robust Extended Kalman Filter 

The IMU model in Section 2.3.2 was used to develop a novel full-state robust EKF.  

EKF Prediction Model 

Figure 4(b) shows the flowchart of an EKF. The state vector of the proposed LKF, 𝓍, was 

composed of the estimated orientation of the IMU, expressed as a unit quaternion 𝑞𝑘 =

(𝑞0,𝑘
 𝑞1,𝑘

 𝑞2,𝑘
 𝑞3,𝑘

 )
𝑇
, non-gravitational acceleration, gyroscope drift, and magnetic disturbance, 

as in Equation 26. Then, the evolution of the state vector over time, 𝒻𝑘(𝓍𝑘
+, 0), was written based 

on the strap-down integration of angular velocity, 𝜔𝑘 , similar to the proposed LKF, Equation 26. 

Also, exp(∙) in Equation 26 is the matrix exponential operator, which was computed by the second-

order Taylor series approximation, as suggested by Lee and Choi [112],  

exp(Ω(𝜔𝑘)𝑇𝑠) =  4×4 + Ω(𝜔𝑘)𝑇𝑠 +
1

2
Ω(𝜔𝑘)2𝑇𝑠

2
 Equation 38 

Next, to calculate the a priori error covariance matrix 𝒫𝑘+1
− , the system equation was linearized, 

as shown in Figure 4(b), 

 𝑘 =
 𝒻𝑘

 𝓍
|
𝓍 

 
=  [

exp(Ω(𝜔𝑘)𝑇𝑠)

03×4

03×4

03×4

  

04×3

𝑐𝒶 3×3

03×3

03×3

  

ℱ𝑘

03×3

 3×3

03×3

  

04×3

03×3

03×3

𝑐𝒹 3×3

 

] 

ℒ𝑘 =
 𝒻𝑘

 𝓌
|
𝓍 

 
=  13×13 

Equation 39 

where ℱ𝑘  was calculated as in Equation 40, 

ℱ𝑘 =
𝑇𝑠

2

4
𝑞𝑘

+𝜔𝑘
𝑇 +

𝑇𝑠

2

[
 
 
 
 

𝑞1,𝑘
+

−𝑞0,𝑘
+

−𝑞3,𝑘
+

𝑞2,𝑘
+

  

𝑞2,𝑘
+

𝑞3,𝑘
+

−𝑞0,𝑘
+

−𝑞1,𝑘
+

  

𝑞3,𝑘
+

−𝑞2,𝑘
+

𝑞1,𝑘
+

−𝑞0,𝑘
+

  

]
 
 
 
 

 =
𝑇𝑠

2

4
𝑞𝑘

+𝜔𝑘
𝑇 +

𝑇𝑠

2
Ξ𝑘 Equation 40 

Also, the process covariances matrix, 𝑄𝑘 , was obtained similar to Equation 28. 

EKF Correction Model 

Similar to the proposed LKF, accelerometer (𝑦𝐴) and magnetometer (𝑦𝑀) readouts were considered 

as the sensor measurements, 𝓏𝑘+1. To calculate the predicted measurements, 𝒽𝑘+1(𝓍𝑘+1
− , 0), we 
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used the following idea: assuming that the IMU is at rest in a magnetically undisturbed 

environment, the estimated measurements �̂�𝐴 and �̂�𝑀  could be estimated based on the gravitational 

acceleration ( 𝑔𝐺 ) and the geomagnetic vector ( 𝑚𝐺 ) in the Earth’s reference frame (𝐺), 

respectively, according to Equation 41, 

�̂�𝐴 = 𝑞𝐺
𝑆𝐹 ∗ ⊗ [0 𝑔𝐺 ] ⊗ 𝑞𝐺

𝑆𝐹  

�̂�𝑀 = 𝑞𝐺
𝑆𝐹 ∗ ⊗ [0 𝑚𝐺 ] ⊗ 𝑞𝐺

𝑆𝐹  

Equation 41 

where 𝑞𝐺
𝑆𝐹  is the orientation of the IMU sensor frame with respect to the Earth’s reference frame, 

∗ and ⊗ are the quaternion conjugate and multiplication operations, respectively [64]. Therefore, 

the measurement equation can be written as 𝒽𝑘+1(𝓍𝑘+1
− , 0) = [�̂�𝐴 �̂�𝑀]𝑇 using Equation 41. Then, 

Equation 41 was extended to the general case in which the IMU is moving in a magnetically 

disturbed environment using the predicted non-gravitational acceleration (𝒶𝑘) and magnetic 

disturbance (𝒹𝑘) as in Equation 42, 

�̂�𝐴 = [

𝒶𝑥 + 2(𝑞1𝑞3 − 𝑞0𝑞2)
𝒶𝑦 + 2(𝑞0𝑞1 + 𝑞2𝑞3)

𝒶𝑧 + 2(0.5 − 𝑞1
2 − 𝑞2

2)

] 

�̂�𝑀 = [

𝒹𝑥 + 2𝑚𝑥(0.5 − 𝑞2
2 − 𝑞3

2) + 2𝑚𝑦(𝑞0𝑞3 + 𝑞1𝑞2) + 2𝑚𝑧(𝑞1𝑞3 − 𝑞0𝑞2)

𝒹𝑦 + 2𝑚𝑥(𝑞1𝑞2 − 𝑞0𝑞3) + 2𝑚𝑦(0.5 − 𝑞1
2 − 𝑞3

2) + 2𝑚𝑧(𝑞0𝑞1 + 𝑞2𝑞3)

𝒹𝑧 + 2𝑚𝑥(𝑞0𝑞2 + 𝑞1𝑞3) + 2𝑚𝑦(𝑞2𝑞3 − 𝑞0𝑞1) + 2𝑚𝑧(0.5 − 𝑞1
2 − 𝑞2

2)

] 

Equation 42 

where (𝑞0
 𝑞1

 𝑞2
 𝑞3) are the components of 𝑞𝐺

𝑆𝐹 , (𝑚𝑥
 𝑚𝑦

 𝑚𝑧) are the components of 𝑚𝐺 , 𝑔𝐺  is 

(0, 0, 1), and the index 𝑘 + 1 and superscript "–" (the a priori estimate) were dropped for brevity. 

Next, to calculate the Kalman gain, 𝒦𝑘+1, the measurement equation was linearized as in Equation 

43,  

ℋ𝑘+1 =
 𝒽𝑘+1

 𝓍
|
𝓍   

 
= [

𝐻𝐴  3×3 03×6

𝐻𝑀 03×6  3×3
]  

 𝑘+1 =
 𝒽𝑘+1

 𝓋
|
𝓍   

 
=  6×6  

Equation 43 

where 𝐻𝐴 and 𝐻𝑀  were derived based on definitions of �̂�𝐴 and �̂�𝑀  as in Equation 44, 
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𝐻𝐴 = 2 [
−𝑞2

𝑞1

0
  

𝑞3

𝑞0

−2𝑞1

   

−𝑞0

𝑞3

−2𝑞2

   
𝑞1

𝑞2

0
] 

𝐻𝑀 = 2 [

𝑚𝑦𝑞3 − 𝑚𝑧𝑞2

−𝑚𝑥𝑞3 + 𝑚𝑧𝑞1

𝑚𝑥𝑞2−𝑚𝑦𝑞1

 

𝑚𝑦𝑞2 + 𝑚𝑧𝑞3

𝑚𝑥𝑞2−2𝑚𝑦𝑞1 + 𝑚𝑧𝑞0

𝑚𝑥𝑞3 − 𝑚𝑦𝑞0−2𝑚𝑧𝑞1

  

−2𝑚𝑥𝑞2 + 𝑚𝑦𝑞1 − 𝑚𝑧𝑞0

𝑚𝑥𝑞1 + 𝑚𝑧𝑞3

𝑚𝑥𝑞0+𝑚𝑦𝑞3−2𝑚𝑧𝑞2

  

−2𝑚𝑥𝑞3 + 𝑚𝑦𝑞0 + 𝑚𝑧𝑞1

−𝑚𝑥𝑞0−2𝑚𝑦𝑞3 + 𝑚𝑧𝑞2

𝑚𝑥𝑞1 + 𝑚𝑦𝑞2

] 

Equation 44 

Also, the measurement covariance matrix, ℛ𝑘+1, was obtained as in Equation 45, 

ℛ𝑘+1 = [
 𝐴

2 3×3 03×3

03×3  𝑀
2 3×3

] Equation 45 

where  𝐴 and  𝑀 are the standard deviation of the accelerometer and magnetometer readouts, 

respectively. Finally, the unit-norm property of the a posteriori quaternion, 𝑞𝑘+1
+ , was preserved 

by a normalization step, i.e., dividing 𝑞𝑘+1
+  by its Euclidean norm [106]. 

Robust EKF 

This section presents the procedure for converting the EKF formulation to the robust EKF using 

the structure of a 𝐻∞ filter. To build a 𝐻∞ filter, we assume that in the state-space model in 

Equation 13, the process and measurement noises are energy bounded 𝑙2[0,∞) signals, i.e., 

∑ 𝓌𝑘
𝑇𝓌𝑘 < ∞∞

𝑘=0  and ∑ 𝓋𝑘
𝑇𝓋𝑘 < ∞∞

𝑘=0 . Then, the purpose of the 𝐻∞ filter is to find an 

estimation strategy that minimizes the 𝐻∞ norm of the mapping between 𝓍0 − 𝓍0
+, 𝓌𝑘, 𝓋𝑘 and 

the estimation error [352]. It was shown that a closed-form solution for optimal 𝐻∞ filter is 

available for only limited cases [353]. Therefore, a suboptimal solution that bounds the worst-case 

estimation error is commonly treated in the literature by satisfying the objective function in 

Equation 46, 

∑ ‖𝓍𝑗 − 𝓍𝑗
+‖

2

2𝑘
𝑗=0

‖𝓍0 − 𝓍0
+‖

𝑃0
  

2 + ∑ ‖𝓌𝑗‖𝒬  

2𝑘
𝑗=0 + ∑ ‖𝓋𝑗‖ℛ  

2𝑘
𝑗=0

< 𝛾2 Equation 46 

where 𝛾 > 0 is a user-specified scaler and determines the worst-case estimation error upper bound, 

the notation ‖𝑎‖𝑊
2  is the square of the weighted 𝑙2 norm of 𝑎, i.e., ‖𝑎‖𝑊

2 = 𝑎𝑇𝑊𝑎, 𝒫0 is the initial 

covariance of the estimation error, and other parameters carry a similar definition as in the EKF 

[352]. Then, a closed-form solution to the suboptimal 𝐻∞ filter can be formulated as a robust EKF 

[352], [354], using the structure of the EKF derived in the previous two sections, except for the a 

posteriori error covariance matrix equation which is given by Equation 47, 
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𝒫𝑘+1
+ = 𝒫𝑘+1

− − 𝒫𝑘+1
− [ℋ𝑘+1

𝑇   13×13]ℒ𝑘+1
−1 [

ℋ𝑘+1

 13×13
]𝒫𝑘+1

−  

ℒ𝑘+1 =  [
ℛ𝑘+1 06×13

013×6 −𝛾2 13×13
] + [

ℋ𝑘+1

 13×13
]𝒫𝑘+1

− [ℋ𝑘+1
𝑇   13×13] 

Equation 47 

5.2.2 Sensor Fusion Algorithms’ (SFAs’) Gains 

Table 10 lists the gains associated with the implemented SFAs. It has been shown that an SFA’s 

performance highly depends on its gains [325], [364] and that adaptive gain tuning could 

significantly improve the accuracy and reliability of an SFA [25]. Therefore, to perform a fair 

comparison between the implemented SFAs, a similar procedure to Chapter 4 was followed to find 

the optimal adaptive gain tuning scheme for each SFA. Notably, for each SFA, an optimization 

routine (Figure 13(a)) was executed to find a two-level hard-switch for intuitively tunable gains of 

an SFA using IMU readouts, i.e., 𝑦𝐴, 𝑦𝐺 , and 𝑦𝑀 .  

As described in Chapter 4, each two-level hard-switch adjusts one of the intuitively tunable 

gains of an SFA between two predefined levels 𝐺1 and 𝐺2 by applying a threshold 𝑆 to (1) deviation 

of ‖𝑦𝐴,𝑘‖ from ‖𝑦𝐴,𝑠𝑡𝑎𝑡‖ measured during a static condition; (2) deviation of ‖𝑦𝑀,𝑘‖ from 

‖𝑦𝑀,𝑠𝑡𝑎𝑡‖ measured during an undisturbed magnetic condition; and (3) ‖𝑦𝐺,𝑘‖ (assuming ‖𝑦𝐺,𝑘‖ ≈ 

0 during a static condition). Note that for some SFAs, the gain associated with each of the 

accelerometer, magnetometer, and gyroscope sensors is different and tunable; for example, see the 

implemented KFs in Table 10. For these SFAs, three two-level hard-switches were designed to 

tune the gains associated with accelerometer, magnetometer, and gyroscope separately as in 

Equation 48, Equation 49, and Equation 50: 
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Table 10 The list of the implemented SFAs and their gains. Abbreviations/symbols used in the table are described in 
the table footnotes. Please see the original paper related to each SFA for details of the algorithms and gains. Subscripts 

1 and 2 show that the gain value was adaptively tuned to level 1 or 2 as described in Section 5.2.2, while for gains with 

no number subscript, the fixed optimal values were used. 

Study Name SFA Gains 

[355] Markely(2003) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀,  𝑏𝐺
) 

[107] Roeternberg(2005) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀, 𝜁, 𝜉, 𝛾,  , 𝑚𝑒𝑥𝑝) 

[356] Choukroun(2006) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀) 

[106] Sabatini(2006) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀,  𝑏𝐴
,  𝑏𝑀

) 

[65] Mahony(2008) (𝑘𝑝1
, 𝑘𝑝2

, 𝑆𝐴, 𝑆𝐴, 𝑘𝑖) 

[96] Martin(2010) (𝑙𝑎, 𝑙𝑐, 𝑙𝑑,  , 𝑛, 𝑜) 

[110] Suh(2010) (𝒫0, 𝒫𝑏𝐺
, 𝒫𝑏𝐴

,  𝐺1,  𝐺2, 𝑆𝐺, 𝑄𝑏𝐺
, 𝑄𝑏𝐴

, 𝑀1, 𝑀2, γ,  𝑀1,  𝑀2, 𝑆𝑀) 

[64] Madgwick(2011) (MIMU) (𝛽1, 𝛽2, 𝑆𝐴, 𝑆𝑀, 𝜁) 

[64] Madgwick(2011) (IMU) (𝛽1, 𝛽2, 𝑆𝐴, 𝜁) 

[95], [133] Fourati(2011) (𝑘𝐴1, 𝑘𝐴2, 𝑆𝐴, 𝑘𝑀1, 𝑘𝑀2, 𝑆𝑀, 𝛽) 

[156] Hua(2014) (𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘𝑏, ∆) 

[93] Renaudin(2014) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀) 

[128] Valenti(2015) ( 𝑏𝐺
, 𝛼𝐴, 𝑒1, 𝑒2,  𝑀1,  𝑀2, 𝑆𝑀, 𝑆𝐺, 𝑆𝐴, 𝑆𝑏) 

[85] Ligorio(2015) 
LKF1: (𝒫𝐴,  𝐺1,  𝐺2, 𝑆𝐺,  𝐴1,  𝐴2, 𝑆𝐴, 𝑐𝐴𝑎

, 𝑐𝐴𝑏
) 

LKF2: (𝒫𝑀 ,  𝐺1,  𝐺2, 𝑆𝐺,  𝑀1,  𝑀2, 𝑆𝑀, 𝑐𝑀𝑎
, 𝑐𝑀𝑏

) 

[54] Hyyti(2015) (𝒫𝐷𝐶𝑀 , 𝒫𝑏𝐺
,  𝐺1,  𝐺2, 𝑆𝐺,  𝑏,  𝐴𝑓

,  𝐴 ) 

[159] Marantos(2016)  (𝑤𝐴1, 𝑤𝐴2, 𝑆𝐴, 𝑤𝑀1, 𝑤𝑀2, 𝑆𝑀, 𝑇𝑜𝑡, 𝑆𝐺) 

[135] DelRosario(2016) (𝜇𝐴𝑠, 𝜇𝐴𝑑, 𝑆𝐴, 𝜇𝑀𝑠, 𝜇𝑀𝑑, 𝑤𝐿) 

[158] Wu(2016) (𝛾𝐴1, 𝛾𝐴2, 𝑆𝐴, 𝑇ℎ𝑟𝐴, 𝛾𝑀1, 𝛾𝑀2, 𝑆𝑀, 𝑇ℎ𝑟𝑀) 

[129] Valenti(2016) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀) 

[348] Chen(2017) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀, 𝑐𝒶, 𝑐𝒹 ,  𝑏𝐺
) 

[357] FouratiMartin(2011) (𝑘𝐴1, 𝑘𝐴2, 𝑆𝐴, 𝑘𝑀1, 𝑘𝑀2, 𝑆𝑀, 𝛽) 

[195] Guo(2017) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀) 

[272] DelRosario(2018) (𝑐𝑎, 𝑐𝑚, 𝑁𝑆, 𝑁𝐿, 𝑁𝑚,  𝐺1,  𝐺2, 𝑆𝐺, 𝜉𝑎, 𝜉𝑥𝑦) 

[126] Wu(2018) (𝒫0,  𝑄𝑦
,  𝐺1,  𝐺2, 𝑆𝐺,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀) 

[137] Wu(2019) (𝑤𝐴, 𝑤𝑀,  𝐺1,  𝐺2, 𝑆𝐺, 𝑋) 

[358] Suh(2019) ( 𝐺1,  𝐺2, 𝑆𝐺,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀) 

[185] Justa(2020) ( 𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀) 

[359] Wu(2020)(Plain) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀, 𝜇) 

[359] Wu(2020)(Recursive) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀, 𝜇) 

[360] GyroLib(2020) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀,  𝑏𝐺
) 

Proposed Nazarahari(2020) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀, 𝑐𝒶, 𝑐𝒹,  𝒶,  𝑏𝐺
,  𝒹, 𝜇) 

Proposed Nazarahari(2021) (𝒫0 ,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴 ,  𝑀1,  𝑀2, 𝑆𝑀 , 𝑐𝒶, 𝑐𝒹 ,  𝒶,  𝑏𝐺
,  𝒹 ,𝛾) 

Proposed SRCKF (cubature points [347]) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀, 𝑐𝒶, 𝑐𝒹,  𝑏𝐺
) 

Proposed SRUKF1 (sigma points [349]) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀, 𝑐𝒶, 𝑐𝒹,  𝑏𝐺
, 𝛼, 𝛽) 

Proposed SRUKF2 (sigma points [361]) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀, 𝑐𝒶, 𝑐𝒹,  𝑏𝐺
, 𝜅) 

Proposed SRUKF3 (sigma points [362]) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀, 𝑐𝒶, 𝑐𝒹,  𝑏𝐺
, 𝑤0) 

Proposed SRUKF4 (sigma points [363]) (𝒫0,  𝐺1,  𝐺2, 𝑆𝐺 ,  𝐴1,  𝐴2, 𝑆𝐴,  𝑀1,  𝑀2, 𝑆𝑀, 𝑐𝒶, 𝑐𝒹,  𝑏𝐺
, 𝑤𝑛) 
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- Abbreviations: LKF: linear Kalman filter; SRCKF: square-root cubature Kalman filter; SRUKF: square-root 
unscented Kalman filter. 

- Symbols: 𝒫0: initial state error covariance matrix; 𝐺: gyroscope-related gain/threshold; 𝐴: accelerometer-related 

gian/threshold; 𝑀: magnetometer-related gian/threshold;  𝑏𝐺
: gyroscope bias gain. 

- Proposed: We originally proposed Nazarahari(2020) and Nazarahari(2021) in this work, and the other SFAs, 

labeled as proposed, were previously introduced in the literature, but we originally implemented them for IMU 
orientation estimation. 

 

 𝐴 = {
 𝐴 

, |‖𝑦𝐴,𝑘‖ − ‖𝑦𝐴,𝑠𝑡𝑎𝑡‖| < 𝑆𝐴

 𝐴2
, otherwise

 Equation 48 

 𝑀 = {
 𝑀 

, |‖𝑦𝑀,𝑘‖ − ‖𝑦𝑀,𝑠𝑡𝑎𝑡‖| < 𝑆𝑀

 𝑀2
, otherwise

 Equation 49 

 𝐺 = {
 𝐺 

, ‖𝑦𝐺,𝑘‖ < 𝑆𝐺

 𝐺2
, otherwise

 Equation 50 

where  𝐴,  𝑀,  𝐺  are the values of gains for the accelerometer, magnetometer, and gyroscope 

sensors, respectively, ‖𝑦𝐴,𝑠𝑡𝑎𝑡‖ and ‖𝑦𝑀,𝑠𝑡𝑎𝑡‖ are the norm of the acceleration and geomagnetic 

field at rest (measured when the IMU is motionless at the beginning of the experiment), and 𝑆𝐴, 

𝑆𝑀, and 𝑆𝐺  are the switching thresholds for the acceleration, geomagnetic field, and angular 

velocity, respectively. On the other hand, for some SFAs, the same intuitively tunable gain is 

applied to two or more sensors; for example, see gains of Madgwick(2011) [64] or Mahony(2008) 

[65] in Table 10. For these SFAs, a single two-level hard-switch was designed to adjust the tunable 

gain. For instance, for Madgwick(2011) [64], we used Equation 23 to tune the gain 𝛽. Note that 

not all the gains of an SFA are tunable in an intuitive manner. Thus, as shown in Table 10, adaptive 

gain tuning was only applied to specific intuitively tunable gains (mostly the gains that control the 

weights associated with accelerometer/magnetometer/gyroscope estimations), while for the 

remaining gains, their fixed optimal values were found and used similar to [25].  
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Table 11 The selected the state-of-the-art SFAs with (a) a CF structure (including linear CF (LCF) and nonlinear CF (NCF)), 
and (b) KF structure (including linear KF (LKF), extended KF (EKF), complimentary KF (CKF), square-root unscented 

KF (SRUKF), and square-root cubature KF (SRKKF)). Abbreviations/symbols used in the table are described in the table 

footnotes. 

(a) Deterministic SFAs 

Study Method Parametrization 𝒃 , 𝒂, 𝒅 compensation Notes  

[65] NCF [𝑞] 𝑏𝐺  - 

[96] NCF [𝑞] 𝑏𝐺  - 

[64] GDA+CF [𝑞] 𝑏𝐺  
MIMU: uses both 𝑦𝐴, 𝑦𝑀; IMU: 

only uses 𝑦𝐴 

[95], 
[133] 

LMA+CF [𝑞] - - 

[156] NCF DCM 𝑏𝐺  - 

[128] AQA+CF [𝑞] - 
𝒶 rejection using LERP or SLERP 
+ adaptive gain tuning 

[159] 
Nonlinear 

SVD+CF 
[DCM] - - 

[135] 
Geometrically-
intuitive CF 

[𝑞] - - 

[158] Two-layer LCF [𝑞] - 𝒹 rejection with thresholding 

[357] LMA+CF [𝑞] - 𝒹 rejection with thresholding 

[137] GDA+CF [𝑞] - 𝒶 & 𝒹 rejection with thresholding 

[185] LCF [𝑞] - - 

(b) Stochastic SFAs 

Study Method 
State vector 

components 
Measurement-update Notes  

[355] 
Multiplicative 

EKF 
[𝑞, 𝑏𝐺] [𝑦𝐴, 𝑦𝑀] - 

[107] CKF 
[ℯHelical angle/axis, 

ℯ𝑏𝐺, ℯ𝑑] 

[Attitude from 𝑦𝐴 & 𝑦𝐺, 

magnetic vector from 𝑦𝑀 

& 𝑦𝐺] 

- 

[356] LKF [𝑞] [�̂�], �̂� from 𝑦𝐴 & 𝑦𝑀 - 

[106] EKF [𝑞, 𝑏𝐴, 𝑏𝑀] [𝑦𝐴, 𝑦𝑀] Switching ℛ between two levels 

[110] CKF [ℯ𝑞, 𝑏𝐺, 𝑏𝐴] [𝑦𝐴, 𝑦𝑀] 
Tuning ℛ using residual in acc. 

measurement-update 

[93] EKF [𝑞, 𝑏𝐺, 𝒶] [𝑦𝐴, 𝑦𝑀] - 

[85] LKF+LKF 
LKF1: [�̂�, 𝒶], 

LKF2: [𝑚 , 𝒹] 
LKF1: [𝑦𝐴], LKF2: [𝑦𝑀] - 

[54] Constrained-EKF [DCM(3), 𝑏𝐺] [𝑦𝐴] Tuning ℛ based on ‖𝑦𝐴‖ 

[129] LKF [𝑞] [�̂�], �̂� from AQA(𝑦𝐴,𝑦𝑀) - 

[348] EKF [𝑞, 𝑏𝐺, 𝒶] [𝑦𝐴, 𝑦𝑀] - 

[195] LKF [𝑞] [�̂�], �̂� from 𝑦𝐴 & 𝑦𝑀 - 

[272] Two-layer CKF 
CKF1: [ℯAttitude], 

CKF2: [ℯYaw] 

CKF1: [ℯ�̂� from 𝑦𝐴], 

CKF2: [ℯ�̂� from 𝑦𝑀] 
Tuning ℛ by variances of errors 

[126] LKF [𝑞] [�̂�], �̂� from 𝑦𝐴 & 𝑦𝑀 - 

[358] CKF [ℯ𝑞] [𝑦𝐴, 𝑦𝑀] 𝒹 rejection with thresholding 

[360] LKF [𝑞, 𝑏𝐺] [𝑦𝐴, 𝑦𝑀] - 
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Study Method 
State vector 

components 
Measurement-update Notes  

[359] GDA+LKF [𝑞] [�̂�], �̂� from GDA(𝑦𝐴,𝑦𝑀) 

𝒶 rejection with thresholding; two 

versions are proposed: Plain and 

Recursive 

Proposed GDA+LKF [𝑞, 𝑏𝐺, 𝒶, 𝒹] [�̂�], �̂� from GDA(𝑦𝐴,𝑦𝑀) - 

Proposed Robust EKF [𝑞, 𝑏𝐺, 𝒶, 𝒹] [𝑦𝐴, 𝑦𝑀] - 

Proposed SRUKF [𝑞, 𝑏𝐺, 𝒶] [𝑦𝐴, 𝑦𝑀] 

Basic SFA equations from [348]; 

SRUKF structure based on [349]; 
Four sets of sigma points: 

SRUKF1 [349], SRUKF2 [361], 

SRUKF3 [362], SRUKF4 [363] 

Proposed SRCKF [𝑞, 𝑏𝐺, 𝒶] [𝑦𝐴, 𝑦𝑀] 
Basic SFA equations from [348]; 

SRCKF structure based on [347]  

- Method: GDA: Gradient descent algorithm; LMA: Levenberg-Marquardt algorithm; AQA: algebraic quaternion 

algorithm; LERP: Linear intERPolation; SLERP: Spherical Linear intERPolation; 

- Orientation Parametrization: 𝑞: Quaternion; EA: Euler angles; DCM: Direction cosine matrix. 

- IMU Model parameters: 𝑏𝐺: Gyroscope bias; 𝑏𝐴: Accelerometer bias; 𝑏𝑀: Magnetometer bias; 𝒶: external non-

gravitational acceleration; 𝒹: magnetic disturbance; �̂�: Orientation used in measurement-update of KF; �̂�: Estimated 

gravitational acceleration;  𝑚 : Estimated geomagnetic field. 

Notes: ℛ: Measurement model covariance matrix in KFs; ℯ: Error of the parameter of interest in CKFs. 

5.2.3 Gain Optimization for Sensor Fusion Algorithms  

To obtain the optimal gains for each SFA (whether two-level hard-switch or fixed gains), we 

performed the procedure described in Chapter 4: 

1. We used IMU readouts to estimate the orientation using an SFA (using non-optimal gains): �̂� 

(quaternion, parametrization). 

2. We compared the estimated orientation (�̂�) with the reference orientation obtained by MCS, 𝑞, 

and calculated the error in estimated orientation as 𝑞𝑒. 

3. We transformed the error quaternion 𝑞𝑒 to Euler angles and fed the estimation error equal to 

RMS(rollerror) + RMS(pitcherror) + RMS(yawerror) (RMS: root-mean-square) as the cost function 

to a Particle Swarm Optimization [330] routine to be minimized.  

4. The Particle Swarm Optimization routine changed the SFA gains toward improving the 

estimation orientation �̂� and minimizing the estimation error.  

The Particle Swarm Optimization routine was executed in 8 rounds for each SFA. In the 

first 4 rounds, random numbers were used as the initial population and range for SFA gains. The 

obtained results were then used as a part of the initial population (plus random initial population 

to avoid premature convergence) for the next rounds. The parameters of the Particle Swarm 

Optimization were selected as follows: maximum number of iterations = 50, population size = 50, 
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inertia weight = 0.73, inertia weight damping ratio = 0.99, personal learning coefficient = 1.50, 

and global learning coefficient = 1.50. The training data set (used to optimized SFA gains as 

described above) and the testing data set (used to evaluate the SFA performance) are discussed in 

Section 5.2.7. 

5.2.4 Measurement setup 

An IMU (MTws, Xsens Technologies, The Netherlands) was attached to a rigid plastic plate 

equipped with four retro-reflective markers (Figure 13(b)) and fixed over the foot using double-

sided medical tape. The IMU included a tri-axial accelerometer (range: ±16g), a tri-axial gyroscope 

(range: ±2000 degrees/s), and a tri-axial magnetometer (range: ±1.9 Gauss). The IMU recorded 

data with a sampling frequency of 100 Hz and transferred it wirelessly to a computer. Also, a MCS 

(VICON, Oxford Metrics Group, UK) with eight cameras was used as the reference system to 

record the 3D position of the plate markers synchronized with IMUs. The MCS was used to 

measure the reference orientation of the plate based on its markers. Before any data processing, 

signals were low-pass filtered using a zero-phase 4th-order digital Butterworth filter with a cut-off 

frequency of 30 Hz. Furthermore, the least-square approach presented in [365], [366] was 

employed to reduce the noise of the data recorded by the MCS.  

5.2.5 Comparing Estimated and Reference Orientations 

As described above, the estimated orientation was calculated using an SFA, while the reference 

orientation was obtained by tracking the plate markers using the MCS. Thus, we represent the 

direction cosine matrix parametrization of the estimated (IMU) and reference (MCS) orientations 

by 𝑅𝑆𝐹
𝐺𝐹𝐼𝑀𝑈

𝑘 and 𝑅𝑃𝐹
𝐺𝐹𝑀𝐶𝑆

𝑘, respectively, at each time step 𝑘 with respect to their global reference 

frames 𝐺𝐹𝐼𝑀𝑈 and 𝐺𝐹𝑀𝐶𝑆. Here, 𝑆𝐹 and 𝑃𝐹 show the local frames of the IMU and plate. Then, the 

estimation error between IMU and MCS can be calculated as in Equation 24. Then, the estimation 

error 𝑅𝐸 𝑘 in Equation 24 was converted into Euler angles and used as the input of the Particle 

Swarm Optimization routine as described in Section 5.2.3.  

5.2.6 Experimental Procedure 

Some of the previous experimental comparison studies did not evaluate the performance of the 

implemented SFAs in testing conditions close to real-life scenarios. These studies considered 

motions with limited (1) range of motion; (2) intensity and pattern; and (3) testing duration; see 
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[22] for more details. In contrast, in the current study, we evaluated the SFAs performance in an 

extensive experimental study with nine able-bodied participants (all male, 26±2 years old, 74±6 

kg, 177±4 cm). The Research Ethics Board Committee at the University of Alberta approved the 

study protocol, and written consent was obtained from all participants. The experimental protocol 

included two phases: 

Phase I: quiet standing (60 seconds), straight walking (5 meters), turning, straight walking 

(2.5 meters), vertical jumping (two times), straight walking (2.5 meters), turning, hopping with 

both legs for 5 meters, turning, walking the 5-meter corridor back-and-forth three times with U-

turns at the end, quiet standing (30 seconds). Also, participants were instructed to have 2 seconds 

of quiet standing between every two tasks (one complete trial was 131±7 seconds on average). 

Phase II: quiet standing (60 seconds), walking (normal-pace) the 5-meter corridor back-

and-forth for 75 seconds with U-turns at the end, walking (normal-pace) the 5-meter corridor back-

and-forth for 75 seconds making an ∞-shape, quiet standing (5 seconds), repeating the above two 

walking periods with a fast pace, quiet standing for 30 seconds (one complete trial was 393±3 

seconds in average). The first participant’s data were discarded in Phase II as the IMU data were 

not recorded correctly. 

Phase I was performed to evaluate the accuracy and reliability of the implemented SFAs 

under various motion patterns/intensities. Phase II was performed to assess the performance of the 

SFAs during highly dynamic long-duration tasks. Experiments have been performed on three 

separate days, three participants per day, to assess SFAs’ accuracy and reliability in different 

environmental conditions, e.g., room temperature. Also, the IMU was kept motionless for 10 

minutes before data collection to ensure that it has reached a stable condition. Furthermore, each 

trial’s first 30 seconds were used to allow the SFAs to converge to a stable orientation without a 

need for a drastic change in SFAs’ gains during the test. 

5.2.7 Gain Optimization vs. Testing 

Three-fold cross-validation was performed using the experimental data of Phase I. Notably, the 

IMU data of one participant from each day in Phase I (for example, participants 1, 4, 7 from days 

1, 2, and 3, respectively) were used as the “training data set” to find the optimal gains for each 

SFA according to the procedure described in Section 5.2.3. The data of the remaining six 

participants in Phase I and all eight participants in Phase II were used as the “testing data set” to 



102 

 

evaluate the performance of the SFAs. Then, the same procedure was repeated twice for each of 

the two sets of three participants from Phase I. As a result, the number of testing results in each 

fold was: Phase I: 18 samples (test data of six participants for each fold × 3-fold cross-validation) 

and Phase II: 24 samples (test data of eight participants for each fold × 3-fold cross-validation). 

5.2.8 Performance Evaluation 

Previous studies have shown that offline calibration of the accelerometer, gyroscope, and 

magnetometer plays a significant role in improving the performance of SFAs [357]. Unfortunately, 

the recorded data in this study could not be used to calibrate the accelerometer and magnetometer. 

However, to investigate the effect of the gyroscope static bias on SFA performance, we measured 

the estimation error in two conditions: 

1. Raw IMU data were low-pass filtered and used to find optimal gain and test SFAs. 

2. The gyroscope static bias was removed from the low-pass filtered data before gain optimization 

and testing. Gyroscope static bias was estimated as the mean value of 𝑦𝐺  during quiet standing 

at the beginning of each trial as the foot-worn IMU could be considered motionless during this 

period.  

The estimation error of each SFA was quantified as the RMS of the Quaternion Angle Difference 

(QAD) as in Equation 51 [357], [367]:  

𝑒 =  RMS(cos−1(2〈𝑞 ∙ �̂�〉2 − 1)) 
Equation 51 

where 𝑒 is the RMS of QAD, 𝑞 and �̂� are the reference (MCS) and estimated (IMU) orientations 

in quaternion parametrization, respectively, and ∙ is inner (or dot) product. QAD provides a single 

quantity representing the distance between two rotations, which can be used in statistical analysis 

to find SFAs with a significantly lower estimation error (or higher accuracy). Notably, we 

compared the accuracy (median of RMS(QAD) among all testing data set) of each SFA between 

with and without gyroscope static bias removal using the Wilcoxon rank-sum test (significance 

level = 5%). Also, we compared the accuracy (median of RMS(QAD) among all testing data set) 

of the SFAs after gyroscope static bias removal against one another using the Kruskal-Wallis test 

(significance level = 5%) and post-hoc multiple-comparison test with Tukey-Kramer correction.  

Finally, the execution time for the selected SFAs from each family was recorded in 

milliseconds by measuring the total execution time of one trial and dividing the result by the 
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number of samples in that trial. This procedure was repeated 300 times for each SFA, and the 

median value was reported. All execution times were measured by using MATLAB R2020a 

(MathWorks, USA) on a desktop PC with the following characteristics: CPU: i7-9700K (3.60 

GHz), RAM: 32 GB (2400 MHz). 

5.3 Results and Discussions 

5.3.1 Gyroscope Static Bias Removal 

Table 12 compares the [25%,50% (median),75%] percentiles of the RMS(QAD) with and without 

gyroscope static bias removal and identifies significant (p<0.05) differences between them. 

According to Table 12, for all the implemented CFs, except Markely(2003) in Phase I and 

Marantos(2016) in both Phases I and II, removing the gyroscope static bias significantly (p<0.05) 

reduced the RMS(QAD). In other words, gyroscope static bias removal must be performed to 

achieve accurate estimations with CFs. Note that while some CFs such as Madgwick(2011) and 

Mahony(2008) have built-in mechanisms to estimate and remove gyroscope bias 𝑏𝐺  during 

estimation (see Table 11), static bias removal still resulted in significantly (p<0.05) higher 

accuracy for them. Notably, for Phase II with long-duration trials, the maximum median 

RMS(QAD) among all CFs, except for Markely(2003) and Marantos(2016), was reduced from 

48.3 to 5.8 degrees. Also, Phase II results should be indeed paid more attention to than Phase I 

because trials’ durations were longer in Phase II. Thus, the cumulation of strap-down integration 

errors had a more prominent impact on Phase II results. 

As Table 12 shows, in Phase I, all the implemented LKFs, except for GyroLib(2020), 

Valenti(2016), and Suh(2019), showed significantly (p<0.05) lower RMS(QAD) after gyroscope 

static bias removal. However, in Phase II, only 6 (out of 11) LKFs showed significantly (p<0.05) 

higher accuracy after static bias removal. Among LKFs with no performance improvement after 

static bias removal in Phase II, none had a built-in online 𝑏𝐺  estimation mechanism, while among 

LKFs with performance improvement, only 3 (out of 6) had a built-in online 𝑏𝐺  estimation 

mechanism. Therefore, we can not conclude based on the current results whether including an 

online 𝑏𝐺  estimation can compensate for the lack of static bias removal. However, static bias 

removal did not significantly (p<0.05) lower performance in any of the LKFs. Thus, we 

recommend removing gyroscope static bias before starting estimations with LKFs. 
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Table 12 [25%,50% (median),75%] percentiles of the RMS of the quaternion angle difference (QAD) for all testing data 
in Phase I and Phase II with and without (removed) gyroscope static bias. For each SFA in each Phase, significantly 

(p<0.05) lower RMS(QAD), i.e., higher accuracy, between with and without static bias is indicated with †. 

Sensor Fusion Algorithm  

Phase I  Phase II 

With Gyro 

Bias 
 

Without Gyro 

Bias 
 

With Gyro 

Bias 
 

Without Gyro 

Bias 

CF 

Marantos(2016)  [9.0,10.9,19.2]  [8.2,10.9,23.2]  [27.3,30.7,33.7]  [20.8,24.8,28.7] 

DelRosario(2016) [7.3,28.8,33.3]  [1.7,2.0,2.5]†  [33.9,42.5,49.1]  [3.9,4.3,4.9]† 

Markely(2003) [1.9,2.1,2.4]  [2.0,2.1,2.4]  [31.1,33.0,38.1]  [19.1,28.4,31.5]† 

Wu(2016) [3.5,3.7,4.4]  [1.8,2.0,2.6]†  [23.7,44.9,52.8]  [4.1,5.0,22.5]† 

Wu(2019) [9.1,10.9,15.7]  [1.6,1.8,2.1]†  [24.7,33.5,46.0]  [3.9,4.3,4.7]† 

Valenti(2015) [6.4,7.3,7.5]  [1.6,1.8,2.0]†  [27.8,29.9,31.2]  [3.8,4.3,4.4]† 

Hua(2014) [5.3,8.5,11.6]  [1.6,1.6,1.9]†  [17.1,27.7,31.2]  [3.0,3.6,4.4]† 

Fourati(2011) [5.1,6.0,7.6]  [1.6,1.8,1.9]†  [19.4,23.2,27.4]  [3.5,4.0,4.4]† 

FouratiMartin(2011) [6.0,6.8,7.7]  [1.6,1.8,2.1]†  [13.2,18.5,22.0]  [3.1,3.6,3.9]† 

Madgwick(2011)(MIMU) [4.8,5.8,8.0]  [1.7,1.9,2.2]†  [47.5,48.3,49.1]  [5.0,5.8,10.7]† 

Madgwick(2011)(IMU) [3.3,4.1,6.3]  [1.6,1.8,2.1]†  [42.0,45.3,46.1]  [3.7,4.3,19.1]† 

Mahony(2008) [6.6,7.4,7.4]  [1.6,1.8,1.9]†  [26.9,28.9,30.1]  [3.8,4.2,4.3]† 

Martin(2010) [6.6,7.4,7.6]  [1.7,1.9,2.7]†  [25.7,27.7,30.5]  [3.5,4.2,4.7]† 

Justa(2020) [2.8,3.4,4.3]  [1.7,2.1,3.1]†  [5.9,8.1,12.4]  [3.2,3.5,4.0]† 
         

LKF 

Wu(2020)(Plain) [3.5,4.4,7.4]  [2.0,2.5,3.3]†  [9.4,16.0,39.8]  [6.2,15.0,27.6] 

Wu(2020)(Recursive) [3.1,3.8,5.0]  [1.8,2.0,2.4]†  [7.3,7.8,10.9]  [3.9,4.8,5.2]† 

GyroLib(2020) [2.0,2.2,2.3]  [1.9,2.4,2.7]  [10.1,21.6,47.0]  [3.5,8.3,15.3]† 

Ligorio(2015) [3.7,4.5,6.5]  [1.6,2.3,2.7]†  [7.7,21.8,34.8]  [4.0,4.7,6.9]† 

Valenti(2016) [7.3,8.2,10.2]  [2.1,10.4,14.5]  [21.8,23.3,27.6]  [16.7,21.9,44.2] 

Wu(2018) [3.3,4.2,5.3]  [1.8,2.2,2.7]†  [9.4,11.2,16.2]  [12.6,14.8,16.1] 

Guo(2017) [3.5,3.8,4.2]  [1.6,2.1,2.3]†  [8.6,11.6,14.8]  [6.7,9.9,13.7] 

Renaudin(2014) [3.0,3.4,4.1]  [1.5,1.8,1.9]†  [5.8,7.9,14.5]  [3.1,3.6,3.9]† 

Choukroun(2006) [3.4,3.9,4.2]  [1.7,1.9,1.2]†  [12.0,17.5,28.7]  [3.5,4.0,4.2]† 

Nazarahari(2020) [3.7,4.1,4.9]  [1.7,1.8,2.1]†  [12.8,17.7,24.6]  [3.6,4.1,4.4]† 

Suh(2019) [35.5,36.2,39.7]  [34.0,37.1,38.2]  [49.2,50.1,52.8]  [48.1,51.0,52.3] 
         

EKF 

CKF 

SRCKF 

SRUKF 

DelRosario(2018) [6.1,6.7,7.0]  [1.6,1.8,2.0] †  [26.6,28.7,30.3]  [3.8,4.2,4.3]† 

Hyyti(2015) [5.6,8.4,14.0]  [2.7,5.5,10.1]  [41.1,46.3,53.5]  [24.4,45.5,50.5] 

Chen(2017) [2.2,2.4,3.2]  [2.3,2.6,3.4]  [5.2,9.4,23.4]  [6.3,10.0,22.1] 

Sabatini(2006) [3.1,4.2,5.3]  [1.6,1.7,1.9]†  [7.4,12.0,15.4]  [2.7,3.2,3.7]† 

Suh(2010) [3.0,3.3,4.0]  [1.8,2.1,2.4]†  [8.2,10.2,20.9]  [5.6,6.5,7.6]† 

Roeternberg(2005) [2.3,3.0,3.6]  [1.6,1.7,2.0]†  [8.9,44.1,46.5]  [3.2,4.1,5.3]† 

Nazarahari(2021) [2.3,2.7,2.9]  [1.6,1.8,2.1]†  [13.0,15.9,20.4]  [3.5,3.7,4.3]† 

SRCKF [2.8,3.8,4.3]  [1.7,1.9,2.1]†  [5.1,6.6,9.2]  [3.0,3.6,5.0]† 

SRUKF1 [5.5,6.0,6.4]  [1.6,1.8,1.9]†  [26.0,27.6,29.2]  [3.8,4.0,4.2]† 

SRUKF2 [5.5,6.6,7.0]  [1.6,1.7,1.9]†  [26.3,28.0,29.2]  [3.8,4.1,4.2]† 

SRUKF3 [2.7,3.0,3.2]  [1.6,1.8,1.9]†  [11.8,14.8,16.5]  [3.6,3.8,4.2]† 

SRUKF4 [4.0,8.1,9.3]  [1.7,1.9,2.3]†  [14.7,25.6,31.9]  [3.5,3.9,4.2]† 

 Finally, according to Table 12, all SFAs from EKF, CKF, SRCKF, and SRUKF families, 

except for Hyyti(2015) and Chen(2017), significantly (p<0.05) higher accuracies were obtained 
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after static bias removal in both Phases. Notably, for Phase II, the maximum median RMS(QAD) 

among all these SFAs, except for Hyyti(2015) and Chen(2017), was reduced from 44.1 to 6.5 

degrees. In contrast to LKFs, both Hyyti(2015) and Chen(2017) (that had built-in online 𝑏𝐺  

estimation) showed no performance improvement after static bias removal. Thus, we can 

hypothesize that including an online 𝑏𝐺  estimation can compensate for the lack of gyroscope static 

bias removal for EKFs. However, as the evidence for this hypothesis is not strong with the current 

results (only 2 EKFs), we avoid drawing a general conclusion in this regard. 

5.3.2 Sensor Fusion Algorithms Comparison 

Table 13 presents the statistical comparison among the RMS(QAD) associated with Phase I and 

Phase II for the implemented SFAs. The following paragraphs present, discuss and compare the 

results obtained with each family of SFAs as classified in Figure 16 and Table 11.  

Complementary Filters: Table 13(a) shows that for CFs, Hua(2014), FouratiMartin(2011), 

and Justa(2020) achieved a higher score than other SFAs in terms of the number of times they 

were significantly (p<0.05) more accurate than other CFs. Also, CFs identified with * in Table 

13(a) obtained lower maximum error compared to the other CFs. Figure 17 shows the estimation 

errors presented in terms of Euler angles for these CFs. Figure 17(a) shows that in Phase I, the 

median roll/pitch/yaw errors were roughly 2 degrees for all the selected CFs, and none had obvious 

lower errors. However, DelRosario(2016), Martin(2010), and Justa(2020) had the lowest inter-

repeatability among participants, indicated by their interquartile range (75% percentile – 25% 

percentile) of errors. For Phase II, Figure 17(b) shows that all the selected CFs had median angle 

errors of roughly 5 degrees or less, except for Madgwick(2011)(MIMU), which also had the 

highest interquartile range of error (i.e., lowest inter-repeatability). In conclusion, while Figure 17 

shows slight performance differences between these selected CFs, Table 13 shows no significant 

difference between them, except for Madgwick(2011)(MIMU). Therefore, other factors, such as 

the number of gains that require tuning or SFA execution time, must be considered to select the 

best CF. 



106 

 

 
Figure 17 Boxplot ([25%, 50%, 75%] percentiles, red + shows outliers) of the RMSE obtained by the 

implemented SFAs from the complementary filter (CF) family presented in Euler angle parametrization 
for (a) Phase I and (b) Phase II. Each boxplot presents the RMS values of all testing data set (18 samples 

for Phase I and 24 samples for Phase II). 

Linear Kalman Filters: Table 13(b) shows that for LKFs, Renaudin(2014), 

Choukroun(2006), and Nazarahari(2020) (the proposed LKF) achieved a higher score than other 
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SFAs in terms of the number of times they were significantly (p<0.05) more accurate than other 

LKFs. Also, Figure 18 shows the LKFs estimation errors presented in Euler angles for LKFs 

identified with * in Table 13(b). Figure 18(a) shows that in Phase I, the median roll/pitch/yaw 

errors were between 2 to 3 degrees for all the selected LKFs, while Renaudin(2014) tended to have 

lower median roll and yaw errors compared to others. Also, Figure 18(a) shows that 

Renaudin(2014) and Ligorio(2015) tended to have the smallest and largest interquartile ranges, 

respectively. For Phase II, Figure 18(b) shows that the median errors were roughly 5 degrees, 

except for Wu(2018) and Guo(2017), which also had the highest interquartile range (i.e., lowest 

inter-repeatability). Similar to Phase I, Renaudin(2014) showed the lowest median angle errors 

and interquartile range among LKFs. In conclusion, Table 13(b) and Figure 18 show the obvious 

superiority of Renaudin(2014) (with 10 gains), followed by Choukroun(2006) (with 10 gains) and 

Nazarahari(2020 (with 16 gains), among all LKFs.  

Nonlinear Kalman Filters: Table 13(c) shows that for EKFs, CKFs, SRCKF, and 

SRUKFs, DelRosario(2018) (CKF), Sabatini(2006) (EKF), and the proposed SRUKF3 achieved a 

higher score than other SFAs in terms of the number of times they were significantly (p<0.05) 

more accurate than other SFAs in these families. Also, Figure 19 shows the estimation errors 

presented in Euler angles for these SFAs identified with * in Table 13(c). Figure 19(a) shows that 

in Phase I, the median roll/pitch/yaw errors were roughly 2 degrees or less for these SFAs, except 

for Suh(2010). These SFAs showed a similar interquartile range, except for pitch angle errors of 

SRUKFs, where lower interquartile ranges were obtained. For Phase II, Figure 19(b) shows that 

all these SFAs had median angle errors of roughly 5 degrees or less, except for Suh(2010). Also, 

Suh(2010), Roeternberg(2005), and SRCKF had the highest interquartile range (i.e., lowest inter-

repeatability). Moreover, Figure 19(c) shows that by converting the Chen(2017) structure from an 

EKF to SRUKF/SRCKF, accuracy has significantly increased in Phase I and Phase II. In 

conclusion, Figure 19 shows the superiority of Sabatini(2006) in terms of median angle error, 

specifically in Phase II. 
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Table 13 Statistical comparison of the RMS of the quaternion angle difference (QAD) among SFAs in one family for all 
testing data in Phase I and Phase II after gyroscope static bias removal. Significantly (p<0.05) lower RMS(QAD), i.e. 

higher accuracy, for an SFA in a row compared to the ones in columns are identified with † for Phase I and with and ‡ for 

Phase II. * shows SFAs from each family with the lowest maximum error. The last column (score) shows the number of 

times an SFA significantly outperformed other SFAs in its family for Phase I and Phase II cumulatively.  
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DelRosario(2018)*  †,‡ †,‡ - - - - - - - - - 4 

Hyyti(2015) -  - - - - - - - - - - 0 
Chen(2017) - -  - - - - - - - - - 0 

Sabatini(2006)* - †,‡ †,‡  ‡ - - - - - - - 5 

Suh(2010)* - - - -  - - - - - - - 0 

Roeternberg(2005)* - †,‡ †,‡ - -  - - - - - - 4 

Nazarahari(2021)* - †,‡ †,‡ - ‡ -  - - - - - 5 

SRCKF* - †,‡ †,‡ - ‡ - -  - - - - 5 

SRUKF1* - †,‡ †,‡ - ‡ - - -  - - - 5 

SRUKF2 - †,‡ †,‡ - ‡ - - - -  - - 5 

SRUKF3* - †,‡ †,‡ - ‡ - - - - -  - 5 

SRUKF4* - †,‡ ‡ - ‡ - - - - - -  4 
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Figure 18 Boxplot ([25%, 50%, 75%] percentiles, red + shows outliers) of the RMSE obtained by the 

implemented SFAs from the linear Kalman filter (LKF) family presented in Euler angle parametrization 

for (a) Phase I and (b) Phase II. Each boxplot presents the RMS values of all testing data set (18 samples 

for Phase I and 24 samples for Phase II). 

Yaw

Pitch

Roll

Yaw

Pitch

Roll

(a) Phase I (b) Phase II
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5.3.3 Selecting the Best Sensor Fusion Algorithm 

The three SFAs from each family with the highest score in Table 13 were selected and compared 

against one another in terms of accuracy (based on RMS(QAD)) and execution time. Statistical 

analysis only showed significantly (p<0.05) lower RMS(QAD) for Sabatini(2006) compared to 

DelRosario(2018) and Nazarahari(2020) in Phase II. Figure 20 shows the estimation errors 

presented in terms of Euler angles for these nine selected SFAs. Figure 20(a) shows that in Phase 

I, the median roll/pitch/yaw errors were roughly 2 degrees or less for all SFAs, and none has 

obvious lower errors for all three angles. However, by comparing the interquartile range of errors, 

we observed that Justa(2020) tended to have the lowest repeatability. For Phase II, Figure 20(b) 

shows that the selected nine SFAs had median angle errors of less than 5 degrees for Euler angles. 

Also, the interquartile ranges were mostly similar, specifically for pitch and yaw. 

Table 14 shows the execution times (in milliseconds) for the selected nine SFAs. 

According to Table 14, execution times ranged from 10.10 milliseconds for Justa(2020) to 291.46 

milliseconds for SRUKF3. As expected, the families with the shortest execution times can be 

sorted as follows: CFs (the first three rows in Table 14), CKF (DelRosario(2018)), LKF (the 

second three rows in Table 14), EKF (Sabatini(2006)), and finally SRUKF. Yet, Sabatini(2006) 

(EKF) had shorter execution times compared to Nazarahari(2020) (LKF), which shows the effect 

of state-vector size and measurement-update equation structure on the execution time. Also, as 

expected, SRUKF3 had the highest execution time because it performs calculations on multiple 

sigma points at each time instant (compared to other KFs that propagate one state-vector in time). 

In conclusion, while Figure 20 shows slight performance differences among the selected nine 

SFAs, none performed significantly better than all others. However, when the execution time is 

not a factor, Sabatini(2006) should be selected as it tended to have lower angle errors (Figure 20). 

When the execution time is a factor, Hua(2014) or Justa(2020) should be selected. 
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Figure 19 Boxplot ([25%, 50%, 75%] percentiles, red + shows outliers) of the RMSE obtained by the 

implemented SFAs from the extended, complementary, unscented, and cubature Kalman filter families 

presented in Euler angle parametrization for (a) Phase I and (b) Phase II. Each boxplot presents the RMS 

values of all testing data set (18 samples for Phase I and 24 samples for Phase II). 
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Figure 20 Boxplot ([25%, 50%, 75%] percentiles, red + shows outliers) of the RMSE obtained by three 
SFAs with the highest accuracy from each family presented in Euler angle parametrization for (a) Phase 

I and (b) Phase II. Each boxplot presents the RMS values of all testing data set (18 samples for Phase I 

and 24 samples for Phase II). 
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Table 14 Median of the execution times (in milliseconds) for the three SFAs with the highest 
accuracy in each family reported in diagonal elements. Also, for each SFA (each row), other SFAs 

with significantly longer execution times are identified with †. The last column (score) shows the 

number of times one SFA was significantly faster than other SFAs (the higher, the better). 
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Hua(2014) 10.71 † - † † † † † † 7 

FouratiMartin(2011) - 25.70 - † † † † † † 6 

Justa(2020) † † 10.10 † † † † † † 8 

Renaudin(2014) - - - 38.95 † † † † † 5 

Choukroun(2006) - - - - 55.68 † † † † 4 

Nazarahari(2020) - - - - - 99.21 - † - 1 

Sabatini(2006) - - - - - † 75.83 † † 3 

SRUKF3 - - - - - - - 291.46 - 0 

Nazarahari(2021) - - - - - † - † 78.59 2 

5.3.4 Conceptual Comparison Between Families 

The main differences between the SFAs tested in this paper are how to (1) estimate the orientation 

using IMU readouts (i.e., 𝑦𝐺 , 𝑦𝐴, 𝑦𝑀) and (2) weight the estimated orientation from each sensor 

before fusing them. While the former difference can be considered as the SFA property, the latter 

can be attributed to the SFA family. Notably, CFs and KFs (including various sub-families) use a 

deterministic and stochastic approach to tune the fusing weight. In CFs, the fusing weight is 

determined by the user, while in KFs, the Kalman gain (i.e., the fusing weight) is calculated in 

each iteration based on gyroscope/accelerometer/magnetometer noises as well as the state error 

covariance matrix to achieve the optimal estimation. This property makes CFs computationally 

more efficient (see Table 14), while optimality is not guaranteed.  

Among KF families, the major difference is how to model the system (commonly, strap-

down integration using 𝑦𝐺) and measurement (commonly, orientation estimation using 𝑦𝐴 and 𝑦𝑀) 

equations. LKFs use linear models for system and measurement equations, while EKF benefits 

from the nonlinear system and/or measurement equations. Thus, EKF includes a linearization step, 

which can result in inaccuracies for a highly nonlinear system. Thus, SRUKF and SRCKF have 

been proposed to use unscented or cubature transformation to propagate state vector and state error 

covariance matrix in time and avoid linearization. As a result, as we move from LKF toward 

SRUKF/SRCKF, theoretically, both the accuracy and computational complexity (i.e., execution 
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time) will increase. Comparing Figure 18 and Figure 19, we observe that in Phase II, the maximum 

errors obtained by LKFs were under 30 and 25 degrees for yaw/roll and pitch angles, while for 

EKFs/SRUKFs/SRCKF, the maximum errors were less than 15 and 10 degrees for yaw/roll and 

pitch angles. However, this higher accuracy came at a greater computational cost (Table 14). 

5.3.5 Limitations and Future Works 

This chapter presents the first step toward building a comprehensive online repository for sharing 

data and codes for SFAs that can be used to estimate the IMU orientation. However, a number of 

limiting factors are associated with the current work, and further steps must be taken in the future 

to address them. First, we only tested 37 SFAs, while our previous survey listed 250 SFAs in the 

literature [22]. Thus, in the future, more SFAs must be included in the comparison to identify 

algorithms with the highest accuracy/repeatability, particularly Particle Filters [188]. Also, we 

encourage other scientists to publish their codes/data, similar to [64], [357], which then can be 

aggregated into a universal online repository.  

Second, this study only presents results related to one foot-mounted IMU. Therefore, data 

collection with other IMUs, with different manufacturing qualities must be performed. The reason 

is that the accelerometer, gyroscope, and magnetometer calibration and noise can play a crucial 

role in SFAs performance, as it was shown in this study and by the others [49], [79], [82], [357], 

[368].  

Third, while the used experimental data was extensive (nine participants, short- and long-

duration trials), they were all (1) in the context of human motion analysis; (2) performed in an 

indoor environment; and (3) shorter than 10 minutes. Thus, in the future, IMU data collected in 

other scenarios, such as a mobile robot or robotic arm motion tracking and 

aerial/surface/underwater vehicle navigation, must be analyzed; yet, the limitation with such 

applications is how to track the reference orientation. Also, trials with longer duration are essential, 

but they substantially increase the data processing and analysis time.  

Lastly, our collected data cannot be used to perform offline accelerometer and 

magnetometer calibration, similar to [66], [108], [294], [295]. However, having the required data 

for this purpose is essential, as it can reveal the ability of an SFA to handle sensor inaccuracies 

that may occur after manufacturing an IMU (for example, due to impact during tests). 
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5.4 Conclusions 

We compared the estimated orientation with 37 SFAs from CF, LKF, EKF, CKF, SRUKF and 

SRCKF families and shared the codes and sample data on our laboratory website. Comparing the 

performance of SFAs against one another after gyroscope static bias removal, we observed slight 

differences between CFs, except for Marantos(2016), Markely(2003), Wu(2016), and 

Madgwick(2011). Notably, for CFs, Hua(2014), FouratiMartin(2011), and Justa(2020) showed 

high accuracy for short- and long-duration trials. For SFAs from the LKF family, Renaudin(2014), 

Choukroun(2006) and Nazarahari(2020) have the highest accuracies. Finally, among SFAs from 

EKF/CKF/SRUKF/SRCKF families, Sabatini(2006), DelRosario(2018), and SRUKF3 had higher 

accuracies. For long-duration trials in Phase II, the selected nine SFAs (the best three from each 

of CF, LKF, EKF/CKF/SRUKF/SRCKF families) had median angle errors of less than 5 degrees 

for Euler angles. Also, the execution times ranged from 10.10 milliseconds for Justa(2020) to 

291.46 milliseconds for SRUKF3. Thus, when the execution time is not a factor, Sabatini(2006) 

should be selected as it tended to have lower errors. On the other hand, when the execution time 

is a factor, Hua(2014) 16 or Justa(2020) should be selected.  

At this point, we can track the orientation of IMU attached to body segments by combining 

the SFAs proposed in this chapter with adaptive gain regulation in Chapter 4. Then, we can use 

the proposed sensor-to-segment calibration procedures (Chapter 3) to estimate the orientation of 

the anatomical frames of proximal and distal segments. Finally, we can calculate clinically 

meaningful lower limb joint angles in real-time, which can be provided as biofeedback during 

therapeutic gait training. Nevertheless, in the future, the validity of the proposed technologies in 

measuring lower limb joint angles with clinically meaningful higher accuracy and repeatability 

compared to the literature must be validated for a clinical population. 
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Chapter 6  

Temporal Gait Event Detection 

This chapter provides the details of a real-time robust algorithm for temporal gait event detection. 

Portions of this chapter have been adopted and/or edited from: 

M. Nazarahari, A. Khandan, H. Rouhani, “Foot Kinematic Features Measured with Inertial 

Measurement Units: An Inherently Robust Approach to Real-time Gait Event Detection,” 

Submitted, 2021.  

6.1 Introduction 

By combining the technical contributions in Chapter 3, Chapter 4, and Chapter 5, joints angles can 

be measured in real-time, and the proper biofeedback can be provided. Nevertheless, to fully 

exploit the benefits of an instrumented biofeedback-based training, temporal gait events, including 

initial contact (IC, i.e., heel-strike) and terminal contact (TC, i.e., toe-off) of the foot with the 

ground, must be detected with high accuracy and robustness in real-time. 

Usually, the algorithms developed for gait detection using IMU implement heuristic rules 

to identify prominent morphological features in acceleration and/or angular velocity time-series 

recorded by the shank- or foot-worn IMU. For example, morphological features such as zero-

crossing and local minima/maxima of the angular velocity, the norm of the 3D acceleration, and 

first-derivative of the norm of the 3D angular velocity of the foot or the shank (𝑦𝐺𝐹,𝑦 or 𝑦𝐺𝑆,𝑦) were 

investigated to identify the most accurate indicators of IC and TC [369]. In [370], IC and TC were 
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identified as the minima of the shank flexion/extension angle and the minima of its angular 

velocity, respectively.  

Heuristic constraints (e.g., thresholds) were also added to gait detection algorithms to 

improve their robustness. For example, in [371], the true TC was detected as local minima of 𝑦𝐺𝑆,𝑦 

which was at least 100 ms farther from the last detected IC. Similarly, in [372], a TC was detected 

when a set of heuristic rules were satisfied and the 𝑦𝐺𝑆,𝑦 magnitude was smaller than a predefined 

threshold. Recently, eight heuristic algorithms for gait event detection were compared in [373]. 

The results show that none of the previous algorithms could simultaneously achieve the highest 

accuracy and robustness for both IC and TC. Thus, [373] proposed the combination of two 

previously introduced algorithms that used 𝑦𝐺𝑆,𝑦  morphological features and heuristic constraints 

for gait event detection.  

Despite the successful implementation of such heuristic algorithms for normal and 

impaired gaits, a literature review showed that previous works have at least one of the following 

limitations. First, the main goal of the previous works was to maximize the temporal accuracy of 

the detected events with respect to events obtained by a gold-standard reference system. Thus, the 

robustness of the algorithms defined in terms of sensitivity and precision was neglected. Second, 

in some algorithms, the construct of heuristic rules or constraints requires offline data processing, 

making the algorithm unsuitable for real-time implementation. These limitations were because the 

heuristic rules were mainly focused on the morphology of the time-series and not the reconstructed 

motion of the foot during gait (e.g., foot contact with and rolling on the ground). We hypothesize 

that IC and TC detection based on kinematic features of the foot motion measured by the IMU can 

result in a robust gait event detection in various experimental conditions or for altered gait. 

 Thus, we present a novel algorithm for robust real-time gait event (IC and TC) detection 

based on foot kinematics, which minimally depends on the morphology of the IMU readout time-

series. Our goal is to detect IC and TC with sensitivity and precision of 100% using an algorithm 

with minimum delay (1 sample), to make the proposed algorithm suitable for providing 

biofeedback in real-time to the user in rehabilitative gait training or for control of neural prostheses 

or exoskeletons.  
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6.2 Materials and methods 

6.2.1 Measurement setup 

Four IMUs (MTws, Xsens Technologies, The Netherlands) were attached to rigid plastic plates 

and fixed over both feet and shanks using double-sided medical tape (Figure 21). The IMU 

included a tri-axial accelerometer (range: ±16g), a tri-axial gyroscope (range: ±2000 degrees/s), 

and a tri-axial magnetometer (range: ±1.9 Gauss). Also, wearable pressure insoles (Pedar-X, 

Novel, DE) were employed as the reference system to detect IC and TC during gait (Figure 21). 

Previous studies showed high accuracy and robustness of pressure insoles measurements when 

compared with the gold-standard force platform measurements [374]. Thus, they have been 

successfully used for gait analysis in the past [375]. Both IMU and pressure insole recorded data 

synchronously with a sampling frequency of 100 Hz.  

 
Figure 21 Experimental setup including foot- and shank-worn IMUs and pressure insoles (underneath 

the foot) to detect the true gait events (i.e., IC and TC). 
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6.2.2 Gait Event Detection 

Reference temporal events: Following previous studies [376], [377], a threshold of 20 N was 

applied to the resultant vertical ground reaction force measured by the pressure insoles to detect 

IC (the force profile passed above the threshold) and TC (the force profile passed below the 

threshold).  

Proposed heuristic algorithm for gait event detection using IMU data: Previous works used 

local minima/maxima of the acceleration or angular velocity time-series or their time derivates. 

However, these acceleration and angular velocity time-series contain several local minima/maxima 

depending on the sensor hardware, individual’s gait characteristics, or footwear-ground 

conditions, making the detection of IC and TC sensitive to these factors (see Figure 22). In 

particular, to detect a local minimum/maximum in the time-series, its value must be compared 

with previous and future data samples (note that access to each sample in the future means a delay 

for a real-time system). Thus, for real-time detection of IC and TC where no access to the data 

samples in the future (except for the next sample) is allowed, every observed local 

minimum/maximum can be falsely detected as an IC or TC event. As such, IC and TC detection 

using jerky time-series with multiple local minima/maxima in the proximity of the true IC and TC 

is prone to false detection. 

Thus, we suggest detecting IC and TC based on how IC and TC are visually identified 

when we look at the foot’s recorded motion. Thus, we identified IC and TC based on the foot 

inclination angle in the sagittal plane (pitch angle or 𝛽 in Figure 21). To this end, we obtained the 

rotation matrix that quantifies the foot orientation with respect to a global reference frame, 𝑅𝐹
𝐺𝐹 : 

𝑅𝐹
𝐺𝐹 = 𝑅𝐹

𝐺𝐹
𝑧(𝛾) × 𝑅𝐹

𝐺𝐹
𝑦(𝛽) × 𝑅𝐹

𝐺𝐹
𝑥(𝛼) = [

(1,1) (1,2) (1,3)
(2,1) (2,2) (2,3)

− sin(𝛽) (3,2) (3,3)
]  Equation 52 
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Figure 22 A representative time-series of the angular velocity of the shank (𝑦𝐺𝑆 ,𝑦) and foot (𝑦𝐺𝐹 ,𝑦) in the 

sagittal plane, foot acceleration in the anterior-posterior (𝑦𝐴𝐹,𝑥) and vertical (𝑦𝐴𝐹,𝑧) directions, and sine 

of the foot pitch angle, − sin(𝛽). Ture IC (   ) and TC (   ) events obtained from reference pressure insoles 

are identified in the figure. 

where 𝛼, 𝛽, and 𝛾 are the foot angle in the c oronal plane (roll angle), sagittal plane (pitch angle), 

and transverse plane (yaw angle), respectively. We used only − sin(𝛽) corresponding to the 

element (3,1) of 𝑅𝐹
𝐺𝐹  to detect its local minima and maxima, corresponding to IC and TC, 

respectively, as shown in Figure 23(c). By using − sin(𝛽), we avoided the calculation of Euler 

angles which might show singularity. However, before using − sin(𝛽), two corrections must be 

applied to 𝑅𝐹
𝐺𝐹 : 

𝑦
𝐺

𝑆
,𝑦

(a)
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(d)
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Figure 23 (a) Temporal events during a gait cycle: MSt: mid-stance, TC: terminal contact, MSw: mid-

swing, IC: initial contact; (b) the resultant ground reaction force profile measured with pressure insoles; 

and (c) the sine of foot pitch angle measured by an IMU. True events are identified in the figure. The 
foot angle threshold, which determines what event to be detected, is shown with a dashed line. The yellow 

shades identify the time constraint, which prohibits detecting new gait events for a period of time after 

one event has been detected. 

1. 𝑅𝐹
𝐺𝐹  depends on the definition of the global reference frame and IMU attachment over the foot 

(IMU local frame). Thus, to make robust pitch angle measurements, we multiplied the 



122 

 

calculated 𝑅𝑘𝐹
𝐺𝐹  by 𝑅𝑘=1𝐺𝐹

𝐹 . Thus, the pitch angle at 𝑘 = 1 (corresponding to the quiet standing 

at the beginning of the trial) became zero, regardless of global reference frame definition or 

IMU attachment, and we only tracked pitch angle changes with respect to this initial 

orientation. 

2. For a fixed global reference frame, pitch angle depends on the motion direction. Thus, at each 

time sample, we multiplied 𝑅𝐹
𝐺𝐹  by 𝑅𝐺𝐹

𝐹
𝑧(𝛾) where 𝛾 is the yaw angle in Equation 52 to ensure 

that pitch angle has the same pattern, regardless of motion direction.  

Thus, we used the following heuristic algorithm (see Algorithm 1 for the pseudocode) to 

detect IC and TC: 

• TC: The following conditions must be satisfied:  

(1) the current sample is at least 150 ms after the previous TC,  

(2) −sin(𝛽) < -0.2 (corresponding to foot angle of ≈ 11 degrees with respect to the initial 

angle, i.e., 0 degrees),  

(3) the previous sample was a local minimum. 

• IC: The following conditions must be satisfied:  

(1) at least one TC is detected before the last IC,  

(2) the current sample is at least 150 ms after the previous IC,  

(3) −sin(𝛽) > -0.2,  

(4) the previous sample was a local maximum. 

To detect local minima and maxima in real-time in a robust manner, we used the following 

customized algorithm: Sample 𝑘 is a local minimum if and only if, 

(1) − sin(𝛽)𝑘<− sin(𝛽)𝑘−1 𝑡𝑜 𝑘−15 and − sin(𝛽)𝑘<− sin(𝛽)𝑘+1 and,  

(2) at least 80% of − sin(𝛽)𝑘−𝑖 (i = 1 ⋯ 15) show a decreasing trend with respect to 

− sin(𝛽)𝑘−𝑖−1 .  

The local maximum was found similarly. This method ensured that the delay in detection 

of the local minima/maxima was only 1 sample.  

Heuristic algorithms from literature for gait event detection using IMU data: we 

implemented five algorithms from the literature (adopted from [369], [373], [371], [372], and 
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[378]) and compared their accuracy and robustness with our proposed algorithm. These 

algorithms, among others introduced in the literature, were selected as (1) they were proposed to 

be implemented in real-time; (2) they used 𝑦𝐺𝑆,𝑦  or 𝑦𝐺𝐹 ,𝑦 which have a smoother time-series 

compared to foot or shank acceleration; (3) they included various constraints to reject false events; 

and (4) they showed higher temporal accuracy and reliability during experimental studies 

compared to other algorithms. In particular, [371] showed higher temporal accuracy and/or 

robustness compared to [372], [379], and [373] showed higher temporal accuracy and/or 

robustness compared to [371], [372], [379]–[382]. 

Algorithm 1 Pseudocode of the proposed heuristic algorithm for gait event detection 

Input: − sin(𝛽) 

1: 
2: 

3: 

4: 

5: 
6: 

7: 

8: 
9: 

10: 

11: 
12: 

 

13: 

14: 
15: 

16: 

17: 
18: 

19: 

20: 
21: 

22: 

23: 

Initialization: IC is empty, TC is empty, flag = 0 

for 𝑘 = 16 to 𝑁 do (𝑁 is the number of samples) 

     if flag == 0 

          if 𝑘 – TC(end) > 15 (150 ms, Fs = 100 Hz) 

               if − sin(𝛽)𝑘 < -0.2  

                    if 𝑘 − 1 is a local minimum 

                         TC(end+1) = 𝑘  

                         flag = 1 
                    end if 

               end if 

          end if 

     end if 

 

     if flag == 1 

          if 𝑘 – IC(end) > 15 (150 ms, Fs = 100 Hz) 

               if − sin(𝛽)𝑘 > -0.2  

                    if 𝑘 − 1 is a local maximum 

                         IC(end+1) = 𝑘  

                         flag = 0 
                    end if 

               end if 

          end if 

     end if 

end for 

Output: IC and TC 

6.2.3 Experimental study 

To validate the accuracy and robustness of the proposed algorithm, an experimental study was 

conducted with seven able-bodied participants (all male, 26±3 years old, 72±13 kg, 177±6 cm). 

Research Ethics Board Committee of the University of Alberta approved the study protocol, and 

written consent was obtained from all participants. The participants wore sandals embedding 
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pressure insoles, and IMUs were attached to their feet and shank using medical tapes. They were 

asked to perform the following activities: (1) walk over the ground in an oval-shaped path (large 

and small diameters:  ≈ 3 m and 1 m) for 2 minutes with self-selected speed; (2) walk over the 

treadmill for 2 minutes with self-selected speed; (3) run over the treadmill for 1.5 minutes with 

self-selected speed; and (4) walk over an inclined treadmill (slope: 10%) for 1.5 minutes with self-

selected speed. Each trial included 10 seconds of quiet standing at the beginning and the end. Also, 

the first and last two/three gait cycles were deleted to remove transient patterns in the gait data. 

The third participant’s data of over-ground walking were discarded as the pressure insoles data 

were not recorded correctly. 

6.2.4 Data analysis 

In this work, we used foot orientation ( 𝑅𝐹
𝐺𝐹 ) obtained by the LKF that we previously proposed in 

Chapter 5 using IMU’s raw data. However, 𝑅𝐹
𝐺𝐹  can be tracked with other SFAs with an RMSE of 

less than 4 degrees for 𝛽.  

To measure the temporal accuracy of the proposed algorithm and those from the literature, 

we calculated the mean and standard deviation of the differences (measured in number of samples) 

between detected events using implemented algorithms and reference events obtained from 

pressure insoles. To assess the robustness of heuristic algorithms, we calculated the sensitivity, 𝑆𝑒, 

and precision, 𝑃𝑟, as, 

𝑆𝑒 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100    and    𝑃𝑟 =  

𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 Equation 53 

where 𝑇𝑃, 𝐹𝑁, and 𝐹𝑃 are true positives, false negatives, and false positives, respectively. 𝑇𝑃s 

are the reference events detected by the heuristic algorithms, 𝐹𝑁s are the reference events missed 

by the heuristic algorithms, and 𝐹𝑃s are the extra false events detected by the heuristic algorithms. 

We considered a tolerance window of ±500 ms (50 samples) around each reference event to 

identify 𝑇𝑃, 𝐹𝑁, and 𝐹𝑃 [373]. Finally, the agreement of the proposed algorithm with pressure 

insoles in detecting gait events was assessed using Bland-Altman analysis [383].  

6.3 Results 

A total of 1039, 1491, 1848, and 1177 reference ICs/TCs were recorded from all participants for 

the four performed activities. Figure 24 shows a representative sample of −sin(𝛽) recorded during 
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these four activities as well as the detected (using the proposed algorithm) and reference (using the 

pressure insoles) IC and TC.   

 
Figure 24 Representative patterns of sine of foot pitch angle for (a) over-ground walking; (b) over-level-
treadmill walking; (c) over-level-treadmill running; and (d) over-inclined-treadmill walking. True and 

detected events are identified in the figure. 

Reference:     : TC       : IC
Detected: : TC       : IC
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According to Table 15, for over-ground walking, algorithms proposed in [371], [372], and 

[378] obtained the highest temporal accuracy (mean±standard deviation: 1±1 samples) in 

detecting IC, while TC detected by our algorithm had the highest accuracy (5±5 samples). For 

over-level-treadmill walking, all algorithms showed similar temporal accuracy in detecting IC, 

while our algorithm had the highest accuracy in detecting TC (4±4 samples). For over-level-

treadmill running, our algorithm showed to be the most accurate in detecting IC (0±3 samples), 

while [369] had the highest accuracy for TC (-3±3 samples). Finally, for over-inclined-treadmill 

walking, our algorithm showed the highest temporal accuracy (IC: 0±4 samples and TC: 4±4 

samples) compared to the literature. In addition, the Bland-Altman plots in Figure 25  show that 

the detected events had a high temporal agreement with the reference events. Notably, the 

percentage of detected events with temporal error beyond the limits of agreement 

(mean±1.96×standard deviation) was less than 8.4% (TC during over-inclined-treadmill walking) 

in the worst case scenario.  

According to Table 15, our proposed algorithm achieved a sensitivity, 𝑆𝑒, and precision, 

𝑃𝑟, of 100±0%, meaning all reference events were correctly detected, and no extra event was 

detected. [372] and [378] showed the second-highest 𝑆𝑒 and 𝑃𝑟 during over-level/inclined-

treadmill walking, while for over-ground walking and over-level-treadmill running, [378] and 

[369], respectively, had the second-highest 𝑆𝑒 and 𝑃𝑟.  
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Table 15 Temporal accuracy (in terms of the number of samples, Fs = 100 Hz), sensitivity, 𝑆𝑒, 

and precision, 𝑃𝑟, of the implemented algorithms for IC and TC detection during various 

walking modalities, presented as mean±standard deviation among participants. Positive mean 

errors correspond to delays in the event detection with respect to the reference pressure insoles. 

(a) Over-ground Walking 

Algorithm Initial Contact (IC)  Terminal Contact (TC) 

 Accuracy 𝑆𝑒 % 𝑃𝑟 %  Accuracy 𝑆𝑒 % 𝑃𝑟 % 

Mariani et al. [369] -2±4 100±0 69±12  -6±12 100±0 85±10 

Gouwanda et al. [371]  1±1 100±1 100±1  N/A N/A N/A 

Catalfamo et al. [372]  1±1 100±0 100±0  -5±10 88±10 88±10 

Perez-Ibarra et al. [373] -4±4 96±4 94±6  -11±8 94±4 92±10 

Maqbool et al. [378]  1±1 100±1 100±0  -7±5 85±10 100±1 

Proposed -4±2 100±0 100±0  4±3 100±0 100±0 

(b) Over-level-treadmill Walking 

Algorithm Initial Contact (IC)  Terminal Contact (TC) 

 Accuracy 𝑆𝑒 % 𝑃𝑟 %  Accuracy 𝑆𝑒 % 𝑃𝑟 % 

Mariani et al. [369] 2±4 100±0 92±14  -4±10 100±0 94±9 

Gouwanda et al. [371] 2±1 100±1 100±0  N/A N/A N/A 

Catalfamo et al. [372] 2±1 100±0 100±0  -7±4 100±0 100±0 

Perez-Ibarra et al. [373] -2±2 94±16 95±9  10±4 93±15 94±11 

Maqbool et al. [378] 2±1 100±0 100±0  -7±4 100±0 100±0 

Proposed -1±4 100±0 100±0  4±3 100±0 100±0 

(c) Over-level-treadmill Running 

Algorithm Initial Contact (IC)  Terminal Contact (TC) 

 Accuracy 𝑆𝑒 % 𝑃𝑟 %  Accuracy 𝑆𝑒 % 𝑃𝑟 % 

Mariani et al. [369] 3±4 100±0 100±0  -3±3 94±15 100±0 

Gouwanda et al. [371] 4±1 100±0 97±9  N/A N/A N/A 

Catalfamo et al. [372] 4±1 100±0 100±0  4±3 100±0 100±0 

Perez-Ibarra et al. [373] 0±4 80±23 99±1  12±5 81±24 100±0 

Maqbool et al. [378] 4±1 100±0 100±0  4±2 88±32 100±0 

Proposed 0±3 100±0 100±0  6±5 100±0 100±0 

(d) Over-inclined-treadmill Walking 

Algorithm Initial Contact (IC)  Terminal Contact (TC) 

 Accuracy 𝑆𝑒 % 𝑃𝑟 %  Accuracy 𝑆𝑒 % 𝑃𝑟 % 

Mariani et al. [369] 2±5 100±0 90±14  -4±10 100±0 96±8 

Gouwanda et al. [371] 3±2 100±0 100±0  N/A N/A N/A 

Catalfamo et al. [372] 3±2 100±0 100±0  -7±4 100±0 100±0 

Perez-Ibarra et al. [373] -1±3 99±1 87±16  10±7 99±1 87±16 

Maqbool et al. [378] 3±2 100±0 100±0  -7±4 100±0 100±0 

Proposed 0±4 100±0 100±0  4±3 100±0 100±0 
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Figure 25 Bland-Altman plots of initial contact (IC) and terminal contact (TC) for four different walking 

modalities. Errors were calculated based on the number of samples (Fs = 100 Hz). Positive errors correspond to 

delays in detecting events using our real-time algorithm with respect to the reference pressure insoles. Mean 

error and limits of agreement (mean±1.96×standard deviation) are identified with a green line and red lines, 

respectively. 

6.4 Discussion 

In this study, we presented a heuristic algorithm for robust real-time detection of IC and TC based 

on the reconstruction of foot motion during various walking modalities rather than morphological 

features of the IMU readouts. In contrast to previous studies where the temporal accuracy of the 

detected events was the main target, the goal of the current study was to develop an algorithm with 
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sensitivity and precision of 100% to only detect true ICs/TCs. This is the first step toward creating 

a gait event detection algorithm for providing real-time biofeedback on gait phases for control of 

neural prostheses that use the functional electrical stimulation technology or exoskeletons since 

false detection of gait phases can result in harmful actuation of the neural prostheses or 

exoskeleton. Also, biofeedback-based gait rehabilitation strategies require reliable biofeedback 

since false detection of gait phases can affect the compliance and adherence of the user. 

6.4.1 A robust signal for event detection 

Various time-series measured/derived from foot- or shank-worn IMUs were used in the literature 

for gait event detection. Noisy time-series such as acceleration, jerk, or angular acceleration 

naturally have several consecutive local minima/maxima that are sensitive to gait characteristics, 

sensor technology, and footwear-ground interaction, and thus gait event detection based on these 

time-series would inherently lack sensitivity and precision. Also, choosing one local 

minima/maxima among several in a narrow window requires comparing it with other neighboring 

minima/maxima. This requires analyzing the time-series after the targeted minima/maxima that is 

not allowed in real-time gait event detection. Therefore, smooth time-series derived from IMUs 

are expected to obtain more robust gait event detection. It is not surprising that the shank and foot 

angular velocities have been more popular in the literature for gait event detection [369]–[371], 

[373], [380], [384]. Yet, raw angular velocity time-series have multiple local minima/maxima, 

which can be detected as gait events incorrectly.  

  To achieve the highest robustness in detecting IC and TC, the vertical positions of the heel 

and toe might be the most meaningful kinematic features, i.e., the minimum of heel/toe vertical 

position happens at IC/TC. Indeed, when measured by an MCS, heel and toe vertical positions 

showed accurate and robust results [377], [385]. Nevertheless, heel and toe position tracking using 

IMUs is not straightforward. First, a corrective mechanism must be used to remove the integration 

drift due to the numerical integration of the acceleration [386]. Second, preliminary measurements 

are required to determine the relative position of the heel and toe with respect to mid-foot, where 

IMUs can be attached reliably. One may wonder if IC/TC can be detected based on the mid-foot 

vertical position (to avoid the preliminary measurements). Figure 26 shows that for a 

representative over-level-treadmill trial, the mid-foot vertical position calculated with IMUs does 

not contain any prominent feature associated with the reference TC.  
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Figure 26 Representative patterns of the resultant ground reaction force profile measured with pressure 

insoles and mid-foot vertical position measured with IMU. Reference events are identified in the figure. 

 To address these limitations, we introduced the sine of the foot angle in the sagittal plane, 

− sin(𝛽), for IC/TC detection. Figure 24 shows that − sin(𝛽) has a clear pattern with prominent 

kinematic features associated with IC/TC in different walking modalities. Also, our previous 

works showed that foot orientation could be tracked with IMUs with sufficient accuracy in long-

duration trials [22], [26]. To this end, SFAs such as Kalman Filters with adaptive gain regulation 

are suggested [25].  

: TC       : IC
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6.4.2 Heuristic algorithms for event detection 

Heuristic gait event detection algorithms contain two parts: rules and constraints. Rules are used 

to identify prominent features, e.g., local minima/maxima, in a time-series, while constraints 

(thresholds) are used to remove false events. Time constraints prohibit searching for a new event 

for a period of time after detecting an event of the same type or another type. Magnitude constraints 

limit the search for features to specific areas of the signal that are smaller/larger than a threshold. 

In this work, rules and constraints (threshold values) were determined based on foot biomechanics 

during gait and validated among all participants. For algorithms from the literature, we either used 

the suggested values by their authors or tested several values to improve their performance. 

Thresholds used in a time constraint depend on the gait speed. Thus, in contrast to [378] 

and [371] where large thresholds (300 ms and 350 ms, respectively) were used, we used a small 

threshold (150 ms as shown in yellow shades in Figure 23(b) and (c)) to ensure both very slow and 

very fast motions (e.g., running) can be analyzed reliably. Also, in contrast to [373], where a tight 

magnitude constraint was used to differentiate stance and swing phases, we used a biomechanically 

meaningful threshold (− sin(𝛽) greater/smaller than -0.2 corresponding to the foot angle of ≈ 11 

degrees with respect to the initial angle) to identify the periods when the heel-to-toe vector has a 

positive (corresponding to IC) or negative (corresponding to TC) angle with the horizontal plane. 

Figure 23(c) shows that this threshold is nearly 0.4 (≈ 23 degrees) farther than the foot angle 

associated with IC/TC, which ensures high sensitivity and precision, simultaneously. The final 

constraint in our algorithm ensures that IC and TC are detected in order, and not multiple events 

of the same type are detected consecutively, similar to [373], [378]. 

 Real-time implementation is another challenge in designing a robust algorithm. Offline 

local minima/maxima detection can be done by comparing the value of a time-series in an instant 

with that of other instants in the past and the future. However, to minimize the delay in event 

detection for real-time applications, we only used the value of − sin(𝛽) in only 1 data sample from 

the future. For previously published algorithms, this resulted in the detection of multiple false local 

minima/maxima where the value of time-series decreased or increased only even for 1 sample in 

the opposite direction of its trend. To fix this issue, we designed an additional rule that not only 

evaluated the value of −sin(𝛽) for local minima/maxima detection but also looks for a 

decreasing/increasing trend among previous samples to ensure that a true event is detected. 
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 The inclusion of all the mentioned considerations differentiated our proposed algorithm 

from those in the literature and ensured its high robustness, 𝑆𝑒 and 𝑃𝑟 of 100%, in gait event 

detection, at least for the unimpaired gait. In addition, the Bland-Altman plots in Figure 25 show 

that the detected events had a high temporal agreement with the reference events. Notably, the 

percentage of detected events with temporal error beyond the limits of agreement 

(mean±1.96×standard deviation) was (2.3%, 3.6%), (7.1%, 2.3%), (8.4%, 6.5%), (5.8%, 2.8%) 

for (IC, TC) and for over-ground walking, over-level-treadmill walking, over-level-treadmill 

running, and over-inclined-treadmill walking, respectively. In conclusion, Table 15 shows that our 

proposed kinematically meaningful rules and constraints resulted in not only 𝑆𝑒 and 𝑃𝑟 of 100%, 

but also a temporal accuracy higher than or comparable to the literature. 

6.5 Conclusion 

We used foot orientation, which provides physiologically meaningful kinematic features 

corresponding to our observational recognition of IC and TC, to detect temporal gait events. We 

conducted an experimental study to validate our algorithm, including seven participants 

performing four walking/running activities. By analyzing 5,555 ICs/TCs recorded during the tests, 

only our algorithm achieved a sensitivity and precision of 100%. Our obtained temporal accuracy 

(mean±standard deviation of errors ranging from 0±3 to 6±5 time samples; sampling frequency: 

100 Hz) was better than or comparable to those reported in the literature. Thus, using the technical 

contributions in the previous/current chapters, we can measure lower limb joint angles and 

temporal gait events and provide biofeedback during therapeutic gait training. In the future, we 

must validate our proposed gait event detection algorithm with a higher sample size of able-bodied 

individuals and patients with gait impairment. Also, while we tried to make a fair comparison with 

the literature by tuning the thresholds of the implemented algorithm, further investigation with 

clinical data is required to confirm the current finding. In Chapter 7, we introduce a novel algorithm 

to assess the effect of gait training by monitoring patients’ daily activities in their natural living 

environment. 
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Chapter 7  

Daily Activity Monitoring with IMUs 

This chapter provides the details of a daily activity monitoring algorithm that can be used to track 

the efficacy of rehabilitation on enhancing the functional capacity of stroke survivors. Portions of 

this chapter have been edited/adopted from: 

M. Nazarahari, H. Rouhani, “Detection of Daily Postures and Walking Modalities Using a Single 

Chest-mounted Tri-axial Accelerometer,” Medical engineering & physics, Vol. 57, pp. 75-81, 

2018. 

7.1 Introduction 

Quantitative assessment of physical activities during daily life plays a significant role in evaluating 

the functional ability in healthy individuals and patients suffering from obesity, recurrent falling, 

Parkinson’s disease, and back pain [387]–[391]. Notably, the functional capacity of patients during 

their daily life could reveal the efficacy of the instrumented biofeedback-based walking training. 

Thus, in this chapter, we propose a novel algorithm to monitor daily activities using a wearable 

IMU. 

Najafi et al. [390], [392] adopted the trunk inclination angle, obtained from the integration 

of the angular velocity and discrete wavelet transform, to detect postural transitions (PT) from 

accelerometer and gyroscope signals of a chest-mounted sensor. In such algorithms, the efficiency 

of both PT and walking detection can be affected negatively by the improper selection of threshold 
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values. The acceleration patterns obtained from the signal vector magnitude (SVM) were also used 

to differentiate between stand-to-sit (StSi) and sit-to-stand (SiSt) transitions [393], [394]. 

However, these approaches (1) did not include an algorithm for the detection of StSi and SiSt 

instants (before classification); and (2) relied on discrete wavelet transform calculation with a high 

computational load.  

Distinguishing activity from rest periods by detecting time intervals when the signal 

magnitude area is greater or smaller than a threshold was performed in [391], [395]–[397]. 

However, this method can be error-prone when the participant performs an activity slowly. 

Multiple-sensor daily activity assessment algorithms have also been presented [396], [398], [399] 

to provide more information and make activity classification more accurate; however, attaching 

several sensors to an individual’s body for a long period can be cumbersome. Fusion of different 

sensors recording (accelerometer, gyroscopes, and barometers) also has found applications in 

physical activity analysis [400], [401]. However, gyroscopes, unlike accelerometers, have high 

power consumption and are prone to measurement drift. Also, Massé et al. [402], [403] showed 

that the barometer sensor must be selected with caution, as not all of them can differentiate between 

the altitude of the trunk during sitting and standing postures. Therefore, accelerometers are still a 

preferred choice for physical activity analysis as they provide robust information about daily 

activity independent of other sensors. 

Several groups have attempted to detect level walking using an accelerometer [389], [390], 

[399]. Godfrey et al. [389] used only a single chest-mounted accelerometer for  PT and walking 

detection. Nevertheless, this method was not able to distinguish level walking from walking 

upstairs/downstairs. Sekine et al. [404], [405] presented the application of discrete wavelet 

transform and fractal analysis for non-level walking classification. While both methods provided 

measures for discrimination between walking modalities, no classification rate between the three 

walking modalities was reported. Recently, Nyan et al. [406] developed a reliable technique to 

classify level/ non-level walking from the spatial correlation of discrete wavelet transform 

coefficients. In addition to a high computation load, the method was not capable of counting the 

number of steps. 

The main objective of this chapter was to develop and validate a novel method for the 

detection and classification of a wide range of physical activities, including standing, sitting, lying, 
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level walking (with slow, normal, and fast speeds), and walking upstairs and downstairs using a 

single chest-mounted accelerometer. The key features of our proposed method are: (1) detection 

and classification of an inclusive range of physical activities with higher accuracy, sensitivity and 

specificity compared to the literature in various movement habits among different individuals; and 

(2) detection of and counting the number of steps during level walking, walking upstairs and 

downstairs, using the same chest-mounted accelerometer. To this end, we applied the 

biomechanical characteristics of each PT and walking modality to extract robust metrics for the 

detection and classification of daily activities.  

7.2 Materials and Methods 

7.2.1  Experimental Method 

Two separate experimental studies were conducted in the laboratory and outdoors involving 

healthy participants. Study I was conducted in the presence of an MCS as a gold standard reference 

system to validate the accuracy of the proposed algorithm in (1) measuring trunk inclination angle 

and vertical displacement during PTs; and (2) detecting the occurrence time of PTs. Study II was 

conducted to evaluate the performance of the proposed algorithm in long-term analysis of a wide 

range of physical activities in a free-living environment. Research Ethics Board Committee of the 

University of Alberta approved the study protocol, and written consent was obtained from all 

participants. 

Study I: Main daily activities, including lying, sitting, standing, and level walking, were 

evaluated in ten healthy participants (all male, 27±12 years old). The protocol of this study was 

as follows: sitting on the mattress (height = 10 cm, start point of the test), lying on the mattress, 

sitting on the mattress, standing, sitting on the first chair (height = 61 cm), standing, sitting on the 

second chair (height = 50 cm), standing, walking, sitting on the first chair, standing, sitting on the 

second chair, standing, sitting on the mattress, lying on a mattress, and repeating all these activities 

once again. For the first five participants, only one chair (height = 50 cm) was used for StSi/SiSt 

during the experiment, while for the rest, two chairs (heights = 61 and 51 cm) were used. 

Study II: The experiment was conducted at the university campus as a free-living 

environment. Ten healthy participants (7 males and 3 females, 26±2 years old) were involved. 

They performed eight activities: standing, sitting, level walking (slow-, normal-, and fast-paced), 
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walking upstairs, walking downstairs, and lying in a self-selected order. Specifically, for level 

walking, participants were asked to walk with self-selected slow, normal, and fast speeds to 

evaluate the robustness of the proposed method for detecting walking periods with various speeds. 

During all tests, the study coordinator recorded the participants’ activities with a hand-held camera.  

7.2.2  Data Collection 

During both experiments, an IMU (Physilog, GaitUp, Switzerland) was fixed on the participants’ 

chest (over sternum) using medical tape. The benefits of attaching the IMU to the chest are: (1) 

the flat bony surface of the sternum facilitates repeatable sensor attachment by even unskillful 

users; and (2) the chest-mounted sensor minimally interferes with daily routines, in comparison 

with sensors on the sacrum, thigh, or even pocket. In this study, only the tri-axial accelerometer 

(range: ±11g) of the sensor module was used in our proposed method (gyroscope was only used 

to implement methods presented in the literature). The sampling frequency was 100 Hz, and the 

data was recorded on an internal memory card. After completing data collection, the data were 

transferred from the memory card to a computer for further analysis (MATLAB, MathWorks, 

USA). The sensor frame was defined such that the x-axis pointed forward (anterior direction), y-

axis pointed upward, and z-axis pointed toward the right (lateral direction).  

An MCS (Motion Analysis Corporation, USA) with eight infrared cameras sampling at 

100 Hz was used as a gold standard reference system, and its recordings were synchronized with 

the IMU in study I. Three retro-reflective markers were placed on the sensor box to measure its 

3D movement. Four markers were placed on heels and toes bilaterally to measure the gait cycles. 

The markers over the sternum were used to validate the height change during StSi/SiSt calculated 

by the IMU, and the foot markers were used to identify the number of steps. To assess the validity 

of the results obtained by the accelerometer, the MCS recordings were analyzed to determine the 

number of PTs and the start/end of each PT. The PT instants were defined as the average of the 

start and the end times detected by MCS (e.g., for StSi transition, the start time was defined as the 

start of the leaning forward phase from standing posture and the end time was defined as the end 

of leaning backward phase after sitting on the chair [392]). 
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7.2.3  Postural Transition Detection and Classification 

Our proposed method for PT detection and classification is shown in Figure 27. We used the trunk 

inclination angle as the primary metric for PT detection. This angle was estimated as the angle 

between the gravitational component of the vertical acceleration (𝐺𝐴𝑦𝐴,𝑣
) measured by the 

accelerometer and the gravity vector (g):  

𝜃 = arccos(𝐺𝐴𝑦𝐴,𝑣
g⁄ ) Equation 54 

The 𝐺𝐴𝑦𝐴,𝑣
was obtained by applying a second-order elliptical IIR low-pass filter with the cut-off 

frequency, passband ripple, and stopband ripple of 0.25 Hz, 0.01 dB, and -100 dB, respectively, to 

the accelerometer readout (𝑦𝐴,𝑣) in the vertical axis. 

7.2.4 Lie-to-sit (LySi) and Sit-to-lie (SiLy) 

The trunk inclination does not increase beyond 70 degrees during activities other than lying [391]. 

Thus, the trunk inclination angle was used to detect the SiLy and LySi instants. Also, the sign of 

the gradient of 𝑦𝐴,𝑣 at these SiLy/LySi instants was used to distinguish SiLy from LySi. Notably, 

the frontal (instead of vertical) axis of the accelerometer was used to measure gravity during lying. 

To discard unknown movements (labeled with trunk inclination beyond 70 degrees), the algorithm 

detected a short static period with the measured frontal acceleration associated with the gravity 

after (before) any SiLy (LySi) transition.  
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Figure 27 The flowchart of the proposed method for determining the body posture from the raw data 

obtained from a chest-mounted accelerometer. SVM refers to signal vector magnitude, PT to postural 

transition, and GA to the gravitational component of the accelerometer recordings. 
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7.2.5 Stand-to-sit (StSi) and Sit-to-stand (SiSt) 

We detected the incidence of StSi/ SiSt transitions using a threshold of 20 degrees on the trunk 

inclination angle. To cope with the challenge of tuning this threshold, we proposed a novel 

approach to improve the robustness of StSi/SiSt detection against false detections when the 

threshold is set small (here, 20 degrees). In this method, we used the vertical displacement of the 

chest (∆Y) to reject the false detections. Note that the chest height decreases/increases about the 

thigh length during the StSi/SiSt transitions. As such, detected StSi/SiSt transitions while the 

calculated ∆Y was considerably smaller than (less than 50%) the thigh length of the participants 

were rejected. ∆Y was calculated by double integration of the vertical acceleration relative to the 

global reference frame (𝑦𝐴,𝑣
𝑔

) similar to [39]: 

𝑦𝐴,𝑣
𝑔 (𝑡) =  −𝐺𝐴𝑦𝐴,𝑓

(𝑡) sin(𝜃(𝑡)) + 𝐺𝐴𝑦𝐴,𝑣
(𝑡) cos(𝜃(𝑡)) Equation 55 

∆Y =  ∬ 𝑦𝐴,𝑣
𝑔 (𝑡)𝑑𝑡

𝑡2

𝑡 

 Equation 56 

To reduce the integration drift in Equation 56, the [𝑡1, 𝑡2] interval was selected to be short, and the 

mean value of accelerations was removed before integration. Subsequently, the StSi/SiSt transition 

time was detected as the time difference between the nearest local minima in trunk inclination 

angle before and after the detected StSi/SiSt.  

Then, to distinguish StSi from SiSt, we used the ‘acceleration pattern’ during StSi/SiSt 

transitions (Figure 28). To obtain the ‘acceleration pattern,’ the SVM was calculated using the GA 

components of accelerometer readout: 

𝑆𝑉𝑀 =  √𝐺𝐴𝑦𝐴,𝑓

2 + 𝐺𝐴𝑦𝐴,𝑣

2 + 𝐺𝐴𝑦𝐴,𝑙

2 − g Equation 57 

where 𝐺𝐴𝑦𝐴,𝑓
, 𝐺𝐴𝑦𝐴,𝑣

, and 𝐺𝐴𝑦𝐴,𝑙
 are the frontal, vertical, and lateral GA components of the 

accelerometer readouts. Figure 28 shows that while 𝑦𝐴,𝑣 and 𝑦𝐴,𝑓 did not directly provide 

distinctive patterns between StSi and SiSt, SVM showed a negative (positive) peak followed by a 

positive (negative) peak during StSi (SiSt) [4]. Instead of using the order of the negative and 

positive peaks in SVM (proposed in [393], [394]), in our algorithm, the cumulative integration of 

SVM was calculated over the transition time, and the sign of cumulative numerical integration of 

SVM was used to distinguish StSi from SiSt. Unknown movements (e.g., bowing or squats) were 
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not considered as StSi/SiSt since they did not pass the following two conditions simultaneously: 

(1) trunk inclinations lower than 70 degrees; and (2) ∆Y about the thigh length during the transition.  

 
Figure 28 Representative time-series of the accelerometers recording in the vertical (𝑦𝐴,𝑣) and frontal 

(anterior-posterior) (𝑦𝐴,𝑓) directions, signal vector magnitude (SVM), and cumulative numerical 

integration of SVM during StSi and SiSt transitions. During a StSi transition (when the negative peak in 

the SVM time-series occurs before the positive peak), a large negative peak can be observed in the 

cumulative integration of SVM at the StSi instant, while the reverse occurs at the SiSt instant. The vertical 

dashed lines represent the detected postural transitions using the proposed method. 

7.2.6 Walking 

We used the successive positive peaks of SVM beyond a predefined threshold to detect walking 

periods. To decrease the dependency of our proposed method on the threshold value, we compared 

the trunk inclination angle at the walking interval to a small threshold. Then, we rejected the 

walking periods when the participant was not in an upright posture.  

Trunk inclination was also used as the primary metric to detect walking 

upstairs/downstairs. Naturally, trunk inclination during level walking helps to keep the center of 

𝑦
,𝐴

,𝑓
𝑦

,𝐴
,𝑣
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mass of the body inside the base of support and maintain the balance [407], [408]. Moreover, 

during non-level walking, the trunk has to incline further compared to level walking to maintain 

balance due to both horizontal and vertical displacement of the body. The more change in the trunk 

inclination, the more change in the 𝐺𝐴𝑦𝐴,𝑣
. As a result, the variance of the 𝐺𝐴𝑦𝐴,𝑣

 would be larger 

in periods associated with walking upstairs/downstairs in comparison to level walking (Figure 29). 

Moreover, 𝐺𝐴𝑦𝐴,𝑓
 showed positive values for walking upstairs, and mixed positive and negative 

values for walking downstairs. Therefore, as a novel method, we proposed to use cumulative 

numerical integration to calculate the area under 𝐺𝐴𝑦𝐴,𝑓
 and classify the non-level walking 

(upstairs or downstairs) using a single threshold. Similar to level walking, we determined the 

number of steps during non-level walking based on the successive positive peaks of the SVM. 

Moreover, as walking was detected by at least three successive peaks in the SVM signal within a 

pre-defined step duration, unknown movements performed in an un-repeated fashion were 

discarded. 

7.2.7  Data Analysis 

To evaluate the performance of our proposed method for PT detection, similar to [390], the 

sensitivity, specificity, and accuracy of each PT detection were calculated using PT detected by 

the cameras as a reference. Also, the correlation coefficient was used to compare ∆Y time-series 

obtained by accelerometer using our proposed method and ∆Y obtained by cameras. To compare 

the results obtained by our method to those obtained by other methods, we implemented three 

methods for PT identification in the literature on our collected datasets. The results were presented 

as mean±SD (standard deviation) for each metric. 
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Figure 29 Representative time-series of the gravitational component of the accelerometer recordings 

(GA) during level walking (LW), walking upstairs (WU), and walking downstairs (WD). The variance 
of the vertical GA component is higher in WU/WD periods in comparison to LW. The frontal GA 

component values are positive during WU, while both positive and negative values were observed during 

WD. The vertical dashed lines represent the detected postural transitions using the hand-held proposed 

method. 

7.3 Results 

7.3.1  Study I: Experiments in Laboratory Environment 

The completion time for data collection for each participant was 250±41 seconds. 29 SiLy, 28 

LySi, 74 StSi, and 77 SiSt transitions and 250 gait cycles were performed by all participants during 

the study I. A representative acceleration pattern and the associated vertical displacement of the 

trunk obtained by MCS are shown in Figure 30. The SiLy and LySi transitions were detected and 

classified with an accuracy of 100±0%. Also, the proposed method obtained the accuracy, 

sensitivity, and specificity of 99±3%, 100±0%, and 98±5%, respectively, for StSi identification 

and 98±3%, 98±4%, and 97±5% for SiSt identification (Table 16(a)). The time differences 
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between the actual (obtained from MCS) and detected transition instants obtained by the proposed 

method and other methods in the literature, applied on our dataset, are also presented in Table 

16(c). Our proposed method detected the SiLy/LySi and StSi/SiSt instants with an error of less 

than 0.3 seconds and 0.2 seconds, respectively, relative to the transition instants obtained by the 

MCS.  

Correlation analysis was performed to evaluate the accuracy of the vertical displacement 

estimation using Equation 56 during StSi and SiSt transitions. The correlation coefficients between 

the vertical displacement of the trunk (∆Y) obtained by the accelerometer using our proposed 

method and that obtained by cameras were 0.94±0.10, 0.96±0.06, and 0.94±0.08 for seat heights 

of 10 (mattress), 50, and 61 cm, respectively.  

Table 16 Comparison between the proposed method and other methods in detection of postural transitions: 

(a) accuracy, sensitivity, and specificity for detection and classification of StSi and SiSt transitions, (b) 

accuracy for detection of level walking and step counting, and (c) time difference between the LySi/SiLy 
and StSi/SiSt instants obtained by the accelerometer and those obtained by MCS. The results are presented 

as mean±standard deviation among all participants.  

(a) StSi/SiSt detection and classification 

 Accuracy (%)  Sensitivity (%)  Specificity (%) 

 StSi SiSt  StSi SiSt  StSi SiSt 

The proposed method 99±3 98±3  100±0 98±4  98±5 97±5 

Najafi et al. [392] 81±12 83±12  82±13 82±11  81±12 84±14 

Godfrey et al. [389] 88±10 91±11  88±10 92±10  89±12 90±12 

Bidargaddi et al. [393] 95±5 93±4  95±8 97±5  95±8 89±5 

Alternative method1 96±8 93±8  97±10 94±7  95±7 92±10 

(b) Level walking detection and step counting 

 Accuracy (%) 

 
low threshold value, 

high detection rate 
 

high threshold 
value, low 

detection rate 
 

low threshold value, 

rejection using trunk tilt 

The proposed method 83±11  86±9  9 3±6  

Najafi et al. [390] 83±10  87±9  92±6 

Godfrey et al. [389] 82±10  87±7  96±5 

(c) Time difference (in seconds) between detected and actual SiLy/LySi and StSi/SiSt instants  

 SiLy/LySi  StSi/SiSt 

The proposed method 0.28±0.21  0.18±0.15 

Najafi et al. [390] 0.45±0.25  0.18±0.12 

Godfrey et al. [389] 0.33±0.26  0.18±0.13 
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Figure 30 A representative acceleration pattern obtained with the accelerometer and associated vertical displacement of the trunk obtained with the MCS. The 

data were collected from a young, healthy participant in the laboratory. The detected and classified postural transitions, sit-lie (SiLy), lie-sit (LySi), stand-sit 
(StSi), and sit-stand (SiSt) are shown with circles, pentagons, downward triangles, and upward triangles, respectively. Steps during level walking periods are 

presented with stars. The vertical dashed lines represent the detected postural transitions using the proposed method. 
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Table 16(b) shows that the accuracy of our proposed method for level walking detection 

was the highest (96±3%) when a low threshold value was chosen and the trunk inclination angle 

was used to reject false detections (compared to the simple method without rejection phase using 

low/high threshold value). The application of this technique led to better accuracy even for the 

walking detection methods proposed in [389], [390] (Table 16(b)). 

7.3.2  Study II: Experiments in Free-living Environment  

The completion time for data collection for each participant was 18±2.5 minutes. The accuracy 

and specificity of SiSt detection were 99±2% and 97±5%, respectively. Detection and 

classification of other transitions (StSi, SiLy, and LySi) had accuracy, sensitivity, and specificity 

of 100%, for various movement habits. Both slow and normal pace level walkings were detected 

with an accuracy of 99±1%. Detection of fast walking was less accurate than slow and normal 

pace walking. Table 17 shows that the number of steps was counted with an accuracy of 97% and 

96% during walking upstairs and downstairs, respectively. The second study also showed the 

ability of the proposed method to analyze the physical activities of both male and female 

participants.  

Table 17 Performance of the proposed method for (a) detection and classification of postural 
transitions (StSi, SiSt, SiLy, LySi), and (b) level/non-level walking detection and step counting, 

outdoor (study II). The results are presented as mean±standard deviation among all participants. 

(a) Postural transition detection 

 Number of PTs  Accuracy (%)  Sensitivity (%)  Specificity (%) 

StSi 123  100±0  100±0  100±0 

SiSt 123  99±2  100±0  97±5 

SiLy 80  100±0  100±0  100±0 

LySi 80  100±0  100±0  100±0 

(b) Walking detection and step counting 

 Number of steps  Accuracy (%) 

Level walking, normal pace 3,630  99±1 

Level walking, slow pace 1,787  99±1 

Level walking, fast pace 2,009    95±15 

Walking upstairs 301  97±3 

Walking downstairs 323  96±2 
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7.4 Discussion  

This study made a twofold contribution. First, we developed a novel method for accurate detection 

and classification of StSi, SiSt, SiLy, and LySi transitions for daily activity analysis using a single 

chest-mounted accelerometer. We validated the performance of the proposed method in two 

experimental conditions (study I: in-lab and study II: outdoor), and showed its higher accuracy, 

sensitivity, and specificity, for several PTs, compared to other methods in the literature applied on 

our dataset. Second, we developed a novel method for the detection and classification of level 

walking with various speeds, walking upstairs and downstairs using the same single chest-mounted 

accelerometer. Higher accuracy, sensitivity, and specificity were observed in study II compared to 

study I, which could be due to fewer false detected or undetected events relative to the overall 

number of events in study II. 

7.4.1 Postural Transition Detection and Classification  

In our proposed method for computing trunk inclination angle and then comparing its value with 

thresholds to detect PTs eliminated the need for (1) recording a static period at the start of the 

experiment [389]; or (2) the use of a gyroscope [390] that would increase the power consumption 

considerably. Traditionally, StSi/SiSt detection and classification based on direct determination of 

postures have faced two challenges [391], [396]: (1) differentiating between standing and sitting 

postures using a single chest-mounted inertial sensor may not obtain high sensitivity and 

specificity [391]; and (2) slow-paced activities or transitions are hard to identify based on metrics 

such as signal magnitude area [396]. To tackle these two challenges, our proposed method 

involved three steps: (1) we detected all potential StSi/SiSt transitions based on a low threshold on 

the trunk inclination angle (20 degrees); (2) we identified and rejected the false detections using a 

threshold (individual’s thigh length) on the chest height change (∆Y) during the transition; and (3) 

we distinguished StSi from SiSt using the pattern of the cumulative integration of SVM. To this 

end, we used the GA components to compute the SVM instead of using acceleration signals 

directly, as suggested in [393], [394], [409]. This method eliminates the need for time-consuming 

SVM modification based on discrete wavelet transform.  

Our proposed method obtained higher accuracy, sensitivity, and specificity for SiSt/StSi 

transition classification compared to those presented in [389], [393], [399] and implemented on 
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our dataset. The large correlation coefficients between ∆Y obtained with the accelerometer and 

cameras indicated accurate estimations obtained with the former during StSi/SiSt transitions. 

Nevertheless, estimation errors because of the double integration of the noisy acceleration signal 

were inevitable. Therefore, the application of ∆Y for StSi/ SiSt classification inherently resulted 

in lower accuracy, sensitivity, and specificity, compared to our proposed method (Table 16(a)).  

7.4.2 Detection of Level, Upstairs, and Downstairs Walking  

Walking detection based on SVM peak detection faces two challenges: (1) several false peaks are 

detected when the threshold is set low (low specificity); (2) some true peaks are not detected when 

the threshold is set too large (low sensitivity). To investigate the effect of the threshold value on 

walking detection algorithms, we detected walking periods based on low and high threshold values 

using our proposed method and the methods proposed in [389], [390]. In addition, we implemented 

an extra step to reject false detections based on trunk inclination measurement when a low 

threshold value was chosen. According to Table 16(b), applying a low threshold value and 

rejection of false detections resulted in the highest accuracy during the study I for all methods.  

Our method was also able to detect low and normal speed walking with an average 

accuracy of 99% during study II (Table 17). During fast walking, the walking pattern becomes 

more irregular compared to slow and normal walking. Although discriminating between non-level 

and fast level walking using the variance of the 𝐺𝐴𝑦𝐴,𝑣
 can be challenging our method classified 

only one of the fast walking periods incorrectly as walking upstairs.  

Detection and classification of walking upstairs/downstairs are more challenging than level 

walking. To the best of our knowledge, all the proposed methods for analyzing walking 

upstairs/downstairs detection were focused only on locomotion analysis [404]–[406], [410] and 

were unable to measure the number of steps [404]–[406]. Our method used  𝐺𝐴𝑦𝐴,𝑣
 and 𝐺𝐴𝑦𝐴,𝑓

 

time-series to differentiate between level and non-level walking periods and to classify the type of 

non-level walking, respectively. As a result, walking upstairs and downstairs periods were 

classified correctly using the numerical integration of 𝐺𝐴𝑦𝐴,𝑓
 and counted the number of steps with 

an accuracy of 97% and 96%, respectively.  
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7.5 Conclusions 

This chapter proposed a novel algorithm for daily activity monitoring using the kinematic features 

of the postural transitions or the repetitive morphological features in the SVM time-series.  As a 

result, SiLy and LySi were detected with an accuracy of 100% in both validation studies, and StSi 

and SiSt transitions were detected with the accuracy of 97% and 96%, respectively, in study I, and 

100% and 99% in study II. Also, in addition to differentiating between different walking 

modalities, our algorithm counted the number of steps with an accuracy of 99%, 97%, and 96% 

during level walking (slow and normal pace), walking upstairs and walking downstairs, 

respectively. Thus, our proposed algorithm can be used to monitor the daily activities of the 

patients before/during/after therapeutic gait training to reveal the efficacy of the training. Also, 

while we tried to make a fair comparison with the literature by tuning the thresholds of the 

implemented algorithm, further investigation with clinical data is required to confirm the current 

finding. This is particularly important for daily activity monitoring, where the sensitivity and 

specificity of the algorithms can be influenced by jerkiness and slowness of movements observed 

in older adults and patients. 
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Chapter 8  

Wearable Technology for Therapeutic Gait 

Training 

This chapter describes how the previous chapters' technical contributions can be combined with 

one another to create a wearable system for therapeutic gait training. In particular, this chapter 

provides a step-by-step procedure for performing clinical lower limb motion analysis with the 

proposed technologies. Also, this chapter provides a brief description of the biofeedback system, 

the parameters that can be provided during rehabilitation, and the experimental protocol for 

therapeutic gait training with the proposed technology. 

Using the developed techniques in Chapter 3 to Chapter 7, we can create a wearable system for 

therapeutic gait training to measure the lower-limb joint angles and gait temporal parameters in 

real-time. Then, a biofeedback control system (Figure 31) must be designed to translate the 

measured quantities to meaningful biofeedback for the patient.  

However, as the integration of these technical contributions might seem difficult in the first 

step, we briefly describe how to integrate the technical contributions in Chapter 3 to Chapter 7 to 

calculate lower-limb joint angles and temporal gait events. These steps are presented in a separate 

chapter from Chapter 9: Conclusions & Future Perspectives, as the goal was to clarify the usage 

of the current system. 

1. Seven IMUs are required to track the motion of both feet, shanks, thighs and pelvis. IMUs can 

be attached to the segments using double-sided tape or Velcro straps. It is important to ensure 
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that (1) IMUs are attached over the bony surface of the segments or at least far from the muscles 

belly to minimize the soft tissue artifacts; and (2) IMUs’ attachments are secure to minimize 

the errors caused by IMU wobbling during the user’s motion. 

2. Before the main trials, a calibration trial is needed to find the sensor-to-segment transformation 

required for clinical joint angle measurement. As detailed in Chapter 3, a calibration trial must 

contain a period of quiet standing and repetitions of a single-axis rotation of the body segments 

(hip FE or walking on a straight line). For able-bodied individuals, we suggest the calibration 

using walking on a straight line (whether in a separate calibration trial or as a part of the main 

trial). We recommend the calibration using hip FE for patients with an impaired gait to ensure 

that a proper single-axis rotation is performed. 

3. An SFA for IMU orientation tracking (Chapter 5) is required to calculate joint angles and detect 

temporal gait events. Adaptive gain tuning (Chapter 4) and offline calibration (Section 2.3.7 

and Section 5.3.1) should be performed to ensure high accuracy and repeatability in orientation 

tracking.  

4. At the beginning of the main trial, a few seconds of quiet standing is required to remove the 

bias in the measured joint angles due to attachment inaccuracies and sensor-to-segment 

calibration errors. Then, at each time instant, the orientation of the proximal and distal 

segments must be calculated using the SFA. Next, the orientation of the anatomical local 

coordinate system of a segment can be calculated by multiplying the IMU orientation and the 

sensor-to-segment transformation. Finally, the joint coordinate system defined in [309] can be 

utilized to measure clinically meaningful 3D joint angles, as recommended by the ISB [299]. 

Joint angles can be presented as biofeedback during therapeutic gait training.  

5. Using the foot orientation tracked with the foot-worn IMU, temporal gait events (IC and TC) 

can be detected in real-time, as described in Chapter 6. Temporal gait events can be presented 

as biofeedback during therapeutic gait training. 

6. A chest-mounted IMU, along with the heuristic algorithm described in Chapter 7, can track the 

patient’s daily activities outside of the laboratory setting. This can reveal the efficacy of 

therapeutic gait training in increasing the mobility of patients. 

Steps 1 to 5 described above will produce joint angles and temporal gait parameters in real-time. 

Then, a biofeedback display system is required (future work, see Section 9.2.5) to provide the 

patient and therapist with a visual or auditory biofeedback display during gait training.  
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In the simplest form, a display reports the measured biofeedback parameters to the patient 

and therapist in real-time. We have created a minimum viable display that presented the motion of 

the lower limb as a stick figure. Also, our display presented the joint angles in real-time to the 

patient and therapist as graphs to enable them to monitor the pattern of motion. Our system used 

seven Xsens IMUs (MTws, Xsens Technologies, The Netherlands), which transferred data to a 

computer via a proprietary wireless connection. All calculations were performed in MATLAB 

(MathWorks, USA). 

On the other hand, a prescriptive biofeedback system requires a knowledge base to 

compare the pathological movement patterns with the targeted normal ones and present a proper 

visual or auditory display to help the therapist personalize the therapy based on the type and 

severity of the gait impairment and pathology. For such a system, a visual display that presents the 

error between the measured impaired movement and the targeted normal one can be produced. 

Also, audio cues synchronized with errors (e.g., a beeping sound with a frequency or amplitude 

proportional to the error) can be generated in real-time. 

To perform therapeutic gait training, our wearable technology should be applied during 

training sessions of ambulatory stroke survivors. For example, there can be six weeks of training, 

three sessions per week, with one week of assessment/rest in the middle [411]. To examine the 

enhancement in motor function, a walking assessment should be performed one week before the 

beginning of training, during week 4 (assessment/rest week), one and six weeks after the training. 

The outcome measures obtained in pre-, during-, and post-training should be compared to evaluate 

the enhancement in motor function of patients.  
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Figure 31 Wearable technology for gait rehabilitation. The blue rectangles show the IMUs. Seven IMUs 
attached to the lower limb will be used to track segments’ orientation (and thus, joint angles) and gait 

temporal parameters. The chest-mounted IMU will track the daily activities of the patients in their natural 

living environment. IMU data will be transferred to a computer/tablet in real-time to perform the 

calculations and compute the measured biofeedback parameters. Then, a biofeedback control system 
must be designed to report the biofeedback parameters via a visual or auditory display.  
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Chapter 9  

Conclusions & Future Perspectives 

This chapter provides a summary of the results and presents the future directions for this research. 

9.1 Conclusions 

Using the technical contributions in this thesis, we can create a wearable sensor technology to 

measure clinically meaningful lower limb joint angles and detect temporal gait events. Then, these 

quantities can be presented as biofeedback to the patient and the therapist during therapeutic gait 

training.  

9.1.1 Sensor-to-Segment Calibration 

A survey of the literature showed that a reliable sensor-to-segment calibration procedure is 

required to transform the measured quantities from the IMU sensor frame to the anatomical frame 

of the segment. We, for the first time, showed that twenty consecutive hip FE movements or eight 

steps of straight walking, together with three to five seconds of quiet standing, can be used as an 

effortless yet accurate and repeatable sensor-to-segment calibration to obtain clinically meaningful 

lower limb joint angles using IMUs. The accuracy and repeatability of the proposed procedures 

were better than or comparable with the calibration-specific movements/postures in the literature. 

However, our calibration procedures will maximize the ambulatory measurement capability of 

IMUs in free-living environments.  

9.1.2 Adaptive Gain Regulation of SFAs 

A survey of the literature showed that the performance of SFAs highly depends on the selection 

of SFA gains, regardless of the SFA structure or complexity. Thus, we presented a general 
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framework for designing an optimal adaptive gain regulation scheme applicable to both families 

of SFAs: CFs and KFs. We showed that regulating the SFA’s gains using IMU signal intensity 

resulted in significantly more accurate and repeatable estimates of body segment orientation during 

gait. Also, we showed that an optimized simple gain regulation scheme such as switching gains 

between two or three levels was sufficient, and there was no need for a more complex scheme such 

as a Mamdani fuzzy inference system.  

9.1.3 IMU Orientation Tracking with Sensor Fusion 

A survey of the literature revealed that most SFA’s performance degrades during long-duration 

tasks. Thus, we proposed two new SFAs by estimating the error sources of sensors embedded in 

an IMU and correcting the IMU recordings before orientation estimation. Also, to fill the main gap 

in the literature, i.e., lack of comprehensive benchmarking studies, we compared the estimated 

orientation with 37 SFAs from CF, LKF, EKF, CKF, SRUKF and SRCKF families and shared the 

codes and sample data on our laboratory website. Our results identified the best SFAs for each 

family in terms of accuracy, robustness, and execution time.  

9.1.4 Gait Event Detection 

Detecting gait events with high reliability is a must for providing real-time biofeedback during 

therapeutic gait training or controlling a system such as Functional Electrical Stimulation. 

Therefore, to achieve high sensitivity and precision, i.e., detecting all and only true gait events, we 

proposed a novel approach based on the measurement of the foot orientation. Foot orientation, 

despite foot/shank angular velocity and acceleration, provides physiologically meaningful 

kinematic features corresponding to our observational recognition of IC and TC, regardless of the 

walking modality. Thus, we could use the tracked orientation of the foot (with one of the proposed 

SFAs in this thesis) to detect IC and TC and provide biofeedback in real-time. 

9.1.5 Daily Activity Monitoring 

To reveal the efficacy of the therapeutic gait training, we proposed a method to (1) detect and 

classify several types of postural transitions and walking modalities (level/non-level walking); and 

(2) count the number of steps during each walking modality with high accuracy, using only one 

chest-mounted accelerometer. Our proposed method can be an ideal choice for long-term 
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ambulatory monitoring of daily activities in the free-living environment to quantify the activity 

level and lifestyle of patients.  

9.2 Future Perspectives 

9.2.1 IMU Orientation Tracking with Sensor Fusion 

While we performed a comprehensive experimental comparison survey of SFAs, there is still an 

urgent need for more studies with the following features: 

1. Various test scenarios should be recorded. Especially, long-duration trials (longer than 6 

minutes) are required to evaluate the effect of 𝑏𝐺 .  

2. Data from multiple IMUs, preferably with different manufacturing qualities, should be 

recorded. Such experimental trials can demonstrate the effectiveness of the SFA correction 

strategy using the accelerometer and magnetometer, specifically in the long-duration trials 

where strap-down integration faces a significant drift.  

Using benchmarking studies with these features, the following should be evaluated. 

1. Various adaptive gain tuning strategies must be assessed.  

2. Various stochastic and heuristic models for estimating the unmeasurable time-varying terms 

in the IMU readouts must be investigated.  

3. Less common modeling techniques, such as two-layer filters or variable state KF, must be 

further evaluated.   

9.2.2 Gait Event Detection 

In the future, the accuracy and robustness of our proposed gait event detection algorithm must be 

evaluated for the severely impaired gait of patients with neurological or orthopedic conditions. 

Also, in the future, the applicability of our proposed algorithm for gait event detection must be 

investigated in closed-loop control of a neural prosthesis during walking. 

9.2.3 Lower Limb Position Tracking 

An immediate next step for this thesis is to implement accurate and robust algorithms for body 

segment position tracking with IMUs. In the simplest form, first, the motion-induced acceleration 

must be obtained by removing the gravitational acceleration from the accelerometer readout. 
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Second, the motion-induced acceleration must be integrated twice to compute the position. 

Nevertheless, this simple approach will result in an ever-increasing drift in the estimated position 

because of the numerical integration drift. To address this challenge, corrective methods such as 

zero-velocity-update [412], [413] or more complex constrained estimation schemes such as a KF 

[414], [415] can be used. 

9.2.4 Technical Validation with Clinical Population 

The ultimate goal of this thesis was to develop a technology for gait rehabilitation of a clinical 

population. Therefore, a critical next step includes technical validation of the developed techniques 

in terms of accuracy and reliability for this clinical population. The results, including joint angles 

and temporal gait events, obtained by the proposed wearable technology must be compared to 

those obtained simultaneously by a stationary MCS to validate its accuracy and reliability.  

9.2.5 Biofeedback Display System 

The primary application of the outcome of this research is to develop a technology for real-time 

lower limb motion monitoring and providing biofeedback for therapeutic gait training. Thus, a 

graphical user interface should be developed to report the measured joint angles and gait events as 

visual and/or auditory biofeedback during gait training. Also, a knowledge-based system can be 

created to convert the error between pathological and targeted normal movement patterns to visual 

and/or auditory demonstrations or instructions. 

9.2.6 Clinical Validation with Clinical Population 

After validating the developed technology for the clinical population and developing the 

biofeedback system, the developed technology should be validated in terms of its efficacy for gait 

rehabilitation. To this end, our developed wearable sensor technology should be applied during 

training sessions of ambulatory stroke survivors to assess its efficacy in enhancing the motor 

function of these patients. Finally, the users’ compliance will be investigated, and the technology 

will be fine-tuned to maximize its user-friendliness. 
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