

1

University of Alberta

Smart Modeling of Drilling-Well in an Integrated Approach

by

Shah Md Rajiur Rahman

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

©Shah Md Rajiur Rahman

Spring 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential

users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,

except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author's prior written permission.

i

Examining Committee

Dr. Zihui Xia, Mechanical Engineering

Dr. Ergun Kuru, Civil & Environmental Engineering

Dr. Amit Kumar, Mechanical Engineering

Dr. Yongsheng Ma, Mechanical Engineering

ii

To my parents

iii

Abstract

The current well planning practice is usually done section by section with limited

help of some knowledge-based tools. This thesis presents an integrated approach

and a software prototype developed for well planning. It considers the geological

input, i.e. pore pressure, over burden etc., to generate a step by step interactive

drilling plan. The implemented well planning stages include the casing setting

depth, casing and hole size determination, casing selection and then drill string

design and modeling. The system is integrated with a Computer Aided Design

(CAD) system for generating three-dimensional parametric model. The

conceptual design and CAD modeling system are integrated in such a way that

any changes in the design will be reflected to the CAD model. Such intelligent

CAD design practice is new in the drilling industry. An Operational Parameters

module is also attached with the system to predict the drilling coefficients by

using offset well data and determine the optimum weight on bit, and the drill

string rotation that minimizes drilling cost per foot for a single bit run.

Based on this approach, an integrated well planning system can be fully

developed and it will be very useful for the decision making of drilling

companies.

iv

Acknowledgement

I would like to take this opportunity to express my sincere thanks to my

supervisor Dr. Yongsheng Ma for his continuous guidance, encouragement and

advice on my academic works and life at the University of Alberta.

I would like to thank my colleagues; especially Md. Moin Uddin, Abiy Wubneh

and Ganesh Gujarathi for their contribution to this study and for making the

working delightful in Collaborative and Integrated Engineering Informatics Group

(CIEIG) such as enjoyable experiences.

Last but not least, my sincere thanks goes to my family, my parents and my

dearest wife Farzana Ahmed Risa, whose love, support and encouragement made

this academic achievement possible.

v

Table of Contents

Chapter 1 Introduction .. 1

1.1. Motivation of the Research .. 1

1.2. Objectives of the Research ... 3

1.3. Organization of the Thesis ... 3

Chapter 2 Literature Review ... 4

2.1. Introduction .. 4

2.2. Knowledge Based Tools Used in the Drilling Industry 4

2.3. Knowledge Based Tools for Casing Design .. 5

2.4. Common Practice of Drill String Design ... 6

2.4.1. Drill Pipe Strength ... 7

2.4.2. Drill Pipe Size .. 7

 2.4.2.1. The Size of the Tool Joint in Relation to the Diameter of the

 Hole……………………………………………………………….8

 2.4.2.2. The Size of the Pipe in Relation to the Diameter of the Hole…….8

 2.4.2.3. The Size of the Tool Joint in Relation to the Pipe………………..8

2.4.3. Drill Pipe Cost ... 9

2.5. Knowledge Based CAD ... 9

2.6. Feature-based CAD Modeling ... 10

2.7. Drilling Optimization via Operational Parameters 15

2.8. Summary .. 16

Chapter 3 The Proposed Method for Integrated Well Drilling Planning 17

3.1. Background .. 17

3.2. Proposed Approach .. 18

3.2.1. Casing Design Module .. 19

3.2.2. Drill String Design Module ... 19

3.2.3. Operational Parameters Module .. 20

3.2.4. 3D CAD Modeling .. 20

3.2.5. CAE Analysis .. 21

vi

3.2.6. User Interface and Report Generation ... 21

3.3. Information Flow.. 22

3.4. Advantages of the Proposed System .. 23

3.5. Summary .. 24

Chapter 4 Smart Casing Design .. 25

4.1. Introduction .. 25

4.2. Overview of Casing Design ... 25

4.2.1. Casing Setting Depth ... 27

4.2.2. Casing Size Determination .. 29

4.2.3. Casing Selection .. 29

 4.2.3.1. Collapse Load…………………………………………………...30

 4.2.3.2. Burst Load………………………………………………………30

 4.2.3.3. Axial Load………………………………………………………30

 4.2.3.4. Design Safety Factor…………………………………………….31

4.3. Proposed Approach for Casing Design .. 31

4.3.1. Casing Setting Depth ... 32

4.3.2. Casing Size .. 36

4.3.3. 3D CAD Model ... 38

4.3.4. Casing Selection .. 40

4.4. Summary .. 42

Chapter 5 Smart Drill String Design ... 43

5.1. Introduction .. 43

5.2. Drill String Components and Functions ... 43

5.3. Proposed Drill String Design Approach .. 44

5.3.1. Drill String Operational Requirements .. 44

5.3.2. Conceptual Design ... 45

5.3.3. Configuration and Specification Generator ... 46

5.3.4. System Design Assembly .. 48

5.3.5. Sub-Assembly .. 49

vii

5.3.6. Component Creation .. 50

5.3.7. Arrays of Components ... 53

5.3.8. Three Dimensional Model of Drill String and Analysis 54

5.4. Summary .. 55

Chapter 6 Feature-based Generative CAD Modeling ... 56

6.1. Introduction .. 56

6.2. Feature-based Design ... 56

6.3. Feature Representation ... 57

6.3.1. Assembly Level Feature .. 57

6.3.2. Component Level Feature ... 60

6.3.3. Form Feature.. 61

6.4. Feature-based CAD Modeling Methods .. 63

6.4.1. Engineering Calculations ... 63

6.4.2. Configuration Generation .. 63

6.4.3. Array of Components .. 63

6.4.4. Feature Dimension Control Mechanism .. 64

6.4.5. Configuration Control Mechanism .. 65

6.4.6. Validity Check ... 66

6.4.7. Feature Generation .. 66

6.4.8. Topological Variation .. 66

6.7. System implementation .. 66

6.8. Summary .. 67

Chapter 7 Operational Parameters .. 68

7.1. Introduction .. 68

7.2. Bourgoyne and Young‟s Model ... 68

7.3. Operational Parameters .. 71

7.4. Summary .. 73

Chapter 8 Case Study .. 74

8.1. Introduction .. 74

8.2. Case Study for Casing Setting Depth and Size Determination 74

viii

8.3. Case Study for Casing Selection .. 78

8.4. Case Study for Drill String Design .. 84

8.5. Case Study for Operational Parameters ... 89

8.6. Summary .. 91

Chapter 9 Conclusions and Future Work .. 92

9.1. Conclusions .. 92

9.2. Limitation and Future Work ... 93

Bibliography ... 94

Appendix A Engineering Calculations ... 102

Appendix B Programming Codes ... 106

ix

List of Tables

Table 8-1: Casing setting depth and size input (Rabia 1985) 74

Table 8-2: Fracture pressure, FSG and MSG estimation 75

Table 8-3: Published result for casing setting depth (Rabia 1985) 77

Table 8-4: Specification and priority sequence of available casing 79

Table 8-5: Casing selection break points and potential candidates 80

Table 8-6: 3/8” Surface casing design published result (Byrom 2007) 83

Table 8-7: Conceptual design parameters for a drill string................................... 85

Table 8-8: Comparison of drilling coefficients ... 89

x

List of Figures

Figure 1-1: Well drilling planning stages (Morooka et al. 2001) 2

Figure 3-1: Proposed system ... 19

Figure 3-2: Main user interface of DrillSoft ... 22

Figure 3-3: Flow of information ... 23

Figure 4-1: Different casing sections .. 26

Figure 4-2: Casing design steps .. 27

Figure 4-3: Casing design modules... 32

Figure 4-4: Flow chart of casing setting depth and size 35

Figure 5-1: Drill string design... 44

Figure 5-2: Drill string design and modeling process ... 45

Figure 5-3: Partial view of drill pipe database .. 47

Figure 5-4: Expression file of a drill pipe tool joint pin and box 48

Figure 6-1: Features at different levels ... 57

Figure 6-2: Assembly level feature definition (a) Generic, (b) Drill string

instantiation .. 58

Figure 6-3: Associative link of cross over sub ... 59

Figure 6-4: Component level feature definition (a) Generic, (b) Drill pipe body

instantiation .. 60

Figure 6-5: Form feature definition (a) Generic, (b) Cylinder 1 instantiation 61

Figure 6-6: Different levels of feature instantiation (a) Assembly, (b) Sub-

assembly, (c) Component, (d) form feature 62

Figure 6-7: Drill pipe tool joint box instantiation ... 64

Figure 6-8: Drill string assembly configuration ... 65

Figure 6-9: Drill pipe features .. 66

Figure 7-1: Operational parameters .. 71

Figure 7-2: User interface for Operational Parameters module 72

Figure 7-3: Operational Parameters user interface option 1 73

Figure 8-1: Casing setting depth and size ... 77

Figure 8-2: Partial cutaway view of different casing sections 78

Figure 8-3: Surface casing design user interface .. 79

file:///C:/Documents%20and%20Settings/shahmd/Desktop/Final_submission/Rahman_Shah_Winter%202011.docx%23_Toc284103439

xi

Figure 8-4: Program generated report (Collapse and Burst load) 82

Figure 8-5: Program generated report for surface casing design 83

Figure 8-6: Drill string design user interface .. 84

Figure 8-7: Expression file for drill pipe .. 86

Figure 8-8: Expression file for drill collar .. 86

Figure 8-9: Expression file for array of components .. 87

Figure 8-10: Drill string assembly .. 88

Figure 8-11: System generated output for drilling coefficient.............................. 89

Figure 8-12: Operational Parameters determination user input 90

file:///C:/Documents%20and%20Settings/shahmd/Desktop/Final_submission/Rahman_Shah_Winter%202011.docx%23_Toc284103459

xii

List of Symbols

 Hole angle from vertical

mud

Mud specific gravity

fracture

Fracture pressure specific gravity

pore

Pore pressure specific gravity

water

Fresh water specific gravity

B
Bearing constant, hr

H
Formation abrasiveness constant, hr

surfacecSP __
Surface casing collapse load at the surface, psi

shoecSP __

Surface casing collapse load at the shoe, psi

surfacebSP __

Surface casing burst load at the surface, psi

shoebSP __

Surface casing burst load at the shoe, psi

surfacecIP __

Intermediate casing collapse load at the surface, psi

shoecIP __

Intermediate casing collapse load at the shoe, psi

surfacebIP __

Intermediate casing burst load at the surface, psi

shoebIP __

Intermediate casing burst load at the shoe, psi

surfacecPP __

Production casing collapse load at the surface, psi

shoecPP __

Production casing collapse load at the shoe, psi

surfacebPP __

Production casing burst load at the surface, psi

shoebPP __

Production casing burst load at the shoe, psi

1a

Formation strength parameter

2a

Exponent of the normal compaction trend

3a

Undercompaction exponent

4a

Pressure differential exponent

5a

Bit weight exponent

6a

Rotary speed exponent

7a

Tooth wear exponent

8a

Hydraulic exponent

b Bearing constant

B Fractional bearing wear

wmBit

Maximum weight on bit, 1,000lb

bC

Cost of bit, dollars

jC

Drilling cost per foot drilled, dollars/ft

xiii

rC

Cost of rig, dollars/hr

d

Bit diameter, in

D

Well depth. Ft

g Acceleration of gravity, ft/sec
2

pg

Pore pressure gradient of the formation, lb/gal

h

Fractional tooth height worn away

1h
Vertical depth of point 1, ft

2h
Vertical depth of point 2, ft

321 ,, HHH

Constant that depend on bit type

HWDP

Heavy weight drill pipe

bk Buoyancy factor

dpL Length of drill pipe, ft

cL Length of drill collars, ft

hwdpL

Length of heavy weight drill pipe, ft

M

Molecular mass of gas, lb/mole

MOP

Margin of overpull, lb

NP

Neutral point design factor

pP

Theoretical collapse pressure from tables

acP

Allowable collapse pressure, psi

cP

Net collapse pressure, psi

fractureP

Fracture pressure, psi

R

Ideal gas constant at standard gravity, lb-ft/mole- ºR

ROP Rate of penetration

SF

Safety factor

avgT Average absolute temperature between two points, ºR

srufaceT

Temperature at the casing surface, ºF

shoeT

Temperature at the casing shoe, ºF

TVD

True vertical depth, ft

bt
Rotating time during bit run, hr

ct
Non rotating time or connection time, hr

tt
Trip time during bit run, hr

dpW

Weight per foot of drill pipe, lb

dcW

Weight per foot of drill collar, lb

fW

Weight of drilling fluid, lb/cu ft

xiv

gW

Weight of drilling fluid, lb/gal

dW /

Weight on bit per inch of bit diameter, 1,000lb/in

max)/(dW

Maximum weight on bit per inch of bit diameter, 1,000lb/in

tdW)/(

Threshold bit weight, 1,000 lb/in

Z

Compressibility factor of gas

1

Chapter 1 Introduction

1.1. Motivation of the Research

Drilling is one of the most important and critical phases of petroleum industry. It

is a process of making a hole in the ground for hydrocarbon to travel from the

subsurface reservoir to the surface. The first step in well drilling is to plan the

well. Well drilling planning has to follow a systematic approach. It involves

several stages as shown in the Figure 1-1. Most of the well planning tasks at

different stages depend on one or more other stages, such as casing selection

requires input of casing setting depth and casing size; hence commonly, the

planning stages are developed concurrently and interactively. Well planning is

usually carried out by a team of experts. Very much specialized knowledge is

required to achieve an economical and safe design. Although, many drilling

software tools are available in the market to assist the planning team, but most of

them are standalone to support certain stages. An integrated and comprehensive

system is required for designing the well because data sharing and constraint

management can be carried out in a coherent manner.

On the other hand, the success of a drilling work is very much dependent on

design of the drill string. It is a well known fact that drill-string failure represents

one of the major causes for “fishing” operations which may lead to millions of

dollars in loss for the industry. So in order to reduce the risk of drill string failure,

the design should be justified beforehand by simulation or finite element analysis.

At present analytical models or finite element analysis for whole drill string are

used to compute torque and drag. It will be very much useful if a three-

dimensional (3D) engineering design model (including geometric 3D information)

of drill string can be used in fluid flow simulation and load finite element analysis

(Menand et al. 2006) to predict the behavior of the well. Austin (1993) stated that,

3D model of well schematic provides closer links between geoscientists and

2

reservoir engineers while promoting an integration as well as interaction of the

two. Therefore a 3D engineering design model of the drill string is required.

However, it is cumbersome to develop the repetitive 3D models for each section

of the well in order to perform such analyses.

In view of the above discussion the aim of this research work is to develop an

integrated well drilling system as well as a prototype computer program that

integrates casing design and drill string design on top of a CAD system. The

design output of these two stages can be used to generate 3D CAD models of well

schematic and drill string. The system currently consists of three modules, (i)

Casing Design, (ii) Drill String Design, and (iii) Operational Parameters. The

prototype named as “DrillSoft” is implemented by using Microsoft Visual Basic

application in Excel for user interfaces, engineering rules and calculations, and

Siemens NX6 for CAD modeling via NX Open C programming functions.

Figure 1-1: Well drilling planning stages (Morooka et al. 2001)

3

1.2. Objectives of the Research

The objectives of this research are summarized as follows:

 To develop a framework for integrated well planning

 To explore the potential application of knowledge driven CAD in drilling

 To develop a smart knowledge driven CAD software prototype for well

drilling

1.3. Organization of the Thesis

The thesis is organized as the follows. In Chapter two, the literature review of the

application of knowledge based tools in drilling industry is reviewed, then current

practice of casing design, drill string design, knowledge driven CAD, feature-

based design and drilling optimization are presented. In Chapter three, the

background of the research work is discussed and proposed approach is presented.

In Chapter four, the background casing design is discussed and then proposed

smart casing design model is described. In Chapter five, knowledge driven drill

string design with generative approach is presented and the steps, i.e. conceptual

design, configuration and specification generator, assembly modeling, component

creation, array of components and 3D model realization, are illustrated in detail.

In Chapter six, the proposed feature-based generative CAD modeling approach is

discussed. In Chapter seven, Bourgoyne and Young‟s ROP model (1974) is

presented and the proposed module is discussed. In Chapter eight, the results

predicted by the newly developed “DrillSoft” system are compared with some

published cases. In Chapter nine, the conclusions and future work are

summarized. The engineering formulas, equations, and calculations are included

in Appendix A while Appendix B shows the programming code written for this

project.

4

Chapter 2 Literature Review

2.1. Introduction

This chapter will provide an insight of the current knowledge based and expert

tools used in drilling industry. The casing design practice will be reviewed and the

need of comprehensive casing design system will be discussed. The factors

considered in drill string design and the selection parameters of drill pipe will be

reviewed. One of the objectives of this research work is to explore the application

of knowledge driven CAD in petroleum industry. So, current practice of

knowledge driven CAD in different application areas will be analyzed. As in this

research work, knowledge driven CAD system is implemented through feature-

based modeling, a complete literature survey on feature-based CAD modeling

will be presented. Finally the optimization of drilling parameters and drilling Rate

of Penetration model will be discussed.

2.2. Knowledge Based Tools Used in the Drilling

Industry

Knowledge based engineering is the process of capturing and structuring reusable

knowledge bases to create and enhance solutions for a product during its entire

life cycle (Chu et al. 2006). This knowledge base can exist in many forms such as

spreadsheets, hand books, engineering formulas, drawing and documents. Drilling

industry uses knowledge base and expert system from late eighties. Hayes-Roth

(1987) has identified that the expert systems will play a dramatic role in the

success of the outstanding performers in the petroleum industry. Mabile and

Hamelin (1989) developed an expert system that helps in formation recognition.

Martinez (1992) constructed a directional drilling expert system for the use of

advisory tool which recommends changes in the Bottom Hole Assembly (BHA).

An Expert Slurry-Design System (ESDS) was proposed by Kulakofsky et al.

5

(1993) to guide the selection process of cement slurry. Chiu and Caudel (1993)

implemented an expert system for advising engineers of the proper base fluids and

additives to be selected for a given set of well condition. Fear et al. (1994) created

an expert system for drill bit selection; that system used a knowledge base of bit

selection rules to produce a generic description of the most suitable bit for a

particular set of drilling and geologic conditions. Their approach had several

limitations like, the bit selection cannot demonstrate best use of past experience,

and relies too heavily on data that is conveniently available rather than being fit

for purpose. Shokouhi et al. (2009) proposed a case based reasoning system to

integrate real time data with past experience to reduce operational problem. Al-

Yami et al. (2010) created an expert system for optimal design of cement slurries.

Their model can guide drilling engineers to formulate effective cement slurries for

the entire well sections.

2.3. Knowledge Based Tools for Casing Design

One critical application of knowledge based and expert systems in the drilling

industry is the design of casing strings as identified by Heinze (1993), he

constructed an expert system to design the casing and hydraulic program of a

drilling well. Jellison and Klementich (1990) proposed a rule based expert system

for casing design but casing setting depth was not included in there model.

Wojtanowicz and Maidla (1987) addressed the need of optimization in casing

design and they proposed an optimization program for minimum cost casing

design. But their method was not able to handle complex load condition. Roque et

al. (1994) has developed optimized methodology and algorithm to minimize cost

of combined casing design for complex loading condition. But they separated the

load calculation from optimization model as a result the efficiency of the overall

design process was sacrificed. In addition to that, their system required many

hours to complete a single string design.

This problem has been solved by Halal et al. (1996); they proposed an efficient

minimum cost casing design technique which employed a recursive branch-and-

6

bound search method together with a streamlined load generator for complex

loading conditions. Their technique efficiently designed the casing string with a

very small time. However, in their system, casing setting depth determination was

not included.

Rabia (1988) pointed out that, no company has unlimited access to all grades and

types of available casings. He argued that cost calculations come into play after

the grades and weights are selected. Akpan (2005) created a computer program

for selecting casing design using a graphical method, but his program does not

automatically select the casing, instead each casing has to be chosen by the user

and fed to the system manually for evaluation.

2.4. Common Practice of Drill String Design

There are many aspects need to be considered in drill string design, such as

bottom hole assembly (BHA) and drilling pipe assembly. This work looks into

drilling pipe design only due to the limitation of time and BHA is not part of the

scope of this thesis. The common practice of drill string design is reviewed and

summarized in this section. The success of drilling greatly depends on drill string

design. Special care should be taken during the design of drill string. Many

factors contributed in design decision, such as maximum expected load,

accumulated fatigue, buckling, hydraulics, equipment availability (Cunha 2002).

An optimum design can be achieved by considering all these factors.

As most of the part of the drill string is composed of drill pipe, so a selection

process of drill pipe is required that can achieve the target depth successfully and

safely. Drill pipe size, weight and grade should be selected based on three

parameters – strength, size and cost (Kessler and Smith 2001). These three

parameters are described in the following sections on the light of published

literature.

7

2.4.1. Drill Pipe Strength

The drill pipe must be strong enough to handle the service loads during all phases

of the drilling program. Bednarz (2004) pointed out that tensile force acting on the

drill string is smaller during drilling than expected from the measured depth. This

is because the string leans against the wall of the bore-hole, especially at a great

deviation angle. He concluded that the maximum tensile force is a boundary load

in vertical bore-holes, whereas in horizontal bore-holes it is the torsional strength.

The structural requirement of drill pipe should be defined by the torsional, tensile

and buckling load that the pipe will experience during the service life (Mehra

1997). However, internal and external pressure capabilities are also factors that

must be considered. Except for tension and buckling, these loads are often applied

simultaneously.

Hill et al. (1993) describes that the operating torsion limit for a rotary shouldered

connection is generally considered to be its makeup torque; however, with

externally applied tension, it may be the tensile load capacity of the pin neck after

taking makeup into consideration.

Tool joints are torsionally the weakest part of most drill strings (Hill et al. 1993).

The pipe and tool joints must have the torsional strength needed to rotate the

string when drilling and when coming out of the hole and it must have the

buckling strength to transfer weight from the build zone to the bit (Mehra 1997).

So the strength of each member must be evaluated in terms of the forces and loads

it will encounter under static, dynamic and fatigue conditions.

2.4.2. Drill Pipe Size

During size considerations in drill string design, the following points should be

considered.

8

2.4.2.1. The Size of the Tool Joint in Relation to the Diameter of the Hole

Fishability is the main concern here. This consideration favors a tool joint with

the smallest possible outside diameter.

2.4.2.2. The Size of the Pipe in Relation to the Diameter of the Hole

This relationship has several hydraulic consequences and most dominant are

annular velocity (AV) and equivalent circulation density (ECD) (Kessler and

Smith 2001). The larger the pipe size in relation to the hole, the lower the pump

flow needed to attain the annular velocity for cuttings transport. However,

increasing pipe size in relation to the hole size will increase the ECD, which in

turn leads to pump pressure increase. AV and ECD must be optimized when

selecting pipe size. If annular velocity is more important, the larger pipe size can

be selected. Cunha (2002) suggested using of large diameter drill pipes because

he argues that it may minimize hydraulic problems since it will imply in less

friction loss inside the string and a more constrained annular.

A non-hydraulic consequence of the relationship between pipe size and hole

diameter is the pipe‟s buckling strength. Larger pipe contains higher buckling

load. Cunha (2002) investigated the influence of torque and concluded that,

torque can cause significant reduction of the buckling resistance on drill pipes

with small diameter. On the other hand, for bigger pipes, that are the ones most

used in extended reach wells, torque will have little influence on the buckling

resistance. This consideration favors the largest possible pipe size for a given

hole.

2.4.2.3. The Size of the Tool Joint in Relation to the Pipe

The elevator hoist capacity is dependent on the contact area between the elevator

and the tool joint elevator shoulder, which is dependent on the difference between

the tool joint OD and the pipe OD adjacent to the tool joint (Kessler and Smith

9

2001). The smaller the tool joint OD relative to the pipe OD, the lower the

elevator hoist capacity.

2.4.3. Drill Pipe Cost

Cost is based on the benefits received by paying more for the pipe. These benefits

fall into two categories (Kessler and Smith 2001):

- Increased performance such as high torque tool joints, high strength pipe

body material and plastic coating for improved hydraulic efficiency

- Increased longevity like certain types of hard banding, plastic coating, and

larger OD tool joints.

In addition to these factors, drill string components should be inspected before use

and a method for qualifying the drill string is suggested by Hill et al. (1993). The

drill string design prevents drill string failure and optimized the drilling

operations to save rig time and lower bottom line cost.

The reported research work only considered vertical well and tensile load is the

main determinant factor for strength calculation in this type of well as defined by

American Petroleum Institute standard (API RP7G, 1998). Drill pipe size is

considered as one of the inputs. So, the conceptual design of drill string is carried

out by considering the cost and strength factors.

2.5. Knowledge Based CAD

The human expertise and knowledge are scarce and a need of knowledge

embodiment within the geometric model is obvious (Kasravi 1994). However,

most 3D CAD software offers only simple geometric modeling function and they

fail to provide users with sufficient design knowledge (Lin et al. 2008). Therefore,

the design of automatic, knowledge-based, and intelligent systems has been an

active research topic for a long time (Lin et al. 2008). Zha et al. (2001) developed

a knowledge-based expert design system for assembly oriented design. Koo and

10

Han (1998) constructed an expert paper feeding mechanisms system, where the

physical part of the paper feeding mechanisms were represented as objects, and

the design knowledge and design constraints are represented by rules and methods

without the interface to CAD. Myung and Han (2001) proposed a design expert

system to redesign assemblies of machine tool in a CAD environment. Roh and

Lee (2006) created a hull structural modeling system for ship design, which was

developed using C++ and build on top of 3D CAD software. Transferring KBE

intelligence to CAD system is challenging because there is no mechanism to

enable such information flow as identified by Ma et al. (2007). As introduced in

(Kasravi 1994), parametric engineering uses the design requirements as the input

data, and the output data consists of the parameters of the key features of the

constituent components. Chu et al. (2006) constructed a computer aided

parametric design system for 3D tire mold production in CATIA and CAA. Lee et

al. (1999) developed a parametric computer-aided tool design system for cold

forging using AutoLISP. Commonly, most researchers used parametric part

templates to generate new 3D designs and changes are realized by setting values

to the driving parameters (Siddique and Yanjiang 2002 ; Ma et al. 2003). Ma et al.

(2003) considered the topological and configuration changes of parts.

2.6. Feature-based CAD Modeling

Solid modeller is the core element of CAD systems. By using solid modeller one

can define the geometry of a product. A complete product definition is required to

automate different CA‟x application. But contemporary solid modeller is not

capable of doing so due to two major deficiencies as identified by Shah and

Rogers (1988) :

 Incomplete product definition and

 Low-level product definition.

Batanov and Lekova (1993) have identified three possible reasons that limit the

integration of CA‟x. These are:

11

 Lack of data standardization

 Functional difference and incompleteness of the data used for different

CIM subsystem

 Lack of integration between data as a formal basis of given process in

CIM and corresponding knowledge, necessary for realization of that

process

In addition to that, Ma et al. (2007) identified a gap between knowledge based

system and CAD. They argued that the current CAD system is not able to

communicate with the knowledge based system and vice versa.

To eliminate these deficiencies in solid modeller or conventional CAD system,

the concept of features came forward. As pointed out by Ma et al. (2007),

feature-based design can be used as a bridge between CAD and KBE system.

Shah and Rogers (1988) demonstrate three fundamental approaches to associate

feature with solid modeller. These are: human assisted feature recognition, feature

recognition and extraction and feature-based modeling. Among these three

approaches, feature-based modeling is most popular and widely accepted in the

literature.

The definition of features depends on the type of product, application and level of

abstraction (Shah and Rogers 1988). No well established generic definition of

features is observed till date. Different definitions based on these three factors

appear in the literature. Most of the earlier attempts to define feature were related

to geometry (form features) and machining.

Van‟t Erve (1988) defined feature as, “a distinctive or characteristic part of a

work piece, defining a geometrical shape, which is either specific for a machining

process or can be used for fixturing and/or measuring purposes"

Shah (1989) sorted out four essential requirements of features, these are:

 Physical constituent of a part (component).

 Mappable to a generic shape.

 Have engineering significance.

12

 Have predictable properties.

Cunningham and Dixon (1988) defined feature as any geometric form or entity

that is used in reasoning in one or more design or manufacturing activities (i.e.,

fit, function, manufacturability evaluation, analysis interfacing, tool and die

design, inspectability, serviceability etc).

According to Shah (1991) Features encapsulate the engineering significance of

portions of the geometry of a part or assembly, and, as such, are important in

product design, product definition, and reasoning, for a variety of applications.

In some literature, object-oriented approach has been implemented in feature-

based modeling due to two major advantages it provides – data abstraction and

inheritance. Though feature-based modeling uses the data abstraction concept

from the beginning but inheritance was not present with the feature-based system.

In object oriented approach feature is treated as object. According to Salomons et

al. (1993), “features can be treated as design objects, belonging to a general class,

which inherits properties of other classes”. Shah (1991) defined object as a cluster

of knowledge of generic feature and according to his perspective this knowledge

may be in the form of parameters, rules, procedures etc. Batanov and Lekova

(1993) also defined features, based on object-oriented concept – „feature‟ as a set

of knowledge concerning an object (part or product) description suitable for

different CIM processes. So, according to these definitions, feature contains all

the information or knowledge required to integrate different applications

programs.

Cunha and Dias (2002) defined feature as – Composition of design objects, which

encapsulate own attributes and methods of each design phase, called phase‟s

design signature. According to Cunha and Dias (2002),

Object ≡ Feature (Geometry, Topology) Semantic

Eq. (2.1)

13

In Eq. (2.1), the geometry and topology represent the physical model portion,

which is independent, exact and quantitative, whereas the semantics represents the

abstract model portion, which is context-dependent, subjective and qualitative.

Feature is also considered as a set of information. Shah and Rogers (1988) defined

a feature as "a set of information related to a part's description". Ovtcharova and

Jasnoch (1994) defined feature as – feature have been identified in the engineering

community as meaningful abstractions with which human‟s reason about products

and processes. Huifen et al. (2003) stated that, Feature technology is the kernel

technology of CAD/CAPP/CAM integration they further added that feature is the

medium for transmitting information among CAD, CAPP and CAM systems. So

in general, feature is a set of information related to the type of product,

application and level of abstraction.

Several approaches towards feature-based design have been found in the

literature. Shah and Rogers (1988) has demonstrated the functional requirements

of Feature-based Modeling System (FBMS), but his demonstration is limited to

only three different classes of features namely – form features, material features

and precision features. However, an ideal feature-based system should be highly

flexible in feature definition so that a designer can define features in any form, at

any level and in any combination, as appropriate to their needs (Shah and Rogers

1988). Ovtcharova and Jasnoch (1994) argued that features are not product parts

themselves, but rather, distinctive characteristics (properties) of these parts which

exist only within the parts. Thus, feature-based design can be characterized as a

method for designing product parts by defining and manipulating the properties of

those parts (Ovtcharova et al. 1992).

Kim and O'Grady (1996) proposed domain independent representation formalism

for feature-based design with the aims to make it possible to develop a feature-

based design system for a specific design domain in a structured way. Kappert et

al. (1993) noticed that, feature-based approach guides the designer in creating

product models according to company rules. Schulte et al. (1993) introduces

functional features, which are used as “vehicles” to introduce functional aspects

14

into CAD systems and CAD techniques and the introduction of functional aspect

in CAD system could open up a new range of functionalities for the CAD

systems.

Chan and Nhieu (1993) incorporates an external user defined feature database

with the CAD database to form the unified central database, which is used to

capture the required information for downstream applications during the early

design stage.

Ma and Tong (2003) argued that most of the features used on contemporary

feature-based system are CAD application oriented and related to machining

process or design geometry and their definitions are based on less flexible

predefined parametric templates. They further added that a feature-based

modeling system should be a special application of information modeling.

Shah and Rogers (1988) classified features to four different categories, namely –

form feature, material features, precision features and technological features.

Ovtcharova and Jasnoch (1994) classified features as generic and application

features. According to their approach general features are not application specific

rather defined by general properties of a product. Whereas application features are

defined by assigning data on generic features and they are application specific.

There are ample of advantages of using feature-based system. This modeling

system supports additional levels of information beyond those available in

geometric modellers as pointed out by Shah (1991). He further added that the

availability of high-level information makes the design environment more

attractive, produces a richer definition of the product, and allows one to automate

downstream application to a higher degree. The primary benefit of feature-based

design systems is the ease of integration of conceptual modeling with downstream

analyses and applications (Chan and Nhieu 1993). A feature-based representation

of the part becomes necessary to automate the reasoning involved in the tasks in

the product development cycle (Zha et al. 2001).

Feature-based generic modeling approach has been followed in this research work

to integrate the engineering knowledge with the CAD system.

15

2.7. Drilling Optimization via Operational Parameters

The design of a well program must satisfy all the technical considerations. But

only considering the technical aspect may not result an economical design. In

order to be an optimum design the design should simultaneously satisfy the

technical constraints and at the same time it should be the least cost possible from

different alternatives. A comprehensive drilling optimization program was first

applied in 1967 and it significantly reduced the drilling cost. After its first

introduction, it becomes one of the most important research areas in drilling.

Drilling optimizations are carried out by selecting the best combination of

different drilling variables. Drilling variables are divided into two groups

(Lummus 1970) – alterable and unalterable. The alterable drilling variables are:

mud, hydraulics, bit type, weight on bit, rotary speed. The unalterable variables

are: weather, location, depth, rig condition, etc.

Usually alterable drilling variables and few unalterable variables are used to

optimize the drilling procedure. Several researchers have been developed

algorithm, model and program to optimize the drilling performance by

maximizing Rate of Penetration (ROP) and minimizing cost per foot. Galle and

Woods (1963) investigated the effect of best constant bit weight and rotary speed

for lowest cost. Reed (1972) constructed a variable weight-speed optimal drilling

model which was being solved using Monte Carlo scheme for minimum cost per

foot drilling. Bourgoyne and Young (1974) proposed a comprehensive drilling

model to calculate formation pore pressure, optimum weight on bit (WOB), rotary

speed, and jet bit hydraulics and also provided a multiple regression approach to

determine the drilling coefficients in order to calibrate the drilling model with

different fields. Maidla and Ohara (1991) tested a drilling model on offshore

drilling data and compared the findings with Bourgoyne and Young‟s model.

They concluded that ROP for successive wellbores in the same area could be

predicted based on the coefficients calculated from the past drilling data, resulting

cost savings. Bjornsson et al. (2004) proposed a rule based bit selection expert

system by employing Mechanical Specific Energy (MSE) concept. Their system

16

efficiently increases the ROP, bit life and significantly reduce the drilling time.

Dupriest and Koederitz (2005) effectively used mechanical Specific Energy

(MSE) concept in evaluating drilling efficiency of bits in real time basis. Rashidi

et al. (2008) used both Mechanical Specific Energy (MSE) and inverted rate of

penetration models to develop a method for evaluating real time bit wear. That

tool was useful to assist the field engineer in deciding when to pull the bit. Eren

and Ozbayoglu (2010) constructed a model for real time optimization of drilling

parameters during drilling operations.

Among all of these models, Bourgoyne and Young‟s model is adapted in this

research for Operational Parameters determination because this model is one of

the most complete mathematical drilling ROP model used in petroleum industry.

2.8. Summary

Although the drilling industry uses knowledge based tools for many years, an

integrated system with knowledge driven CAD system is not common. Several

casing design tools are available in the literature but a comprehensive solution is

still desirable. Applications of knowledge driven CAD in different areas are

reviewed and as a result it was identified that such advanced design tools can also

be used in drilling. To achieve knowledge driven CAD system, feature-based

design is the most common method for implementation, hence, this aspect has

also been reviewed in details.

17

Chapter 3 The Proposed Method for Integrated Well

Drilling Planning

3.1. Background

Well planning is the first step in drilling. It is the key to being able to safely and

economically drill a usable hole for oil and gas production. Well planning

requires many detailed studies evaluating every aspect that directly or indirectly

influences the successful economic outcome of the project. Many stages are

involved in the design process such as, logging program, casing program, mud

program, cementing program, well control, hydraulic program, drill bit program,

drill string program, drilling rig specification etc. Very much specialized

knowledge in each of these stages is required to achieve an economical and safe

design.

Commonly, the planning stages are developed concurrently and interactively by

manual calculations or limited use of some software tools. However, manually

undertaking the design process is mentally challenging, time-consuming and a

lack of rule validation and data integration. An automated and integrated system

is required.

On the other hand, knowledge driven CAD system has been a growing practice in

the manufacturing industry. This approach improves the speed and effectiveness

of the product development process, reduces the time taken to create new design,

and automates the tedious and time consuming parts of design. It can capture the

design knowledge and expertise, and can be applied to develop different

engineering application models according to specific requirements.

Knowledge driven CAD system can also be applicable to the drilling industry, as

there is a practical need to speed up the design process for drilling wells. Ideally,

it can be expected that knowledge driven CAD approach can support the

necessary automation of the design process of well planning, and at the same time

produce the 3D engineering design models for different sections, such as casing

18

and drill string. However, to the best of the candidate‟s knowledge there is no

such program that integrates the well planning with knowledge driven CAD

system.

In this research work, the knowledge driven CAD system has been implemented

with the help of feature-based design approach. Three different levels of features

namely, assembly level features, component level features and form features are

defined to realize the 3D CAD model of casing and drill string. Features are

defined in such a way that they encapsulate the engineering significance of

portions of the product geometry and might be useful for further analysis such as

finite element analysis, simulation etc. Feature-based CAD modeling has been

further discussed in more detail in chapter six.

3.2. Proposed Approach

The proposed approach integrates two important well drilling planning stages, i.e.

casing design and drill string design, and linked the system with a knowledge

driven CAD system to generate the parametric 3D CAD model of casing and drill

string. These CAD models can be useful for finite element analysis, simulation

and better visualization. In addition to these two stages an Operational Parameters

module is also added with the system to determine the optimum weight on bit and

rotary speed for minimum cost drilling. The proposed system has been shown in

Figure 3-1. The following section briefly describes each component of the

proposed system.

19

Figure 3-1: Proposed system

3.2.1. Casing Design Module

Casing design module calculates casing setting depth by using formation pore

pressure and formation fracture pressure; determines the size of hole and casing of

each section and generates a 3D model of different casing sections of the well. It

then selects the optimum combination of casing string from the available

inventory.

3.2.2. Drill String Design Module

In the drill string design module, the engineering design and 3D modeling

processes are automated. Built-in rules and knowledge are used to develop the

conceptual design and then the system automatically generates the assembly

configuration based on the conceptual design and retrieves part specifications

from the part database to generate the CAD parametric files.

U

S

E

R

I

N

T

E

R

F

A

C

E

Drill String Design

CAD

3D Modeling

Drill String Design

CAD Expression File

Yes

Drilling Coefficient

 a1, a2..a8

Operational Parameters

Report

Casing Design

Module Casing Setting Depth

Section Depth

Mud Density

Number of sections

Casing Size

Bit Size

WOB and Rotary

Speed

Part Database

Analyses

Is

Acceptable?
Design

Complete No

Casing Size Casing

Selection

20

3.2.3. Operational Parameters Module

Operational Parameters module works out drilling coefficients, the optimum

weight on bit (WOB) and the drilling rotary speed (RPM). Drilling Coefficients

are determined according to Bourgoyne and Young (1974) regression analysis

procedure. Optimum WOB and RPM are determined for the minimum cost. This

program also generates six different tables of economic performance as a function

of weight on bit and rotary speed as an operational guide.

3.2.4. 3D CAD Modeling

This system produces the conceptual design by considering the built in rules and

constraints; and the conceptual design is used to generate the parametric 3D

model of drill string and casing. Unlike those efforts using CAD templates,

which require predefined part libraries and are difficult to manage the data

consistency related to various parametric constraints, this research work uses

feature-based generative approach for 3D CAD modeling of casing and drill

string. In generative approach, the part is created with parametric feature

primitives in a programming environment; a predefined part template is not

required for generating any model (Ma et al. 2003). This system takes input

specifications and the application program creates the geometry of drill string

assembly internally with the CAD NX functions. The advantages of using

program instead of template files are:

 Geometry and feature can be easily created and edited;

 Parameters can be created and manipulated in more controlled manner;

 Geometry analysis and part standardization can be easily achieved;

 Files can be managed more efficiently;

 Data access and family of parts creation are more convenient.

21

3.2.5. CAE Analysis

The proposed system can be integrated with a CAE analysis system but was not

part of the thesis scope. CAE analysis might be useful to justify the conceptual

design of the casing and drill string from the angle of loading evaluation, fluid

flow pressure distribution and detailed selection of well structure elements. If the

analysis does not show satisfactory results then design iterations and optimization

should be carried out. This process continues until the acceptable design is

achieved.

3.2.6. User Interface and Report Generation

User friendly interfaces have been created in order to integrate all the modules.

The interfaces guide the users to develop the well plan with less effort and in an

organized sequence. Figure 3-2 shows the main user interface of the prototype

system. Type of the formation is an input selection by the user in order to

calculate the hole and casing sizes (Byrom 2007). Currently, the User Interface

(UI) is limited to a well configuration with two intermediate casings. The UIs are

configurable by programming according to the algorithm requirement. More UIs

are to be introduced in the following chapters. The proposed system also produces

formal reports for design details.

22

Figure 3-2: Main user interface of DrillSoft

3.3. Information Flow

A systematic information flow model has been developed. The information flow

model is shown in Figure 3-3. The system takes design requirement through a

user interface and stored this information in a database.

There are separate knowledge bases for each module, which stores the

engineering knowledge and rules. A method fires the appropriate rules based on

the input during the design. Inference mechanism uses reasoning process to come

up with a conceptual design and send it to the database for storing. Configuration

and specification generator retrieves the part geometric specification from the data

23

base, generates the assembly configuration based on the conceptual design and

creates the parametric data file. CAD system uses this parametric file to generate

the 3D model. This 3D model can be used for further analysis, if the design does

not satisfy the requirements it then goes back to the design process for reiteration.

Figure 3-3: Flow of information

3.4. Advantages of the Proposed System

The advantages of the proposed system are given as follows –

 The proposed system uses integrated approach as a result; the flow of

information is very smooth. Due to the information sharing among the

modules less input is required to carry out the design.

 As the design process becomes automated, the cycle time can be reduced

significantly.

 The proposed system is coupled with engineering knowledge and

parametric modeling, design parameters required for 3D modeling can be

created automatically.

Geometric Information

Modules

Designer

Engineering Knowledge

Knowledge

Analysis

Configuration and

Specification Generator

CAD Modeling

Inference Mechanism

Part Database

Is

acceptable? Database

3D Model
Standard Part Specification

No

Yes

Design Requirement

Make Changes

Conceptual

Design

24

 Associative relationships among the components have been created, that

makes the model adaptable with changes.

 The proposed system uses generative approach; it eliminates the need of

part template for creating the part library. This approach is very efficient

for file management and part creation.

 Eliminates the need of repetitive CAD model generation.

 Automatic generation of bill of materials.

 Provides a visual environment.

3.5. Summary

This chapter presents the current practice of well drilling. It is identified that there

is a need to automate the well drilling design process. An integrated knowledge

driven CAD system for well drilling is proposed and the components are

described briefly. Finally the advantages of the proposed system are presented.

25

Chapter 4 Smart Casing Design

4.1. Introduction

This chapter will first briefly describe the casing design process and then the

comprehensive casing design approach will be presented.

4.2. Overview of Casing Design

A casing is a collection of steel tubes that becomes permanent part of an oil or gas

well. Casing is required at certain stage during drilling to protect the well. Casing

serves many important functions during the life of a well. The major functions of

the casing are as follows (Byrom 2007; Mattiello 1992):

 Maintaining the structural integrity of the bore hole.

 Serving high strength flow conduit to surface for both drilling and

production fluids.

 Providing support for wellhead equipment and blowout preventers.

 Preventing contamination from near fresh water zones.

 Facilitating of running wireline equipment for testing.

 Allowing isolated communication with selectively perforated formation(s)

of interest.

A well consists of several sections of different diameters hole and a string of

casing is run after each section of hole has been drilled. Such as a typical well

may contain- conductor casing, surface casing, intermediate casing, production

casing. The design, material of construction and purpose are different for each of

these different sections. A well configuration with four casing sections has been

shown in Figure 4-1.

26

 Figure 4-1: Different casing sections

Casing design is one of the most important tasks in well drilling plan. Casing

program of a well represents a significant amount of overall well cost, almost

20% of it (Roque et al. 1994). So a small reduction in cost will result a huge

saving. But at the same time, the casing program should satisfy all the constraint

and loading requirements. Casing design can be divided into two phases –

preliminary design and detailed design (Halal et al. 1996). In the preliminary

design casing setting depth, mud density, casing size and hole size are

determined. Selection of less expensive casing from the available inventory that

satisfies the entire design requirement is considered in detailed design. The whole

casing design process has been shown in Figure 4-2. The following sections will

describe the design procedures.

27

Figure 4-2: Casing design steps

4.2.1. Casing Setting Depth

Casing setting depth determination is the most critical steps in casing design.

Several parameters are considered during casing setting depth, these are - pore

pressure, fracture pressure, experience in an area, bore hole stability problem,

corrosive zones, environmental consideration, regulations and company policy.

Among these, pore pressure and fracture pressure are most widely used to

determine the setting depth. These two parameters are also considered in this

study as main determinant factor for casing setting depth calculation. Formation

pore pressure and fracture pressure are described in the following sections.

4.2.1.1. Formation Pore Pressure

Formation pore pressure is defined as the pressure exerted by the formation fluids

on the walls of the rock pores (Rabia 1985). The rocks inside the earth contain

 Casing Setting Depth

Determination

Casing and Hole Size Determination

Development of Loads Curves for

Collapse and Burst

Development of Design Loads

Curves for Collapse and Burst

Initial Casing Selection Based on

Collapse and Burst Load

Development of Axial Load Curve

Development of Axial Design Load

Curve

Final Casing Design

Preselected

Casing Satisfy

Axial Load

Yes

No

28

pore spaces and these spaces are filled with fluids – either in the form of gas or

liquids. Formation pore pressures are divided into two types, normal and

abnormal formation pore pressure (Bourgoyne et al. 1991). When formation

pressure is approximately equal to the theoretical hydrostatic pressure for a given

depth then it classified as normal; but if the formation pressure is greater than the

normal hydrostatic pressure for a concerned depth, then it is treated as abnormal

(Bourgoyne et al. 1991).

Two different methods are used to determine the formation pressure (Rabia 1985).

These are – geophysical method and logging method. Geophysical method helps

to predict the formation pore pressure before the well is drilled and logging

method is applicable during drilling of the well. However, in this study pore

pressure is not estimated, it is considered as an input.

4.2.1.2. Formation Fracture Pressure

The formation fracture pressure is defined as the pressure necessary to overcome

the formation pressure and strength of the rock matrix. It is the pressure at which

a formation matrix opens to admit whole liquid through an actual crack in the

matrix of the rock as opposed to invasion through the natural porosity of the rock

(Byrom 2007). Two approaches are used to determine the fracture pressure, these

are – direct and indirect method (Rabia 1985). The pressure required to fracture

the rock and the pressure required to propagate the resulting fracture is

determined by direct method and stress analysis is used to predict the fracture

gradient in indirect method. There are six different indirect methods available in

the literature (Bourgoyne et al. 1991). These are - Hubber and Willis method,

Matthews and Kelly method, Eaton method, Pennebaker correlation, Christman

equation and MacPherson and Berry correlation. Eaton method has been chosen

to predict the fracture pressure gradient calculation in this research work. Eaton

(1969) argued that Poisson‟s ratio for a given field should be fairly constant and

can be determined from the data obtained from the nearby well. However, in this

29

program Poisson‟s ratio is also considered as an input. Eaton method is used to

determine the fracture gradient of the prospective well:

FG= (ν/1-ν)(σv – Pf)/D +Pf /D Eq. (4-1)

Here, FG= Fracture gradient, psi/ft; D= Depth, ft; = Poisson‟s ratio; σv= Over

burden, psi/ft; Pf= Formation pore pressure, psi/ft. As Eaton method is limited to

certain geographical area, an option has been given to use fracture pressure as

input.

4.2.2. Casing Size Determination

A well consists of several sections; it is an important task to determine the bore

hole and casing size in each sections. The following points should be considered

during the casing size determination (Byrom 2007):

 The bore hole must be large enough for the casing to pass freely with little

chance of getting stuck

 There should be enough clearance around the casing to allow for a good

cement job

 The bigger the bore hole, the more costly it is to drill

The casing and hole sizes determination usually carried out by following common

practice in concerned geographical area (Byrom 2007). There are many charts and

tables available in the literature, some of these are good for some areas but greatly

lacking for other areas. However in order to develop an automated program for

casing and hole size selection, two standard charts for hard and unconsolidated

formation have been adopted in this research work (Byrom 2007).

4.2.3. Casing Selection

Devereux (1998) identified two important aspects of casing design; casing should

be designed to resist the forces or conditions that are imposed on it during drilling

and it should sustain throughout the life of the well to meet the well objectives

30

without requiring a workover. Three basic loads are considered –collapse, burst

and axial. Brief descriptions of these loads are given as follows:

 4.2.3.1. Collapse Load

Collapse loads are the differential pressure loads between the external and internal

pressure of the tube or casing (Byrom 2007). The primary collapse loads are

generated by the hydrostatic head of the fluids column outside of the casing

(Rahman and Chilingarian 1995). These fluids are usually drilling fluids or cement

slurry. During the design, the worst case scenario is considered. Such as, when

collapse load is calculated, the minimum internal pressure and the maximum

external pressure are considered. The collapse loads in different casing sections

considered in this research work are provided in Appendix A.

 4.2.3.2. Burst Load

Burst loads are defined by the difference between the internal and external

pressures in which the internal pressure exceeds the external pressure tending to

cause casing to rapture or burst (Byrom 2007). Burst loads are normally caused by

the mud hydrostatic pressure inside the casing. Fluids on the outside of the casing

supply a hydrostatic pressure that helps resist pipe burst.

4.2.3.3. Axial Load

The axial load in a casing string at any point due to gravity or weight is a function

of the buoyancy of the drilling fluid and the inclination of the well bore (Byrom

2007). Axial load is highest at the top of the string; it decreases with depth toward

the bottom of the string.

31

4.2.3.4. Design Safety Factor

Many uncertainties exist during the service life of a well. As casing is the

permanent part of well, it may subject to forces that are not foreseen during the

design. Besides, casing strength may also deteriorate with time due to wear,

erosion and corrosion. So to produce a safe design, proper safety factor should be

considered. However, policies on safety factor can be quite confusing and widely

varying as identified by Devereux (1998). Every company maintains their own set

of standard towards selecting the safety factor. In this module options have been

provided for the users to select safety factor based on their requirement.

4.3. Proposed Approach for Casing Design

The proposed system provides a comprehensive model that combines both

preliminary and detailed design, i.e. casing setting depth, casing size, casing

selection. In addition to that, a 3D parametric CAD model is added with the

system. The complete system is shown in Figure 4-3. A systematic approach is

proposed to carry out the design task interactively. A specific sequence should be

followed during the design. Because casing selection requires input from casing

setting depth and casing size. So, casing setting depth and casing size

determination should be carried out first followed by casing selection. A well

consists of several casing sections; so, it is required to design the casing

individually for each section. Finally the casing setting depth and casing size

output can be used to generate the 3D CAD model of the well.

32

Figure 4-3: Casing design modules

4.3.1. Casing Setting Depth

The developed algorithm for casing setting depth is described in this section. The

flow chart for casing setting depth and size determination has been shown in

Figure 4-4. The program first takes input from the user through the user interface.

The following inputs are required:

 Type of Well

 Unit system

 Number of pore pressure input

 Pore pressure at different depth

 Kick margin

 Trip margin and

 Minimum casing setting depth

The fracture pressure needs to be input since Eaton‟s method is not generalized

one. This matter has been discussed in the subsection 4.2.1.2. Two safety factors

should be considered during mud density determination:

 Mud density should be slightly higher than the formation pressure

U
S
E
R

I
N
T
E
R
F
A
C
E

 Report CAD

3D Modeling

Casing Setting Depth and Size

Casing Design

Module

Casing Setting Depth

Casing Selection Casing Size

Section Depth
Mud Density

Number of sections
Fracture and Pore

Pressure

Casing Size
Bit Size

33

 The density should be less than the fracture pressure

These two safety factors are known as trip margin and kick margin respectively.

The mud densities are chosen to provide an acceptable trip margin above the

anticipated formation pore pressure to allow for reduction in effective mud weight

(Bourgoyne et al. 1991). Mud pressure may be decreased due to several reasons

such as drop in mud level, swab effect, etc. Swab effect is produced during

tripping of the pipe because when making a trip the pipe is pulled upward and due

to this pulling action a negative pressure inside the hole is created, and that results

the reduction of hydrostatic pressure. On the other hand when the drill string is

returning back to the hole a positive surge pressure is produced. If the pressure is

more than the fracture pressure of the well then the stability of well will be

hampered. So a kick margin is subtracted from the design fracture gradient line. If

no kick margin is provided, it is impossible to take a kick at the casing setting

depth without causing hydrofracture and it is possible to have underground

blowout (Bourgoyne et al. 1991).

The minimum casing setting depth is for surface casing. Besides pore and fracture

pressures, surface casing depth is also affected by two more sets of factors, the

depths of freshwater bearing zones, and legal regulations and requirements. The

minimum casing setting depth is determined by considering these four groups of

factors.

The system first estimates the fracture pressure and determines the MSG and FSG

based on the input provided. MSG is the required mud density to drill the well. It

can be calculated as the sum of pore pressure and trip margin, i.e. pore pressure+

trip margin. FSG can be defined as the difference between fracture pressure and

kick margin, i.e. fracture pressure-kick margin. It then finds out the mud density

at the true vertical depth. According to the theory this is the density of mud

required to drill the well to the final depth. Here it is said production section of

the well. The next step is to determine the depth at which the fracture gradient is

equal to the mud specific gravity, in other words the depth at which the vertical

line drawn from the mud density curve touches the fracture gradient curve (Figure

34

4-5). Once the depth of the next section has been known the program then

determines the mud density required to drill in this depth. In this way the process

continues until the mud density becomes smaller than the minimum fracture

gradient or the depth become smaller than the minimum casing setting depth. The

designed casing setting depth information is stored in a database and can be

shared to other modules. The proposed method of casing setting depth has been

described in more detail with case study in chapter eight, Section 8.2.

3
5

Figure 4-4: Flow chart of casing setting depth and size

Input (Number of Pore

Pressure Inputs (n), Kick

Margin, Trip Margin,

Production Casing Size etc.)

Estimate Fracture Pressure, MSGi and FSGi

 MSGi at TVD

Depthi+1 at FSGi= MSGi

MSGi+1 at Depthi+1

Yes

Casing Setting Depth Determination Complete

i=i+1

Pore Pressure Input (Pi)

Yes No

i=i+1

No

If i < n

Is MSGi+1 < Min (FSG)

Report

Is Production

Casing Size

Valid?

Database

No

Yes

No

Casing and Hole Size

Determination

Inference Mechanism

Production Casing Size

Validity Check

Casing Size

for Soft

Formation

Casing Size

for Hard

Formation

Knowledge Base Is Depthi+1 < Min

Surface Casing Depth

Depthi+1=Min

Surface

Casing Depth

Yes

CAD

3D Modeling

36

Figure 4-5: Casing setting depth

4.3.2. Casing Size

A prototype knowledge base has been created to determine the casing and hole

sizes. The knowledge base contains different configurations of casing sizes for

hard and unconsolidated formation. The casing and hole size configuration for

hard and unconsolidated formation have been shown in Figure 4-6 and Figure 4-7.

In this research work, the casing and hole sizes are selected by considering the

formation types (chapter 3, Byrom 2007), number of casing sections and

production casing size. The inference mechanism sorts out the hole and casing

sizes for each section of the well based on the users input. Inference mechanism is

used to derive the proper size of casing and hole by executing the reasoning

process. Different combinations of casing sizes are possible. If the specific

production casing size is not available in the system knowledge base then it

recommends the sizes that are available in the knowledge base.

0

2000

4000

6000

8000

10000

12000

1 1.2 1.4 1.6 1.8 2 2.2 2.4
M

e
a
s
u

re
d

 D
e
p

th
,
ft

Equivalent Pressure, specific gravity

Casing Setting Depth

Pore Pressure

Mud Density

Fracture Pressure

TVD

FSG1=MSG1

Depth1

FSG2=MSG2

Depth2

37

Figure 4-6: Casing and bit size selection for hard rock formation (Byrom

2007)

38

Figure 4-7: Casing and bit size selection for soft formation (Byrom 2007)

4.3.3. 3D CAD Model

A parametric 3D model of well structure has been developed, which takes the

casing setting depth and casing size output to generate different casing sections of

the well.

39

Figure 4-8: Flowchart of casing selection

Select Lowest Cost Casing from the

Potential Candidates

Conceptual Design Complete

Calculate Axial Load

Database

Add Minimum Casing Section

Selection of Lowest Cost Casing from the

Potential Candidates

Design Load curve

Burst Load at Casing Shoe

Burst Load at Casing Surface

Collapse Load at Casing Shoe

Collapse Load at Casing Surface

Input (Design Factor,

Minimum Casing Section,

Available Casing, Injection

Pressure etc.)

 C
asin

g D
esign

 R
u

le B
ase

Are Available Casings

Capable to Meet Total

Depth?

Allowable Length of Available Casings

Is TVD Achieved?

Add Min (Minimum Casing Section, Next
Break Point)

Is it Previous Casing?

Is Axial Load ok?

Report

Yes

Yes

Yes

Yes

No

No

No

No

Is (TVD – Casing

Covered)<Minimum

Casing Section?

Reject Previously Selected Casing

Add (TVD-Casing Covered)

Is Capable to use up to

TVD?

No

No

Yes

Yes

40

4.3.4. Casing Selection

A well has several sections and casing design is required for each hole. The

program contains a rule base to calculate collapse, burst and axial load. The rule

base for surface, intermediate and production casing load calculation are given in

the Appendix A. Every company has their own set of standards to calculate these

loads during the casing design. Flexible software is very much useful to adopt

with companies need. This flexibility can be achieved by adding the new rule to

the rule base.

Casing selection process flow chart has been shown in Figure 4-8. During casing

selection the program first calculates collapse and burst load and set their values

as constraints. Depending on the type of casing section, the program selects the

appropriate rules from the rule base for load calculation. Such as, the collapse

load calculation for surface and intermediate casing are not same, different

procedure has to be followed. The system identifies which rules to be fired by

considering types of section.

After determining the collapse and burst rating the program checks whether the

available casings are capable to meet the total depth. If it does not meet whole

depth then the program asks to provide more casings. Once it finds that the total

depth is achievable with these casings the program then determines the allowable

length for each available casing based on collapse and burst rating. The allowable

length is used as break points for the algorithm. The system determines the

potential candidates in each break point. The potential candidates can be defined

as the type of casing that can be used safely in the concerned depth interval. It is

assumed that the available casing input is provided sequentially starting from the

lower costs to higher costs. Usually costs are related to the grade of the casing.

Higher grade casings are more expensive than the lower grade casings. However,

the developed program does not check the grades and type of joints of the casing

during casing selection process. It is assumed that the user has a better judgment.

It only considers the sequence of casing input. The program selects the (most

economical) lowest cost casing type from the potential candidates and adds a

41

length equal to minimum casing section. Minimum casing section is a very

important factor in this algorithm; it limits the number of different types of casing

used in a combined casing string. Byrom (2007) suggested this minimum casing

section length should not be less than 500 ft. The system selects the first casing

type and adds a length equal to the minimum casing section length. The next step

is to check whether the casing string achieve the total depth. If the total depth has

not achieved yet then the program chooses again the lowest cost casing type from

the available candidates. If the candidate selected in that stage is similar to the

previous casing type then the system determines the minimum value of the

minimum casing section and difference between the next break point and casing

covered, i.e. Minimum (Minimum casing section, (Next break point-casing

covered)). The minimum of these two values is taken and added to the casing and

checked again whether the casing string achieves the total depth. If it does not

achieve the total depth then the process continues until the whole depth has been

covered.

Once the casing selection has been done based on burst and collapse requirements

the next step is to check whether the selected casing is capable to sustain with the

axial load. The rule base is used to calculate the axial load of each section of

casing. The axial load is checked on the joint of the casing. If any portion of the

casing string fails to satisfy the axial load condition then the casing selection

starts again from the beginning. If the axial load is satisfactory with the designed

casing then the conceptual design of casing is completed. This conceptual design

will be stored in a database and can be further used by other modules. At the end

of casing design a formal report is generated. This process can be repeated for

other section of the hole. An example case study of the proposed approach has

been provided in chapter eight, section 8.3.

42

4.4. Summary

In this chapter the comprehensive casing design approach is described. The

algorithms for casing setting depth and casing size determination and casing

selection have been presented.

43

Chapter 5 Smart Drill String Design

5.1. Introduction

A drill string is a collection of drill pipes, drill collars, heavy weight drill pipe,

crossover sub and bit sub that transmits drilling fluid and rotational power to the

drill bit. They are hollow shafts through which drilling fluid can be pumped down

and through the annulus the fluid and cutting, i.e. drilling mud with rock chips,

brought back to the surface. According to Cunha (2002), drill string design is the

most important part for operations in drilling engineering.

 In this chapter, a brief description of drill string components and their functions

will be provided then the proposed approach and detailed description of the model

will be discussed.

5.2. Drill String Components and Functions

A drill string composed of kelly, drill pipe, heavy weight drill pipe, drill collar,

stabilizer, drill bit, reamer, crossover sub, drilling jars etc. Each of these

components serves some basic functions. Kelly is used to transmit the rotation of

the rotary table to the drill string and conducts drilling fluid from the swivel to the

drill stem. Drill pipe transmits rotary motion and drilling mud under high pressure

to the drill bit. Drill collar provides weight on bit for drilling and keeps the drill

pipe in tension. Crossover sub connects last joint of drill string to the first drill

collar. Stabilizer keeps the hole straight.

44

5.3. Proposed Drill String Design Approach

Figure 5-1: Drill string design

The approach is to automate the design and 3D modeling process for a drill string.

Built-in rules and knowledge are used to develop the conceptual design of a drill

string and then the system automatically generates the assembly configuration

based on the conceptual design and retrieves part specifications from the part

database to generate the CAD parametric files. These parametric files are used to

develop the CAD model. The proposed model is presented in Figure 5-1.

The following sections describe step by step drill string design process (Figure 5-

2) from conceptual design to 3D model realization.

5.3.1. Drill String Operational Requirements

Drill string design starts after the operational requirements have been defined

based on the casing design output and the customer input. The operational

requirements include type of the well, depth, mud specific gravity, maximum

WOB, margin of overpull, safety factor for collapse, type of drill pipe available in

the inventory, drill collar, heavy weight drill pipe size, etc.

No

CAD

3D Modeling

Drill String Conceptual Design

CAD Expression File

Report

USER INTERFACE

Part Database

Analysis

Is

Acceptable

?

Design

Complete

Yes

3D

Model

ing

45

Figure 5-2: Drill string design and modeling process

5.3.2. Conceptual Design

The drill string design module of the proposed system generates the conceptual

design based on a set of built-in engineering rules embedded in the module

following the recommended practice for drill stem design standards (API RP 7G,

1998) For example, one such rule is that “drill pipe should always be under

effective tensile stress, neutral point of buckling should be in the drill collar”. In

the conceptual design stage calculating the length of drill collar requires the WOB

data. Then the system selects the cheapest (in most of the cases also weakest) drill

pipe type from the available inventory and check against the loading criteria. If

the type is not safe to run the whole length of the drill string, the allowed

maximum length of that drill pipe type is worked out. The selection cycle of the

drill pipes continues until the whole length of the drill string is achieved. Hence,

Part Database (EXCEL)

Is acceptable?

…

 Sub-assembly 1(NX)

…

No Yes

Drill String Operational Requirements (EXCEL):

Well depth, size, margin of overpull, weight on bit etc

Conceptual Design (EXCEL):

Selections of drill pipe, length of drill pipe and drill collar

etc.

 Configuration and Specification Generator (EXCEL)

 System Design Assembly (NX)

Sub-assembly 1(NX)

Sub-assembly…n (NX)

 Component 1 (NX)

Component..n (NX)

Array of Components & Sub-assembly (NX)

3D Model of Drill String (NX)

 Analysis

Design Complete

46

the algorithm selects the cheapest drill string assembly based on the lowest grade

and the unit weight of the pipes in the inventory.

5.3.3. Configuration and Specification Generator

The configuration and specification generator converts the conceptual design into

expression files. Knowledge about parts, knowledge about the relations between

parts, attributes, and constraints of parts are the configuration knowledge (Myung

and Han 2001). Once the conceptual design of drill string is completed the next

step is to determine the drill string configurations and component specifications.

The configuration design determines the number and types of components, their

orientation and position in the drill string assembly. As the drill string is a

symmetric vertical column, all components of the string possess same origin for x

and y coordinate, i.e. (0, 0). Only the vertical coordinate, i.e. z coordinate,

changes when a new part is added to the assembly. Rules have been created to

determine the origin or position of a new component. The following rule

determines the z coordinate of drill pipe:

Here,

Origin (z-coordinate) of Drill pipe= HWDP_z+ Drill_collar_z+ Bit_sub_z

+ Drill_bit_z+Cross_over_sub_z

Eq. (5-1)

HWDP_z= Number of HWDP* Length of HWDP+ Origin (z-coordinate) Eq. (5-2)

Drill_collar_z= Number of Drill_collar * Length of Drill_collar

+ Origin (z-coordinate)

Eq. (5-3)

Bit_sub_z= Length of Bit_sub + Origin (z-coordinate) Eq. (5-4)

Dirll_bit_z= Length of Drill_bit + Origin (z-coordinate) Eq. (5-5)

47

The specifications of different components are retrieved from part data base. For

that reason, a part database prototype has been created. Figure 5-3 shows partly

the database of drill pipe. In this database, each drill pipe is defined by six factors-

size, class, nominal weight, grade, type of upset and connection. The values of

these six factors are unique for each different type of drill pipe. Based on this

unique combination of these six factors the specification generation method

automatically retrieves rest of the geometric and non-geometric specifications of

each component according to the library specifications. This information is then

converted into expression files. As for example, tool joint pin and box expression

file is shown in Figure 5-4.

Figure 5-3: Partial view of drill pipe database

Cross_over_sub_z= Length of Cross_over_sub + Origin (z-coordinate) Eq. (5-6)

48

Figure 5-4: Expression file of a drill pipe tool joint pin and box

5.3.4. System Design Assembly

An assembly is a collection of components arranged in a specific manner. Two

approaches for assembly generation is available, bottom up and top down. In

bottom up approach, component parts are designed and edited apart from their

usage in higher assembly. In this approach, the part solid model is first created,

and then it combines with the sub-assemblies followed by assemblies. On the

other hand, in top down approach, the hierarchy of assemblies and sub assemblies

is designed first, and then part solid models are designed in place.

A “top-down” assembly approach has been followed, where the structure of the

whole assembly of the drill string is first created; the generic configuration of drill

string assembly contains all possible components of drill string. For example, a

drill string assembly composed of drill pipe, drill collar, heavy weight drill pipe,

49

bit sub, cross over sub, drill bit etc. Depending on the operational requirements

some components may not be required. For example, sometimes “heavy weight

drill pipe” is not used in the drill string; then in that case, the module which

creates assembly structure, will suppress the “heavy weight drill pipe” from the

assembly.

5.3.5. Sub-Assembly

The next level is sub-assembly generation. The program first finds out which

member of the assembly contains sub-assembly from a configuration definition

and then fire the rule to initiate sub-assembly creation. A drill pipe sub assembly

contains three parts: drill pipe body, tool joint pin and tool joint box. That is

shown in Figure 5-5. Such structure generation algorithm continues iteratively

until all the configuration of the whole assembly is completed. It should be worth

mentioning that, in the “top-down” approach, though assembly structure is first

created but in each of the structure members, no physical geometry entities are

created until the program reaches to the next stage. The next stage is to create the

component geometry entities.

50

Figure 5-5: Drill pipe sub-assembly and components

5.3.6. Component Creation

Constructive Solid Geometry (CSG) approach is followed during component

creation. In CSG method, the solid primitives are progressively cut and joined to

form a new shape. Primitive such as cylinder, block, cone, surface etc are used to

generate the component. Most common CSG operations are union, intersection

and subtraction. The hierarchal construction to achieve the final components of

drill pipe tool joint pin is shown in Figure 5-6. The construction of drill pipe tool

joint pin is initialized with cylinder; this is the first level primitive of the drill pipe

tool joint pin. Then it is connected to second level primitives, a cone, followed by

the third level and so on.

51

Figure 5-6: CSG approach for component

creation

Union Cylinder
Cone

First level primitive

Cylinder

Union

Second level primitive

Chamfer

Cylinder

Third level primitive

Subtract

Fourth level primitive

Cylinder
Subtract

Drill pipe tool joint box

Fifth level primitive

52

Individual parametric program has been written for each component to generate

the generic 3D model. Although the model is created in NX environment but the

parameter is controlled by configuration and specification generator. The steps

required for three dimensional model realization of drill pipe tool joint box

component has been shown in Figure 5-7.

The configuration and specification generator first retrieves the parts specification

from the part data base and generates the excel data file for parts specification and

configuration of the assembly based on the conceptual design. Then excel data

files are converted into expression (.exp) files by the configuration and

specification generator. Next step involves the creation of dll (dynamic link

library) file. This dll file is a library of executable. NX required a dll file to

execute the program. During execution NX invokes the expression files and

creates the component based on design requirements.

53

Figure 5-7: Steps involved in component creation

5.3.7. Arrays of Components

An array method has been implemented to repeat the component and subassembly

instantiation. As shown in Figure 5-8, a large quantity of similar type of drill pipe

Excel Data file Expression file

NX Open Execution

CAD model realization and expression file

NX Open

programming

54

may exist in the drill string; this array method helps to reproduce the drill pipe

and other components throughout the assembly.

5.3.8. Three Dimensional Model of Drill String and Analysis

After the arrays of components and sub-assemblies are carried out, the 3D model

of the whole drill string assembly is realized (Figure 5-8). They might be useful

for finite element analysis and simulation. If the result of the analysis is not

satisfactory then the program redesigns the drill string by following the same

steps mentioned earlier; then the whole design loop is integrated.

55

Figure 5-8: Partial assembly of drill string

5.4. Summary

This chapter provides a detailed description of the generative approach of drill

string modeling. Conceptual design, assembly modeling, configuration design

have been discussed. In order to maintain consistency in the assembly an example

rule has been presented.

56

Chapter 6 Feature-based Generative CAD Modeling

6.1. Introduction

This chapter introduces the feature-based generative approach of CAD modeling

for well casing and drill string design. Features at different levels are defined and

discussed with application examples.

6.2. Feature-based Design

The proposed system uses knowledge driven CAD system to design the well

casing and drill string. It has two parts – design and modeling. The conceptual

design is carried out in Excel Visual Basic Application environment and then

design output is transferred to the CAD system to generate the three dimensional

CAD model. In order to smooth the integration of these two systems, i.e. design

and modeling, feature-based concept is employed. One advantage of using feature

comes from the abstraction of feature information that retains not only the

associative geometric information but also much useful non-geometric

information that reflects engineering semantics within different applications

(Liang and Grady 2002). Another advantage of using feature is that, it can be used

as a bridge between CAD and KBE system (Ma et al. 2007).

A well consists of several sections of different diameter holes. Each section of the

well contains a casing string. A casing string is composed of casing and coupling.

Couplings are used to join the casing string. On the other hand, a drill string

composed of drill pipe, drill collar, heavy weight drill pipe, bit sub, drill bit etc. In

this research work three different features levels are defined. These are assembly

and sub-assembly level feature, component level feature and form feature. Figure

6-1 shows feature classes at different levels.

57

Figure 6-1: Features at different levels

6.3. Feature Representation

The generative CAD model of drill string and casing are realized by considering

three feature levels. These are assembly or sub-assembly level feature, component

level feature and form feature. These features are described in detail in the

following section.

6.3.1. Assembly Level Feature

Figure 6-2 (a) shows the generic definition of assembly level feature. The

attributes or properties include list of components and sub-assemblies, number of

array of components, distance between arrays, constraints list, configuration etc.

Related geometric entities can be assemblies, components, solids, form features,

Well

Casing

String

Drill

String

Drill pipe

HWDP

Collar

Bit sub

Cross over

sub

Drill bit

Casing

Coupling

Assembly level

feature

Sub-assembly

level feature

Form feature

Body

Tool joint box

Tool joint pin

Cylinder

Cone

Hole

.

.

.

Component level

feature

58

faces, edges, vertices etc. The sub-assembly level feature is also defined in the

similar manner.

Figure 6-2: Assembly level feature definition (a) Generic, (b) Drill string

instantiation

Figure 6-2 (b) shows drill string assembly level feature instantiation. It is

composed of drill pipe, collar, crossover sub, bit sub and drill bit. The number of

drill pipe and drill collar array and distance between the arrays are also required to

generate the CAD model. The position of drill pipe and drill collar in the

assembly level feature represents the position of first drill pipe and drill collar in

Drill String

Attributes:

Component 1: Drill pipe;

Component 2: Drill collar;

Component 3: Cross over sub;

Component 4: Bit sub;

Component 5: Drill bit;

Drill pipe array: 403;

Drill collar array: 21;

Distance between drill pipes: 360 inch;

Distance between drill collars: 360 inch;

Drill pipe position (inch): (0, 0, 7582.5);

Drill collar position (inch): (0, 0, 22.5);

………

Mating condition 1: Concentric;

………

Constraints 1: dc_o=db_o+db_l+bs_o+bs_l;

Constraints 2: cs_b_d=dp_tjp_d;

………

Length: 12700 ft;

Methods:

Engineering calculation ();

Configurations generator ();

Array of components ();

Feature dimension control mechanism ();

Configuration control mechanism ();

Validity check ();

Feature generation ();

Modification ();

Delete ();

(a)

(b)

Assembly

Attributes:

Component or Subassembly;

Number of array;

Distance between arrays;

Configuration;

Mating conditions;

Length;

Constraints;

Methods:

Engineering calculation ();

Configurations generator ();

Array of components ();

Feature dimension control

mechanism ();

Configuration control

mechanism ();

Validity check ();

Feature generation ();

Modification ();

Delete ();

59

the assembly. The drill string is a vertical column and all the components are

concentric. This is one example of mating condition of the assembly level feature.

Other mating conditions such as coplanar, center distance, mate align angle are

also implemented in the assembly level feature.

Associative relationships among the drill string components have been created to

maintain the consistency in the assembly level feature. Such as, crossover sub is

used in between drill collar and drill pipe. This is because the size of drill pipe

tool joint pin is not similar to the size of drill collar joint. So, an associative

relationship is required to solve this issue. The box and pin joint diameter of

crossover sub are linked with the diameter of drill pipe tool joint pin and collar

joint box respectively. This associative link of crossover sub has been shown in

Figure 6-3. Similar associative links have been created for other components in

the assembly level.

Figure 6-3: Associative link of cross over sub

60

6.3.2. Component Level Feature

Figure 6-4: Component level feature definition (a) Generic, (b) Drill pipe

body instantiation

Figure 6-4 (a) shows the definition of component level feature; the properties

include geometric, non-geometric data, list of form features, and list of

constraints.

An example component level feature, drill pipe body, has been shown in Figure 6-

4 (b). The drill pipe body feature contains both geometric and non-geometric

information. Geometric information such as outside diameter, inside diameter,

(a)

(b)

Component

Attributes:

Non-geometric;

Geometric;

Dimensions;

Parameters,

Form features;

Constraints;

Methods:

Feature dimension control

Mechanism ();

Topological variation ();

Validity check ();

Feature generation ();

Modification ();

Delete ();

Drill pipe body

Attributes:

Grade: E 75;

Class: 2;

Weight: 16.6 lb;

Type of upset: IEU;

Range: 2;

Outer diameter: 4.5 inch;

Inner diameter: 3.826 inch;

Length: 335.8 inch

Upset diameter: 4.75 inch;

 ……..

Cylinder 1;

Cone1;

Cylinder 2;

Hole 1;

 .…….

Constraint 1: cn_1_dia=c_1_dia;

Constraint 2: h_1_dia<c_1_ dia;

 ………

Methods:

Feature dimension control Mechanism ();

Topological variation ();

Validity check ();

Feature generation ();

Modification ();

Delete ();

61

length, upset diameter etc are required by the CAD system to generate the 3D

model. Non-geometric information such as grade, class, weight, material

properties, i.e. collapse rating, axial load rating etc., are required for further

analysis such as CAE analysis, simulation etc.

As mentioned in the previous chapter, constructive solid geometry approach has

been followed in the creation of 3D model. So a list of form features is required.

The drill pipe body consists of the following form features cylinder 1, cone 1,

cylinder 2, cone 2, cylinder 3, hole 1, hole 2, hole 3. In order to maintain

consistency in the component level several constraints have been created. As for

example:

Constraint 1: Cone 1 top diameter should be equal to the cylinder 1 diameter

(cn_1_dia= c_1_dia).

Constraint 2: Hole 1 diameter should be always less than cylinder 1 diameter

(h_1_dia<c_1_ dia).

6.3.3. Form Feature

Figure 6-5: Form feature definition (a) Generic, (b) Cylinder 1 instantiation

(a)

(b)

Form Feature

Attributes:

Position;

Direction;

Parameters;

Constraints;

Boolean operation;

Methods:

Feature dimension control

mechanism ();

Validity check ();

Feature generation ();

Modification ();

Delete ();

Cylinder 1

Attributes:

Position: (0,0,0);

Direction: (0,0,1);

Diameter: 4.75 inch;

Length: 1.5 inch;

Boolean operation: 1;

Constraints;

Methods:

Feature dimension control

mechanism ();

Validity check ();

Feature generation ();

Modification ();

Delete ();

62

Figure 6-5 (a) shows the definition of form feature. It contains the position,

direction, parameters, list of constrains and type of boolean operations. An

example instantiation of cylinder 1 form feature has been shown in Figure 6-5 (b).

It is the first form feature of the drill pipe body, so it should be created at the

origin. Other form features such as cone, hole etc are also defined in the similar

manner. Figure 6-6 shows the 3D model realization of assembly and sub-

assembly, component and form level features.

Figure 6-6: Different levels of feature instantiation (a) Assembly, (b) Sub-

assembly, (c) Component, (d) form feature.

(a) Drill string (b) Drill pipe (c) Pipe body (d) Form features

Hole 1

Cone 1

Cylinder 1

63

6.4. Feature-based CAD Modeling Methods

These three levels of features are implemented by applying several methods.

Some of the methods used in the different feature levels are described in the

following sections.

6.4.1. Engineering Calculations

All the engineering calculations are carried out in Excel VBA environment.

Several rule bases for engineering calculations are created. A reasoning

mechanism sorts out which rules to be fired based on the users input. Engineering

calculations method executes the calculations and generates the conceptual

design.

6.4.2. Configuration Generation

An assembly level feature requires the list of components, their specifications,

orientation and positions in the assembly. Configuration generation method

carries out these tasks. This method determines the configurations and

specifications of components. As for example, in Figure 6-2 (b) drill string

assembly level feature, the positions of drill pipe and drill collar are calculated as

(0, 0, 7582.5) and (0, 0, 22.5).

6.4.3. Array of Components

The assembly may contain multiple numbers of similar types of components.

Such as drill string assembly level feature contains multiple numbers of drill

pipes, drill collars, heavy weight drill pipes. Similarly, casing string assembly

level feature contains multiple numbers of casings and couplings. This repetition

of similar type of component is termed as array in this work. Array of component

method determines the number of array in the assembly based on the conceptual

64

design. In Figure 6-2 (b), the instantiation of drill string assembly level feature

contains 21 drill collars and 403 drill pipes array.

6.4.4. Feature Dimension Control Mechanism

Most of the design and engineering calculations are carried out in the Excel VBA

environment. A method is required to import this information into the CAD

system. The feature dimension control mechanism method takes care of this

function. This method is responsible to retrieve the necessary expression for 3D

model creation.

Figure 6-7: Drill pipe tool joint box instantiation

Figure 6-7 shows the instantiation of drill pipe tool joint box, a component level

feature, with necessary expression file. The feature dimension control mechanism

retrieves the dimensional parameter from a predefined location. A macro code has

been written for the path definition. The path or predefined location can be

changed according to the requirements.

65

6.4.5. Configuration Control Mechanism

Configuration control mechanism decides which generation functions of the

components in the assembly to be run. A top down assembly modeling approach

has been followed to develop the assembly model. So, the default assembly

configuration model contains all the possible components. In some occasions, one

or more components are not considered in the design process. In that case, the

configuration control mechanism suppresses the generation function of these

particular components which are not considered. As a result these components

will not include in the assembly model. As for example, in drill string assembly

level feature, the heavy weight drill pipe is not considered in some occasion. In

that situation the suppress method deactivate the heavy weight drill pipe

generation function. Figure 6-8 (a) shows the drill string assembly configuration

with heavy weight drill pipe (hwdp) and Figure 6-8 (b) shows the assembly

configuration without heavy weight drill pipe.

Figure 6-8: Drill string assembly configuration

(a) (b)

66

6.4.6. Validity Check

Validity check method keeps a feature to be self-contained and well-defined. It

verifies the input of users, and invokes the next process if the inputs are

acceptable, or provide feedback to the users if necessary.

6.4.7. Feature Generation

Each level of feature has its own generation method. Such as assembly generation

method is responsible to create the assembly structure, the Component creation

method creates the components 3D model and form feature generation method is

used to create the specific form.

6.4.8. Topological Variation

Topological variation can be realized with this method. Based on the user input

the method selects which generation functions of different topology should be

run. As for example, as shown in Figure 6-9, a drill pipe body may have three

different topologies – internal-external upset, external upset and internal upset.

Figure 6-9: Drill pipe features

6.7. System implementation

The prototype of the well design system has been implemented using a intel®

Core 2 Duo compatible as the hardware. This prototype system uses a commercial

67

CAD system (UG NX 6) and is developed using the Microsoft Excel with Visual

Basic language and NX programming functions in a Windows environment.

6.8. Summary

Knowledge driven CAD system has been implemented by applying feature-based

concept. Three levels of features, i.e., assembly feature, component feature and

form feature are defined with application examples.

68

Chapter 7 Operational Parameters

7.1. Introduction

Bourgoyne and Young‟s Rate of Penetration model will be presented at the

beginning of this chapter and then the proposed system will be discussed.

7.2. Bourgoyne and Young’s Model

Bourgoyne and Young‟s (1974) model considered the effect of the formation

strength, compaction, differential pressure, WOB, rotary speed, tooth wear and bit

hydraulics and used a multiple-regression technique to calculate the constants of

the model. Bourgoyne and Young‟s ROP model is given as follows.

Where f1 is the effect of rock drillability which is proportional with formation

rock strength and is given by:

Then term f2 represents the effect of depth and f3 represents the effect of

compaction:

 f4 represents the effect of differential pressure:

821 fff
dt

dD

Eq. (7-1)

1

1

a
ef

Eq. (7-2)

)10000(

2

Def
Eq. (7-3)

)9(

3

69.0
3

 pgDa
ef

Eq. (7-4)

)(

4
4 cp pga

ef

Eq. (7-5)

69

 f5 is the function for bit diameter and weight applied into the bit:

 f6 represents the effect of rotary speed and given by:

f7 represents the effect of tooth wear, where h is the fractional tooth height that

has been worn away.

The term f8 represents the effect of hydraulics:

The constant a2 through a8 can be determined by multiple regression analysis of

detailed data taken over short depth intervals.

Optimum weight on bit and rotary speed can be calculated by calculating the cost

per foot for a given situation. Cost per foot can be calculated by:

The footage can be calculated as:

Eq. (7-6)

Eq. (7-7)

 Eq. (7-8)

Eq. (7-9)

D

tttcc
c bctrb

f

)(

Eq. (7-10)

t

b

t

bb

d

w

d

w

d

w

f

)(4

)(

5

6

100
6

a
N

f

ha
ef 7

7

8)
1000

(8

ajf
f

70

Where,

The time to wear the bit completely is given by:

The time to wear the bearing completely is given by:

The bit life is given by the smallest time values of Eq. (6-14) and Eq. (6-15). If th

>tb, then the final tooth war is calculated:

That value is then substituted into Eq. (6-11) to calculate the footage. The cost per

foot is then calculated by Eq. (6-10).

2

7777

7

2

7

21

11

a

hehheH

a

e
JJD

r

a

f

a

f

aha

H

f

 Eq. (7-11)

 Eq. (7-12)

 Eq. (7-13)

Eq. (7-14)

 Eq. (7-15)

 Eq. (7-16)

)(
6

2

8811

j

jj xaxaaExpJ

]

2
1

1
[]

100
][

4)(

)(

[
2

max

max

3

2
1

HN

d

w
d

w

d

w

H
J

HH

]
100

[]
4

[
Nw

d
t b

Bb

]2/)1[(22 HJt Hh

)/1(/2)(/1(2222 HJHtHhf Hb

71

7.3. Operational Parameters

Figure 7-1: Operational parameters

The proposed approach of Operational Parameters determination has two parts as

shown in Figure 7-1. In the first part, drilling coefficients are determined by using

offset well data and in the second part; these coefficients are used to determine the

optimum WOB and RPM.

The program first determines the drilling coefficient and then these values are

used in optimum WOB and RPM calculation. The user interface of WOB and

RPM determination is shown in Figure 7-2. It provides two options, in option 1-

abrasive constant, bearing constant and drillability should be calculated first from

the offset bit data, and then these values are used in the rest of the calculations. In

this option the list of required input data is shown in Figure 7-3. In option 2,

abrasive constant, bearing constant and drillability should be given as input and

other required inputs are shown in Figure 8-12.

Drilling Coefficients

 a1, a2..a8

Operational Parameter Module

Report

WOB and Rotary Speed

U
S
E
R

I
N
T
E
R
F
A
C
E

72

Figure 7-2: User interface for Operational Parameters module

The program also generates six tables these includes – cost per foot, bit life,

footage drilled, final tooth wear, final bearing wear, penetration rate. Cost per foot

table can be used to quickly identify (Bourgoyne and Young 1974): (1) the best

combination of bit weight and rotary speed; (2) the best rotary speed for a given

bit weight; and (3) the best bit weight for a given rotary speed.

73

Figure 7-3: Operational Parameters user interface option 1

7.4. Summary

The Operational Parameters module is discussed in this chapter. The system can

predict the drilling coefficients by using offset well data and determines the

optimum weight on bit, and the drill string rotation that minimizes drilling cost

per foot for a single bit run.

74

Chapter 8 Case Study

8.1. Introduction

The validation of the various modules of the proposed system was based on

previously published data. In this chapter, several case studies published in

different literature have been considered and compared with the result generated

by the proposed system. Step by step process of casing setting depth and sizes,

casing selection and drill string design have been described with cases. Drilling

coefficients values are compared with published results.

8.2. Case Study for Casing Setting Depth and Size

Determination

Casing setting depth and size of a well is to be designed. The inputs are provided

at the Table 8-1.

Table 8-1: Casing setting depth and size input (Rabia 1985)

Input Type Input Value Unit

True vertical depth, TVD 11,000 ft

Rock poisson‟s ratio, υ 0.4

Over burden, σv 1 psi/ft

Trip margin 0.06 specific gravity

Kick margin 0 specific gravity

Minimum depth of surface section 3000 ft

Number of pore pressure input 8

In order to calculate the casing and hole sizes, formation type and production

casing size are required as input. These two values are not given in the case study.

75

So, assumptions have been made, formation type: hard and production casing

size: 6.625 inch.

The system first estimates the fracture pressure and determines the MSG (Pore

Pressure+ Trip Margin) and FSG (Fracture Pressure-Kick Margin) based on the

input provided, Table 8-2 shows the estimated value.

Table 8-2: Fracture pressure, FSG and MSG estimation

Mud density at the true vertical depth (TVD), i.e. 11 000 ft, is MSG1 = 2.195. The

depth at which MSG1=FSG1 can be found by linear interpolation. In this program

it is assumed that the connecting line between the two neighboring points is

linear. So, the program now determines the depth at which FSG1=2.195. The two

neighboring points of FSG1 are, FSG2= 2.250 and FSG3 = 2.139 and

corresponding depths are Depth2 =11 000 ft and Depth3 = 10 000 ft respectively.

The equation for linear interpolation is as follows:

Input

Number

Depth

(ft)

Pore

Pressure

(psi)

Pore

Pressure

(SG)

Mud

Density,

MSG

(SG)

Fracture

Pressure

(SG)

FSG

(SG)

Input Value (Rabia 1985) Calculated Value

1 3000 1320 1.01 1.076 1.878 1.878

2 5000 2450 1.131 1.191 1.916 1.916

3 8300 4067 1.131 1.191 1.916 1.916

4 8500 4504 1.223 1.283 1.947 1.947

5 9000 5984 1.535 1.595 2.051 2.051

6 9500 6810 1.655 1.715 2.091 2.091

7 10000 7800 1.801 1.860 2.139 2.139

8 11000 10171 2.135 2.195 2.251 2.251

2

23

2321
1

))((
Depth

FSGFSG

DepthDepthFSGFSG
Depth

Eq. (8.1)

ftDetph 104961

76

So, the next casing setting depth should be at 10 496ft. Now it is required to

determine the mud density above 10 496ft. Again the program uses linear

interpolation and the following equation should be used:

Here, Depth1 =10 496ft, Depth2 =11 000ft Depth3 =10 000ft and MSG2=2.195

MSG3= 1.861. So, MSG1= 2.026. These processes continue until the mud density

becomes smaller than the minimum value of the fracture specific gravity or the

depth becomes smaller than the minimum surface casing depth. The results

generated by DrillSoft have been shown in Figure 8-1. These results are closely

matched with the published result as presented in Table 8-3. Note that the report

can be configured via programming, e.g. more intermediate casing stages can be

accommodated.

The parametric 3D model of different casing sections depend on casing setting

depth‟s output, this output now converted into expression files and used for 3D

model generation. Figure 8-2 shows the partial view of the well schematic.

2

23

2123
1

))((
MSG

DepthDepth

DepthDepthMSGMSG
MSG

 Eq. (8.2)

77

Figure 8-1: Casing setting depth and size

Table 8-3: Published result for casing setting depth (Rabia 1985)

 Surface

Casing

Intermediate 1

Casing

Intermediate 2

Casing

Production

Casing

Depth (ft) 3000 8850 10500 11000

Mud Specific

Gravity

1.567 1.567 2.031 2.170

78

Figure 8-2: Partial cutaway view of different casing sections

8.3. Case Study for Casing Selection

A surface casing is to be designed. The case is taken from (Byrom 2007). The

necessary inputs are, Depth= 3000ft; Mud density= 1.11; Casing size= 13 3/8.

Figure 8-3 shows the user interface of surface casing design filled with input. It

should be noted that the option for depth and mud density are not provided in the

user interface. It is due to the fact that, the different parts of the software are

integrated to each other. This integration helps the program to retrieve necessary

information from the system data base. In this particular case, the program

automatically retrieves the depth and mud density value from the casing setting

depth database.

79

Figure 8-3: Surface casing design user interface

The user should provide the specifications of the available casing. The system

takes casing specifications as a text file format and retrieves the required

information from the text file. An example file with the available surface casing

specifications is tabulated in Table 8-4.

Table 8-4: Specification and priority sequence of available casing

Casing

number

OD(inch) ID(inch) Weight

(Kg/ft)

Grade Connection

1 16 12.615 54.5 K-55 ST&C

2 16 12.515 61 K-55 ST&C

3 16 12.415 68 K-55 ST&C

4 16 12.415 68 N-80 ST&C

5 16 12.347 72 N-80 ST&C

After getting the input, the system calculates the collapse and burst rating at the

surface and casing shoe. In this particular case the design collapse pressure at

surface and shoe are 0 and 1620 psi, Design burst pressure at surface and shoe are

2180 and 750 psi. Now the program determines the break points and potential

80

candidates that satisfy both the collapse and burst rating. The break points and

potential candidates are shown in Table 8.5.

Table 8-5: Casing selection break points and potential candidates

No Break Points

(ft)

Potential

Candidates

1 0 1,2,3,4,5

2 2092 2,3,4,5

3 2851 3,4,5

4 3000 3,4,5

According to the algorithm, the first break point (0 ft) contains all 5 available

casing as potential candidates. As available casings were listed according to the

priority of the users, it assumes that, the first casing is more economical and then

the next one and so on. The system selects the 1
st
 candidate, i.e. the number 1

casing with grade K-55 and weight 54.5, and adds minimum casing section

(500ft). Now the program checks the total depth has not achieved yet so it selects

again the number 1 casing from the potential candidates. As it is similar to the

previous casing so this time it will add a minimum value of (Minimum casing

section or (Next break point-Casing covered)), i.e. Min (500 ft, (2092-500=1592

ft)). It is worked out that the minimum casing section (500ft) is the minimum

between these two values. So another 500 ft will add to the previous casing. Now

its length becomes 1000ft. As the closest break point is at 2092ft, this process

continues until it reaches to 2000ft. At this point the system worked out that,

number 1 casing is still a potential candidate and it is similar to the previous

casing. So, minimum value (500, 2092-2000=92) = 92ft. Based on these

conditions, the system selects casing 1 and adds a length of 92ft with the exiting

length. So the total length of casing covered is 2092 ft. As the desired depth is

3000ft and it is not achieved yet the system checks the available potential

candidates and selects the number 2 casing and adds a length of minimum casing

section 500 ft with the previous length. The new length becomes 2592ft still less

than the total depth. The system again selects number 2 casing and worked out the

81

minimum value between (500, 2852-2592 = 260ft) = 260ft. So after adding this

value the length becomes 2852ft. Another 148ft is required to complete the casing

string for surface section. But this remaining section is less than the minimum

casing section length and previously used casing (Number 1 and 2) are not

allowed to use the full depth. Another casing type should be selected. But if the

system selects a new casing type it will not satisfy the minimum casing section

length. To solve this problem a re-evaluation of the design is required. The system

re-evaluate the design and concluded that, instead of using number 2 casing from

2093ft to 2852ft, casing 3 should be used to the total depth. In that case, all the

design criteria are satisfied. So the preliminary design based on collapse and burst

is completed.

The next step is to check whether the designed casing string satisfy the axial load

criteria or not. It is found that the designed casing string has axial load safety

factors of 3.11 and 11.62 for number 1 and number 3 casing respectively. This

concludes the surface casing conceptual design. Figures 8-4 and 8-5 provide the

casing design report, generated by the program. Table 8-6 shows published result

for surface casing selection. It is observed that the proposed system selects the

similar types of casing as those selected in the published work by Byrom (2007).

82

Figure 8-4: Program generated report (Collapse and Burst load)

83

Figure 8-5: Program generated report for surface casing design

Table 8-6: 3/8” Surface casing design published result (Byrom 2007)

Casing No. ID Weight Grade Conn. Bottom

depth

Length Tension

1 12.615 54.5 K-55 ST&C 2100 2100 3.11

3 12.415 68 K-55 ST&C 3000 900 10.38

84

8.4. Case Study for Drill String Design

A drill string is to be designed. The case is taken from API standard handbook

(API RP 7G, 1998). Figure 8-6 shows the user interface of drill string module

filled with input. Table 8-7 shows two drill pipe types available in the inventory.

Figure 8-6: Drill string design user interface

85

Table 8-7: Conceptual design parameters for a drill string

Drill String Components Calculated

Length, (ft)

No. of

array

Length, (ft)

(API RP 7G , 1998)

Drill Collar: 6 ¼”OD X 2 ¼”ID 630 21 630

Drill Pipe Type 1: 4 ½” X 16.6lb,

Grade E75, Class2

6750 225 6759

Drill Pipe Type 2: 4 1/2 “ X

16.6lb,Grade X95, Premium Class

5320 178 5311

Based on the operational input the rule based system designed the drill string that

uses two different types of drill pipes. As mentioned earlier, the program first

considers the most economic drill pipe type among the available two; it first

chooses grade E75 and determines the safe length of 6750 ft. After checking the

length of 21 drill collars and the drill string developed has reached a length of

7380 ft, which is less than required depth of 12700 ft. So the program considers

the second pipe type, grade X95 and determines to use the type for rest of 5320 ft.

The conceptual design of the drill string and API standard hand book result are

presented on Table 8-7. When considering the collapse loading the program

generates messages for the users; in this case it is worked out as 10267 ft and drill

string should not be run dry below this depth otherwise it may cause damage in

the string.

Based on this conceptual design, the system generates the necessary configuration

and specification files and converts these files into expression files. The

expression files for drill pipe, drill collar, and array have been shown in Figure 8-

7, 8-8 and 8-9 respectively. The 3D model of the drill string assembly is presented

in Figure 8- 10.

86

Figure 8-7: Expression file for drill pipe

Figure 8-8: Expression file for drill collar

87

Figure 8-9: Expression file for array of components

88

Figure 8-10: Drill string assembly

89

8.5. Case Study for Operational Parameters

Table 8-8 presents the comparison of the published result with the system

generated result of drilling coefficients. Figure 8-12 shows the input for

Operational Parameters and Figure 8-13 shows the system generated result.

Table 8-8: Comparison of drilling coefficients

Drilling

Coefficients

Calculated Result Published Result

(Bourgoyne et al. 1974)

a1 3.76368 3.78

a2 0.1754 10
-3

 0.17 10
-3

a3 0.1995 10
-3

 0.20 10
-3

a4 0.4281 10
-4

 0.43 10
-4

a5 0.41728 .43

a6 0.1804 0.21

a7 0.411048 0.41

a8 0.16369 0.16

Figure 8-11: System generated output for drilling coefficient

90

Figure 8-12: Operational Parameters determination user input

Figure 8-13: System generated report for optimum WOB and RPM

91

8.6. Summary

Published cases are compared with proposed system generated result. From these

comparisons it is concluded that, the result provided by the proposed program is

quite satisfactory.

92

Chapter 9 Conclusions and Future Work

9.1. Conclusions

The research work has pioneered a proposed integrated approach for well drilling

planning with case studies. A prototype system that integrates three important

well drilling planning stages, i.e. casing design, drill string design and operational

optimization, has been developed. The system generated results for casing setting

depth, casing sizes, casing selections are tested with published result and the

results are promising.

A comprehensive approach for casing design has been proposed that combines the

conceptual and detailed design. The developed prototype produces the casing

setting depth, casing size and selects the economical casing string from the

available inventory. The casing setting depth and casing size output then used to

generate the 3D model of the well configuration. Although at present the

proposed system is capable of handling two intermediate casings only but it is

possible to calculate more intermediate casings by making some customization in

the system knowledge base and user interfaces.

The potential application of knowledge driven CAD in drilling industry is

explored and applied successfully in the drill string design. A parametric and

smart oil well drill string modeling CAD tool has been prototyped that enables

generation of 3D models with built-in engineering rules, constraints and controls

on different application cases with the changing situations throughout each well-

drilling lifecycle. A prototype of common part database has been integrated into

the system so that standard parts can be reused from a well defined library. This

software tool can help the drilling engineer to interactively design and model the

drill string. The drill string design module is capable of handling different

configurations as well as different topologies of components. As the design and

CAD modeling is integrated with each other, any changes in the design will be

reflected in the CAD model.

93

An Operational Parameters module is added with system, this can be useful tool

for prediction of optimum weight on bit and rotary speed during drilling.

The similar concept can be applicable to integrate other planning modules such as

hydraulic program, bit program, time and cost estimation, etc., to a single system.

Such an integrated system will be a very useful decision making tool to the

drilling companies.

9.2. Limitation and Future Work

The developed prototype determines the casing setting depth based on formation

pore pressure and fracture pressure, this process does not always guarantee well

bore stability. Another limitation of the system is that it does not consider the

combined load effect on the casing during casing selection.

At this moment, the reported software tool can only handle vertical oil well and

analysis part of the proposed model is not completed. More research work should

be carried out to develop a generic model which can equally applicable to

horizontal, extended reach and multilateral wells.

94

Bibliography

Al-Yami, A.S., Schubert, J., Medina-Cetina, Z., and Yu, O.-Y. 2010. Drilling

Expert System for the Optimal Design and Execution of Successful Cementing

Practices. Paper SPE 135183-MS presented at the IADC/SPE Asia Pacific

Drilling Technology Conference and Exhibition, Ho Chi Minh City, Vietnam,

1-3 November. doi: 10.2118/135183-MS

Akpan, H.O. 2005. Efficient Computational Method for Casing String Design.

Paper SPE 98790-MS presented at the Annual SPE International Technical

Conference and Exhibition, Abuja, Nigeria, 1-3 August. doi: 10.2118/98790-

MS.

Au, C. K., and Yuen, M. M. F. 2000. A semantic feature language for sculptured

object modelling. Computer-Aided Design 32(1) : 63-74. doi:10.1016/S0010-

4485(99)00085-8.

Andrews P. T. J., Shahin T. M. M., and Sivaloganathan S. 1999. Design Reuse in a

CAD Environment-Four Case Studies. Computer and Industrial Engineering

37(1999): 105-109. doi:10.1016/S0360-8352(99)00033-9.

API RP 7G, Recommended Practice for Drill Stem Design and Operating Limits,

16th Edition. 1998. Washington, DC: API.

Austin, A.Z.1993. Benefits of 3D Visualization to Reservoir Simulation. Paper SPE

26113-MS presented at the SPE Western Regional Meeting, Anchorage, Alaska,

USA, 26-28 May. doi: 10.2118/26113-MS

Byrom, T.G. 2007. Casing and Liners for Drilling and Completion. Houston, Texas:

Gulf Publishing Company.

Bednarz S. 2004. Disgn and Exploitation Problems of Drill String in Directional

Drilling. Acta Motanistica Slovaca 9 (3): 152-155.

Bjornsson, E., Hucik, B., Szutak, G., Brown, L.A., Evans, H., Curry, D., and Perry,

P. 2004. Drilling Optimization Using Bit Selection Expert System and ROP

Prediction Algorithm Improves Drilling Performance and Enhances Operational

Decision Making by Reducing Performance Uncertainties. Paper SPE 90752-

MS presented at the SPE Annual Technical Conference and Exhibition,

Houston, Texas, 26-29 September. doi: 10.2118/90752-MS.

http://dx.doi.org/10.1016/S0010-4485%2899%2900085-8
http://dx.doi.org/10.1016/S0010-4485%2899%2900085-8
http://dx.doi.org/10.1016/S0360-8352%2899%2900033-9

95

Batanov, D. N., and A. K. Lekova. 1993. Data and knowledge integration through

the feature-based approach. Artificial Intelligence in Engineering 8 (1): 77-83.

doi:10.1016/0954-1810(93)90033-C.

Bourgoyne, A. T. Jr., Millhein, K. K., Chenevert, M. E., and Young, F. S. Jr. 1991.

Applied Drilling Engineering. Richardson, Texas: Society of Petroleum

Engineers Textbook Series.

Bourgoyne, A. T. Jr., and Young, F. S. Jr. 1974. A Multiple Regression Approach

to Optimal Drilling and Abnormal Pressure Detection. SPE Journal 14(4): 371-

384, Trans. AIME, SPE-4238-PA. doi: 10.2118/4238-PA.

Chu, C. H., Song, M. C., Luo, C. S. 2006. Computer-aided parametric design for

3D tire mold production. Computers in Industry 57 (1): 11-25

doi:10.1016/j.compind.2005.04.005:

Cunha, J.C. 2002. Drill-String and Casing Design for Horizontal and Extended

Reach Wells Part 1. Paper SPE 79001-MS presented at the SPE International

Thermal Operations and Heavy Oil Symposium and International Horizontal

Well technology Conference, Calgary, Canada, 4-7 November. doi:

10.2118/79001-MS

Cunha, R. R. M., and Dias, A. 2002. A Feature-Based Database Evolution

Approach in the Design Process. Robotics and Computer-Integrated

Manufacturing 18(3-4):275-281. doi:10.1016/S0736-5845(02)00018-2.

Chan, K. C., and Nhieu, J. 1993. A framework for feature-based applications.

Computers & Industrial Engineering 24 (2): 151-164. doi:10.1016/0360-

8352(93)90004-H

Chiu, T.J., and Caudel, F.L.W. 1993. Development of an Expert System to Assist

With Complex Fluid Design. Paper SPE 24416-PA presented at the SPE

Computer Application, Houston, USA, 19-22 July. doi: 10.2118/24416-PA.

Cunningham, J. J., and Dixon, J. R. 1988. Designing with features: The origin of

features. Presented at the Computers in Engineering Conference, San

Francisco, CA, USA, 31 July.

Devereux, S. 1998. Practical Well Planning and Drilling Manual. Tulsa, Oklahama:

Penwell Publishing Company.

http://dx.doi.org/10.1016/0954-1810%2893%2990033-C
http://dx.doi.org/10.1016/j.compind.2005.04.005
http://dx.doi.org/10.1016/S0736-5845%2802%2900018-2
http://dx.doi.org/10.1016/0360-8352%2893%2990004-H
http://dx.doi.org/10.1016/0360-8352%2893%2990004-H

96

Dupriest, F. E., and Koederitz, W. 2005. Maximizing Drill Rates with Real-Time

Surveillance of Mechanical Specific Energy. Paper IADC/SPE 92914-MS

presented at the SPE/IADC Drilling Conference, Dallas, Texas, USA, 9-12

February. doi: 10.2118/92194-MS.

Eren, T., and Ozbayoglu, M. E. 2010. Real Time Optimization of Drilling

Parameters During Drilling Operations. Paper SPE 129126-MS presented at the

SPE Oil and Gas India Conference and Exhibition, Mumbai, India, 20-22

January 2010, doi: 10.2118/129126-MS.

Eaton, B. A. 1969. Fracture gradient prediction and its application in oilfield

operations. Journal of Petroleum Technology 21 (10): 1353–1360. SPE-2163-

PA. doi: 10.2118/2163-PA.

Fear, M.J., Meany, N.C., and Evans, J.M. 1994. An Expert System for Drill Bit

Selection. Paper SPE 27470-MS presented at the IADC/SPE Drilling

Conference, Dallas, Texas, 15-18 February. doi: 10.2118/27470-MS.

Galle, E. M., and Woods, H. B. 1963. Best Constant Weight and Rotary Speed for

Rotary Rock Bits. Drilling and Production Practice, API (1963): 48-73.

Huifen, W., Youliang, Z., and Jian, C. 2003. Feature-based collaborative design.

Journal of Materials Processing Technology 139 (1-3): 613-618.

doi:10.1016/S0924-0136(03)00502-8.

Halal, A. S., D. J. Warling, and R. R. Wagner. 1996. Minimum Cost Casing Design.

Paper SPE 36448-MS presented at the SPE Annual Technical Conference and

Exhibition, Denver, CO, USA, 6-9 October. doi: 10.2118/36448-MS

Heinz, L.R. 1993. CHES – Casing Hydraulic Expert System. SPE Computer

Applications 4(2): 26-31. SPE-24420-PA. doi: 10.2118/24420-PA

Hill, T.H., Guild, G.J., Summers, M.A., T.H. Hill Assocs. 1993. Design Extended

Reach Wells. SPE Drilling & Completion 11 (2): 111-117, SPE-29349-PA. doi:

10.2118/29349-PA

Hayes-Roth, F. 1987. Part 1: Expert Systems Applied to the Petroleum Industry

Upstream Portion. Paper SPE 22411 presented at the 12th World Petroleum

Congress, Houston, USA, April 26 - May 1.

http://dx.doi.org/10.1016/S0924-0136%2803%2900502-8

97

Jellison, M.J. and Klementich, E.F. 1990. An Expert System for Casing String

Design. Paper SPE 20328-MS presented at the fifth SPE Petroleum Computer

Conference, Denver, Colorado, USA, 25-28 June. doi: 10.2118/20328-MS.

Kessler, F. and Smith, J. E. 2001. Component Balanced 4 – inch Drillpipe for 6 –

inch Holes. Available at:

http://www.nov.com/GrantPrideco/Drilling/news_and_articles/componentbalan

c.pdf

Koo, D.-Y., and Han, S.-H. 1998. An object-oriented configuration design method

for paper feeding mechanisms. Expert Systems with Applications 14 (3): 283-

289. doi:10.1016/S0957-4174(97)00081-X.

Kim, C., and O'Grady, P. J. 1996. A representation formalism for feature-based

design. Computer-Aided Design, 28 (6-7): 451-460. doi:10.1016/0010-

4485(95)00042-9.

Kasravi, K. 1994. Understanding knowledge-based CAD/CAM. Computer-Aided

Engineering 13(10): 72-78.

Kappert, J. H., Houten, F. J. A. M. V., and Kals, H. J. J. 1993. The Application of

Features in Airframe Component Design and Manufacturing. CIRP Annals -

Manufacturing Technology 42 (1): 523-526. doi:10.1016/S0007-

8506(07)62500-1.

Kulakofsky, David, Henry, S.R., and Porter, D. 1993. PC-Based Cement Job

Simulator Improves Primary Job Design. Paper SPE 26110-MS presented at the

SPE Western Regional Meeting, Anchorage, Alaska, USA, 26-28 May. doi:

10.2118/26110-MS.

Lin, B. T., Chan, C. K., and Wang, J. C. 2008. A Knowledge-based Parametric

Design System for Drawing Dies. The International Journal of Advanced

Manufacturing Technology 36 (7-8): 671-680. doi: 10.1007/s00170-006-0882-

y.

Liang, W. Y. and Grady, P. O. 2002. An Object-Oriented Formalism for Feature-

based Distributed Concurrent Engineering. Concurrent Engineering 10 (1): 41-

53. doi: 10.1106/106329302024055.

http://www.nov.com/GrantPrideco/Drilling/news_and_articles/componentbalanc.pdf
http://www.nov.com/GrantPrideco/Drilling/news_and_articles/componentbalanc.pdf
http://dx.doi.org/10.1016/S0957-4174%2897%2900081-X
http://dx.doi.org/10.1016/0010-4485%2895%2900042-9
http://dx.doi.org/10.1016/0010-4485%2895%2900042-9
http://dx.doi.org/10.1016/S0007-8506%2807%2962500-1
http://dx.doi.org/10.1016/S0007-8506%2807%2962500-1

98

Lee, R. S., Hsu, Q. C., and Su, S. L. 1999. Development of a parametric computer-

aided die design system for cold forging. Journal of Material Processing

Technlology 91: 80-89. doi:10.1016/S 0924-0136(98) 00427-0.

Lummus, J. L. 1970. Drilling Optimization. Journal of Petroleum Technology

22(11): 1379-1388. SPE-2744-PA. doi: 10.2118/2744-PA.

Ma, Y. -S., Britton, G. A., Tor, S. B., and Jin, L. Y. 2007. Associative assembly

design features: Concept, implementation and application. International Journal

of Advanced Manufacturing Technology 32 (5-6): 434-444. doi: 10.1007/s00

170-005-0371-8.

Menand, S., Sellami, H., Tijani, M., and Stab, O. 2006. Advancements in 3D

Drillstring mechanics: From the Bit to the Topdrive. Paper SPE 98965-MS

presented at the IADC/SPE Drilling Conference, Miami, USA, 21-23 February.

doi: 10.2118/98965-MS

Ma, Y. -S., and Tong, T. 2003. Associative feature modeling for concurrent

engineering integration. Computers in Industry 51(5) : 51-71.

doi:10.1016/S0166-3615(03)00025-3.

Ma, Y. -S., Tor, S.B., and Britton, G.A. 2003. The development of standard

component library for plastic injection mould design using an object oriented

approach. International Journal of Advance Manufacturing Technology 22(9-

10): 611-618.

Ma, Y. -S., Britton, G. A., Tor, S. B., Gunawan, E., and Lee, C.H. 2003. Standard

Component Library Design and Implementation for Plastic Injection Mold

Design with CAD Tool. Presented at the Fourth International Conference on

Control and Automation (ICCA‟ 03), Montreal, Canada, 10-12 June

Mendes, J.R.P., Morooka, C.K., and Guilherme, I.R. 2003. Case based Reasoning

in Offshore Well Design. Journal of Petroleum Science and Engineering 40(1-

2): 47-60. doi: 10.1016/S0920-4105(03)00083-4.

Morooka, C.K., Guilherme, I.R., and Mendes, J.R.P. 2001. Development of

intelligent systems for well drilling and petroleum production. Journal of

Petroleum Science and Engineering 32 (2-4): 191-199. doi: 10.1016/S0920-

4105(01)00161-9.

http://dx.doi.org/10.1016/S0166-3615%2803%2900025-3
http://dx.doi.org/10.1016/S0920-4105%2803%2900083-4
http://dx.doi.org/10.1016/S0920-4105%2801%2900161-9
http://dx.doi.org/10.1016/S0920-4105%2801%2900161-9

99

Myung, S., and Han, S. 2001. Knowledge-Based Parametric Design of Mechanical

Products Based on Configuration Design Method. Expert Systems with

Applications 21(2): 99-107.

Mehra, S. 1997. Replacing 5 inch and 3-1/2inch Drill Pipe with a Single String of 4

inch Drill Pipe. Paper SPE 37648 presented at the SPE/IADC Drilling

Conference, Amsterdam, The Netherlands, 4-6 March.

Mattiello, D., and Sansone, A. 1992. CASCADE: A Knowledge-Based Drilling

Engineering Software Tool. Paper SPE 24273-MS presented at the SPE

European Petroleum Compute Conference, Stanvanger, Norway, 24-27 May.

doi: 10.2118/24273-MS.

Mattiello, D., Piantanida, M., Schenato, A., and Tomada, L. 1993. Casing shoe

depths accurately and quickly selected with computer assistance. Oil & Gas

Journal 91(40):86-93.

Martinez, E. 1992. Directional Drilling Expert System. Paper SPE 23664-MS

presented at the SPE Latin America Petroleum Engineering Conference,

Caracas, Venezuela, March 8-11. doi: 10.2118/23664-MS.

Maidla, E.E., and Ohara, S. 1991. Field Verification of Drilling Models and

Computerized Selection of Drill Bit, WOB, and Drillstring Rotation. SPE

Drilling Engineering 6(3): 189-195, SPE-19130-PA. doi: 10.2118/19130-PA.

Mabile, C.M., and Hamelin, J-P.A. 1989. An Expert System Helps in Formation

Recognition. Paper SPE 19132-MS presented at the Petroleum Computer

Conference, San Antonio, Texas, USA, 26-28 June. doi: 10.2118/19132-MS.

Ovtcharova, J., and Jasnoch, U. 1994. Featured-based design and consistency

management in CAD applications: a unified approach. Advances in Engineering

Software 20 (2-3): 65-73. doi:10.1016/0965-9978(94)90050-7.

Ovtcharova, J., Pahl, G., and Rix, J. 1992. Proposal for feature classification in

feature-based design. Computers and Graphics 16(2): 187-195.

doi:10.1016/0097-8493(92)90046-X.

Rahman, S.M.R., and Ma, Y.-S. 2011. Smart CAD Modeling for Well-drilling

String Design. a paper being developed.

http://dx.doi.org/10.1016/0965-9978%2894%2990050-7
http://dx.doi.org/10.1016/0097-8493%2892%2990046-X

100

Rahman, S.M.R., and Ma, Y.-S. 2011. Knowledge driven generic drill string

modeling. submitted to CANCAM 2011, 23rd Canadian Congress of Applied

Mechanics, 2011, Vancouver, BC, Canada

Rashidi, B., Harland, G. and Nygaard, R. 2008. Real-Time Drill Bit Wear

Prediction by Combining Rock Energy and Drilling Strength Concepts. Paper

SPE 117109-MS presented at the Abu Dhabi International Petroleum Exhibition

and Conference, Abu Dhabi, UAE, 3-6 November. doi: 10.2118/117109-MS.

Rahman, S. S., and Chilingarian, G. V. 1995. Casing Design Theory and Practice.

Amsterdam, The Netherlands: Elsevier.

Roque, J. L., E. E. Maidla, and R. R. Wagner. 1994. Casing Cost Optimization for

Complex Loading Situations. SPE Computer Applications 12(4): 24-29, SPE-

28224-PA. doi: 10.2118/28224-PA.

Rabia, H. 1988. Discussion of Minimum Cost Casing Design for Vertical and

Directional Wells. Journal of Petroleum Technology 504-506, SPE-17100.

 Rabia, H. 1985. Oil Well Drilling Engineering Principles and Practice. London:

Graham and Trotman Inc.

Reed, R. L. 1972. A Monte Carlo Approach to Optimal Drilling. SPE Journal 12

(5): 423-438. SPE-3513-PA. doi: 10.2118/3513-PA.

Shokouhi, S. V., Skalle, P., Aamodt, A., and Sørmo, A. 2009. Integration of Real-

time Data and Past Experiences for Reducing Operational Problems. Paper SPE

13969-MS presented at the International Petroleum Technology Conference,

Doha, Qatar, 7-9 December 2009. doi: 10.2523/13969-MS.

Siddique, Z., and Yanjiang, Z. 2002. Automatic Generation of Product Family

Member CAD Models Supported by A Platform Using a Template approach.

ASME DETC Conference, Montreal, Canada.

Schulte, M., Weber, C., and Stark, R. 1993. Functional features for design in

mechanical engineering. Computers in Industry 23 (1-2): 15-24.

doi:10.1016/0166-3615(93)90111-D.

Salomons, O., Houten, F. V., and Kals, H. 1993. Review of Research in Feature-

Based Design. Journal of Manufacturing Systems 12(6):514-515.

doi:10.1016/0278-6125(93)90012-I.

http://dx.doi.org/10.1016/0166-3615%2893%2990111-D
http://dx.doi.org/10.1016/0278-6125%2893%2990012-I

101

Shah, J. J. 1991. Assessment of features technology. Computer-Aided Design 23

(5): 331-343. doi:10.1016/0010-4485(91)90027-T.

Shah, J. J. 1989. Philosophical development of form feature concept. Presented at

the NSF Engineering Design Research Conference. Amherst, MA, USA.

Shah, J. J., and Rogers, M. T. 1988. Expert form feature modeling shell. Computer

Aided Design 20 (9): 515-24. doi:10.1016/0010-4485(88)90041-3.

Shah, Jami J. 1988. Feature transformations between application-specific feature

spaces. Computer-Aided Engineering Journal 5 (6): 247-255.

Shah, Jami J., and Rogers, M. T. 1988. Functional Requirements and Conceptual

Design of the Feature-based Modeling System. Computer-Aided Engineering

Journal 5 (1): 9-15.

Van't Erve, A. H. 1988. Generative computer aided process planning for part

manufacturing: An expert system approach. Ph.D. dissertation, University of

Twente, The Netherlands.

Wojtanowicz, A.K., and Maidla, E.E, 1987. Minimum-Cost Casing Design for

Vertical and Directional Well. Journal of Petroleum Technology 39 (10): 1269-

1282, SPE 14499-PA. doi: 10.2118/14499-PA.

Zha, X.F., Du, H.J., and Qiu, J.H. 2001. Knowledge-Based Approach and System

for Assembly-Oriented Design, Part II: The System Implementation.

Engineering Applications of Artificial Intelligence 14(2): 239-254.

doi:10.1016/S0952-1976(00)00061-0.

http://dx.doi.org/10.1016/0010-4485%2891%2990027-T
http://dx.doi.org/10.1016/0010-4485%2888%2990041-3
http://dx.doi.org/10.1016/S0952-1976%2800%2900061-0

102

Appendix A Engineering Calculations

A.1 Casing Design Load Calculation (Byrom 2007):

Surface casing collapse load at the casing surface -

 Internal pressure: Zero

 External pressure: Zero

0__ surfacecSP
Eq. (A-1)

Surface casing collapse load at the casing shoe -

 Internal pressure: Atmospheric pressure or zero

 External pressure: Mud pressure when run

0__ hP mudshoecS Eq. (A-2)

Surface casing burst load at the casing surface -

 Internal pressure: Surface casing full of gas, all the way from shoe to the

top.

 External pressure: Zero

avgZRT

hhgM

fracturesurfacebS ePP

)(

__

12

Eq. (A-3)

Surface casing burst load at the casing shoe -

 Internal pressure: Equivalent of gas kick that fracture and flows into

formation below casing shoe

 External pressure: Freshwater gradient

hP waterfractureshoebS)(__ Eq. (A-4)

Intermediate casing collapse load at the casing surface –

 Internal pressure: Zero

 External pressure: Zero

103

0__ surfacecIP Eq. (A-5)

Intermediate casing collapse load at the casing shoe–

 Internal pressure: Fresh water on the inside

 External pressure: Mud pressure when run

hP watermudshoecI)(__ Eq. (A-6)

Intermediate casing burst load at the casing surface–

 Internal pressure: Gas inside with gas pressure at the surface

 External pressure: Zero

avgZRT

hhgM

fracturesurfacebI ePP

)(

__

12

Eq. (A-7)

Intermediate casing burst load at the casing shoe–

 Internal pressure: Fracture pressure at the shoe

 External pressure: Freshwater gradient behind the casing

hP waterfractureshoebI)(__ Eq. (A-8)

Production casing collapse load at the casing surface–

 Internal pressure: Zero

 External pressure: Zero

0__ surfacecPP
Eq. (A-9)

Production casing collapse load at the casing shoe–

 Internal pressure: Empty on the inside

 External pressure: Mud pressure when run

0__ hP mudshoecP Eq. (A-10)

Production casing burst load at the casing surface–

 Internal pressure: Gas inside with gas pressure at the surface

 External pressure: Zero

104

Production casing burst load at the casing shoe–

 Internal pressure: Fracture pressure at the shoe

 External pressure: Freshwater gradient behind the casing

Temperature Calculation:

It is assumed that the temperature gradient is linear. So Taverage can be calculated

as –

A.2 Drill String Design Calculation (API RP 7G, 1998):

Length of collar,

Length of drill pipe

Or

avgZRT

hhgM

fracturesurfacebP ePP

)(

__

12

Eq. (A-11)

hP waterporeshoebP)(__
Eq. (A-12)

R
TT

T
shoesurface

average

0420
2

Eq. (A-13)

))((surfaceTVD
shoe

surfaceshoe TT
TVD

D
TT

Eq. (A-14)

cb

wm
c

WkNPCos

Bit
L

Eq. (A-15)

dp

cc

dpb

t
dp

W

LW

WkSF

P
L

9.0

Eq. (A-16)

105

Allowable collapse factor

If no fluid inside the pipe, the actual collapse pressure may be calculated by –

Or

dp

cc

dpb

t
dp

W

LW

Wk

MOPP
L

9.0

Eq. (A-17)

F

p

ac
S

P
P

Eq. (A-18)

251.19

g

c

LW
P

Eq. (A-19)

144

f

c

LW
P

Eq. (A-20)

106

Appendix B Programming Codes

B.1 NX Code for Drill String Design:

Header File

#Drill_string.h

int Drill_string_save_close();

int Drill_string_assembly(tag_t *drill_pipe,tag_t *drill_collar,tag_t *hwdp,tag_t *drill_bit,tag_t *bit_sub);

int Drill_pipe_sub_assembly(tag_t *drill_pipe_body,tag_t *dp_Tj_pin,tag_t *dp_Tj_box);
int Drill_string_comp_creation(tag_t *drill_pipe, tag_t *drill_collar, tag_t *hwdp, tag_t *drill_bit, tag_t *bit_sub);

int Drill_pipe_comp_creation(tag_t *drill_pipe_body, tag_t *dp_Tj_pin, tag_t *dp_Tj_box);

#define UF_CALL(X) (report_error(__FILE__, __LINE__, #X, (X)))
int report_error(char *file, int line, char *call, int irc); // for error checking

int drill_pipe_expr(void);

//int Drill_string_comp_dp_ieu(tag_t *new_part);
//int Drill_pipe_subassembly(tag_t *dp_body,tag_t *dp_Tj_pin,tag_t *dp_Tj_box);

int Drill_pipe_body(void);
int Drill_pipe_tool_joint_pin(void);

int Drill_pipe_tool_joint_box(void);

int Drill_collar(void);
int Bit_sub_A(void);

int Drill_bit(void);

int Drill_string_drill_pipe_array(int dptotal, double dst_btn_dp, tag_t *parent, tag_t *comp);
int Drill_string_drill_collar_array(int dctotal, double dst_btn_dc, tag_t *parent, tag_t *comp);

Drill_string_save_close //Save and close existing file

#include <string.h>

#include <uf_defs.h>

#include <uf.h>
#include <uf_modl.h>

#include <uf_part.h>

#include <uf_ui.h>

#include "Drill_string.h"

int Drill_string_save_close()
{

/********************* Routine variable declaration ********************/

 char option[2][38], /* menu options */

 estr[132]; /* general purpose string */

 int numparts, /* number of currently loaded parts */

 deflt, /* menu default */

 errcount, /* count of errors from UF_PART_save_all */
 errcodes, / error codes from UF_PART_save_all */

 resp; /* user response */

 tag_t parent, /* tag of parent part */

 errtags; / tags of parts that failed to save */

 UF_PART_load_status_t estat; /* structure for load part */

/********************* Beginning of Executable code **********************/

/* Determine if any parts are open */
 numparts = UF_PART_ask_num_parts();

 if(numparts > 0)

 {
 /* Put up 2 options; Save and close or close without saving.

 Use the 'Save' option as the default. */

107

 uc1601("Input save options", 1);

 strcpy(estr,"Select Save Options");
 strcpy(option[0],"Save & Close");

 strcpy(option[1], "Close");

 deflt=1; //changed
 resp=uc1603(estr, deflt, option, 2); //changed

 /* Return a 1 if Back or 2 if Cancel was picked, or perform selected option. */

 if(resp==1) return(0);

 if(resp==2) return (0); //changed
 if (resp==5)

 { /* save & close */

 // printf("Save & close\n");
 UF_PART_save_all(&errcount, &errtags, &errcodes);

 UF_PART_close_all();

 }
 else if(resp==6)

 { /* close without save */

 // printf("close\n");

 UF_PART_close_all();

 }

 }

/* Retrieve Drill_string_assembly.prt using UF_PART_open. Display an error

 dialog and return an non-zero if an error occurs. */
 strcpy(estr,

"D:\\Amar_Gobesona\\Nx_Open\\Drill_String_Modeling\\Drill_string_assembly\\Drill_string_model\\Assembly.prt");
 //changed

 resp=UF_PART_open(estr, &parent, &estat);
 if(resp!=0)

 { uc1601("Error while opening drill_string.prt",1);

 if(estat.n_parts !=0)
 { UF_free(estat.statuses);

 UF_free_string_array(estat.n_parts, estat.file_names);

 }
 }

 return (resp);

}

Utility_fucntion //To check error in the NX functions

#include <uf_part.h>
#include <uf_ui.h>

#include <uf.h>

#include <stdio.h>

int report_error(char *file, int line, char *call, int irc)
{

 if (irc)

 {
 char err[133],

 msg[133];

 sprintf(msg, "*** ERROR code %d at line %d in %s:\n+++ ",

 irc, line, file);

 UF_get_fail_message(irc, err);

 UF_print_syslog(msg, FALSE);

 UF_print_syslog(err, FALSE);
 UF_print_syslog("\n", FALSE);

 UF_print_syslog(call, FALSE);
 UF_print_syslog(";\n", FALSE);

 if (!UF_UI_open_listing_window())
 {

 UF_UI_write_listing_window(msg);

108

 UF_UI_write_listing_window(err);

 UF_UI_write_listing_window("\n");
 UF_UI_write_listing_window(call);

 UF_UI_write_listing_window(";\n");

 }
 }

 return(irc);
}

int save_close_part(void)
{ /* Determine if any parts are open */

 int numparts = UF_PART_ask_num_parts();
 if(numparts > 0)

 {

 }

 return (0);

}

Drill_string_model // Main function of the progam that calls other sub routines

/* Include files */
#if ! defined (__hp9000s800) && ! defined (__sgi) && ! defined (__sun)

include <strstream>

include <iostream>
 using std::ostrstream;

 using std::endl;

 using std::ends;
 using std::cerr;

#else

include <strstream.h>
include <iostream.h>

#endif

#include <uf.h>

#include <uf_ui.h>

#include <uf_exit.h>

#include "Drill_string.h"

#define UF_CALL(X) (report_error(__FILE__, __LINE__, #X, (X)))

static int report_error(char *file, int line, char *call, int irc)
{

 if (irc)

 {
 char err[133],

 msg[133];

 sprintf(msg, "*** ERROR code %d at line %d in %s:\n+++ ",

 irc, line, file);

 UF_get_fail_message(irc, err);

 UF_print_syslog(msg, FALSE);

 UF_print_syslog(err, FALSE);
 UF_print_syslog("\n", FALSE);

 UF_print_syslog(call, FALSE);

 UF_print_syslog(";\n", FALSE);

 if (!UF_UI_open_listing_window())
 {

 UF_UI_write_listing_window(msg);

 UF_UI_write_listing_window(err);
 UF_UI_write_listing_window("\n");

 UF_UI_write_listing_window(call);

109

 UF_UI_write_listing_window(";\n");

 }
 }

 return(irc);
}

extern DllExport void ufusr(char *parm, int *returnCode, int rlen)

{
 //Routine variable declaration

 tag_t drill_pipe,
 drill_collar,

 hwdp,

 drill_bit,
 bit_sub;

 tag_t drill_pipe_body,

 dp_Tj_pin,

 dp_Tj_box;

 int flag;

 /* Initialize the NX environment */

 if(UF_CALL(UF_initialize()))
 {

 /* Failed to initialize */
 return;

 }

 flag=Drill_string_save_close();

 if(flag!=0) return;

 flag=Drill_string_assembly(&drill_pipe,&drill_collar,&hwdp,&drill_bit,&bit_sub);

 if(flag!=0) return;
 flag=Drill_string_comp_creation(&drill_pipe, &drill_collar,

 &hwdp, &drill_bit, &bit_sub);

 if(flag!=0) return;

 /* Terminate the NX environment */
 UF_CALL(UF_terminate());

}

extern int ufusr_ask_unload(void)

{

 return(UF_UNLOAD_IMMEDIATELY);

}

Drill_string_assembly // Creates the drill string assembly in top down appraoch

Drill_string_assembly

#include <string.h>

#include <uf.h>

#include <uf_defs.h>
#include <uf_part.h>

#include <uf_layer.h>

#include <uf_param.h>
#include <uf_ui.h>

#include <uf_assem.h>

#include <uf_modl.h>
#include <stdio.h>

#include "Drill_string.h"

#define UF_CALL(X) (report_error(__FILE__, __LINE__, #X, (X)))

110

static int report_error(char *file, int line, char *call, int irc)

{
 if (irc)

 {

 char err[133],
 msg[133];

 sprintf(msg, "*** ERROR code %d at line %d in %s:\n+++ ",
 irc, line, file);

 UF_get_fail_message(irc, err);

 UF_print_syslog(msg, FALSE);

 UF_print_syslog(err, FALSE);

 UF_print_syslog("\n", FALSE);
 UF_print_syslog(call, FALSE);

 UF_print_syslog(";\n", FALSE);

 if (!UF_UI_open_listing_window())

 {

 UF_UI_write_listing_window(msg);

 UF_UI_write_listing_window(err);

 UF_UI_write_listing_window("\n");

 UF_UI_write_listing_window(call);
 UF_UI_write_listing_window(";\n");

 }

 }

 return(irc);
}

int Drill_string_assembly(tag_t *drill_pipe,tag_t *drill_collar,tag_t *hwdp,tag_t *drill_bit,tag_t *bit_sub)

{

/******************** Routine variable declaration *******************/

 char pname[MAX_FSPEC_SIZE+1], /* new part name */
 refset[MAX_ENTITY_NAME_SIZE+1], /* reference set name */

 iname[MAX_ENTITY_NAME_SIZE+1]; /* name of comp inst */

 tag_t workp, /* current work part */

 nullt;

 int units, /* 1 = millimeters, 2 = inches */

 /*i, */ /* loop variable */ //dont understand

 flag; /* results from create component */

 int zero=0, one=1, two=2, three=3, output=0;

 int layer;
 double imat[]={1.0, 0.0, 0.0,

 0.0, 1.0, 0.0 }, /* orientation for components */

 imat_dc[]={1.0, 0.0, 0.0,
 0.0, -1.0, 0.0 }, /* Orientation of drill collar*/

 imat_bs[]={1.0, 0.0, 0.0,

 0.0, 1.0, 0.0 }, /* Orientation of bit sub*/
 imat_db[]={1.0, 0.0, 0.0,

 0.0, -1.0, 0.0 }; /* Orientation of drill bit*/

 double origin_1[]={0.0, 0.0, dp_origin};/* drill pipe position */

 double origin_2[]={0.0,0.0,dc_origin};/* drill collar position*/
 double origin_3[]={0.0,0.0,bit_sub_origin };/* bit sub position*/

 double origin_4[]={0.0,0.0,0.0};/* drill bit position*/

 double origin_5[]={0.0, 0.0, 0.0}; /* heavy weight drill pipe position */

 workp = UF_ASSEM_ask_work_part();
 units = 2; //changed

 nullt = NULL_TAG;

111

 strcpy(pname,"drill_pipe");

 refset[0] = '\0';

 strcpy(iname,"DRILL_PIPE");
 flag=UF_CALL(UF_ASSEM_create_component_part(workp,pname,refset,iname,

 units,zero,origin_1,imat,zero,&nullt,drill_pipe));

 flag=UF_LAYER_set_status(2,2);

 strcpy(pname,"drill_collar");

 strcpy(iname,"DRILL_COLLAR");
 flag=UF_ASSEM_create_component_part(workp,pname,refset,iname,

 units,two,origin_2,imat_dc,zero,&nullt,drill_collar);

 flag=UF_LAYER_set_status(3,2);

 strcpy(pname,"hwdp");
 strcpy(iname,"HWDP");

 flag=UF_ASSEM_create_component_part(workp,pname,refset,iname,

 units,three,origin_5,imat,zero,&nullt,hwdp);

 strcpy(pname,"bit_sub");

 refset[0] = '\0'; //dont understand
 strcpy(iname,"BIT_SUB");

 flag=UF_CALL(UF_ASSEM_create_component_part(workp,pname,refset,iname,

 units,zero,origin_3,imat_bs,zero,&nullt,bit_sub));

 strcpy(pname,"drill_bit");
 refset[0] = '\0'; //dont understand

 strcpy(iname,"DRILL_BIT");

 flag=UF_CALL(UF_ASSEM_create_component_part(workp,pname,refset,iname,
 units,zero,origin_4,imat_db,zero,&nullt,drill_bit));

 return (0);

}

Drill_string_comp_creation //Creates the drill string components

#Drill_string_comp_creation

#include <stdio.h>

#include <uf_obj.h>

#include <uf_defs.h>
#include <uf_part.h>

#include <uf_assem.h>

#include <uf_modl.h>
#include <math.h>

#include <uf.h>

#include <uf_defs.h>
#include <uf_csys.h>

#include "Drill_string.h"

/* utilities */

//#define UF_CALL(X) (report(#X, __FILE__, __LINE__, (X)))

static int report(char *call, char *file, int line, int irc)

{
 if (irc)

 {

 char messg[133];
 printf("%s\n%s, line %d: ", call, file, line);

 (UF_get_fail_message(irc, messg)) ?
 printf("returned %d\n", irc):

 printf("error %d: %s\n", irc, messg);

 }
 return(irc);

}

112

int Drill_string_comp_creation(tag_t *drill_pipe, tag_t *drill_collar,

 tag_t *hwdp, tag_t *drill_bit, tag_t *bit_sub)

{

/******************** Routine variable declaration *******************/
 int color, /* default entity color */

 layer, /* default entity layer */

 density, /* default entity width */
 font; /* default line font */

 int flag; /* results from functions */

 tag_t wpart, /* part associated with component */

 parent; /* current work part; root of the assembly */
 tag_t abc,

 drill_pipe_body,

 dp_Tj_pin,

 dp_Tj_box;

/******************** Beginning of Executable code *********************/

/* Set parent to the current work part */

 parent = UF_ASSEM_ask_work_part();

 wpart=UF_ASSEM_ask_child_of_instance(*drill_pipe);
 if(wpart==NULL_TAG)return(1);

 flag=UF_CALL(UF_PART_set_display_part(wpart));

 if (flag != 0) return(flag);

/* Set the defaults for object creation color, layer, density and font */

 color = 7;
 layer = 1;

 density = 2;

 font = 1;
 FTN(uf5025)(&color,&layer,&density,&font);

/* Call the routine that creates the drill pipe sub assembly. */

 flag=Drill_pipe_sub_assembly(&drill_pipe_body,&dp_Tj_pin,&dp_Tj_box);

 flag=Drill_pipe_comp_creation(&drill_pipe_body,&dp_Tj_pin,&dp_Tj_box);

 /* Array of drill pipe*/

 wpart=UF_ASSEM_ask_child_of_instance(*drill_collar);

 if(wpart==NULL_TAG)return(1);
 flag=UF_CALL(UF_PART_set_display_part(wpart));

 if (flag != 0) return(flag);

/* Set the defaults for object creation color, layer, density and font */

 color = 7;

 layer = 1;
 density = 2;

 font = 1;

 FTN(uf5025)(&color,&layer,&density,&font);

/* Call the routine that creates drill collar. */
 flag = Drill_collar();

 if(flag != 0) return (flag);

 wpart=UF_ASSEM_ask_child_of_instance(*bit_sub);

 if(wpart==NULL_TAG)return(1);
 flag=UF_CALL(UF_PART_set_display_part(wpart));

 if (flag != 0) return(flag);

113

/* Set the defaults for object creation color, layer, density and font */

 color = 7;
 layer = 1;

 density = 2;

 font = 1;
 FTN(uf5025)(&color,&layer,&density,&font);

/* Call the routine that creates drill collar. */

 flag = Bit_sub_A();

 if(flag != 0) return (flag);

/* Set the display part to the parent (original work/display part) */

 flag=UF_CALL(UF_PART_set_display_part(parent));
 if (flag != 0) return(flag);

 wpart=UF_ASSEM_ask_child_of_instance(*drill_bit);
 if(wpart==NULL_TAG)return(1);

 flag=UF_CALL(UF_PART_set_display_part(wpart));

 if (flag != 0) return(flag);

/* Set the defaults for object creation color, layer, density and font */

 color = 7;
 layer = 1;

 density = 2;

 font = 1;
 FTN(uf5025)(&color,&layer,&density,&font);

/* Call the routine that creates drill collar. */

 flag = Drill_bit ();
 if(flag != 0) return (flag);

/* Set the display part to the parent (original work/display part) */

 flag=UF_CALL(UF_PART_set_display_part(parent));

 if (flag != 0) return(flag);

/*Array Drill Pipe*/
double dptotal;

double dst_btn_dp;

double dctotal=5;
double dst_btn_dc=36;

//tag_t *parent;

flag = UF_CALL(UF_MODL_import_exp("D:\\Amar_Gobesona\\Nx_Open\\Journal_1\\Array.exp",0));

 if (flag) return flag;

 flag=UF_CALL(UF_MODL_eval_exp("dptotal", &dptotal));
 if (flag!=0) return(flag);

 flag=UF_CALL(UF_MODL_eval_exp("dst_btn_dp", &dst_btn_dp));

 if (flag!=0) return(flag);

 flag=Drill_string_drill_pipe_array(dptotal,dst_btn_dp, &parent, drill_pipe);

 flag=Drill_string_drill_collar_array(dctotal, dst_btn_dc, &parent,drill_collar);

 return (0);

}

Drill_pipe_body/ / Code for drill pipe body

Drill_pipe_body

#include <stdio.h>

#include <uf_part.h>

#include <uf_modl.h>
#include <uf_obj.h>

#include <uf_ui.h>

#include <string.h>
#include <math.h>

114

#include <uf_attr.h>

#include <NXOpen/Session.hxx>

using namespace NXOpen;

#include "Drill_string.h"

#define PART_PATH "D:\\Amar_Gobesona\\Nx_Open\\Journal_1\\Drill_pipe_internal_external_upset_expression.exp"

int Drill_pipe_body(void)

{

 char svalue[30]; /* string for attribute value */
 UF_ATTR_value_t att_value; /* attribute data structure */

 int flag = 0;

 flag = UF_CALL(UF_MODL_import_exp(PART_PATH,0));

 if (flag) return flag;

 flag = UF_CALL (UF_MODL_update());

 if (flag) return flag;

 double Dp_ieu_origin[3],

 Dp_ieu_direction[3];
 tag_t Dp_ieu_body,

 cyl_feature_Dp_ieu_1;

 Dp_ieu_origin[0] = 0.0;

 Dp_ieu_origin[1] = 0.0;
 Dp_ieu_origin[2] = 0.0;

 Dp_ieu_direction[0] = 0.0;
 Dp_ieu_direction[1] = 0.0;

 Dp_ieu_direction[2] = 1.0;

 // Create the cylinder and check the return code

 flag = UF_CALL(UF_MODL_create_cyl1(UF_NULLSIGN, Dp_ieu_origin, "Dp_ieu_leu", "Dp_ieu_uod",
Dp_ieu_direction, &cyl_feature_Dp_ieu_1));

 if(flag!=0)

 uc1601("Error in upset cylinder bottom creation",1);

 // Obtain the body tag from the feature tag.

 // Assign the name LONG_CYL to the body. Check the return code.
 flag = UF_CALL(UF_MODL_ask_feat_body(cyl_feature_Dp_ieu_1, &Dp_ieu_body));

 flag = UF_CALL(UF_OBJ_set_name(Dp_ieu_body, "Dp_ieu_LONG_CYL"));

 //Creating cone at the bottom

 double Dp_ieu_origin_3[3];
 double Dp_ieu_direction_3[3];

 char * Dp_ieu_diameter_3[2]={"Dp_ieu_uod","Dp_ieu_od"};

 tag_t Dp_ieu_cone1;

 flag=UF_CALL(UF_MODL_eval_exp("Dp_ieu_leu", &Dp_ieu_origin_3[2]));

 if(flag!=0) return (flag);

 Dp_ieu_origin_3[0] = 0.0;

 Dp_ieu_origin_3[1] = 0.0;

 Dp_ieu_direction_3[0] = 0.0;
 Dp_ieu_direction_3[1] = 0.0;

 Dp_ieu_direction_3[2] = 1.0;

 flag=UF_CALL(UF_MODL_create_cone1(UF_POSITIVE,Dp_ieu_origin_3,"Dp_ieu_lit_meu",Dp_ieu_diamet

er_3,Dp_ieu_direction_3, &Dp_ieu_cone1));

 if (flag!=0)
 uc1601("Vhul hoise mamu cone in Dp_ieu",1);

 // creating drill pipe body

115

 double Dp_ieu_origin_4[3],
 Dp_ieu_direction_4[3];

 tag_t cyl_feature_Dp_ieu_2;

 flag=UF_CALL(UF_MODL_eval_exp("Dp_ieu_sum_leu_meu", &Dp_ieu_origin_4[2]));

 if(flag!=0) return (flag);

 Dp_ieu_origin_4[0] = 0.0;
 Dp_ieu_origin_4[1] = 0.0;

 Dp_ieu_direction_4[0] = 0.0;
 Dp_ieu_direction_4[1] = 0.0;

 Dp_ieu_direction_4[2] = 1.0;

 // Create the cylinder and check the return code

 flag = UF_CALL(UF_MODL_create_cyl1(UF_POSITIVE, Dp_ieu_origin_4, "Dp_ieu_subtract_length", "Dp_ieu_od",

Dp_ieu_direction_4, &cyl_feature_Dp_ieu_2));
 if(flag!=0)

 uc1601("Error in drill pipe body creation",1);

//Creating cone at the top

 double Dp_ieu_origin_5[3];

 double Dp_ieu_direction_5[3];
 char * Dp_ieu_diameter_5[2]={"Dp_ieu_od","Dp_ieu_uod"};

 tag_t Dp_ieu_cone2;
 flag=UF_CALL(UF_MODL_eval_exp("Dp_ieu_subtract_length_2", &Dp_ieu_origin_5[2]));

 if(flag!=0) return (flag);
 Dp_ieu_origin_5[0] = 0.0;

 Dp_ieu_origin_5[1] = 0.0;

 Dp_ieu_direction_5[0] = 0.0;
 Dp_ieu_direction_5[1] = 0.0;

 Dp_ieu_direction_5[2] = 1.0;

 flag=UF_CALL(UF_MODL_create_cone1(UF_POSITIVE,Dp_ieu_origin_5,"Dp_ieu_lit_meu",Dp_ieu_diamet

er_5,Dp_ieu_direction_5, &Dp_ieu_cone2));

 if (flag!=0)
 uc1601("Vhul hoise mamu cone in Dp_eu",1);

 // creating a upset cylinder feature in the top of the part(External upset).

 double Dp_ieu_origin_6[3],

 Dp_ieu_direction_6[3];
 tag_t cyl_feature_Dp_ieu_3;

 flag=UF_CALL(UF_MODL_eval_exp("Dp_ieu_subtract_length_2_meu", &Dp_ieu_origin_6[2]));
 if(flag!=0) return (flag);

 Dp_ieu_origin_6[0] = 0.0;

 Dp_ieu_origin_6[1] = 0.0;

 Dp_ieu_direction_6[0] = 0.0;

 Dp_ieu_direction_6[1] = 0.0;
 Dp_ieu_direction_6[2] = 1.0;

 flag = UF_CALL(UF_MODL_create_cyl1(UF_POSITIVE, Dp_ieu_origin_6, "Dp_ieu_leu", "Dp_ieu_uod",

Dp_ieu_direction_6, &cyl_feature_Dp_ieu_3));

 if(flag!=0)

 uc1601("Error in external upset at the top creation",1);

 double Dp_ieu_point_7[3]={0.0,0,0};
 double Dp_ieu_direc_7[3]={0,0,1};

 tag_t Dp_ieu_dplane_4_external_upset_bottom;

 flag=UF_MODL_create_fixed_dplane(Dp_ieu_point_7,Dp_ieu_direc_7,&Dp_ieu_dplane_4_external_upset_bo
ttom);

 double Dp_ieu_location_7[3]={0,0,0};

 tag_t Dp_ieu_external_upset_bottom;

116

 flag=UF_CALL(UF_MODL_create_simple_hole(Dp_ieu_location_7,Dp_ieu_direc_7,"Dp_ieu_uid","Dp_ieu_li

u","Dp_ieu_tip_angle_0",Dp_ieu_dplane_4_external_upset_bottom,NULL_TAG, &Dp_ieu_external_upset_bottom));

 if(flag!=0)

 uc1601("error in external upset bottom hole creation",1);

double Dp_ieu_direc_8[3]={0,0,-1};

double Dp_ieu_point_8[3];

flag=UF_CALL(UF_MODL_eval_exp("Dp_ieu_length", &Dp_ieu_point_8[2]));
 if(flag!=0) return (flag);

 Dp_ieu_point_8[0] = 0.0;

 Dp_ieu_point_8[1] = 0.0;

 tag_t Dp_ieu_dplane_4_external_upset_top;

 flag=UF_MODL_create_fixed_dplane(Dp_ieu_point_8,Dp_ieu_direc_8,&Dp_ieu_dplane_4_external_upset_to
p);

 double Dp_ieu_location_8[3];

 flag=UF_CALL(UF_MODL_eval_exp("Dp_ieu_length", &Dp_ieu_location_8[2]));

 if(flag!=0) return (flag);

 Dp_ieu_location_8[0] = 0.0;
 Dp_ieu_location_8[1] = 0.0;

 tag_t Dp_ieu_external_upset_top;

 flag=UF_CALL(UF_MODL_create_simple_hole(Dp_ieu_location_8,Dp_ieu_direc_8,"Dp_ieu_uid","Dp_ieu_li
u","Dp_ieu_tip_angle_0",Dp_ieu_dplane_4_external_upset_top,NULL_TAG, &Dp_ieu_external_upset_top));

 if(flag!=0)

 uc1601("error in external upset top hole creation",1);

 double Dp_ieu_point_9[3];

 flag=UF_CALL(UF_MODL_eval_exp("Dp_ieu_half_length", &Dp_ieu_point_9[2]));
 if(flag!=0) return (flag);

 Dp_ieu_point_9[0] = 0.0;

 Dp_ieu_point_9[1] = 0.0;
 tag_t Dp_ieu_bore_hole_1,Dp_ieu_plane_0;

 flag=UF_MODL_create_fixed_dplane(Dp_ieu_point_9,Dp_ieu_direc_8,&Dp_ieu_bore_hole_1);

 double Dp_ieu_location_9[3];
 flag=UF_CALL(UF_MODL_eval_exp("Dp_ieu_half_length", &Dp_ieu_location_9[2]));

 if(flag!=0) return (flag);

 Dp_ieu_location_9[0]=0;
 Dp_ieu_location_9[1]=0;

 char Dp_ieu_tip_angle_0[10];

 tag_t Dp_ieu_bore_hole_0;

 flag=UF_CALL(UF_MODL_create_simple_hole(Dp_ieu_location_9,Dp_ieu_direc_8,"Dp_ieu_id","Dp_ieu_su

btract_length_3","Dp_ieu_tip_angle_0",Dp_ieu_bore_hole_1,NULL_TAG, &Dp_ieu_bore_hole_0));
 //uc1601("Drill pipe bore hole 1 is created",1);

 if(flag!=0)

 uc1601("error in Drill pipe bore hole 1 creation",1);

 double Dp_ieu_location_10[3];

 flag=UF_CALL(UF_MODL_eval_exp("Dp_ieu_half_length", &Dp_ieu_location_10[2]));
 if(flag!=0) return (flag);

 Dp_ieu_location_10[0]=0;

 Dp_ieu_location_10[1]=0;

 tag_t Dp_ieu_bore_hole_2;

 flag=UF_CALL(UF_MODL_create_simple_hole(Dp_ieu_location_10,Dp_ieu_direc_7,"Dp_ieu_id","Dp_ieu_s

ubtract_length_3","Dp_ieu_tip_angle_0",Dp_ieu_bore_hole_1,NULL_TAG, &Dp_ieu_bore_hole_2));

 if(flag!=0)

 uc1601("error in bore hole2 creation",1);

 att_value.type = UF_ATTR_string;

 strcpy(svalue,"001"); /* First call for the part number */
 att_value.value.string = svalue;

 strcpy(svalue,"DRILL_PIPE_BODY"); /* Second call for the description. */

117

 return (0);

}

Drill_pipe_tool_joint_box //Code for drill pipe tool joint box

Drill_pipe_tool_joint_box

#include <stdio.h>

#include <uf_part.h>

#include <uf_modl.h>

#include <uf_obj.h>
#include <uf_ui.h>

#include <string.h>
#include <math.h>

#include <uf_attr.h>

#include <NXOpen/Session.hxx>
using namespace NXOpen;

#include "Drill_string.h"

#define PART_PATH "D:\\Amar_Gobesona\\Nx_Open\\Journal_1\\Tool_joint_pin_expression.exp"

int Drill_pipe_tool_joint_box()

{

 char svalue[10]; /* string for attribute value */

 UF_ATTR_value_t att_value; /* attribute data structure */
 int flag=0;

 flag = UF_CALL(UF_MODL_import_exp(PART_PATH,0));
 if (flag) return flag;

 flag = UF_CALL (UF_MODL_update());
 if (flag) return flag;

 double Tjb_origin[3],

 Tjb_direction[3];

 tag_t Tjb_body,

 cyl_feature_Tjb_1;

 Tjb_origin[0] = 0.0;

 Tjb_origin[1] = 0.0;
 Tjb_origin[2] = 0.0;

 Tjb_direction[0] = 0.0;
 Tjb_direction[1] = 0.0;

 Tjb_direction[2] = 1.0;

 flag = UF_CALL(UF_MODL_create_cyl1(UF_NULLSIGN, Tjb_origin, "Tjb_a_4", "Tj_dia_box_upset_D_te",

Tjb_direction, &cyl_feature_Tjb_1));
 if(flag!=0)

 uc1601("Error in tool joint_pin creation",1);

 flag = UF_CALL(UF_MODL_ask_feat_body(cyl_feature_Tjb_1, &Tjb_body));

 flag = UF_CALL(UF_OBJ_set_name(Tjb_body, "LONG_CYL"));

 char msg[20], str[20];

 sprintf(str,"%d", Tjb_body);

 sprintf(msg,"%d", cyl_feature_Tjb_1);

 double Tjb_origin_2[3];

 double Tjb_direction_2[3];
 char * Tjb_diameter_2[2]={"Tj_dia_box_upset_D_te","Tj_od_p_b_D"};

 tag_t Tjb_cone;
 flag=UF_CALL(UF_MODL_eval_exp("Tjb_a_3", &Tjb_origin_2[2]));

118

 if(flag!=0) return (flag);

 Tjb_origin_2[0] = 0.0;
 Tjb_origin_2[1] = 0.0;

 Tjb_direction_2[0] = 0.0;

 Tjb_direction_2[1] = 0.0;
 Tjb_direction_2[2] = 1.0;

 flag=UF_CALL(UF_MODL_create_cone1(UF_POSITIVE,Tjb_origin_2,"Tjb_a_3",Tjb_diameter_2,Tjb_direct
ion_2, &Tjb_cone));

 if (flag!=0)

 uc1601("Vhul hoise mamu cone in tjp",1)

 double Tjb_origin_3[3],

 Tjb_direction_3[3];
 tag_t cyl_feature_Tjb_3;

 flag=UF_CALL(UF_MODL_eval_exp("sum_a_3_a_4", &Tjb_origin_3[2]));
 if(flag!=0) return (flag);

 Tjb_origin_3[0] = 0.0;

 Tjb_origin_3[1] = 0.0;

 Tjb_direction_3[0] = 0.0;
 Tjb_direction_3[1] = 0.0;

 Tjb_direction_3[2] = 1.0;

 flag = UF_CALL(UF_MODL_create_cyl1(UF_POSITIVE,Tjb_origin_3, "Tj_box_tong_space_L_b", "Tj_od_p_b_D",

Tjb_direction_3, &cyl_feature_Tjb_3));
 if(flag!=0)

 uc1601("Error in tool joint_box creation",1);

 tag_t Tjb_face1, Tjb_face2;

 uf_list_p_t Tjb_list1, Tjb_list2;

 int Tjb_i,Tjb_count=0,Tjb_ftype,Tjb_dsense;
 double Tjb_pt1[3],

 Tjb_box[6],

 Tjb_rad1,
 Tjb_rad2;

 double Tjb_dir[3]={0,0,1};

 tag_t Tjb_edge, Tjb_cham_feature1;
 flag=UF_CALL(UF_MODL_ask_body_faces(Tjb_body,&Tjb_list1));

 if(flag) return (flag);

 flag=UF_CALL(UF_MODL_ask_list_count(Tjb_list1,&Tjb_count));
 if(flag) return(flag);

 double Tjb_cyl_len;
 flag=UF_CALL(UF_MODL_eval_exp("Tjb_total_length",&Tjb_cyl_len));

 if(flag!=0) return(flag);

 for(Tjb_i=0; Tjb_i<Tjb_count;Tjb_i++)
 {

 flag=UF_MODL_ask_list_item(Tjb_list1,Tjb_i,&Tjb_face1);
 if(flag!=0) return(flag);

 flag=UF_CALL(UF_MODL_ask_face_data

(Tjb_face1,&Tjb_ftype,Tjb_pt1,Tjb_dir,Tjb_box,&Tjb_rad1,&Tjb_rad2,&Tjb_dsense));
 if(flag) return (flag);

 if(Tjb_ftype==UF_bounded_plane_type)

 {

 if(fabs(Tjb_pt1[2]-(Tjb_cyl_len))<0.001)

 {

 Tjb_face2=Tjb_face1;

 break;
 }

 }

 }
 flag=UF_MODL_ask_face_edges(Tjb_face2, &Tjb_list1);

 flag=UF_CALL(UF_MODL_create_chamfer(3,"Tj_chamfer_offset_1","Tj_chamfer_offset_2","Tj_chamfer_th

eta",Tjb_list1,&Tjb_cham_feature1));

119

 flag=UF_CALL(UF_MODL_delete_list(&Tjb_list1));

 double Tjb_point_0[3];

 flag=UF_CALL(UF_MODL_eval_exp("Tjb_total_length", &Tjb_point_0[2]));

 if(flag!=0) return (flag);
 Tjb_point_0[0] = 0.0;

 Tjb_point_0[1] = 0.0;

 double Tjb_direc_0[3]={0,0,-1};
 tag_t Tjb_fixed_dplane_4_box_hole,Tjb_plane_0;

 flag=UF_MODL_create_fixed_dplane(Tjb_point_0,Tjb_direc_0,&Tjb_fixed_dplane_4_box_hole);

 double Tjb_location_0[3];
 flag=UF_CALL(UF_MODL_eval_exp("Tjb_total_length", &Tjb_location_0[2]));

 if(flag!=0) return (flag);

 Tjb_location_0[0]=0;
 Tjb_location_0[1]=0;

 char Tjb_tip_angle_1[10];

 tag_t Tjb_box_hole;

 flag=UF_CALL(UF_MODL_create_simple_hole(Tjb_location_0,Tjb_direc_0,"Tj_dia_box_upset_D_te","Tjp_

pin_length","Tjb_tip_angle_1",Tjb_fixed_dplane_4_box_hole,NULL_TAG, &Tjb_box_hole));

 if(flag!=0)

 uc1601("error in collar hole creation",1);

 double Tjb_point[3]={0.0,0,0};

 double Tjb_direc[3]={0,0,1};

 tag_t Tjb_fixed_dplane_4_hole,Tjb_plane;
 flag=UF_MODL_create_fixed_dplane(Tjb_point,Tjb_direc,&Tjb_fixed_dplane_4_hole);

 double Tjb_location_5[3]={0,0,0};
 double Tjb_direc_5[3];

 Tjb_direc_5[0]=0;

 Tjb_direc_5[1]=0;
 Tjb_direc_5[2]=1;

 char Tjb_tip_angle[10];

 tag_t Tjb_bore_hole;

 flag=UF_CALL(UF_MODL_create_simple_hole(Tjb_location_5,Tjb_direc_5,"Tj_id_pin","sum_a3_a4_l_b_pi

n_length","Tjp_tip_angle",Tjb_fixed_dplane_4_hole,NULL_TAG, &Tjb_bore_hole));
 if(flag!=0)

 uc1601("error in collar hole creation",1);

 att_value.type = UF_ATTR_string;

 strcpy(svalue,"003"); /* First call for the part number */
 att_value.value.string = svalue;

 strcpy(svalue,"DP_TJ_BOX"); /* Second call for the description. */
 return (0);

}

Drill_pipe_tool_joint_pin //Code for drill pipe tool joint pin

Drill_pipe_tool_joint_pin

#include <stdio.h>

#include <uf_part.h>
#include <uf_modl.h>

#include <uf_obj.h>

#include <uf_ui.h>
#include <string.h>

#include <uf_attr.h>
#include <math.h>

#include <NXOpen/Session.hxx>

using namespace NXOpen;

120

#include "Drill_string.h"

#define PART_PATH "D:\\Amar_Gobesona\\Nx_Open\\Journal_1\\Tool_joint_pin_expression.exp"
int Drill_pipe_tool_joint_pin()

{

 char svalue[30]; /* string for attribute value */
 UF_ATTR_value_t att_value; /* attribute data structure */

 int flag=0;

 flag = UF_CALL(UF_MODL_import_exp(PART_PATH,0));

 if (flag) return flag;

 flag = UF_CALL (UF_MODL_update());

 if (flag) return flag;

 double origin[3],

 direction[3];
 tag_t Tjp_body,

 cyl_feature_Tjp_1;

 origin[0] = 0.0;

 origin[1] = 0.0;

 origin[2] = 0.0;

 direction[0] = 0.0;

 direction[1] = 0.0;
 direction[2] = 1.0;

 flag = UF_CALL(UF_MODL_create_cyl1(UF_NULLSIGN, origin, "Tj_a_2", "Tj_dia_pin_upset_D_pe", direction,

&cyl_feature_Tjp_1));

 if(flag!=0)
 uc1601("Error in tool joint_pin creation",1);

 flag = UF_CALL(UF_MODL_ask_feat_body(cyl_feature_Tjp_1, &Tjp_body));
 flag = UF_CALL(UF_OBJ_set_name(Tjp_body, "LONG_CYL"));

 char msg[20], str[20];
 sprintf(str,"%d", Tjp_body);

 sprintf(msg,"%d", cyl_feature_Tjp_1);

 double Tjp_origin_2[3];

 double Tjp_direction_2[3];

 char * Tjp_diameter_2[2]={"Tj_dia_pin_upset_D_pe","Tj_od_p_b_D"};

 tag_t Tjp_cone;

 flag=UF_CALL(UF_MODL_eval_exp("Tj_a_2", &Tjp_origin_2[2]));
 if(flag!=0) return (flag);

 Tjp_origin_2[0] = 0.0;

 Tjp_origin_2[1] = 0.0;
 Tjp_direction_2[0] = 0.0;

 Tjp_direction_2[1] = 0.0;

 Tjp_direction_2[2] = 1.0;

 flag=UF_CALL(UF_MODL_create_cone1(UF_POSITIVE,Tjp_origin_2,"Tj_a_2",Tjp_diameter_2,Tjp_directi

on_2, &Tjp_cone));
 if (flag!=0)

 uc1601("Vhul hoise mamu cone in tjp",1);

 double Tjp_origin_3[3],

 Tjp_direction_3[3];

 tag_t cyl_feature_Tjp_3;

 flag=UF_CALL(UF_MODL_eval_exp("sum_a_1_a_2", &Tjp_origin_3[2]));

 if(flag!=0) return (flag);
 Tjp_origin_3[0] = 0.0;

 Tjp_origin_3[1] = 0.0;

 Tjp_direction_3[0] = 0.0;

 Tjp_direction_3[1] = 0.0;

121

 Tjp_direction_3[2] = 1.0;

flag = UF_CALL(UF_MODL_create_cyl1(UF_POSITIVE,Tjp_origin_3, "Tj_pin_tong_space_L_pb", "Tj_od_p_b_D",

Tjp_direction_3, &cyl_feature_Tjp_3));

 if(flag!=0)
 uc1601("Error in tool joint_pin creation",1);

 tag_t Tjp_face1, Tjp_face2;
 uf_list_p_t Tjp_list1, Tjp_list2;

 int Tjp_i,Tjp_count=0,Tjp_ftype,Tjp_dsense;

 double Tjp_pt1[3],
 Tjp_box[6],

 Tjp_rad1,

 Tjp_rad2;
 double Tjp_dir[3]={0,0,1};

 tag_t Tjp_edge, Tjp_cham_feature1;

 flag=UF_CALL(UF_MODL_ask_body_faces(Tjp_body,&Tjp_list1));
 if(flag) return (flag);

 flag=UF_CALL(UF_MODL_ask_list_count(Tjp_list1,&Tjp_count));

 if(flag) return(flag);

 double Tjp_cyl_len;

 flag=UF_CALL(UF_MODL_eval_exp("sum_a_1_a_2_L_pb",&Tjp_cyl_len));

 if(flag!=0) return(flag);
 for(Tjp_i=0; Tjp_i<Tjp_count;Tjp_i++)

 {

 flag=UF_MODL_ask_list_item(Tjp_list1,Tjp_i,&Tjp_face1);
 if(flag!=0) return(flag);

 flag=UF_CALL(UF_MODL_ask_face_data
(Tjp_face1,&Tjp_ftype,Tjp_pt1,Tjp_dir,Tjp_box,&Tjp_rad1,&Tjp_rad2,&Tjp_dsense));

 if(flag) return (flag);

 if(Tjp_ftype==UF_bounded_plane_type)
 {

 if(fabs(Tjp_pt1[2]-(Tjp_cyl_len))<0.001)

 {

 Tjp_face2=Tjp_face1;
 break;

 }

 }
 }

 flag=UF_MODL_ask_face_edges(Tjp_face2, &Tjp_list1);

 flag=UF_CALL(UF_MODL_create_chamfer(3,"Tj_chamfer_offset_1","Tj_chamfer_offset_1","Tj_chamfer_th
eta",Tjp_list1,&Tjp_cham_feature1));

 flag=UF_CALL(UF_MODL_delete_list(&Tjp_list1));

 double Tjp_origin_4[3],
 Tjp_direction_4[3];

 tag_t cyl_feature_Tjp_4;

 flag=UF_CALL(UF_MODL_eval_exp("sum_a_1_a_2_L_pb", &Tjp_origin_4[2]));

 if(flag!=0) return (flag);

 Tjp_origin_4[0] = 0.0;
 Tjp_origin_4[1] = 0.0;

 Tjp_direction_4[0] = 0.0;

 Tjp_direction_4[1] = 0.0;

 Tjp_direction_4[2] = 1.0;

 flag = UF_CALL(UF_MODL_create_cyl1(UF_POSITIVE,Tjp_origin_4, "Tjp_pin_length", "Tj_dia_pin_upset_D_pe",

Tjp_direction_4, &cyl_feature_Tjp_4));
 if(flag!=0)

 uc1601("Error in tool joint_pin creation",1);

 double Tjp_point[3]={0.0,0,0};
 double Tjp_direc[3]={0,0,1};

 tag_t Tjp_fixed_dplane_4_hole,Tjp_plane;

 flag=UF_MODL_create_fixed_dplane(Tjp_point,Tjp_direc,&Tjp_fixed_dplane_4_hole);
 double Tjp_location_5[3]={0,0,0};

 double Tjp_direc_5[3];

 Tjp_direc_5[0]=0;

122

 Tjp_direc_5[1]=0;

 Tjp_direc_5[2]=1;
 char Tjp_tip_angle[10];

 tag_t Tjp_bore_hole;

 flag=UF_CALL(UF_MODL_create_simple_hole(Tjp_location_5,Tjp_direc_5,"Tj_id_pin","Tjp_total_length","

Tjp_tip_angle",Tjp_fixed_dplane_4_hole,NULL_TAG, &Tjp_bore_hole));

 if(flag!=0)
 uc1601("error in collar hole creation",1);

 att_value.type = UF_ATTR_string;

 strcpy(svalue,"002"); /* First call for the part number */

 att_value.value.string = svalue;

 strcpy(svalue,"DP_TJ_PIN"); /* Second call for the description. */

 return (0);

}

Drill_collar // Code for Drill collar

Drill_collar

#include <stdio.h>

#include <uf_part.h>

#include <uf_modl.h>
#include <uf_obj.h>

#include <uf_ui.h>

#include <string.h>
#include <math.h>

#include <uf_attr.h>

#include <NXOpen/Session.hxx>

using namespace NXOpen;

#include "Drill_string.h"

#define PART_PATH "D:\\Amar_Gobesona\\Nx_Open\\Journal_1\\Drill_collar.exp"

int Drill_collar()
{

 int flag=0;
 char svalue[10]; /* string for attribute value */

 UF_ATTR_value_t att_value; /* attribute data structure */

 flag = UF_CALL(UF_MODL_import_exp(PART_PATH,0));

 if (flag) return flag;

 flag = UF_CALL (UF_MODL_update());

 if (flag) return flag;

 double origin[3],

 direction[3];

 char height[10],
 diameter[10];

 tag_t body,

 cyl_feature_Dc;

 origin[0] = 0.0;

 origin[1] = 0.0;
 origin[2] = 0.0;

 direction[0] = 0.0;
 direction[1] = 0.0;

 direction[2] = 1.0;

flag = UF_CALL(UF_MODL_create_cyl1(UF_NULLSIGN, origin, "Value_Dc_L", "Size_Dc_OD", direction,
&cyl_feature_Dc));

 if(flag!=0)

123

 uc1601("Error in drill collar creation",1);

 flag = UF_CALL(UF_MODL_ask_feat_body(cyl_feature_Dc, &body));

 flag = UF_CALL(UF_OBJ_set_name(body, "LONG_CYL"));

 tag_t face, face1;
 uf_list_p_t list1, list2;

 int i,count=0,ftype,dsense;

 double pt1[3],
 dir[3],

 box[6],

 rad1,
 rad2;

 tag_t edge, cham_feature;

 flag=UF_CALL(UF_MODL_ask_body_faces(body,&list1));
 if(flag) return (flag);

 flag=UF_CALL(UF_MODL_ask_list_count(list1,&count));

 if(flag) return(flag);
 double cyl_len;

 flag=UF_CALL(UF_MODL_eval_exp("Value_Dc_L",&cyl_len));

 if(flag!=0) return(flag);

 for(i=0; i<count;i++)

 {

 flag=UF_MODL_ask_list_item(list1,i,&face);
 if(flag!=0) return(flag);

 flag=UF_CALL(UF_MODL_ask_face_data (face,&ftype,pt1,dir,box,&rad1,&rad2,&dsense));

 if(flag) return (flag);
 if(ftype==UF_bounded_plane_type)

 {
 if(fabs(pt1[2]-(cyl_len))<0.001)

 {

 face1=face;
 break;

 }

 }
 }

 flag=UF_MODL_ask_face_edges(face1, &list1);

 flag=UF_CALL(UF_MODL_create_chamfer(3,"Value_Dc_chamfer_offset_1","Value_Dc_chamfer_offset_2",

"Value_Dc_chamfer_theta",list1,&cham_feature));

 flag=UF_CALL(UF_MODL_delete_list(&list1));

 double point[3]={0.0,0,0};

 double direc[3]={0,0,1};
 tag_t fixed_dplane_4_hole,plane;

 flag=UF_MODL_create_fixed_dplane(point,direc,&fixed_dplane_4_hole);

 double location[3]={0,0,0};
 double direc_2[3];

 direc_2[0]=0;

 direc_2[1]=0;
 direc_2[2]=1;

 char tip_angle[10];

 tag_t collar_hole,collar_box_hole;

 flag=UF_CALL(UF_MODL_create_simple_hole(location,direc_2,"Value_Dc_ID","Value_Dc_L","Collar_hole

_tip_angle",fixed_dplane_4_hole,NULL_TAG, &collar_hole));
 if(flag!=0)

 uc1601("error in collar hole creation",1);

 flag=UF_CALL(UF_MODL_create_simple_hole(location,direc_2,"Value_Dc_dia_box","Value_Dc_T_B_L","

Collar_hole_tip_angle",fixed_dplane_4_hole,NULL_TAG,&collar_box_hole));

 flag=UF_CALL(UF_MODL_eval_exp("Value_Dc_L", &origin[2]));

 if(flag!=0) return(flag);

 tag_t collar_box;

 flag=UF_CALL(UF_MODL_create_cyl1(UF_POSITIVE,origin,"Value_Dc_T_P_L","Value_Dc_dia_pin",dire

ction, &collar_box));

 if (flag!=0)
 uc1601("Vhul hoise mamu",1);

 tag_t plane_3;

 flag=UF_CALL(UF_MODL_eval_exp("Sum_of_L_and_T_P_L", &point[2]));

124

 if(flag!=0) return (flag);

 flag=UF_MODL_create_fixed_dplane(point,direc,&plane_3);
 double location_3[3];

 double direc_3[3];

 direc_3[0]=0;
 direc_3[1]=0;

 direc_3[2]=-1;

 location_3[0]=0;
 location_3[1]=0;

 flag=UF_CALL(UF_MODL_eval_exp("Sum_of_L_and_T_P_L", &location_3[2]));

 if(flag!=0) return(flag);
 char tip_angle_3[10];

 tag_t collar_pin_hole;

 flag=UF_CALL(UF_MODL_create_simple_hole(location_3,direc_3,"Value_Dc_ID","Value_Dc_T_P_L","Col
lar_hole_tip_angle",plane_3,NULL_TAG, &collar_pin_hole));

 att_value.type = UF_ATTR_string;
 strcpy(svalue,"004"); /* First call for the part number */

 att_value.value.string = svalue;

 strcpy(svalue,"DRILL"); /* Second call for the description. */

 return (0);

}

Bit_sub_A // Code for bit sub

#define PART_PATH "D:\\Amar_Gobesona\\Nx_Open\\Journal_1\\Bit_sub_A.exp"

int Bit_sub_A(void)

{

 char svalue[10]; /* string for attribute value */
 UF_ATTR_value_t att_value; /* attribute data structure */

 int flag=0;

 flag = UF_CALL(UF_MODL_import_exp(PART_PATH,0));

 if (flag) return flag;

 flag = UF_CALL (UF_MODL_update());

 if (flag) return flag;

 // creating a cylinder feature (pin) in the part. Set up data for cylinder creation.

 double Bit_sub_A_origin[3],

 Bit_sub_A_direction[3];

 tag_t Bit_sub_A_body,
 cyl_feature_Bit_sub_A_1;

 Bit_sub_A_origin[0] = 0.0;
 Bit_sub_A_origin[1] = 0.0;

 Bit_sub_A_origin[2] = 0.0;

 Bit_sub_A_direction[0] = 0.0;

 Bit_sub_A_direction[1] = 0.0;

 Bit_sub_A_direction[2] = 1.0;

 // Create the cylinder and check the return code

 flag = UF_CALL(UF_MODL_create_cyl1(UF_NULLSIGN, Bit_sub_A_origin, "Bit_sub_A_total_height",

"Bit_sub_A_OD", Bit_sub_A_direction, &cyl_feature_Bit_sub_A_1));

 if(flag!=0)

 uc1601("Error in drill_bit_pin creation",1);

 flag = UF_CALL(UF_MODL_ask_feat_body(cyl_feature_Bit_sub_A_1, &Bit_sub_A_body));

 flag = UF_CALL(UF_OBJ_set_name(Bit_sub_A_body, "LONG_CYL"));

 char msg[20], str[20];

 sprintf(str,"%d", Bit_sub_A_body);
 sprintf(msg,"%d", cyl_feature_Bit_sub_A_1);

 tag_t Bit_sub_A_face1, Bit_sub_A_face2;

125

 uf_list_p_t Bit_sub_A_list1, Bit_sub_A_list2;

 int Bit_sub_A_i,Bit_sub_A_count=0,Bit_sub_A_ftype,Bit_sub_A_dsense;
 double Bit_sub_A_pt1[3],

 Bit_sub_A_box[6],

 Bit_sub_A_rad1,
 Bit_sub_A_rad2;

 double Bit_sub_A_dir[3]={0,0,1};

 tag_t Bit_sub_A_edge, Bit_sub_A_cham_feature1;
 flag=UF_CALL(UF_MODL_ask_body_faces(Bit_sub_A_body,&Bit_sub_A_list1));

 if(flag) return (flag);

 flag=UF_CALL(UF_MODL_ask_list_count(Bit_sub_A_list1,&Bit_sub_A_count));
 if(flag) return(flag);

 double Bit_sub_A_cyl_len;

 flag=UF_CALL(UF_MODL_eval_exp("Bit_sub_A_total_height",&Bit_sub_A_cyl_len));
 if(flag!=0) return(flag);

 for(Bit_sub_A_i=0; Bit_sub_A_i<Bit_sub_A_count;Bit_sub_A_i++)

 {
 flag=UF_MODL_ask_list_item(Bit_sub_A_list1,Bit_sub_A_i,&Bit_sub_A_face1);

 if(flag!=0) return(flag);

 flag=UF_CALL(UF_MODL_ask_face_data

(Bit_sub_A_face1,&Bit_sub_A_ftype,Bit_sub_A_pt1,Bit_sub_A_dir,Bit_sub_A_box,&Bit_sub_A_rad1,&Bit_sub_A_rad

2,&Bit_sub_A_dsense));

 if(flag) return (flag);
 if(Bit_sub_A_ftype==UF_bounded_plane_type)

 {

 if(fabs(Bit_sub_A_pt1[2]-(Bit_sub_A_cyl_len))<0.001)

 {

 Bit_sub_A_face2=Bit_sub_A_face1;

 break;
 }

 }

 }
 flag=UF_MODL_ask_face_edges(Bit_sub_A_face2, &Bit_sub_A_list1);

 flag=UF_CALL(UF_MODL_create_chamfer(3,"Bit_sub_A_chamfer_offset_1","Bit_sub_A_chamfer_offset_2"

,"Bit_sub_A_chamfer_theta",Bit_sub_A_list1,&Bit_sub_A_cham_feature1));
 flag=UF_CALL(UF_MODL_delete_list(&Bit_sub_A_list1));

 tag_t Bit_sub_A_face3, Bit_sub_A_face4;
 tag_t Bit_sub_A_edge_2, Bit_sub_A_cham_feature2;

 flag=UF_CALL(UF_MODL_ask_body_faces(Bit_sub_A_body,&Bit_sub_A_list2));

 if(flag) return (flag);
 flag=UF_CALL(UF_MODL_ask_list_count(Bit_sub_A_list2,&Bit_sub_A_count));

 if(flag) return(flag);

 if(flag!=0) return(flag);
 for(Bit_sub_A_i=0; Bit_sub_A_i<Bit_sub_A_count;Bit_sub_A_i++)

 {

 flag=UF_MODL_ask_list_item(Bit_sub_A_list2,Bit_sub_A_i,&Bit_sub_A_face3);

 if(flag!=0) return(flag);

 flag=UF_CALL(UF_MODL_ask_face_data
(Bit_sub_A_face3,&Bit_sub_A_ftype,Bit_sub_A_pt1,Bit_sub_A_dir,Bit_sub_A_box,&Bit_sub_A_rad1,&Bit_sub_A_rad

2,&Bit_sub_A_dsense));

 if(flag) return (flag);
 if(Bit_sub_A_ftype==UF_bounded_plane_type)

 {

 if(fabs(Bit_sub_A_pt1[2])<0.001)

 {
 Bit_sub_A_face4=Bit_sub_A_face3;

 break;

 }
 }

 }

 flag=UF_MODL_ask_face_edges(Bit_sub_A_face4, &Bit_sub_A_list2);

 flag=UF_CALL(UF_MODL_create_chamfer(3,"Bit_sub_A_chamfer_offset_1","Bit_sub_A_chamfer_offset_2"

,"Bit_sub_A_chamfer_theta",Bit_sub_A_list2,&Bit_sub_A_cham_feature2));

126

 flag=UF_CALL(UF_MODL_delete_list(&Bit_sub_A_list2));

 double Bit_sub_A_point[3]={0.0,0,0};
 double Bit_sub_A_direc[3]={0,0,1};

 tag_t Bit_sub_A_fixed_dplane_4_hole,Bit_sub_A_plane;

 flag=UF_MODL_create_fixed_dplane(Bit_sub_A_point,Bit_sub_A_direc,&Bit_sub_A_fixed_dplane_4_hole);
double Bit_sub_A_location_3[3]={0,0,0};

 double Bit_sub_A_direc_3[3];

 Bit_sub_A_direc_3[0]=0;
 Bit_sub_A_direc_3[1]=0;

 Bit_sub_A_direc_3[2]=1;

 char Bit_sub_A_tip_angle[10];
 tag_t Bit_sub_A_bore_hole;

 flag=UF_CALL(UF_MODL_create_simple_hole(Bit_sub_A_location_3,Bit_sub_A_direc_3,"Bit_sub_A_ID","

Bit_sub_A_total_height","Bit_sub_A_tip_angle",Bit_sub_A_fixed_dplane_4_hole,NULL_TAG,
&Bit_sub_A_bore_hole));

 double Bit_sub_A_point_4[3];

 flag=UF_CALL(UF_MODL_eval_exp("Bit_sub_A_total_height", &Bit_sub_A_point_4[2]));
 if(flag!=0) return (flag);

 Bit_sub_A_point_4[0]=0;

 Bit_sub_A_point_4[1]=0;

 double Bit_sub_A_direc_4[3];

 Bit_sub_A_direc_4[0]=0;

 Bit_sub_A_direc_4[1]=0;
 Bit_sub_A_direc_4[2]=-1;

 tag_t Bit_sub_A_fixed_dplane_4_box,Bit_sub_A_plane_4;

 flag=UF_MODL_create_fixed_dplane(Bit_sub_A_point_4,Bit_sub_A_direc_4,&Bit_sub_A_fixed_dplane_4_b
ox);

 double Bit_sub_A_location_4[3]={0,0,0};

 flag=UF_CALL(UF_MODL_eval_exp("Bit_sub_A_total_height", &Bit_sub_A_location_4[2]));

 if(flag!=0) return (flag);
 Bit_sub_A_location_4[0]=0;

 Bit_sub_A_location_4[1]=0;

 tag_t Bit_sub_A_bore_hole_4;

 flag=UF_CALL(UF_MODL_create_simple_hole(Bit_sub_A_location_4,Bit_sub_A_direc_4,"Bit_sub_A_box_

dia","Bit_sub_A_box_height","Bit_sub_A_tip_angle",Bit_sub_A_fixed_dplane_4_box,NULL_TAG,
&Bit_sub_A_bore_hole_4));

 double Bit_sub_A_point_5[3];
 Bit_sub_A_point_5[0]=0;

 Bit_sub_A_point_5[1]=0;

 Bit_sub_A_point_5[2]=0;
 double Bit_sub_A_direc_5[3];

 Bit_sub_A_direc_5[0]=0;

 Bit_sub_A_direc_5[1]=0;
 Bit_sub_A_direc_5[2]=1;

 tag_t Bit_sub_A_fixed_dplane_4_box_l,Bit_sub_A_plane_5;

 flag=UF_MODL_create_fixed_dplane(Bit_sub_A_point_5,Bit_sub_A_direc_5,&Bit_sub_A_fixed_dplane_4_b
ox_l)

 double Bit_sub_A_location_5[3]={0,0,0};

 tag_t Bit_sub_A_bore_hole_5;

 flag=UF_CALL(UF_MODL_create_simple_hole(Bit_sub_A_location_5,Bit_sub_A_direc_5,"Bit_sub_A_box_

dia","Bit_sub_A_box_height","Bit_sub_A_tip_angle",Bit_sub_A_fixed_dplane_4_box_l,NULL_TAG,

&Bit_sub_A_bore_hole_5)

 att_value.type = UF_ATTR_string;

 strcpy(svalue,"005"); /* First call for the part number */
 att_value.value.string = svalue;

 strcpy(svalue,"BIT_SUB_A"); /* Second call for the description. */
 return (0);

}

Drill_bit //Code for drill bit

127

#define PART_PATH "D:\\Amar_Gobesona\\Nx_Open\\Journal_1\\Drill_bit.exp"

int Drill_bit(void)
{

 char svalue[10]; /* string for attribute value */

 UF_ATTR_value_t att_value; /* attribute data structure */
 int flag=0;

 flag = UF_CALL(UF_MODL_import_exp(PART_PATH,0));
 if (flag) return flag;

 flag = UF_CALL (UF_MODL_update());
 if (flag) return flag;

 double drill_bit_origin[3],
 drill_bit_direction[3];

 tag_t drill_bit_body,

 cyl_feature_drill_bit_1;

 drill_bit_origin[0] = 0.0;

 drill_bit_origin[1] = 0.0;

 drill_bit_origin[2] = 0.0;

 drill_bit_direction[0] = 0.0;
 drill_bit_direction[1] = 0.0;

 drill_bit_direction[2] = 1.0;

 flag = UF_CALL(UF_MODL_create_cyl1(UF_NULLSIGN, drill_bit_origin, "Drill_bit_pin_height",
"Drill_bit_pin_dia", drill_bit_direction, &cyl_feature_drill_bit_1));

 if(flag!=0)
 uc1601("Error in drill_bit_pin creation",1);

 flag = UF_CALL(UF_MODL_ask_feat_body(cyl_feature_drill_bit_1, &drill_bit_body));
 flag = UF_CALL(UF_OBJ_set_name(drill_bit_body, "LONG_CYL"));

 char msg[20], str[20];
 sprintf(str,"%d", drill_bit_body);

 sprintf(msg,"%d", cyl_feature_drill_bit_1);

 double Drill_bit_origin_2[3],

 Drill_bit_direction_2[3];

 tag_t cyl_feature_Drill_bit_2;

 flag=UF_CALL(UF_MODL_eval_exp("Drill_bit_pin_height", &Drill_bit_origin_2[2]));

 if(flag!=0) return (flag);
 Drill_bit_origin_2[0] = 0.0;

 Drill_bit_origin_2[1] = 0.0;

 Drill_bit_direction_2[0] = 0.0;

 Drill_bit_direction_2[1] = 0.0;
 Drill_bit_direction_2[2] = 1.0;

flag = UF_CALL(UF_MODL_create_cyl1(UF_POSITIVE,Drill_bit_origin_2, "Drill_bit_body_height",
"Drill_bit_body_dia", Drill_bit_direction_2, &cyl_feature_Drill_bit_2));

 if(flag!=0)

 uc1601("Error in drill bit body creation",1);

 double drill_bit_origin_3[3];

 double drill_bit_direction_3[3];

 char * drill_bit_diameter_3[2]={"Drill_bit_body_dia","Drill_bit_size"};

 tag_t drill_bit_cone;
 flag=UF_CALL(UF_MODL_eval_exp("Drill_bit_sum_pin_body", &drill_bit_origin_3[2]));

 if(flag!=0) return (flag);

 drill_bit_origin_3[0] = 0.0;
 drill_bit_origin_3[1] = 0.0;

 drill_bit_direction_3[0] = 0.0;

 drill_bit_direction_3[1] = 0.0;
 drill_bit_direction_3[2] = 1.0;

128

 flag=UF_CALL(UF_MODL_create_cone1(UF_POSITIVE,drill_bit_origin_3,"Drill_bit_cone_height",drill_bit

_diameter_3,drill_bit_direction_3, &drill_bit_cone));
 if (flag!=0)

 uc1601("Vhul hoise mamu in drill bit creation",1);

 double drill_bit_point[3]={0.0,0,0};

 double drill_bit_direc[3]={0,0,1};

 tag_t drill_bit_fixed_dplane_4_hole,drill_bit_plane;
 flag=UF_MODL_create_fixed_dplane(drill_bit_point,drill_bit_direc,&drill_bit_fixed_dplane_4_hole);

 double drill_bit_location_4[3]={0,0,0};

 double drill_bit_direc_4[3];

 drill_bit_direc_4[0]=0;
 drill_bit_direc_4[1]=0;

 drill_bit_direc_4[2]=1;

 char drill_bit_tip_angle[10];
 tag_t drill_bit_bore_hole;

 flag=UF_CALL(UF_MODL_create_simple_hole(drill_bit_location_4,drill_bit_direc_4,"Drill_bit_inner_dia","

Drill_bit_total_length","Drill_bit_tip_angle",drill_bit_fixed_dplane_4_hole,NULL_TAG, &drill_bit_bore_hole))

 att_value.type = UF_ATTR_string;
 strcpy(svalue,"006"); /* First call for the part number */

 att_value.value.string = svalue;

 strcpy(svalue,"DRILL_BIT"); /* Second call for the description. */

 return (0);

}

Drill_string_drill_pipe_array // Code for drill pipe array

int Drill_string_drill_pipe_array(int dptotal, double dst_btn_dp, tag_t *parent, tag_t *comp)

//int Drill_string_drill_pipe_array(void)

{

 uc1601("Array is working",1);

char cname[132], /* component name */

 refset[132], /* reference set name*/
 iname[132], /* instance name*/

 pname[132]; /* part name*/

int layer=0,

 i,k,
 flag,comp_count;

tag_t newinst, displayed_part, root_occ, *child_comp;

double pos[3],
 origin[3],

 matrix[9],

 transform[4][4];
UF_PART_load_status_t status;

displayed_part= UF_PART_ask_display_part();
root_occ=UF_ASSEM_ask_root_part_occ(displayed_part);

comp_count=UF_ASSEM_ask_part_occ_children(root_occ, &child_comp);

for (k=0; k<comp_count;k++)

{

flag=UF_CALL(UF_ASSEM_ask_component_data(child_comp[k],pname,refset,cname,pos,matrix,transform));

if(flag!=0) return (flag);

if(!(strcmp("DRILL_PIPE",cname))) break;/*Search the part by instance name*/
}

if(strcmp(refset,"None")==0) refset[0]='\0';

origin[0]=pos[0];

origin[1]=pos[1];

129

for(i=0;i<dptotal;i++)

{ if(i == 0) continue;
 origin[2]=pos[2]+i*dst_btn_dp;

 strcpy(iname,cname);

 sprintf(iname+strlen(cname),"_%d",i);
 flag=UF_ASSEM_add_part_to_assembly(*parent,pname,refset,cname,origin,matrix,layer,&newinst,&status);

 if(flag!=0) return(flag);

}

return(0);

}

B.2. Excel Codes:

Casing Setting Depth:

Sub casing_depth()

 Dim inputNo As Integer

 Dim Depth(100) As Integer, PorePressure(100) As Double ', SerialNo(100) As Integer

 Dim TripMargin As Double
 Dim KickMargin As Double

 Dim nue As Double

 Dim sigma_v As Double
 Dim FractureGradient As Double

 Sheets("Casing_cal").Select

 'Worksheets("Casing_cal").Range("b301").Value = InputBox("Enter Trip margin")

 'Worksheets("Casing_cal").Range("b302").Value = InputBox("Enter Kick margin")
 'Worksheets("Casing_cal").Range("b303").Value = InputBox("Enter Poisson's ratio")

 'Worksheets("Casing_cal").Range("b304").Value = InputBox("Enter Overburde in psi/ft")

 TripMargin = Worksheets("Casing_cal").Range("b301").Value

 KickMargin = Worksheets("Casing_cal").Range("b302").Value

 nue = Worksheets("Casing_cal").Range("b303").Value

 sigma_v = Worksheets("Casing_cal").Range("b304").Value

 inputNo = Worksheets("Casing_cal").Range("b305").Value

 'inputNo = InputBox("Enter number of input")

Inconsistant_data_1:

 Worksheets("Casing_cal").Range("b3").Value = InputBox("Enter True Vertical Depth")

 For i = 1 To inputNo

 Depth(i) = InputBox("Please enter Depth in ft: Inuput number - " & i)

 Cells(i + 310, 2) = Depth(i)
 Cells(i + 310, 9) = Depth(i) 'For chart creation

 '---
 'Inconsistant data handling (If the entered data is not in ascending order the system will give _

 and error message - "Please enter data in ascending order" and the input window will start again _

 from the very begining, that is start from the first data input..i=1)

 If i > 1 Then

 If Cells(i - 1 + 310, 2) > Cells(i + 310, 2) Then

 MsgBox ("Please enter data in ascending order")

 GoTo Inconsistant_data_1
 Else

 End If

 Else
 End If

130

 PorePressure(i) = InputBox("Enter corresponding Pore pressure: Inuput number - " & i)

 Cells(i + 310, 3) = PorePressure(i)

 'Pore pressure gradient

 Cells(i + 310, 4) = PorePressure(i) / Depth(i)

 'comment: PorePressure = Cells(i + 310, 4)

 ' Specific gravity of Pore pressure

 Cells(i + 310, 5) = Cells(i + 310, 4) / (8.33 * 0.052)

 'Mud pressure Specific gravity

 Cells(i + 310, 6) = Cells(i + 310, 5) + TripMargin

 '/comments'Fracture pressure gradient

 'Eaton's method

 'FG=(nue/1-nue)((sigma_v/D-Pf/D)+Pf/D; here, nue=poison's ratio; sigma_v=overburden psi/ft, Pf=Pore pressure

 ' sigma_v/D=Over_burden_stress, Pf/D=Pore_pressure_grad//

 FractureGradient = (nue / (1 - nue)) * ((sigma_v - Cells(i + 310, 4))) + Cells(i + 310, 4)

 Cells(i + 310, 7) = FractureGradient / (8.33 * 0.052)

 'Adding kick margin of fracture pressure gradient

 Cells(i + 310, 8) = Cells(i + 310, 7) - KickMargin

 Next

 For j = inputNo + 1 To 100
 Cells(j + 310, 1).Clear

 Cells(j + 310, 2).Clear

 Cells(j + 310, 3).Clear
 Cells(j + 310, 4).Clear

 Cells(j + 310, 5).Clear

 Cells(j + 310, 6).Clear
 Cells(j + 310, 7).Clear

 Cells(j + 310, 8).Clear

 Cells(j + 310, 9).Clear
 Cells(j + 310, 10).Clear

 Cells(j + 310, 11).Clear

 Next

'---

Dim minm_depth_diff_btn_surf_intermediate_casing As Double

'---

'Default value for minimum depth difference between surface and intermediate casing

minm_depth_diff_btn_surf_intermediate_casing = 100

'---

If Cells(inputNo + 310, 2) = Worksheets("Casing_cal").Range("b3").Value Then

Temp_mud_sg_1 = Cells(inputNo + 310, 6)
Temp_kick_margin_sg_1 = Temp_mud_sg_1

'---
'Check whether the value of tepm_mud_Sg_1 is less than the minimum kick margin sg????

 If Temp_mud_sg_1 < Cells(1 + 310, 8) Then
 minm_surface_casing_depth = InputBox("Please enter the minimum surface casing depth")

 Worksheets("Casing_cal").Range("b24").Value = minm_surface_casing_depth

 If Worksheets("Casing_cal").Range("b24").Value < Worksheets("Casing_cal").Range("b3").Value Then

131

 If Worksheets("Casing_cal").Range("b3").Value - minm_surface_casing_depth <
minm_depth_diff_btn_surf_intermediate_casing Then

 surface_casing_depth = Worksheets("Casing_cal").Range("b3").Value

 Worksheets("Casing_cal").Range("p327").Value = surface_casing_depth
 Worksheets("Casing_cal").Range("p328").Value = Temp_mud_sg_1

 Worksheets("Casing_cal").Range("p312").Value = 0

 Worksheets("Casing_cal").Range("p313").Value = 0
 Worksheets("Casing_cal").Range("p317").Value = 0

 Worksheets("Casing_cal").Range("p318").Value = 0

 Worksheets("Casing_cal").Range("p322").Value = 0
 Worksheets("Casing_cal").Range("p323").Value = 0

 '--
 'Finish the design job

 GoTo final_design

 '--

 Else

 surface_casing_depth = minm_surface_casing_depth
 Worksheets("Casing_cal").Range("p327").Value = surface_casing_depth

 Worksheets("Casing_cal").Range("p328").Value = Temp_mud_sg_1

 'Producation casing
 'Casing shoe depth (TVD)

 Worksheets("Casing_cal").Range("p312").Value = Worksheets("Casing_cal").Range("b3").Value

 'Required mud specific gravity at production casing

 Worksheets("Casing_cal").Range("p313").Value = Temp_mud_sg_1

 '---

 'Other sections of the casing is assigned zero value

 Worksheets("Casing_cal").Range("p317").Value = 0

 Worksheets("Casing_cal").Range("p318").Value = 0
 Worksheets("Casing_cal").Range("p322").Value = 0

 Worksheets("Casing_cal").Range("p323").Value = 0

 '--
 'Finish the design job

 GoTo final_design

 '--

 End If

 Else
 If Worksheets("Casing_cal").Range("b24").Value = Worksheets("Casing_cal").Range("b3").Value Then

 surface_casing_depth = Worksheets("Casing_cal").Range("b3").Value

 Worksheets("Casing_cal").Range("p327").Value = surface_casing_depth
 Worksheets("Casing_cal").Range("p328").Value = Temp_mud_sg_1

 Worksheets("Casing_cal").Range("p312").Value = 0

 Worksheets("Casing_cal").Range("p313").Value = 0
 '---

 'Other sections of the casing is assigned zero value

 Worksheets("Casing_cal").Range("p317").Value = 0

 Worksheets("Casing_cal").Range("p318").Value = 0

 Worksheets("Casing_cal").Range("p322").Value = 0
 Worksheets("Casing_cal").Range("p323").Value = 0

 '--

 '--
 'Finish the design job

 GoTo final_design

 '--

 Else

132

 MsgBox ("Minimum surface casing depth is greater than the TVD")

 Worksheets("Casing_cal").Range("p327").Value = Worksheets("Casing_cal").Range("b3").Value
 Worksheets("Casing_cal").Range("p328").Value = Temp_mud_sg_1

 '---
 'Other sections of the casing is assigned zero value

 Worksheets("Casing_cal").Range("p312").Value = 0

 Worksheets("Casing_cal").Range("p313").Value = 0
 Worksheets("Casing_cal").Range("p317").Value = 0

 Worksheets("Casing_cal").Range("p318").Value = 0

 Worksheets("Casing_cal").Range("p322").Value = 0
 Worksheets("Casing_cal").Range("p323").Value = 0

 '--

 '--
 'Finish the design job

 GoTo final_design

 '--

 End If

 End If

 Else

 End If

'--
'Producation casing

'Casing shoe depth (TVD)
 Worksheets("Casing_cal").Range("p312").Value = Worksheets("Casing_cal").Range("b3").Value

'Required mud specific gravity at production casing

 Worksheets("Casing_cal").Range("p313").Value = Temp_mud_sg_1

'--
'If the required specific gravity is out of range the system will show an error message. the code is as follows(No need,

alredy protected)

 ' If Temp_kick_margin_sg_1 < Cells(1 + 310, 8) Or Temp_kick_margin_sg_1 > Cells(inputNo + 310, 8) Then

 'MsgBox ("Kick marging Specific gravity is out of range at production casing ")

 ' Else
 'End If

'---

 For i = 1 To inputNo

 If Cells(i + 310, 8) = Temp_kick_margin_sg_1 Then
 Depthe_2 = Cells(i + 310, 2)

 Else

 If Cells(i + 310, 8) < Temp_kick_margin_sg_1 And Cells(i + 1 + 310, 8) > Temp_kick_margin_sg_1 Then

 Temp_value_1_1 = Cells(i + 310, 8)

 Temp_value_1_2 = Cells(i + 1 + 310, 8)

 Temp_value_1_3 = Cells(i + 310, 2)
 Temp_value_1_4 = Cells(i + 1 + 310, 2)

 depth_2 = Int(((Temp_kick_margin_sg_1 - Temp_value_1_1) * (Temp_value_1_4 - Temp_value_1_3) /

(Temp_value_1_2 - Temp_value_1_1)) + Temp_value_1_3)

 Worksheets("Casing_cal").Range("p317").Value = depth_2

 '--
 ' Worksheets("Casing_cal").Range("n310").Value = Temp_value_1_1

 'Worksheets("Casing_cal").Range("n311").Value = Temp_value_1_2

 'Worksheets("Casing_cal").Range("n312").Value = Temp_value_1_3
 'Worksheets("Casing_cal").Range("n313").Value = Temp_value_1_4

 '---

 Else

 End If

133

 End If

 Next

'Casing shoe depth
'Comment: Worksheets("Casing_cal").Range("p317").Value = depth_2

 For i = 1 To inputNo

 If Cells(i + 310, 2) = depth_2 Then

 Temp_mud_sg_2 = Cells(i + 310, 6)

 Else

 If Cells(i + 310, 2) < depth_2 And Cells(i + 1 + 310, 2) > depth_2 Then

 Temp_value_2_1 = Cells(i + 310, 2)
 Temp_value_2_2 = Cells(i + 1 + 310, 2)

 Temp_value_2_3 = Cells(i + 310, 6)

 Temp_value_2_4 = Cells(i + 1 + 310, 6)

 Temp_mud_sg_2 = ((depth_2 - Temp_value_2_1) * (Temp_value_2_4 - Temp_value_2_3) / (Temp_value_2_2 -

Temp_value_2_1)) + Temp_value_2_3

 'Required mud specific gravity at production casing

 Worksheets("Casing_cal").Range("p318").Value = Temp_mud_sg_2

 '---

 '[Worksheets("Casing_cal").Range("n314").Value = Temp_value_2_1

 ' Worksheets("Casing_cal").Range("n315").Value = Temp_value_2_2
 'Worksheets("Casing_cal").Range("n316").Value = Temp_value_2_3

 'Worksheets("Casing_cal").Range("n317").Value = Temp_value_2_4]

 '--

 Else

 End If

 End If

 Next

'---
'Check whether the value of tepm_mud_Sg_2 is less than the minimum kick margin sg????

 If Temp_mud_sg_2 < Cells(1 + 310, 8) Then
 minm_surface_casing_depth = InputBox("Please enter the minimum surface casing depth")

 Worksheets("Casing_cal").Range("b24").Value = minm_surface_casing_depth

 If Worksheets("Casing_cal").Range("b24").Value < Worksheets("Casing_cal").Range("p317").Value Then
 If depth_2 - Worksheets("Casing_cal").Range("b24").Value < minm_depth_diff_btn_surf_intermediate_casing

Then

 surface_casing_depth = Worksheets("Casing_cal").Range("p317").Value
 Worksheets("Casing_cal").Range("p327").Value = surface_casing_depth

 Worksheets("Casing_cal").Range("p328").Value = Temp_mud_sg_2

 '---
 'Other sections of the casing is assigned to zero value

 Worksheets("Casing_cal").Range("p317").Value = 0

 Worksheets("Casing_cal").Range("p318").Value = 0

 Worksheets("Casing_cal").Range("p322").Value = 0

 Worksheets("Casing_cal").Range("p323").Value = 0
 '--

 'Finish the design job

 GoTo final_design

 '--

 Else

134

 surface_casing_depth = Worksheets("Casing_cal").Range("b24").Value

 Worksheets("Casing_cal").Range("p327").Value = surface_casing_depth

 Worksheets("Casing_cal").Range("p328").Value = Temp_mud_sg_2
 Worksheets("Casing_cal").Range("p317").Value = depth_2

 Worksheets("Casing_cal").Range("p318").Value = Temp_mud_sg_2

 '---
 'Other sections of the casing is assigned to zero value

 Worksheets("Casing_cal").Range("p322").Value = 0
 Worksheets("Casing_cal").Range("p323").Value = 0

 '--

 'Finish the design job

 GoTo final_design

 '--

 End If

 Else

 If Worksheets("Casing_cal").Range("b24").Value = Worksheets("Casing_cal").Range("p317").Value Then
 'minm_surface_casing_depth=depth_2

 surface_casing_depth = depth_2
 Worksheets("Casing_cal").Range("p327").Value = surface_casing_depth

 Worksheets("Casing_cal").Range("p328").Value = Temp_mud_sg_2

 '---

 'Other sections of the casing is assigned to zero value

 Worksheets("Casing_cal").Range("p317").Value = 0

 Worksheets("Casing_cal").Range("p318").Value = 0
 Worksheets("Casing_cal").Range("p322").Value = 0

 Worksheets("Casing_cal").Range("p323").Value = 0

 '--
 'Finish the design job

 GoTo final_design

 '--

 Else
 MsgBox ("You have a problem, the minimum surface casing depth is greater than the intermediate section")

 'Option should be provided

 '--

 'Finish the design job

 GoTo final_design

 '--

 End If
 End If

 Else

 End If

'Kick margin

Temp_kick_margin_sg_2 = Temp_mud_sg_2

'--

'If the required specific gravity is out of range, the system will show an error message. the code is as follows
 If Temp_kick_margin_sg_2 < Cells(1 + 310, 8) Or Temp_kick_margin_sg_2 > Cells(inputNo + 310, 8) Then

 MsgBox ("Please check the input")

 Else

135

 End If

'--

 For i = 1 To inputNo

 If Cells(i + 310, 8) = Temp_kick_margin_sg_2 Then

 Depthe_3 = Cells(i + 310, 2)

 Else

 If Cells(i + 310, 8) < Temp_kick_margin_sg_2 And Cells(i + 1 + 310, 8) > Temp_kick_margin_sg_2 Then

 Temp_value_3_1 = Cells(i + 310, 8)
 Temp_value_3_2 = Cells(i + 1 + 310, 8)

 Temp_value_3_3 = Cells(i + 310, 2)

 Temp_value_3_4 = Cells(i + 1 + 310, 2)
 depth_3 = Int(((Temp_kick_margin_sg_2 - Temp_value_3_1) * (Temp_value_3_4 - Temp_value_3_3) /

(Temp_value_3_2 - Temp_value_3_1)) + Temp_value_3_3)

 Worksheets("Casing_cal").Range("p322").Value = depth_3

 '--

 ' Worksheets("Casing_cal").Range("n318").Value = Temp_value_1_1
 'Worksheets("Casing_cal").Range("n319").Value = Temp_value_1_2

 'Worksheets("Casing_cal").Range("n320").Value = Temp_value_1_3

 'Worksheets("Casing_cal").Range("n321").Value = Temp_value_1_4
 '---

 Else

 End If
 End If

 Next

'Casing shoe depth

'Comment: Worksheets("Casing_cal").Range("p322").Value = depth_3

 For i = 1 To inputNo

 If Cells(i + 310, 2) = depth_3 Then

 Temp_mud_sg_3 = Cells(i + 310, 6)

 Else

 If Cells(i + 310, 2) < depth_3 And Cells(i + 1 + 310, 2) > depth_3 Then

 Temp_value_4_1 = Cells(i + 310, 2)

 Temp_value_4_2 = Cells(i + 1 + 310, 2)
 Temp_value_4_3 = Cells(i + 310, 6)

 Temp_value_4_4 = Cells(i + 1 + 310, 6)

 Temp_mud_sg_3 = ((depth_3 - Temp_value_4_1) * (Temp_value_4_4 - Temp_value_4_3) / (Temp_value_4_2 -
Temp_value_4_1)) + Temp_value_4_3

 'Required mud specific gravity at production casing

 Worksheets("Casing_cal").Range("p323").Value = Temp_mud_sg_3

 '---

 'Worksheets("Casing_cal").Range("n322").Value = Temp_value_2_1
 'Worksheets("Casing_cal").Range("n323").Value = Temp_value_2_2

 'Worksheets("Casing_cal").Range("n324").Value = Temp_value_2_3

 'Worksheets("Casing_cal").Range("n325").Value = Temp_value_2_4
 '--

 Else

 End If

 End If

136

 Next

'---

'Check whether the value of tepm_mud_Sg_3 is less than the minimum kick margin sg????

 If Temp_mud_sg_3 < Cells(1 + 310, 8) Then

 minm_surface_casing_depth = InputBox("Please enter the minimum surface casing depth")
 If Worksheets("Casing_cal").Range("b24").Value < Worksheets("Casing_cal").Range("p322").Value Then

 'minm_surface_casing_depth < depth_3

 If Worksheets("Casing_cal").Range("p322").Value - Worksheets("Casing_cal").Range("b24").Value <

minm_depth_diff_btn_surf_intermediate_casing Then

 'epth_3 - minm_surface_casing_depth < minm_depth_diff_btn_surf_intermediate_casing

 surface_casing_depth = depth_3

 Worksheets("Casing_cal").Range("p327").Value = surface_casing_depth
 Worksheets("Casing_cal").Range("p328").Value = Temp_mud_sg_3

 '---

 'Other sections of the casing is assigned to zero value

 Worksheets("Casing_cal").Range("p322").Value = 0
 Worksheets("Casing_cal").Range("p323").Value = 0

 '--

 'Finish the design job

 GoTo final_design

 '--

 Else
 surface_casing_depth = minm_surface_casing_depth

 Worksheets("Casing_cal").Range("p327").Value = surface_casing_depth

 Worksheets("Casing_cal").Range("p328").Value = Temp_mud_sg_3

 Worksheets("Casing_cal").Range("p322").Value = depth_3

 Worksheets("Casing_cal").Range("p323").Value = Temp_mud_sg_3

 '--

 'Finish the design job

 GoTo final_design

 '--

 End If

 Else

 If Worksheets("Casing_cal").Range("b24").Value = Worksheets("Casing_cal").Range("p322").Value Then
 'minm_surface_casing_depth = depth_3

 surface_casing_depth = depth_3

 Worksheets("Casing_cal").Range("p327").Value = surface_casing_depth
 Worksheets("Casing_cal").Range("p328").Value = Temp_mud_sg_3

 '---
 'Other sections of the casing is assigned to zero value

 Worksheets("Casing_cal").Range("p322").Value = 0

 Worksheets("Casing_cal").Range("p323").Value = 0

 '--

 'Finish the design job

 GoTo final_design

 '--

 Else
 'the minimum casing setting depth is greater than the depth_3, so _

 we havto set casing setting depth=minimum casing setting depth and will find out the corresponding _

 required mud specific gravity

137

 Worksheets("Casing_cal").Range("p327").Value = minm_surface_casing_depth

 'surface casing depth=minimum surface casing depth
 'have to find out the corresponding mud sg

 For i = 1 To inputNo

 If Cells(i + 310, 2) = minm_surface_casing_depth Then

 Temp_mud_sg_4 = Cells(i + 310, 6)

 Else

 If Cells(i + 310, 2) < minm_surface_casing_depth And Cells(i + 1 + 310, 2) > minm_surface_casing_depth

Then

 Temp_value_5_1 = Cells(i + 310, 2)

 Temp_value_5_2 = Cells(i + 1 + 310, 2)

 Temp_value_5_3 = Cells(i + 310, 6)
 Temp_value_5_4 = Cells(i + 1 + 310, 6)

 Temp_mud_sg_4 = ((minm_surface_casing_depth - Temp_value_5_1) * (Temp_value_5_4 -

Temp_value_5_3) / (Temp_value_5_2 - Temp_value_5_1)) + Temp_value_5_3

 'Required mud specific gravity at production casing

 Worksheets("Casing_cal").Range("p328").Value = Temp_mud_sg_4

 Else

 End If
 End If

 Next

 '---
 'Other sections of the casing is assigned to zero value

 Worksheets("Casing_cal").Range("p322").Value = 0
 Worksheets("Casing_cal").Range("p323").Value = 0

 '--

 'Finish the design job

 GoTo final_design

 '--

 End If

 End If
 Else

 End If

Else

MsgBox ("Please enter the pore pressure at the True Vertical Depth (TVD)")

'If the pore pressure is not given in the TVD then the system will return again to the _
input window.

GoTo Inconsistant_data_1

'Please note that, this go to option will be changed when I will generate an independent input module

final_design:

End If

'Input for surface casing programs-

'Sheets("Casing_cal").Activate

'From Casing_cal:

'Section Depth

Sheets("Casing_cal").Range("b4").Formula = Sheets("Casing_cal").Range("p327").Formula

138

'Mud SG

Sheets("Casing_cal").Range("b5").Formula = Sheets("Casing_cal").Range("p328").Formula

'Input for Intermediate casing 1 programs-

'Sheets("Casing_Cal_Intermediate_2").Activate
'From Casing_cal:

'TVD

Sheets("Casing_Cal_Intermediate_2").Range("b3").Formula = Sheets("Casing_cal").Range("b3").Formula
'Section Depth

Sheets("Casing_Cal_Intermediate_2").Range("b4").Formula = Sheets("Casing_cal").Range("p322").Formula

'Mud SG
Sheets("Casing_Cal_Intermediate_2").Range("b5").Formula = Sheets("Casing_cal").Range("p323").Formula

'Input fof Intermediate casing 2 programs-

'From Casing_cal:
'TVD

Sheets("Casing_Cal_Intermediate_1").Range("b3").Formula = Sheets("Casing_cal").Range("b3").Formula

'Section Depth
Sheets("Casing_Cal_Intermediate_1").Range("b4").Formula = Sheets("Casing_cal").Range("p317").Formula

'Mud SG

Sheets("Casing_Cal_Intermediate_1").Range("b5").Formula = Sheets("Casing_cal").Range("p318").Formula

'Input for Production programs-

'From Casing_cal:
'TVD

Sheets("Casing_Cal_Production").Range("b3").Formula = Sheets("Casing_cal").Range("b3").Formula

'Section Depth
Sheets("Casing_Cal_Production").Range("b4").Formula = Sheets("Casing_cal").Range("p312").Formula

'Mud SG
Sheets("Casing_Cal_Production").Range("b5").Formula = Sheets("Casing_cal").Range("p313").Formula

'Formation pressure at the casing shoe

Sheets("Casing_Cal_Production").Range("b8").Formula =
'Input for surface hole -

'From Casing_cal:

'Hole Size
Sheets("D_String_Design_Surface").Range("b13").Formula = Sheets("Casing_cal").Range("p330").Formula

'Casing Size

Sheets("D_String_Design_Surface").Range("b14").Formula = Sheets("Casing_cal").Range("p329").Formula
'Depth of surface section

Sheets("D_String_Design_Surface").Range("b15").Formula = Sheets("Casing_cal").Range("p327").Formula

'Mud specific gravity
Sheets("D_String_Design_Surface").Range("b16").Formula = Sheets("Casing_cal").Range("p328").Formula

'Input for Intermediate 1 hole-
'From Casing_cal:

'Hole Size

Sheets("D_String_Design_Intermediate_1").Range("b13").Formula = Sheets("Casing_cal").Range("p320").Formula
'Casing Size

Sheets("D_String_Design_Intermediate_1").Range("b14").Formula = Sheets("Casing_cal").Range("p319").Formula

'Depth of Intermediate_1 section
Sheets("D_String_Design_Intermediate_1").Range("b15").Formula = Sheets("Casing_cal").Range("p317").Formula

'Mud specific gravity

Sheets("D_String_Design_Intermediate_1").Range("b16").Formula = Sheets("Casing_cal").Range("p318").Formula

'From Casing_cal:

'Hole Size
Sheets("D_String_Design_Intermediate_2").Range("b13").Formula = Sheets("Casing_cal").Range("p325").Formula

'Casing Size

Sheets("D_String_Design_Intermediate_2").Range("b14").Formula = Sheets("Casing_cal").Range("p324").Formula

'Depth of Intermediate_2 section

Sheets("D_String_Design_Intermediate_2").Range("b15").Formula = Sheets("Casing_cal").Range("p322").Formula

'Mud specific gravity
Sheets("D_String_Design_Intermediate_2").Range("b16").Formula = Sheets("Casing_cal").Range("p323").Formula

'From Casing_cal:
'Hole Size

Sheets("D_String_Design_Production").Range("b13").Formula = Sheets("Casing_cal").Range("p315").Formula

'Casing Size
Sheets("D_String_Design_Production").Range("b14").Formula = Sheets("Casing_cal").Range("p314").Formula

'Depth of Intermediate_1 section

Sheets("D_String_Design_Production").Range("b15").Formula = Sheets("Casing_cal").Range("p312").Formula

139

'Mud specific gravity

Sheets("D_String_Design_Production").Range("b16").Formula = Sheets("Casing_cal").Range("p313").Formula

End Sub

Casing Design:

Sub Surface_Casing()

Sheets("Casing_cal").Select

'Input from previous programs-

'From Casing_cal:

'Section Depth

'Sheets("Casing_cal").Range("b4").Formula = Sheets("Casing_cal").Range("p327").Formula
'Mud SG

'Sheets("Casing_cal").Range("b5").Formula = Sheets("Casing_cal").Range("p328").Formula

'---
'Available surface casing input

Dim Available_surface_csg As Integer

Available_surface_csg = Cells(19, 2)
For avl_casg = 0 To Available_surface_csg

Cells(101 + avl_casg, 2) = Cells(101 + avl_casg, 42)

Cells(101 + avl_casg, 3) = Cells(101 + avl_casg, 43)
Cells(101 + avl_casg, 4) = Cells(101 + avl_casg, 44)

Cells(101 + avl_casg, 5) = Cells(101 + avl_casg, 45)

Cells(101 + avl_casg, 6) = Cells(101 + avl_casg, 46)
Cells(101 + avl_casg, 7) = Cells(101 + avl_casg, 47)

Cells(101 + avl_casg, 8) = Cells(101 + avl_casg, 48)

Cells(101 + avl_casg, 16) = Cells(101 + avl_casg, 49)
Next

'---

'Suface:
'Collapse Load Calculation

'Variables

Dim s_cg_clps_load_shoe As Double
Dim s_cg_clps_load_srfce As Double

Dim s_cg_dsgn_clps_load_shoe As Double

Dim s_cg_dsgn_clps_load_srfce As Double
Dim s_cg_slope_clps_load As Double

Dim s_cg_df_clps As Double

' Buoyancy Factor Calculations

Cells(8, 10) = 1 - (Cells(5, 2) * 8.34) / 65.5
'Assign design factor:

s_cg_df_clps = Worksheets("Casing_cal").Range("b9").Value

' collapse pressure surface 0 lbf/in^2
s_cg_clps_load_srfce = 0 'lbf/in^2

'Designed collapse pressure (after multiplying the Design Factor)

'Surface
Worksheets("Casing_cal").Range("j3").Value = s_cg_clps_load_srfce * s_cg_df_clps

'Collapse Pressure at casing shoe (lbf/in^2)=external pressure_at shoe - internal pressure at shoe

'external pressure_at shoe =0.052*SG*8.33*h lbf/in^2
'internal pressure at shoe = 0 lbf/in^2

s_cg_clps_load_shoe = 0.052 * Worksheets("Casing_cal").Range("b5").Value *

Worksheets("Casing_cal").Range("b4").Value * 8.33
'Designed collapse pressure (after multiplying the Design Factor)

'Casing Shoe

s_cg_dsgn_clps_load_shoe = s_cg_clps_load_shoe * s_cg_df_clps

'Make the designed collapse pressure value to nearest tenth to round off

If (Int(s_cg_dsgn_clps_load_shoe) Mod 10) > 5 Then

s_cg_dsgn_clps_load_shoe = (Int(s_cg_dsgn_clps_load_shoe / 10) + 1) * 10
Else: s_cg_dsgn_clps_load_shoe = (Int(s_cg_dsgn_clps_load_shoe / 10)) * 10

End If

Worksheets("Casing_cal").Range("j4").Value = s_cg_dsgn_clps_load_shoe
MsgBox "Collapse load is calculated"

'Casing selection

'slope(m) of the designed collapse line
'Equation of straight line going through the origin y=mx, m=(y_2-y_1)/(x_2-x_1)

'Here, x_1,y_1=0

'so, m=y_2/x_2; y_2=Depth of casing shoe, x_2= Collapse pressure at the casing shoe
s_cg_slope_clps_load = Worksheets("Casing_cal").Range("b4").Value / Worksheets("Casing_cal").Range("j4").Value

140

'Depth up to which the casing is capable to sustain safely, y=mx

'have to change the condition
For i = 1 To Cells(19, 2)

Cells(100 + i, 9) = 0

If Cells(100 + i, 6) = 0 Then

Cells(100 + i, 10) = 0

Else
Cells(100 + i, 10) = Int(s_cg_slope_clps_load * Cells(100 + i, 6))

End If

Next
' Burst load

'fracture pressure=0.052*SG*8.33*depth

'please note that, another option should be provided for fracture pressure calculations, like if the provided input is
'fracture gradient than the system can calculate the pressure

'Burst load at the casing shoe

'variables
Dim s_cg_intr_brst_load_shoe As Double

Dim s_cg_extr_brst_load_shoe As Double

Dim s_cg_brst_load_shoe As Double

Dim s_cg_dsgn_brst_load_shoe As Double

Dim s_cg_df_brst As Double

'Internal pressure at casing shoe = Fracture pressure+Injection pressure
s_cg_Intr__brst_load_shoe = 0.052 * Worksheets("Casing_cal").Range("b8").Value * 8.33 *

Worksheets("Casing_cal").Range("b4").Value _

+ Worksheets("Casing_cal").Range("b14").Value
'External pressure at casing shoe = Fresh water pressure at casing shoe

s_cg_extr_brst_load_shoe = 0.052 * 8.33 * Worksheets("Casing_cal").Range("b4").Value
'Burst load at casing shoe

s_cg_brst_load_shoe = s_cg_Intr__brst_load_shoe - s_cg_extr_brst_load_shoe

'Assignment of design factor for burst
s_cg_df_brst = Worksheets("Casing_cal").Range("b10").Value

'Designed Burst load at casing shoe
s_cg_dsgn_brst_load_shoe = s_cg_brst_load_shoe * s_cg_df_brst

'Make the designed collapse pressure value to nearest tenth to round off
 If (Int(s_cg_dsgn_brst_load_shoe) Mod 10) > 5 Then

 s_cg_dsgn_brst_load_shoe = (Int(s_cg_dsgn_brst_load_shoe / 10) + 1) * 10

 Else: s_cg_dsgn_brst_load_shoe = (Int(s_cg_dsgn_brst_load_shoe / 10)) * 10
 End If

'Designed Burst load at casing shoe

Worksheets("Casing_cal").Range("j7").Value = s_cg_dsgn_brst_load_shoe
'Burst load at the casing surface

'Variables

Dim s_cg_tmp_at_casing_shoe As Double
Dim s_cg_tmp_average As Double

Dim s_cg_brst_load_surface As Double

Dim s_cg_dsgn_brst_load_surface As Double
'Temperature at casing shoe=Tempt at surface + (casing shoe depth/total vertical depth)*(Temp at TVD - Temp at surface)

s_cg_tmp_at_casing_shoe = Worksheets("Casing_cal").Range("b6").Value +

(Worksheets("Casing_cal").Range("b4").Value / _
Worksheets("Casing_cal").Range("b3").Value) * (Worksheets("Casing_cal").Range("b7").Value -

Worksheets("Casing_cal").Range("b6").Value)

'Average temperature and conversion of temperature to Rankin scale to farenhite scale = (Tempt at surface+Temp at casing
shoe)/2 +460

s_cg_tmp_average = (Worksheets("Casing_cal").Range("b6").Value + s_cg_tmp_at_casing_shoe) / 2 + 460 'temperature at

Rankin scale

s_cg_brst_load_surface = s_cg_Intr__brst_load_shoe * Exp((Worksheets("Casing_cal").Range("b17").Value * (0 -

Worksheets("Casing_cal").Range("b4").Value)) _

/ (Worksheets("Casing_cal").Range("b18").Value * s_cg_tmp_average * Worksheets("Casing_cal").Range("b16").Value))

s_cg_dsgn_brst_load_surface = s_cg_brst_load_surface * s_cg_df_brst

'Make the designed collapse pressure value to nearest tenth to round off

 If (Int(s_cg_dsgn_brst_load_surface) Mod 10) > 5 Then
 s_cg_dsgn_brst_load_surface = (Int(s_cg_dsgn_brst_load_surface / 10) + 1) * 10

 Else: s_cg_dsgn_brst_load_surface = (Int(s_cg_dsgn_brst_load_surface / 10)) * 10

 End If

141

Worksheets("Casing_cal").Range("j6").Value = s_cg_dsgn_brst_load_surface

'Casing selection
'Length upto which the casing is capable to sustain the burst load

'Evaluate the casing

For i = 1 To Cells(19, 2)

If Cells(100 + i, 7) > Cells(6, 10) Then

Cells(100 + i, 12) = 0
Cells(100 + i, 13) = Cells(4, 2)

Else

Cells(100 + i, 12) = Int((s_cg_dsgn_brst_load_surface - Cells(100 + i, 7)) * (Cells(4, 2)) / (s_cg_dsgn_brst_load_surface -
s_cg_dsgn_brst_load_shoe))

Cells(100 + i, 13) = Cells(4, 2)

End If
Next

Dim casing_1_start_depth As Double

Dim casing_1_end_depth As Double

For i = 1 To 10

Cells(100 + i, 14) = maximum(Cells(100 + i, 9), Cells(100 + i, 12))
Cells(100 + i, 15) = minimum(Cells(100 + i, 10), Cells(100 + i, 13))

Next

'---

'Maximum depth that can be cased by using the available casings - Part 1
Dim nuber_of_available_casing As Double

Dim maximum_depth_can_b_cased As Double

nuber_of_available_casing = Worksheets("Casing_cal").Range("b19").Value

maximum_depth_can_b_cased = Cells(100 + Worksheets("Casing_cal").Range("b19").Value, 15)

Cells(118, 16) = maximum_depth_can_b_cased
If Cells(118, 16) > Worksheets("Casing_cal").Range("b4").Value Or _

Cells(118, 16) = Worksheets("Casing_cal").Range("b4").Value Then

GoTo Casing_selection

'Clear the cells:

For i = 1 To 20
Cells(100 + i, 21).Clear

Cells(100 + i, 22).Clear

 For j = 1 To 20
 Cells(120 + i, j + 1).Clear

 Next

Next
'-------------------------

'Break Points

For i = 1 To Worksheets("Casing_cal").Range("b19").Value
 If Cells(100 + i, 15) - Cells(100 + i, 14) > Worksheets("Casing_cal").Range("b12").Value Or _

 Cells(100 + i, 15) - Cells(100 + i, 14) = Worksheets("Casing_cal").Range("b12").Value Then

 Cells(120 + i, 2) = Cells(100 + i, 14) ' First Break points
 Cells(120 + i, 3) = Cells(100 + i, 15) ' second break points

 End If

Next
'---------------------------

For i = 1 To Worksheets("Casing_cal").Range("b19").Value * 2

Cells(120 + 2 * i - 1, 4) = Cells(120 + i, 2)

Cells(120 + 2 * i, 4) = Cells(120 + i, 3)

Next

'---

' Sorting the Break points
Dim b_itr As Integer ' Number of break points

b_itr = Worksheets("Casing_cal").Range("b19").Value * 2

 ActiveWorkbook.Worksheets("Casing_cal").Sort.SortFields.Clear

 ActiveWorkbook.Worksheets("Casing_cal").Sort.SortFields.Add Key:=Range(Cells(121, 4), Cells(b_itr + 120, 4)), _

142

 SortOn:=xlSortOnValues, Order:=xlAscending, DataOption:=xlSortNormal

 With ActiveWorkbook.Worksheets("Casing_cal").Sort
 .SetRange Range(Cells(121, 4), Cells(b_itr + 120, 4))

 .Header = xlGuess

 .MatchCase = False
 .Orientation = xlTopToBottom

 .SortMethod = xlPinYin

 .Apply
 End With

'-------------------------------------

'Available Candidates
For i = 1 To b_itr

 k = 1

 For j = 1 To Worksheets("Casing_cal").Range("b19").Value
 If (Cells(100 + j, 14) < Cells(120 + i, 4) Or Cells(100 + j, 14) = Cells(120 + i, 4)) And _

 Cells(100 + j, 15) > Cells(120 + i, 4) Or Cells(100 + j, 15) = Cells(120 + i, 4) And _

 (Cells(100 + j, 15) - Cells(100 + j, 14) > Worksheets("Casing_cal").Range("b12").Value Or _
 Cells(100 + j, 15) - Cells(100 + j, 14) = Worksheets("Casing_cal").Range("b12").Value) Then

 Cells(120 + i, 4 + k) = j

 k = k + 1

 End If

 Next

Cells(120 + i, 15) = k - 1 'Number of candidates

Next

'--

'Selection of casing

'Number of casing used, m

'Casing_covered=0,cells(119,17)
'r=break_point[]

'Total length =

Dim b2b As Integer
Dim m As Integer

Dim r As Double

Dim casing_covered As Double

m = 0

casing_covered = 0
b2b = 1

r = Cells(121, 4)

casing_covered = Cells(119, 17)
 '(Check whether the casing setting depth is less than the minimum casing section then the program will show a

message)

 If Worksheets("Casing_cal").Range("b4").Value < Worksheets("Casing_cal").Range("b12").Value Then
 MsgBox ("The casing setting depth is less than the minimum casing section")

 GoTo out_of_program

 Else
 GoTo start_the_program

 End If

start_the_program:

Do While casing_covered < Worksheets("Casing_cal").Range("b4").Value
 If Worksheets("Casing_cal").Range("b4").Value - Cells(100 + m, 22) > Worksheets("Casing_cal").Range("b12").Value

Or _

 Worksheets("Casing_cal").Range("b4").Value - Cells(100 + m, 22) = Worksheets("Casing_cal").Range("b12").Value

Then

 If m > 10 Then ' Limit the value of m to less then 10

 GoTo out_of_program 'system will out from the program
 Else

 GoTo inside_the_program 'system will run inside the program

 End If

inside_the_program:

 For i = 1 To Cells(120 + b2b, 15)

 If Cells(100 + Cells(120 + b2b, i + 4), 15) - r > Worksheets("Casing_cal").Range("b12").Value Or _

143

 (Cells(100 + (Cells(120 + b2b, i + 4)), 15) - r) = Worksheets("Casing_cal").Range("b12").Value Then

 Cells(100 + m + 1, 21) = Cells(120 + b2b, i + 4)
 Cells(100 + m + 1, 22) = Cells(120 + b2b, 4)

 If Cells(120 + b2b + 1, 4) > r + Worksheets("Casing_cal").Range("b12").Value Then

 Cells(100 + m + 1, 22) = Cells(120 + b2b + 1, 4) 'C_starts

 r = Cells(100 + m + 1, 22)
 Else

 Cells(100 + m + 1, 22) = r + Worksheets("Casing_cal").Range("b12").Value

 r = Cells(100 + m + 1, 22)
 End If

 GoTo abc

 End If

 If Cells(100 + m, 21) = Cells(120 + b2b, i + 4) Then
 Cells(100 + m + 1, 21) = Cells(100 + m, 21)

 Cells(100 + m + 1, 22) = Cells(120 + b2b, 4)

 End If

 Next

abc:

itr = Cells(119, 19)

 itr = b2b

 Do While Cells(120 + itr, 4) < Cells(100 + m + 1, 22) Or _

 Cells(120 + itr, 4) = Cells(100 + m + 1, 22) And _

 (itr < (b_itr - 1) Or itr = b_itr - 1)
 itr = itr + 1

 Loop

 Else

 Cells(100 + m, 22) = Worksheets("Casing_cal").Range("b4").Value

 If Cells(120 + b2b + 1, 4) = Worksheets("Casing_cal").Range("b4").Value Then

 Cells(100 + m, 21) = Cells(120 + b2b + 1, 1 + 4)
 Else

 If Cells(120 + b2b + 2, 4) = Worksheets("Casing_cal").Range("b4").Value Then

 Cells(100 + m, 21) = Cells(120 + b2b + 2, 1 + 4)
 Else

 If Cells(120 + b2b + 3, 4) = Worksheets("Casing_cal").Range("b4").Value Then

 Cells(100 + m, 21) = Cells(120 + b2b + 3, 1 + 4)
 Else

 If Cells(120 + b2b + 4, 4) = Worksheets("Casing_cal").Range("b4").Value Then

 Cells(100 + m, 21) = Cells(120 + b2b + 4, 1 + 4)
 Else

 MsgBox ("Please check again")

 End If
 End If

 End If

 End If

 End If

 b2b = itr - 1

 casing_covered = Cells(100 + m + 1, 22)
 m = m + 1

Loop

out_of_program:

Else

MsgBox ("The available casing is not capable to case total depth")

144

For i = 1 To 20

Cells(100 + i, 21).Clear
Cells(100 + i, 22).Clear

 For j = 1 To 20

 Cells(120 + i, j + 1).Clear
 Next

Next

End If

'---

'Axial load calculation

 '--------------------------------

 Dim counter_1 As Double
 counter_1 = 0

 For i = 1 To 20

 If Cells(100 + i, 21) > 0 Then

 counter_1 = counter_1 + 1

 Cells(98, 22) = counter_1

 Else
 End If

 Next

For i = 1 To 10

 For j = 1 To 36
 Cells(50 + i, 6 + j).Clear

 Next

Next
'----------------------------

Dim counter_2 As Double
counter_2 = 0

For i = 1 To counter_1

 If Cells(100 + i, 21) = Cells(100 + 1 + i, 21) Then
 counter_2 = counter_2 + 1

 Cells(97, 22) = counter_2 'keep the counter_2 value in the correspondin cells

 Else
 Cells(50 + i - counter_2, 9) = Cells(100 + i, 21)

 Cells(50 + i - counter_2, 15) = Cells(100 + i, 22)

 End If
Next

Cells(51, 14) = 0 'Define the start value

 'Define another counter to count the number of sections

 Dim counter_3 As Double
 counter_3 = 0

 For i = 1 To 20

 If Cells(50 + i, 9) > 0 Then
 counter_3 = counter_3 + 1

 Cells(96, 22) = counter_3

 Else
 End If

 Next

'---------------------------------------

'Start Depth

Cells(51, 14) = 0 'Define the start value
For i = 1 To counter_3 - 1

Cells(51 + i, 14) = Cells(50 + i, 15)

Next
'--------------------------------------

'Length:

For i = 1 To counter_3
Cells(50 + i, 16) = Cells(50 + i, 15) - Cells(50 + i, 14)

'Weight

145

Cells(50 + i, 10) = Cells(100 + Cells(50 + i, 9), 2)

'Grade

Cells(50 + i, 11) = Cells(100 + Cells(50 + i, 9), 3)

'Connection

Cells(50 + i, 12) = Cells(100 + Cells(50 + i, 9), 4)

'Inner Diameter

Cells(50 + i, 13) = Cells(100 + Cells(50 + i, 9), 5)

'Air weight:

Cells(50 + i, 17) = Cells(50 + i, 10) * Cells(50 + i, 16)

'Buoyed weight

Cells(50 + i, 18) = Int(Cells(50 + i, 17) * Cells(8, 10))

'Collapse rating

Cells(50 + i, 23) = Cells(100 + Cells(50 + i, 9), 6)

'Burst rating

Cells(50 + i, 24) = Cells(100 + Cells(50 + i, 9), 7)

'Tensile rating

Cells(50 + i, 25) = Cells(100 + Cells(50 + i, 9), 8)

'Unit cost

Cells(50 + i, 33) = Cells(100 + Cells(50 + i, 9), 16)

'Total cost

Cells(50 + i, 34) = Cells(50 + i, 33) * Cells(50 + i, 16)

Next

'Total Cost of the surface casing

'Cumulative weight

If counter_3 > 1 Then
For i = 1 To (counter_3 - 1)

'Cumulative air weight

Cells(50 + counter_3, 19) = Cells(50 + counter_3, 17)

Cells(50 + counter_3 - i, 19) = Cells(50 + counter_3 - i + 1, 19) + Cells(50 + counter_3 - i, 17)

'Cumulative buoyed weight

Cells(50 + counter_3, 20) = Cells(50 + counter_3, 18)
Cells(50 + counter_3 - i, 20) = Cells(50 + counter_3 - i + 1, 20) + Cells(50 + counter_3 - i, 18)

Next

Else
Cells(50 + counter_3, 19) = Cells(50 + counter_3, 17)

Cells(50 + counter_3, 20) = Cells(50 + counter_3, 18)

End If

' Design Safety factor Calculations

For i = 1 To counter_3

'Clear the color shade

Cells(50 + i, 32).Select
 With Selection.Interior

 .Pattern = xlSolid

 .PatternColorIndex = xlAutomatic
 .ThemeColor = xlThemeColorDark1

 .TintAndShade = 0

 .PatternTintAndShade = 0
 End With

Cells(50 + i, 32) = Cells(50 + i, 25) / Cells(50 + i, 19)

146

If Cells(50 + i, 32) < Cells(11, 2) Then

Cells(50 + i, 32).Select

 With Selection.Interior

 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic

 .Color = 255

 .TintAndShade = 0
 .PatternTintAndShade = 0

 End With

 MsgBox ("Axial load is not satisfied")
Else

End If

Next

End Sub

Code for expression file creation

Sub Expression_creatoin()

Sheets("D_pipe_internal_external_upset").Select
ActiveWorkbook.SaveAs Filename:= _

"C:\Documents and

Settings\shahmd\Desktop\Thesis\Draft_version\Draft_version_2\Drill_pipe_internal_external_upset_expression.exp",
FileFormat:= _

 xlTextMSDOS, CreateBackup:=False

 ActiveWorkbook.Save

 Sheets("Tool_joint_pin").Select

ActiveWorkbook.SaveAs Filename:= _
"C:\Documents and Settings\shahmd\Desktop\Thesis\Draft_version\Draft_version_2\Tool_joint_pin", FileFormat:= _

 xlTextMSDOS, CreateBackup:=False

 ActiveWorkbook.Save

 Sheets("Drill_collar").Select

ActiveWorkbook.SaveAs Filename:= _
"C:\Documents and Settings\shahmd\Desktop\Thesis\Draft_version\Draft_version_2\Drill_collar", FileFormat:= _

 xlTextMSDOS, CreateBackup:=False

 ActiveWorkbook.Save

 Sheets("Bit_sub_A").Select
ActiveWorkbook.SaveAs Filename:= _

"C:\Documents and Settings\shahmd\Desktop\Thesis\Draft_version\Draft_version_2\Bit_sub_A", FileFormat:= _

 xlTextMSDOS, CreateBackup:=False
 ActiveWorkbook.Save

 Sheets("Drill_bit").Select
ActiveWorkbook.SaveAs Filename:= _

"C:\Documents and Settings\shahmd\Desktop\Thesis\Draft_version\Draft_version_2\Drill_bit", FileFormat:= _

 xlTextMSDOS, CreateBackup:=False
 ActiveWorkbook.Save

Sheets("Array").Select
ActiveWorkbook.SaveAs Filename:= _

"C:\Documents and Settings\shahmd\Desktop\Thesis\Draft_version\Draft_version_2\Array.exp", FileFormat:= _

 xlTextMSDOS, CreateBackup:=False

 ActiveWorkbook.Save

End Sub

