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Abstract

Classical methods of inference are often rendered inapplicable while dealing

with data exhibiting heavy tails, which gives rise to infinite variance and

frequent extremes, and long memory, which induces inertia in the data. In

this thesis, we develop the Marcinkiewicz Strong Law of Large Numbers,

lim
n→∞

n−
1
p

n∑
k=1

(dk − d) = 0 a.s. with p ∈ (1, 2), for products dk =
∏s

r=1 x
(r)
k ,

s ∈ N, where each x
(r)
k =

∑∞
l=−∞ c

(r)
k−lξ

(r)
l is a two-sided univariate linear pro-

cess for 1 ≤ r ≤ s, with coefficients {c(r)
l }l∈Z and i.i.d. zero-mean innovations

{ξ(r)
l }l∈Z respectively. The decay of the coefficients c

(r)
l as |l| → ∞, can be slow

enough that {x(r)
k } can have long memory while {dk} can have heavy tails. The

aim of this thesis is to handle the long-range dependence and heavy-tailedness

for {dk} simultaneously, and to prove a decoupling property that shows the

convergence rate is dictated by the worst of long-range dependence and heavy

tails, and not their combination.
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Chapter 1

Introduction

With today’s internet of things, big data has become abundant and huge op-

portunities await those who can effectively mine it. However, this data, espe-

cially in finance, econometrics, networks, machine learning, signal processing,

and environmental science, often posseses heavy-tails and long memory (see

[8], [13], [30], and [35]). Data exhibiting this combination of heavy-tails (HT)

and long-range dependence (LRD) can often be modeled well by linear pro-

cesses but is lethal for most classical statistics. Recently, certain covariance

estimators and stochastic approximation algorithms have been shown capable

of handling this kind of data. In particular, Marcinkiewicz strong laws of large

numbers (MSLLN) were established for showing polynomial rates of conver-

gence (see [17], [20] and [29]).
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1.1 Basic definitions

We first discuss the concept of MSLLN. Loeve [19] (Case 4 of Theorem A,

Section 17) provides the following statement of the Marcinkiewicz-Zygmund

strong law of large numbers.

Theorem 1.1 (Marcinkiewicz-Zygmund Strong Law of Large Numbers). Let

{Xn}n∈Z be a sequence of i.i.d. random variables, and let 0 < p < 2. Then,

E [|X1|p] <∞ if and only if

lim
n→∞

n−
1
p

n∑
k=1

(Xk − c) = 0 a.s. , where c =

 0, p < 1

E|X1|, p ≥ 1
. (1.1)

More generally, for a stationary time series {Xn}n∈Z with given conditions on

{Xn}, any result regarding the almost sure convergence of n−
1
p
∑n

k=1(Xn − c)

for some constant c and some p ∈ (0, 2), is known as a Marcinkiewicz-Zygmund

strong law, or simply a Marcinkiewicz strong law of order p.

Next we move to heavy-tailedness. Foss et al. [6] (Definition 2.1) called a

distribution F heavy tailed if
∫∞
−∞ e

λxF (dx) = ∞, ∀ λ > 0. They went on

to show in their Theorem 2.6, that F is heavy-tailed if and only if its tail is

not bounded by any exponentially decreasing function. We use the following

weaker definition throughout our paper, which was also used by Kouritzin and

Sadeghi [17], that basically says that the tails decay like x−β for some real

number β.
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Definition 1.2 (Heavy Tails). A random variable X is said to be heavy tailed,

if

β = sup

{
q ∈ R : sup

x≥0
xqP (|X| > x) <∞

}
< ∞ , (1.2)

and β will be called the heavy tail coefficient of X. Notice that if β > 1, then

X will have finite expectation, and if β > 2, X will have finite variance. The

smaller the value of β, the heavier the tail of X.

Now, we shall discuss long-range dependence. Pipiras and Taqqu [27] (Chapter

2) provides five non-equivalent conditions for LRD, and explored relations

among them in detail. We shall use their first condition as the definition of

long-range dependence.

Definition 1.3 (Long-range Dependence). The time series X = {Xn}n∈Z is

said to be long-range dependent, if can be represented as Xn =
∑∞

l=−∞ cn−lξl,

such that {ξl}l∈Z are i.i.d. zero-mean random variables with finite variance,

and {cl}l∈Z satisfies

cl =
L(l)

|l|σ
for some σ ∈

(
1

2
, 1

)
, (1.3)

for some function L slowly varying at infinity, i.e. L is eventually positive, and

lim
x→∞

L(ax)
L(x)

= 1, ∀ a > 0.

Pipiras and Taqqu [27] explains that Definition 1.3 implies that the autoco-

variance function of the time series X, i.e. γX(k) = E[X0Xk] , will be equal

3



to k1−2σL(k), where L is another slowly varying function at infinity, and that

these autocovariances are not absolutely summable.

1.2 History of LRD and HT

A detailed history of long-range dependence can be found in Graves et al. [7].

Indication of long memory in environmental and hydrological time series drew

a lot of attention in the mid-twentieth century (see [10],[11],[23] and [24]).

While trying to find the ideal height of a dam that can be constructed on the

Nile river, H.E. Hurst looked at its river flow data through a new statistic that

he defined, i.e. the rescaled range statistic, or the R/S statistic (see [10] and

[11]). Samorodnitsky [32] defined the R/S statistic as follows.

Definition 1.4 (R/S Statistic). Let {Xk}k∈N be a sequence of identical ran-

dom variables, with a non-degenerate distribution, and Sn denote the nth

partial sum X1 +X2 + . . .+Xn. Then,

R

S
(n) =

R

S
(X1, X2, . . . , Xn) =

max
1≤k≤n{Sk − k

n
Sn} − min

1≤k≤n{Sk − k
n
Sn}√

1
n

∑n
k=1(Xk − 1

n
Sn)2

. (1.4)

Hurst [10] observed from the river flow data, that R/S(n) was proportional

to n0.72, instead of
√
n, as would have been the case under the assumption

of {Xk}k∈N being independent and Gaussian (see Feller [5]). This unintuitive

discrepancy came to be known as the Hurst phenomenon.
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Several mathematicians and hydrologists attempted to explain the Hurst phe-

nomenon by assuming non-normality of the marginal distribution (see Moran

[26]) or non-stationarity (see Potter [28]), but failed to come up with a prac-

tical explanation. There were cases when the Hurst phenomenon could be

observed in stationary data as well. A general consensus gradually arose that

a combination of transience and autocorrelation effects was the probable cul-

prit in those cases (see Wallis and O’Connell [38]).

Motivated by the results of Mandelbrot [22] on erratic behavior of noises in

certain solids, Mandelbrot and Van Ness [23] introduced and studied concepts

of Fractional Brownian Motion (FBM) and Fractional Gaussian Noise (FGN)

and laid the groundwork to study the Hurst phenomenon. Mandelbrot and

Wallis [24] used the names Noah effect for heavy tails and Joseph effect for LRD

and showed that models exhibiting self-similarity accounted well for Hurst’s

findings. Self-similarity is a property seen in many long range dependent time

series, and also forms the basis for fractals. Pipiras and Taqqu [27] defined

self-similarity as follows.

Definition 1.5 (Self-similarity). A stochastic process {Xt}t∈R is called self-

similar if there exists H > 0, such that ∀ c > 0, we have

{Xct}t∈R
d
= cH{Xt}t∈R , (1.5)

where
d
= means that the processes agree on all finite-dimensional distri-
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butions. The parameter H is called the Hurst parameter, or self-similarity

parameter.

Hosking [9] laid the foundation for the class of ARFIMA (Autoregressive

fractionally integrated moving average) models, which are now the most exten-

sively used models for simulating long-range dependence. Due to its widespread

usage, we present the definition of ARFIMA. The following definition of

ARFIMA can be found in Pipiras and Taqqu [27], although they used the

term FARIMA to mean ARFIMA.

Definition 1.6 (ARFIMA). Let {Xn}n∈Z be a time series, {εn}n∈Z are zero-

mean noise terms with finite variance, I be the identity operator, and B be the

backshift operator, i.e. BXn = Xn−1, ∀ n ∈ Z . Let φ(z) = 1−φ1z−. . .−φpzp

and θ(z) = 1 + θ1z + . . . + θpz
q be complex valued polynomials of degree p

and q respectively, and assume that they don’t have common zeros and that

φ has no roots on the unit circle. Then, for 1
2
> d ∈ R, {Xn}n∈Z is called

an ARFIMA(p, d, q) series if

Xn = φ−1(B) θ(B) (I − B)−d εn =
∞∑

l=−∞

clεn−l, ∀ n ∈ Z, (1.6)

where {cl}l∈Z are coefficients of the Laurent expansion, φ−1(z) θ(z) (1− z)−d

=
∑

k∈Z ckz
k .

Pipiras and Taqqu [27] (Proposition 2.4.11) proved that when 0 < d < 1
2

and

φ (from Definition 1.6) has all roots outside the unit circle, ARFIMA(p, d, q)

is long-range dependent. They also mentioned that the operator (I − B)−d

6



is responsible for the long memory characteristics of the series.

A survey of covariance methods, R/S analysis, and FGNs can be found in

Mandelbrot [21]. Today, long-range dependence frequently comes up in fluid

flow data (see [13], [30]), network traffic (see [8], [12]), finance and stock mar-

kets (see [35]), and is often accompanied by heavy tails.

Autocovariance estimation under LRD and HT conditions is currently a field

of great importance, owing to the widespread use of autocovariance functions

(see [2], [16], and [39]). Davis and Resnick [2] gave limit theorems for sample

covariances of linear processes whose innovations are i.i.d. with regularly vary-

ing tail probabilities. Kouritzin [16] studied strong Gaussian approximations

for

Sbtc =

btc∑
n=1

[xnyn − E(xnyn)]

where {xn}n∈N and {yn}n∈N are causal linear processes with finite fourth mo-

ments, and with independent innovations. Wu and Min [39] considered the

asymptotic behavior of sample covariances of linear processes with weakly de-

pendent innovations, and provided a central limit theorem for the same. Wu

and Min [40] also studied the asymptotic behavior of sample covariances of long

range dependent linear processes, and provided central as well as non-central

limit theorems for the same.
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1.3 Goal of thesis

Consider the following model. Let
{

xk =
(
x

(1)
k , x

(2)
k , . . . , x

(s)
k

)}
k∈Z

be Rs-

valued random vectors such that

x
(r)
k =

∞∑
l=−∞

c
(r)
k−lξ

(r)
l , ∀ 1 ≤ r ≤ s, (1.7)

are two-sided linear processes, where
{(
ξ

(1)
l , ξ

(2)
l , . . . , ξ

(s)
l

)}
l∈Z

(called innova-

tions) are independent and identically distributed Rs-valued random vectors,

E

[∣∣∣ξ(r)
1

∣∣∣s∨2
]
< ∞, and

{
cl =

(
c

(1)
l , c

(2)
l , . . . , c

(s)
l

)}
l∈Z

are coefficients satis-

fying supl∈Z |l|σr
∣∣∣c(r)
l

∣∣∣ < ∞ for some σr ∈
(

1
2
, 1
]
. σr > 1

2
along with

E

[∣∣∣ξ(r)
1

∣∣∣2] <∞, ensure the almost sure convergence of the series in (1.7) due

to the Khinchin-Kolmogorov Theorem (Theorem 2 of Shiryaev [33], Chapter

4, Section 2), since E
(
c

(r)
k−lξ

(r)
l

)
= 0, and

∑
l∈Z

E

[(
c

(r)
k−lξ

(r)
l

)2
]

= E

[(
ξ

(r)
0

)2
]∑
l∈Z

(
c

(r)
k−l

)2

<∞ ,

satisfy the conditions of the theorem. σr >
1
2

also guarantees the stationar-

ity of x
(r)
k . Alternatively, Samorodnitsky [31], Theorem 1.4.1, gives detailed

conditions that ensures the existence of (1.7), and mentions that the series

converges unconditionally, i.e. the series converges to the same sum for any

deterministic permutation of its terms.

As per the condition on the coefficients, {cl}l∈Z may decay slowly enough
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that {xk} has long memory. In that case, dk =
∏s

r=1 x
(r)
k is said to possess

long-range dependence as well. Based on how the innovations {ξ(r)
k } depend

on each other, dk may also possess heavy tails. This gives rise to a few chal-

lenges. Since the linear processes we will deal with, will be two sided, we have

to care about both the past and the future. Presence of long memory indicates

absence of strong mixing, and heavy-tails give rise to infinite variance which

makes use of moments impossible without truncation or other techniques.

Very few MSSLN results have been explored for the combination of LRD and

HT data. Louhichi and Soulier [20] gave a MSSLN for linear processes where

the innovations are linear symmetric α-stable processes, and with coefficients

{ci}i∈Z satisfying
∑∞

i=−∞ |ci|s < ∞ for some 1 ≤ s < α. Rio [29] explored

MSSLN results for a strongly mixing sequence {Xn}n∈Z assuming conditions

on the mixing rate function and the quantile function of |X0|. Kouritzin and

Sadeghi [17] gave a MSLLN for the outer product of two-sided linear processes

exhibiting both long memory and heavy tailedness.

In this thesis, we shall generalize Theorem 3 of Kouritzin and Sadeghi [17], to

prove a MSSLN for a general product of linear processes in lieu of the outer

product, assuming the conditions necessary for its existence. Our goal is to

find a bound χ (a function of the LRD coefficients σr and HT coefficients αi

in (1.7)), such that

lim
n→∞

n−
1
p

n∑
k=1

(dk − d) = 0 a.s. ∀ p < χ , (1.8)

9



where dk =
∏s

r=1 x
(r)
k and d = E (dk). We shall make further assumptions like

sup
l∈Z
|l|σr |c(r)

l | <∞, σr ∈
(

1
2
, 1
]

(which allows for the presence of LRD), and

max
π∈Πs

max
1≤i≤b s−1

2 c
sup
t≥0

tαiP

 ∏
r∈{π(1),...,π(s−i)}

∣∣∣ξ(r)
1

∣∣∣ > t

 <∞ .

for some α0 > 1, αi = s
s−iα0 for i ∈

{
1, 2, . . . ,

⌊
s−1

2

⌋}
, and Πs denotes the

collection of permutations of {1, 2, . . . , s}. This assumption basically deals

with the dependence between the tails of the innovations in a general manner,

and allows for the presence of heavy tails. It can be seen in Corollary 3.6, that

the conditions become much simpler while dealing with s copies of the same

linear process. We also provide a corresponding multivariate generalization,

Theorem 3.7.

Kouritzin and Sadeghi [17] prove (1.8) for χ = 2 ∧ α0 ∧ 1
2−σ1−σ2 in the outer

product case, i.e. s = 2. This shows that the rate of convergence is dictated

by the worst of the LRD condition p < 1
2−σ1−σ2 and the heavy-tail condition

p < (α0 ∧ 2), but not the combination. This implies that when α0 < 2 and

α0 = 1
2−σ1−σ2 , a bifurcation takes place due to the structure of dk while consid-

ering outer products. Partitioning dk into diagonal and off-diagonal terms, we

see that the off-diagonal sum
∑
l1 6=l2

c
(1)
k−l1c

(2)
k−l2ξ

(1)
l1
ξ

(2)
l2

does not have heavy tails

when α0 > 1, and that LRD is absent in the diagonal sum
∑
l∈Z

c
(1)
k−lc

(2)
k−lξ

(1)
l ξ

(2)
l

because σ1 +σ2 > 1. In this thesis, we will prove a similar decoupling result for

general s, though the reason does not remain as simple as in the outer product

setting.

10



Chapter 2

Applications

2.1 Detection and estimation of Long Memory

and Heavy Tails

Detecting the presence of long memory and heavy tails in data, and measuring

their intensity has been a much investigated problem, with a plethora of tests

and methods developed over the last few decades. Some estimation meth-

ods are also known to falsely detect the presence of long-range dependence

under certain conditions. Montanari et al. [25] compared the performance

of various estimation methods to determine the best one to be used in the

presence of periodicity. Dette et al. [3] developed tests for short versus long

memory in non-stationary time series using ARFIMA (see Definition 1.6).

Since non-stationarity is often mistaken for LRD, Torre et al. [37] evaluated
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the performance of ARFIMA models for detecting and measuring LRD, since

ARFIMA has a tendency of falsely detecting LRD even in short-range depen-

dent data. Smith [34] used simulations to estimate the power of five tests for

detecting heavy-tails in distributions, where the null hypothesis was that the

distribution was normal, and alternative hypotheses was that it belonged to

the class of symmetric stable Paretian distributions.

It is evident that most methods to detect or estimate LRD or HT in data

are quite complex. In particular, the problem of estimating the intensity of

both LRD and HT simultaneously in given data, is almost untouched. We

can use Corollary 3.6 to formulate a simple test which could estimate the

long-range dependence coefficient σ (from (1.3)), and heavy tails coefficient

β (from (1.2)). Note that β = sα, where s and α are as in Corollary 3.6,

neither of which are known for a given model. We will make the following

assumptions.

• The data provided to us can be modeled using two-sided linear processes,

and that the underlying distribution of the innovations, has zero mean and

finite variance.

• The MSLLN rates in Theorem 3.1 (and by extension, Corollary 3.6) given

in Chapter 3, are optimal in a polynomial sense when s is odd or when s = 2

(for other values of s, note that (3.5) refutes optimality).

For clarification, by optimality in polynomial sense, we mean that it is not pos-

sible to achieve polynomially better rates than the ones given by the MSLLN

results. The following method will be based completely on Corollary 3.6.

12



Figure 2.1: Using plots of 1
n

∣∣∣∣ n∑
k=1

xk

∣∣∣∣ and x
1
p
−1 to estimate p̂

Suppose the sample size of the data given to us is m (which is supposedly

very large), and the data is x1, x2, . . . , xm. Subtracting the sample mean from

each of the data points does not affect it’s LRD or HT properties, thus without

loss of generality, we assume that the sample mean of th dataset is 0. Next,

we plot 1
n

∣∣∣∣ n∑
k=1

xk

∣∣∣∣ for n ∈ {1, 2, . . . ,m}, and find p̂, the highest value of p

such that the plot of 1
n

∣∣∣∣ n∑
k=1

xk

∣∣∣∣ asymptotically lies below the curve y = x
1
p
−1.

The absolute value sign is being added because 1
n

∣∣∣∣ n∑
k=1

xk

∣∣∣∣ is non-negative,

thus helping us to find p̂ better (see Figure 2.1 for an example). Alternatively,

we can use the bisection method to estimate σ. First take p = 2, and look

at the convergence of n−
1
p

n∑
k=1

xk as n → ∞. If the sequence converges to

0, that means the data is not long range dependent. If the sequence does

13



not converge, we take p = 3
2

and check convergence of the same expression

again. If the sequence converges to 0, we check with p = 7
4
, otherwise we check

with p = 5
4
, and so on. Repeating this multiple times, we can estimate p̂, the

optimum value of p for which lim
n→∞ n−

1
p

n∑
k=1

xk = 0. Due to the optimality

assumption on the MSLLN result in Corollary 3.6, we see that,

p̂ =
2

3− 2σ̂
, (2.1)

where σ̂ is our estimator for σ. This way, we can estimate the long memory

coefficient for a given dataset.

Once we have found σ̂, we proceed to estimate β̂. This time we take p = 1,

and look at the convergence of n−
1
p

n∑
k=1

(
xsk − xsk

)
as n → ∞, one by one for

s ∈ {3, 5, 7, . . .}. Here, xsk refers to the mean of the sth power of all the data

points, and is a proxy for E [(xk)
s].

• Case 1: Suppose the sequence 1
n

n∑
k=1

(
xsk − xsk

)
does not converge for s = 2.

This would refute our assumption of finite variance, and would imply that

β < 2. This means that the amount of heavy tails in the data would be too

large to detect by our method.

• Case 2: It might happen that even after checking for a large number of

values of s ∈ {2}∪{3, 5, 7, . . .}, the sequence 1
n

n∑
k=1

(
xsk − xsk

)
as n→∞ always

converges to 0. In that case, we must conclude that the data has very little

or no heavy tails. We can still find a bound for the amount of heavy tails,

because if the sequence does not converge for s = s0, then β > s0. This means

14



that the tails of the innovations are lighter than x−s0 .

• Case 3: Suppose we find that s0 ∈ {2} ∪ {3, 5, 7, . . .} is the highest value

of s for which the sequence 1
n

n∑
k=1

(
xsk − xsk

)
convergences to 0. Then, we

plot 1
n

∣∣∣∣ n∑
k=1

(
xs0k − x

s0
k

)∣∣∣∣ for n ∈ {1, 2, . . . ,m}, and find p̂, the highest value

of p such that the curve y = x
1
p
−1 asymptotically lies below the plot of

1
n

∣∣∣∣ n∑
k=1

(
xs0k − x

s0
k

)∣∣∣∣. Due to our optimality assumption, p̂ is the estimate of

the optimum value of p for which lim
n→∞ n−

1
p

∣∣∣∣ n∑
k=1

(
xs0k − x

s0
k

)∣∣∣∣ = 0. From

Corollary (3.6), we get that

p̂ =

 2 ∧ α̂ ∧ 1
2−2σ̂

, s0 = 2

α̂ ∧ 2
3−2σ̂

, s0 ∈ {3, 5, 7, . . .}
. (2.2)

where σ̂ is the LRD coefficient as estimated by (2.1). Now, when s0 = 2, we

can only estimate α̂ if α < 2 ∧ 1
2−2σ̂

, since in that case, α̂ = p̂. Similarly,

when s0 > 2, then we can only estimate α̂ if α < 2
3−2σ̂

, and again get that

α̂ = p̂. Our estimate for β̂ then becomes β̂ = p̂s0.

Thus, we see that in many cases, we can estimate both σ and β. While σ

can be estimated in all cases, β cannot be estimated if it is either less than

2 or very large (though we can still bound it as tightly as we want). Also,

if there is a lot of long memory in the data (i.e. σ is very close to 1
2
), that

would make 1
2−2σ̂

and 2
3−2σ̂

very close to 1. Then, α itself would have to be

very close to 1, to enable us to estimate β. Thus, this application of Corollary

3.6 to detect and estimate σ and β, raises some possible problems for future
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research as well. One problem is proving optimality of the the MSSLN rates

in Theorem 3.1, for odd s, and s = 2. Another direction for further research,

could be to estimate σ and β simultaneously when β < 2, i.e. the underlying

distribution of the innovations has infinite variance.

2.2 Stochastic Approximation

Stochastic approximation (SA) algorithms are widely used in adaptive filtering,

optimization, signals and systems, machine learning and pattern recognition

(see [1]). SA algorithms are used to iteratively produce estimates of a param-

eter vector in a model. The estimates are updated recursively at every step

such that they converge to the true value of the parameter. Thus, their almost

sure rates of convergence and invariance principles have been topics of a lot of

research (see [4], [14], [15] and [18]).

One of the most used linear stochastic approximation algorithms applies to

the following model:

yk+1 = zTk h+ εk , ∀ k ∈ N , (2.3)

where {yk}k∈N\{1} and {zk}k∈N are R-valued and Rd-valued stochastic pro-

cesses respectively, {εk}k∈N are noise terms, and h ∈ Rd is an unknown

parameter vector. We often want to find the value of h that minimizes

E
[
(yk+1 − zTh)2

]
. Under the assumptions of second-order stationarity, and

16



the existence and positive definiteness of E(zkz
T
k ), Kouritzin and Sadeghi [18]

mentioned that the required value of h is E(zkz
T
k )−1E(yk+1zk). But since

E(zkz
T
k ) and E(yk+1zk) are often unknown, we often use the SA algorithm

hk+1 = hk + µk(bk − Akhk) , (2.4)

where Ak = zkz
T
k , bk = yk+1zk and µk is the step-size of the kth step. Kouritzin

[14, 15] and Kouritzin and Sadeghi [18] studied the convergence of (2.4) under

various conditions, taking µk = 1
kχ

for some χ ∈ (0, 1].

Kouritzin and Sadeghi [17] (Theorem 5) proved an important result dealing

with the almost sure rate of convergence of (2.4) under LRD and HT condi-

tions, by combining Theorem 4 of [17] with Corollary 3 of [18]. However, due

to Remark 3.2, we should instead use Theorem 3.1 of our paper (with s = 2),

and proceed the same way as in the proof of Theorem 5 of [17].
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Chapter 3

Results

The following theorem is concerned with the rate of convergence of products of

long range dependent and heavy tailed univariate linear processes. Motivations

and general comments about the assumptions in this theorem are provided in

Remarks 3.2-3.5.

Theorem 3.1. Let s ∈ N, α0 > 1, αi = s
s−iα0 for i ∈

{
1, 2, . . . ,

⌊
s−1

2

⌋}
,

and Πs denote the collection of permutations of {1, 2, . . . , s}.

Let
{(
ξ

(1)
l , ξ

(2)
l , . . . , ξ

(s)
l

)}
l∈Z

be i.i.d. Rs-valued zero-mean random vectors

such that the following hold,

E

[∣∣∣ξ(r)
1

∣∣∣s∨2
]
<∞ ∀ 1 ≤ r ≤ s, (3.1)

18



max
π∈Πs

max
1≤i≤b s−1

2 c
sup
t≥0

tαiP

 ∏
r∈{π(1),...,π(s−i)}

∣∣∣ξ(r)
1

∣∣∣ > t

 <∞ . (3.2)

Moreover, let constants
{(
c

(1)
l , c

(2)
l , . . . , c

(s)
l

)}
l∈Z

satisfy

sup
l∈Z
|l|σr

∣∣∣c(r)
l

∣∣∣ <∞ for some σr ∈
(

1

2
, 1

]
, ∀ 1 ≤ r ≤ s. (3.3)

For 1 ≤ r ≤ s, k ∈ N, define x
(r)
k =

∑∞
l=−∞ c

(r)
k−lξ

(r)
l , dk =

∏s
r=1 x

(r)
k , and d =

E(dk). Then, lim
n→∞

n−
1
p

n∑
k=1

(dk − d) = 0 a.s. for

p <


2

3−2σ1
, s = 1

2 ∧ α0 ∧ 1
2−σ1−σ2 , s = 2

α0 ∧ 2
3−2 min1≤i≤s{σi}

, s > 2

. (3.4)

Furthermore, if ξ
(1)
1 = ξ

(2)
1 = . . . = ξ

(s)
1 and ξ

(1)
1 is a symmetric random

variable, and s is even, then the constraint for (3.4) can be relaxed to

p < 2 ∧ α0 ∧
1

2−min1≤i<j≤s{σi + σj}
. (3.5)

Remark 3.2. Taking s = 2 in Theorem 3.1 gives us Kouritzin and Sadeghi

[17] (Theorem 3) as a corollary. There is a minor miscalculation in the

second-last line (Line 17) of Page 362 of Kouritzin and Sadeghi [17]. The

term
∑k+T

l=j+1 cj−lck−l in Line 16 was erroneously taken to be smaller than

(j − k)−2σT 2−2σ, which should actually have been (j − k)1−2σ instead. This
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miscalculation can be corrected by applying Lemma 4.1 (with γ = σ) in Sec-

tion 4.2 of our paper, to Line 15 of [17], to obtain their results. Also, Kouritzin

and Sadeghi [17] (Remark 2), mention that the constraints for handling LRD

and those for HT decouple, which they explain through the structure of the

terms dk. This decoupling phenomenon is observed in our proof as well.

Remark 3.3. σr ∈
(

1
2
, 1
]

allows for the presence of long memory in x
(r)
k (see

Definition 1.3). (3.1) implies that E
(

s∏
r=1

∣∣∣ξ(r)
1

∣∣∣) < ∞ (ensuring the existence

of d = E(dk)), and that the second moment of ξ
(r)
1 is finite, ensuring the

convergence of the series x
(r)
k =

∑
l∈Z c

(r)
k−lξ

(r)
l . The tail bound in (3.2) allows

for the second moment of the product of more than s
2

of the ξ
(r)
1 ’s to be infinite,

giving rise to heavy tails in corresponding sums. The condition αi = s
s−iα0 is

motivated by the case when ξ
(1)
1 = . . . = ξ

(s)
1 = ξ1, where the tail condition

supt≥0 tα0P (|ξ1|s > t) <∞ implies that supt≥0 t
s
s−iα0P

(
|ξ1|s−i > t

)
<∞ .

Remark 3.4. Since σr ∈ (1
2
, 1], we can find an ε > 0 such that σr− ε ∈

(
1
2
, 1
)
.

Similarly, since αi ∈ (1,∞), we can find ε > 0 such that αi−ε ∈ (1, 2)∪(2,∞).

It can be checked that (3.2,3.3) also hold for αi − ε and σr − ε instead of

αi and σr respectively. Thus, proving that lim
n→∞

n−
1
p

n∑
k=1

(dk − d) = 0 a.s, for

p < 2∧ (α0− ε)∧ 2
3−2 min1≤i≤s{σi}+2ε

will imply (3.4) as well, since ε, ε > 0 were

arbitrary but fixed. Similar result will hold for (3.5). Therefore, it suffices to

assume that σr ∈ (1
2
, 1), and αi ∈ (1, 2) ∪ (2,∞).

Remark 3.5. Note that (3.3) implies that
∣∣∣c(r)
l

∣∣∣ �
 1 l = 0

|l|−σr l 6= 0
. The

proof of the general case only differs cosmetically from the notationally sim-

pler case where ξ
(1)
l = ξ

(2)
l = . . . = ξ

(s)
l = ξl, and σ1 = σ2 = . . . = σs = σ,
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which means that we can further assume that c
(1)
l = c

(2)
l = . . . = c

(s)
l = cl,

where |cl| �

 1 l = 0

|l|−σ l 6= 0
. We only provide the proof of this later case.

When x
(1)
1 = x

(2)
1 = . . . = x

(s)
1 , several of the conditions in Theorem 3.1 merge,

and we get a simple yet important corollary with very useful applications.

Corollary 3.6. Let s ∈ N, and {ξl}l∈Z be i.i.d. zero-mean random vari-

ables with finite variance, such that supt≥0 tαP (|ξ1|s > t) < ∞ for some

α > 1, and let {cl}l∈Z satisfy supl∈Z |l|σ |cl| < ∞ for some σ ∈
(

1
2
, 1
]
.

For k ∈ N, define xk =
∞∑

l=−∞
ck−lξl, dk = (xk)

s, and d = E(dk).

Then, lim
n→∞

n−
1
p

n∑
k=1

(dk − d) = 0 a.s, for

p <


2

3−2σ
, s = 1

2 ∧ α ∧ 1
2−2σ

, s = 2

α ∧ 2
3−2σ

, s > 2

. (3.6)

Furthermore, if ξ1 is a symmetric random variable, and s is even, then the

constraint for (3.6) can be relaxed to p < 2 ∧ α ∧ 1
2−2σ

.

We can now extract a multivariate version of Theorem 3.1, analogous to The-

orem 4 of Kouritzin and Sadeghi [17]. Refer to Notation List (Section 4.1) for

some of the notation used in this theorem.

Theorem 3.7. Let s ∈ N, α0 > 1, αi = s
s−iα0 for 1 ≤ i ≤

⌊
s−1

2

⌋
, and Πs
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denote the collection of permutations of {1, 2, . . . , s}.

Let
{(

Ξ
(1)
l ,Ξ

(2)
l , . . . ,Ξ

(s)
l

)}
l∈Z

be i.i.d. zero-mean random vectors in Rm×s,

such that E

[∥∥∥Ξ
(r)
1

∥∥∥s∨2

F

]
<∞, ∀ 1 ≤ r ≤ s, and

max
π∈Πs

max
1≤i≤b s−1

2 c
sup
t≥0

tαiP

 ∏
r∈{π(1),...,π(s−i)}

∥∥∥Ξ
(r)
1

∥∥∥
F
> t

 <∞ .

Moreover, let Rd×m-valued matrices
{(
C

(1)
l , C

(2)
l , . . . , C

(s)
l

)}
l∈Z

satisfy

supl∈Z |l|σr
∥∥∥C(r)

l

∥∥∥
F
<∞ , for some σr ∈

(
1
2
, 1
]
. For 1 ≤ r ≤ s, k ∈ Z, define

X
(r)
k =

∞∑
l=−∞

C
(r)
k−lΞ

(r)
l , Dk =

s⊗
r=1
X

(r)
k (the tensor product of X

(1)
k , . . . , X

(s)
k ),

and D = E(Dk). Then, lim
n→∞

n−
1
p

n∑
k=1

(Dk −D) = 0 a.s, for the values of p

as in (3.4).

This theorem follows from linearity of limits and Theorem 3.1.
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Chapter 4

Proofs

4.1 Notation and Conventions

• N0 = N ∪ {0}, where N denotes the set of natural numbers.

• a ∨ b = max{a, b} and a ∧ b = min{a, b}.

• |x| is Euclidean distance of x ∈ Rd, with d ∈ N.

• 1A is the indicator function of the event A, i.e. 1 if A occurs, or else 0.

• |S| is the cardinality of the set S.

•
n⊗
r=1
v(r) denotes the tensor product of vectors v(r) ∈ Rd, 1 ≤ r ≤ n, d ∈ N.

• ‖A‖F is the Frobenius norm of A, i.e.
√
trace(ATA) for any matrix A ∈

Rm×n, where m,n ∈ N.

• ‖X‖p = [E (Xp)]
1
p for any non-negative random variable X, and p > 0.

• bcc = max{n ∈ N0 : n ≤ c} and dce = min{n ∈ N0 : n ≥ c} ∀ c ≥ 0 .

• ai,k
i
� bi,k means that for each k, ∃ ck > 0 that does not depend upon i
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such that |ai,k| ≤ ck|bi,k| for all i, k (also used in [15] and [17]).

• ln,β (x) =


xn(1−2β)+1, β < n+1

2n

log(x), β = n+1
2n

1, β > n+1
2n

, ∀ n ∈ N and β ∈ R.

• We shall follow the convention, that when {fr}r∈Z is a sequence of functions

or constants, and a, b ∈ N0 such that a > b, then
∏b

r=a fr = 1.

4.2 Important Lemmas

We first present two lemmas on which Theorems 3.1 and 3.7 will rely.

Lemma 4.1. For j, k ∈ Z, j 6= k and γ > 1
2
, we have,

∞∑
l=−∞
l 6∈{j,k}

|j − l|−γ|k − l|−γ
j,k
�


|j − k|1−2γ , γ ∈

(
1
2
, 1
)

|j − k|−1 ln(|j − k|), γ = 1

|j − k|−γ, γ > 1

.

Proof. Without loss of generality, we assume that j > k. When γ ∈
(

1
2
, 1
)
,

using symmetry, integral approximation, and successive substitutions t = k−l

and s = t
j−k , we get

∞∑
l=−∞
l 6∈{j,k}

|j − l|−γ|k − l|−γ

j,k
�

k−1∑
l=−∞

(j − l)−γ(k − l)−γ +

j−1∑
l=k+1

(j − l)−γ(k − l)−γ

24



j,k
�

∫ ∞
0

(j − k + t)−γt−γ dt +

∫ j−k

0

(j − k − t)−γt−γ dt

j,k
� (j − k)1−2γ

(∫ ∞
0

(1 + s)−γs−γ ds +

∫ 1

0

(1− s)−γs−γ ds
)
. (4.1)

Since γ ∈
(

1
2
, 1
)
, notice that

∫ 1

0
(1 + s)−γs−γ ds ≤

∫ 1

0
(1 − s)−γs−γ ds =

B(1−γ, 1−γ), which is the beta function evaluated at (1−γ, 1−γ). Therefore,

we get from (4.1), that

∞∑
l=−∞
l 6∈{j,k}

|j − l|−γ|k − l|−γ

j,k
� (j − k)1−2γ

(∫ ∞
1

(1 + s)−γs−γ ds + 2

∫ 1

0

(1− s)−γs−γ ds
)

j,k
� (j − k)1−2γ . (4.2)

Next, we consider the case where γ = 1.

∞∑
l=−∞
l 6∈{j,k}

|j − l|−1|k − l|−1

j,k
�

k−1∑
l=−∞

(j − l)−1(k − l)−1 +

j−1∑
l=k+1

(j − l)−1(l − k)−1

= (j − k)−1

(
k−1∑
l=−∞

[
(k − l)−1 − (j − l)−1

]
+

j−1∑
l=k+1

[
(l − k)−1 + (j − l)−1

])

= (j − k)−1

(
j−k∑
l=1

l−1 + 2

j−k−1∑
l=1

l−1

)
j,k
� (j − k)−1 log(j − k). (4.3)

Finally we consider the case where γ > 1. Using symmetry, and summability
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of the sequence {|l|−γ}l∈Z, we have

∞∑
l=−∞
l 6∈{j,k}

|j − l|−γ|k − l|−γ
j,k
�
b j+k2 c∑
l=−∞
l 6=k

(j − l)−γ |k − l|−γ

j,k
�

(
j −

⌊
j + k

2

⌋)−γ b j+k2 c∑
l=−∞
l 6=k

|k − l|−γ

j,k
� (j − k)−γ (4.4)

From (4.2, 4.3) and (4.4), the proof of the lemma is complete.

Lemma 4.2. For j, k ∈ Z, j 6= k and γ ∈
(

1
2
, 1
)
, we have,

∞∑
l=−∞
l 6∈{j,k}

|j − l|−γ|k − l|−2γ
j,k
� |j − k|−γ .

Proof. Without loss of generality, we assume that j > k. Then, we have

∞∑
l=−∞
l 6∈{j,k}

|j − l|−γ|k − l|−2γ

j,k
�
b j+k2 c∑
l=−∞
l 6=k

|j − l|−γ|k − l|−2γ +
∞∑

l=d j+k2 e
l 6=j

|j − l|−γ|k − l|−2γ

j,k
� |j − k|−γ

∞∑
l=−∞
l 6∈{j,k}

|k − l|−2γ + |j − k|−γ
∞∑

l=−∞
l 6∈{j,k}

|j − l|−γ|k − l|−γ

j,k
� |j − k|−γ, (4.5)
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by Lemma 4.1. This concludes the proof of the lemma.

The following lemma will help reduce the calculations dealing with heavy tails.

Lemma 4.3. Let z > 1, nr = 2r ∀ r ∈ N, and {Xn}n∈N be random variables

such that E
[
|Xn|z

]
< ∞. Then we have,

E
1
z

[
sup

nr≤n<nr+1

|Xn − E (Xn)|z
]

r
� E

1
z

[∣∣∣∣ sup
nr≤n<nr+1

|Xn|
∣∣∣∣z] .

Proof. By Triangle Inequality, Minkowski’s Inequality and Jensen’s Inequality,

we have,

E
1
z

[
sup

nr≤n<nr+1

|Xn − E (Xn)|z
]

≤ E
1
z

[∣∣∣∣ sup
nr≤n<nr+1

|Xn|
∣∣∣∣z] + E

1
z

[∣∣∣∣ sup
nr≤n<nr+1

|E (Xn) |
∣∣∣∣z]

≤ E
1
z

[∣∣∣∣ sup
nr≤n<nr+1

|Xn|
∣∣∣∣z] + E

[∣∣∣∣ sup
nr≤n<nr+1

|Xn|
∣∣∣∣]

≤ 2 E
1
z

[∣∣∣∣ sup
nr≤n<nr+1

|Xn|
∣∣∣∣z] , (4.6)

which concludes the proof of the lemma.

Samorodnitsky [31] (Theorem 1.4.1), proved a general result providing suffi-

cient conditions for the convergence of x
(r)
k (in Theorem 3.1) and the existence

of E
[(
x

(r)
k

)s]
when s ∈ R+, using Marcinkiewicz-Zygmund inequalities and

induction. We will prove the special case of that theorem when s ∈ N, using

less complicated machinery.
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Lemma 4.4. Let s ∈ N and {ξl}l∈Z be i.i.d. zero-mean random variables such

that E [|ξ1|s∨2] < ∞, and {cl}l∈Z satisfy sup
l∈Z
|l|σ|cl| < ∞, for some σ ∈(

1
2
, 1
)
. Then,

sup
k∈Z

E

(∣∣∣∣∣
∞∑

l=−∞

clξk−l

∣∣∣∣∣
s)

<∞ . (4.7)

Proof. By the i.i.d. nature of {ξk}k∈Z, E
(∣∣∑∞

l=−∞ clξk−l
∣∣s) = E

(∣∣∑∞
l=−∞ clξl

∣∣s)
for all k. Hence it suffices to prove the finiteness of E

(∣∣∑∞
l=−∞ clξl

∣∣s).(∑∞
l=−∞ clξk−l

)s
can be broken up into sums based on the combinations of

subscripts of ξ’s that are equal. That is, as sums of

s(q, λq) =
∑

l1,l2,...,lq∈Z, distinct

(
q∏
r=1

carlr

)(
q∏
r=1

ξark−lr

)
, (4.8)

where q ranges over {1, 2, . . . , s}, and λq = (a1, a2, . . . , aq) ranges over parti-

tions of s of length q (we call an r-tuple of natural numbers (b1, b2, . . . , br)

a partition of a natural number n of length r, if b1 + . . . + br = n and

b1 ≥ b2 ≥ . . . ≥ br ≥ 1). By Minkowski’s Inequality,

∣∣∣∣∣
∞∑

l=−∞

clξk−l

∣∣∣∣∣
s

≤
s∑
q=1

∑
λq

|s(q, λq)| ,

so (4.7) follows from E|s(q, λq)| <∞, which we prove below.

Let v = #{1 ≤ p ≤ q : ap = 1}. Hence,
∑

m c
ar
m < ∞ for 1 ≤ r ≤ q − v. If
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v < q, by (4.8) and Jensen’s Inequality, we have

E |s(q, λq)|

≤ E

∣∣∣∣∣∣
∞∑

l1=−∞

∣∣ca1l1 ∣∣
∣∣∣∣∣∣
∑

l2∈Z\{l1}

. . .
∑

lq∈Z\{l1,...,lq−1}

(
q∏
r=2

carlr

)(
q∏
r=1

ξarlr

)∣∣∣∣∣∣
∣∣∣∣∣∣

=
∞∑

m=−∞

|ca1m | E

∣∣∣∣∣∣
∞∑

l1=−∞

|ca1l1 |∑
m |c

a1
m |

∣∣∣∣∣∣
∑

l2∈Z\{l1}

. . .
∑

lq∈Z\{l1,...,lq−1}

(
q∏
r=2

carlr

)(
q∏
r=1

ξarlr

)∣∣∣∣∣∣
∣∣∣∣∣∣

≤
∞∑

l1=−∞

|ca1l1 | E

∣∣∣∣∣∣
∑

l2∈Z\{l1}

. . .
∑

lq∈Z\{l1,...,lq−1}

(
q∏
r=2

carlr

)(
q∏
r=1

ξarlr

)∣∣∣∣∣∣ . (4.9)

Similarly, we can recursively bring summations over l2, . . . , lq−v, out of the

expectation in (4.9), and use the independence of ξ’s to get that

E|s(q, λq)| ≤
∑

l1,...,lq−v∈Z, distinct

(
q−v∏
r=1

∣∣carlr ∣∣
)(

q−v∏
r=1

E
∣∣ξarlr ∣∣

)
E(φv) , (4.10)

where φv =

∣∣∣∣∣∣
∑

lq−v+1∈Z\{l1,...,lq−v}

. . .
∑

lq∈Z\{l1,...,lq−1}

(
q∏

r=q−v+1

clrξk−lr

) ∣∣∣∣∣∣ , when

v 6= 0, and 1 when v = 0. Note that (4.10) holds when v = q as well, since

none of the lr’s need to be brought out of the expectation. Now, since {ξk}k∈Z
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are i.i.d. and zero-mean,

E
[
|φv|2

]
= E

 ∑
lq−v+1 6=lq−v+2 6= ... 6=lq
lq−v+1,...,lq 6∈{l1,...,lq−1}

q∏
r=q−v+1

(
c2
lrξ

2
lr

)
=
[
E
(
ξ2

1

)]v ∑
lq−v+1 6=lq−v+2 6= ... 6=lq
lq−v+1,...,lq 6∈{l1,...,lq−1}

(
q∏

r=q−v+1

c2
lr

)

≤
[
E
(
ξ2

1

)]v ∞∑
lq−v+1=−∞

∞∑
lq−v+2=−∞

. . .
∞∑

lq=−∞

(
q∏

r=q−v+1

c2
lr

)
<∞. (4.11)

Noting that ar ≥ 2 for 1 ≤ r ≤ q − v, E [|ξ1|s] < ∞ , and using (4.11) on

(4.10), we get that

E|s(q, λq)| �

(
q−v∏
r=1

E |ξar1 |

) ∑
l1,...,lq−v∈Z, distinct

(
q−v∏
r=1

∣∣carlr ∣∣
)

�
∑
l1∈Z

∑
l2∈Z

. . .
∑
lq−v∈Z

(
q−v∏
r=1

∣∣carlr ∣∣
)

< ∞ .

The proof of the lemma is complete.

R.J. Serfling generalized a fundamental maximal inequality for orthogonal ran-

dom variables, and is proven in Theorem 2.4.1 of Stout [36]. We conclude this

section by presenting a simplified version of that generalization, which we shall

use throughout the rest of this thesis.

Theorem 4.5 (Serfling’s Generalization). Let {Zk}k∈N be a time series with
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finite second moments, and f be a super-additive function on N, such that

f(a) + f(b) ≤ f(a+ b) ∀ a, b ∈ N

E

( n∑
i=o+1

Zi

)2
 ≤ f(n− o) ∀ o < n ∈ N0 .

Then, for nr = 2r, r ∈ N0, and o, n ∈ N, we have

E

 max
nr≤o<n<nr+1

(
n∑

i=o+1

Zi

)2
 r
� r2f(nr) . (4.12)

4.3 Light Tailed Case of Theorem 3.1

The following calculation will explain why we consider the case α0 > 2 in

(3.2) to be non-heavy tailed, and the case α0 ∈ (1, 2] to have possible heavy

tails. If α0 > 2, then αi = s
s−iα0 > 2 for i ∈ {0, 1, . . . , b s−1

2
c}. When π is a

permutation of {1, 2, . . . , s}, we see from (3.2), that

E

 ∏
r∈{π(1),...,π(s−i)}

∣∣∣ξ(r)
1

∣∣∣2


= 2

∫ ∞
0

tP

 ∏
r∈{π(1),...,π(s−i)}

∣∣∣ξ(r)
1

∣∣∣ > t

 dt

� 2

∫ 1

0

1 dt+ 2

∫ ∞
1

t1−αi dt

� 2 +
2

αi − 2
< ∞ , ∀ 0 ≤ i ≤

⌊
s− 1

2

⌋
. (4.13)
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We conclude that E

[∏s
r=1

(
1 +

(
ξ

(r)
1

)2
)]

< ∞, which precludes heavy

tails. When all the ξ
(r)
1 ’s are equal, to say ξ1, we see that

E
[
|ξ1|2s

]
= 2

∫ ∞
0

tP (|ξ1|s > t) dt � 2 + 2

∫ ∞
1

t1−α0 dt <∞ .

Thus, keeping Remarks 3.4 and 3.5 in mind, we first present a theorem that

handles long range dependence under the condition α0 > 2.

Theorem 4.6. Let s ∈ N and {ξl}l∈Z be i.i.d. zero-mean random variables such

that E [(ξ1)2s] <∞, and {cl}l∈Z satisfy sup
l∈Z
|l|σ|cl| <∞, for some σ ∈

(
1
2
, 1
)
.

For k ∈ Z, define xk =
∞∑

l=−∞
ck−lξl, dk = (xk)

s, and d = E(dk). Then,

lim
n→∞

n−
1
p

n∑
k=1

(dk − d) = 0 a.s. for

p <

 2 ∧ 1
2−2σ

, s = 2

2
3−2σ

, s 6= 2
. (4.14)

Furthermore, if ξ1 is symmetric, and s is even, then the constraint for (4.14)

can be relaxed to

p < 2 ∧ 1

2− 2σ
. (4.15)

Proof. By expanding the expressions for dk and d, we get that,

n∑
k=1

(dk − d) =
n∑
k=1

∞∑
l1=−∞

. . .

∞∑
ls=−∞

(
s∏
r=1

ck−lr

)(
s∏
r=1

ξlr − E

(
s∏
r=1

ξlr

))
.
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This expression for
∑n

k=1(dk − d) can be broken up in several sums based on

the combinations of subscripts of ξ’s that are equal. That is,
∑n

k=1(dk − d)

can be seen as the sum of

Sn(q, λq) =
n∑
k=1

∑
l1 6=l2 6=...6=lq

(
q∏
r=1

cark−lr

)(
q∏
r=1

ξarlr − E

(
q∏
r=1

ξarlr

))
. (4.16)

where q ranges over {1, 2, . . . , s}, and λq = (a1, a2, . . . , aq) satisfies a1 + . . . +

aq = s and a1 ≥ a2 ≥ . . . ≥ aq ≥ 1.

Before we bound the second moment of Sn(q, λq), we shall consider an analo-

gous summation, Y
λq
o,n,δ, but with more general random variables ψ

(r)
l instead

of ξarl . For q ∈ N, v ∈ {1, 2, . . . , q}, and δ ≥ 1, we define {(ψ(1)
l , . . . , ψ

(q)
l )}l∈Z

to be i.i.d Rq-valued random vectors, such that


E
(
ψ

(r)
1

)
� 1{1≤r≤q−v},

E

[(
ψ

(r)
1

)2
]
� δ1{r=1} + 1{r 6=1},

∀ 1 ≤ r ≤ q ,

and for o < n ∈ N0, and fixed λq = (a1, a2, . . . , aq), we define

Y
λq
o,n,δ =

n∑
k=o+1

∑
l1 6=l2 6=...6=lq

(
q∏
r=1

cark−lr

)(
q∏
r=1

ψ
(r)
lr
− E

(
q∏
r=1

ψ
(r)
lr

))
.

The moments of ψ
(r)
l have been assumed in such a manner that allows for the

applicability of this result in a variety of cases. The means of ψ
(q−v+1)
l , ψ

(q−v+2)
l ,

. . . , ψ
(q)
l have been assumed to be 0 keeping in mind that ξarl has zero-mean

when ar = 1, and the second moment of ψ
(1)
l has been kept arbitrary to allow
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for substitution of different random variables like ξarl , U [−1, 1], or truncated

versions of random variables exhibiting heavy tails, which may have different

second moments.

4.3.1 Bounding covariance of
∏q

r=1 ψ
(r)
lr

We first give the following definitions.

Definition 4.7. For q ∈ N, v ∈ {1, 2, . . . , q}, let the sets Vr = V v,q
r for

1 ≤ r ≤ 6, be such that V1, V2, V3 partition {q − v + 1, . . . , q}, and V4, V5, V6

partition {1, . . . , q − v}. Define a matching function ν = νq,v(V2, V3, V4, V5),

given by

ν : V2 ∪ V3 ∪ V4 ∪ V5 → {1, . . . , q},

such that ν is injective, ν(V2 ∪ V4) ⊆ {q − v + 1, . . . , q}, and ν(V3 ∪ V5) ⊆

{1, . . . , q − v}. For ease of notation, we further define W1 = W q,v
1 (ν) =

{q − v + 1, . . . , q} \ ν(V2 ∪ V4), Wr = W q,v
r (ν) = ν(Vr) for 2 ≤ r ≤ 5, and

W6 = W q,v
6 (ν) = {1, . . . , q − v} \ ν(V3 ∪ V5).

Remark 4.8. In Definition 4.7, observe that |V1|+. . .+|V6| = |W1|+|ν(V2)|+

. . .+ |ν(V5)|+ |W6| = q. Also, since V1, V2, V3 partition {q−v+1, . . . , q}, as do

W1, ν(V2), ν(V4), we get that |V1|+ |V2|+ |V3| = |W1|+ |ν(V2)|+ |ν(V4)| = v.

Similarly, |V4|+ |V5|+ |V6| = |ν(V3)|+ |ν(V5)|+ |W6| = q − v. Finally, due to

injectivity of ν, we have |ν(Vr)| = |Vr| for 2 ≤ r ≤ 5.

Definition 4.9. Let q ∈ N, v ∈ {1, 2, . . . , q}, and ∆ = ∆q be the set of all

tuples in Zq with distinct elements, i.e. (l1, . . . , lq) ∈ ∆ satisfies li 6= lj for all
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1 ≤ i < j ≤ q. For sets V1, ..., V6 and matching function ν as in Definition 4.7,

partition ∆×∆ into the sets

∆×∆(V1, ..., V6, ν)

= {
(
(l1, . . . , lq), (m1, . . . ,mq)

)
∈ ∆×∆ : lr = mν(r), ∀ r ∈ V2 ∪ V3 ∪ V4 ∪ V5}.

The following lemma bounds the covariance of
∏q

r=1 ψ
(r)
lr

.

Lemma 4.10. Let q ∈ N, v ∈ {1, 2, . . . , q}, δ ≥ 1, and {(ψ(1)
l , . . . , ψ

(q)
l )}l∈Z

be i.i.d Rq-valued random vectors, such that


E
(
ψ

(r)
1

)
� 1{1≤r≤q−v},

E

[(
ψ

(r)
1

)2
]
� δ1{r=1} + 1{r 6=1},

∀ 1 ≤ r ≤ q . (4.17)

For the same q, v as in (4.17), let
(
(l1, l2, . . . , lq), (m1,m2, . . . ,mq)

)
∈

∆×∆(V1, ..., V6, ν) (from Definition 4.9).

Then,

∣∣∣∣∣E
(

q∏
r=1

(ψ
(r)
lr
ψ(r)
mr)

)
− E

(
q∏
r=1

ψ
(r)
lr

)
E

(
q∏
r=1

ψ(r)
mr

)∣∣∣∣∣
δ
�


0, |V1| > 0 or |W1| > 0 or |V6| = q,

1, 0 < |V6| < q, |V1| = |V4| = |V5| = |W1| = 0,

δ, otherwise.

(4.18)

Proof. When V1 ∪ V2 ∪ V3 6= φ, due to the independence of ψ’s with different

subscripts, and the zero-mean property of ψ
(r)
lr

for r ∈ V1 ∪ V2 ∪ V3 in (4.17),
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we have

E

(
q∏
r=1

ψ
(r)
lr

)
= E

( ∏
r∈V4∪V5∪V6

ψ
(r)
lr

)( ∏
r∈V1∪V2∪V3

E
(
ψ

(r)
lr

))
= 0 .

Similarly, when W1∪ν(V2)∪ν(V4) 6= φ, we get that E
(∏q

r=1 ψ
(r)
mr

)
= 0. Hence,

when V1 ∪ V2 ∪ V3 6= φ or W1 ∪ ν(V2) ∪ ν(V4) 6= φ, we get that

E

(
q∏
r=1

ψ
(r)
lr

)
E

(
q∏
r=1

ψ(r)
mr

)
= 0 . (4.19)

Case 1: |V1| > 0 or |W1| > 0 or |V6| = q.

|V1| > 0 implies that V1 6= φ, and |W1| > 0 implies that W1 6= φ, hence (4.19)

holds in this case. When V1 6= φ, we see from Definition 4.7, that for all r ∈ V1,

lr 6= mj for all 1 ≤ j ≤ q. Hence, due to the independence of ψ’s with different

subscripts, and the zero-mean property of ψ
(r)
lr

for r ∈ V1, we get that

E

(
q∏
r=1

(ψ
(r)
lr
ψ(r)
mr)

)
= E

 ∏
r∈{1,...,q}\V1

ψ
(r)
lr

q∏
r=1

ψ(r)
mr

∏
r∈V1

E
(
ψ

(r)
lr

)
= 0 . (4.20)

Similarly, (4.20) holds when W1 6= φ. Thus, when |V1| > 0 or |W1| > 0, from

(4.19) and (4.20), we get that

∣∣∣∣∣E
(

q∏
r=1

(ψ
(r)
lr
ψ(r)
mr)

)
− E

(
q∏
r=1

ψ
(r)
lr

)
E

(
q∏
r=1

ψ(r)
mr

)∣∣∣∣∣ = 0 . (4.21)

When |V6| = q, we must have v = 0 and none of the l’s are equal to any of

the m’s, i.e. {l1, . . . , lq} ∩ {m1, . . . ,mq} = φ. In that scenario, due to the
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independence of ψ
(r)
lr

’s with ψ
(r)
mr ’s, (4.21) holds as well.

Case 2: 0 < |V6| < q, |W1| = |V1| = |V4| = |V5| = 0.

In this case we will show that l1 6∈ {m1, . . . ,mq} and m1 6∈ {l1, . . . , lq}. From

Remark 4.8, note that |V4|+ |V5|+ |V6| = q− v, hence 0 < |V6| < q along with

|V4| = |V5| = 0 implies that 0 < v < q. Since v is the cardinality of V1∪V2∪V3,

this means that {1, . . . , q} 6= V1 ∪ V2 ∪ V3 6= φ, and (4.19) also holds in this

case.

From Remark 4.8, using injectivity of ν, we get that |V1| + |V2| + |V3| =

|W1|+ |V2|+ |V4|. Thus, |V1| = |W1| = 0 implies that |V3| = |V4|. Also, v < q

implies that q − v ≥ 1, hence 1 ∈ V4 ∪ V5 ∪ V6 and 1 ∈ ν(V3) ∪ ν(V5) ∪W6.

Further, |V3| = |V4| = |V5| = 0 ensures that 1 ∈ V6 and 1 ∈ W6. This means

that l1 6∈ {m1, . . . ,mq} and m1 6∈ {l1, . . . , lq}. Hence, due to independence of

ψ’s with unequal subscripts, Cauchy-Schwartz inequality, and (4.17), we get

E

(
q∏
r=1

(ψ
(r)
lr
ψ(r)
mr)

)
= E

(
ψ

(1)
l1

)
E
(
ψ(1)
m1

)
E

(
q∏
r=2

(ψ
(r)
lr
ψ(r)
mr)

)

≤ E
(
ψ

(1)
l1

)
E
(
ψ(1)
m1

)√√√√ q∏
r=2

E

[(
ψ

(r)
lr

)2
] q∏
r=2

E

[(
ψ

(r)
mr

)2
]

δ
� 1 . (4.22)

From (4.19) and (4.22), we get that

∣∣∣∣∣E
(

q∏
r=1

(ψ
(r)
lr
ψ(r)
mr)

)
− E

(
q∏
r=1

ψ
(r)
lr

)
E

(
q∏
r=1

ψ(r)
mr

)∣∣∣∣∣ δ
� 1 . (4.23)
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Case 3: None of the above.

For all other cases, we will get various bounds, and we will show that the

worst of them is δ. Due to the independence of ψ’s with different subscripts,

Cauchy-Schwartz inequality, and the fact that E

[(
ψ

(r)
1

)2
]
� δ (from (4.17)),

we get that

E

(
q∏
r=1

(ψ
(r)
lr
ψ(r)
mr)

)
≤

√√√√ q∏
r=1

E

[(
ψ

(r)
lr

)2
] q∏
r=1

E

[(
ψ

(r)
mr

)2
]

δ
�

√√√√δ2

q∏
r=2

E

[(
ψ

(r)
lr

)2
] q∏
r=2

E

[(
ψ

(r)
mr

)2
]

δ
� δ . (4.24)

We also see that E
(∏q

r=1 ψ
(r)
lr

)
E
(∏q

r=1 ψ
(r)
mr

)
δ
� 1, due to independence of

ψ’s with different subscripts, so using (4.24) and Triangle Inequality, we get

that

∣∣∣∣∣E
(

q∏
r=1

(ψ
(r)
lr
ψ(r)
mr)

)
− E

(
q∏
r=1

ψ
(r)
lr

)
E

(
q∏
r=1

ψ(r)
mr

)∣∣∣∣∣ δ
� δ + 1

δ
� δ . (4.25)

Lemma 4.10 follows from (4.21, 4.23) and (4.25).
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4.3.2 Bounding second moment of Y
λq
o,n,δ

We now present a lemma that bounds the second moment of the difference in

partial sums of a general expression which we will use not only to bound the

second moment of Sn(q, λq), but also later on to handle heavy tails. Here, we

will work with a given fixed partition of s, i.e. λq = (a1, a2, . . . , aq).

Lemma 4.11. Let o < n ∈ N0, s ∈ N, δ ≥ 1, λq = (a1, a2, . . . , aq) satisfies

a1 + . . .+ aq = s and a1 ≥ a2 ≥ . . . ≥ aq ≥ 1, and v = #{1 ≤ r ≤ q : ar = 1}.

Let {cl}l∈Z satisfy sup
l∈Z
|l|σ|cl| <∞, for some σ ∈

(
1
2
, 1
)
, and

{(ψ(1)
l , . . . , ψ

(q)
l )}l∈Z be i.i.d Rq-valued random vectors, such that


E
(
ψ

(r)
1

)
� 1{1≤r≤q−v},

E

[(
ψ

(r)
1

)2
]
� δ1{r=1} + 1{r 6=1},

∀ 1 ≤ r ≤ q . (4.26)

Define,

Y
λq
o,n,δ =

n∑
k=o+1

∑
l1 6=l2 6=...6=lq

(
q∏
r=1

cark−lr

)(
q∏
r=1

ψ
(r)
lr
− E

(
q∏
r=1

ψ
(r)
lr

))
.

Then E
[
(Y

λq
o,n,δ)

2
] o,n,δ
�


δ (n− o), aq ≥ 2

δ (n− o) ls,σ(n− o), a1 = 1

(δ (n− o)) ∨ ((n− o) l1,σ(n− o)), aq = 1, a1 ≥ 2

,

where ls,σ is defined in the Notation List (Section 4.1). Furthermore, if s

is even and E
(
ψ

(r)
1

)
= 0 whenever ar is odd, then this bound can be tightened
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to

E
[
(Y

λq
o,n,δ)

2
] o,n,δ
� (δ (n− o)) ∨ ((n− o) l2,σ(n− o)).

when aq = 1 and a1 ≥ 2.

Proof. We first bound the second moment of Y
λq
o,n,δ.

E
[
(Y

λq
o,n,δ)

2
]

=
n∑

k=o+1

n∑
j=o+1

∑
l1 6=l2 6=...6=lq

∑
m1 6=m2 6=...6=mq

(
q∏
r=1

carj−mrc
ar
k−lr

)
[
E

(
q∏
r=1

ψ
(r)
lr
ψ(r)
mr

)
− E

(
q∏
r=1

ψ
(r)
lr

)
E

(
q∏
r=1

ψ(r)
mr

)]

≤
n∑

k=o+1

n∑
j=o+1

∑
l1 6=l2 6=...6=lq

∑
m1 6=m2 6=...6=mq

(
q∏
r=1

∣∣carj−mr ∣∣ ∣∣cark−lr ∣∣
)

∣∣∣∣∣E
(

q∏
r=1

ψ
(r)
lr
ψ(r)
mr

)
− E

(
q∏
r=1

ψ
(r)
lr

)
E

(
q∏
r=1

ψ(r)
mr

)∣∣∣∣∣ . (4.27)

Notice that the summation in (4.27) is over ∆ × ∆ (from Definition 4.9).

Based on q and v = #{1 ≤ r ≤ q : ar = 1}, we can partition ∆ × ∆ into

the sets ∆×∆(V1, ..., V6, ν). For sets V1, . . . , V6 and matching function ν as in

Definition 4.7, define

S(V1, . . . , V6, ν) =
n∑

k=o+1

n∑
j=o+1

∑
((l1,...,lq),(m1,...,mq))
∈∆×∆(V1,...,V6,ν)

(
q∏
r=1

∣∣carj−mr ∣∣ ∣∣cark−lr ∣∣
)

∣∣∣∣∣E
(

q∏
r=1

ψ
(r)
lr
ψ(r)
mr

)
− E

(
q∏
r=1

ψ
(r)
lr

)
E

(
q∏
r=1

ψ(r)
mr

)∣∣∣∣∣ . (4.28)
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Using the fact that there can only be a finite number of possibilities for

V1, . . . , V6 and ν, we get from (4.27) and (4.28), that

E
[
(Y

λq
o,n,δ)

2
] o,n,δ
� max

V1,...,V6, ν
S(V1, . . . , V6, ν) . (4.29)

Observe that when |V1| > 0 or |W1| > 0, S(V1, . . . , V6, ν) = 0 according

to Lemma 4.10, and need not be considered in (4.29). Hence we assume

that |V1| = |W1| = 0. From Remark 4.8, recall that |V1| + |V2| + |V3| =

|W1|+ |ν(V2)|+ |ν(V4)| = v. Due to injectivity of ν, we have |ν(Vr)| = |Vr| for

2 ≤ r ≤ 5, so when |V1| = |W1| = 0, we get our second observation, i.e. |V3| =

|V4|. Similarly, since |V1|+ . . .+ |V6| = |W1|+ |ν(V2)|+ . . .+ |ν(V5)|+ |W6| = q,

using |V1| = |W1| = 0, we get that |V6| = |W6|. Hence, we only need to

consider S(V1, . . . , V6, ν), where


|V1| = |W1| = 0,

|V3| = |V4| ,

|V6| = |W6| .

(4.30)

We now fix sets V1, . . . , V6 and matching function ν, from Definition 4.9, sat-

isfying (4.30). Combining the bound of Lemma 4.10 with our observations in

(4.30), we define

ρu2,...,u6 =

 1, 0 < u6 < q, u4 = u5 = 0

δ, otherwise
, (4.31)

which we will use to bound S(V1, . . . , V6, ν) below. Using (4.28) and (4.31),
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we first group the coefficients according to V1, . . . , V6, and ν, to get that

S(V1, . . . , V6, ν)

o,n,δ
�

n∑
k=o+1

n∑
j=o+1

∑
((l1,...,lq),(m1,...,mq))
∈∆×∆(V1,...,V6,ν)

(
q∏
r=1

∣∣carj−mr ∣∣ ∣∣cark−lr ∣∣
)
ρ|V2|,...,|V6|

o,n,δ
� ρ|V2|,...,|V6|

n∑
k=o+1

n∑
j=o+1

∑
((l1,...,lq),(m1,...,mq))
∈∆×∆(V1,...,V6,ν)

(∏
r∈W6

|carj−mr |

)
(∏
r∈V6

|cark−lr |

)(∏
r∈V5

|caν(r)j−mν(r) ||c
ar
k−lr |

)(∏
r∈V4

|caν(r)j−mν(r) ||c
ar
k−lr |

)
(∏
r∈V3

|caν(r)j−mν(r) ||c
ar
k−lr |

)(∏
r∈V2

|caν(r)j−mν(r) ||c
ar
k−lr |

)
. (4.32)

Note that ar ≥ 2 (hence carl ≤ c2
l ) for r ∈ V4 ∪ V5 ∪ V6 ∪W6, and ar = 1

for r ∈ V2 ∪ V3. Next, for r ∈ V2 ∪ V3 ∪ V4 ∪ V5, we use lr = mν(r) in (4.32),

then bring in the summations and extend them over all integers, to get

S(V1, . . . , V6, ν)

o,n,δ
� ρ|V2|,...,|V6|

n∑
k=o+1

n∑
j=o+1

(∏
r∈W6

∞∑
mr=−∞

|c2
j−mr |

)(∏
r∈V6

∞∑
lr=−∞

|c2
k−lr |

)
(∏
r∈V5

∞∑
lr=−∞

|c2
j−lr ||c

2
k−lr |

)(∏
r∈V4

∞∑
lr=−∞

|cj−lr ||c2
k−lr |

)
(∏
r∈V3

∞∑
lr=−∞

|c2
j−lr ||ck−lr |

)(∏
r∈V2

∞∑
lr=−∞

|cj−lr ||ck−lr |

)
o,n,δ
� ρ|V2|,...,|V6|

n∑
k=o+1

n∑
j=o+1

(
∞∑

m=−∞

|c2
j−m|

)|W6|( ∞∑
l=−∞

|c2
j−l|

)|V6|( ∞∑
l=−∞

|c2
j−l||c2

k−l|

)|V5|
(

∞∑
l=−∞

|cj−l||c2
k−l|

)|V4|( ∞∑
l=−∞

|c2
j−l||ck−l|

)|V3|( ∞∑
l=−∞

|cj−l||ck−l|

)|V2|
. (4.33)
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Applying Lemma 4.1 with γ = σ, 2σ and Lemma 4.2 with γ = σ, we have

∞∑
l=−∞

|c2
j−l||c2

k−l|
o,n,δ
�


1 +

∑∞
l=−∞
l 6=j
|j − l|−4σ, j = k∑∞

l=−∞
l 6∈{j,k}

|j − l|−2σ|k − l|−2σ + |j − k|−2σ, j 6= k

o,n,δ
�

 1, j = k

|j − k|−2σ, j 6= k
(4.34)

∞∑
l=−∞

|cj−l||c2
k−l|

o,n,δ
�


1 +

∑∞
l=−∞
l 6=j
|j − l|−3σ, j = k∑∞

l=−∞
l 6∈{j,k}

|j − l|−σ|k − l|−2σ + |j − k|−σ, j 6= k

o,n,δ
�

 1, j = k

|j − k|−σ, j 6= k
(4.35)

∞∑
l=−∞

|cj−l||ck−l|
o,n,δ
�


1 +

∑∞
l=−∞
l 6=j
|j − l|−2σ, j = k∑∞

l=−∞
l 6∈{j,k}

|j − l|−σ|k − l|−σ + |j − k|−σ, j 6= k

o,n,δ
�

 1, j = k

|j − k|1−2σ, j 6= k
(4.36)

Using (4.30,4.33,4.34,4.35) and (4.36), and the summability of |c2
l | over inte-
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gers, we get that

S(V1, . . . , V6, ν)

o,n,δ
� ρ|V2|,...,|V6|

n∑
k=o+1

1 +
n∑

j=o+1
j 6=k

|j − k|−2σ|V5||j − k|−(|V3|+|V4|)σ|j − k|(1−2σ)|V2|


o,n,δ
� ρ|V2|,...,|V6|

n∑
k=o+1

1 +
n∑

j=o+1
j 6=k

|j − k||V2|−2(|V2|+|V3|+|V5|)σ

 . (4.37)

(4.37) provides a bound for S(V1, . . . , V6, ν) in terms of the cardinalities

|V2| , . . . |V6|. However, depending on the given partition λq = (a1, a2, . . . , aq),

the value of v can be different, thus putting constraints on V2, . . . , V6. We shall

use (4.29) and (4.37) to bound the second moment of Y
λq
o,n,δ.

Case 1: aq ≥ 2.

In this case, we see that ar 6= 1, ∀ 1 ≤ r ≤ q. Thus, Definition 4.7 gives us

that |V2| = |V3| = 0. Also from (4.30), |V3| = |V4| gives us that |V4| = 0. If

further, |V5| = 0, then we will have |V6| = q (since |V2|+ . . .+ |V6| = q). So by

Lemma 4.10, we see that

∣∣∣∣∣E
(

q∏
r=1

(ψ
(r)
lr
ψ(r)
mr)

)
− E

(
q∏
r=1

ψ
(r)
lr

)
E

(
q∏
r=1

ψ(r)
mr

)∣∣∣∣∣ = 0

and hence S(V1, . . . , V6, ν) = 0. Since we need not consider cases where
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S(V1, . . . , V6, ν) = 0, we assume that |V5| ≥ 1.

Thus, we have |V2| = |V3| = 0, |V5| ≥ 1, and get that ρ0,0,0,|V5|,|V6| = δ (from

(4.31)), and that |V2| − 2(|V2| + |V3| + |V5|)σ < −1 (since σ ∈
(

1
2
, 1
)
). From

(4.29,4.37), we get that

E
[
(Y

λq
o,n,δ)

2
] o,n,δ
� max

|V5|≥1, |V6|

(
ρ0,0,0,|V5|,|V6|

) n∑
k=o+1

1 +
n∑

j=o+1
j 6=k

|j − k|−2|V5|σ


= δ (n− o) . (4.38)

Case 2: a1 = 1.

In this case, we see that ar = 1, ∀ 1 ≤ r ≤ q. Thus, Definition 4.7 gives us

that |V4| = |V5| = |V6| = 0. Also from (4.30), |V3| = |V4| gives us that |V3| = 0

and |V2| = q. Since in this permutation, all the elements are 1, so q = s, and

hence |V2| = s.

Thus, we have |V3| = |V5| = 0, |V2| = s, and get that ρs,0,0,0,0 = δ (from

(4.31)), and that |V2| − 2(|V2| + |V3| + |V5|)σ = (1 − 2σ)s. From (4.29,4.37),

we get that

E
[
(Y

λq
o,n,δ)

2
] o,n,δ
� (ρs,0,0,0,0)

n∑
k=o+1

1 +
n∑

j=o+1
j 6=k

|j − k|(1−2σ)s


o,n,δ
� δ (n− o) ls,σ(n− o) , (4.39)

where ls,σ is from the Notation list in Section 4.1.
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Case 3: a1 ≥ 2, aq = 1.

In this case, we see from Definition 4.7, that 0 < |V2| + |V3| < q and 0 <

|V4|+ |V5|+ |V6| < q.

First, assume that |V3| = |V5| = 0. Since from (4.30), we have |V3| = |V4|, thus

we get that |V4| = 0, and |V2| , |V6| ∈ {1, 2, . . . , q−1}. So we have ρ|V2|,0,0,0,|V6| =

1 (from (4.31)), and that |V2| − 2(|V2| + |V3| + |V5|)σ = (1 − 2σ) |V2|, hence

using (4.29,4.37), we get that

E
[
(Y

λq
o,n,δ)

2
] o,n,δ
� max

|V2|,|V6|∈{1,2,...,q−1}

(
ρ|V2|,0,0,0,|V6|

) n∑
k=o+1

1 +
n∑

j=o+1
j 6=k

|j − k|(1−2σ)|V2|


o,n,δ
� max

|V2|∈{1,2,...,q−1}
(n− o) l|V2|,σ(n− o) . (4.40)

From Notation List in Section 4.1, l|V2|,σ(n−o) =


(n− o)|V2|(1−2σ)+1, σ < |V2|+1

2|V2|

log(n− o), σ = |V2|+1
2|V2|

1, σ > |V2|+1
2|V2|

.

Since (1 − 2σ) < 0, n− o ≥ 1, and |V2|+1
2|V2| decreases as |V2| increases, observe

that l|V2|,σ(n− o) is a non-increasing function of |V2| ∈ {1, 2, . . . , v}. Thus, we

take |V2| = 1 in (4.40) to bound the left hand side, and get

E
[
(Y

λq
o,n,δ)

2
] o,n,δ
� (n− o) l1,σ(n− o) .

For all other values of |V3| and |V5|, we have |V2| − 2(|V2| + |V3| + |V5|)σ <

−1 (since σ ∈
(

1
2
, 1
)
), and ρ|V2|,...,|V6| ≤ δ (from (4.31)). Thus, we get from
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(4.29,4.37), that

E
[
(Y

λq
o,n,δ)

2
] o,n,δ
� max

|V2|,...,|V6|

(
ρ|V2|,...,|V6|

) n∑
k=o+1

1 +
n∑

j=o+1
j 6=k

|j − k||V2|−2(|V2|+|V3|+|V5|)σ


o,n,δ
� δ (n− o) . (4.41)

Case 4: a1 ≥ 2, aq = 1, s is even, and E
(
ψ

(r)
1

)
= 0 whenever ar is odd.

Under these new conditions, we will show that it is possible to tighten the

bound for E
[
(Y

λq
o,n,δ)

2
]

in (4.40). We had taken |V2| = 1 to bound E
[
(Y

λq
o,n,δ)

2
]

in (4.40) in Case 3, under the assumption that |V3| = |V4| = |V5| = 0 and

|V2| , |V6| ∈ {1, 2, . . . , q − 1}.

Further, when |V2| = 1, it means that ψ
(q)
lq

and ψ
(q)
mq are the only two ψ’s with

zero-mean, and that they must be matched. This gives us that ν(q) = q, |V6| =

q − 1 and that V1 ∪ V2 ∪ V3 6= φ. So, we apply (4.19) and the independence

of ψ’s with different subscripts, to the definition of S(V1, . . . , V6, ν) in (4.28),

and get that

∣∣∣∣∣E
(

q∏
r=1

ψ
(r)
lr
ψ(r)
mr

)
− E

(
q∏
r=1

ψ
(r)
lr

)
E

(
q∏
r=1

ψ(r)
mr

)∣∣∣∣∣1{|V2|=1, |V6|=q−1}

=

∣∣∣∣∣E
(

q∏
r=1

ψ
(r)
lr
ψ(r)
mr

)∣∣∣∣∣1{|V2|=1, |V6|=q−1}

=

∣∣∣∣∣
q−1∏
r=1

E
(
ψ

(r)
lr

)∣∣∣∣∣
∣∣∣∣∣
q−1∏
r=1

E
(
ψ(r)
mr

)∣∣∣∣∣E
[(
ψ

(q)
lq

)2
]
. (4.42)

Observe that (a1, a2, . . . , aq−1) is a decreasing partition of (s−1), since aq = 1.
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Hence if s is even, then ar must be odd for some 1 ≤ r ≤ q − 1, and for that

r, we will get E
(
ψ

(r)
lr

)
= 0 . Since this makes the entire expression in (4.42)

become 0 (thus making S(V1, . . . , V6, ν) = 0), we must not choose |V2| = 1 for

the bound of E

[(
Y
λq
o,n,δ

)2
]

in (4.40). Instead, we go with next lowest value,

i.e. |V2| = 2 to obtain,

E

[(
Y
λq
o,n,δ

)2
]

o,n,δ
� (n− o) l2,σ(n− o). (4.43)

Lemma 4.11 follows from (4.38,4.39,4.40,4.41) and (4.43).

4.3.3 Rate of Convergence for Theorem 4.6

We now return to the proof of Theorem 4.6, where we shall bound the second

moment of Sn(q, λq) (defined in 4.16). In Lemma 4.11, taking ψ
(r)
lr

= ξarlr for

1 ≤ r ≤ q, and δ = 1 (since E
[(
ξa1l1
)2
] o,n
� 1), we see that Y

λq
o,n,δ becomes

Sn(q, λq)− So(q, λq), and

E
[(
Sn(q, λq)− So(q, λq)

)2
] o,n
�


n− o, aq ≥ 2

(n− o) ls,σ(n− o), a1 = 1

(n− o) l1,σ(n− o), aq = 1, a1 ≥ 2.

(4.44)

Furthermore, if s is even and ξl is a symmetric random variable, then ξarl is

symmetric when ar is odd, implying that E (ξarl ) = 0 for odd ar. Hence, taking

ψ
(r)
lr

= ξarlr ∀ 1 ≤ r ≤ q in Lemma 4.11, we see that E
(
ψ

(r)
l

)
= 0 when ar is
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odd, and that for aq = 1 and a1 ≥ 2,

E
[(
Sn(q, λq)− So(q, λq)

)2
] o,n,δ
� (δ (n− o)) ∨ ((n− o) l2,σ(n− o)). (4.45)

The bounds in (4.44) and (4.45) are given in terms of a partition λq. We

can check which partitions are possible for a given s, and then apply (4.44)

and (4.45) to bound the second moment of
∑n

k=1(dk − d). Recall that s =

a1+a2+. . .+aq and a1 ≥ a2 ≥ + . . . ≥ aq ≥ 1. When s = 1, none of the cases

except a1 = 1 are possible, and when s = 2, the third case i.e. aq = 1, a1 ≥ 2

is not possible. Hence, we get from (4.44), that

E
[(
Sn(q, λq)− So(q, λq)

)2
] o,n
�

 (n− o) l2,σ(n− o), s = 2

(n− o) l1,σ(n− o), s 6= 2
, (4.46)

and from (4.45), that if s is even and ξl is a symmetric random variable, then

E
[(
Sn(q, λq)− So(q, λq)

)2
] o,n
� (n− o) l2,σ(n− o) . (4.47)

Let nr = 2r, n ∈ [nr, nr+1) and r ∈ N0. Then, putting n = nr and o = 0 in

(4.46), we get,

E
[(
Snr(q, λq)

)2
]

r
�

 nr l2,σ(nr), s = 2

nr l1,σ(nr), s 6= 2
. (4.48)

First, consider s 6= 2. Then for nr ≤ o < n < nr+1, it follows from (4.46) by
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Theorem 4.5, with Zi = Si(q, λq)− Si−1(q, λq) and f(n) = n l1,σ(n), that

E

[
max

nr≤o<n<nr+1

(
Sn(q, λq)− So(q, λq)

)2
]

r
� r2nr l1,σ(nr) . (4.49)

Combining (4.48) and (4.49), we have that

∞∑
r=0

E

[
max

nr≤n<nr+1

(
Sn(q, λq)

n
1
p

)2
]
�

∞∑
r=0

r2n
1− 2

p
r l1,σ(nr) <∞, (4.50)

provided (3 − 2σ) < 2
p
, i.e. p < 2

3−2σ
. From (4.50), it follows by Fubini’s

Theorem and nth term divergence that for p < 2
3−2σ

,

lim
n→∞

Sn(q, λq)

n
1
p

= 0 a.s. (4.51)

Now let s = 2. Then for nr ≤ o < n < nr+1, it follows from (4.46) by Theorem

4.5, with Zi = Si(q, λq)− Si−1(q, λq) and f(n) = n l2,σ(n), that

E

[
max

nr≤o<n<nr+1

(
Sn(q, λq)− So(q, λq)

)2
]

r
� r2nr l2,σ(nr) . (4.52)

Combining (4.48) and (4.52), we have that

∞∑
r=0

E

[
max

nr≤n<nr+1

(
Sn(q, λq)

n
1
p

)2
]
�

∞∑
r=0

r2n
1− 2

p
r l2,σ(nr) <∞, (4.53)

provided (4− 4σ) ∨ 1 < 2
p
, i.e. p < 1

2−2σ
when σ < 3

4
, and p < 2 when σ ≥ 3

4
.

From (4.53), it follows by Fubini’s Theorem and nth term divergence that for
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p < 2 ∧ 1
2−2σ

,

lim
n→∞

Sn(q, λq)

n
1
p

= 0 a.s. (4.54)

Finally, we consider the case where s is even, and ξl is a symmetric random

variable. Then, notice that our result in (4.47) is the same as that in (4.46) for

s = 2. Thus, (4.52) and (4.53) holds for this case as well, and for p < 2∧ 1
2−2σ

,

we get that

lim
n→∞

Sn(q, λq)

n
1
p

= 0 a.s. (4.55)

Since
∑n

k=1(dk − d) is the sum of Sn(q, λq) over all q ∈ {1, . . . , s} and all

partitions λq (which are finite in number), we get from (4.51,4.54) and (4.55),

that

lim
n→∞

∑n
k=1(dk − d)

n
1
p

= 0 a.s.

for the values of p as mentioned in (4.14) and (4.15). This completes the proof

of Theorem 4.6.

4.4 Heavy Tailed Case of Theorem 3.1

From (3.2) in Theorem 3.1, we find that heavy tails can only arise when 0 ≤

i ≤ b s−1
2
c , i.e. for products of at least s − b s−1

2
c = d s+1

2
e terms. Also when

s = 1, (3.1) along with Remark 3.4 ensures that it will have only long range

51



dependence since α0 > 2, so we do not have to consider that case here. Since

we will deal only with those terms exhibiting heavy tails in this section, we

will assume that s ≥ 2, fix i ∈
{

0, 1, . . . ,
⌊
s−1

2

⌋}
, and assume (due to Remark

3.4) that 1 < αi < 2.

Remark 4.12. For a given partition λq = {a1, a2, . . . , aq}, heavy tails can

only come up in the innovation involving the highest power, i.e. ξa1l . This is

because for a term to possess heavy tails, it’s variance must be infinite, hence

a1 > s
2
. But that would force the rest of the ar’s to be less than s

2
, thus

precluding heavy tails in terms involving ξarl for r ∈ {2, . . . , q}. This shows

that heavy tails concerning αi will arise only in the sum

S∗n(i) =
n∑
k=1

∑
l1,l2,...,li+1

l1 6∈{l2,...,li+1}

(
cs−ik−l1

i+1∏
r=2

ck−lr

)(
ξs−il1

i+1∏
r=2

ξlr − E

(
ξs−il1

i+1∏
r=2

ξlr

))
. (4.56)

Remark 4.13. Alternatively, for heavy tails involving αi, we could also con-

sider the sum Sn(q, λq) (from (4.16)) with a1 = s− i, i.e.

Sn(q, λq) =
n∑
k=1

∑
l1 6=l2 6=...6=lq

(
cs−ik−l1

q∏
r=2

cark−lr

)(
ξs−il1

q∏
r=2

ξarlr − E

(
ξs−il1

q∏
r=2

ξarlr

))
,

where λq = (s − i, a2, . . . , aq). In fact, note that S∗n (from (4.56)) is the sum

of Sn(q, λq) over all q, and all partitions λq with a1 = s − i. Both S∗n(i) and

Sn(q, λq) have distinct advantages to work with. While S∗n(i) has the advantage

of having only one ξl with power greater than one, Sn(q, λq) has the advantage

of having l1 6= l2 6= . . . 6= lq, hence Lemma 4.10 can be easily applied to it.

Hence, we will mostly use Sn(q, λq) to deal with the truncated terms, and S∗n(i)
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for the error terms.

4.4.1 Conversion to continuous random variables

Recall that in this section, i ∈
{

0, 1, . . . ,
⌊
s−1

2

⌋}
is fixed. We will first replace

ξs−il with continuous random variables ζl, which will ensure below that the

truncation does not take place at a jump or at a point with positive proba-

bility. Let {Ul}l∈Z be independent [−1, 1]-uniform random variables that are

independent of {ξl}l∈Z. Then, we have that

Sn(q, λq) = An − Bn ,

where we define,

An(q, λq) =
n∑
k=1

∑
l1 6=l2 6=...6=lq

(
q∏
r=1

cark−lr

)((
ξs−il1

+ Ul1
) q∏
r=2

ξarlr − E

((
ξs−il1

+ Ul1
) q∏
r=2

ξarlr

))

Bn(q, λq) =
n∑
k=1

∑
l1 6=l2 6=...6=lq

(
q∏
r=1

cark−lr

)(
Ul1

q∏
r=2

ξarlr − E

(
Ul1

q∏
r=2

ξarlr

))
.

In Lemma 4.11, taking ψ
(r)
lr

= ξarlr ∀ 2 ≤ r ≤ q, ψ
(1)
l1

= Ul1 , and δ = 1 (since

E
[
(Ul1)

2] is constant), we get that Y
λq
o,n,δ = Bn − Bo. This gives us,

E
[
(Bn(q, λq)− Bo(q, λq))

2] o,n�


n− o, aq ≥ 2,

(n− o) ls,σ(n− o), a1 = 1,

(n− o) l1,σ(n− o), aq = 1, a1 ≥ 2.

(4.57)
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This bound is the same as that in (4.44), which is expected, since we can

see that heavy tails do not arise in Bn(q, λq). Like in (4.46), we check which

partitions are possible for a given s. When s = 1, none of the cases except

a1 = 1 are possible, and when s = 2, the third case i.e. aq = 1, a1 ≥ 2 is not

possible. Hence from (4.57), we get that

E
[
(Bn(q, λq)− Bo(q, λq))

2] o,n
�

 (n− o) l2,σ(n− o), s = 2

(n− o) l1,σ(n− o), s 6= 2
.

Proceeding along the lines of (4.48 - 4.55), with Bn(q, λq)−Bo(q, λq) instead

of Sn(q, λq)− So(q, λq), we get that

lim
n→∞

Bn(q, λq)

n
1
p

= 0 a.s.

for the values of p as mentioned in the statement of Theorem 4.6. Defining

ζl = ξs−il +Ul, which is a function of i, we note that ζl is a continuous random

variable since it is a convolution of two random variables, one of which is

absolutely continuous. Also, note that ζl has the same tail probability bound

as ξs−il , since

sup
t≥2

tαiP (ζ1 > t) ≤ sup
t≥2

tαiP (|ζ1| > t)

≤ sup
t≥2

tαiP
(∣∣ξs−i1

∣∣ > t− 1
)

� sup
t≥1

(
t+ 1

t

)αi
tαiP

(∣∣ξs−i1

∣∣ > t
)
<∞. (4.58)
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Thus, convergence of Sn(q, λq) is equivalent to that of

An(q, λq) =
n∑
k=1

∑
l1 6=l2 6=...6=lq

(
q∏
r=1

cark−lr

)(
ζl1

q∏
r=2

ξarlr − E

(
ζl1

q∏
r=2

ξarlr

))
.

Summing over all q, and partitions λq where a1 = s−i, we find that convergence

of S∗n(i) (from (4.56)) is equivalent to that of,

Tn(i) =
n∑
k=1

∑
l1,l2,...,li+1

l1 6∈{l2,...,li+1}

(
cs−ik−l1

i+1∏
r=2

ck−lr

)(
ζl1

i+1∏
r=2

ξlr − E

(
ζl1

i+1∏
r=2

ξlr

))
. (4.59)

4.4.2 Truncation of ζ with highest power

We now break ζ into truncated and error terms. This partitioning will be

done in such a way that the second moment of the truncated term is finite,

hence can be managed by Theorem 4.6. The convergence of the error terms

will be proven later on using Jensen’s Inequality, Holder’s Inequality, Doob’s

Lp Maximal Inequality and Borel-Cantelli Lemma.

Let κ > 0. Using condition (4.58), and fixing v+
r = n

κ
2−αi
r (where nr = 2r) for

r ∈ N0, and letting v−r = −v+
r , we get

 2
∫ v+r

0
P (ζ1 > s)s ds

r
� 2

∫ v+r
0

s−αis ds
r
� nκr

2
∫ 0

v−r
P (ζ1 < s)s ds

r
� 2

∫ 0

v−r
s−αis ds

r
� nκr ,

∀ r ∈ N . (4.60)
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Next, we define i.i.d random variables {ζ(r)

l }l∈Z and {ζ̃(r)
l }l∈Z for r ∈ N such

that,

 ζ
(r)

l = v−r ∨ ζl ∧ v+
r

ζ̃
(r)
l = ζl − ζ

r

l

. (4.61)

We shall call ζ
(r)

l the truncated terms, and ζ̃
(r)
l the error terms. Observe that

ζ
(r)

l and ζ̃
(r)
l are both functions of r. Breaking ζ

(r)
l into ζ

(r)

l and ζ̃
(r)
l also helps

us break up An(q, λq) as An(q, λq) = A
(r)

n (q, λq) + Ã
(r)
n (q, λq), where

A
(r)

n (q, λq) =
n∑
k=1

∑
l1 6=l2 6=...6=lq

(
q∏
r=1

cark−lr

)(
ζ

(r)

l1

q∏
r=2

ξarlr − E

(
ζ

(r)

l1

q∏
r=2

ξarlr

))

Ã(r)
n (q, λq) =

n∑
k=1

∑
l1 6=l2 6=...6=lq

(
q∏
r=1

cark−lr

)(
ζ̃

(r)
l1

q∏
r=2

ξarlr − E

(
ζ̃

(r)
l1

q∏
r=2

ξarlr

))
,

and Tn(i) (from (4.59)) as Tn(i) = T
(r)

n (i) + T̃
(r)
n (i), where

T
(r)

n (i) =
n∑
k=1

∑
l1,l2,...,li+1

l1 6∈{l2,...,li+1}

(
cs−ik−l1

i+1∏
r=2

ck−lr

)(
ζ

(r)

l1

i+1∏
r=2

ξlr − E

(
ζ

(r)

l1

i+1∏
r=2

ξlr

))

T̃ (r)
n (i) =

n∑
k=1

∑
l1,l2,...,li+1

l1 6∈{l2,...,li+1}

(
cs−ik−l1

i+1∏
r=2

ck−lr

)(
ζ̃

(r)
l1

i+1∏
r=2

ξlr − E

(
ζ̃

(r)
l1

i+1∏
r=2

ξlr

))
.

4.4.3 Bounding second moment of truncated terms

Recall that ζl, ζ
(r)

l , ζ̃
(r)
l , An(q, λq), A

(r)

n (q, λq), Ã
(r)
n (q, λq), Tn(i), T

(r)

n (i), and

T̃
(r)
n (i) are defined in terms of a fixed i ∈

{
0, 1, . . . ,

⌊
s−1

2

⌋}
. We now bound
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the second moments for the truncated terms, ζ
(r)

l .

Using (4.58,4.61), and the formula

E[g(X)] =

∫ ∞
0

g′(t)P (X > t) dt −
∫ 0

−∞
g′(t)P (X < t) dt, (4.62)

for a continuously differentiable function g and a random variable X, we find

that,

E[ζ
(r)

l ] =

∫ v+r

0

P (ζl > t) dt −
∫ 0

v−r

P (ζl < t) dt

≤
∫ ∞

0

P (|ζl| > t) dt

≤ E|ζl|
r
� 1. (4.63)

Also, by (4.60) we have,

E

[∣∣∣ζ(r)

l

∣∣∣2] = E
[
|v−r ∨ ζl ∧ v+

r |2
]

= 2

∫ v+r

0

P (ζl > s)s ds − 2

∫ 0

v−r

P (ζl < s)s ds

r
� nκr , ∀ r ∈ N. (4.64)

We shall now use (4.63) and (4.64) to bound the second moment of A
(r)

n (q, λq),

in terms of nκr . Recall that {ζ(r)

l } are i.i.d., and E
[∣∣∣ζ(r)

l

∣∣∣] <∞. Hence, taking

ψ
(1)
l1

= ζ
(r)

l1
, ψ

(r)
lr

= ξarlr for 2 ≤ r ≤ q, and δ = nκr in Lemma 4.11, we see that

Yo,n,r becomes A
(r)

n (q, λq) − A
(r)

o (q, λq). Taking o = 0 in Lemma 4.11, we get
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that

E

[(
A

(r)

n (q, λq)
)2
]

n,r
�


nκrn, aq ≥ 2

nκrn ls,σ(n), a1 = 1

nκrn ∨
(
n l1,σ(n)

)
, aq = 1, a1 ≥ 2

.

Note that when a1 = 1, heavy tails do not arise since second moment of

A
(r)

n (q, λq) will exist, hence we can discard this case. When s = 2, the third

case i.e. aq = 1, a1 ≥ 2 is not possible. Hence, we have

E

[(
A

(r)

n (q, λq)
)2
]

n,r
�

 nκrn, s = 2

nκrn ∨
(
n l1,σ(n)

)
, s 6= 2

. (4.65)

Let s 6= 2. Then for nr ≤ n < nr+1, it follows from (4.65) by Theorem 4.5,

with Zi = A
(r)

i (q, λq)− A
(r)

i−1(q, λq) and f(n) = nκrn ∨
(
n l1,σ(n)

)
, that

E

[
max

nr≤n<nr+1

(
A

(r)

n (q, λq)
)2
]

r
� r2

[
n1+κ
r ∨

(
nr l1,σ(nr)

)]
.

Summing (4.66) over all q and over all partitions λq where a1 = s − i (recall

that i ∈
{

0, 1, . . . ,
⌊
s−1

2

⌋}
is fixed), gives us that

E

[
max

nr≤n<nr+1

(
T

(r)

n (i)
)2
]

r
� r2

[
n1+κ
r ∨

(
nr l1,σ(nr)

)]
. (4.66)
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Now, let s = 2. Then for nr ≤ n < nr+1, it follows from (4.65) by Theorem

4.5, with Zi = A
(r)

i (q, λq)− A
(r)

i−1(q, λq) and f(n) = nκrn, that

E

[
max

nr≤n<nr+1

(
A

(r)

n (q, λq)
)2
]

r
� r2n1+κ

r . (4.67)

Summing (4.67) over all q and over all partitions λq where a1 = s− i, gives us

that

E

[
max

nr≤n<nr+1

(
T

(r)

n (i)
)2
]

r
� r2n1+κ

r . (4.68)

Finally, we consider the situation where s is even, and ξl is symmetric. Clearly

ξ
aj
l will be symmetric when aj is odd, implying that E

(
ξ
aj
l

)
= 0 for odd

aj, 2 ≤ j ≤ q. Also, since a1 = s− i, we see that ξa1l will be symmetric when

a1 is odd, implying that both ζl and ζ
(r)

l will be symmetric. Hence, taking

ψ
(j)
lj

= ξ
aj
lj
∀ 2 ≤ j ≤ q, ψ

(1)
l1

= ζ
(r)

l , δ = nκr , and o = 0 in Lemma 4.11, we see

that E
(
ψ

(j)
l

)
= 0 when aj is odd, and that

E

[(
A

(r)

n (q, λq)
)2
]

n,r
� nκrn ∨

(
n l2,σ(n)

)
. (4.69)

Then for nr ≤ n < nr+1, it follows from (4.69) by Theorem 4.5, with Zi =

A
(r)

i (q, λq)− A
(r)

i−1(q, λq) and f(n) = nκrn ∨
(
n l2,σ(n)

)
, that

E

[
max

nr≤n<nr+1

(
A

(r)

n (q, λq)
)2
]

r
� r2

[
n1+κ
r ∨

(
nr l2,σ(nr)

)]
.
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Thus, summing (4.70) over all q and all partitions λq where a1 = s − i, gives

us

E

[
max

nr≤n<nr+1

(
T

(r)

n (i)
)2
]

r
� r2

[
n1+κ
r ∨

(
nr l2,σ(nr)

)]
, (4.70)

which can be seen as an improvement over (4.66), since the function l2,σ ≤ l1,σ.

4.4.4 Bounding τth moment of error terms, τ ∈ (1, αi)

We now bound the second moments for the error terms.

Taking 1 < z < αi, and using our tail probability bound in (4.58) along with

(4.62), we have that

E

∣∣∣∣(ζ̃(r)
1

)+
∣∣∣∣z = z

∫ ∞
0

sz−1P
(
ζ

(r)
1 − (ζ

(r)
1 ∧ v+

r ) > s
)
ds

= z

∫ ∞
0

sz−1P
(
ζ

(r)
1 > v+

r + s
)
ds

r
�

∫ ∞
v+r

(s− v+
r )z−1s−αi ds

≤ (v+
r )−αi

∫ 2v+r

v+r

(s− v+
r )z−1 ds +

∫ ∞
2v+r

(s− v+
r )z−αi−1 ds

r
� (v+

r )z−αi
r
� n

κ(z−αi)
2−αi

r .

By symmetry E

∣∣∣∣(ζ̃(r)
1

)−∣∣∣∣z has the same bound, hence for 1 < z < αi, we get

that

‖ζ̃(r)
1 ‖z

r
� n

κ(z−αi)
z(2−αi)
r . (4.71)
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Now we shall find conditions for the convergence rates of T̃
(r)
n (i). If we take,

Xn =
n∑
k=1

∑
l1,l2,...,li+1

l1 6∈{l2,...,li+1}

(
cs−ik−l1

i+1∏
r=2

ck−lr

)(
ζ̃

(r)
l1

i+1∏
r=2

ξlr

)

in Lemma 4.3, we have for τ ∈ (1, 2) that,

E
1
τ

[
sup

nr≤n<nr+1

∣∣∣T̃ (r)
n (i)

∣∣∣τ]

= E
1
τ

 sup
nr≤n<nr+1

∣∣∣∣∣∣∣∣
n∑
k=1

∑
l1,l2,...,li+1

l1 6∈{l2,...,li+1}

(
cs−ik−l1

i+1∏
r=2

ck−lr

)(
ζ̃

(r)
l1

i+1∏
r=2

ξlr − E

(
ζ̃l1

i+1∏
r=2

ξlr

))∣∣∣∣∣∣∣∣
τ 

r
� E

1
τ

 sup
nr≤n<nr+1

∣∣∣∣∣∣∣∣
n∑
k=1

∑
l1,l2,...,li+1

l1 6∈{l2,...,li+1}

(
cs−il1

i+1∏
r=2

clr

)(
ζ̃

(r)
k−l1

i+1∏
r=2

ξk−lr

)∣∣∣∣∣∣∣∣
τ 

≤ E
1
τ

 sup
nr≤n<nr+1

∣∣∣∣∣∣∣
n∑
k=1

∞∑
l1=−∞

∣∣∣cs−il1
ζ̃

(r)
k−l1

∣∣∣
∣∣∣∣∣∣∣
∞∑

l=−∞
l 6=l1

clξk−l

∣∣∣∣∣∣∣
i ∣∣∣∣∣∣∣

τ  . (4.72)

Define,

φk,l1 =

∣∣∣∣∣∣∣
∞∑

l=−∞
l 6=l1

clξk−l

∣∣∣∣∣∣∣
i

. (4.73)
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Noting that
∑∞

m=−∞ |cs−im | < ∞ because s − i ≥ 2, and then using Jensen’s

inequality (since norms are convex), we have from (4.72), that

E
1
τ

[
sup

nr≤n<nr+1

∣∣∣T̃ (r)
n (i)

∣∣∣τ]
r
� E

1
τ

[ ∣∣∣∣∣
∞∑

l1=−∞

∣∣cs−il1

∣∣ sup
nr≤n<nr+1

(
n∑
k=1

∣∣∣ζ̃(r)
k−l1

∣∣∣ |φk,l1 |
)∣∣∣∣∣

τ ]

=
∞∑

m=−∞

|cs−im | E
1
τ

[ ∣∣∣∣∣
∞∑

l1=−∞

|cs−il1
|∑

m |cs−im |
sup

nr≤n<nr+1

(
n∑
k=1

∣∣∣ζ̃(r)
k−l1

∣∣∣ |φk,l1 |
)∣∣∣∣∣

τ ]

≤
∞∑

l1=−∞

|cs−il1
| E

1
τ

[
sup

nr≤n<nr+1

∣∣∣∣∣
n∑
k=1

∣∣∣ζ̃(r)
k−l1

∣∣∣ |φk,l1 |
∣∣∣∣∣
τ ]

. (4.74)

First, we consider that i ≥ 1. Then, by two applications of Holder’s inequality

with p1 = s
s−τi and p2 = s

τi
(both of which are positive, and their reciprocals

sum to one), we get from (4.74), that

E
1
τ

[
sup

nr≤n<nr+1

∣∣∣T̃ (r)
n (i)

∣∣∣τ]
r
�

∞∑
l1=−∞

|cs−il1
| E

1
τ

 sup
nr≤n<nr+1

∣∣∣∣∣
n∑
k=1

∣∣∣ζ̃(r)
k−l1

∣∣∣ s
s−τi

∣∣∣∣∣
τ(s−τi)

s
∣∣∣∣∣
n∑
j=1

|φj,l1 |
s
τi

∣∣∣∣∣
τ2i
s


r
�

∞∑
l1=−∞

|cs−il1
| E

s−τi
sτ

[
sup

nr≤n<nr+1

∣∣∣∣∣
n∑
k=1

∣∣∣ζ̃(r)
k−l1

∣∣∣ s
s−τi

∣∣∣∣∣
τ]

E
i
s

[
sup

nr≤n<nr+1

∣∣∣∣∣
n∑
j=1

|φj,l1 |
s
τi

∣∣∣∣∣
τ]
. (4.75)

Since s
s−τi and s

τi
are positive, we find that both

∑n
k=1

∣∣∣ζ̃(r)
k−l1

∣∣∣ s
s−τi

and∑n
j=1 |φj,l1 |

s
τi are non-negative submartingales, due to Example 4 in page 475
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of Shiryaev [33]. Hence, using Doob’s Lp maximal inequality (Theorem 2, page

493 of Shiryaev [33]) and then Jensen’s inequality (since τ > 1), we get from

(4.75), that

E
1
τ

[
sup

nr≤n<nr+1

∣∣∣T̃ (r)
n (i)

∣∣∣τ]
r
�

∞∑
l1=−∞

|cs−il1
| E

s−τi
sτ

[∣∣∣∣∣
nr+1−1∑
k=1

∣∣∣ζ̃(r)
k−l1

∣∣∣ s
s−τi

∣∣∣∣∣
τ]
E

i
s

[∣∣∣∣∣
nr+1−1∑
j=1

|φj,l1 |
s
τi

∣∣∣∣∣
τ]

r
�

∞∑
l1=−∞

|cs−il1
| E

s−τi
sτ

[
(nr+1 − 1)τ−1

nr+1−1∑
k=1

∣∣∣ζ̃(r)
k−l1

∣∣∣ sτ
s−τi

]

E
i
s

[
(nr+1 − 1)τ−1

nr+1−1∑
j=1

|φj,l1 |
s
i

]
. (4.76)

We now claim that ‖φ1,l1‖ si <∞. From (4.73), using Triangle inequality and

the fact that {ξl}l∈Z are i.i.d., we see that

[
‖φ1,l1‖ si

] 1
i =

∥∥∥∥∥∥∥
∞∑

l=−∞
l 6=l1

clξ1−l

∥∥∥∥∥∥∥
s

≤

∥∥∥∥∥
∞∑

l=−∞

clξ1−l

∥∥∥∥∥
s

+ ‖cl1ξk−l1‖s

≤

∥∥∥∥∥
∞∑

l=−∞

clξ1−l

∥∥∥∥∥
s

+ cl1 ‖ξ1‖s (4.77)

Using Lemma 4.4, along with the facts that cl1 � 1 and E
[
|ξ1|s

]
< ∞ (from

(3.1)), we get from (4.77) that ‖φ1,l1‖ si < ∞. Since s − i ≥ 2, {ζ̃(r)
l }l∈Z are
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i.i.d., as are {φj,l1}j∈N, we get from (4.76), that

E
1
τ

[
sup

nr≤n<nr+1

∣∣∣T̃ (r)
n (i)

∣∣∣τ]
r
�

∞∑
l1=−∞

|cs−il1
| E

s−τi
sτ

[
(nr+1 − 1)τ

∣∣∣ζ̃(r)
1

∣∣∣ sτ
s−τi
]
E

i
s

[
(nr+1 − 1)τ |φ1,l1 |

s
i

]
r
�

∞∑
l1=−∞

|cs−il1
| nr

∥∥∥ζ̃(r)
1

∥∥∥
sτ
s−τi

‖φ1,l1‖ si
r
� nr‖ζ̃(r)

1 ‖ sτ
s−τi

. (4.78)

Recall that after (4.74), we had assumed that i ≥ 1. Now, if we consider i = 0,

we get that |φk,l1 | = 1, and from (4.74), we get that

E
1
τ

[
sup

nr≤n<nr+1

∣∣∣T̃ (r)
n (i)

∣∣∣τ] r
�

∞∑
l1=−∞

|cs−il1
| E

1
τ

[
sup

nr≤n<nr+1

∣∣∣∣∣
n∑
k=1

∣∣∣ζ̃(r)
k−l1

∣∣∣ ∣∣∣∣∣
τ ]

.

We see that
∑n

k=1

∣∣∣ζ̃(r)
k−l1

∣∣∣ is a non-negative submartingale, due to Example

4 in page 475 of Shiryaev [33]. Thus, using Doob’s Lp maximal inequality

(Theorem 2, page 493 of Shiryaev [33]), Jensen’s inequality (since τ > 1), and

the fact that {ζ̃(r)
l }l∈Z are i.i.d., we get that

E
1
τ

[
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n (i)
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| E
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τ

[
(nr+1 − 1)τ

∣∣∣ζ̃(r)
1

∣∣∣τ]
r
� nr‖ζ̃(r)

1 ‖τ . (4.79)
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Thus ∀ i ∈
{

0, 1, . . . ,
⌊
s−1

2

⌋}
, we get from (4.78) and (4.79), that

E
1
τ

[
sup

nr≤n<nr+1

∣∣∣T̃ (r)
n (i)

∣∣∣τ] r
� nr‖ζ̃(r)

1 ‖ sτ
s−τi

. (4.80)

Now, we choose τ > 1 small enough so that αi >
sτ
s−τi , which is possible since

αi = s
s−iα0 >

s
s−i , and sτ

s−τi is continuous and increasing for τ ∈ (1, αi). Hence

by (4.71) with z = sτ
s−τi , and (4.80), we see that there exists Ti ∈ (1, αi) such

that ∀ τ ∈ (1, Ti),

E

[
sup

nr≤n<nr+1

∣∣∣T̃ (r)
n (i)

∣∣∣τ] r
� n

τ−
κ(αi−

sτ
s−τi )

s
s−τi (2−αi)

r . (4.81)

4.5 Final Rate of Convergence for Theorem

3.1

Finally, we shall use the Borel-Cantelli Lemma to combine the results of the

last two sections and prove Theorem 3.1. Notice that in
∑n

k=1(dk − d) (from

Theorem 3.1), the light tailed terms are Sn(q, λq) (from (4.16)) over all parti-

tions where a1 ≤ s
2
, since their second moments are finite. The heavy tailed

terms are S∗n(i) (from (4.56)) over i ∈
{

0, 1, . . . ,
⌊
s−1

2

⌋}
. We thus have

n∑
k=1

(dk − d) =
∑

λq=(a1,...,aq)
a1≤ s2

Sn(q, λq) +
∑

i∈{0,1,...,b s−1
2 c}

S∗n(i) (4.82)
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First, we handle the light tailed terms. In Lemma 4.11, taking ψ
(r)
lr

= ξarlr for

1 ≤ r ≤ q, and δ = 1, we see that Y
λq
o,n,δ becomes Sn(q, λq)− So(q, λq), and

E
[(
Sn(q, λq)− So(q, λq)

)2
] o,n
�


n− o, aq ≥ 2

(n− o) ls,σ(n− o), a1 = 1

(n− o) l1,σ(n− o), aq = 1, a1 ≥ 2.

.

Further, when s is even and ξ1 is symmetric, we get

E
[(
Sn(q, λq)− So(q, λq)

)2
] o,n,δ
� (δ (n− o)) ∨ ((n− o) l2,σ(n− o)).

These are the same results as in (4.44) and (4.45). Thus, proceeding along the

lines of (4.46 - 4.55), we get that

lim
n→∞

Sn(q, λq)

n
1
p

= 0 a.s. (4.83)

for the values of p as mentioned in (4.14) and (4.15), in the statement of The-

orem 4.6.

Now we deal with the heavy tailed terms. We fix i ∈
{

0, 1, . . . ,
⌊
s−1

2

⌋}
, which

fixes S∗n(i), and due to (4.59), consider Tn(i) instead of S∗n(i).

First, we consider the case where s > 2. From (4.66,4.81), Markov’s Inequal-

ity, and the fact that l1,σ(nr) = n2−2σ
r (since σ < 1), we get that, there exists
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Ti such that ∀ 1 < τ < Ti,

P

(
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p
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)
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p

r

)
∨
(
n

1−αi
p

r
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τ−αi(s−τi)
ps

r , (4.84)

by letting κ = 2−αi
p

. Note that (3 − 2σ − 2
p
) ∨ (1 − αi

p
) < 0 implies that

p < αi ∧ 2
3−2σ

. Next, note that τ − (s−τi)αi
ps

< 0 if and only if p < αi
(
s−τi
sτ

)
.

But for any p < α0 = αi
(
s−i
s

)
, we select τ > 1 small enough such that

p < αi
(
s−τi
sτ

)
. Hence, from (4.84), we get that ∀ p < α0 ∧ 2

3−2σ
,

∞∑
r=1

P

(
sup

nr≤n<nr+1

|Tn(i)| > 2εn
1
p
r

)
<∞ . (4.85)

When s = 2, from (4.68, 4.81) and Markov’s Inequality, we get that there

exists Ti such that ∀ 1 < τ < Ti,

P

(
sup

nr≤n<nr+1

|Tn(i)| > 2εn
1
p
r

)
r
� r2

(
n

1−αi
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r
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τ−αi(s−τi)
ps

r . (4.86)

Again, ∀ p < α0 = αi
(
s−i
s

)
, we can select τ > 1 small enough such that

p < αi
(
s−τi
sτ

)
. Thus, we get ∀ p < α0, that

∞∑
r=1

P

(
sup

nr≤n<nr+1

|Tn(i)| > 2εn
1
p
r

)
<∞ . (4.87)
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Lastly, when s is even, and ξ1 is symmetric, from (4.70, 4.81) and Markov’s

Inequality, we get that there exists Ti such that ∀ 1 < τ < Ti,

P

(
sup

nr≤n<nr+1

|Tn(i)| > 2εn
1
p
r

)
r
� r2

[
n
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r .

Now,
(

((4− 4σ) ∨ 1)− 2
p

)
∨ (1 − αi

p
) < 0 implies that p < 2 ∧ αi ∧ 1

2−2σ
.

Again, we note that τ − (s−τi)αi
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< 0 if and only if p < αi
(
s−τi
sτ

)
, so for any

p < α0 = αi
(
s−i
s

)
, we select τ > 1 small enough such that p < αi

(
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.

Hence, we get ∀ p < 2 ∧ α0 ∧ 1
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, that

∞∑
r=1

P

(
sup

nr≤n<nr+1

|Tn(i)| > 2εn
1
p
r

)
<∞ . (4.88)

Hence, for the values of p in (4.85,4.87,4.88), from the Borel-Cantelli Lemma,

we get that

lim
n→∞

Tn(i)

n
1
p

= 0 a.s.

⇒ lim
n→∞

S∗n(i)

n
1
p

= 0 a.s. , (4.89)

due to (4.56,4.59). From (4.83, 4.89) and Remark 3.5, we get that

lim
n→∞

n−
1
p

n∑
k=1

(dk − d) = 0 a.s. ,

for the values of p as claimed in the statement of Theorem 3.1. This completes

the proof of Theorem 3.1. �
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