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Abstract

Prion diseases are neurodegenerative disorders that arise from the misfolding of

the cellular prion protein (PrPC) into the infectious prion protein (PrPSc), result-

ing in a conformational change in the protein structure. Despite being extensively

studied, high-resolution structural information regarding PrPSc is only beginning

to be discovered. While recently resolved structures show PrPSc to contain a paral-

lel‐in‐register intermolecular β‐sheet (PIRIBS) structure, it has also been previously

suggested to contain a four-rung β-solenoid (4RβS) structure. No treatment currently

exists for any prion diseases and prion prophylactics or vaccines are essentially non-

existent. Prior prion vaccine attempts have minimally considered the structural

differences between PrPC and PrPSc, resulting in low to no efficacy when tested in

vivo.

A fungal prion protein “HET-s” was shown to contain a two-rung β-solenoid

structure. A 4RβS version of HET-s termed “HET-2s’’ was engineered via a linker

connecting the prion-forming domain (PFD) of HET-s twice. This mimic acts as a

protein scaffold to strategically place prion amino acid residues on its surface and

allows us to control for structural differences between PrPC and PrPSc, marking a

new approach in amyloid vaccine design.

The protein scaffold was optimized for β-solenoid formation, and several vac-

cine candidates were designed with proper folding verified via transmission electron

microscopy (TEM) to ensure correct epitope exposure. One particular vaccine candi-

date, “14R1”, produced an immune response in mice that preferentially recognized

ii



PrPSc over PrPC. Its efficacy against genetic prion disease was tested in a mouse

model of Gerstmann-Sträussler-Scheinker disease (GSS), and it delayed the onset

of disease. 14R1 was also tested against peripheral prion infection using hamsters

infected with the hyper strain of transmissible mink encephalopathy (TME) (HY),

which was less effective. Lastly, its efficacy was also tested in elk naturally exposed

to chronic wasting disease (CWD), producing a PrPSc-specific immune response.

A monoclonal antibody derived from 14R1 was created, and was shown to rec-

ognize various human and animal prion strains. Its structural epitope was resolved,

and this same epitope is presumed to be shared by PrPSc. The effects of immunologic

adjuvants combined with 14R1 was also examined, with certain adjuvants giving

higher antibody titres over others. The structural stability of 14R1 was also investi-

gated, and it showed that a high salt concentration or lyophilization was required

to maintain the structural epitopes as designed.

Taken together, these results show that rationally designed vaccines against prion

disease and monoclonal antibodies that are PrPSc-specific are both possible. These

results have implications beyond just prion diseases, providing a novel approach to

preventing neurodegenerative disorders.
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Preface

Within this document, references, figures/tables, abbreviations/acronyms, and

chapters/sections are linked, meaning that clicking a link will take you to the page

where it is located. Viewing this document with Adobe reader/Acrobat, command

(Mac OS) or alt (Windows OS) + left or right arrow keys will take you backwards

and forwards, respectively, allowing the reader to quickly shift between sections.

This project received animal research ethics approval from the University of Al-

berta Animal Care and Use Committee according to guidelines from the Canadian

Council on Animal Care. The research protocols of these results were approved un-

der AUP00002852, titled “Vaccines for neurodegenerative diseases”, AUP00000884,

titled “Structural biology of infectious mammalian prions”, and AUP00000424, ti-

tled “Production of antibodies for neurodegenerative disease research”. Experiments

utilizing human samples were given approval from the Health Research Ethics Board

- Biomedical Panel of the University of Alberta under study “Pro0004244” titled

“Human prions and other misfolded proteins - analyzing the molecular structure of

the misfolded conformers”.

Parts of the results described here were accomplished with the help of numerous

individuals. The monoclonal antibody generation (Section 2.9.1) and immunoblot-

ting (Figure 3.17) were primarily performed by Dr. Xinli Tang. The adjuvant work

described here was completed with the assistance of Madeleine R. Fleming (Fig-

ure 3.36). The electron micrographs were collected with the help of Drs. Xiongyao

Wang and Yongliang Wang. The threading model of HET-2s was created by Dr.
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Lyudmyla Dorosh (Figure 2.1). The histology work was performed by Trang Nguyen

and Dr. Nathalie Daude (Figure 3.16). The animal maintenance and monitoring

were performed by the animal staff technicians. The threading models of 14R1,

PrPC, and PrPSc were created by Dr. Holger Wille (Figures 3.5 and 3.6). The elk

immunizations were performed by Drs. Peach VanWick and Samantha Allen and

colleagues at the Wyoming Game and Fish Department Thorne/Williams Wildlife

Research Center in Sybille. The hamster sample collection was accomplished with

the help of Brian Tancowny. I was also assisted by undergraduate students under

my direct supervision throughout this project. The remaining results described here

are my original work.
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Chapter 1

Introduction

1.1 Protein biochemistry

The study of biological chemistry, or biochemistry, mainly focuses on the func-

tions, interactions, and structures of macromolecules such as nucleic acids, carbohy-

drates, lipids, and proteins. In the context of living organisms, the most versatile

of these macromolecules are proteins. These biomolecules play a central role in

many processes and functions critical to an organism’s survival including enzyme

catalysis, providing structural elements, cell signalling, all of which contribute to

the complexity of living beings.

1.1.1 Protein structure, function, and stability

Proteins are comprised of small monomers of amino acids connected by peptide

bonds. There are 20 proteinogenic residues that are commonly incorporated into

proteins, each with a different side chain, giving each amino acid unique biochemical

properties. The structure of proteins can be differentiated by primary, secondary,

tertiary, and quartenary structures, with some of these being discussed in later

sections. The function of most proteins is highly dependent on its tertiary structure,

which is mainly dictated by its primary structure - the sequence of amino acids.
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The vast array of functions that proteins are able to perform comes from the

virtually limitless conformations of tertiary structures that can be achieved using

the 20 proteinogenic residues. While the primary structure gives rise to the protein’s

“three-dimensional (3D)” shape, it is often less conserved due to some amino acids

having similar biochemical properties. Thus, a protein’s tertiary structure is a better

predictor of its function than its primary structure.

A protein’s stability is influenced by its structure and the function it must

perform. After a protein is translated it must be properly folded into its native

conformation. This dynamic process, combined with a protein’s ability to resist

unfolding, or denaturation, can be empirically measured and used to compare the

stability of different proteins.

1.1.2 Protein-misfolding diseases

Taking genetic information and transforming it into functional 3D proteins is

highly dependent on efficient folding of polypeptides and this process varies from

protein to protein. Failure to do so results in many human diseases, collectively

known as protein-misfolding diseases. Typically, misfolded proteins are unable to

perform their normal function, resulting in a “loss of function” phenotype. In other

scenarios, misfolded proteins can have a toxic “gain of function” phenotype, causing

cell death or other disease complications. Occasionally misfolded proteins can fold

back to their native conformation, but this is affected by factors such as pH, tem-

perature, salt concentration, and the extent of denaturation, to list a few. Misfolded

proteins can also arise when properly folded proteins becoming misfolded, for a va-

riety of reasons, such as mutations/polymorphisms in the gene or template/seeded

conversion, both of which are discussed later.
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1.1.3 Amyloids

Misfolded proteins not only lose their original structure, but tend to aggregate

with each other and form amyloids. The aggregation of many misfolded protein

monomers results in the formation of amyloid fibrils, which are comprised of multiple

protofilaments. The most consistent structural change is an increase in β-sheet

secondary structure, and many, if not all, amyloids are rich in β-sheets. Despite

being misfolded, amyloids are highly ordered, large aggregate structures that can

be visualized using an “amyloid dye”, such as Congo red or Thioflavins, or other

biophysical methods such as X-ray fibre diffraction or electron microscopy to reveal

a 4.8 Å cross-β signal or filamentous aggregates, respectively. Amyloids tend to have

lower Gibbs free energy and entropy than their native conformational counterparts,

contributing to their stability. Generally speaking, amyloids represent a toxic gain

of function when they’re involved in disease.

1.2 A novel infectious agent - prions

It was not until Stanley Prusiner isolated and characterized the infectious agent

causing scrapie did we gain a better understanding of its various biochemical prop-

erties (PRUSINER, 1982). Unlike other infectious agents, prions are devoid of nucleic

acids (ALPER et al., 1966; ALPER et al., 1967; PRUSINER, 1998). The word prion

is a portmanteau of “proteinacious infectious particle”, and is pronounced “pree-

on”. Prior to this, prions were called slow or unconventional viruses (SIGURDSSON,

1954; PATTISON, 1965; STAMP, 1967), among other proposed names and structures.

The discovery of prions directly challenged the central dogma of biology, instead

seemingly transmitting information from protein-to-protein. The ability of prions to

self-template and convert native proteins to induce misfolding is a well established

concept, known as the prion principle.
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1.2.1 The cellular prion protein

The major prion protein (PrP) is an ubiquitously expressed, membrane-anchored

protein that is most abundant in the central nervous system (CNS), but can be found

in other tissues to varying degrees. The physiological function of the cellular prion

protein (PrPC) remains debated in the field, but it has been suggested to play a role

in transmembrane signaling (WESTERGARD et al., 2007), oxidative stress (MILHAVET

et al., 2002), cell adhesion (SCHMITT-ULMS et al., 2001), and copper metabolism

(VASSALLO et al., 2003). However, no critical function has been identified since PrP

knockout (Prnp-/-) animals do not show any developmental or behavioural deficits

(BÜELER et al., 1992; MANSON et al., 1994; LIPP et al., 1998), although later studies

revealed subtle physiological deficits (reviewed in SCHMITZ et al., 2014).

Following translation of PrPC, a 22 residue N-terminal signal peptide is removed,

leaving a nascent polypeptide with 231 amino acids. This is further processed to

include various post-translational modifications (PTMs): an intramolecular disulfide

bond formed by C179 and C214 (hamsters, TURK et al., 1988), two glycosylation

sites at N181 and N197 (human, WÜTHRICH et al., 2001), and lipidation of a

glycosylphosphatidylinositol (GPI) anchor at the C-terminus after the removal of

the signal sequence, yielding a 209 amino acid mature protein (STAHL et al., 1987).

PrPC includes an octapeptide repeat region (OR) at residues 51-89 (LOCHT et al.,

1986) and a hydrophobic region (HR) (PERETZ et al., 1997) (Figure 1.1).

Once properly folded, PrPC consists of a N-terminal intrinsically disordered

domain while the C-terminal domain contains three α-helices and a two-stranded

antiparallel β-sheet (Figure 1.2) (RIEK et al., 1996; BARAL et al., 2012). The two pos-

sible glycosylation sites also gives rise to un-, mono-, and diglycosylated glycoforms

of PrP.
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Figure 1.1: Features of the mammalian prion protein. The prion protein has
a N-terminal signal peptide (purple) that is cleaved from the nascent polypeptide.
It also contains an octapeptide repeat region (OR) (green) and a C-terminal GPI
anchor (blue). Within the protease resistant core (red), there is a hydrophobic region
(HR) (white), two cysteine residues (yellow) that form an intramolecular disulfide
bond, and two glycosylation sites (orange). For full list of abbreviations see List of
Abbreviations and Acronyms, page xvii.

Figure 1.2: Structure of the human cellular prion protein fragment 120-230.
The human cellular prion protein has three α-helices and a two-stranded antiparallel
β-sheet. Backbone coloring runs blue (N-terminal) to red (C-terminal). Figure was
visualized and generated using UCSF Chimera. PDB: 4DGI from BARAL et al.
(2012).
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1.2.2 The infectious prion protein

The infectious prion protein (PrPSc) is chemically identical to PrPC, but despite

this, the two molecules have very different properties. The misfolding of PrPC into

PrPSc results in a drastic change in the protein secondary structure, from α-helices

to almost exclusively β-sheets, ultimately affecting the entire biochemistry of the

protein (PAN et al., 1993). This conversion process is where the majority of PrPSc

comes from, and while the exact molecular mechanisms are unclear, it remains as

the fundamental basis for all prion diseases. Like all chemical isomerization events,

PrPSc requires PrPC as a substrate, and other cofactors have also been suggested to

be of importance, such as phosphatidylethanolamine (PE) (DELEAULT et al., 2012).

PrPSc can also spontaneously misfold for unknown reasons, or due to a mutation or

polymorphism (Section 1.3.1).

Differentiation of PrPC and PrPSc requires a treatment step (e.g. denaturation or

protease digestion) to remove PrPC, but there have been attempts to create PrPSc-

specific antibodies (Abs), as listed in table. Following digestion by a broad-spectrum

protease such as proteinase K (PK), PrPSc is reduced to a “protease resistant core”,

comprising residues ∼89-231 (Figure 1.1). This core is fairly stable and is able to

withstand high concentrations of denaturants such as chaotropes and detergents,

heat and pressure from standard autoclaving, and potentially incineration at <600°C

(BROWN et al., 2000).

Table 1.1: Purported PrPSc-specific mAbsab

Antibody Isotype Epitope Reference

15B3 IgM aggregated PrP; YYR motif KORTH et al., 1997
V5B2 IgG PrPSc C-terminal region ŠERBEC et al., 2004
IgG 89-112 grafted IgG not specified MORONCINI et al., 2004
P1:1 IgM aggregated human PrP residues 106-126 JONES et al., 2009
6H10 IgG mouse PrP residues 215-TQxxxxxSQAxxxxR-228 HORIUCHI et al., 2009
PRIOC1/2/3/4 IgM PrPSc oligomers TAYEBI et al., 2011
W261 IgG unknown PETSCH et al., 2011
aAbbreviations - see List of Abbreviations and Acronyms, page xvii
bNon-exhaustive list
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1.2.3 The structure of prions

While the structure of PrPC was briefly discussed (Section 1.2.1), there is some

debate about the structure of PrPSc. The presence of β-sheets is true for almost all

amyloids, and PrPSc is no exception, with some studies showing almost entirely β-

sheet content (SMIRNOVAS et al., 2011). Due to its tendency to aggregate and remain

insoluble, high-resolution structure of prions are only beginning to be resolved, all

showing a parallel‐in‐register intermolecular β‐sheet (PIRIBS) structure (KRAUS et

al., 2021; HALLINAN et al., 2022; HOYT et al., 2022; MANKA et al., 2022). It was also

previously suggested to contain a four-rung β-solenoid (4RβS) core (SUPATTAPONE

et al., 1999; WILLE et al., 2002; WILLE et al., 2009; VÁZQUEZ-FERNÁNDEZ et al.,

2016; SPAGNOLLI et al., 2019). While the results from these studies fit their respective

data, it is possible that multiple structures exists for different prion diseases, and

even for a single disease to give rise to prion strains (Section 1.3.2). The quaternary,

fibrillar structure of PrPSc is also unclear, with a recent study showing both one-

and two-protofilmament fibrils (KAMALI-JAMIL et al., 2021).

Figure 1.3: Structure of an infectious prion protein. Cryogenic electron mi-
croscopy (cryo-EM) structure of the infectious mammalian prion protein 263K,
featuring a PIRIBS structure resolved to 3.1 Å. Backbone colouring runs blue (N-
terminal) to red (C-terminal). Figure was visualized and generated using UCSF
Chimera. PDB: 7LNA from KRAUS et al. (2021).
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Figure 1.4: Hypothesized model of the infectious prion protein. Top down
and side view of a PrPSc model showing a 4RβS architecture. Backbone colouring
runs blue (N-terminal) to red (C-terminal). Figure was visualized and generated
using UCSF Chimera. PDB: S1 from SPAGNOLLI et al. (2019).

1.2.4 The prion principle

The exact molecular and biological mechanism that causes PrPC to misfold

to PrPSc is unclear. Two general properties or steps can be described for protein

misfolding diseases which are not prion specific. The first is the innate ability

of certain misfolded proteins to further induce misfolding of the same natively

structured protein - the prion principle (Figure 1.6). This conversion process can be

broadly summed up as either following a seeding model (COME et al., 1993; JARRETT

et al., 1993) or a templating (heterodimer) model (PRUSINER et al., 1990; COHEN

et al., 1994) and typically describes the interactions of monomeric protein species

(Figure 1.5). In the templating or heterodimer model, PrPC cannot be converted

to PrPSc due to an activation energy barrier and requires the catalysis of PrPSc. In

the seeding model, the two forms of PrP exist in equilibrium, with PrPSc slowly

forming infectious seeds that are self-replicating. Secondly, the misfolded protein

will have amyloidogenic properties to aggregate and form amyloids. This step is

mostly concerned with protein-protein interactions which affect protein quarternary

structures (Figure 1.6).

Misfolded proteins can thus have a dual, toxic gain of function phenotype, pos-
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sibly catalyzing prion conversion and having increased tendency to form amyloids.

Whether amyloids are a consequence or the cause of prion conversion is uncertain;

in the heterodimer conversion model, amyloids are not essential for replication while

the seeding model posits that amyloids get broken up into infectious seeds (Fig-

ure 1.5). The individual and collective importance of conversion and aggregation

along with their byproducts and how they can potentially complement each other to

cause neurodegeneration are unclear and are protein- and disease-specific. Variations

within these two broad steps can give rise to the concept of conformational strains

(Section 1.3.2).

Figure 1.5: Prion conversion models. Prion conversion is typically explained by
either the heterodimer (top) or seeding model (bottom). In the heterodimer model,
an energy barrier prevents the spontaneous formation of PrPSc from PrPC, with
exogenous PrPSc acting as a catalyst. In the seeding model, PrPC and PrPSc exist
in equilibrium, with PrPSc slowly forming a seed that then becomes an infectious
seed that can further replicate itself. Figure adapted from AGUZZI et al. (2001).
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Figure 1.6: Simplified view of prion and amyloid formation. PrPC is converted
to PrPSc, which then in turn aggregates to form amyloids. The conversion process
has traditionally been explained by a seeding or a templating model. The aggregation
process is more dynamic due to the various conformations that PrPSc can take on,
such as amorphous aggregates, oligomers, and protofilaments.

1.2.5 The mechanism of neurotoxicity

The exact molecular and biological mechanisms of prion-induced neurotoxic-

ity are also unclear. Part of the challenge is the heterogeneous nature of misfolded

proteins, being able to exist in various different conformations, such as amorphous ag-

gregates, detergent soluble oligomers, protofibrils, and amyloid fibrils. Each specific

structural state will have unique (possibly toxic) molecular interactions, disrupting

normal cellular functions by being directly harmful to cells/tissues/organs (gain of

function) and/or because the protein sequestered in the amyloid form is unable to

perform its required task (loss of function). The exact pathogenic mechanism will

likely vary accordingly depending on the exact misfolding mechanism, which varies

with disease. Increased concentration of an amyloidgenic protein, thermodynami-

cally destabilizing conditions, mutations/polymorphisms that destabilize the native

protein form, and failure of cellular protein quality control are just some conditions

which promote amyloid formation, contributing to toxicity. The only factor that is

perfectly certain is the obligatory role that PrPC plays in neurotoxicity due its a role

as a substrate for PrPSc formation, and increased PrPC levels directly contribute to

degeneration (WESTAWAY et al., 1994; BRANDNER et al., 1996).
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1.3 Spongiform encephalopathies

Prion diseases are rare, neurodegenerative disorders that fall under a family of

human and animal diseases known as transmissible spongiform encephalopathies

(TSEs). While the prion protein is highly conserved across species and is found in

all higher vertebrates (SCHMITT-ULMS et al., 2009), to date prion diseases have only

been reported in mammals (TORRES et al., 2016), and specific prion diseases are

discussed in the following subsections. These progressive disorders can be etiologically

divided into idiopathic, genetic, or acquired, and are associated with increased

levels of PrPSc that typically form amyloid plaques in the host CNS, leading to an

invariably fatal outcome. Initial symptoms such as alien limb phenomenon (ALP)

are inconsistently presented, non-specific, and shared with other neuropsychiatric

disorders (SEN et al., 2022). Typical neuronal features include neuronal loss, gliosis,

neuronal vacuolation (spongiform change), and amyloidosis, which in humans can

lead to symptoms like ataxia including stooped posture and shaky movenment,

dementia including memory loss and personality changes, and psychosis including

hallucinations and incoherent speech (PUOTI et al., 2012; KATSIKAKI et al., 2021).

1.3.1 The prion protein gene

PrP is encoded by the animal prion protein gene (Prnp) and the human prion

protein gene (PRNP), located on chromosome 2 and 20 in mice and humans, respec-

tively (SPARKES et al., 1986). The gene consists of 3 exons, but exon 3 contains the

entire open reading frame (ORF) (KRETZSCHMAR et al., 1986). Mutations within

the ORF, and thus Prnp/PRNP are a good predictor for developing familial prion

diseases. Polymorphisms of PRNP, especially at residue 129 located on β-sheet 1

for humans can modulate the susceptibility to prion diseases (PALMER et al., 1991).

While certain mutations and polymorphisms are associated with disease (reviewed

by MEAD et al. (2019)), it is unclear if they directly facilitate the conversion of PrPC
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to PrPSc or increase the propensity for amyloid formation, or a combination of both.

Since the prion protein gene directly affects a host’s PrP, it influences everything

from incubation period, infectivity and transmissibility, and biochemical properties

and characteristics. In the cases of infectious prion diseases, if the host PrPC and the

incoming PrPSc differ too greatly in sequence, among other things, the pre-clinical

phase can be dramatically extended or the disease never takes hold. This is known

as the species barrier and is exemplified when looking at intraspecies transmission

compared to interspecies transmission, with the latter being relatively inefficient

compared to the former (PATTISON, 1966), although specific species barrier phe-

nomenons are non-predictable.

1.3.2 Prion strains

Within biology, strains can be summarized as heritable genetic differences that

can result in altered phenotypes within a subgroup of a population. Prion strains can

be defined as distinct, propagable disease phenotypes that arise from a biochemically

unique prion agent under specific host and environmental conditions (BARTZ, 2016).

Like biological strains, prion strains are also subject to selection and adaptation,

sometimes as the result of substrate (i.e. PrPC) competition against other prion

strains (BARTZ et al., 2007). Biochemical properties to differentiate prion strains

include PrPSc glycoforms, the degree of PK resistance of PrPSc and its electrophoretic

mobility, and stability when exposed to denaturants. Protease resistant fragments

following PK digestion of PrPSc is a simple form of structural data and often used

to characterize prion strains, and is listed in Table 1.2. These properties can affect

clinical features such as incubation period, clinical symptoms, and histopathological

profile. It has been well demonstrated that strain differences are associated with

variations in PrPSc conformation (BESSEN et al., 1992a; COLLINGE et al., 1996;

TELLING et al., 1996; CAUGHEY et al., 1998; SAFAR et al., 1998; AUCOUTURIER

et al., 1999; WADSWORTH et al., 1999; BARTZ et al., 2000; PERETZ et al., 2001;
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Table 1.2: Protease resistant PrPSc fragments of prion diseases following PK digestion via immunoblottingab

Prion disease Approximate size of protease-resistant fragments (kDa) Section within thesis References

classical scrapie 19-21 1.3.4.1 SOMERVILLE et al., 1990; HOPE et al., 1999; HAYASHI et al., 2005
atypical scrapie 11, 18, 23 1.3.4.1 ARSAC et al., 2007; BENESTAD et al., 2008
HY TME 21, 25 1.3.4.2 BESSEN et al., 1992a
DY TME 20, 24 1.3.4.2 BESSEN et al., 1992a
C-BSE 19 1.3.4.3 COLLINGE et al., 1996
L-BSE <19 1.3.4.3 CASALONE et al., 2004
H-BSE >19 1.3.4.3 BIACABE et al., 2004
CWD 22 1.3.4.4 RACE et al., 2002; WILLIAMS, 2005
kuru 19 1.3.5.1 PARCHI et al., 1997; WADSWORTH et al., 2008
sCJD 19 or 21 1.3.5.2 PARCHI et al., 1997; PARCHI, GIESE, et al., 1999
fCJD 19 (rare) and/or 21 (common) 1.3.5.3 MONARI et al., 1994; PARCHI et al., 2000; HILL et al., 2006
vCJD 19 (common) or 21 (rare) 1.3.5.4 PARCHI et al., 1997; HEAD et al., 2004; YULL et al., 2006
iCJD 19 or 21 1.3.5.5 PARCHI et al., 1997; HEATH et al., 2006
FFI 19 1.3.5.6 GAMBETTI et al., 1995; GAMBETTI et al., 2003; HAÏK et al., 2004
sFI 19 1.3.5.6 GAMBETTI et al., 1995; PARCHI et al., 1997
GSS 7-8 and/or 21 1.3.5.7 PICCARDO et al., 1996; PARCHI et al., 1998; PICCARDO et al., 1998
VPSPr 7, 17, 20, 23, 26 1.3.5.8 GAMBETTI et al., 2008; ZOU et al., 2010
aAbbreviations - see List of Abbreviations and Acronyms, page xvii
bNon-exhaustive list - does not include all possible fragment sizes
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JONES et al., 2005; DUQUE VELÁSQUEZ et al., 2015; HANNAOUI et al., 2021).

1.3.3 Prion animal hosts

The use of animal models and hosts are not unique to prion research, and in

vivo models are considered the gold standard for many areas of life sciences research.

While reductionism techniques (i.e. in vitro) can provide useful and basic information

that is easily reproducible and disseminated, they cannot recapitulate the complexity

and subtle interactions an organism has as a whole. This includes the various roles

that neurons, astrocytes, microglia, oligodendrocytes, ependymal cells play and

how the peripheral replication of prions affect this. Animal panels and hosts are

especially important in prion research due to their ability to verify important prion

features such as disease relevance, strain differentiation, and transmissibility and

infectivity. Prion diseases can be studied in animal models to greatly enhance our

understanding of a particular disease phenotype despite a lack of detailed molecular

information. This is especially important, since high-resolution structures of prions

are only beginning to be resolved, while previously described molecular mechanisms

of prion conversion (Section 1.2.4) and neurotoxicity (Section 1.2.5) are still very

much lacking.

1.3.4 Animal prion diseases

1.3.4.1 Scrapie

While only being reliably described in the 18th century (LEOPOLDT, 1750),

scrapie, the prototypical prion disease, has likely been known since ancient times

(MCALISTER, 2005). The name refers to the tendency of infected sheeps and goats

to “scrape” off their coat on objects. There are 3 key polymorphisms that affect

the risk of scrapie in sheep: codons 136 (A or V), 154 (H or R), and 171 (H or

Q or R). Haplotypes like ARR confer resistance while ARQ or VRQ are linked to
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susceptibility for disease (GOLDMANN et al., 1994; BELT et al., 1995; HUNTER et al.,

1996). Scrapie strains can be differentiated by either classical or atypical (Nor98);

protease digestion of PrP with PK yields 19-21 and 11, 18 and 23 kilodalton (kDa)

PrPSc fragments for classical (SOMERVILLE et al., 1990; HOPE et al., 1999; HAYASHI

et al., 2005) and atypical scrapie (BENESTAD et al., 2003; ARSAC et al., 2007; BENES-

TAD et al., 2008; GREENLEE, 2018), respectively. To date, there is no evidence that

scrapie is zoonotic, although continual passage of scrapie in humanized transgenic

(Tg) mice can eventually result in prion disease (CASSARD et al., 2014).

1.3.4.2 Transmissible mink encephalopathy

Transmissible mink encephalopathy (TME) was first observed in the 1940s in

the United States, but was only formally reported and characterized in the 1960s

(HARTSOUGH et al., 1965; MARSH & HANSON, 1969), with the last documented

outbreak in 1985 (MARSH et al., 1991). It was passaged into a variety of hosts,

among them hamsters (MARSH, BURGER, et al., 1969), and subsequently two distinct

disease phenotypes arose, known as the hyper strain of TME (HY) and the drowsy

strain of TME (DY) (BESSEN et al., 1992a; BESSEN et al., 1992b). HY and DY are

well studied prion strains and, despite sharing identical primary protein sequence,

they are easily distinguishable from each other via other biochemical properties, such

as yielding different PK-resistant fragments, with 21 and 25 kDa for HY, and 20

and 24 kDa fragments for DY (BESSEN et al., 1992a). The isolation of two different

prion strains from a single source possibly suggests a cloud or quasispecies origin

(COLLINGE et al., 2007). Cattle-adapted TME is transmissible to macaques, showing

a possible zoonosis risk (COMOY et al., 2013).

1.3.4.3 Bovine spongiform encephalopathy

Bovine spongiform encephalopathy (BSE) or “mad cow disease” was first discov-

ered in the United Kingdom in the 1980s (WELLS et al., 1987) and was attributed

15



to feeding cattle meat-and-bone meal (MBM) (WILESMITH et al., 1991), a practice

that is now banned. This ban dramatically decreased the occurrence of BSE, falling

below surveillance levels in the European Union (CASALONE et al., 2018). BSE can

be distinguished as classical in the form of classical BSE (C-BSE) or atypical in

the form of L-type BSE (L-BSE) (CASALONE et al., 2004) or H-type BSE (H-BSE)

(BIACABE et al., 2004). The H and L refer to “high” and “low” molecular weight, cor-

responding to PK-resistant fragments that are >19 or <19 kDa, respectively, since

C-BSE contains a 19 kDa fragment (COLLINGE et al., 1996). A E211K mutation

of bovine Prnp increases the risk of disease, although this was confined to a single

cattle (RICHT et al., 2008) and its offspring (NICHOLSON et al., 2008). Two insertion-

deletion (in-del) polymorphisms of 12 base pairs (bps) at intron 1 and 23 bps at

the putative promoter are associated with diseased and healthy cattle, respectively

(SANDER et al., 2004). BSE is also known to cause feline spongiform encephalopathy

(FSE) and exotic ungulate encephalopathy (EUE) in their respective hosts when

they consume tainted food, but is manageable with proper specified risk material

(SRM) procedures. Out of all the animal prion diseases, BSE is the only one that is

confirmed to be zoonotic, causing variant CJD (vCJD) in humans (Section 1.3.5.4).

1.3.4.4 Chronic wasting disease

Chronic wasting disease (CWD) is a TSE that affects the family of cervids,

including deer (WILLIAMS et al., 1980), elk (WILLIAMS et al., 1982), moose (BAETEN

et al., 2007), and reindeer (BENESTAD et al., 2016). While CWD was originally found

in northern Colorado in the late 1960s (WILLIAMS, 2005), it has since spread to many

parts of North America, South Korea (HALEY et al., 2015), Norway (STOKSTAD,

2017), Finland (EFSA, 2019), and recently Sweden (ÅGREN et al., 2021). Common

deer Prnp polymorphisms that affect the risk of CWD include codons at positions

95 (Q or H), 96 (G or S), 116 (A or G), and 226 (Q or K) (RAYMOND et al., 2000;

HEATON et al., 2003; JOHNSON et al., 2003; JOHNSON et al., 2006; OTERO et al.,
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2021). The most frequent haplotype is QGAQ and does not confer CWD resistance,

while H95 and S96 are associated with partial protection (ROURKE et al., 2004;

KEANE et al., 2008; KELLY et al., 2008; JOHNSON et al., 2011; OTERO et al., 2021).

PK digestion of CWD prions yield a 22 kDa fragment (RACE et al., 2002; WILLIAMS,

2005). Current evidence suggests CWD is not zoonotic and there is a significant

species barrier (RACE et al., 2018).

1.3.5 Human prion diseases

1.3.5.1 Kuru

Kuru is a human prion disease resulting from ritualistic, funerary endocannibal-

ism among the Fore tribe in Papua New Guinea (GAJDUSEK et al., 1957). The word

kuru means “to shake”, due to the involuntary tremors associated with the disease.

Since the cessation of endocannibalism or “transumption” in the 1950s (ALPERS,

2008), the disease has been eradicated, with 1 or 2 cases reported per year from 1996

to 2004 (COLLINGE et al., 2006), and the last known case in March 2005 (PAKO,

2008). Kuru was shown to be transmissible after successful inoculation of kuru prions

into chimpanzees (GAJDUSEK et al., 1966; GAJDUSEK et al., 1967). Kuru typically

contains a 19 kDa fragment after PK digestion (PARCHI et al., 1997; WADSWORTH

et al., 2008). A PRNP G127V genetic variant protects against developing disease and

was found exclusively in regions where kuru was present (MEAD et al., 2009), and

remarkably prevents kuru transmission with 100% efficiency in Tg mice expressing

human G127V PrP (ASANTE et al., 2015).

1.3.5.2 Sporadic Creutzfeldt-Jakob disease

The first cases of Creutzfeldt–Jakob disease (CJD) were reported in the early

1920s by Creutzfeldt and Jakob (CREUTZFELDT, 1920; JAKOB, 1921), although not

all of their described cases would fulfil the current diagnostic criteria of a human
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prion disease. It was recognized that Creutzfeldt and Jakob were describing a sim-

ilar disease (SPIELMEYER, 1922a), and hence the name CJD was introduced by

SPIELMEYER (1922b), and further reinforced by GIBBS et al. (1968), who demon-

strated that CJD is an infectious disorder transmissible to chimpanzees. The most

common form of CJD is sporadic CJD (sCJD) and accounts for ∼84% of all CJD

cases, but CJD is still a very rare disease, with an occurrence rate of 1-1.5 cases per 1

million people per year (LADOGANA et al., 2005), although this can be influenced by

data acquisition methods and varies between nations (UTTLEY et al., 2020). There

are many subtypes of sCJD due to the polymorphisms of PRNP codon 129, with

MM1 and MV1 consisting of ∼57% of all sCJD cases (GAMBETTI et al., 2003). sCJD

commonly consists of either type 1 or type 2 protease-resistant fragments of 21 or 19

kDa in size, respectively, with type 2 being further distinguished as either type 2a

or 2b, depending on specific glycoform ratios (PARCHI et al., 1997). sCJD has been

classified into 6 subtypes (PARCHI, GIESE, et al., 1999), with proposals for revision

into 12 or more subtypes for better identification of cases (PARCHI et al., 2009).

Despite being an idiopathic disorder, codon 129 plays a significant, determinant

role for susceptibility towards sCJD and the clinicopathological phenotype of the

disease.

1.3.5.3 Familial Creutzfeldt-Jakob disease

Familial CJD (fCJD) describes a group of prion disease associated with PRNP

mutations that are inherited in an autosomal dominant fashion and account for

∼15% of all CJD cases globally (MASTERS et al., 1979). The identity of both the

PRNP mutation and the codon 129 polymorphism on the mutant allele exert an

influence on the disease phenotype. The most common mutation is E200K and

accounts for ∼38% of fCJD cases (KOVÁCS et al., 2005). Another common mutation

is D178N, and in combination with polymorphism 129V, results in fCJD, while

129M results in fatal familial insomnia (FFI) (Section 1.3.5.6). Digestion of fCJD
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prions with PK typically yields a 21 kDa fragment, but co-occurrence with a 19

kDa fragment is also possible (HAÏK et al., 2004; KOVACS et al., 2011). Remarkably,

a case of fCJD was shown to be transmissible when brain tissue from a 35 year

old male was directly inoculated to chimpanzees, showing for the first time that a

disease could be both infectious and inherited (ROODS et al., 1973).

1.3.5.4 Variant Creutzfeldt-Jakob disease

Variant CJD (vCJD) represents a human prion infection likely resulting from the

consumption of BSE tainted beef, being first detected in 1996 (WILL et al., 1996).

vCJD accounts for less than 1% of all CJD cases, with the majority being found

in the United Kingdom. Less than a dozen cases have been reported in 10 other

countries, with most patients having resided in the United Kingdom during the

1980s. With the exception of one individual, the genotype of all United Kingdom

vCJD patients at PRNP codon 129 were MM, indicating a significant genetic risk

factor (ZEIDLER et al., 1997). Brain-derived PrP of vCJD cases typically contains a

protease-resistant fragment of 19 kDa (PARCHI et al., 1997; HEAD et al., 2004), but it

has also been reported to contain a 21 kDa fragment (YULL et al., 2006). Due to the

peripheral pathogenesis in vCJD, there is evidence showing secondary transmission

of the disease from person-to-person through blood transfusions (LLEWELYN et al.,

2004; PEDEN et al., 2004; WROE et al., 2006; PEDEN et al., 2010).

1.3.5.5 Iatrogenic Creutzfeldt-Jakob disease

Inadequate decontamination and subsequent transmission of CJD prions from one

patient to another via instruments or tissues during a medical or surgical procedure

can result in iatrogenic CJD (iCJD). iCJD accounts for less than 1% of all CJD

cases, with most cases resulting from harvesting and reusing of human products from

cadavers for patients. One of the common ways of developing iCJD was from human

growth hormone (hGH) treatment, likely because the hormone was sourced from
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the pituitary gland of CJD-infected cadavers (GIBBS et al., 1993). The introduction

of recombinant hGH has alleviated transmission of iCJD from this route. Human

dura mater grafts were another way of CJD transmission, predominantly due to the

use of Lyodura (now discountinued), with the material also sourced post-mortem.

Together, these two procedures account for ∼95% of all iCJD transmission cases

(BROWN et al., 2012). iCJD can yield both 19 or 21 kDa protease resistant fragments

following PK digestion (PARCHI et al., 1997; HEATH et al., 2006).

1.3.5.6 Fatal familial and sporadic insomnia

Fatal insomnias are prion diseases associated with thalamic atrophy and charac-

terized by pertubances in a person’s sleep-wake cycle, leading to hallucinations and

eventual death. The disease can be familial, in the form of fatal familial insomnia

(FFI), and was formally reported by LUGARESI et al. (1986). It can also be sporadic,

in the form of sporadic fatal insomnia (sFI) and was firmly established by PARCHI,

CAPELLARI, CHIN, et al. (1999). FFI is a unique disease phenotype, in that it re-

quires both a D178N PRNP mutation and a 129M polymorphism on the mutated

allele. An 129V polymorphism results in fCJD (Section 1.3.5.3). sFI results from a

rare MM2 genotype, and has also been classified as a sCJD subtype. PK digestion

of both FFI and sFI PrP yields a 19 kDa protease-resistant fragment (GAMBETTI

et al., 1995; PARCHI et al., 1997; GAMBETTI et al., 2003; HAÏK et al., 2004). FFI

was transmissible into mice using thalamus-derived inocula from a 42 year old male

(TATEISHI et al., 1995).

1.3.5.7 Gerstmann-Sträussler-Scheinker disease

Gerstmann-Sträussler-Scheinker disease (GSS) is an inherited prion disease asso-

ciated with PRNP mutations that result in small, amyloidogenic PrP degradation

products. The most common mutation is P102L (HSIAO et al., 1989; KRETZSCHMAR

et al., 1991), with both 129M and 129V polymorphisms resulting in disease. The
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first accurate GSS account was made by GERSTMANN (1928) describing a patient

from the “H” family in Vienna, since the disorder affected several subjects from

multiple generations. Autopsies were eventually performed on several members of

this family by Gerstmann, along with Sträussler and Scheinker, and the pathology

of their diseased brains were described in what is now known as GSS (GERSTMANN

et al., 1935). MASTERS et al. (1981) re-examined several familial syndromes with

similar clinicpathological data to GSS and performed follow up transmission experi-

ments into animals. It revealed that, while amyloid plaques were a constant feature,

spongiform change was not always present, and that GSS is transmissible. GSS

typically contains a 7-8 kDa protease-resistant fragment, but it can also contain a

21 kDa fragment (PICCARDO et al., 1996; PARCHI et al., 1998; PICCARDO et al.,

1998).

1.3.5.8 Variably protease-sensitive prionopathy

One of the hallmark features of PrPSc in most prion diseases is partial resistance

to protease digestion, specifically to PK. As the name suggests, variably protease-

sensitive prionopathy (VPSPr) contains PrPSc that is markedly less resistant to

proteolysis. It was first reported as protease-sensitive prionopathy (PSPr), on the

basis of 11 patients all containing PRNP codon 129 as VV from the National Prion

Disease Pathology Surveillance Centre in the United States (GAMBETTI et al., 2008).

The name was revised to VPSPr after additional investigation revealed individuals

containing both MV and MM genotypes can also develop the disease (ZOU et al.,

2010). Due to the limited number of cases, it is currently unclear if VPSPr is a

second, separate sporadic prion disease (after sCJD), a distinct sCJD subtype, or

a sporadic form of GSS (GAMBETTI et al., 2008; ZOU et al., 2010). Due to the

protease sensitivity of VPSPr, protease-resistant fragments needed to be enriched

and required recognition by an alternate Ab (typically 3F4), and yielded fragments

of 7, 17, 20, 23, and 26 kDa (GAMBETTI et al., 2008; ZOU et al., 2010). VPSPr

21



was inefficiently transmitted into Tg mice expressing human PrP, with only half

the animals developing histopathology, and failed to cause disease on subsequent

passages (DIACK et al., 2014; NOTARI et al., 2014). However, using I109 bank voles

the disease could be serially transmitted with 100% efficiency, showing that VPSPr

is an infectious prion disorder (NONNO et al., 2019).

1.4 Preventing prion diseases

As previously stated, there is a lack of a clear understanding of prion conversion

and the associated neurotoxicity (Section 1.2.5), making it difficult to treat prion dis-

eases. For the majority of prion diseases, early symptoms such as general behavioural

changes are rarely recognized and only attributed to the disease in retrospect, typi-

cally following a confirmed diagnosis. For familial prion diseases, careful monitoring

of symptoms can aid in early diagnosis and be informative of the disease progression.

The symptomatic phase of prion diseases are relatively short (few months to a year),

and at that point the host is already debilitated, and has spongiform change and

neuronal death in their CNS. Targeting any part of the prion misfolding cascade at

symptomatic stages is mostly futile, since much of the damage within the brain is

done and irreversible. The only truly therapeutic treatment would be a combination

of toxin (i.e. PrPSc and/or amyloids) degradation/clearance and neuroregeneration,

although the CNS is for the most part incapable of self-repair. For this reason, most,

if not all, prion “treatments” are really prophylactic, working best (if at all) when

applied early in disease progression or prior to infection.

1.4.1 General strategies

Currently, no treatment beyond palliative care or preventative medicines exists

for any prion disease. While specific molecular mechanisms of prion conversion are

not known, the basic principle of prion misfolding is abundantly clear. Focusing
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solely on this simplified view, preventative strategies can be broadly grouped as

one of three categories: conversion inhibition, substrate reduction, and degrada-

tion/clearance (Figure 1.7). Two biological pathways to degrade PrPSc include the

lysosomal degradation/autophagy pathway and the ubiquitin-proteasome system

(UPS) (Figure 1.8). One issue that is not unique to prion treatment development

is that in vivo models (e.g. rodents) are fundamentally an imperfect model, i.e.,

strategies that may work on rodents cannot always be translated into therapies

beyond experimental conditions due to inherent and subtle differences across species

and proteins.

Figure 1.7: General strategies for preventing prion diseases. The fundamental
principle of prion diseases involve the generation of PrPSc from PrPC via misfold-
ing for various reasons. Most strategies can be categorized as substrate reduction,
conversion inhibition, or degradation/clearance.
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Figure 1.8: Biological clearance pathways of PrPSc. Two main protein clear-
ance pathways are involved with PrPSc degradation, the lysosomal degradation/au-
tophagy pathway (green arrows) and the UPS (pink arrows). Cytosolic PrPSc is
initially engulfed by a an isolation membrane (phagophore) to eventually form an
autophagosome, which then fuses with lysosomes to form an autolysosome to enable
protein degradation. In the UPS pathway, PrPSc is covalently conjugated with ubiq-
uitin, marking it for degradation via the proteasome. Figure adapted from GOOLD
et al., 2015.
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1.4.2 Small molecules

The use of small molecules to treat prion diseases has been tried in both humans

and animals, with varying success. These compounds can be applied to target all

three strategies (Section 1.4.1), with most focusing on preventing prion conversion.

Most small molecules suffer from low tolerance and poor pharmacokinetics, result-

ing in low to no efficacy when tested in vivo. Their specificity is also difficult to

characterize, since certain small molecules are not prion specific, but rather bind to

amyloids in general.

A brief summary of in vivo small molecule prion treatments is provided in

Table 1.3. Many small molecules showed very little beneficial effect when tested in

vivo, such as amantadine (TERZANO et al., 1983), doxycycline (HAÏK et al., 2014),

and quinacrine on multiple occasions (COLLINGE et al., 2009; GHAEMMAGHAMI et al.,

2009; GESCHWIND et al., 2013). Other small molecules had shown success in ex vivo

experiments, but their in vivo results were often quite disappointing, such as congo

red (INGROSSO et al., 1995; POLI et al., 2004). Moreover, successful ex vivo results

(e.g. prolongation of incubation period) failed to be translated when tried in human

patients, as is the case for pentosan polysulfates (DOH-URA et al., 2004; HONDA

et al., 2012). 2-aminothiazoles were shown to be beneficial for mouse prion strains,

but failed to prolong the lives of Tg mice expressing chimeric human/mouse PrP

inoculated with CJD prions (GILES et al., 2015). Compounds with offsite targets,

such as rapamycin (CORTES et al., 2012) and astemizole (KARAPETYAN et al.,

2013), targeting degradation/clearance pathways showed some success, but again

under controlled parameters. A protein kinase RNA-like endoplasmic reticulum

kinase (PERK) inhibitor targeting the unfolded protein response (UPR) showed

great success in a RML mouse model, but translation into human therapies still

has many challenges, and such a strategy could also likely be applied to other

neurodegenerative disorders (MORENO et al., 2013).
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Table 1.3: Brief summary of small molecule prion treatments and outcomesab

Year Authors Host Prion Inoculation route Compound Delivery route Outcome

1983 TERZANO et al. human patients CJD N/A amantadine oral no survival difference
1987 POCCHIARI et al. Golden SHas 263K IC or IP amphotericin B IP prophylactically increased incubation period
1995 INGROSSO et al. Golden SHas 263K, 139H IP and/or IC congo red IP slightly prolonged incubation period
2000 ADJOU et al. Golden SHas 263K IC amphotericin B derivative IP delayed neuropathology
2004 DOH-URA et al. various mice 263K, RML, Fukuoka-1 IC pentosan polysulfates ICV prolongation of incubation period
2004 OTTO et al. human patients sCJD, fCJD N/A flupirtine oral less deterioration in dementia, no survival difference
2004 POLI et al. Golden SHas 263K IC or IP congo red and derivatives SC or IC slightly prolonged survival time
2004 SOLASSOL et al. C57BL/6 mice scrapie IP dendrimers IP reduction of infectivity in mice spleens
2006 KOCISKO DAVID et al. Tg7 mice 263K IP porphyrins IP significantly increased survival times
2009 COLLINGE et al. human patients all CJDs N/A quinacrine oral no beneficial effect
2009 GHAEMMAGHAMI et al. various mice RML IC quinacrine oral liquid no beneficial effect
2012 CORTES et al. TgA116V mice GSS N/A rapamycin IP delays disease onset
2012 HONDA et al. human patients iCJD, sCJD, GSS N/A pentosan polysulfates ICV no apparent clinicopathological improvements
2013 GESCHWIND et al. human patients sCJD N/A quinacrine oral no beneficial effect
2013 KARAPETYAN et al. C57BL/6 mice RML IC astemizole IP slight increase in survival time
2013 MORENO et al. Tg37 mice RML IC PERK inhibitor oral liquid abrogated development of clinical prion disease
2014 HAÏK et al. human patients all CJDs N/A doxycycline oral no significant difference in survival time or neuropathy
2015 GILES et al. various mice RML, ME7, 22L IC 2-aminothiazoles oral liquid no effect in Tg chimeric human mice
2015 HERRMANN, SCHÜTZ, et al. various mice RML6 or 263K IC polythiophenes ICV increased survival time for prophylactic treatment
aAbbreviations - see List of Abbreviations and Acronyms, page xvii
bNon-exhaustive list; only includes in vivo studies; excludes ex vivo studies
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1.4.3 Oligonucleotides

Oligonucleotides are short oligomers composed of either ribonucleic acid (RNA)

or deoxyribonucleic acid (DNA). The use of oligonucleotides for prion disease typ-

ically involves lowering the levels of PrPC at the level of the gene. The level of

reduction can be complete (knock-out) or partial (knock-down). Using clustered

regularly interspaced short palindromic repeats (CRISPR) gene editing to replace a

susceptible genotype to a resistant one is another viable approach with minimal (if

any) prion disease side effects, but the side effects of CRISPR technology is currently

unclear.

Not only do Prnp-/- mice show no major developmental or behavioural deficits

(BÜELER et al., 1992), they are also resistant to prion disease (BÜELER et al., 1993).

Cattle that are lacking PrPC remain healthy at 20 months of age, and their brain

tissue homogenates are resistant to prion propagation in vitro (RICHT et al., 2007).

Goats that are naturally devoid of PrPC remain healthy and are also resistant to

scrapie, showing that PrP ablation can be a viable strategy (SALVESEN et al., 2020).

Modulation of PrPC levels can be achieved via the RNA interference (RNAi)

pathway, commonly using small interfering RNAs (siRNAs). These small oligomers

directly degrade the target messenger RNA (mRNA) (e.g. PRNP or Prnp mRNA)

after transcription to prevent translation. The in vivo efficacy of siRNA is signifi-

cantly affected by its ability to cross the blood-brain barrier (BBB) and thus are

relatively ineffective or require impractical delivery systems (LEHMANN et al., 2014;

BENDER et al., 2019).

Antisense oligonucleotides (ASOs) can also be used to modify gene expression

levels, and have been tested in various other neurodegenerative diseases. They have

shown great efficacy as a prophylactic treatment, prolonging prion disease in mice

(NAZOR FRIBERG et al., 2012). A single intracerebroventricular (ICV) injection of

ASOs given 120 days after intracerebral (IC) prion infection in wild type (WT) mice
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significantly prolonged survival times (RAYMOND et al., 2019), and was also effective

against 4 more prion strains (MINIKEL et al., 2020). Like siRNAs, ASOs need a more

direct delivery route (e.g. ICV), and are prone to poor pharmacokinetics. However,

substrate reduction appears to be a way of delaying prion disease progression without

the potential deleterious effects that could arise from gene knock-out.

CRISPR is a gene editing technique that directly alters the sequence of your

target gene (DOUDNA et al., 2014). It is known that the properties of prion strains are

affected by the sequence of the prion protein gene, with some genotypes being more

resistant to developing disease (Section 1.3.1). Using CRISPR to modify prion gene

codons to decrease disease susceptibility can alleviate some of the issues pertaining

to knock-out or knock-down strategies. Due to the direct editing of genes involved,

ethical considerations need to be examined before CRISPR can be used as a potential

treatment outside experimental environments.

1.4.4 Passive immunotherapy

Passive immunotherapy involves the targeted use of Abs directed against a

pathogen, and does not require an active response from the immune system. Prion

immunotherapy involves the use of anti-prion Abs, and due to a lack of bona fide

PrPSc-specific Abs (BIASINI et al., 2008), they typically target PrPC to inhibit prion

conversion. This was first successfully demonstrated as a proof-of-concept in cells

(GABIZON et al., 1988). Abs required for immunotherapy are primarily hybridoma-

generated from mice, complicating their usage directly in other species due to the

generation of anti-mouse Abs, significantly neutralizing their effects. Thus, passive

immunotherapy often involves Ab engineering, the process of modifying the Ab

so that it is tolerated in the target host via humanization or chimerization, or a

combination of both.

A brief summary of in vivo trials utilizing Abs directed against PrP is provided

in (Table 1.4). Peripheral immunization with a variety of anti-prion Abs delayed
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Table 1.4: Brief summary of passive immunotherapy trials against prion disease and outcomesab

Year Authors Host Prion Inoculation route Antibody Delivery route Outcome

2003 WHITE et al. FVB/N mice RML IP ICSM 18/35 IP extended survival in mice treated with ICSM 18
2003 SIGURDSSON et al. CD-1 mice 139A IP 8B4/8H4/8F9 IP significant disease delay
2007 LEFEBVRE-ROQUE et al. Tg20 mice BSE IP 4H11 ICV no prolonged survival, behavioural deficits and neuronal loss
2008 SONG et al. ICR mice Obihiro or Chandler ICV 31C6 ICV extended survival when administered shortly after prion inoculation
2012 MODA et al. mice RML IP scFvD18 stereotaxic AAV9 disease delay in animals inoculated with AAV9
2013 OHSAWA et al. ICR mice Chandler IC 31C6 IV extended survival
aAbbreviations - see List of Abbreviations and Acronyms, page xvii
bNon-exhaustive list; only includes in vivo studies; excludes ex vivo studies
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disease onset of prion infection (SIGURDSSON et al., 2003; OHSAWA et al., 2013). One

of these Abs, 31C6, was protective in ICR mice IC-infected with Chandler strain

when delivered as late as onset of clinical signs via ICV (SONG et al., 2008). IC

inoculation of a single-chain variable fragment (scFv) Ab engineered into a viral

vector delayed the onset of disease in mice infected with RML prions (MODA et al.,

2012). However, some Abs exhibited dose-dependent neurotoxicity and thus are

not suitable for clinical trials, such as ICSM18 (REIMANN et al., 2016) and POM1

(HERRMANN, SONATI, et al., 2015), both of which have similar epitopes.

1.4.5 Active immunotherapy

Active immunotherapy works by inducing a specific immune response towards a

pathogen or stimulating a host’s immune system against a disease. Vaccines are a

common way to achieve this and typically contain an agent that resembles part of

the pathogen. Vaccination often contains an adjuvant, which enhances the vaccine’s

potency, prolongs the immune response, and reduces the dosage required, although

some adjuvants are quite toxic and not suitable for actual patient use. Successful

vaccination response is heavily dependent on a host’s immune system and, in the

case of prion diseases, many are focused on PrPSc clearance. Due to the tolerance of

self-antigens by the immune system, however, the immune response generated from

prion vaccines often have low affinity, making many of them ineffective. While active

immunotherapy can be used therapeutically, as is often done in cancer treatment,

prion vaccines are almost always designed to be used prophylactically.

A brief summary of previous prion vaccination trials showed varying degrees of

success, as listed in Table 1.5. GOÑI et al. (2005), using an attenuated bacterium and

PrP fusion product, demonstrated increased survival time via mucosal vaccination in

mice (GOÑI et al., 2008) and white-tailed deer (WTD) (GOÑI et al., 2015), relying

mainly on high immunoglobulin A (IgA) production from the host. Vaccination

was less successful in animals with lower IgA immune response and had markedly

30



Table 1.5: Brief summary of prion vaccination trials and outcomesab

Year Authors Host Prion Inoculation route Vaccine type Delivery route Adjuvant Outcome

2002 SETHI et al. mice RML IP adjuvant only IP CpG-1826 38% longer survival time
2002 SIGURDSSON et al. CD-1 mice 139A IP recPrP SC FAs delayed onset
2003 WHITE et al. FVB/N mice RML IC or IP mAbs IP none significant survival prolongation (>500 d)
2003 SCHWARZ et al. NMRI mice 139A oral SynPep + recPrP IP IMS-1313 slight increase in survival time
2004 POLLERA et al. Golden SHas 263K IC or IP SynPep not specified KLH early death of IC infected immunized hamsters
2004 POLYMENIDOU et al. C57BL/6 mice RML IP recPrP SC FAs insignificant delay of prion pathogenesis
2005 GOÑI et al. CD-1 mice 139A oral attenuated bacteria oral alum survival prolongation (>500 d) in 30% of mice
2005 MAGRI et al. Golden SHas 263K IP SynPep IM, SC + ID FAs slight increase in survival time
2005 MÜLLER et al. TgBov mice BSE oral DNA SC + IM none prolonged incubation period
2006 BADE et al. BALB/c mice 139A oral recPrP IN cholera toxin very slight increase in survival time
2006 FERNANDEZ-BORGES et al. 129/ola mice BSE IC DNA IM none delay in onset of prion disease
2007 ISHIBASHI et al. BALB/c mice Fukuoka-1 IP recPrP IP FAs increased survival time
2007 NITSCHKE et al. C57BL/6 mice RML IP DNA + recPrP ID + SC CpG-1668 no difference in survival time
2007 PILON et al. C57BL/6 mice RML IP SynPep IM AdjuVac slight increase in survival time
2008 GOÑI et al. CD-1 mice 139A oral attenuated bacteria oral alum high IgG+IgA mice had 100% survival (>400 d)
2008 SACQUIN et al. C57BL/6 mice 139A IP SynPep SC CpG-1826 + FAs very slight increase in survival time
2010 BACHY et al. C57BL/6 mice 139A IP SynPep + DC IP none slight increase in disease duration
2011 ISHIBASHI et al. BALB/c mice Fukuoka-1 IP recPro IP FAs increased survival time
2013 XANTHOPOULOS et al. C57BL/6 mice RML IP aggregated recPrP SC FAs elongation of survival interval
2013 PILON et al. mule deer CWD Natural SynPep IM AdjuVac no significant differences in infection rates
2015 GOÑI et al. WTD CWD oral attenuated bacteria oral alum significant increase in survival time
2018 ABDELAZIZ et al. TgElk mice CWD IP recPrP mers SC CpG-b very slight increase in survival time
2018 WOOD et al. elk CWD oral DSE fusion IM Emulsigen-D accelerated onset of CWD
2021 EIDEN et al. C57BL/6 mice RML IP VLPs SC none prolonged incubation time
aAbbreviations - see List of Abbreviations and Acronyms, page xvii
bNon-exhaustive list; studies which only included immunization but no subsequent infection of hosts are excluded
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reduced Ab titers for disease protection. PILON et al. (2007) showed that synthetic

peptides spanning PrP residues 145-164 and 168-182 immunized in C57BL/6 mice

infected with RML resulted in slightly increased survival times being observed.

When essentially the same tactic was tried in mule deer with CWD prions however,

infection rates were not significantly different between control and experimental

groups (PILON et al., 2013). NITSCHKE et al. (2007) showed that WT mice were not

protected against infection when immunized with a DNA fusion vaccine. Lastly, when

WOOD et al. (2018) attempted immunization with a disease-specific epitope (DSE)

fusion product in elk, accelerated onset of CWD was observed. A possible explanation

for this observation is the phenomenon of antibody-dependent enhancement (ADE),

where the immune response is not only suboptimal and unable to fully neutralize

the pathogen, but actually beneficial, hastening the disease progression.

1.5 Fungal prions

Similar to mammalian prions that can cause disease in mammals, fungal pri-

ons can also spread from one fungal host to another (WICKNER, 1994), but they

are non-infectious and unrelated to mammalian prions. Fungal prions are also self-

propagating, with the ability to induce misfolding of the same natively folded protein.

A given fungal prion protein sequence can give rise to multiple strains or variants,

altering the phenotype they confer in their hosts. Nomenclature-wise they are sur-

rounded by square brackets to denote their prion phenotype (e.g. [PSI+]), and

sometimes with an alternate name, usually for historical reasons (analogous to

PrPSc being the prion form of PrPC).

Fungal prion strains vary by the stability of their prion propagation (MASISON

et al., 1997), sensitivity to other cellular components (BRADLEY et al., 2002), ability

to infect cells with different prion protein sequence (the species barrier) (SANTOSO

et al., 2000), and the toxicity or lethality to the host (MCGLINCHEY et al., 2011).
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The majority of fungal prions are found in yeast (Saccharomyces cerevisiae (S. cere-

siviae)) and typically contain a prion-forming domain (PFD) that forms propagable,

insoluble amyloids, which can be separated from the native protein and retain its

prion forming ability. Current interest in fungal prions are mainly due to their ease of

manipulation and experimentation when compared to mammalian prions associated

with TSEs.

1.5.1 Sup35

Sup35, also known as eRF3, is known as [PSI+] in its prion form (COX, 1965).

It is a subunit of the translation termination factor (STANSFIELD et al., 1995) with

three domains (TER-AVANESYAN et al., 1993). It has an N-terminal PFD (residues

1-123), the necessary component for prion propagation. The middle domain (residues

124-253) has interactions with Hsp104 via residues 128-148, and potentially acts as

a stress sensor (FRANZMANN et al., 2018) The C-terminal domain is the functional

domain, acting in translation termination. When Sup35 is sequestered into [PSI+],

it allows for increased readthrough of premature nonsense codons (loss of function),

which is generally detrimental. The structure of [PSI+] was determined to contain

a PIRIBS structure (SHEWMAKER et al., 2006).

1.5.2 Ure2

Ure2 is a suppressor for genes required to utilize poor nitrogen sources, regulating

nitrogen catabolism. In its prion form, it is known as [URE3] (LACROUTE, 1971).

There are two domains of Ure2, an N-terminal PFD (residues 1-89) (TAYLOR et

al., 1999) and a functional C-terminal domain (residues 97-354) that structurally

resembles glutathione S-transferases (UMLAND et al., 2001). When Ure2 is mostly

converted to [URE3], yeast cells are able to utilize ureidosuccinate despite the

presence of ammonia, the preferred nitrogen source, significantly slowing down their
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growth. Structurally, [URE3] contains a PIRIBS structure (BAXA et al., 2007).

1.5.3 HET-s

HET-s is a protein from the filamentous fungus Podospora anserina (P. anserina)

involved in heterokaryon incompatibility, a method of self-recognition. The structure

of the HET-s prion was solved via solid-state nuclear magnetic resonance (ssNMR)

spectroscopy (WASMER et al., 2008). The self-templating ability of amyloids is well

demonstrated in HET-s and has biological importance in a programmed cell-death

reaction (SAUPE, 2007). When strains with alleles that differ in the het loci attempt

to form heterokaryons, demarcation (barrage) lines are formed and no somatic

cell fusion occurs (RIEK et al., 2016). Being a functional amyloid, HET-s has no

structural polymorphisms, except when non-physiological conditions are present and

forms stacked β-sheets when refolded at pH 2.0 (SABATÉ et al., 2007; SEN et al.,

2007).

The N-terminal domain (residues 1-217) is globular and consists of 9 α-helices

and 2 β-strands, while the C-terminal domain (residues 218-289) consists of an un-

folded region which has the ability to form a left-handed, two-rung β-solenoid with

a triangular hydrophobic core (Figure 1.9). The β-solenoid consists of 2 asparagine

ladders (N226/N262 and N243/N279), 3 salt bridges (K229/E265, E234/K270 and

R236/E270), a 15 amino acid flexible loop that links the two levels of β-strands

together, and an interior core that features entirely hydrophobic residues with the

exception of 2 buried polar residues (T233/S273). Recombinant HET-s containing

only the PFD (residues 218-289) fibrillizes into amyloid twice as fast as full length

and produces characteristic fibrils when observed using negative staining transmis-

sion electron microscopy (TEM). It is a popular amyloid model system and has

been studied with a variety of techniques including hydrogen/deuterium exchange

(NAZABAL et al., 2003; RITTER et al., 2005), X-ray fibre diffraction (WAN et al.,

2014), cryo-EM (MIZUNO et al., 2011) and molecular dynamics (LANGE et al., 2009).
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Figure 1.9: HET-s fungal prion. (A) The globular N-terminal domain of HET-s
(residues 1-217) has 9 α-helices and 2 β-strands. (B) The C-terminal PFD of HET-
s (residues 218-289) contains a triangular hydrophobic two-rung β-solenoid core,
consisting of 8 β-strands (gray). Backbone colouring runs blue (N-terminal) to red
(C-terminal). Individual sidechain features of the β-solenoid include multiple salt
bridges (red and blue, negative and positive salt-bridge residues, respectively), two
asparagine ladders (purple), a 15 amino acid flexible loop (black) and two buried
polar residues (green). Single letters represent amino acids - see Standard Amino
Acid Codes, page xxiv. Figure was visualized and generated using UCSF Chimera.
PDBs: 2WVN from GREENWALD et al. (2010) and 2RNM from WASMER et al.
(2008).
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1.6 Specific aims and hypothesis

The aim of this thesis is to explore the rational design of vaccine candidates, based

upon structural differences between PrPC and PrPSc. In almost all previous attempts

in preventing prion diseases, specifically with vaccination (Section 1.4.5), structural

differences between PrPC and PrPSc were minimally considered, demonstrating

the need for new approaches in designing treatment against prion diseases. The

similarities between the structure of HET-s and the proposed structural elements

of PrPSc were recognized - they both have a β-solenoid, albeit of different sizes.

This thesis will outline attempts to use an engineered scaffold to mimic the

backbone of PrPSc in combination with surface residue replacements to overcome

the lack of host immune response. My central hypothesis is that mimicking the 4RβS

structure and surface residues of PrPSc in a vaccine can delay the onset of the disease

PrP in animal prion hosts. Throughout this thesis, I demonstrate that rationally-

designed, structure-based vaccines are a viable approach for prophylaxis of prion

disease. These results have implications beyond prion diseases, potentially being

applicable to various neurodegenerative diseases that involve protein misfolding.
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Chapter 2

Materials and Methods

2.1 Materials and reagents

All materials and reagents were ordered from either MilliporeSigma (Burlington,

USA) or Thermo Fisher Scientific (Waltham, USA) unless otherwise specified.

2.2 Molecular biology

2.2.1 Agarose gel electrophoresis

All experiments requiring electropheretic separation of nucleic acid samples

utilized a 1% agarose gel, using tris(hydroxymethyl)aminomethane (Tris)-acetate

ethylenediaminetetraacetic acid (EDTA) (TAE) or Tris-borate EDTA (TBE) as

running buffer for high (>3,000 bp) or low (<1,000 bp) molecular weight samples,

respectively. The gels were electrophoresed at 200 V for 15 mins, with 25 μL/L ethid-

ium bromide (EtBr) in both the runner buffer and agarose gel as the intercalating

agent for detection and visualization.
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2.2.2 Plasmid design

The nucleotide sequences were based upon an Escherichia coli (E. coli) codon-

optimized version of the PFD of the fungal prion protein HET-s (MADDELEIN et

al., 2002), spanning residues 218-289 (BALGUERIE et al., 2003). Synthetic double-

stranded (ds) DNA gene fragments containing a 6 × histidine-tag (6×His-tag) were

ordered as “gBlocks” (IDT, Coralville, USA).

2.2.3 Plasmid construction

Two universal primers were designed and ordered as single-stranded (ss) DNA

“oligos” (IDT, Coralville, USA) with the following sequences: UniFwd (5’-GTCGTAG-

TCGCATATGAAAATCGACGCTATTGTAGG) and UniRvs (5’-TCGTCGTAGTC-

TCGAGTTAATGGTGATGATGATGGTG). gBlocks were amplified using a 3-step

polymerase chain reaction (PCR) with Q5 hot start DNA polymerase (New Eng-

land Biolabs, Ipswich, USA): 1) 98°C for 30s, 2) 98°C for 10 s, 3) 70°C for 10 s,

4) 72°C for 20 s, 5) 30 cycles of steps 2-4, 6) 72°C for 2 mins. PCR products and

pET-17b plasmid vector were digested with NdeI/XhoI, then cleaned up via a PCR

purification kit or a gel extraction kit, respectively (QIAGEN, Venlo, Netherlands).

The cleaned products were ligated at 1:3-5 molar ratio of insert:vector using T4

DNA ligase, and transformed into “TOP10” chemically competent E. coli cells us-

ing ampicillin (100 μg/mL) for antibiotic selection. Single colonies were purified for

constructed plasmid and sequence verified with Sanger DNA sequencing via the

Molecular Biology Facility at the University of Alberta.

2.2.4 Linker optimization

All vaccine candidates used a dimeric version of HET-s, linking two HET-s (218-

289) PFD monomers via a mostly flexible linker sequence consisting of glycines

and alanines, resulting in a left-handed, 4RβS scaffold, titled “HET-2s”. The linker
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Figure 2.1: Construction of HET-2s and its various linkers. (A) Two HET-s
PFD monomers were connected with the linker to create HET-2s, a 4RβS monomer.
(B) The amino acid sequence of HET-2s with linkers of various lengths from 16
to 10 residues (“mers”). Backbone colouring runs blue (N-terminal) to red (C-
terminal). Figure was visualized and generated using UCSF Chimera. PDB: 2RNM
from WASMER et al. (2008).
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Figure 2.2: HET-2s cartoon model. Cartoon form of HET-2s, depicting a left-
handed, 4RβS. The surface amino acid residues of β-strands 2 & 6 and their following
β-arcs are shown in red, blue, green, and white to represent negatively charged, pos-
itively charged, polar, and hydrophobic side chain residues, respectively. Backbone
colouring runs blue (N-terminal) to red (C-terminal). Single letters represent amino
acids (See Standard Amino Acid Codes, page xxiv).
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Figure 2.3: HET-s superimposition. Top-down view of 100 HET-2s PFD
monomers superimposed, showing that residues from β-strand 2, 6 and the fol-
lowing β-arcs have surface exposed residues. Superimposition was generated using
UCSF Chimera. PDB: 2RNM from WASMER et al. (2008).

41

https://www.rcsb.org/structure/2rnm


sequence was optimized by cloning gBlocks with reduced C-terminal glycines of

the linker region, resulting in a total of 4 different linker lengths (16, 14, 12, 10)

(Figure 2.1). All linker constructs were made as previously described (Section 2.2.3).

2.2.5 Vaccine design

Vaccine candidates were designed for HET-2s with either a 14 or 16 linker length

and constructed identically to the scaffold protein (Section 2.2.3). HET-2s was drawn

and visualized as a cartoon model (Figure 2.2), and alternating surface residues

on β-strands 2 & 6 were chosen as targets to be modified due to consistent surface

amino acid exposure (Figure 2.3). Residue placement was loosely based on published

threading work (SILVA et al., 2015) and β-sheet conformation and stability (JENKINS

et al., 2001). Care was taken to ensure proper β-solenoid formation, resulting in the

addition of salt bridges to ensure protein stability. Current vaccine candidates all

have a repetitive nature; rungs I & II are identical to III & IV, respectively, due to

the previously mentioned salt bridge construction. Residues chosen were based on

cervid PRNP sequence possibly ranging from residues ∼89-232.

2.2.6 Revertant mutants

Additional constructs of varying changes were designed for epitope mapping of

a vaccine-derived, potentially PrPSc-specific, monoclonal antibody (Section 2.9.1).

Amino acid residues were systematically reverted back to HET-2s residues in non-

overlapping pairs, either inter-rung or intra-rung, covering the entire surface of

the exposed region on HET-2s (Figure 2.4). Further constructs reverting only the

β-arc region of HET-2s were also created, either reverting back to HET-2s or re-

placed with other residues. All revertant mutants were made as previously described

(Section 2.2.3).
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Figure 2.4: Cartoon depiction of revertant mutant strategy. Revertant con-
structs were created by reverting pairs of amino acids either inter-chain or intra-chain.
Backbone colouring runs blue (N-terminal) to red (C-terminal). Residue numbering
represents deer PrP sequence.
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2.3 Recombinant protein production

2.3.1 Inclusion bodies expression

All HET-s linkers, vaccines candidates, and revertant mutants were purified

using the same protocol. Sequence verified plasmids were heat-shock transformed

into BL21(DE3) chemically competent E. coli cells using ampicillin (100 μg/mL)

for antibiotic selection. Transformed cells were then grown in 350 mL of ZYM-

5052 autoinduction media (STUDIER (2005), Teknova Inc, Hollister, USA) with 200

μg/mL ampicillin in a 2.8 L baffled Fernbach flask for 24-25 hrs at 250 revolutions

per minute (RPM) and 37°C.

Following growth, the cells were pelleted by centrifugation at 5000 × g for

15 mins, then resuspended at 3 mL/g cell pellet in resuspension buffer (50 mM

Tris-hydrochloride (HCl) pH 8.0, 100 mM sodium chloride (NaCl), 5 mM EDTA, 0.1

mM phenylmethylsulfonyl fluoride (PMSF)). All following steps were performed at

4°C unless otherwise specified. The resuspended mixture was then digested with 10

mg/g cell pellet of recombinant human lysozyme “Lysobac” (InVitria, Fort Collins,

USA) at room temperature (RT) while stirred for 40 mins. The suspension was then

sonicated using a 5 mm tapered microtip on a Sonifier 250 (Branson Ultrasonics,

Danbury, USA) at 5 s on and 5 s off cycles for 5 mins total with 80% power out-

put, and then pelleted via centrifugation at 6000 × g for 15 mins. The pellet was

then resuspended in wash buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.5%

Trition-X100) via a soft tissue homogenizer at medium power (Omni International,

Kennesaw, USA) and sonicated as previously described. Following sonication, mag-

nesium chloride (MgCl2) was added for a final concentration of 10 mM. The solution

was then digested with hen egg-white lysozyme at 10 mg/g cell pellet, along with

125 U/g cell pellet of benzonase nuclease for 40 mins at RT. Following digestion

the mixture was then pelleted and resuspended in resuspension buffer three more

times. The inclusion bodies solution was then resuspended in pelleting buffer (100

44



mM Tris-HCl pH 8.0, 100 mM NaCl), pelleted and stored at -20°C until further

purification.

2.3.2 Affinity chromatography purification

The inclusion bodies were purified under denaturing conditions via a C-terminal

6×His-tag. The frozen inclusion bodies were resuspended at 3 mL/g in denaturation

buffer (20 mM Tris-HCl pH 8.0, 6 M guanididium (Gdn)-HCl) and stirred at RT

until fully dissolved (30-60 mins). The solution was then ultracentrifuged at 50,000 ×

g for 45 mins at 4°C. The supernatant was then combined with 1-2 mL of 50% nickel-

nitrolotriacetic acid (Ni-NTA) agarose slurry resin (QIAGEN, Venlo, Netherlands)

for 1 hr at RT to bind the denatured proteins. The sample-resin slurry was then

loaded onto empty PD-10 columns (Cytiva, Marlborough, USA), and washed with

three bed volumes of denaturation buffer. The immobilized protein was then eluted

with 4 × 1 mL of elution buffer (50 mM citric acid pH 2.0, 6 M Gdn-HCl). Eluted

proteins were buffer-exchanged into 500 mM acetic acid using Zeba spin desalting

columns. The desalted sample was then fibrillized by increasing the pH to 7.5 using

3 M Tris and stored at RT with 1 mM sodium azide (NaN3). Samples were then left

to fibrillize for 1-3 weeks, depending on the construct.

2.4 Protein quality control

2.4.1 Polyacrylamide gel electrophoresis

Purified samples were subject to sodium dodecyl sulfate–polyacrylamide gel

electrophoresis (SDS-PAGE) to ensure adequate purity. Sample concentration was

determined by either bicinchoninic acid (BCA) protein assay or absorbance at 280

nm (A280) if the sample was insoluble or soluble, respectively.

Samples that contained Gdn-HCl were cleaned up using a methanol-chloroform-
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water precipitation protocol (WESSEL et al., 1984). 5× in-house sample buffer with

β-mercaptoethanol (BME) was added to 1-2 μg of sample in 10-15 μL and boiled

for 5 min at 95°C. Samples were then loaded on a NuPAGE 12% Bis-Tris protein

gel and electrophoresed at 200 V for 35 min in 2-(N -morpholino)ethanesulfonic acid

(MES) running buffer. Gels were then washed with deionized water (diH2O), stained

with Bio-safe Coomassie stain (Bio-Rad Laboratories, Hercules, USA) for 1 hr, then

destained overnight in diH2O and visualized the next day.

2.4.2 Transmission electron microscopy

To check fibril formation, purified samples were imaged and visualized via nega-

tive staining TEM. 200 or 400 square mesh carbon-coated copper grids (Electron

Microscopy Sciences, Hatfield, USA) were glow discharged at 15 mA, 0.39 mBar

for 1 min. 5 μL of ∼1 mg/mL sample was adsorbed onto the grid for 1-2 min and

then washed with 2 drops (50 μL/drop) of ammonium acetate (100 and 10 mM) and

stained with 2 drops (50 μL/drop) of 2% filtered uranyl acetate (Electron Microscopy

Sciences, Hatfield, USA). Grids were then blotted dry with filter paper and stored

at RT. Grids were visualized by a Tecnai G20 TEM (FEI Company, Hillsboro, USA)

operating at 200 kV using a bottom-mounted Eagle 4K × 4K charge-coupled device

(CCD) camera (FEI Company, Hillsboro, USA) at 19K or 29K magnification, with

a -0.50-1.50 μm defocus.

2.4.3 Buffer exchange

Purified samples that have their purity and fibril presence verified via SDS-PAGE

(Section 2.4.1) and TEM (Section 2.4.2), respectively, were buffer exchanged into a

buffer of choice just prior to use in experiments. Samples were centrifuged at 20,000

× g for 20 mins at RT, and resuspended with or without 1 mM NaN3, if it was for

in vitro or in vivo use, respectively.
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2.4.4 Protein sonication

Due to the fibrillar nature of the vaccine candidates, the quaternary structure

of the purified samples needed to be “broken-up” before use. The samples were first

buffer exchanged (Section 2.4.3), then sonicated for 10-30 s using a 3 mm double

stepped microtip at minimum amplitude on a Sonifier 250 (Branson Ultrasonics,

Danbury, USA) in 1 mL of sample volume. For experiments where tip sonication was

impractical, the samples were sonicated in a bath sonicator for 5 minutes instead.

2.4.5 Lyophilization

After complete fibrillization following protein purification (Section 2.3.2), the

samples were buffer exchanged to phosphate-buffered saline (PBS) (Section 2.4.3)

and their concentration was measured via a BCA assay. The samples were diluted

to 1 mg/mL, then frozen at -80°C for a minimum of 1 hr before being placed in

the lyophilizer (Labconco, Kansas City, USA) and freeze-dried at -84°C and <0.006

mBar for a minimum of 48 hrs. Lyophilized samples were then kept at RT or -80°C.

2.5 Rodent animal work

2.5.1 Ethics statement

All experiments were performed in accordance to the ethics guidelines from the

University of Alberta Animal Care and Use Committee according to guidelines

from the Canadian Council on Animal Care. The research protocols of these re-

sults were approved under AUP00002852, titled “Vaccines for neurodegenerative

diseases”, AUP00000884, titled “Structural biology of infectious mammalian prions”,

and AUP00000424, titled ”Production of antibodies for neurodegenerative disease

research”.
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2.5.2 Animal maintenance

Animals were fed irradiated “LabDiet 5053” chow (Lab Supply, Fort Worth,

USA) and maintained in green line ventilated racks (Techniplast, Buguggiate, Italy)

on a 12 hr light and 12 hr dark cycle. Cage environment enrichment included the

addition of plastic tubes and “Nestlets” nesting material (Ancare, Bellmore, USA).

Animal health were monitored daily by animal staff technicians and cage contents

including food, water, and bedding are changed bi-weekly or earlier as needed.

2.5.3 Animal handling and euthanasia

All animal handling techniques were performed after adequate training and cer-

tification from the Health Sciences Laboratory Animal Services. For euthanasia, the

animals were anaesthetized by isoflurane inhalation. If post-mortem blood sampling

was required, cardiac puncture was performed after the animal reached the appro-

priate surgical plane. Cervical dislocation was always performed to ensure death

had occurred.

2.5.4 Genotyping

Tail-derived genomic DNA was amplified with primers PrPFwd (5’-ATGGCGAA-

CCTTGGCTACTGGCTGCTG) and PrPRev (5’-TCATCCCACGATCAGGAAGA-

TGAGGAAGGAGATGAGG). A two-step touch-down PCR protocol was utilized:

1) 98°C for 30s, 2) 98°C for 10 s, 3) 82°C for 20 s, reducing the temperature by 1°C

per cycle, 4) 72°C for 30 s, 5) 10 cycles of steps 2-4, 6) 98°C for 10 s, 7) 72°C for 30

s, 8) 20 cycles of step 6-8, 9) 72°C for 2 mins. The PCR yielded a ∼750 bp fragment

for animals that contained the transgene when visualized in an agarose gel following

electrophoresis (Section 2.2.1).
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2.5.5 Adjuvants

Part of the adjuvant work described was completed with the help of Madeleine

R. Fleming, a master’s student in the Wille lab. Three different adjuvants were

used for the animal immunizations - Freund’s adjuvant (FA), consisting of Freund’s

complete adjuvant (FCA) and Freund’s incomplete adjuvant (FIA), Alhydrogel

adjuvant 2% “alum” (InvivoGen, San Diego, USA), and a Quillaja saponaria (Q.

saponaria) saponin “QS-21” (Desert King International, San Diego, USA).

FAs were added gradually to PBS buffered exchanged antigen as previously

described (Section 2.4.3), at 1:1 volume/volume (v/v) ratio of antigen:adjuvant, and

placed on a vortexer until a single emulsion droplet no longer dissipated when placed

on water (DVORAK et al., 1974).

Alum was added to antigen mixture at 1:1 antigen:alum ratio, yielding a 1 mg/mL

alum concentration, and vortexed for 10 mins to allow adsorption of aluminium onto

the antigen surface.

QS-21 was resuspended in PBS at 1 mg/mL final concentration and stirred for 1

hr until solution was fully clarified. For inoculum preparation a 10:1 antigen:QS-21

ratio was used.

2.5.6 Mouse immunizations

All mice used in the described experiments were bred on a FVB/N background

(TAKETO et al., 1991). Prnp-/- or WT mice were bred and maintained by animal

technicians. The mouse model used in immunizations contain Tg mouse PrP, with a

substitution of a leucine for a proline residue at position 101 (P101L), corresponding

to position 102 (P102L) in humans. These mice spontaneously develop GSS (NA-

ZOR et al., 2005) and were gifted to us from Dr. Glenn Telling at Colorado State

University.

Mice, between 6-8 weeks of age, were immunized with a single priming dose,
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followed by three boosting doses, with no preferences for sex. The antigen was first

buffer exchanged into PBS (Section 2.4.3) and sonicated for 10 s (Section 2.4.4),

then combined with the proper adjuvant (Section 3.5.1). All doses were given via

intraperitoneal (IP) injection every two weeks with a maximum volume of 100 μL.

The priming dose contained 100 μg of antigen while boosting doses contained 50 μg

antigen. When using FAs as part of the inoculum, FCA was used for the priming

dose while FIA was used for the boosting doses.

2.5.7 Hamster immunizations

Male Syrian hamsters (SHas) less than 23 days of age were ordered from Envigo

(Indianapolis, USA). The hamsters were immunized to an identical schedule as

previously described for the mice (Section 2.5.6), and the antigen was also prepared

identically. However, due to the larger size of hamsters compared to mice, they

were inoculated with 200 μg of antigen in a volume of 200 μL for the priming dose,

followed by 100 μg of antigen in 100 μL volume for the boosting doses. All doses

utilized FAs, with FCA and FIA used for priming and boosting doses, respectively.

2.5.8 Hamster infection

Hamsters were orally challenged with HY prions by feeding them a half of a

HY infected hamster brain containing ∼103.3 per os 50% lethal dose (LD50)/g (high

dose) or 50 μL of 10% HY-infected brain homogenate (BH) containing ∼100.4 per

os LD50/g (low dose). The LD50/g per os infectious titres were based on work by

KINCAID et al. (2007). Prior to feeding, the hamsters were separated and kept in

individual cages with only water (food and bedding were removed). After 18 hours

of starvation, the hamsters were offered either half of an infected brain (high dose)

or a small food pellet with the inoculate absorbed (low dose) for consumption. After

visual confirmation of consumption, the animals were moved back to their original
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groups prior to cage separation.

2.5.9 Disease evaluation

To evaluate the clinical manifestation of disease in the animals, we monitored the

animals thrice weekly and recorded progressive changes in behaviour, coordination

loss, grooming ability - which occurred throughout the course of disease - as well as

a stiffened/rigid tail for mice. Collectively, these symptoms fell under stage 1, with

a scoring range of 0-3. Further symptoms of righting reflex, kyphosis (arched back),

ptosis (droopy eyelids), tremors, and blow test were scored in a range of 0-5. An

animal was euthanized following 3 scores of 5, including the inability to right itself

after 1 min.

2.5.10 Mouse sample collection

For routine serum collection, blood was sampled from lateral tail vein or ventral

artery. The mice were kept in cages under a heat lamp for ∼5 mins, and then placed

in a restraining device. A small incision (2-5 mm) was made using a sterile 22 gauge

needle, and ∼30-60 μL of blood was collected using “microvette” serum collection

tubes (Sarstedt, Newton, USA). The whole blood was then left at RT for 1 hr to

clot, then spun at 10,000 × g for 5 mins. The serum was then taken and frozen at

-20°C. Sera were collected 2 weeks following priming and boosting doses, except the

pre-immune sera, which was collected 1 day prior to the priming dose.

For brain collection, animals were euthanized as previously described (Sec-

tion 2.5.3). Brains were sagittally sliced in half, with one half being frozen and

stored at -80°C, and the other half placed in 10% neutral buffered formalin (NBF)

and stored at RT.

Spleens used to generate hybridomas producing 14R1-derived, PrPSc-specific

monoclonal antibodys (mAbs) were taken by Dr. Xinli Tang, a research associate
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in the Wille lab. Excised spleens were immediately used for hybridoma generation

(Section 2.9.1).

2.5.11 Hamster sample collection

Hamster sample collection used the same protocols as previously described for

mice (Section 2.5.10), with the exception of routine serum collection. Blood was

sampled from the saphenous vein of the hind leg due to lack of tail, and was taken

every 2 weeks. The hamster was restrained with the help of a second trained indi-

vidual while fur was shaved off and vaseline was applied to the skin. The saphenous

vein was punctured with a sterile 22 gauge needle and 50-70 μL of blood was then

collected and processed as previously described for the mice (Section 2.5.10)

2.5.12 Brain homogenates

Frozen, sagittally sliced brains (Section 2.5.10) were resuspended in radioim-

munoprecipitation assay (RIPA) lysis buffer (Tris-HCl pH 7.4, 150 mM NaCl, 1%

Nonidet P-40, 0.25% deoxycholic acid (DOC), 1 mM EDTA) with EDTA-free pro-

tease inhibitor cocktail to 10% weight/volume (w/v). Using a 18 gauge blunt fill

needle and 10 mL syringe, the brain-lysis buffer mixture was forcibly drawn and

dispensed at least 50 times, until the mixture became a “homogenate”. BHs were

then aliquoted and stored frozen at -80°C.

2.6 Cervid animal work

2.6.1 Elk maintenance

The elk (Cervus canadensis) are maintained at the Wyoming Game and Fish

Department Thorne/Williams Wildlife Research Center in Sybille by Drs. Peach

VanWick, Samantha Allen and colleagues and research ethics were approved by their
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animal care and use committee. They are housed in groups of 4 in a 0.2-0.4 hectare

corral and are daily fed a rationed pelleted diet with fresh water and alfalfa/grass

hay ad libitum. Animal health is monitored daily by staff and evaluated monthly for

early signs of CWD.

2.6.2 Elk immunizations

A total of 12 female elk with known genotypes (6 M/M and 6 M/L at codon

132) were used. The animals were all CWD negative based on rectoanal mucosa-

associated lymphoid tissue (RAMALT) sampling performed prior to immunizations.

Purified and fibrillized 14R1 was buffer exchanged into PBS (Section 2.4.3) and

sonicated for 10 s (Section 2.4.4), then aliquoted into individually labelled vials and

frozen at -80°C. Prior to immunization, the vials were thawed and equal volumes

of alum adjuvant were added and shaken before intramuscular (IM) inoculation.

The animals were given either PBS, 100 μg, or 200 μg antigen, with 1 priming dose

followed by 3 boosts. Each group of 4 animals consisted of 2 M/M and 2 M/L

animals. A double blind trial was utilized, i.e., information regarding antigen and

animal identity were only shared after the conclusion of immunizations.

2.6.3 Elk sample collection

Elk were first restrained in a handling chute system before blood was taken from

either jugular vein using a sterile 18 gauge needle and 20 mL syringe and deposited

into serum collection tubes. Whole blood was then spun down and the resulting

serum is collected and frozen at -18°C.
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2.7 Human sample work

2.7.1 Ethics statement

All experiments performed were given approval from the Health Research Ethics

Board - Biomedical Panel of the University of Alberta under study “Pro0004244” ti-

tled “Human prions and other misfolded proteins - analyzing the molecular structure

of the misfolded conformers”.

2.7.2 Human sample processing

Human brain samples were homogenized as described for the animal samples

(Section 2.5.12). The section within the brain for each sample are as follows: the

cortex region (no further details given) for samples from patients with GSS (A117V),

fCJD (E200K), and sCJD, and the temporal lobe for samples from patients with

vCJD and FFI (D178N).

2.8 Immunoassays

2.8.1 Enzyme-linked immunosorbent assays

2.8.1.1 Materials and reagents

All enzyme-linked immunosorbent assays (ELISAs) utilized 96 well, flat bottom,

high binding “UltraCruz” strip plates (Santa Cruz Biotechnology, Santa Cruz, USA).

For the primary Ab, animal polyclonal antibody (pAb) sera or a PrPSc-specific mAb

(G1) were used. All secondary Abs were horseradish peroxidase (HRP) conjugated

and diluted in 5% milk Tris-buffered saline (TBS), and 3,3’,5,5’-tetramethylbenzidine

(TMB) substrate was ordered from Surmodics (Eden Prairie, USA). All washes

utilized TBS 0.1% Tween-20 (TBST) via a squirt bottle or a plate washer (Bio-Rad

Laboratories, Hercules, USA), followed by firm “taps” to discard remaining liquid.
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2.8.1.2 Plate preparation

All samples for coating had their concentration measured via a BCA assay and

diluted to 5 μg/mL in PBS. For insoluble sample coating, the sample was first buffer

exchanged to PBS (Section 2.4.3) and then sonicated for 10 s (Section 2.4.4). The

sample was then coated at 0.5 μg/well in 100 μL and left on a rotating platform

overnight in a moisture chamber at RT. The plates were then blocked with 200 μL

of 5% milk or 3% bovine serum albumin (BSA) in TBST for 1 hr at RT or 4°C

overnight, then washed 3 times.

2.8.1.3 Indirect ELISA

All incubation periods occured on a rotating platform at RT unless otherwise

specified. After plate preparation (Section 2.8.1.2), the primary Ab was added, either

in the form of animal pAb sera or G1. The pAb animal sera was serially 3-fold diluted

in-plate starting at 1.00 × 10-4 dilution, while G1 was always added at 1.00 × 10-4

dilution. 100 μL of the primary Ab was added and the plate was incubated for 1

hr at RT, and then washed 3 times. 100 μL the secondary Ab was added at 5.00 ×

10-3 dilution and incubated for 30 mins. The plate was then washed 5 times, before

100 μL of TMB substrate is added and incubated for 30 mins in the dark without

shaking. The reaction was stopped by the addition of 50 μL, 2 M sulphuric acid

(H2SO4). The plate optical density (OD) was then read at 450 nm (OD450).

2.8.1.4 Competition ELISA

The competition ELISA largely utilized the same protocol as the indirect ELISA

(Section 2.8.1.3), with an additional incubation period. For titre-matching, the

sera was first tested against 14R1 at 1.00 × 10-4 dilution in an indirect ELISA.

The sera dilution was then adjusted to yield OD450 values between 1-2 in indirect

ELISAs. Prior to the addition of the primary Ab, the competing antigen (e.g. BH

(Section 2.5.12)) was diluted to 1 mg/mL and combined with the primary Ab at 1:1
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v/v ratio, and incubated in a non-binding plate (Greiner Bio-One, Frickenhausen,

Germany) for 1 hr. The mixture was then transferred to a 14R1 coated and blocked

plate (Section 2.8.1.2), and the remaining procedure is the same as previously

described. There is an inverse relationship between the level of enzymatically formed

colour change and the amount of antigen that was detected (MAKARANANDA et al.,

1998), which can be represented as a Δ OD value by subtracting OD450 readout,

Prnp-/- and WT BHs as the baseline readout subtraction and negative test control,

respectively.

2.8.1.5 Protein stability assay

Fully fibrillized 14R1 was buffer exchanged into permutations of 1, 2, 5, 10× PBS

and 0, 10, 25, 50 mM NaCl concentrations (Section 2.4.3) and added to 6 replicate

non-binding plates (Greiner Bio-One, Frickenhausen, Germany) (Section 2.8.1.2).

The plates were then sealed with plate sealers and left on a rotating platform at

RT. Every week, one plate was spun at 3,000 × g to collect condensation before

being transferred to a high binding plate. The plate was then submerged in a bath

sonicator (Section 2.4.4) and then allowed to coat overnight (Section 2.8.1.2). An

indirect ELISA (Section 2.8.1.3) was then performed and this process was repeated

every week for each plate.

2.8.2 Protein immunoblots or western blots

2.8.2.1 Materials and reagents

All washes utilized TBST, and all incubation periods occurred at RT unless

otherwise specified. All secondary Abs were HRP-conjugated and detection utilized

enhanced chemiluminescence (ECL) substrate to develop the membrane on light-

sensitive films.
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2.8.2.2 Blotting

For protease digestion, the samples were treated with 50 μg/mL of PK for 60 min

at 37°C, and the reaction was stopped by the addition of sample buffer. Samples

were then electrophoretically separated via SDS-PAGE and largely follows same

protocol previously described (Section 2.4.1), but utilizes a lower current of 110

V for 90 mins. The gel was then semi-dry transferred to a polyvinylidene fluoride

(PVDF) membrane and blocked with 5% skim milk in TBST for 1 hr at RT. 38C12,

a mAb recognizing PrP residues 151-162, at 1 μg/mL, was added and incubated

overnight at 4°C. The membrane was then washed with TBST, and HRP-conjugated

secondary Ab was added at 5.00 × 10-3 dilution and incubated for 1 hr before being

washed again and subsequent film development.

2.9 Monoclonal antibody

2.9.1 Monoclonal antibody generation

The majority of the methods being described in this section were performed by

Dr. Xinli Tang, a research associated within the Wille lab. After the last boosting

dose (Section 2.5.6), mice were given two more doses. The first dose contains 50

μg antigen and FIA, while the last dose contains only 100 μg antigen. 3 days after

the last dose, the spleen was collected (Section 2.5.10) and the splenocytes were

disaggregated into a single-cell suspension via a 70 μm cell strainer. The isolated B

cells were fused with immortalized myeloma cells using polyethylene glycol (PEG) in

multi-well plates and cultured in hypoxanthine-aminopterin-thymidine (HAT) media

to select for only successfully fused cells. The supernantant from the clones were all

screened against 14R1 and HET-2s in an indirect ELISA format (Section 2.8.1.3).

Clones showing reactivity towards 14R1 and not HET-2s were further subcloned

via limiting dilution. Repeated rounds of subcloning were performed to ensure
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monoclonality of hybridomas, and specificity against 14R1 was validated before

mass production.

2.9.2 Epitope mapping

8 initial revertant constructs were created as described (Section 2.2.6) and tested

against G1 in an indirect ELISA format (Section 2.8.1.3) in triplicate. 5 more

constructs with various change were then made to further narrow the epitope of G1

until it was fully resolved in the same manner.

2.9.3 Peptide library

To verify the specificity and structural nature of G1’s epitope, 12 amino acid,

mouse linear peptides spanning PrP residues 23-234 with a 4 amino acid overlay were

ordered from AnaSpec (Fremont, USA). They were resuspended in 20% dimethyl

sulfoxide (DMSO) in PBS at 1 mg/mL, coated onto plates (Section 2.8.1.2), and

then an indirect ELISA was performed (Section 2.8.1.3) as previously described.

2.10 Histopathology

Trang Nguyen, a histopathology technician within the Centre for Prion and

Protein Folding Diseases Histology Core performed all histopathological procedures.

2.10.1 Histology

Samples were collected (Section 2.5.10) and immediately immersed in 10-20×

w/v of ∼ 10% NBF for fixation. The samples then underwent a dehydration process

and were paraffin embedded. 4.5-6 μm sections were microtome cut and collected

on adhesive-treated slides and dried overnight at 37°C before being rehydrated via

a xylene-ethanol-water process. Antigen retrieval was done in 10 mM citrate buffer

at 121°C and 2.1 bar for 2 mins. The slides were then stained with filtered Mayer’s
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hematoxylin, followed by eosin before being dehydrated in the reverse process. The

slides were then covered with cover slips and dried at RT for 48 hrs.

2.10.2 Immunohistochemistry

The immunohistochemistry (IHC) followed the same dehydration-rehydration-

dehydration process as the histology (Section 2.10.1), with additional steps in the

rehydrated state. The target retrieval for PrPSc detection was further enhanced by

incubating the slides in 4 M guanidine thiocynate for 2 hrs at RT. The biotinylated

primary Ab was then added and detected with a secondary streptavidin-peroxidase.

3,3’-diaminobenzidine (DAB) was then added until brown colour was detected before

being counter stained with Mayer’s hematoxylin. PrPSc and glial fibrillary acidic

protein (GFAP) detection utilized SAF83 IgG (Cayman Chemical, Ann Arbor, USA)

at 1:500 and a mouse anti-GFAP IgG (BD, Franklin Lakes, USA) at 1:1000 dilution,

respectively. The rest of the procedure is as previously described (Section 2.10.1).

2.11 Other methods

2.11.1 Structural threading

Structural models of vaccine candidates can be generated via structural predic-

tion and its subsequent threading, and this was done by Dr. Holger Wille. This

was accomplished by submitting amino acid sequences of vaccine candidates with

prion residues to the fold and function assignment system version 3 (FFAS03) server

(JAROSZEWSKI et al., 2005), a profile-profile comparison algorithm (RYCHLEWSKI

et al., 2000). The resulting threading model was based upon various PDB entries and

were produced using the UCSF Chimera package from the Computer Graphics Lab-

oratory, University of California, San Francisco (supported by NIH P41 RR-01081)

(HUANG et al., 1996).
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2.11.2 Statistics

Unpaired and paired t-tests were performed for group- and pair-wise differences,

respectively. The percent healthy and survival data were plotted in Kaplan-Meier

curves and log-rank (Mantel-Cox) tests were performed for statistical significance.

P-values of < 0.05 were considered significant. All analyses were performed using

GraphPad Prism (GraphPad software Inc., version 9.3.1).
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Chapter 3

Results

3.1 Construction and optimization of the vaccine

scaffold

The first part of this thesis project was to create a scaffold “backbone” for the

vaccine candidates which required the creation of a 4RβS version of HET-s. Due to

HET-s being a functional amyloid, unfolded HET-s will spontaneously refold into a

β-solenoid when left at RT. Subsequently, all constructs were left to refold at RT,

but the time it took for a particular sample to fully form fibrils varied depending

on linker length, concentration, and quality of the protein preparation.

3.1.1 Vaccine scaffold “HET-2s”

Since HET-s naturally contains a two-rung β-solenoid, a flexible linker connecting

two monomers was used to create a dimer, termed “HET-2s” (Section 2.2.4). The

initial flexible linker length was 16 amino acid residues consisting of 14 glycines and

2 alanines. The purified linker scaffold yielded a very pure sample that was roughly

twice the molecular weight of HET-s when visualized using electrophoresis in a

12% Bis-Tris protein gel (Figure 3.1). The total protein yield, 2-3 mg per protein

preparation after purification, was comparable to HET-s. The purified scaffold was
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purified identically compared to HET-s, and the refolding required a minimum of

1 week, compared to 1-2 days for HET-s. Negative staining TEM confirmed the

presence of fibrils, as well as some amorphous aggregates - improperly folded forms

of HET-2s - which were typically not seen for preparations of HET-s (Figure 3.2).

Figure 3.1: SDS-PAGE of purified HET-s and HET-2s. Purified HET-s has an
intense band under 10 kDa and a weak band at slightly above 15 kDa corresponding
to monomeric and dimeric forms of HET-s, respectively. HET-2s has an intense
band matching the dimeric form of HET-s, as well as a weaker band that is roughly
double the molecular weight of itself. Samples were separated by electrophoresis on
a 12% Bis-Tris protein gel and stained with Coomassie Blue.
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Figure 3.2: TEM of HET-s and HET-2s. Purified HET-s shows bundled fibrils,
while HET-2s contains more individual fibrils, as well as the presence amorphous
aggregates. Red and green arrows represent amorphous aggregates and single fibrils,
respectively. Samples were negatively stained with 2% uranyl acetate and visualized
at 29K magnification via TEM.
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3.1.2 Linker optimization of HET-2s

To decrease the amount of amorphous aggregates and increase protein stability,

the linker length was gradually shortened, in two residue increments, down to

10 amino acids. The purified linkers showed varying fibril morphology in length,

aggregation, width, and amount of fibrils present. Linker lengths of 16 and 14

residues displayed fibrils with adequate length and width when visualized with the

TEM, resembling HET-s fibrils (Figure 3.3). The 12 and 10 amino acid linkers

displayed much shorter fibrils, as well as reduced total amount of fibrils, and slightly

increased amorphous aggregation, which is slightly different overall when compared

to HET-s fibrils (Figure 3.3). In terms of amorphous aggregate amount, the 14 and

16 amino acid linkers contained the fewest, and thus were chosen as the optimal

linker lengths going forward.
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Figure 3.3: HET-2s linker length affects the quality of the resulting fibrils.
The linker length of HET-2s was varied between 16 and 10 residues in 2 residues
increments. The 16 and 14 “mer” showed adequately bundled and single fibrils, with
minimal amorphous aggregates. The 12 and 10 mer show decreased fibril lengths,
increased amorphous aggregates, and decreased abundance of fibrils. Samples were
negatively stained with 2% uranyl acetate and visualized at 29K magnification via
TEM.
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3.2 Potential vaccine candidates

Initial vaccine candidates involved the replacement of all amino acid residues on

the surface-exposed region of HET-s. These constructs failed to properly fibrillize

and thus were not considered further (data not shown). To stabilize the vaccine

candidates, various strategies were tried, such as making modifications to only

interior (rungs II & III) or exterior (rungs I & IV) residues to promote increased

fibrillization while minimally perturbing the quatenary interactions of HET-2s (data

not shown). Another strategy was to repeat the residue changes of a single HET-s

monomer, thus maintaining or increasing the amount of salt bridges that would form

when placed in the scaffold. This strategy was used in creating all future vaccine

candidates. A list of potential vaccine candidates are shown in Table 3.1.

All potential vaccine candidate plasmid constructs were ordered, successfully

cloned into plasmid vectors, and sequence verified. After purification, the samples

required 1-2 weeks to fibrillize, as indicated by increased turbidity when observed

visually and microscopically via TEM. SDS-PAGE was performed on all purified sam-

ples and all candidates showed excellent purity, and protein yields were comparable

to both HET-2s and HET-s.
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Table 3.1: Summary and sequence of prion vaccine candidatesab

Name Rung I Rung II Rung III Rung IV Fibril formation Folding strategy Prion specificity after immunization

HET-2s reference NSAKDIRTEE NSVETVVGKG same as rung I same as rung II yes N/A no
Non-fibrillar 1 NSATHIQTNK NNVYEVRGYR NVAYRIVTQY NTVTDVKGME no none N/A
Non-fibrillar 2 NSATNIKTVA NNVYEVRGYR NVAYRIVTQY NNVTDVDGKM no none N/A
Non-fibrillar 3 NSATNIKTVA NDVEDVYGRD NVAYRIVTQY NTVIKVMGRV no none N/A
Non-fibrillar 4 NSAKDIRTEE NSVKTVMGHV NSADYIDTYY NSVETVVGKG no change middle two rungs N/A
14R1 NSAKYIDTED NSVEKVNGKH same as rung I same as rung II yes repeating rungs I & II yes
16R2 NSAEDIKTME NSVKHVQGNK same as rung I same as rung II yes repeating rungs I & II no
14R3 NSAEEIDTKM NSVKKVHGVT same as rung I same as rung II yes repeating rungs I & II no
aUnderline indicates surface exposed residues. Single letters represent amino acids (See Standard Amino Acid Codes, page xxiv)
bRed, blue, green, and gray colours represent negatively charged, positively charged, polar, and hydrophobic side chain residues, respectively
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3.2.1 Vaccine candidate “14R1”

“14R1” is a vaccine candidate with a 14 amino acid linker and repetitive amino

acid residues as previously described. A total of 7 amino acid substitutions were

made, consisting of lysine (K), asparagine (N), lysine (K), histidine (H), aspartate

(D), glutamate (E), and glutamate (E), which corresponds to deer prion protein

residues 109, 111, 113, 114, 147, 149, and 150, respectively (Figure 3.4). The residues

were chosen in a non-sequential manner and do not form a continuous epitope in

PrPC (Figure 3.5). Residues 109-114 and 147-150 were placed on HET-2s rungs II &

I, respectively, to better match native residues found on the scaffold despite being in

reverse order relative to the native deer prion sequence. These residues replaced the

outer facing residues of HET-2s and, while sequentially discontinuous, they form a

potentially continuous surface exposed epitope (Figure 3.6). After purification, 14R1

showed fibrils that were similar to HET-2s, with minimal presence of amorphous

aggregates (Figure 3.7).
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Figure 3.4: 14R1 cartoon model. Cartoon depicts a left-handed, 4RβS with prion
residue replacements. A total of 7 polar or charged residues are shown in green, red,
and blue to represent polar, negatively charged, and positively charged side chain
residues, respectively. Numbers correspond to deer prion protein sequence. Backbone
colouring runs blue (N-terminal) to red (C-terminal). Single letters represent amino
acids (See Standard Amino Acid Codes, page xxiv).
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Figure 3.5: 14R1 residues are discontinuous in deer PrPC. (A) Cartoon form
of 14R1 with beige backbone coloring and green and cyan coloring for residues on
rungs II & IV and I & III, respectively. (B) The same green and cyan residues are
highlighted in a line and space-filling threading model of deer PrPC adapted from
BARAL et al. (2012) (PDB: 4DGI). PrP amino acids highlighted in green are found
in the unstructured region while cyan indicates amino acids found on helix 1. Figure
B was visualized and generated using USCF Chimera. Numbers correspond to deer
prion protein sequence. Single letters represent amino acids (See Standard Amino
Acid Codes, page xxiv).
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Figure 3.6: 14R1 residues form a continuous surface exposed epitope. (A)
Space-filling threading model of 14R1 adapted from HET-s with prion residue
replacements highlighted in green and cyan, showing a continuous surface exposed
epitope. (B) The same residues as in (A) are also highlighted in a space-filling PrPSc

model, showing a continuous surface exposed epitope. The residues are highlighted
in green and cyan in the sequence. Figure was visualized and generated using UCSF
Chimera. Single letters represent amino acids (See Standard Amino Acid Codes,
page xxiv). PDBs: S1 from SPAGNOLLI et al. (2019) and 2RNM from WASMER et al.
(2008).
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Figure 3.7: 14R1 forms similar fibrils compared to HET-2s. Purified HET-
2s shows bundled fibrils, while 14R1 contains more single filaments, with similar
amounts of amorphous aggregates. Samples were negatively stained with 2% uranyl
acetate and visualized at 29K magnification via TEM.
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3.2.2 Vaccine candidates “16R2” and “14R3”

“16R2” and “14R3” are vaccine candidates with a 16 and 14 amino acid linker,

respectively, that also feature repeating amino acid residues. The prion residues

placed on these vaccine candidates were chosen to maximize salt bridges, and thus

protein stability.

Both 16R2 and 14R3 contain 8 prion amino acid residues placed on their re-

spective surfaces. 16R2 contains lysine (K), histidine (H), valine (V), threonine

(T), glutamate (E), aspartate (D), lysine (K), methionine (M), corresponding to

deer PrP residues 184, 186, 188, 189, 199, 201, 203, 204, respectively, while 14R3

contains histidine (H), glutamine (Q), asparagine (N), lysine (K), aspartate (D),

lysine (K), methionine (M), aspartate (D), corresponding to residues 99, 101, 103,

104, 205, 207, 209, 210, respectively (Figure 3.8). The residues were also placed in

reversed order relative to native prion sequence to better accommodate refolding.

After purification, both 16R2 and 14R3 showed good purity, but required much

higher protein concentrations for TEM, and the fibrils were consistently positively

stained instead of negatively stained (Figure 3.9).

73



Figure 3.8: 16R2 and 14R3 cartoon models. Both cartoons depict a left-handed,
4RβS with prion residue replacements. A total of 8 residues are shown in white,
green, red, and blue to represent non-polar, polar, negatively charged, and positively
charged side chain residues, respectively. Numbers correspond to deer prion protein
sequence. Backbone colouring runs blue (N-terminal) to red (C-terminal). Single
letters represent amino acids (See Standard Amino Acid Codes, page xxiv).
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Figure 3.9: 16R2 and 14R3 form typical fibrils. Purified 16R2 and 14R3 lacked
bundled fibrils and showed similar amounts of amorphous aggregates. Samples were
positively stained with 2% uranyl acetate and visualized at 19K magnification via
TEM.
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3.3 Evaluation of the vaccine candidates

Each vaccine candidate was IP inoculated with FAs (other adjuvants explored

in Section 3.5.1) into mice to evaluate the immunization regimen. The specificity of

the immune sera towards infectious prion brain homogenate was then determined,

and only vaccine candidates that showed PrPSc specificity were further tested in

vivo for their efficacy. Immunogen preparations from all vaccine candidates were

well tolerated in all animals.

3.3.1 Immune response of the vaccine candidates

Initially, all vaccine candidate immunizations used Prnp-/- mice, with 4 mice

per group, along with HET-2s acting as a control. All post-immune sera were

evaluated and compared to the pre-immune sera via indirect ELISAs. Both sera

groups were diluted to 1.00 × 10-4, with the post-immune sera 3-fold serially diluted

6 more times for a final dilution of 1.37 × 10-7. All post-immune sera were able to be

significantly diluted while still giving higher OD values compared to the pre-immune

sera (Figure 3.10).
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Figure 3.10: Immune response of the vaccine candidates. The post-immune
sera from 14R1, 16R2, 14R3, and HET-2s immunized mice were 3-fold serially diluted
and their ODs were compared against their respective pre-immune sera. 14R1, 16R2,
14R3, and HET-2s OD values are depicted using black, purple, blue, and grey bars,
respectively. Samples were analyzed via indirect ELISAs using antigen coated plates.
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3.3.2 PrPSc-specificity of the immune response

Once a working immunization regimen was established, the vaccine candidates

and HET-2s were used to immunize 4 FVB/N (WT) mice per group. The post-

immune sera from these animals were then used to evaluate its specificity towards

prion infected BH, specifically CWD-infected BH (Figure 3.11). This utilized a

competition ELISA, due to its ability to detect molecules in their native state, giving

a Δ OD value as the readout due to subtraction with an assay (Prnp-/-) and sample

(uninfectious BH) blank (Section 2.8.1.4). The 14R1 post-immune sera showed a

larger Δ OD value for the CWD-infected BH compared to the non-infectious BH,

showing a preferential recognition of something in the infectious BH. The 16R2 and

14R3 post-immune sera each showed similar Δ OD values against both infectious

and uninfected BHs. The post-immune sera from the control HET-2s immunized

mice also showed similar values against both infectious and uninfected BHs.

To further test the prion specificity of the immune response, the post-immune

sera was tested against a mouse prion peptide library covering PrP residues 23-234

in a linear fashion. The sera was unable to recognize any of the peptides, including

peptides which contained the surface residues of 14R1 (Figure 3.12).
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Figure 3.11: Specificity of vaccine candidates against CWD-infected BH.
The post-immune sera from 14R1, 16R2, 14R3, and HET-2s were used as the primary
Ab in competition ELISAs to determine their specificity towards PrPSc within CWD-
infected BH from Tg33 mice. The post-immune sera were diluted 1.00 × 104 fold
and CWD infected BH as the competing agent was diluted to 1 mg/mL, with a
total protein amount of 50 μg/well. 14R1, 16R2, 14R3, and HET-2s OD values are
depicted using black, purple, blue, and grey bars, respectively.
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Figure 3.12: Post-immune sera recognition of mouse PrP peptides. The post-immune sera diluted 1.00 × 104 fold
from 14R1 immunized mice were used as the primary Ab in an indirect ELISA to determine their specificity towards mouse
PrP peptides. Recombinant PrP (recPrP) is shown in red, and 14R1 and HET-2s serve as controls. Peptides 11, 15, and 16
contain 14R1 surface residues in a linear fashion.
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3.3.3 14R1 efficacy in mice

Due to the lack of specificity against PrPSc using post-immune sera from 16R2

and 14R3 immunized mice (Section 3.3.2), they were not considered further. Follow-

ing the same immunization regimen, TgP101L mice, a familial prion disease model

of GSS (NAZOR et al., 2005), were used to assess the efficacy of 14R1. A total of

three experimental groups were used, consisting of unimmunized, scaffold (HET-2s)

immunized, and vaccine (14R1) immunized, with 12, 13, and 10 mice in each group,

respectively.

The titre of the immune response was first analyzed and showed a strong response

(Figure 3.13). The health status of animals were then assessed, with the unimmunized

and HET-2s immunized animals starting to show disease symptoms at 177±17 days

and 161±27 days, respectively (Figure 3.14). The 14R1 immunized animals remained

healthy longer, at 448±39 days. Symptoms of sick mice include ataxia, rigid tail,

hind-limb paralysis, and circling, to name a few. The survival status of the animals

were also assessed, with the unimmunized animals surviving for 200±22 days, while

the scaffold and vaccine immunized animals remained alive for significantly longer

at 379±148 and 461±50 days, respectively (Figure 3.15).

Histopathology analysis of entire mice brain sections were performed on 3 ani-

mals per group. Unimmunized animals displayed typical spongiform change when

visualized via hematoxylin and eosin (H&E) staining (Figure 3.16). IHC analysis

shows gliosis of GFAP and plaques associated with PrPSc. No major differences

in the H&E, GFAP, and PrPSc staining were observed across the animal groups.

Immunoblotting of terminal animal brains were analyzed and showed an increase in

PrP when compared to healthy animals, and PK digestion of brain samples from

healthy animals were undetected while terminal animals displayed a very faint and

at ∼9 kDa (Figure 3.17).
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Figure 3.13: Immune response of TgP101L mice against 14R1. 14R1 induced
a significantly higher immune response in TgP101L mice, having a higher OD value
even when diluted 1.37 × 107 fold compared to the pre-immune sera diluted 1.00 ×
104 fold. The samples were analyzed via indirect ELISAs.
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Figure 3.14: Health status of TgP101L mice. A Kaplan-Meier curve showing
health status over time for each experimental group. Unimmunized and scaffold
(HET-2s) immunized animals started showing disease symptoms at a similar time,
while vaccine (14R1) immunized animals remained healthy for significantly longer.
Unimmunized, scaffold immunized, and vaccine immunized animals are repesented
by red, black, and green lines, respectively. Black triangles indicate vaccination time
points, and the green circle represents an intercurrent death.

83



Figure 3.15: Survival status of TgP101L mice. A Kaplan-Meier curve showing
survival status over time for each experimental group. Unimmunized animals have
the shortest survival times, while both the scaffold (HET-2s) and vaccine (14R1)
immunized animals remained alive for significantly longer. Unimmunized, scaffold
immunized, and vaccine immunized animals are represented by red, black, and green
lines, respectively. Black triangles indicate vaccination time points, and the green
circle represents an intercurrent death.
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Figure 3.16: Histopathology analysis of TgP101L mice brains. Representative
images of H&E, GFAP and PrPSc staining from each animal group. All immunized
animals were euthanized when GSS symptoms developed. Young control animals
show normal tissue morphology under H&E, and no PrPSc plaques or gliosis of GFAP.
Unimmunized, HET-2s, and 14R1 immunized animals all show typical spongiform
change under H&E staining, as well as gliosis of GFAP and PrPSc plaques. Young
control, unimmunized, HET-2s immunized, and 14R1 immunized animals were <60,
200±22, 379±148, and 461±50 days of age when euthanized. Corpus callosum
(H&E), cerebral cortex (PrPSc), and hippocampus (GFAP) regions are represented.
PrPSc plaques and GFAP were visualized with SAF83 mAb and an anti-GFAP mAb,
respectively. Scale bars = 50 μm.
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Figure 3.17: Immunoblot of healthy and terminal TgP101L mice brains.
BHs of euthanized mice were analyzed via SDS-PAGE and immunblots. 16 μg of
total protein from each BH were loaded per well from either healthy or terminal mice,
with (top) or without (bottom) PK and detected with mAb 38C12. Terminal animals
displayed significantly increased PrP compared to healthy animals. PK digestion
products of healthy animal brains were unable to be detected while terminal animal
brains yielded very faint bands at ∼9 kDa. Glycosylation levels are labelled on the
right, with d, m, and u corresponding to diglycosylated, monoglycolsylated, and
unglycosylated, respectively.
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3.3.4 14R1 efficacy in hamsters

The efficacy of 14R1 against peripheral prion infection was assessed using SHas

orally infected with HY prions. The same three experimental groups were used

as previously described for mice experiments, with 8 animals for each group. All

hamsters were successfully orally inoculated with HY prions and had a 100% attack

rate. Symptoms of sick hamsters include ataxia, inability to right itself, and severe

head bob, to name a few.

For the high dose oral infection, the unimmunized hamsters succumbed to disease

at 137±1 days, while the scaffold immunized animals succumbed to disease at 140±0

days. The vaccine immunized animals remained alive slightly longer at 152±6 days

(p<0.0001) (Figure 3.18).

For the low dose oral infection, the unimmunized hamsters succumbed to disease

at 186±10 days, while the scaffold immunized animals succumbed to disease at

191±11 days. The vaccine immunized animals remained alive slightly longer at

220±65 days (p=0.12), with a single outlier animal remaining alive for 368 days

(Figure 3.19).
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Figure 3.18: Survival curve of hamster with high dose of HY. A Kaplan-Meier
curve showing survival status over time for each experimental group. Unimmunized
and scaffold (HET-2s) immunized animals show similar survival time, while vaccine
(14R1) immunized animals remained alive for significantly longer. Unimmunized,
scaffold immunized, and vaccine immunized animals are represented by red, black
and green lines, respectively.
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Figure 3.19: Survival curve of hamster with low dose of HY. A Kaplan-Meier
curve showing survival status over time for each experimental group. Unimmunized
and scaffold (HET-2s) immunized animals show similar survival time, while some
vaccine (14R1) immunized animals remained alive longer. Unimmunized, scaffold
immunized, and vaccine immunized animals are represented by red, black and green
lines, respectively.
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3.3.5 Immune response of 14R1 in elk

12 elk were immunized with one of the following: PBS, 100 μg antigen, or 200 μg

antigen. The genotype of all elk were determined prior to the start of experiments,

specifically the codons at residue 132, which can be either methionine/methionine

(M/M) or methionine/leucine (M/L). Each group consisted of 4 animals, with 2

M/M and 2 M/L animals. The titre of the animals were evaluated using post-immune

sera diluted 1.00 × 104 fold, with the 200 μg dose giving a slightly higher response

compared to the 100 μg (Figure 3.20). No immune response increase was seen in

animals given only PBS.

The prion specificity of the post-immune sera from each group were tested

to see if they can differentiate between BHs from CWD-infected TgElk mice and

uninfected WT mice. As expected, the post-immune sera from PBS immunized

animals recognized both BHs equally, while animals immunized with both the 100

and 200 μg of 14R1 were able to differentiate between uninfected and infected BHs

(Figure 3.21). One animal each from the 100 (“100-MM-1”) and 200 (“200-ML-2”)

μg immunizations were unable to differentiate between the BHs.
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Figure 3.20: Immune response of elk against 14R1. 14R1 was used to immunize
elk over a period of several months. When comparing the pre- and post-immune
sera titre diluted 1.00 × 104 fold, animals that received 100 or 200 μg of antigen
yielded an increased immune response, while PBS inoculated animals yielded no
measurable increase in titre. Measurements done using pre- and post-immune sera
are indicated by black and blue bars, respectively. The samples were analyzed via
an indirect ELISA.
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Figure 3.21: Specificity of elk sera against CWD-infected BH. The post-
immune sera from elk were used as the primary Ab in competition ELISAs to
determine their specificity towards PrPSc within CWD-infected BH from TgElk
mice. The same animal ID order on the x-axis is used as previously seen for the elk
titre (Figure 3.20). The post-immune sera were titre-matched to give an OD value
between 1 and 2 when an indirect ELISA was performed. All BHs were diluted to 1
mg/mL with a total protein amount of 50 μg/well. Measurements done using WT
and CWD-infected BHs are indicated by black and blue bars, respectively.
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3.4 A PrPSc-specific monoclonal antibody

After the post-immune sera of 14R1 immunized animals showed specificity for

CWD-infected BH, their spleens from these animals were taken to isolate a PrPSc-

specific mAb. After successful hybridoma generation, the clones were screened

against both 14R1 and HET-2s. Clones that showed no recognition towards HET-2s

but were able to recognize 14R1 were kept and further subcloned. One particular

hybridoma, termed “G1”, produced a mAb that preferentially recognized 14R1 and

not HET-2s. Its specificity is explored in the sections below.

3.4.1 The prion specificity of G1

After isolation of G1, it was tested in competition ELISAs to verify its specificity

towards PrPSc. The results described here were collected with the assistance of Dr.

Xinli Tang. A variety of human and animal prion strain BHs were tested against

G1. The animal prion strains included RML, CWD from Tg33 and TgElk, HY and

DY from SHas, and C-BSE, H-BSE, and L-BSE from Tg4092. The human prion

strains included GSS, fCJD, sCJD, vCJD, and FFI. G1 recognized all the animal

prion strains over the non-infectious controls, with only HY and DY having lower

ΔOD values (Figure 3.22). G1 was also able to recognize the human prion strains,

except sCJD, which could be a false-negative due to a sample artifact.
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Figure 3.22: Specificity of G1 against various prion strains. G1 was used as
the primary Ab in competition ELISAs to determine its specificity towards PrPSc of
various human and animal prion strains. G1 was diluted 1.00 × 104 fold and all BHs
were diluted to 1 mg/mL, with a total protein amount of 25 μg/well. The ΔOD values
for infectious prion samples were markedly higher than the non-infectious controls.
The ΔOD values of HY and DY prions were slightly reduced when compared to
the other animal strains. The ΔOD value of sCJD was similar to the non-infectious
control.
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3.4.2 The structural epitope of G1

To determine the exact epitope on 14R1 that G1 recognizes, a series of 14R1

revertant mutants were created. A list of all constructs created for epitope mapping

is listed in Table 3.2. Pair-wise residue replacements required eight constructs to

fully cover all the surface residue changes in 14R1. 4 inter-rung and 4 intra-rung

revertant constructs were created and were titled constructs 14R1A-D (Figure 3.23)

to 14R1E-H (Figure 3.25), respectively. All constructs were created, purified, and

processed as previously described for vaccine candidates. Both inter-rung and intra-

rung constructs displayed typical fibrils when visualized using TEM (Figures 3.24

and 3.26). Using antigen coated plates in indirect ELISAs, G1 diluted 1.00 × 104 fold

was able to recognize all constructs except A and E (Figure 3.27). These constructs

lack the histidine on the β-arc position of rungs II & IV (Figure 3.28), creating a

noticeable cavity in a space-filling model of 14R1 (Figure 3.29). The recognition for

14R1C was diminished, but still retained an OD value of above 1.
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Table 3.2: Summary and sequence of epitope mapping constructsab

Name Rung I Rung II Rung III Rung IV Fibril formation Purpose

HET-2s reference NSAKDIRTEE NSVETVVGKG same as rung I same as rung II yes N/A
14R1 reference NSAKYIDTED NSVEKVNGKH same as rung I same as rung II yes N/A
14R1A NSAKYIDTEE NSVEKVNGKG same as rung I same as rung II yes inter-rung construct
14R1B NSAKYIDTRD NSVEKVNGTH same as rung I same as rung II yes inter-rung construct
14R1C NSAKYIRTED NSVEKVVGKH same as rung I same as rung II yes inter-rung construct
14R1D NSAKDIDTED NSVETVNGKH same as rung I same as rung II yes inter-rung construct
14R1E NSAKYIDTED NSVEKVNGKG same as rung I same as rung II yes intra-rung construct
14R1F NSAKYIDTEE NSVEKVNGKH same as rung I same as rung II yes intra-rung construct
14R1G NSAKYIDTED NSVETVVGKH same as rung I same as rung II yes intra-rung construct
14R1H NSAKDIRTED NSVEKVNGKH same as rung I same as rung II yes intra-rung construct
1G NSAKYIDTEG NSVEKVNGKH NSAKYIDTED same as rung II yes glycine-replacement construct
2G NSAKYIDTEG NSVEKVNGKG same as rung I same as rung II yes glycine-replacement construct
HG NSAKYIDTEG NSVEKVNGKH same as rung I same as rung II yes glycine-replacement construct
HDB NSAKDIRTDG NSVETVVGKG same as rung I same as rung II yes HD construct
HDC NSAKDIDTEG NSVETVVGKG same as rung I same as rung II yes HD construct
aUnderline indicates surface exposed residues. Single letters represent amino acids (See Standard Amino Acid Codes, page xxiv)
bRed, blue, green, and gray colours represent negatively charged, positively charged, polar, and hydrophobic side chain residues, respectively
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Figure 3.23: Inter-rung revertant constructs cartoon models. 4 inter-rung
revertant constructs titled 14R1A-D were created, with the reverted HET-2s residues
shown within ovals. Numbers correspond to deer prion protein sequence. Backbone
colouring runs blue (N-terminal) to red (C-terminal). Single letters represent amino
acids (See Standard Amino Acid Codes, page xxiv).

97



Figure 3.24: TEM of inter-rung revertant constructs. Purified revertant con-
structs show adequately formed fibrils, consistent with fibrils formed from 14R1 or
HET-2s. Samples were negatively stained with 2% uranyl acetate and visualized at
19K magnification via TEM.

98



Figure 3.25: Intra-rung revertant constructs cartoon models. 4 intra-rung
revertant constructs titled 14R1E-H were created, with the reverted HET-2s residues
shown within ovals. Numbers correspond to deer prion protein sequence. Backbone
colouring runs blue (N-terminal) to red (C-terminal). Single letters represent amino
acids (See Standard Amino Acid Codes, page xxiv).
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Figure 3.26: TEM of intra-rung revertant constructs. Purified revertant con-
structs show adequately formed fibrils, consistent with fibrils formed from 14R1 or
HET-2s. Samples were negatively stained with 2% uranyl acetate and visualized at
19K magnification via TEM.
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Figure 3.27: G1 recognition towards revertant mutants. The recognition of G1
diluted 1.00 × 104 fold against the revertants was assessed via an indirect ELISA.
The antibody was unable to recognize 14R1A and largely unable to recognize 14R1E.
14R1 and HET-2s acted as positive and negative controls, respectively. Samples were
tested technical replicates of 3.
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Figure 3.28: 14R1A and 14R1E lack a histidine. The revertant constructs
14R1A and 14R1E are missing a histidine on the β-arc position of rungs II and IV.
Numbers correspond to deer prion protein sequence. Backbone colouring runs blue
(N-terminal) to red (C-terminal). Single letters represent amino acids (See Standard
Amino Acid Codes, page xxiv).
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Figure 3.29: 14R1 space-filling model with and without the β-arc histidines.
The top model shows a surface area occupied by histidines (red circle), while the
bottom model shows a cavity (red circle) to depict the loss of histidines, changing
the surface epitope of G1.
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More constructs were made focusing on altering residues on the β-arc posi-

tion, titled 1G, 2G, and HG. Instead of reverting 14R1 residues back to HET-2s

residues, these constructs featured glycines as the replaced residues (Figure 3.30).

All constructs were created, purified, and processed as previously described. These

constructs displayed typical fibrils when visualized under TEM (Figure 3.31). Using

antigen coated plates in indirect ELISAs, G1 at 1.00 × 10-4 dilution was able to

recognize construct 1G and not able to recognize 2G at all (Figure 3.32). Construct

HG, which only contains a histidine was only minimally recognized.

To determine the importance of the residue positioning on the β-arc, 2 more

constructs were made, consisting of glycine residues on the β-arc position, while

moving the histidine and aspartate residues found at the β-arc position of 14R1 to

the revertant residue positions found on 14R1B and 14R1C, titled HDB and HDC,

respectively (Figure 3.33). The rest of the residues were left as HET-2s residues.

These constructs were processed and purified as previously described, and displayed

typical fibrils when visualized under TEM (Figure 3.34). When using G1 diluted

1.00 × 104 fold in an indirect ELISA, both HDB and HDC constructs were not

recognized (Figure 3.35).
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Figure 3.30: Glycine replacement constructs cartoon models. These con-
structs focused on the residues of the β-arc of 14R1, and replaced the residues with
glycines instead of HET-2s residues. Numbers correspond to deer prion protein
sequence. Backbone colouring runs blue (N-terminal) to red (C-terminal). Single
letters represent amino acids (See Standard Amino Acid Codes, page xxiv).
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Figure 3.31: TEM of glycine replacement constructs. Purified glycine replace-
ment constructs show adequately formed fibrils, consistent with fibrils formed from
14R1 or HET-2s. Samples were negatively stained with 2% uranyl acetate and visu-
alized at 19K magnification via TEM.
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Figure 3.32: G1 recognition towards glycine replacement constructs. The
recognition of G1 diluted 1.00 × 104 fold against the glycine replacement constructs
was assessed via an indirect ELISA. The antibody was unable to recognize 2G and
largely unable to recognize HG. 14R1 and HET-2s acted as positive and negative
controls, respectively.
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Figure 3.33: HDB and HDC cartoon models. These constructs contained
glycines on their β-arc position, as well as histidine and aspartate on the residue
positions of 14R1B and 14R1C. The remaining residues are from HET-2s. Num-
bers correspond to deer prion protein sequence. Backbone colouring runs blue (N-
terminal) to red (C-terminal). Single letters represent amino acids (See Standard
Amino Acid Codes, page xxiv).
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Figure 3.34: TEM of HDB and HDC constructs. Purified HDB and HDC
constructs show adequately formed fibrils, consistent with fibrils formed from 14R1
or HET-2s. Samples were negatively stained with 2% uranyl acetate and visualized
at 19K magnification via TEM.
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Figure 3.35: G1 recognition towards HDB and HDC. The recognition of G1
diluted 1.00 × 104 fold against the HDB and HDC was assessed via an indirect
ELISA. The antibody was unable to recognize either constructs. 14R1 and HET-2s
acted as positive and negative controls, respectively.
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3.5 Improvements to vaccination regimen

The use of FA is considered to be experimental only; its toxic effects are well

known and established (HUGHES et al., 1970; CHAPEL et al., 1976). Our current

immunization regimen is thus limited in being experimental in nature. To resolve

this, we explored 2 other adjuvants - alum and QS-21. The stability of our antigen,

14R1, was also investigated due to some unforeseen degradation in our purified

samples. Strategies to increase protein stability and the effects of adjuvants are

discussed below.

3.5.1 The effects of adjuvants on the immune response in

mice

Alum or QS-21 in combination with 14R1 were used to immunize TgP101L mice,

with 8 mice being used for each adjuvant treatment. Both adjuvants in combination

with 14R1 were well tolerated by mice. Comparing their titres over the course of the

immunization schedule at a dilution of 1.39 × 107 fold, alum was able to maintain

or exceed the titre when compared to FA, while QS-21 was slightly lower than both

(Figure 3.36).
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Figure 3.36: Immune response of TgP101L mice using various adjuvants.
The immune response of 14R1 against TgP101L is affected by the adjuvant; alum is
eventually able to induce the highest titre (post-immune sera), followed by FA and
then QS-21. Pre-immune sera was diluted 1.00 × 104 fold while all other sera were
diluted 1.39 × 107 fold.
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3.5.2 The effect of salt on 14R1 stability

Purified 14R1 is stored in a ∼0.5 M pH 7.4 Tris-acetate buffer, while the working

solution is typically PBS, which contains much lower concentration of salts. To

evaluate and compare the effects of salts on 14R1, a protein stability assay was

established to measure the stability of 14R1 over a period of several weeks in various

concentrations of NaCl and PBS. The stability of 14R1 is severely reduced in plates

containing only 1× PBS, as assessed by an indirect ELISA using G1, while the

addition of 10 mM NaCl or 10× PBS increased the recognition by G1 (Figure 3.37).

The difference in OD values between 14R1 stored in 1× PBS and the last week of

14R1 stored in 10 mM NaCl were not significant (p=0.14), while the differences

between 14R1 stored in the 10× PBS is (p=0.0494) (Figure 3.38).
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Figure 3.37: Stability of 14R1 in various solutions. The stability of 14R1 was
assessed via recognition by G1 diluted 1.00 × 104 fold in an indirect ELISA over a
span of 5 weeks. The OD values are reduced when using 14R1 stored in 1× PBS,
while addition of 10 mM NaCl or using 10× PBS increases it.
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Figure 3.38: Stability differences of 14R1 in various solutions. The differences
in OD values from the initial and last week are significantly different (p=0.0494)
when 14R1 is stored in 10× PBS, while not significant (p=0.14) with the addition
of 10 mM NaCl.
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3.5.3 The effect of lyophilization on 14R1 stability

The stability of purified 14R1 after buffer exchange and sonication was assessed

via indirect ELISAs. The post-immune sera of 4× 14R1 immunized animals was

used to determine the recognition of freshly prepared and coated 14R1 onto plates

compared to lyophilized and coated 14R1. The lyophilized product was recognized,

with a very minimal reduction in OD values (Figure 3.39).

Figure 3.39: Stability of 14R1 following lyophilization. The stability of 14R1
after lyophilization was assessed via recognition by post-immune sera from 14R1
immunized mice. The average recognition of post-immune sera from 4 animals show
a minimal reduction in recognition of lyophilized 14R1.
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Chapter 4

Discussion and Conclusion

4.1 Rationally designed, structured based vaccines

Throughout this thesis, I have outlined the process and resulting data from

attempts to rationally design a prion vaccine based upon structural knowledge of

specific experimental data. The first step involved the creation of a vaccine scaffold,

which was based upon the HET-s fungal prion (Section 1.5.3) due to it containing a β-

solenoid structure, specifically a two-rung β-solenoid (WASMER et al., 2008). Due to

the lack of prion structures at the initial stages of this project, the scaffolds (and thus

vaccines) were designed with the assumption that infectious PrPSc also contained a

β-solenoid structure, specifically a 4RβS. This presumed four-rung nature of PrPSc

was successfully mimicked by connecting two monomers of HET-s to create HET-2s.

Purified HET-2s showed a pure product approximately double the molecular weight

(MW) of HET-s (Figure 3.1) and TEM analysis showed fibrils that were very similar

when compared to HET-s (Figure 3.2).

Due to the selective pressure of HET-s as a functional amyloid, the addition of a

linker and the subsequent successful identification of HET-2s fibrils on TEM likely

indicates that such amyloids are also β-solenoidal. TEM is a crucial verification

step since the lack of fibrils from purified samples would likely indicate protein
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misfolding, typically resulting in amorphous aggregates instead. Without proper

protein folding, the designed vaccines would have incorrect epitope exposure, and

thus likely be completely ineffective as a prion vaccine. The linker length was modified

for optimal refolding, with the 14 and 16 mers showing the best fibrils in terms of

length, abundance, and minimal amorphous aggregates (Figure 3.3). The conserved

nature of HET-s also allowed for a virtually unmodified purification protocol for

all constructs, therefore allowing for the purification of HET-s and all subsequence

scaffolds and vaccine candidates at a very similar yield and purity. Constructs that

lacked fibrils when examined on TEM were presumed to be misfolded and thus

lacked the surface residues that would normally be exposed when correctly folded.

The use of an amyloid-forming scaffold to mimic a misfolding protein of interest

can be broadened to include other neurodegenerative diseases, such as Alzheimer’s

disease (AD) or Parkinson’s disease (PD), a direction which is currently being

explored in the Wille lab. These results form another graduate student project and,

as such, will not be discussed here in great detail. A scaffold protein with surface

residues from misfolded α-synuclein for PD or Aβ or tau for AD can potentially

elicit an immune response specific for the toxic forms of these proteins. Due to the

current lack of vaccines for any neurodegenerative diseases, our approach offers a

novel method for disease prevention.

4.2 Potential prion vaccine

After the optimal linker length was determined, multiple vaccine candidates

were constructed, purified, and assessed via TEM. The initial vaccine candidates

contained changes to all their surface residues in the exposed region and subsequently

were all incorrectly folded, as evidenced by a lack of fibrils when visualized via TEM.

Strategies to increase the likelihood of proper folding included modifications of only

the interior (rungs II & III) or the exterior (rungs I & IV) residues. The interior
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rungs should contribute to monomeric stability, while the exterior rungs should

increase fibril formation due to the interactions between said rungs. However, both

strategies were unsuccessful in creating properly folded vaccine candidates.

Another strategy involved repeating the surface residue changes of a HET-s

monomer. Due to the repetition of residues, the amount of salt bridges could either

be maintained or even increased, and is likely a key stabilizing factor for fibril

formation. Using this strategy, 3 vaccine candidates (Sections 3.2.1 and 3.2.2) were

produced and all successfully formed fibrils (Figures 3.7 and 3.9). All three vaccine

candidates and HET-2s were then used to immunize Prnp-/- mice to determine

a working immunization regimen that was well tolerated by all the animals. The

immune response from all animals showed titre levels that were comparable across

all constructs (Figure 3.10).

This immunization regimen was then used to immunize WT mice and determine

if there was any specificity towards PrPSc as designed. This was tested using post-

immune sera from the immunized animals to see if they recognized prion-infected

BH in a competition ELISA. The results showed that only post-immune sera from

14R1 had increased recognition of infectious BH compared to uninfectious BH

(Figure 3.11). This was not seen with post-immune sera from 16R2, 14R3, and

HET-2s immunized animals in the same assay with the same BHs. The use of a

competition ELISA was due to the difficulty in capturing native prion fibrils due

to their massive size. Normally, immunoassays use proteases and denaturants to

cleave and denature both PrPC and PrPSc, respectively. This renders PrPSc soluble

and allows for its capture on either a plate or a membrane, while also completely

degrading any PrPC. Denaturation of PrPSc would result in the loss of structural

elements that would be recognized by the immune response. Competition ELISAs

solves these issues by allowing for the detection of any molecule in its native state

and in this case, PrPSc.

The residues chosen and placed on 14R1 all contain charged and polar side
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chains (Figure 3.4). Their non-linear nature results in a discontinuous and continuous

surface exposure on PrPC (Figure 3.5) and PrPSc (Figure 3.6), respectively. While

16R2 and 14R3 both contain prion residues, they were in the wrong position; i.e.,

the relative position of residues on 16R2 and 14R3 are too far and too close to

actually exist on a 4RβS model of PrPSc, respectively (Figure 3.8). The residue

changes of 14R1 were chosen with more focus on their relevant internal position

in a 4RβS model, while 16R2 and 14R3 residues were chosen with a focus on the

quantity of salt bridge interactions to increase fibril formation. The result is that

while 16R2 and 14R3 both formed fibrils, their chosen residues likely have little

resemblance to their actual placement on monomeric PrPSc, and thus the immune

response generated from these candidates would have minimal to no affinity for

infectious prions. Following these results, 16R2 and 14R3 were no longer considered,

leaving 14R1 as the sole prion vaccine candidate.

The post-immune sera from 14R1 was also tested against a mouse PrP peptide

library. These short peptides have minimal tertiary protein structure, with the

majority of them likely being linear. No recognition of any peptide spanning the

entire mouse prion protein was observed (Figure 3.12). This was expected and serves

to show that whatever is being recognized from the immune response is at the very

least, not linear. This would be in contrast to other prion vaccines, which cannot

differentiate between PrPC and PrPSc and were designed to recognize PrPC only

(PILON et al., 2007; ISHIBASHI et al., 2011; XANTHOPOULOS et al., 2013; ABDELAZIZ

et al., 2018; EIDEN et al., 2021).

Following the verification of PrPSc specificity, the efficacy of 14R1 against ge-

netic prion disease was assessed via a GSS disease model with a proline to leucine

substitution at position 101, corresponding to position 102 in human PrP. The

animals developed a very high Ab titre against 14R1, showing increased recognition

of 14R1 even when diluted 1.37 × 107 fold over the pre-immune sera diluted 1.00 ×

104 fold (Figure 3.13). Similar symptoms were reported for all animal groups and
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are within what is described in the literature for this GSS model (NAZOR et al.,

2005), and all the mice did eventually succumb to disease and required euthanasia.

The health status of scaffold immunize animals were not significantly different from

the unimmunized animals, yet there was a significant increase in survival time for

the scaffold immunized animals (Figures 3.14 and 3.15). While the exact cause of

this survival extension is unknown, a possible explanation is adjuvant-induced ex-

perimental autoimmune disease (BILLIAU et al., 2001). FAs are known to cause a

variety of experimental autoimmune diseases in animal models, such as myocardi-

tis (FONTES et al., 2017), thyroiditis (CIHÁKOVÁ et al., 2004), encephalomyelitis

(LAAKER et al., 2021), and uveitis (CASPI, 2003). Despite autoimmune disease being

a typically detrimental condition, autoimmune recognition of both PrPC and PrPSc

can potentially increase the survival time animal hosts with prion disease. Although

the vaccine was unable to prevent death, it did significantly delay the onset of disease

for mice immunized with 14R1. Throughout the lifespan of the mice, their immune

response titres wane while their bodies continuously produce GSS prions, acting in

opposition, which possibly explains the eventual death of the vaccine immunized

mice. Histopathology analyses of these animals showed that spongiform change,

gliosis of GFAP, and PrPSc plaques were present in all animals in their respective

areas (Figure 3.16), confirming that all animals did indeed succumb to prion dis-

ease. Terminal animal brains analyzed via immunoblotting revealed increased PrP

compared to healthy animals as expected, but following PK digestion the fragments

from both healthy and terminal animals were largely unable to be detected, with

only a very faint band at ∼9 kDa for terminal animals (Figure 3.17).

The efficacy of 14R1 against an acquired prion disease was assessed using SHas

infected with HY prions. Both the high and low dose oral inoculation had an 100%

attack rate, with all animals succumbing to disease. The per os titre of HY published

by KINCAID et al. (2007) differed from what we observed; our low dose inoculation

saw a 100% attack rate, despite containing significantly less than what is published,
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indicating that our HY inocula contained more prions/g or the published value is

too low. For the high dose inoculation, the vaccine was not protective, despite having

a significant difference, with the 14R1 immunized animals surviving only slightly

longer than the control groups (Figure 3.18). This significance can be attributed

to the high uniformity at which HY prion disease progresses in SHas, resulting in

an essentially identical incubation period for all unimmunized animals. Thus, even

relatively minor delays in survival period can be significant while not actually being

protective. The low dose inoculation saw more protective effect for half the animals

immunized with 14R1, with one hamster living significantly longer than the rest

(Figure 3.19), but the overall trend was not significant. Dosing plays an important

role in many diseases, and prion diseases are no exception, with the low dose oral

inoculation being less potent, resulting in an increase in absolute survival time.

There is potentially a mismatch of an oral prion challenge and IP immunization,

since the route of entry for oral prion infection is typically via Peyer’s patches within

the small intestine before neuroinvasion (ANDRÉOLETTI et al., 2000; GLATZEL et al.,

2001; MCBRIDE et al., 2001; PRINZ et al., 2003; DONALDSON DAVID et al., 2015).

IP injections are often used for the quick onset of effects and are acceptable for

proof-of-concept studies such as ours (TURNER et al., 2011; AL SHOYAIB et al.,

2019). It is also possible that even the low dose described here still contains too

much prions for a vaccine to have a protective effect, as previously mentioned when

comparing the published infectious per os titre of HY with our data.

More recently, 14R1 was used to immunize elk that were naturally infected

with CWD. Due to the toxicity concerns with FAs, alum was used as the adjuvant

instead. 14R1 elicited an increased immune response with both 100 and 200 μg

antigen amounts, although the response was much lower when compared to the

titres obtained for mice (Figure 3.20). The specificity of the post-immune sera titre

against PrPSc was determined using competition ELISAs. Sera from PBS immunized

animals were unable to differentiate between CWD-infected and uninfected BH, as
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expected. The animals immunized with 100 or 200 μg of 14R1 were able to specifically

recognize CWD-infected BH, but 1 animal from each group were unable to elicit a

PrPSc-specific immune response. The 1 elk from the 100 μg immunization group had

the lowest titre out of all the vaccine immunize animals, possibly explaining the lack

of PrPSc specificity. Conversely, the 1 elk from the 200 μg immunization group had

the second highest titre, yet the immune response was also not PrPSc-specific. The

genotype of the animals did not seem to affect the PrPSc-specificity of the immune

response; the 100 and 200 μg elk were M/M and M/L, respectively. With only 2

animals of each genotype (M/M or M/L) per group, it is hard to say whether the

vaccine is 75% effective at eliciting a PrPSc-specific immune response at both doses

or simply a chance event both times.

The proposed mechanism of 14R1’s efficacy is PrPSc recognition by Abs and

the subsequent removal from a host. Due to the absence of peripheral infection in

genetic prion diseases, the Abs from the elicited immune response must cross the

BBB to have an effect. It is known that the BBB limits the entry of both immune

cells and immune mediators, making the brain an immune privileged site that has

different immune responses than those in the peripheral immune system (WILSON

et al., 2010). A way to get around this is to use receptor-meditated transport (RMT)

(PARDRIDGE et al., 2012), but Abs like Aducanumab (trademark name Aduhelm)

are able to effectively clear Aβ plaques in the CNS without any transport system,

showing that some Abs, for reasons not entirely clear, are able to sufficiently cross

the BBB (BUSSIERE et al., 2013; SEVIGNY et al., 2016). It is possible that the

immune response elicited by 14R1 works in a similar way and these Abs are also

able to penetrate into the brain.

Vaccination against oral prion infection from GOÑI et al. (2015) was able to

elicit a high IgA immune response; the deer with the highest IgA titre remained

asymptomatic and was tested negative by both RAMALT and tonsil biopsy, despite

sharing a pen with CWD positive animals for over a year and being fully susceptible
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to CWD (codon 96=G/G). However, these animals received a total of 8 immuniza-

tions, applied mucosally to the rumen, and later to the tonsil and rectum over a

period of 11 months. While such a protocol provides a good proof of concept, it is

labour intensive and difficult to scale in terms of wildlife CWD management. WOOD

et al. (2018) observed a form of vaccine-induced disease acceleration specifically in

132 M/M elk following immunization with their purported DSE vaccine. While there

is no evidence to suggest that 14R1 could accelerate disease progression, it cannot

be ruled out currently. Should our current immunization regimen with 14R1 in elk

demonstrate some efficacy, mucosal vaccination with 14R1 provides a possible future

improvement, along with the optimization currently done.

Recently, purified brain samples from the 263K prion strain have been resolved

using cryo-EM to identify a PIRIBS structure (KRAUS et al., 2021). A second study

using RML-derived brain samples also identified a PIRIBS structure (MANKA et

al., 2022). While these PIRIBS structures are somewhat incompatible with the

4RβS model, our prion vaccine design remains fundamentally unchanged. Instead

of using a 4RβS scaffold, HET-s would be sufficient and likely have greater residue

selection freedom and placement due to its slightly increased fibril stability over HET-

2s. Assuming the PIRIBS structure is representative of bona fide prion structure,

vaccines designed with this knowledge should show increased efficacy over 14R1.

While the efficacy of 14R1 seems limited to the GSS mouse model, this method of

vaccine development allows for a method of prion recognition that has not been

demonstrated before. Prior prion vaccine efforts were largely unable to effectively

utilize the structural differences between PrPC and PrPSc, resulting in a trial-and-

error approach, often with sub-optimal results.

124



4.3 Vaccine-derived antibody

The results of 14R1 as a vaccine led to attempts to create a mAb that preferen-

tially recognizes PrPSc, termed “G1”. After confirming the Ab recognizes only 14R1

and not HET-2s, its specificity against PrPSc was tested in the same way as the

post-immune sera. A variety of animal and human prion strains were tested, and sur-

prisingly all were recognized except sCJD (Figure 3.22). With no obvious structural

differences between sCJD and the other prion strains due to a lack of structural

information, it is possible that the particular sample used was a false-negative and

contained little to no PrPSc, despite coming from a diseased patient. This recognition

of various prion strains shows that the epitope is being recognized is shared. While

this suggests a common structural element, to date, no 4RβS structure has been

solved for any mammalian prion disease.

The epitope of G1 has been resolved via structural epitope mapping. Structural

epitopes are often difficult to map due to the resulting structural instability arising

from point mutations on the antigen of interest. However, due to the β-solenoidal

nature of HET-2s, revertant mutants can be made that retain their structure while

potentially ablating an epitope, thereby mapping out the exact residues that G1

recognizes. Systematic residue changes resulted in the creation of eight revertant

constructs, and all constructs displayed typical fibrils, indicative of β-solenoid fibril

formation and correct epitope exposure/removal. G1 was unable to recognize con-

structs A and E, both of which lack a histidine at the β-arc position of rungs II

& IV (Figures 3.27 to 3.29), implying that histidine is part of the epitope that G1

recognizes. 3 more constructs were made, reverting only the β-arc residues back to

glycines instead of HET-2s residues. As expected, construct 2G was not recognized

by G1 since it contains only glycines on the β-arc (Figure 3.30), while the limited

recognition of HG also hints at the importance of the histidine residue. Only con-

struct 1G was fully recognized, containing both a histidine and aspartate on the
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β-arc, showing this is the epitope of G1. 2 more constructs were made, moving the

position of the histidine and aspartate residues from the β-arc to β-strands 2 & 6

(Figure 3.33) to try and determine the relative importance of residues positioning.

Neither constructs were able to be recognized by G1 (Figure 3.35).

Combining this information, the epitope of G1 is thought to be a histidine and

aspartate on a β-arc position. The same residues in a similar position (e.g. β-arc)

can also be assumed to also be present on the surface of PrPSc. This same struc-

tural element is presumed to exist on the various prion strains that G1 recognizes.

Currently, published and unpublished prion structures are all PIRIBS, and closer

examination shows that such a β-arc with histidine and aspartate is absent (KRAUS

et al., 2021; HALLINAN et al., 2022; HOYT et al., 2022; MANKA et al., 2022). A

possible explanation for this despite the PrPSc specificity of G1 is the existence

of intermediate structures. Prion purifications often include protease digestion and

the addition of detergent to cleave and solubilize the sample, respectively. This

harsh but necessary purification method inherently purifies species that are highly

protease and detergent resistant, while intermediate structures are often far less

stable. It is then possible, that the solved PIRIBS structures represent an end-stage

phenomenon, one that is highly stable and also infectious, but not the sole structural

species that exists. Purification of these intermediate structure subpopulations in

high quantities that are suitable for structural analysis is challenging, and likely not

possible currently.

While G1 appears to be PrPSc-specific, it is possible that this recognition is lim-

ited to a structural element that happens to be present on PrPSc, much like how 15B3

recognizes both PrP and PrPSc aggregates (BIASINI et al., 2008). 15B3 also recog-

nizes oligomers of amyloid-β (Aβ)42, which suggests that this is an aggregate-specific

mAb that recognizes PrPSc and Aβ oligomers (STRAVALACI et al., 2016). Thus, it

is uncertain whether G1 is truly PrPSc-specific, or rather just aggregate-specific.

A truly PrPSc-specific Ab would require a unique structural element that is not
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shared with other protein aggregates. Alternatively, a discontinuous epitope Ab that

can recognize multiple different protein aggregates is clearly possible (STRAVALACI

et al., 2016), and can offer therapeutic benefits. Discontinuous epitope Abs that are

isolated from a rationally-designed vaccine can have their epitopes mapped (like G1)

and allows for targeted epitope designing of such Abs.

The Wille lab has sequenced the complementarity-determining regions (CDRs)

and created various recombinant, humanized forms of G1. These results form part

of another graduate student project and will not be discussed here in great detail.

Ab modifications such as humanization alleviates the inherent formation of anti-

mouse Abs in non-murine hosts, broadening the use of non-native mAbs, while

recombinant production is both cheaper and easier to scale-up. A recombinant, host-

adapted version of G1 offers a route forward for various use cases, such as passive

immunotherapy, various structural investigations, or for use as a PrPSc-specific Ab

in certain immunoassays. Future prion vaccines that demonstrate better or increased

efficacy than 14R1 would allow for the potential to isolate and characterize other

mAbs. The affinity of such Abs is however almost wholly dependent on the antigen

they are derived upon. Assuming that future prion vaccine candidates have superior

efficacy, the resulting antibody isolated can be further modified and applied in

the same way as G1. In the same way that Aducanumab removes Aβ plaques, an

equivalent Ab that can clear prion plaques is also possible, but whether such an

event would yield cognitive improvements are yet to be determined.

4.4 Vaccine improvements

The use of adjuvants as part of an immunization regimen was carefully considered.

Initially, FAs were chosen for their non-specific, potent immunostimulating effects.

These adjuvants are fairly toxic, and thus not suitable for use beyond experimental

settings. Using alternative, less toxic adjuvants would facilitate testing of 14R1 in
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other animal model systems. Two adjuvants were considered, alum and QS-21, both

of which are part of commercial vaccine formulations. Alum, or aluminum hydroxide

in our case, is considered the gold standard of adjuvants and is known to stimulate

Th2 immune cells, resulting in the production of antigen-specific antibodies. QS-21

is a potent adjuvant that induces a Th1 immune response and leads to cell-mediated

immunity.

Compared to the immunizations with FA, alum induced a slightly higher immune

response after the second boost, while the immune response was slightly lower for the

QS-21 immunizations (Figure 3.36). While the titres of the FA immunized animals

were initially higher, they tapered off, reaching a maximum lower than alum and

higher than QS-21. Both the alum and QS-21 have an upward trend that could

continue if extra boosts were given. The higher immune response of alum suggests

that higher titres are better achieved with a Th2 immune response (alum) over Th1

(QS-21).

Due to the necessary and strict structural requirements of 14R1, careful con-

siderations were taken to maximize its stability. Typically, surface residue changes

negatively affect monomer stability and fibril formation because HET-s has evolved

to form β-solenoids. The storage and working solution for 14R1 differ in the concen-

tration of salt present. Long term storage of 14R1 in PBS resulted in a significant

loss of recognition by G1 that increased over time (Figure 3.37), implying a loss

of conformation of histidine and aspartate on the β-arc. The stability assays only

ran for 6 weeks with a downward trend for 14R1 stored in PBS, and whether such

a trend would continue downward or eventually reach equilibrium is not known.

In the case where an equilibrium is eventually reached, one can assume there was

an adequate quantity of salts and their resulting ions to stabilize the various hy-

drophilic interactions. In the case where the downward trend continues until 14R1 is

completely unrecognized by G1, it is possible that the salt content was insufficient

to adequately stabilize the surface residues, resulting in the eventual degradation of
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14R1.

Lyophilization of 14R1 mostly prevented the degradation of various structural

elements, as shown by the minimal differences in OD values using post-immune sera

from 14R1 immunized animals (Figure 3.39). In this scenario, 14R1 was sonicated,

frozen, lyophilized, and thawed for use right before. It is unclear whether repeated

lyophilization would maintain or decrease the recognition of coated 14R1, and

whether the buffer plays a role.

4.5 Conclusion

One of the major goals of this project was to explore whether structural differ-

ences between PrPC and PrPSc could be exploited for preventing prion diseases. By

mimicking the backbone and surface residues of PrPSc with a protein scaffold, we

designed several vaccine candidates that were properly-folded, and therefore would

not result in an immune response against PrPC. One such vaccine candidate, 14R1,

elicited a PrPSc-specific immune response and demonstrate efficacy in delaying GSS

onset in an animal model. A mAb, G1, derived from a 14R1 immunized mouse,

specifically recognized multiple animal and human prion strains. The epitope of

G1 was determined to be a histidine and aspartate on a β-arc, and this structural

element is proposed to be shared by PrPSc, allowing for G1 recognition. The ability

of 14R1 to function as a vaccine is highly dependent on it maintaining its tertiary

structure, which can be accomplished by storage in a high-salt concentration buffer

or lyophilization. Taken altogether, these results demonstrate the feasibility of our

vaccine design and the resulting Abs that can be potentially isolated, and both of

these can be improved upon as more prion structural information is discovered. Our

approach is also not limited to prion diseases and marks a novel method of disease

prevention for neurodegenerative diseases.
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