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Abstract

Due to the unprecedentedly high demand of wireless spectrum, one of the central

missions in wireless networks is to technically improve the spectrum efficiency.

Thus, many techniques have been devised, in which non-orthogonal multiple ac-

cess (NOMA) is quite promising. In NOMA, the strengthened spectrum efficiency

is majorly due to the intelligent superimposition and detection of users’ signals.

Resource allocation plays a pivotal role in NOMA networks, by which the system

performance can be maximized at the optimality. Accordingly, a lot of efforts

have been made to achieve optimal resource allocation under a wide variety of

objectives.

In this research, driven by the needs of spectrum-efficient and energy-efficient

designs, we aim to identify the optimal solutions in several NOMA-based wire-

less networks. To be specific, resource allocation problems are investigated in

three wireless networks. Firstly, in an overlay cognitive NOMA network enabled

with wireless energy harvesting, we investigate the maximization of secondary

throughput under the case with successive interference cancellation (SIC) and

the case without SIC. Secondly, the maximization of network utility is studied

in one downlink NOMA network. Thirdly, one design of energy-aware resource

allocation is investigated in one NOMA multi-access edge computing (MEC) net-

work.
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Chapter 1

Introduction

In the era of information technology, the convenience provided by the wireless

service has been revolutionizing every corner where we live. It promotes the

productivity of our work and study, entertains us with a variety of enjoyable

means, and so on. For example, people can meet each other via video conferenc-

ing. Emails and text messages can be sent at anytime. Live sport events can be

broadcasted and enjoyed at anywhere through the mobile TV service.

In the future, the wireless networks will be more advanced and complicated.

Even broader spectrum band will be available to guarantee the delivering of

wireless service. The usable spectrum will be larger than 30 GHz in beyond-5G

(B5G) networks [1]. Moreover, the support of massive connectivity is envisioned.

Driven by the portability and low cost of mobile device, the connections of huge

amount of devices over wireless networks have been shifting the networks into the

age of Internet of Things (IoT). In addition, future networks are also featured by

low latency. For example, the tactile Internet requires a latency as low as 1 ms.

However, providing wireless services in wireless networks are bottlenecked by

two fundamental technical issues: energy efficiency and spectrum efficiency [2–4].
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1.1 Efficiencies in Wireless Commutations

1.1.1 Energy Efficiency

Energy efficiency is one major concern in wireless communication systems, which

has the target of minimizing the energy consumption on wireless data traffic.

Mobile terminals usually have limited energy supply. Basically, there are two

main reasons to conduct an efficient utilization of energy.

Firstly, many mobile applications have very high energy consumption. For ex-

ample, an augmented reality (AR) based gaming application needs the interaction

of a player with the real world, which involves high volume of data computations.

These computations drain the battery at a fast pace.

Secondly, many devices may work on the scenarios that require low power

consumptions. We take two types of sensors as examples. For one type, some

medical sensors are embedded inside human bodies, which can be designed to

monitor specific diseases [5]. For the other type, some sensors are designed to

monitor the temperature of water in deep sea environment. To prolong the life-

time of battery and avoid the inconvenience of battery replacement, these sensors

should be designed to consume as little energy as possible.

To enhance the energy efficiency, many technical approaches provide viable

solutions, which include energy harvesting, multi-access edge computing (MEC),

and so on.

1.1.2 Spectrum Efficiency

As the evolution of mobile systems, the system performances and offered wireless

services are constantly enhanced 1 [2]. The 1G systems are designed with analog

transmission, in which the frequency-division multiple access (FDMA) technique

1We use data rate as the example of system performance in Section 1.1.2.
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is employed. Only the voice call service can be provided for users. From 2G

onwards, digital transmissions are utilized. Based on the time-division multiple

access (TDMA) technique, the 2G systems can offer a data rate of 64 kbps,

and support improved services such as text message. In the 3G systems, by

adopting the code-division multiple access (CDMA) scheme, a 2 Mbps data rate

can be achieved. The users in 3G networks also enjoy further enhanced services,

which include video call, Internet service, and so on. The 4G systems utilize

the orthogonal frequency-division multiple access (OFDMA) scheme, which can

reach a data rate of 1 Gbps, and offer numerous high quality services such as

high-definition (HD) mobile TV. In the 5G systems, the data rate is expected

to reach 20 Gbps in downlink network [6]. A broader class of services can be

enjoyed by users, which include low latency service, massive IoT, and so on.

To guarantee the even better system performances and services in wireless

networks, it calls for incredibly high demand of wireless spectrum. However, the

usage of wireless spectrum has limitations, which include scarce supply, limited

capacity, interference, and so on. As for the supply issue, the usable spectrum

is usually restricted to a certain range. For example, in the currently adopted

4G Long Term Evolution (LTE) systems [7], the commonly used frequency band

is around 2 GHz. Also, as pointed out by information theory [8], the data rate

over wireless channel is upper-bounded by the channel capacity. Furthermore,

when multiple users transmit signals simultaneously on the same channel, the co-

channel interference degrades the signal-to-interference-plus-noise ratio (SINR)

for signal detection at the receiver side.

Due to these limitations of spectrum usage, it is required that the spectrum

efficiency should be technically improved into its best-effort manner. Accordingly,

many approaches are devised to enhance the spectrum efficiency in future wire-
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less networks, which include non-orthogonal Multiple Access (NOMA), cognitive

radio (CR), and so on. In our research, we focus on NOMA.

1.2 An Introduction to NOMA

In traditional cellular networks, to coordinate the channel access of multiple users,

the Orthogonal Multiple Access (OMA) technique is adopted [3]. In OMA, the

wireless spectrum is partitioned into orthogonal resource blocks, which include

frequency bands, time slots, spreading codes and subcarriers [2]. By exclusively

assigning each resource block to one single user, multiple users can get channel

accesses simultaneously.

In recent few years, emerged as a novel transmission technique, NOMA can

further boost the spectrum efficiency [9–15]. Different from OMA, NOMA can

transmit multiple users’ signals by using the same resource block. There are

two types of NOMA schemes, which include the power domain NOMA and code

domain NOMA. We focus on the power domain NOMA.

We introduce a typical downlink NOMA system serving N users, denoted as

N = {1, 2, . . . , N}. Based on the superposition coding, the base station (BS)

transmits signal xi, i ∈ N , for user i with power pi. And the channel coefficient

from the BS to user i is denoted as hi, which has the corresponding channel

power gain as gi. Moreover, it is assumed that g1 ≤ g2 ≤ . . . ≤ gN . To guarantee

fairness, one widely adopted strategy is to perform power allocation in the de-

scending order [11]. That is, user 1 is assigned with the largest power, while user

N is assigned with the lowest power. In such a manner, the quality-of-service

(QoS) for the weak user can be guaranteed. When successive interference can-

cellation (SIC) is adopted, the signal decoding order at the receiver is from x1 to

xN .
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As for the receiver’s signal detection by using SIC, an example for the two-user

case is given here. The received signal at user i is yi = (
√
p1x1 +

√
p2x2)hi + ni,

i ∈ {1, 2}, where ni is the Additive White Gaussian Noise (AWGN), distributed

with ni ∼ CN (0, σ2). User 1 is the weak user (with weak channel), and user

2 is the strong user (with strong channel). At user 1, it only decodes its own

information x1 at the rate of R1 = log(1 + p1g1
p2g1+σ2 ). At user 2, it decodes user

1’s information x1 at the rate of R2,1 = log(1 + p1g2
p2g2+σ2 ). Due to g2 ≥ g1, we have

R2,1 ≥ R1, which means user 2 can always successfully decode x1. Afterwards,

user 2 subtracts x1’s component from its received signal, and thus, user 2 decodes

its own information x2 at the rate of R2 = log(1 + p2g2
σ2 ). As for the SIC decoding

for the N -user case, we can follow a similar process as the two-user case.

It can be seen that by leveraging superposition coding and SIC, multiple

users’ information can be delivered in only one time slot. As a comparison,

if OMA transmission is adopted, we need multiple time slots to serve multiple

users. Moreover, as discussed in [16], NOMA can achieve a higher sum rate

than OMA. Thus, NOMA brings about the improvement of spectrum efficiency.

Also, NOMA meets the massive connectivity requirement for B5G systems [1,

17]. Furthermore, it can be flexibly combined with other emerging techniques.

Therefore, it is treated as one promising technique to realize the advanced features

in future networks. Since many of the research problems on NOMA related

wireless networks are still not fully studied, there are many research gaps to be

filled.
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1.3 Research Motivation and Thesis Contribu-

tions

To achieve the objective of spectrum-efficient and energy-efficient designs, we

conduct our research on resource allocation in NOMA systems. When NOMA is

enabled in various networking scenarios, it may involve the allocation of resources

including power, time, frequency, and so on. By adopting different optimization

frameworks, for many specific resource allocation problems, the formulated opti-

mization problems may become non-convex. It is usually challenging to obtain

the optimal solutions for such non-convex problems.

Therefore, in our research, to unveil the optimal solutions, we investigate three

research topics on the resource allocation in different NOMA enabled wireless

networks.

Firstly, we consider the resource allocation in cognitive NOMA systems with

wireless energy harvesting. In the literature, the cognitive NOMA systems can be

majorly categorized into three different systems: Cognitive Radio (CR)-inspired

NOMA, underlay cognitive NOMA and overlay cognitive NOMA. Some related

systems have been investigated in [18–20]. In wireless energy harvesting, the si-

multaneous wireless information and power transfer (SWIPT) technique is widely

adopted. When SWIPT is introduced into cognitive NOMA systems, research

efforts have been conducted to tackle the resource allocation problems in CR-

inspired NOMA and underlay cognitive NOMA systems in [21] and [22], respec-

tively. However, the research on overlay cognitive NOMA with the enhancement

of SWIPT has not been studied, which motivates us to investigate the resource

allocation problem on it.

Secondly, we consider the Stackelberg game based resource allocation in multi-

user NOMA downlink system, with the maximization of network utility. For fixed
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total allocated transmit power for users, two initial works in [23] and [24] studied

the power allocation of downlink NOMA systems by using the Stackelberg game,

which give an optimal solution for two-user case, and sub-optimal solutions for

multi-user case. This motivates us to investigate the optimal solution for a novel

multi-user game by considering more general game formulations (for example, the

total allocated transmit power is a variable, and a more general utility function

is adopted).

Thirdly, we consider the design of energy-aware resource allocation in NOMA

MEC networks under the framework of Stackelberg game. In MEC networks,

user’s energy consumption can be effectively reduced through performing data

offloading. To promote energy saving by using Stackelberg game, resource al-

location can be conducted in a hierarchical manner. In OMA MEC networks,

a payment-based resource allocation is investigated in [25]. The work in [26]

investigates a game theoretical approach of sub-channel allocation for users in

NOMA MEC networks. However, to save energy through making payments, a

game theoretical approach of resource allocation within the same channel has not

been studied for NOMA MEC networks, and thus, it has motivated us to solve

the research problem.

To fill the research gaps for the aforementioned research topics in NOMA

systems, we present three research works from Chapter 3 to Chapter 5 in our

thesis. The contributions of our thesis are summarized as follows.

• In Chapter 3, we study a novel overlay cognitive NOMA system enabled

with wireless energy harvesting. In our system, the secondary transmitter

(ST), which harvests energy from the primary transmitter’s wireless signal,

is allowed to access the channel by cooperatively helping the primary sys-

tem to forward information. The ST can also adopt NOMA to transmit

7



its own information. Our objective is to guarantee a target rate of the

primary system and try to maximize the secondary throughput. Thus, an

optimization framework is used. By considering the impact of SIC, two

optimization problems are formulated, which include the case that the sec-

ondary receiver (SR) chooses to perform SIC and the case that the SR

chooses not to perform SIC. The time portion for harvesting energy and

power ratio for transmitting the primary signal are optimized. Since the

formulated optimization problems are non-convex, we develop a method to

convert the optimization problems into equivalent problems. As for the ob-

jective functions in the equivalent problems, they are theoretically proved

to be quasiconcave. With the aid of the two-level bisection, the optimal

solutions are found for our research problems. We provide one interesting

and counter-intuitive insight. It is not guaranteed that the SIC case will

always outperform the non-SIC case.

• In Chapter 4, we study the resource allocation in one downlink NOMA

system. As all users are selfish, and there exists a hierarchy between the BS

and users, we adopt the Stackelberg game approach, which is promising to

deal with a hierarchy between multiple selfish players. The seller maximizes

the profit per unit power, while each user maximizes the profit. We provide

the optimal solution to the formulated game. To be specific, after finding

the solution at the user side, the optimization problem at the seller has a

non-convex form. Afterwards, we solve the problem at the seller by devising

a two-stage algorithm. In the first stage, we obtain a tractable form for the

original problem by using transformations. Then we develop an iterative

method to solve the optimal solution in this stage. Moreover, we prove

the solution in the first stage is concave, and the objective function in the

8



second stage is quasiconcave. Based on these features, we optimally obtain

the solution to the formulated problem.

• In Chapter 5, we provide a design of energy-aware resource allocation in

NOMA MEC networks. As there is a hierarchy between the MEC server

and the users, we adopt the Stackelberg game approach. To minimize the

overall costs, each user purchases the interference to transmit information.

To maximize its profit, the BS decides the price for the interference and

offloading time. We optimally solve the formulated game. We find the

solution to the power at each user first. Then an approach is devised to

obtain the optimal solution to the non-convex problem at the BS. Specif-

ically, when the allocated time is given, we show the utility is separable

and solvable. Afterwards, to determine the time allocation, the Polyblock

algorithm is leveraged to solve it.

9



Chapter 2

Background and Literature
Review

In this chapter, some background knowledge is first introduced. Then a literature

review is provided for the research on NOMA-based wireless networks.

2.1 Background

2.1.1 Cognitive NOMA

CR is an important technique to effectively tackle the issue of spectrum scarcity

[27–31], in which secondary users (SUs) can intelligently access the spectrum

licensed to primary users (PUs) in a controlled manner such that the SUs do not

cause too much harmful impacts on PUs. The combination of CR with NOMA

is termed as cognitive NOMA. The three architectures of cognitive NOMA are

introduced as follows.

In a basic CR-inspired NOMA system, it serves two users [18]. The weak user

with a low channel power gain is treated as the PU, while the strong user with

a high channel power gain is treated as the SU. When the PU’s target rate is

satisfied, the SU’s information can be transmitted based on downlink NOMA.

In underlay cognitive NOMA systems, one typical scenario is that the sec-

10



ondary network works under the downlink NOMA transmission [19]. When the

secondary BS transmits signal to a group of SUs, the transmitted signal causes

interference to the PRs. The transmit power at the secondary BS should be well-

adjusted such that the maximal interference power at the PR does not exceed a

predefined value.

In overlay cognitive NOMA networks, a two-phase transmission is usually

adopted [20]. Specifically, during the first phase, the primary transmitter (PT)

transmits information, from which the ST can decode PT’s information. During

the second phase, through helping the PT to deliver information, the ST is allowed

to use the spectrum. Meanwhile, the ST can also transmit information to the

SRs based on the principle of NOMA.

2.1.2 Wireless Energy Harvesting

Mobile devices are usually powered by batteries. In many scenarios, it is not

convenient to re-charge a battery or to replace a battery.

To overcome the issues, energy harvesting is a viable technique. In energy

harvesting, energy is scavenged from a wide variety of energy sources. Then

the harvested energy is utilized for information transmission. In such a way,

a sustainable utilization of energy is expected. Generally speaking, the energy

sources fall into two categories, natural sources (such as wind, and solar power)

and wireless RF sources [32–35].

We primarily focus on the wireless RF signal based energy harvesting. In

specific, we further concentrate on SWIPT. In SWIPT, besides transmitting in-

formation, the wireless RF signal also acts another role of transferring energy.

There are two types of protocols for the SWIPT system, which are power split-

ting (PS) and time switching (TS).
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In the PS protocol, the received power from the wireless RF signal is sepa-

rated into two different parts. One part of the power is directed into the energy

harvester. The other part of the power is directed into the information decoder

to recover information.

In the TS protocol, each time slot is partitioned into two portions. During

the first portion of the slot, energy harvesting is carried out. During the rest

portion of the slot, information is decoded from the received signal.

Compared with the natural energy sources based energy harvesting, wireless

RF signal based energy harvesting has many superior advantages. Since we are

surrounded by RF signals almost at anytime and anywhere, the availability of RF

signal is always guaranteed, and not restricted by the environments. Moreover,

the amount of harvested energy is also manageable, which can be adaptively

controlled by adjusting the transmit power at the transmitter.

2.1.3 Multi-access Edge Computing

In future wireless networks, many advanced wireless services are expected to be

supported [1], such as AR, virtual reality (VR), autonomous driving, and so on.

However, these services usually require low latency and high energy consumption.

To effectively strengthen the energy efficiency and reduce the latency, MEC

is deemed as one viable solution. The basic idea of MEC is to transfer the

computation of information and some other related operations to the edge server

in the network [36–39].

In a typical MEC system, one mobile user has a task consisting of certain

amount of information bits to be computed. Basically, two types of offloading

strategies can be adopted by the user, including fully offloading and partial of-

floading. To be specific, for the fully offloading strategy, all the information bits
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are offloaded to the edge server. For the partial offloading strategy, the mobile

user chooses to offload part of the information bits, and computes the rest by

itself.

At the edge server, since it has a powerful computational capacity, the time

used for computing the offloaded information bits will be very small, which indeed

reduces the overall latency at the user side. Furthermore, after performing data

offloading, the user’s energy consumption on computation will also be effectively

reduced.

As for the deployment of MEC, a technical white paper [40] has been proposed

by ETSI (European Telecommunications Standards Institute). And the technical

standards are being developed. The real deployment of MEC is still under devel-

opment as well. ETSI has provided a Proofs of Concepts (PoC) Framework [41]

to let third party get involved and propose a PoC, with the aim of validating the

viability of MEC. For example, one project, named “Video Analytics”, has been

proposed to verify MEC by Nokia, Vodafone Hutchison Australia and SeeTec [42].

When NOMA is combined with MEC, it provides promising information

transmission. The AR and VR based wireless applications involve intensive data

computations at the user side, which can be considered as applications of NOMA

MEC. For example, multiple AR or VR based users can offload their data to the

edge servers for computation by using uplink NOMA. Compared with a system

without MEC, the overall latency for data computation can be reduced when

MEC offloading is conducted. Also, compared with traditional OMA transmis-

sion, a higher spectrum efficiency can be achieved in NOMA. More information

can also be offloaded through NOMA transmission. Thus, NOMA MEC can

reduce the latency for the wireless applications.
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2.1.4 Application of Game Theory in Wireless Networks

The conventional resource allocation falls into the category of the centralized ap-

proach, in which all participants in the network follow a common rule. However,

due to the inherent selfish nature of each user, following the same rule may not

be applicable when each user has a different objective to optimize. Thus, to

overcome this drawback, game theoretical approach is widely leveraged [43, 44].

There are many types of games in the literature, which include Stackelberg game,

evolutionary game, coalitional game, potential game, and so on.

When game theory is applied in wireless networks, each transmitter or receiver

in the network is treated as a player. Each player has its own utility function

to maximize/minimize. The solution to a non-cooperative game is the so called

nash equilibrium (NE) [43]. The NE solution is optimal in the sense that the

user cannot achieve a better utility by adopting the unilateral deviation.

In game theoretical approach of resource allocation over wireless networks,

users are allowed to make decisions for themselves. This is because by letting

users involved in the decision making process, the system resources can be more

efficiently utilized from the economic view.

2.2 Literature Review of NOMA

In the literature, there are extensive research efforts on NOMA-based wireless net-

works. Basically, we can group the relevant research into two major categories:

performance analysis and optimal resource allocation. Under each category, var-

ious topics are considered, in which each topic covers one network scenario.
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These topics include downlink NOMA, cooperative NOMA 1, cognitive NOMA 2,

NOMA with energy harvesting, NOMA MEC and NOMA with other advanced

topics. In other advanced topics, there are millimeter-wave (mmWave), Massive

Multiple-Input Multiple-Output (MIMO), physical layer security, caching, and

so on [12–14,45].

2.2.1 Performance Analysis in NOMA-based Networks

1) Downlink NOMA and Cooperative NOMA

The work in [46] investigates the performance of downlink NOMA system, by as-

suming that users have random spatial distribution. The works in [47–49] evalu-

ate the performances for cooperative NOMA systems. A two-phase transmission

is adopted in [47]. The BS transmits information signal to all downlink users

during the first phase, which is followed by the information forwarding from the

stronger user to other users during the second phase. In the systems of [48, 49],

two destination nodes are served by one source node, which is aided by a group of

relays. Different two-stage relay selection strategies are proposed, with the aim

of achieving the optimal outage performances.

2) NOMA with Energy Harvesting

In [50], downlink users are grouped into far users and near users based on users’

distances from the BS. From the BS’s signal, the near user harvests energy and

decodes information first. Afterwards, according to the designed user pairing

strategies, one near user helps to forward one far user’s information by consum-

ing the harvested energy. The work in [51] analyzes one cooperative NOMA

1For a better presentation, the topics of downlink NOMA and cooperative NOMA are com-
bined together in Section 2.2.1 and Section 2.2.2.

2The literature review of cognitive NOMA will be provided at the beginning of Chapter 3,
and thus it is not listed in this section.
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system, in which one source node communicates with two users through the help

of one energy harvesting relay. By employing different power allocation strategies

at the relay, the system performance is studied. For the NOMA network with

cooperation in [52], the near user is capable of energy harvesting and working on

full-duplex mode. Then the outage performance is analyzed for such a system.

3) NOMA MEC

In the NOMA MEC scenario of [53], different schemes are designed to compare

NOMA with OMA on the impacts of both delay and energy consumption. It is

shown that the performances of NOMA transmissions outperform OMA trans-

missions. In the NOMA MEC network of [54], two uplink users are selected to

perform data offloading based on the principle of NOMA, for which the proba-

bility of successful computation is evaluated. Based on the method of stochastic

geometry, when multiple users conduct data offloading through uplink NOMA,

the probability to offload data information is investigated in [55].

4) NOMA with Other Advanced Topics

In the mmWave system of [56], by adopting NOMA technique, strategies are

designed to pair IoT users. Then the outage performances for users are provided.

Through applying NOMA in Massive MIMO system, the outage performance is

evaluated under designed precoding matrixes in [57]. The work in [58] studies

a typical cooperative NOMA system consisting of one BS, two users and one

relay, in which one eavesdropper intercepts the user’s information. The secrecy

outage probability is analyzed for the system. In [59], a NOMA caching system

is modeled by using the Poisson cluster processes. Then based on the NOMA

principle, the performances of different designed push and delivery strategies are

evaluated.
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2.2.2 Optimal Resource Allocation in NOMA-based Net-
works

1) Downlink NOMA and Cooperative NOMA

The works in [60–64] study the optimal resource allocation for downlink NOMA

systems. To guarantee the max-min and α fairness among users in terms of

achievable rate and outage probability, the optimal strategies of power allocation

are investigated in [60] and [61], respectively. To achieve the target outage prob-

ability for each user, the minimization of power consumption, which is based on

the knowledge of average channel statistics, is studied in [62]. In [63], to achieve

the Pareto optimality, the beamforming design, power allocation, user scheduling

are optimized under a two-user system. The works in [65,66] investigate the op-

timal resource allocation for cooperative NOMA systems. In [65], with the help

of one decode-and-forward relay, two users’ information is delivered. To achieve

the target of maximizing the energy efficiency, optimization is conducted to allo-

cate transmit powers at the source node and the relay. In the two-user downlink

network of [66], the near user, who is able to work in either half-duplex or full-

duplex mode, can help the far user to transmit information. The power allocation

strategy to achieve the max-min fairness is optimized for such a system.

2) NOMA with Energy Harvesting

The works in [67, 68] consider NOMA networks with wireless energy harvesting,

in which two-phase transmissions are adopted. In [67], users harvest energy from

the BS’s signal in downlink first. Subsequently, users use the harvested energy

to deliver their information back to the BS in uplink. To maximize different

types of data rate, how to allocate time and design decoding order for SIC are

studied. In [68], a dedicated power beacon is equipped to transfer energy to the
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mobile users in one phase, which is followed by the information delivery to the

BS in another phase. The spectrum and energy efficiencies are evaluated and

compared for NOMA and TDMA transmissions. The work in [69] studies one

heterogeneous network with NOMA, in which the BS is considered to be capable

of energy harvesting. The energy efficiency is maximized by allocating the power

resource and sub-channels.

3) NOMA MEC

Under the guaranteeing of one user’s offloading data amount, the minimization

of offloading delay of one opportunistic user is investigated for the NOMA MEC

network in [70]. For such a system, the minimization of energy consumption is

also studied in [71]. In [72], multiple single-antenna users offload information to

one multi-antenna edge server through uplink NOMA. The resource allocation

problem to minimize the energy expenditure is investigated. The work in [73]

studies one NOMA MEC network, which is enhanced with the dual connectivity.

With the aim of optimizing the energy in the network, the related data amount

and time resources are allocated.

4) NOMA with Other Advanced Topics

In the mmWave NOMA system of [74], the problem of maximization of sum

rate for users is studied by designing the strategies of user scheduling, power

allocation and beamforming. The work in [75] investigates the downlink NOMA

system, in which users’ information is intercepted by one eavesdropper. The

maximization of the secrecy sum rate is studied under the constraint of budgeted

transmit power. The work in [76] studies the scenario that one full-duplex BS

serves multiple downlink and uplink users at the same time, in which some users

are untrusted. Then the maximization of sum throughput is investigated under
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the guarantee of the secrecy performance. The work in [77] considers a two-user

scenario with caching ability at each user. The decoding order and rate region

are studied for such a system.
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Chapter 3

Optimal Resource Allocation in
Cognitive Non-orthogonal
Multiple Access System with
Energy Harvesting 1

Since both CR and NOMA can promote spectrum efficiency, cognitive NOMA

yields an even spectrum-efficient communications [18–20,80–84]. The CR inspired

NOMA is conceptually introduced in [18], in which one PU and one SU are

paired on one resource block to conduct NOMA transmission. The work in [80]

extends the CR inspired NOMA concept to the scenario with multiple PUs and

one single SU, in which the SU, having better channel gain than those of the

PUs, is served together with all the PUs simultaneously by using NOMA. The

transmission strategy of the multiple-antenna transmitter is designed such that

the energy efficiency is maximized. By further extending CR inspired NOMA with

multiple PUs and multiple SUs, the work in [81] proposes a distributed matching

method, which pairs an SU with a PU and assigns transmit power levels for them,

targeting system throughput maximization. In [19], underlaid with the primary

network, the secondary network sets up an interference guard zone to limit the

1A version of this chapter has been published in IEEE Transactions on Vehicular Technology
[78], and presented in part in the Proceedings of Vehicular Technology Conference [79].
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primary interference, and transmits information from one ST to multiple SRs

by employing NOMA. For secondary transmissions, the outage performance and

diversity order are analyzed. A two-user underlay cognitive NOMA system is

investigated in [82], in which a dedicated full-duplex relay is resorted to help a

far user to forward information from the BS. The power allocation, beamformer

design and the outage performance are investigated. The work in [20] considers

an overlay cognitive NOMA system, in which the primary network has one PT

and one PR, and the secondary network has one ST and one SR. The primary

network is assisted by the secondary network that applies NOMA principe in its

transmissions. The work in [83] considers an overlay cognitive NOMA system

with a number of STs, in which one ST is scheduled to use NOMA to forward

primary signals and send its own signals to its receivers. Two scheduling schemes,

targeting reliability and fairness, respectively, are proposed. A survey of cognitive

NOMA techniques and future research trends is given in [84].

Since SWIPT technique has the advantage of transferring energy and deliv-

ering information simultaneously, by integrating SWIPT into cognitive NOMA

framework, a greener and more sustainable communication is expected. In the lit-

erature, some research efforts on SWIPT-based cognitive NOMA are conducted,

such as [21, 22]. The work in [22] studies an underlay cognitive NOMA system,

in which multiple STs harvest energy from one energy transmitter and transmit

to one common BS by using NOMA. The secure energy efficiency maximization

problem for secondary system is investigated. The work in [21] can be viewed as a

CR inspired NOMA system enhanced with SWIPT. To serve a weak user, a strong

user uses PS protocol to harvest energy from the transmitter’s signals and de-

code its own and the weak user’s information during the first phase. Afterwards,

during the second phase, the strong user forwards the weak user’s information.
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With a condition that the reception quality of the weak user is satisfied, the

strong user’s throughput is maximized, by optimally designing the beamformers

of the multiple-antenna transmitter and the PS ratio at the strong user.

In this chapter, we investigate an overlay cognitive NOMA scenario equipped

with SWIPT, in which an ST uses TS protocol for energy harvesting and infor-

mation decoding, and uses NOMA to help a PT and deliver its own information.

The optimal solution, deriving the time ratio for energy harvesting as well as

the NOMA power allocation of the ST, is provided. Our main contributions are

summarized as follows.

1) A new SWIPT-enhanced cognitive NOMA framework: In the literature,

SWIPT is integrated with underlay cognitive NOMA in [22], and with CR-

inspired NOMA in [21]. However, SWIPT-enhanced overlay cognitive NOMA

is not investigated in the literature, and its performance is unclear. To address

this research gap, we investigate a SWIPT-enhanced overlay cognitive NOMA

framework.

2) Optimal solution: The formulated problems are nonconvex, and are gen-

erally hard to solve. We devise a method to transform the formulated problems

to equivalent problems under different cases. We theoretically prove that the ob-

jective functions of the equivalent problems are quasiconcave. We then develop

an effective algorithm, by using a two-level bisection search, to find the optimal

solution of each equivalent problem. We also develop a method that could reduce

the number of iterations in the inner bisection search.

3) Interesting insights: Interestingly, different from existing NOMA works in

which SIC is always applied, performing SIC in our work does not guarantee a

better performance than the scenario without performing SIC. The insight behind

this observation is also discussed.
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The remainder of this chapter is organized as follows. In Section 3.1, our

system model is described. The optimal solution to Problem P1 is presented

in Section 3.2. Section 3.3 offer the optimal solutions to Problem P2. Section

3.4 shows the simulation results. In Section 3.5, we draw the conclusion of this

chapter. In Table 3.1, we illustrate the used symbols.

3.1 System Model

We consider a cognitive system, consisting of one pair of PT and PR, and one

pair of ST and SR, as depicted in Fig. 3.1. The spectrum is licensed to the

primary system. The PT has a stable power supply, which transmits data with

a fixed transmit power Pp. The ST is powered by harvested energy from RF

signals transmitted by the PT. The ST opportunistically gains spectrum access

opportunities in an overlay mode, i.e., when the link from the PT to the PR is

not good enough, the ST could help forward the PT’s signal and send its own

signal to the SR as well by using NOMA.

The system is time slotted, and each time slot has a unit length. The chan-

nel coefficients between PT and PR, PT and SR, ST and PR, and ST and SR

are denoted as hpp, hps, hsp, and hss, respectively. In subscript of the channel

coefficients, the first symbol p or s means the primary or secondary transmitter,

and the second symbol p or s means the primary or secondary receiver. In addi-

tion, the channel coefficient between PT and ST is denoted as htt. Accordingly,

the channel gains (square of channel coefficient magnitude) of those channels

are denoted as gpp, gps, gsp, gss, and gtt, respectively. Block fading is assumed,

which means that all the channel gains keep unchanged in each time slot and

may change independently from slot to slot.

Basically, in a particular time slot, the system works in one of two transmission
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Symbol Meaning

xp The primary information signal

xs The secondary information signal

xst ST’s transmit signal

Pp PT’s transmit power

Rss The secondary throughput for the scenario that

the SR performs SIC

R
w/o
ss The secondary throughput for the scenario that

the SR does not perform SIC

htt, hpp, hps, Channel coefficients between different transmitters and receivers

hsp, hss

gtt, gpp, gps, Channel gains between different transmitters and receivers

gsp, gss

γT The target throughput of PT

α The power ratio in NOMA transmission at the ST

ρ The time portion for energy harvesting at the ST

E0 The ST’s battery’s energy at the beginning of the slot

Eh The ST’s battery’s energy after energy harvesting

Ec The energy expenditure due to the circuit operation

and channel estimation

η Energy conversion efficiency

σ2 The variance of the AWGN in our system

Pe The ST’s transmit power

εt The tolerance for the outer level bisection

ερ The tolerance for the inner level bisection

Table 3.1: The notations used in Chapter 3
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Primary Transmitter (PT)

Primary Receiver (PR)

Secondary Transmitter (ST)

Secondary Receiver (SR)

hss , gss 

hsp , gsp hps , gps 

htt , gtt 

hpp , gpp 

Figure 3.1: System model (‘h’ means channel coefficient, and ‘g’ means channel
gain).

ST harvests energy 

from PT

PT transmits its information

Time portion ρ Time portion (1-ρ)/2

One time slot

PT transmits its information

Time portion (1-ρ)/2

ST forwards PT's information 

(power ratio α)

ST transmits ST’s information

(power ratio 1-α)

Figure 3.2: The slotted structure of the energy harvesting cognitive NOMA sys-
tem.

modes:

• Direct primary transmission mode

• Cooperative transmission mode.

3.1.1 Direct Primary Transmission Mode

We assume that the PT and ST always have enough information to be transmitted

to the PR and SR, respectively. The PT has a target throughput2, denoted as

2In this chapter, “throughput” is defined as the amount of information bits that can be
transmitted in a target slot.
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γT , for each time slot. At a slot, the achievable throughput of the direct link

from the PT to the PR is expressed as log(1 + Ppgpp
σ2 ), where σ2 is variance of the

background AWGN.

If the achievable throughput is not less than the PT’s target throughput

γT (which equivalently means that the channel gain of the direct primary link

PT→PR satisfies gpp ≥ (2γ
T −1)σ2/Pp), then the system works in direct primary

transmission mode. In this mode, the PT transmits data to the PR during the

whole slot, whereas the ST is not allowed to access the spectrum. Thus, the ST

harvests energy during the whole slot, which yields the battery energy at the end

of the slot as max{E0 + ηPpgtt −Ec, 0},3 where E0 is the ST’s battery energy at

the beginning of the slot, η ∈ (0, 1) is the energy conversion efficiency, and Ec

means the energy expenditure in a time slot due to circuit operation and channel

estimation.

3.1.2 Cooperative Transmission Mode

If the achievable throughput log(1 + Ppgpp
σ2 ) of the direct primary link PT→PR

is lower than the PT’s target throughput γT (which equivalently means that

gpp < (2γ
T − 1)σ2/Pp), the ST is requested to help to forward the PT’s message

to PR by using decode-and-forward (DF) relaying. The ST can simultaneously

send its own message to the SR based on downlink NOMA. In other words, the

system works in the cooperative transmission mode.

In this mode, the slot is partitioned into three phases, as shown in Fig. 3.2.

The first phase has length ρ ∈ [0, 1], while the second and third phases both have

length (1 − ρ)/2, where the value of ρ is a designed parameter, to be optimized

hereafter.

3This amount of energy is also the battery energy at the beginning of the next slot.
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1) The First Phase

During the first phase, the PT transmits wireless RF signals with power Pp, from

which the ST harvests energy.4 Then the ST’s battery energy, after harvesting,

has the form of Eh = E0+ηρPpgtt. If Eh is less than Ec, then the ST is not able to

help the PT, and thus, the system has to work in the direct primary transmission

mode. Therefore, for the system to work in the cooperative transmission mode,

we should have Eh ≥ Ec, which leads to ρ ≥ max{Ec−E0

ηPpgtt
, 0}.

2) The Second Phase

During the second phase, the PT transmits its information signal xp with power

Pp, which is received by the PR and ST, as well as the SR.

At the PR, the received signal in the second phase of the slot is represented

by
√
Pphppxp + npr, in which npr is the AWGN at the PR.

The received signal at the ST in the second phase of the slot is written as√
Pphttxp+nst, in which nst is the AWGN at the ST. The achievable information

rate for the transmission from the PT to the ST in the second phase of the slot is

expressed as Rtt = 1−ρ
2

log(1 + Ppgtt
σ2 ). As the ST needs to decode the PT’s signal,

the achievable information rate Rtt should be not less than the target throughput

γT of the primary system. Thus, we should have constraint Rtt ≥ γT , based on

which we have constraint ρ ∈ A1 ,

[
max{Ec−E0

ηPpgtt
, 0}, 1− 2γT

log(1+
Ppgtt
σ2

)

]
.

At the SR, the received signal in the second phase of the slot is represented

by
√
Pphpsxp + nsr, in which nsr is the AWGN at the SR.

4Note that in the first phase, the wireless RF signals can actually be information signals of
the PT for the PR. In other words, in the first phase, from the PT’s signals, the ST tries to
harvest energy while the PR tries to decode information. This portion of information for the
PR will be investigated in Section 3.2.6.
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3) The Third Phase

During the third phase, the PT transmits a copy of the primary signal xp with

power Pp. The ST applies downlink NOMA to transmit a superimposed signal

consisting of the PT’s signal xp and the ST’s own signal xs, by using the harvested

energy in a greedy manner, i.e., it uses up all the available energy stored in battery

in this phase.5 In specific, the ST transmits xst =
√
αPexp+

√
(1− α)Pexs, where

α, a parameter to be optimized, is the power ratio for xp, (1 − α) is the power

ratio for xs, and Pe is the transmit power of ST, shown as

Pe =
2(Eh − Ec)

1− ρ
=

2(ηρPpgtt + E0 − Ec)
1− ρ

. (3.1)

Accordingly, the received signal at the PR in the third phase is
√
Pphppxp +

hspxst+npr. As the PR receives the PT’s signal xp in the second phase (from the

PT) and the third phase (from the PT and ST), the PR employs maximal ratio

combining (MRC) to combine the received PT’s signal portions, which yields

the overall throughput of the PT’s signal xp (also called the throughput of the

primary system) in the time slot as

Rpp =
1− ρ

2
log

(
1 +

Ppgpp
σ2

+
Ppgpp + αPegsp

(1− α)Pegsp + σ2

)
. (3.2)

In the third phase, the received signal at the SR is yss =
√
Pphpsxp +hssxst +

nsr. In the received signal yss, the PT’s signal portion xp is interference to the

SR’s own signal xs. Thus, similar to NOMA works in the literature, the SR can

use SIC, i.e., it first decodes the PT’s signal xp, removes xp from yss, and then

decodes its own signal xs.

5Note that our method can be straightforwardly extended to the case when there exists a
limit for the energy level that the ST can use in the third phase of the slot (i.e., there is some
energy left at the end of the slot).
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When the SR decodes the PT’s signal portion xp, the achievable information

rate is given as

Rps =
1− ρ

2
log

(
1 +

Ppgps
σ2

+
Ppgps + αPegss

(1− α)Pegss + σ2

)
, (3.3)

where MRC is used to combine the received PT’s signal portions in the second

and third phases. When performing SIC at the SR, ρ and α should be set up

such that Rps ≥ γT , which means that the SR can successfully decode xp, and

perform SIC to remove xp in yss. Subsequently, the achievable throughput of

the secondary signal xs (also called the secondary system’s throughput) can be

written as

Rss =
1− ρ

2
log

(
1 +

(1− α)Pegss
σ2

)
. (3.4)

Our objective is to maximize the secondary system’s throughput while guar-

anteeing that the throughput of the primary system is not smaller than γT . Thus

we formulate the following optimization problem.

Problem P1:

max
α,ρ

Rss =
1− ρ

2
log

(
1 +

(1− α)Pegss
σ2

)
(3.5a)

s.t. ρ ∈ A1; (3.5b)

min{Rpp, Rps} ≥ γT ; (3.5c)

0 ≤ α ≤ 1. (3.5d)

In Problem P1, to perform SIC at the SR, we have constraint Rps ≥ γT . If

the SR does not perform SIC, interference from the PT’s signal is not cancelled,

which harms the secondary throughput. On the other hand, if the SR does not

perform SIC, the constraint Rps ≥ γT can be removed, and we can have a larger

feasible region of α and ρ, which benefits the secondary throughput. It is not

clear whether the overall effect of not performing SIC is beneficial or harmful.
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Thus, we should also investigate an optimization problem, in which the SR does

not perform SIC.

When the SR does not perform SIC, the achievable throughput of the sec-

ondary system is

Rw/o
ss =

1− ρ
2

log

(
1 +

(1− α)Pegss
αPegss + Ppgps + σ2

)
, (3.6)

in which superscript (·)w/o stands for “without performing SIC.” Accordingly, the

following optimization problem can be formulated.

Problem P2:

max
α,ρ

Rw/o
ss =

1− ρ
2

log

(
1 +

(1− α)Pegss
αPegss + Ppgps + σ2

)
(3.7a)

s.t. ρ ∈ A1; (3.7b)

Rpp ≥ γT ; (3.7c)

0 ≤ α ≤ 1. (3.7d)

As a summary, the optimal solution of the system is the better one between

the optimal solutions of Problems P1 and P2, which has larger secondary through-

put.6

3.2 Optimal Solution of Problem P1

Problem P1 is non-convex since the objective and the constraint functions are

not jointly concave. Generally, it is hard to solve such a problem. In this work,

we provide an efficient method to solve our Problem P1.

By careful inspection, there exists the following useful lemma.

6If both Problems P1 and P2 are infeasible, which means the cooperative transmission mode
cannot make the throughput of the primary system be at least γT , then the system will work
in direct primary transmission mode.
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Lemma 1. When the optimality of Problem P1 is achieved, constraint min{Rpp, Rps} ≥

γT should be active, i.e., we should have min{Rpp, Rps} = γT .

Proof. We use proof by contradiction. Suppose that when the optimality of

Problem P1 is achieved, we have min{Rpp, Rps} > γT .

From (3.2) and (3.3), we know that Rpp and Rps both are increasing func-

tions of α. Furthermore, when α = 0, we have min{Rpp, Rps}|α=0 ≤ Rpp|α=0 =

1−ρ
2

log
(
1 + Ppgpp

σ2 + Ppgpp
Pegsp+σ2

)
< γT , in which the last inequality comes from the

fact that

1− ρ
2

log
(
1 +

Ppgpp
σ2

+
Ppgpp

Pegsp + σ2

)
≤ 1− ρ

2
log(1 +

2Ppgpp
σ2

)

≤ 1

2
log(1 +

Ppgpp
σ2

)2

= log
(
1 +

Ppgpp
σ2

)
< γT .

(3.8)

In (3.8), the last inequality comes from the fact that the system works in the

cooperative transmission mode when the achievable throughput log(1 + Ppgpp
σ2 )

of the direct primary link from the PT to the PR is less than the PT’s target

throughput γT .

Thus, from the optimality point of Problem P1, we can decrease the value

of α such that we still have min{Rpp, Rps} ≥ γT but we have a larger objective

function Rss (noting that Rss is a decreasing function of α according to (3.4)).

This is a contradiction.

This completes the proof.

Lemma 1 indicates that, at optimality of Problem P1, either Rpp or Rps should

be equal to γT .

If Rpp = γT , then from (3.2), we can see that α can be expressed by a function
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of ρ as

α = Fp(ρ) ,
µp(Pegsp + σ2)− Ppgpp

(µp + 1)Pegsp
(3.9)

with

µp , 2
2γT

1−ρ − Ppgpp
σ2
− 1. (3.10)

Note that by using (3.8), we can see µp > 0.

When α is expressed as a function of ρ as in (3.9), the constraint 0 ≤ α ≤ 1

should be satisfied. Note that α > 0 is satisfied automatically, since from (3.8),

we have 1−ρ
2

log(1 + 2Ppgpp
σ2 ) < γT , based on which we have µpσ

2 − Ppgpp > 0,

yielding α > 0. Thus, only α ≤ 1 is considered here, which is equivalent to

ρ ∈ A2 ,
{
ρ|ρ ≥ 0 and Pegsp − µpσ2 + Ppgpp ≥ 0

}
. (3.11)

Lemma 2. Set A2 is a closed interval of ρ, with closed-form starting and ending

points.

Proof. See Appendix 3.6.1.

If Rps = γT , then from (3.3), we can see that α can be expressed as a function

of ρ, as

α = Fs(ρ) ,
µs(Pegss + σ2)− Ppgps

(µs + 1)Pegss
(3.12)

with µs , 2
2γT

1−ρ − Ppgps
σ2 − 1.

When α is expressed as a function of ρ as in (3.12), the constraint 0 ≤ α ≤ 1

is equivalent to

ρ ∈ A3 ,
{
ρ|ρ ≥ 0 and µs(Pegss + σ2)− Ppgps ≥ 0

}
∩
{
ρ|ρ ≥ 0 and Pegss − µsσ2 + Ppgps ≥ 0

}
. (3.13)

In A3, set {ρ|ρ ≥ 0 and µs(Pegss+σ2)−Ppgps ≥ 0} comes from α ≥ 0, which is a

closed interval, since µs(Pegss+σ2)−Ppgps is an increasing function of ρ. Similar
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to set A2, set {ρ|ρ ≥ 0 and Pegss − µsσ2 + Ppgps ≥ 0} is also a closed interval.

Thus, A3 is a closed interval.

Afterwards, by comparing (3.2) and (3.3), we have the following four cases

for Problem P1.

3.2.1 Case 1: When gpp ≤ gps and gsp ≤ gss

For a specific value of ρ, Rpp in (3.2) and Rps in (3.3) can be viewed as functions

of α.

1) Intersections of Curves Rpp vs. α and Rps vs. α over α ∈ [0, 1]

By considering two curves: Rpp vs. α and Rps vs. α over α ∈ [0, 1], we have the

following lemma.

Lemma 3. For a specific value of ρ, the two curves Rpp vs. α and Rps vs. α over

α ∈ [0, 1] have up to two intersections.

Proof. For a given ρ, from (3.2) and (3.3), if we set Rpp = Rps, we can obtain

L1P
2
e (1−α)2+

[
L1(

σ2

gss
+
σ2

gsp
)+

Ppgps
gss
− Ppgpp

gsp

σ2

gss
− σ2

gsp

+1

]
Pe(1−α)+2L1

σ4

gssgsp
−Pe = 0,

(3.14)

where L1 =
Ppgps

σ2
−Ppgpp

σ2

σ2

gss
− σ2

gsp

< 0. Considering the left hand-side of (3.14) as a function

of α, the two roots of (3.14) are

ROOT1 = 1− −L2 +
√
L2
2 − 4L1L3

2L1Pe
, (3.15)

ROOT2 = 1− −L2 −
√
L2
2 − 4L1L3

2L1Pe
, (3.16)

in which L2 = L1(
σ2

gss
+ σ2

gsp
) +

Ppgps
gss

−Ppgpp
gsp

σ2

gss
− σ2

gsp

+ 1 and L3 = 2L1
σ4

gssgsp
− Pe < 0. Note

that when L2 < 0, both ROOT1 and ROOT2 are larger than 1 and infeasible.
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Figure 3.3: An illustration of two curves Rpp vs. α and Rps vs. α (for a specific
ρ) in Case 1, in which two curves have up to two intersections.

To make ROOT1 shown in (3.15) feasible, we should have 0 ≤ ROOT1 ≤ 1,

which equivalently means that ρ ∈ A4 , {ρ|0 ≤ ρ ≤ 1, L2 ≥ 0, L2
2 − 4L1L3 ≥

0, 2L1Pe + L2 −
√
L2
2 − 4L1L3 ≤ 0}.7 The set A4 is a closed interval of ρ.

To make ROOT2 shown in (3.16) feasible, we should have 0 ≤ ROOT2 ≤ 1,

which equivalently means ρ ∈ A5 , {ρ|0 ≤ ρ ≤ 1, L2 ≥ 0, L2
2 − 4L1L3 ≥

0, 2L1Pe + L2 +
√
L2
2 − 4L1L3 ≤ 0}. The set A5 is an interval of ρ, and is a

subset of A4.

Overall, for any specific ρ, if ρ ∈ Ā4 , [0, 1]\A4, then the two curves Rpp vs. α

and Rps vs. α do not have intersection; if ρ ∈ A4\A5, then the two curves have

one intersection denoted as (αeq,1, Req,1), with αeq,1 = ROOT1; if ρ ∈ A5, then

the two curves have two intersections denoted as (αeq,1, Req,1) and (αeq,2, Req,2),

with αeq,1 = ROOT1 and αeq,2 = ROOT2. An illustration is given in Fig. 3.3.

This completes the proof.

Below we show some features of Req,1 and Req,2.

7L2 is not a function of ρ. By including “L2 ≥ 0” in the expression of A4, we mean that A4

will be a null set if L2 < 0.
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Req,1 is expressed as

Req,1 = Rpp|α=ROOT1 =
1− ρ

2
log

[
1 +

Ppgpp
σ2

+
Pp

gps
gss
− Pp gppgsp

σ2

gss
− σ2

gsp

+ L1

(
−L2 +

√
L2
2 − 4L1L3

2L1

+
σ2

gss

)]
. (3.17)

The second order derivative of Req,1 is given by

d2Req,1

dρ2
=

1

(ln 2)H1(ρ)

L1√
L2
2 − 4L1L3

(1− ρ
2

d2Pe
dρ2

− dPe
dρ

)
−

1− ρ
2(ln 2)

(
H1(ρ)

)2 L2
1

L2
2 − 4L1L3

(
dPe
dρ

)2 − 1− ρ
(ln 2)H1(ρ)

L2
1(

L2
2 − 4L1L3

) 3
2

(
dPe
dρ

)2, (3.18)

where H1(ρ) = 1 + Ppgpp
σ2 +

Pp
gps
gss
−Pp

gpp
gsp

σ2

gss
− σ2

gsp

+ L1

(−L2+
√
L2
2−4L1L3

2L1
+ σ2

gss

)
, and

 dPe
dρ

= 2(ηPpgtt+E0−Ec)
(1−ρ)2 ,

d2Pe
dρ2

= 4(ηPpgtt+E0−Ec)
(1−ρ)3 .

(3.19)

From (3.18), since 1−ρ
2

d2Pe
dρ2
− dPe

dρ
= 0, d2Pe

dρ2
> 0 and dPe

dρ
> 0, one can obtain

that d2Req,1
dρ2

< 0, which indicates that Req,1 is a concave function of ρ.

Req,2 is expressed as

Req,2 = Rpp|α=ROOT2 =
1− ρ

2
log

[
1 +

Ppgpp
σ2

+
Pp

gps
gss
− Pp gppgsp

σ2

gss
− σ2

gsp

+ L1

(
−L2 −

√
L2
2 − 4L1L3

2L1

+
σ2

gss

)]
. (3.20)

The second order derivative of Req,2 is given by

d2Req,2

dρ2
=

−1

(ln 2)H2(ρ)

L1√
L2
2 − 4L1L3

(1− ρ
2

d2Pe
dρ2

− dPe
dρ

)
−

1− ρ
2(ln 2)

(
H2(ρ)

)2 L2
1

L2
2 − 4L1L3

(
dPe
dρ

)2 +
1− ρ

(ln 2)H2(ρ)

L2
1(

L2
2 − 4L1L3

) 3
2

(
dPe
dρ

)2, (3.21)

where H2(ρ) = 1 + Ppgpp
σ2 +

Pp
gps
gss
−Pp

gpp
gsp

σ2

gss
− σ2

gsp

+ L1

(−L2−
√
L2
2−4L1L3

2L1
+ σ2

gss

)
.
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Recall that intersection (αeq,2, Req,2) exists only when ρ ∈ A5. By observing

(3.21), it can be seen that 1) when ρ ∈ A6 , A5∩{ρ|H2(ρ)− 1
2

√
L2
2 − 4L1L3 ≥ 0},

we have d2Req,2
dρ2

≥ 0, which indicates that Req,2 is a convex function of ρ over A6;

2) when ρ ∈ A7 , A5 ∩ {ρ|H2(ρ) − 1
2

√
L2
2 − 4L1L3 < 0}, we have d2Req,2

dρ2
< 0,

which indicates that Req,2 is a concave function of ρ over A7. Note that A6 and

A7 both are closed intervals of ρ.

2) Problem P1 with Case 1

From Lemma 3, when ρ ∈ Ā4, the two curves Rpp vs. α and Rps vs. α do not have

intersection, which means that we always have Rpp < Rps, as shown in Fig. 3.3(a).

Thus, at optimality of Problem P1, we should have Rpp = γT . Then Problem P1

is equivalent to

max
ρ

Rss|α=Fp(ρ) (3.22a)

s.t. ρ ∈ A1 ∩ A2 ∩ Ā4, (3.22b)

with Rss|α=Fp(ρ) = 1−ρ
2

log
(
1 + (Pegsp−µpσ2+Ppgpp)gss

(µp+1)gspσ2

)
.

When ρ ∈ A4\A5, the two curves have one intersection at (αeq,1, Req,1). It is

interesting to point out that we further have two scenarios, as follows.

• If Req,1 ≥ γT , then at optimality of Problem P1 (i.e., when min{Rpp, Rps} =

γT ), we have Rps ≤ Rpp, and thus, we have Rps = γT at optimality of

Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (3.23a)

s.t. ρ ∈ A1 ∩ A3 ∩ [(A4\A5) ∩ A8] (3.23b)

in which Rss|α=Fs(ρ) = 1−ρ
2

log
(
1 + Pegss−µsσ2+Ppgps

(µs+1)σ2

)
and A8 , {ρ|Req,1 ≥

γT}. As aforementioned, Req,1 is a concave function of ρ. Thus, A8 is a

closed interval of ρ.
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• If Req,1 ≤ γT , then at optimality of Problem P1 (i.e., when min{Rpp, Rps} =

γT ), we have Rpp ≤ Rps, and thus, we have Rpp = γT at optimality of

Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (3.24a)

s.t. ρ ∈ A1 ∩ A2 ∩ [(A4\A5) ∩ Ā8] (3.24b)

in which Ā8 = [0, 1]\A8. As A8 is a closed interval, Ā8 is the union of two

closed intervals.

When ρ ∈ A5, the two curves have two intersections at (αeq,1, Req,1) and

(αeq,2, Req,2). It is also interesting to point out that we further have two scenarios,

as follows.

• If Req,1 ≤ γT or Req,2 ≥ γT , then at optimality of Problem P1 (i.e., when

min{Rpp, Rps} = γT ), we have Rpp ≤ Rps, and thus, we have Rpp = γT at

optimality of Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (3.25a)

s.t. ρ ∈ A1 ∩ A2 ∩ A5 ∩ [Ā8 ∪ A9] (3.25b)

in which A9 = {ρ|Req,2 ≥ γT and ρ ∈ A6} ∪ {ρ|Req,2 ≥ γT and ρ ∈ A7}.

As Req,2 is convex over A6 and concave over A7, A9 is the union of three

closed intervals.

• If Req,1 ≥ γT and Req,2 ≤ γT , then at optimality of Problem P1 (i.e., when

min{Rpp, Rps} = γT ), we have Rps ≤ Rpp, and thus, we have Rps = γT at

optimality of Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (3.26a)

s.t. ρ ∈ A1 ∩ A3 ∩ A5 ∩ A8 ∩ Ā9 (3.26b)
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in which Ā9 = {ρ|Req,2 ≤ γT and ρ ∈ A6} ∪ {ρ|Req,2 ≤ γT and ρ ∈ A7},

being the union of three closed intervals.

As a summary, for Case 1, the maximal objective function of Problem P1 is the

largest one among the maximal objective functions of Problem (3.22), Problem

(3.23), Problem (3.24), Problem (3.25) and Problem (3.26).

3.2.2 Case 2: When gpp > gps and gsp > gss

Similar to Lemma 3, when ρ ∈ Ā4, the two curves do not have intersection, which

means that we always have Rps ≤ Rpp. Thus, at optimality of Problem P1, we

should have Rps = γT . Then Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (3.27a)

s.t. ρ ∈ A1 ∩ A3 ∩ Ā4. (3.27b)

When ρ ∈ A4\A5, the two curves have one intersection at (αeq,1, Req,1). We

further have two scenarios, as follows.

• If Req,1 ≥ γT , then at optimality of Problem P1 (i.e., when min{Rpp, Rps} =

γT ), we have Rpp ≤ Rps, and thus, we have Rpp = γT at optimality of

Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (3.28a)

s.t. ρ ∈ A1 ∩ A2 ∩ [(A4\A5) ∩ A8]. (3.28b)

• If Req,1 ≤ γT , then at optimality of Problem P1 (i.e., when min{Rpp, Rps} =

γT ), we have Rps ≤ Rpp, and thus, we have Rps = γT at optimality of

Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (3.29a)

s.t. ρ ∈ A1 ∩ A3 ∩ [(A4\A5) ∩ Ā8]. (3.29b)
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When ρ ∈ A5, the two curves have two intersections at (αeq,1, Req,1) and

(αeq,2, Req,2). We further have two scenarios, as follows.

• If Req,1 ≤ γT or Req,2 ≥ γT , then at optimality of Problem P1 (i.e., when

min{Rpp, Rps} = γT ), we have Rps ≤ Rpp, and thus, we have Rps = γT at

optimality of Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (3.30a)

s.t. ρ ∈ A1 ∩ A3 ∩ A5 ∩ [Ā8 ∪ A9]. (3.30b)

• If Req,1 ≥ γT and Req,2 ≤ γT , then at optimality of Problem P1 (i.e., when

min{Rpp, Rps} = γT ), we have Rpp ≤ Rps, and thus, we have Rpp = γT at

optimality of Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (3.31a)

s.t. ρ ∈ A1 ∩ A2 ∩ A5 ∩ A8 ∩ Ā9. (3.31b)

As a summary, for Case 2, the maximal objective function of Problem P1 is the

largest one among the maximal objective functions of Problem (3.27), Problem

(3.28), Problem (3.29), Problem (3.30) and Problem (3.31).

3.2.3 Case 3: When gpp ≤ gps and gsp > gss

Similar to the previous two cases, we also try to decide which one between Rpp

and Rps should be equal to γT .

Lemma 4. For a specific value of ρ, the two curves Rpp vs. α and Rps vs. α

over α ∈ [0, 1] have at most one intersection at (αeq,1, Req,1), with Req,1 being a

concave function of ρ.
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Proof. The proof is similar to Lemma 3. The major difference is L1 > 0 and

L2 > 0, which makes ROOT2 in (3.16) larger than 1 and infeasible, yielding at

most one intersection.

Note that we have Rpp|α=0 = 1−ρ
2

log(1 + Ppgpp
σ2 + Ppgpp

Pegsp+σ2 ) < Rps|α=0 =

1−ρ
2

log(1 + Ppgps
σ2 + Ppgps

Pegss+σ2 ). Thus, the two curves Rpp vs. α and Rps vs. α

have one intersection over α ∈ [0, 1] if and only if Rpp|α=1 ≥ Rps|α=1, which

equivalently means that ρ ∈ A4 =

max

{
1− ηPpgtt+E0−Ec

ηPpgtt+
Ppgps−Ppgpp
gsp−gss

, 0

}
, 1

.

Similar to Lemma 3, when ρ ∈ Ā4 , [0, 1]\A4, the two curves do not have

intersection, which means that we always have Rpp < Rps. Thus, at optimality

of Problem P1, we should have Rpp = γT . Then Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (3.32a)

s.t. ρ ∈ A1 ∩ A2 ∩ Ā4. (3.32b)

When ρ ∈ A4, the two curves have one intersection at (αeq,1, Req,1). We

further have two scenarios, as follows.

• If Req,1 ≥ γT , then at optimality of Problem P1 (i.e., when min{Rpp, Rps} =

γT ), we have Rpp ≤ Rps, and thus, we have Rpp = γT at optimality of

Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (3.33a)

s.t. ρ ∈ A1 ∩ A2 ∩ A4 ∩ A8. (3.33b)

• If Req,1 < γT , then at optimality of Problem P1 (i.e., when min{Rpp, Rps} =

γT ), we have Rps < Rpp, and thus, we have Rps = γT at optimality of
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Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (3.34a)

s.t. ρ ∈ A1 ∩ A3 ∩ A4 ∩ Ā8. (3.34b)

As a summary, for Case 3, the maximal objective function of Problem P1 is the

largest one among the maximal objective functions of Problem (3.32), Problem

(3.33), and Problem (3.34).

3.2.4 Case 4: When gpp > gps and gsp ≤ gss

Similar to Case 3, we can also prove that Lemma 4 holds in Case 4. Different

from Case 3, here we have Rpp|α=0 = 1−ρ
2

log(1 + Ppgpp
σ2 + Ppgpp

Pegsp+σ2 ) > Rps|α=0 =

1−ρ
2

log(1+ Ppgps
σ2 + Ppgps

Pegss+σ2 ). Thus, the two curves Rpp vs. α and Rps vs. α have one

intersection over α ∈ [0, 1] if and only if Rpp|α=1 ≤ Rps|α=1, which equivalently

means that ρ ∈ A4.
8

When ρ ∈ Ā4, the two curves do not have intersection, which means that

we always have Rpp > Rps. Thus, at optimality of Problem P1, we should have

Rps = γT . Then Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (3.35a)

s.t. ρ ∈ A1 ∩ A3 ∩ Ā4. (3.35b)

When ρ ∈ A4, the two curves have one intersection at (αeq,1, Req,1). We have

two scenarios as follows.

• If Req,1 ≥ γT , then at optimality of Problem P1 (i.e., when min{Rpp, Rps} =

γT ), we have Rps ≤ Rpp, and thus, we have Rps = γT at optimality of

8In Case 3, Rpp|α=1 ≥ Rps|α=1 is equivalent to ρ ∈ A4, while in Case 4, Rpp|α=1 ≤ Rps|α=1

is equivalent to ρ ∈ A4. This is because we have gpp ≤ gps and gsp > gss in Case 3, while we
have gpp > gps and gsp ≤ gss in Case 4.
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Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fs(ρ) (3.36a)

s.t. ρ ∈ A1 ∩ A3 ∩ A4 ∩ A8. (3.36b)

• If Req,1 < γT , then at optimality of Problem P1 (i.e., when min{Rpp, Rps} =

γT ), we have Rpp < Rps, and thus, we have Rpp = γT at optimality of

Problem P1. Accordingly, Problem P1 is equivalent to

max
ρ

Rss|α=Fp(ρ) (3.37a)

s.t. ρ ∈ A1 ∩ A2 ∩ A4 ∩ Ā8. (3.37b)

As a summary, for Case 4, the maximal objective function of Problem P1 is the

largest one among the maximal objective functions of Problem (3.35), Problem

(3.36), and Problem (3.37).

In Cases 1∼4, all the equivalent problems are in the format of max
ρ

Rss|α=Fp(ρ)

or max
ρ

Rss|α=Fs(ρ) under a constraint that ρ is within a closed interval (i.e., such

as equivalent problems (3.23), (3.28), (3.32) and (3.35)) or within a union of

multiple closed intervals (i.e., such as equivalent problems (3.25), (3.30), (3.34)

and (3.37)). We have two observations:

• If ρ is within a union of multiple closed intervals, we can first get the optimal

solution over each interval and pick up the best optimal solution.

• Rss|α=Fp(ρ) and Rss|α=Fs(ρ) can be expressed in an unified form as

Rss,n =
1− ρ

2
log

(
1 +

(Pegsn − µnσ2 + Ppgpn)gss
(µn + 1)gsnσ2

)
(3.38)

with n ∈ {p, s}. Here we have Rss|α=Fn(ρ) = Rss,n.

Therefore, in what follows, we focus on maximizing Rss,n, n ∈ {p, s} over ρ ∈ B

with B being a closed interval.
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3.2.5 Solving max Rss,n s.t. ρ ∈ B

The objective function Rss,n is not a concave function. However, it is a quasicon-

cave function [85], as theoretically shown in the following theorem.

Theorem 1. The objective function Rss,n is quasiconcave with respect to ρ ∈ B.

Proof. See Appendix 3.6.2.

As shown in [85], super-level sets of a quasiconcave function can be represented

by inequalities of concave functions. As reference [85] does not provide methods

to find the inequalities of concave functions, here we develop a method to find

the inequalities of concave functions that can represent super-level sets of our

quasiconcave function Rss,n. As a result, we have the following theorem.

Theorem 2. For any t ≥ 0, inequality Rss,n ≥ t and inequality ξt,n ≥ 0 are

equivalent, in which ξt,n is given as

ξt,n = (λn − 2
2t

1−ρ )(1− ρ)(µn + 1), (3.39)

where

λn = 1 +
(Pegsn − µnσ2 + Ppgpn)gss

(µn + 1)gsnσ2
. (3.40)

Proof. It is readily checked that Rss,n ≥ t is equivalent to λn − 2
2t

1−ρ ≥ 0.

Since 1− ρ and µn + 1 are larger than 0, multiplying two positive numbers to

λn − 2
2t

1−ρ will not change its sign. Then we can see that Rss,n ≥ t is equivalent

to ξt,n ≥ 0.

This completes the proof.

From Theorem 2, identifying the maximized Rss,n in ρ ∈ B is equivalent to

finding the maximal possible value of t such that there exists ρ ∈ B that makes

Rss,n ≥ t, which is further equivalent to finding the maximal possible value of
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t such that there exists ρ ∈ B that makes ξt,n ≥ 0. For a value of t, if there

exists ρ ∈ B that makes ξt,n ≥ 0, then we say that the t value is feasible. Thus,

max
ρ

Rss,n s.t. ρ ∈ B is equivalent to finding the maximal feasible t value, which

can be done by using a bisection search over t ∈ [0, log(1 + Pegss
σ2 )] (noting that

from (3.4) and (3.6), it can be seen that an upper bound of Rss,n is log(1+ Pegss
σ2 )).

In the bisection search over t, we need to decide whether or not a checked t

value is feasible. For this purpose, the following theorem, which gives a feature

of ξt,n, is helpful.

Theorem 3. For a given nonnegative value of t, the function ξt,n is concave with

respect to ρ ∈ B.

Proof. See Appendix 3.6.3.

In the bisection search over t, if a checked t value is feasible, this equivalently

means that for the checked t value, the maximal value of ξt,n over ρ ∈ B is

nonnegative. Thus, from Theorem 3, we can use a bisection search over ρ ∈ B,

to find the maximal value of ξt,n.9 If any searched ρ makes ξt,n ≥ 0, then the

checked t value is feasible, and we can terminate the bisection search of ρ. If the

found maximal value of ξt,n is negative, then the checked t value is infeasible.

Thus, we have two levels of bisection search, and we call the bisection search over

t as outer bisection search, and call the bisection search over ρ as inner bisection

search.

Generally, each inner bisection search may need to be done over ρ ∈ B. Next

we reduce the number of iterations in inner bisection search.

9In the bisection search, we try to find a value of ρ that makes
dξt,n
dρ = 0 (which means the

maximal value of ξt,n is achieved over ρ ∈ B). Note that other methods can also be used here
to find the maximal value of ξt,n over ρ ∈ B, such as gradient descent method and Newton’s
method.
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For a t value, define Rt,n = {ρ|ξt,n ≥ 0, ρ ∈ B}. So Rt,n is a set of ρ that

makes ξt,n ≥ 0. Consider two t values: t1 and t2, with t1 < t2. We have

Rt2,n
(i)
= {ρ|Rss,n ≥ t2}

(ii)

⊆ {ρ|Rss,n ≥ t1}
(iii)
= Rt1,n, (3.41)

in which steps (i) and (iii) are from Theorem 2, and step (ii) is from t1 < t2.

From (3.41), we can see that, if we know that t1 is feasible, then when deciding

whether or not t2 is feasible, we only need to search ρ overRt1,n, or over an interval

of ρ that includes Rt1,n as a subset. Denote F , [f1, f2] as the interval of ρ over

which the inner bisection search is performed. So F is initially set to be B. In

the outer bisection search, for a checked t value (say t†), if t† is feasible, we get an

updated F (which is a subset of the previous F , and includes Rt†,n as a subset).

Then, in the outer bisection search, when we check feasibility of higher t values,10

we only need to search ρ over the updated interval F (rather than over B) in the

inner bisection search, referred to as feasible region shrinking.

Based on this observation, we have Algorithm 1 for our inner bisection search.

In Algorithm 1, the expression of ξt,n is given in (3.39), while expression of dξt,n
dρ

is given as

dξt,n
dρ

= (
gss
gsn
− 1)

(
µn − (1− ρ)

dµn
dρ

)
+

2ηPpgttgss
σ2

− 1

− Ppgpngss
gsnσ2

−
(

(µn + 1)
(2(ln 2)t

1− ρ
− 1
)

+ (1− ρ)
dµn
dρ

)
2

2t
1−ρ . (3.42)

In Steps 1 and 2 of Algorithm 1, we check whether ρ = f1 or ρ = f2 makes

ξt,n nonnegative. If yes, then the checked t value is feasible and we terminate the

algorithm. If we proceed to Step 3, then we know that ξt,n|ρ=f1 < 0 and ξt,n|ρ=f2 <

0. In Step 3, we check whether dξt,n
dρ
|ρ=f1 and dξt,n

dρ
|ρ=f2 are both nonpositive or

both nonnegative. If they are both nonpositive or both nonnegative, then ξt,n

10Note that since t† is feasible, we do not need to check t values lower than t† in the outer
bisection search.
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Algorithm 1: Inner Bisection Search

Input: value of t to be checked for feasibility, and two end points of the
interval F : f1 and f2

Output: Feasibility of value t, updated f1 and f2
1 if ξt,n|ρ=f1 ≥ 0 or ξt,n|ρ=f2 ≥ 0 then
2 t is feasible. Terminate the algorithm;

3 if dξt,n
dρ
|ρ=f1 ×

dξt,n
dρ
|ρ=f2 ≥ 0 then

4 t is infeasible. Terminate the algorithm;

5 fBS
1 ← f1, f

BS
2 ← f2;

6 fnew
1 ← f1, f

new
2 ← f2;

7 if |fBS
2 − fBS

1 | < ερ then
8 t is infeasible. Terminate the algorithm;

9 fmid ← (fBS
1 + fBS

2 )/2;
10 if ξt,n|ρ=fmid

≥ 0 then
11 t is feasible; f1 ← fnew

1 , f2 ← fnew
2 ; Terminate the algorithm;

12 if dξt,n
dρ
|ρ=fmid

= 0 then

13 t is infeasible. Terminate the algorithm;

14 if dξt,n
dρ
|ρ=fmid

> 0 then

15 fBS
1 ← fmid; fnew

1 ← fmid;Go to Step 7;

16 if dξt,n
dρ
|ρ=fmid

< 0 then

17 fBS
2 ← fmid; fnew

2 ← fmid;Go to Step 7;

is a decreasing or increasing function with respect to ρ ∈ F , and thus, we can

conclude that the checked t value is infeasible. So when we proceed to Step 5,

we should have dξt,n
dρ
|ρ=f1 > 0 and dξt,n

dρ
|ρ=f2 < 0. Then we try to search the

maximal point of ξt,n over ρ ∈ [f1, f2], by using inner bisection search of dξt,n
dρ

until dξt,n
dρ

= 0. In the inner bisection search, [fBS
1 , fBS

2 ] represents the subinterval

after bisecting the original interval of ρ, and [fnew
1 , fnew

2 ] represents the updated

interval F . In the inner bisection search, if a searched ρ value makes ξt,n ≥ 0,

then we know that the checked t value is feasible, and we update F (we can see

that the updated F satisfies Rt,n ⊆ F), and terminate the algorithm (Steps 10–

11). If the subinterval [fBS
1 , fBS

2 ] is sufficiently small (i.e., less than a threshold
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value ερ) and no searched ρ value makes ξt,n ≥ 0, then we know the checked t

value is infeasible, and we do not update F (Steps 7–8).

The detailed algorithm for the outer bisection search is straightforward, and

thus, is omitted here, for presentational simplicity.

Complexity: According to [86], the computational complexity of a bisec-

tion search is O(log(1
ε
)), where ε is the pre-defined tolerance for convergence.

Thus, the complexity of the proposed two-level bisection search is expressed as

O
(

log( 1
εt

) log( 1
ερ

)
)
, in which εt and ερ are pre-defined convergence tolerance for

the outer bisection search over t and the inner bisection search over ρ.

Impact of parameters εt and ερ: Denote t∗ as the maximal feasible t value,

and denote ρ∗ as the corresponding ρ that achieves t∗. Denote t̂ as the t value

found by our proposed algorithm.

For the outer bisection search over t, when it converges, we get a region of t,

denoted as [l, u] with u− l < εt. Then t̂ = l is the t value found by our algorithm.

If the inner bisection search (which does feasibility check for a specific t value)

is always accurate, then when the outer bisection search converges, t = l is

feasible, t = u is infeasible, and t∗ falls within [l, u]. Thus, the gap between t∗

and t̂(= l) is less than εt.

However, when the inner bisection search checks the feasibility of a value, say

t†, close to t∗, it may not be accurate. It is possible that the inner bisection

search may claim that t† is infeasible, but actually t† is feasible. If this happens,

then when the outer bisection search converges at a region of t denoted as [l, u],

actually t = l and t = u are both feasible, and we have l < u < t∗ (in other

words, t∗ does not fall within [l, u]). Recall that our objective function Rss,n is a

quasiconcave function, i.e., when the first order derivative is 0, the second order

derivative is nonpositive. Thus, we can treat the quasiconcave function Rss,n
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as a concave function at the neighborhood of ρ∗. Based on this, |t∗ − u| is less

than
∣∣∣dRss,ndρ

|ρ=ρ∗−ερ
∣∣∣ερ. Accordingly, the gap between t∗ and t̂(= l) is less than

∆ , εt +
∣∣∣dRss,ndρ

|ρ=ρ∗−ερ
∣∣∣ερ.

For Rss,n, its first-order derivative at ρ = ρ∗ is zero, i.e., dRss,n
dρ
|ρ=ρ∗ = 0. Since

Rss,n can be viewed as a concave function at the neighborhood of ρ∗ and ερ is

small, we can see that
∣∣∣dRss,ndρ

|ρ=ρ∗−ερ
∣∣∣ is close to zero. Thus, ∆ is small for small

values of εt and ερ.

3.2.6 Further Discussion: When Primary Information is
Sent during the First Phase

In the first phase, the wireless RF signals can actually be information signals of

the PT for the PR. In other words, in the first phase, from the PT’s signals, the

ST tries to harvest energy while the PR tries to decode information. Thus, the

primary system has an additional throughput expressed as ρ log(1 + Ppgpp
σ2 ). It

also means that the target throughput of the primary system during the second

and third phase is γT − ρ log(1 + Ppgpp
σ2 ). Therefore, in Problem P1, we should

replace γT with γT − ρ log(1 + Ppgpp
σ2 ), and accordingly, we have the following

revised Problem P1:
Revised Problem P1:

max
α,ρ

Rss =
1− ρ

2
log

(
1 +

(1− α)Pegss
σ2

)
(3.43a)

s.t. ρ ∈ Ã1; 0 ≤ α ≤ 1 (3.43b)

min{Rpp, Rps} ≥ γT − ρ log(1 +
Ppgpp
σ2

) (3.43c)

in which Ã1 ,

[
max{Ec−E0

ηPpgtt
, 0}, 1−

2
(
γT−log(1+Ppgpp

σ2
)
)

log(1+
Ppgtt
σ2

)−2 log(1+Ppgpp

σ2
)

]
.

Similar to Lemma 1, we should have either Rpp = γT − ρ log(1 + Ppgpp
σ2 ) or

Rps = γT −ρ log(1+ Ppgpp
σ2 ) at optimality of the revised Problem P1. Accordingly,

when Rpn = γT−ρ log(1+ Ppgpp
σ2 ), n ∈ {p, s}, we can see that α can be expressed in
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terms of ρ as α = F̃n(ρ) , µ̃n(Pegsn+σ2)−Ppgpn
(µ̃n+1)Pegsn

with µ̃n , (1+ Ppgpp
σ2 )22

2γ̃T

1−ρ− Ppgpn
σ2 −1,

in which γ̃T = γT − log(1 + Ppgpp
σ2 ).

Afterwards, for each of the four cases defined in Section 3.2.1∼3.2.4, the

revised Problem P1 is equivalent to maximizing

Rss|α=F̃n(ρ) =
1− ρ

2
log
(
1 +

(Pegsn − µ̃nσ2 + Ppgpn)gsn
(µ̃n + 1)gsnσ2

)
(3.44)

over closed intervals.

Then similar to Theorem 1, we can still prove that Rss|α=F̃n(ρ) is quasiconcave

over each closed interval, and thus, a two-level bisection search can be used to

find the optimal solution.

For presentation simplicity, in the sequel, we consider that the PT does not

send information to the PR during the first phase of each slot in the cooperative

transmission mode.

3.3 Optimal Solution for Problem P2

Similar to Problem P1, when Problem P2 achieves the optimality, the constraint

Rpp ≥ γT should take equality, which means α = Fp(ρ), as given in (3.9). Ac-

cordingly, Problem P2 is equivalent to

max
ρ

Rw/o
ss |α=Fp(ρ) (3.45a)

s.t. ρ ∈ A1 ∩ A2 (3.45b)

with R
w/o
ss |α=Fp(ρ) = 1−ρ

2
log λw/o, where

λw/o = 1 + (Pegsp − µpσ2 + Ppgpp)gss

{[
µp(Pegsp + σ2)−

Ppgpp
]
gss + (Ppgps + σ2)(µp + 1)gsp

}−1
. (3.46)

We have the following theorem for the objective function of Problem (3.45).
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Theorem 4. The objective function R
w/o
ss |α=Fp(ρ) is quasiconcave with respect to

ρ ∈ [0, 1].

Proof. See Appendix 3.6.4.

Since R
w/o
ss |α=Fp(ρ) is quasiconcave, similar to Theorem 2, for any t ≥ 0, in-

equality R
w/o
ss |α=Fp(ρ) ≥ t is equivalent to ξ

w/o
t ≥ 0, with

ξ
w/o
t , (λw/o − 2

2t
1−ρ )(1− ρ)

{[
µp(Pegsp + σ2)−

Ppgpp
]
gss + (Ppgps + σ2)(µp + 1)gsp

}
. (3.47)

The following theorem gives a feature of ξ
w/o
t .

Theorem 5. For a given nonnegative value t, the function ξ
w/o
t is concave with

respect to ρ ∈ [0, 1].

Proof. See Appendix 3.6.5.

Therefore, a two-level bisection search similar to that in Section 3.2.5 can be

used to find the optimal solution for Problem P2. The details are omitted here.

Overall, Fig. 3.4 shows the procedure for finding optimal solution of the con-

sidered system.

Remark: Interestingly, we have an observation that the maximal secondary

throughput of Problem P1 may not guarantee to be larger than that of Problem

P2. The reason is as follows. For specific α and ρ, the objective function value

of Problem P1 is indeed larger than that of Problem P2. However, compared

to Problem P2, Problem P1 has one more constraint Rps ≥ γT , which makes

the feasible region of Problem P1 be a subset of the feasible region of Problem

P2. Thus, in a larger feasible region, it is possible that the maximal secondary

throughput of Problem P2 is larger than that of Problem P1.
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Our System

Problem P1

(With SIC)

Problem P2

(Without SIC)

Case 1 Case 2 Case 3 Case 4

Problems 

(22)-(26)

Problems 

(27)-(31)

Problems

 (32)- (34) 

Problems

(35) - (37) 

Lemma 4 Lemma 4

Lemma 1,2

Optimal 

Solution

Optimal 

Solution

Lemma 1,2 and 

Theorem 4,5

Theorem 1,2,3

Lemma 3 Lemma 3

Figure 3.4: Flow chart of the procedure for finding optimal solution of the
considered system.

A numerical example is also given here, which has the following parameter

setting as: gtt = 7.15×10−3, gpp = 2.69×10−5, gps = 2.65×10−6, gsp = 1.1×10−1,

gss = 2.88×10−2, Pp = 15 dBm, E0 = 3.41×10−5 J, Ec = 1.5×10−6 J, σ2 = −25

dBm, and γT = 0.5 bps/Hz. In this specific example, the optimal solution of

Problem P2 is 0.1448 bps/Hz, which is larger than the optimal solution of Problem

P1, 0.0321 bps/Hz.

3.4 Numerical Results

We use Matlab simulation to evaluate the performance of our proposed algo-

rithm11. Similar to [19], the channel power gain gi is further represented as

gi = g̃i
1+d

κi
i

, where i ∈M = {tt, pp, ps, sp, ss}, g̃i is exponentially distributed with

parameter 1, di is the distance of link i, and κi is the path loss exponent of link

i. The distance values are: dpp = 12 m, dtt = dps = dsp = dss = 8 m. The

11In the sequel, by “our proposed algorithm,” we mean the algorithm that takes the better
solution of Problem P1 and Problem P2 if both problems are feasible, and takes the solution of
Problem P2 if only Problem P2 is feasible. Note that if Problem P2 is infeasible, then Problem
P1 should also be infeasible.
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background noise variance is σ2 = −25dBm and the energy conversion efficiency

is η = 0.5. The energy expenditure in a time slot due to circuit operation and

channel estimation is Ec = 1.5× 10−6 J. In our simulation, a minimum through-

put requirement 0.15 bps/Hz is set up at the ST. If the ST cannot achieve this

throughput at a slot, our system works in direct primary transmission mode.

First we evaluate the chance of ST to access the channel. Three events, D1, D2

and D3, are considered. Specifically, event D1 is defined as gpp < (2γ
T − 1)σ2/Pp,

which means that the PT needs help. Event D2 is defined as gtt ≥ (22γT−1)σ2/Pp,

which means that it is possible to set up a ρ such that Rtt ≥ γT (i.e., the ST is

able to decode information from the PT in the second phase). Event D3 is defined

as the event that the PT needs help (i.e., gpp < (2γ
T − 1)σ2/Pp) and at least one

of Problems P1 and P2 is feasible12. Clearly, when event D3 happens, events

D1 and D2 should also happen. And the probability of event D3 is exactly the

probability of the ST to access the channel. By setting γT = 0.25 bps/Hz and 0.5

bps/Hz, κpp = 4, κi = 2, i ∈M\{pp} and varying Pp from 0 dBm to 30 dBm, the

occurrence probabilities of three events, P (D1), P (D2), and P (D3), are shown in

Fig. 3.5. Probabilities P (D1) and P (D2) are decreasing and increasing functions,

respectively, of Pp, which is intuitive. Moreover, we get higher P (D1) and lower

P (D2) through increasing γT from 0.25 bps/Hz to 0.5 bps/Hz. This is because

a higher target rate γT means that the PT needs more help and the ST needs

better channel gain gtt to decode information from the PT. At low Pp, P (D1)

is close to 1 (i.e., the PT almost always needs help from the ST), and thus, the

curve of P (D3) follows the trend of the curve of P (D2), i.e., increases when Pp

increases or γT decreases. At high Pp, P (D2) is close to 1, and thus, the curve of

12Note that in cooperative transmission mode, when Problem P1 is feasible, Problem P2
is always feasible. Thus, “at least one of Problems P1 and P2 is feasible” is equivalent to
“Problem P2 is feasible.”
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Figure 3.5: The probabilities of three events D1, D2, and D3.

P (D3) follows the trend of the curve of P (D1), i.e., decreases when Pp increases

or γT decreases.

Next we show by how much chance the performance of Problem P2 is better

than that of Problem P1 (i.e., the maximal secondary throughput without SIC

is higher than that with SIC). We set γT = 0.1, 0.25, 0.5, 0.75, and 1 bps/Hz,

and Pp = 0 dBm and 10 dBm. For each (γT , Pp) pair, we run simulations for

106 time slots. In Table 3.2, the numbers after slash are numbers of time slots

in which both Problems P1 and P2 are feasible, while the numbers before slash

are numbers of time slots when the maximal secondary throughput of Problem

P2 is larger than that of Problem P1. It can be seen that, in most time slots

when both problems are feasible, Problem P1 has better performance. However,

it is still possible (with a small probability) that Problem P2 performs better.

Therefore, when both problems are feasible, if we directly take the solution of

Problem P1, we have a very large chance to get the overall optimal solution, to
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be verified below.

We compare our proposed algorithm with its two variants: an SIC-if-possible

algorithm that takes the solution of Problem P1 when both Problem P1 and Prob-

lem P2 are feasible, and a Never-SIC algorithm that always takes the solution

of Problem P2 even if both Problem P1 and Problem P2 are feasible. Fig. 3.6

shows secondary throughput performance of our proposed algorithm and the two

variants for γT = 0.25 bps/Hz and 0.5 bps/Hz. It can be seen that the through-

put of our proposed algorithm has similar trend as the channel access probability

(the curve of P (D3) as shown in Fig. 3.5). By comparing Fig. 3.5 and Fig. 3.6,

when Pp increases beyond 20 dBm, the channel access probability and through-

put of the secondary system in the proposed algorithm both decrease, but the

decrease rate of the channel access probability is higher, explained as follows.

When Pp is high, the channel access probability is low, which means the ST has

more chance to accumulate energy. Thus, at a slot, when the system works in

cooperative transmission mode, the energy level of the ST is high, leading to high

throughput at the slot. Thus, when Pp increases beyond 20 dBm, the decrease

rate of secondary system throughput is not as high as that of the channel access

probability. From Fig. 3.6, the SIC-if-possible algorithm achieves almost the

same performance as that of our proposed algorithm. This verifies our statement

that when both Problem P1 and Problem P2 are feasible, if we directly take the

solution of Problem P1, we have a very large chance to get the overall optimal

solution. From Fig. 3.6, it can also be seen that there is a gap between the per-

formance of the Never-SIC algorithm and that of our proposed algorithm. This

is because it is with a very large probability (for example, more than 90% based

on simulation results in Table 3.2) that the case with SIC performs better than

the case without SIC.
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Table 3.2: The number of time slots in which the maximal secondary throughput
of Problem P2 is larger than that of Problem P1, and the number of time slots
when both problems are feasible.

Pp = 0 dBm Pp = 10 dBm
γT = 0.1 134/111690 20/219865
γT = 0.25 150/74603 79/260055
γT = 0.5 57/46421 89/218943
γT = 0.75 5/31032 25/171037
γT = 1 0/21085 1/132606
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Figure 3.6: Secondary throughput of the proposed algorithm, the
SIC-if-possible algorithm, and the Never-SIC algorithm.

Remark: The above observations do not mean that our Problem P2 is useless.

This is because it is possible that Problem P1 is infeasible but Problem P2 is

feasible, in which scenario we have to take the solution of Problem P2.

In our proposed algorithm, we use two levels of bisection search. In the inner

bisection search, we keep shrinking the feasible region as shown in Algorithm 2.13

13Algorithm 2 is for the case with performing SIC. For the case without performing SIC, we
also keep shrinking the feasible region in the inner bisection search.
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shrinking.

To show the benefit of this, we compare two scenarios: our proposed algorithm

is implemented with and without shrinking the feasible region in inner bisec-

tion search. Recall that the bisecting in the inner bisection search may not be

implemented in Algorithm 1 (for example, when ξt,n|ρ=f1 ≥ 0 or ξt,n|ρ=f2 ≥ 0,

Algorithm 2 terminates at Step 2, and thus, the bisecting is not implemented).

Thus, in the comparison, we only consider the time slots when the bisecting in

the inner bisection search is carried out (e.g., Algorithm 2 proceeds to Step 5).

The average number of inner-bisecting iterations in a two-level bisection search

algorithm is shown in Fig. 3.7, with the tolerance of convergence for bisection

search being εt = ερ = 10−3 and εt = ερ = 10−4. It can be seen that shrinking

feasible region in inner bisection search reduces the number of iterations in the

inner bisection search by around 10%.

Now we try to compare our proposed algorithm with other algorithms. Since
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no existing work in the literature considers overlay cognitive NOMA enhanced

with TS-based SWIPT, here we compare with two algorithms: an OMA algo-

rithm that partitions one time slot into one harvesting phase and three equal-

length information transmission phases for links PT→ST&PR, ST→PR, and

ST→SR, respectively, and an equal power allocation (EPA) algorithm that allo-

cates equal amount of energy for transmitting the PT’s signal and the ST’s signal

in the third phase of a time slot. Fig. 3.8 shows secondary throughput of our

proposed algorithm, and the OMA and EPA algorithms. Clearly, our proposed

algorithm outperforms the EPA and OMA algorithms in terms of higher sec-

ondary throughput. Moreover, performance gap of our algorithm with the EPA

and OMA algorithms shrink at high Pp, explained as follows. At high Pp, the

probability that the PT needs help is low (as observed in Fig. 3.5). So at time

slots when the PT does not need help, the ST will only accumulate energy. Thus,

at a time slot when the PT needs help, the ST has a large chance to have high

energy, leading to high signal-to-noise ratio (SNR) at the SR. The throughput is

a logarithm function of the SNR. The logarithm function is a concave function,

i.e., at high SNR, increase of SNR does not lead to much increase in throughput.

Thus, the throughput gap of our algorithm with the EPA and OMA algorithms

shrink at high Pp. When Pp is small, our algorithm, OMA and EPA algorithms

have similar performances. This is because, as indicated in [11], compared to

OMA, NOMA has performance loss when the SNR is low.

Distance plays a critical role in SWIPT-based systems, since the amount of

harvested energy is largely determined by the distance from the RF transmitter.

For the network topology considered in our simulation, we move the ST along

the line segment of PT–ST, and fix the locations of other nodes. The secondary

throughput is evaluated and illustrated in Fig. 3.9 for Pp = 20 dBm. It can be
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Figure 3.8: Secondary throughput of our proposed algorithm, the OMA and the
EPA algorithms.

seen that the secondary throughout decreases with the increase of dtt (distance

from the PT to the ST), due to the decay of harvested energy amount at the ST.

3.5 Conclusion and Further Discussion

3.5.1 Conclusion

We have investigated the secondary throughput maximization problem for an

overlay cognitive NOMA network aided by SWIPT. For the research problems

with and without SIC at the SR, we have transformed the problems to equivalent

problems, the objective functions of which are proved to be quasiconcave. Opti-

mal solutions for the equivalent problems have been found by two-level bisection

search, and a method has been developed to reduce the number of iterations in

the inner bisection search. Interestingly, the non-SIC case is possible to achieve

a better secondary performance than the SIC case. Since this happens with a
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Figure 3.9: The impact of distance on secondary throughput of our proposed
algorithm, the OMA and the EPA algorithms.

small probability as shown in our simulation results, if the ST just picks up the

solution of the SIC case for a slot when both cases are feasible, it has a very large

chance to achieve the optimal performance at the slot. By this method, the ST

does not have to solve two optimization problems at the slot. On the other hand,

at a slot when the non-SIC case is feasible but the SIC case is infeasible, the ST

needs to take the solution of the non-SIC case.

Our numerical evaluation leads to the following observations. 1) When the

transmit power of the PT increases, the ST’s channel access probability and

throughput first increase and then decease. The first increase is because when

the PT’s transmit power increases, the ST has a higher chance to decode the PT’s

signal and a higher chance to harvest more energy. The subsequent decrease of

the ST’s channel access probability and throughput is because a high transmit

power of the PT increases the probability that the PT does not need help from
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the ST. 2) Our proposed method can reduce the number of inner-bisection-search

iterations by around 10%. 3) The distance between the PT and ST has a big

effect on the secondary throughput.

3.5.2 Further Discussion

In our work, the ST harvests energy during the whole time slot under the direct

primary transmission mode. Information transmission is not performed at the ST

in this mode. Thus, the harvested energy will be stored into the battery. When

our system works in the cooperative transmission mode, the ST uses up all the

energy stored in the battery in a greedy manner if the ST is able to help the PT.

A further research direction is to further consider another energy management

strategy at the ST, which is different from the current greedy strategy. For such a

consideration, the ST may transmit information by using only part of its energy

stored in the battery. To achieve this goal, the dynamic programming technique

can be adopted [87,88]. Since the channel coefficients in future fading blocks are

unknown, the modeling of the problem will become quite involved and challenging

to solve. Then, approximations may be used to solve the problem.

3.6 Appendix

3.6.1 Derivation of Expression of Set A2

By expanding Pe and µp, the inequality Pegsp − µpσ2 + Ppgpp ≥ 0 is equivalent

to 2(ηPpgtt+E0−Ec)gsp
(1−ρ)σ2 − 2ηPpgttgsp

σ2 + 2Ppgpp
σ2 + 1 ≥ 2

2γT

1−ρ , which can be expressed in a

compact form

βx+ θ ≥ eνx, (3.48)

where x = 1
1−ρ , β = 2(ηPpgtt+E0−Ec)gsp

σ2 , θ = −2ηPpgttgsp
σ2 + 2Ppgpp

σ2 + 1 and ν =

2(ln 2)γT .
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From the geometric perspective, (3.48) can be seen as the portion of a straight

line above an exponential line. If the equation (3.48) is feasible, this indicates

that the two lines have intersection points. Whether there exist intersections

between the two lines depends on whether equation

βx+ θ = eνx (3.49)

has roots. Multiplying both sides of (3.49) by − ν
β
e−νx−

νθ
β , we have

− ν(βx+ θ)

β
e−

ν(βx+θ)
β = −ν

β
e−

νθ
β . (3.50)

Equation (3.50) has the format of aea = b, where a is an unknown variable

to be solved and b < 0 is a constant. According to [89, page 330, (1.5)], the

Lambert W function Wm(b), m ∈ {−1, 0} can be used to represent the roots of

the equation aea = b. There are three possible cases for the roots [89, page 331,

Fig. 1].

• If −e−1 < b < 0, the equation has two roots denoted by a1 = W−1(b) and

a2 = W0(b), where W−1(b) and W0(b) stand for the two real branches of

Lambert W function Wm(b).

• If b = −e−1, the equation has only one root a1 = W−1(−e−1) = W0(−e−1).

• If b < −e−1, the equation has no root.

Accordingly, we have the following for equation (3.50) and for expression of

interval A2.

• If e−
νθ
β < β

ν
e−1, the equation (3.50) has two roots, which can be obtained

from

− ν(βx+ θ)

β
= Wm(−ν

β
e−

νθ
β ),m = −1, 0. (3.51)
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The two roots for x are expressed as x1 = −
(
W−1(− νβ e

− νθ
β )

ν
+ θ

β

)
and x2 =

−
(
W0(− νβ e

− νθ
β )

ν
+ θ

β

)
. The corresponding roots for ρ are given by ρr,i =

1− 1
xi
, i ∈ {1, 2}.

According to [89, page 331, Fig. 1], we have W0(− ν
β
e−

νθ
β ) > W−1(− ν

β
e−

νθ
β )

and thus, we have x1 > x2. Note that the values of ρ should be within

[0, 1).

– If x1 > x2 > 0, we have A2 = [ρr,1, ρr,2] ∩ [0, 1).

– if 0 > x1 > x2, we have A2 = ∅.

– if x1 > 0 > x2, we have A2 = [−∞, ρr,1] ∩ [0, 1).

• If e−
νθ
β = β

ν
e−1, the equation (3.50) has one root, which is expressed as

ρr = 1− 1
x2
. Thus, we have A2 =

{
1− 1

x2

}
∩ [0, 1).

• If e−
νθ
β > β

ν
e−1, the equation (3.50) has no root, and thus, A2 = ∅.

This completes the proof.

3.6.2 The Proof of Theorem 1

Define λn = 1 + (Pegsn−µnσ2+Ppgpn)gss
(µn+1)gsnσ2 . The first and second order derivatives of

objective function Rss,n are derived as
dRss,n

dρ
= −1

2
log(λn) + 1−ρ

2(ln 2)λn
dλn
dρ
,

d2Rss,n
dρ2

= −1
(ln 2)λn

dλn
dρ

+ 1−ρ
2(ln 2)λn

(−1
λn

(dλn
dρ

)2 + d2λn
dρ2

)
.

(3.52)

The expression of λn can be rewritten as λn = 1 + λa
λb

, where λa , (Pegsn −

µnσ
2 + Ppgpn)gss ≥ 0 and λb , (µn + 1)gsnσ

2 > 0.14 Then the first and second

14From (3.4), an equivalent form of λn is λn = 1 + (1−α)Pegss
σ2 , which is always not less than

1. Since λn = 1 + λa

λb
and λb , (µn + 1)gspσ

2 > 0 (noting that for ρ ∈ B, we always have

µn > 0), we have λa ≥ 0.
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order derivatives of λn are given by
dλn
dρ

= 1
λb

(dλa
dρ
− λa

λb

dλb
dρ

),

d2λn
dρ2

=
−2dλb

dρ
dλn
dρ

λb
+

λb
d2λa
dρ2
−λa

d2λb
dρ2

λ2b
,

(3.53)

where 

dλa
dρ

= (gsn
dPe
dρ
− σ2 dµn

dρ
)gss,

d2λa
dρ2

= (gsn
d2Pe
dρ2
− σ2 d2µn

dρ2
)gss,

dλb
dρ

= gsnσ
2 dµn

dρ
,

d2λb
dρ2

= gsnσ
2 d2µn

dρ2
,

dµn
dρ

= 2(ln 2)γT

(1−ρ)2 2
2γT

1−ρ ,

d2µn
dρ2

=
(2(ln 2)γT

(1−ρ)2
)2

2
2γT

1−ρ + 4(ln 2)γT

(1−ρ)3 2
2γT

1−ρ ,

(3.54)

with dPe
dρ

and d2Pe
dρ2

given in (3.19).

According to [85, page 101], for a function over an interval, if its second order

derivative is nonpositive when its first order derivative is 0, then the function is

quasiconcave over the interval. Thus, next, we will show Rss,n is strictly quasi-

concave, that is, d2Rss,n
dρ2

< 0 when dRss,n
dρ

= 0. So in the rest of this proof, we only

consider what happens when dRss,n
dρ

= 0.

Based on the first equation of (3.52), dRss,n
dρ

= 0 is equivalent to

− λn log(λn) +
1− ρ
(ln 2)

dλn
dρ

= 0. (3.55)

As λn is always not less than 1, λn log(λn) is nonnegative. Together with (3.55),

we have dλn
dρ
≥ 0. From the second equation of (3.53), we have d2λn

dρ2
=
−2dλb

dρ
dλn
dρ

λb
+

ω ≤ ω, where ω =
λb

d2λa
dρ2
−λa

d2λb
dρ2

λ2b
. Here the inequality is because dλb

dρ
> 0 (from

(3.54)), dλn
dρ
≥ 0, and λb > 0 (from definition of λb).

Using d2λn
dρ2
≤ ω,, we can obtain the following for the second order derivative

of Rss,n

d2Rss,n

dρ2
=
−(1− ρ)(dλn

dρ
)2

2(ln 2)(λn)2
+

(1− ρ)d
2λn
dρ2
− 2dλn

dρ

2(ln 2)λn

≤
−(1− ρ)(dλn

dρ
)2

2(ln 2)(λn)2
+

(1− ρ)ω − 2dλn
dρ

2(ln 2)λn
,

(3.56)
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in which the first equality is from (3.52). Apparently, for the right hand side

of the inequality in (3.56), the first term is nonpositive. Next we show that the

second term is negative. The numerator of the second term can be rewritten as

(1− ρ)ω − 2dλn
dρ

=

(
(1−ρ)d

2λa
dρ2
−2dλa

dρ

)
λb

λ2b

−
(
(1−ρ)d

2λb
dρ2
−2dλb

dρ

)
λa

λ2b
.

(3.57)

For the two terms on the right hand-side of (3.57), we have

(1− ρ)d
2λa
dρ2
− 2dλa

dρ
= (1− ρ)(gsn

d2Pe
dρ2
− σ2 d2µn

dρ2
)gss

−2(gsn
dPe
dρ
− σ2 dµn

dρ
)gss

= −
(
(1− ρ)d

2µn
dρ2
− 2dµn

dρ

)
σ2gss

(iv)
< 0

(1− ρ)d
2λb
dρ2
− 2dλb

dρ
=
(
(1− ρ)d

2µn
dρ2
− 2dµn

dρ

)
gsnσ

2

(v)
> 0,

(3.58)

in which steps (iv) and (v) come from the fact that

(1− ρ)
d2µn
dρ2

− 2
dµn
dρ

(vi)
=

(
2(ln 2)γT

)2
(1− ρ)3

2
2γT

1−ρ > 0 (3.59)

with step (vi) from (3.54).

Thus, the numerator of the second term on the right hand-side of the inequal-

ity in (3.56) is negative, and accordingly, we have d2Rss,n
dρ2

< 0 when dRss,n
dρ

= 0.

Therefore, Rss,n is a quasiconcave function. This completes the proof.

3.6.3 The Proof of Theorem 3

The function ξt,n in (3.39) can be rewritten as

ξt,n = (1− ρ)(µn + 1) + (1− ρ)(Pegsn − µnσ2+

Ppgpn)
gss
gsnσ2

− (1− ρ)(µn + 1)2
2t

1−ρ .
(3.60)

The first order derivative of ξt,n is given by (3.61), which is shown at the top
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of the next page.

dξt,n
dρ

=− µn − 1 + (1− ρ)
dµn
dρ

+
2ηPpgttgss

σ2
+

gss
gsn

µn − (1− ρ)
gss
gsn

dµn
dρ

+ (µn + 1)2
2t

1−ρ−

(1− ρ)
dµn
dρ

2
2t

1−ρ − (µn + 1)
2(ln 2)t

1− ρ
2

2t
1−ρ

=(
gss
gsn
− 1)

(
µn − (1− ρ)

dµn
dρ

)
+

2ηPpgttgss
σ2

− 1

−
(

(µn + 1)
(2(ln 2)t

1− ρ
− 1
)

+ (1− ρ)
dµn
dρ

)
2

2t
1−ρ .

(3.61)

Define a function G(y) over y ≥ 0 as

G(y) =

(
2(ln 2)y

)2
(1− ρ)3

. (3.62)

We have

G(γT + t) = G(γT ) +G(t) +
8(ln 2)2γT t

(1− ρ)3
≥ G(γT ) +G(t). (3.63)

The second order derivative of (1−ρ)2
2y
1−ρ can be expressed as

d2
(
(1−ρ)2

2y
1−ρ
)

dρ2
=

G(y)2
2y
1−ρ . Based on this, the second order derivative of ξt,n in (3.60) is given by

d2ξt,n
dρ2

= (1− gss
gsn

)G(γT )2
2γT

1−ρ +
Ppgpn
σ2

G(t)2
2t

1−ρ −G(γT + t)2
2(t+γT )

1−ρ , (3.64)

which, by using inequality (3.73), leads to

d2ξt,n
dρ2

≤ (1− gss
gsn
− 2

2t
1−ρ )G(γT )2

2γT

1−ρ + (
Ppgpn
σ2
− 2

2γT

1−ρ )G(t)2
2t

1−ρ ≤ 0, (3.65)

in which the second inequality comes from 1 − gss
gsn
− 2

2t
1−ρ ≤ 1 − 2

2t
1−ρ ≤ 0 and

Ppgpn
σ2 − 2

2γT

1−ρ = −(µn + 1) < 0.

This completes the proof.
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3.6.4 The Proof of Theorem 4

Denote λw/o = 1 + λa|n=p
λc

, where λa|n=p and its first and second order derivatives

are given in Appendix 3.6.2, and λc and its first and second order derivatives are

expressed as 

λc = [µp(Pegsp + σ2)− Ppgpp]gss
+ (Ppgps + σ2)(µp + 1)gsp,

dλc
dρ

= (Pegsp + σ2)gss
dµp
dρ

+ µpgspgss
dPe
dρ

+ (Ppgps + σ2)gsp
dµp
dρ
,

d2λc
dρ2

= (Pegsp + σ2)gss
d2µp
dρ2

+ 2gspgss
dµp
dρ

dPe
dρ

+ µpgspgss
d2Pe
dρ2

+ (Ppgps + σ2)gsp
d2µp
dρ2

,

(3.66)

with dµp
dρ

and d2µp
dρ2

given in (3.54), and dPe
dρ

and d2Pe
dρ2

given in (3.19).

The proof for quasiconcavity of R
w/o
ss is similar to that in Appendix 3.6.2 if

we replace λb in Appendix 3.6.2 by λc. The only difference is that we need to

prove (1−ρ)d
2λc
dρ2
−2dλc

dρ
> 0 instead of the second equation of (3.58) in Appendix

3.6.2. Base on (3.66), we have

(1− ρ)
d2λc
dρ2
− 2

dλc
dρ

(vii)
=
(
(1− ρ)

d2µp
dρ2

− 2
dµp
dρ

)
×
(
(Pegsp + σ2)gss + (Ppgps + σ2)gsp

)
+ 2(1− ρ)gspgss

dµp
dρ

dPe
dρ

(viii)
> 0, (3.67)

in which step (vii) uses (3.66) and d2Pe
dρ2

= 2
1−ρ

dPe
dρ

, and step (viii) uses (3.59),

dµp
dρ

> 0 from (3.54), and dPe
dρ

> 0 from (3.19).

3.6.5 The Proof of Theorem 5

ξ
w/o
t given in (3.47) can be rewritten as

ξ
w/o
t = (1− ρ)(µp + 1)(Pegss + Ppgps + σ2)gsp−

(1− ρ)
{

[µp(Pegsp + σ2)− Ppgpp]gss+

(Ppgps + σ2)(µp + 1)gsp
}

2
2t

1−ρ .
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Defining χ , 2(ηPpgtt + E0 − Ec) and ψ , 2ηPpgtt, Pe given in (3.1) can be

represented as

Pe =
1

(1− ρ)

(
χ− (1− ρ)ψ

)
. (3.68)

Using (3.68) and applying some math manipulations, ξ
w/o
t can be expressed as

ξ
w/o
t = φa + φb − φc − φd − φe, (3.69)

in which 

φa =
(
χ− (1− ρ)ψ

)
(2

2γT

1−ρ − Ppgpp
σ2 )gssgsp,

φb = (1− ρ)(2
2γT

1−ρ − Ppgpp
σ2 )(Ppgps + σ2)gsp,

φc =
(
χ− (1− ρ)ψ

)
(2

2γT

1−ρ − Ppgpp
σ2 − 1)gssgsp2

2t
1−ρ ,

φd = (1− ρ)(2
2γT

1−ρ − 2Ppgpp
σ2 − 1)gssσ

22
2t

1−ρ ,

φe = (1− ρ)(2
2γT

1−ρ − Ppgpp
σ2 )(Ppgps + σ2)gsp2

2t
1−ρ .

(3.70)

The first order derivative of ξ
w/o
t is expressed by

dξ
w/o
t

dρ
=

dφa
dρ

+
dφb
dρ
− dφc

dρ
− dφd

dρ
− dφe

dρ
, (3.71)

where 

dφa
dρ

=
(
ψ(µp + 1) + (1− ρ)Pe

dµp
dρ

)
gssgsp,

dφb
dρ

=
(
− µp − 1 + (1− ρ)dµp

dρ

)
(Ppgps + σ2)gsp,

dφc
dρ

=
(
ψµp + (1− ρ)Pe

(dµp
dρ

+ µp
2(ln 2)t
(1−ρ)2

))
gssgsp2

2t
1−ρ ,

dφd
dρ

=
(

(1− ρ)dµp
dρ

+ (µp − Ppgpp
σ2 )

(
2(ln 2)t
1−ρ − 1

))
gssσ

22
2t

1−ρ ,

dφe
dρ

=
(

(1− ρ)dµp
dρ

+ (µp + 1)
(
2(ln 2)t
1−ρ − 1

))
(Ppgps+

σ2)gsp2
2t

1−ρ .

(3.72)

Define two functions G(y) and K(y) over y ≥ 0 as G(y) =

(
2(ln 2)y

)2
(1−ρ)3 and

K(y) = 4(ln 2)y
(1−ρ)3 +

(
2(ln 2)y

)2
(1−ρ)4 , respectively. We have

G(γT + t) = G(γT ) +G(t) +
8(ln 2)2γT t

(1− ρ)3
≥ G(γT ) +G(t), (3.73)
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K(γT + t)=K(γT )+K(t)+
8(ln 2)2γT t

(1− ρ)4
≥ K(γT ) +K(t). (3.74)

Then using G(y) and K(y), the second order derivatives of (1 − ρ)2
2y
1−ρ and

2
2y
1−ρ are written as d2((1−ρ)2

2y
1−ρ )

dρ2
= G(y)2

2y
1−ρ and d2(2

2y
1−ρ )

dρ2
= K(y)2

2y
1−ρ . Using this,

we have 

d2φa
dρ2

=
(
χK(γT )− ψG(γT )

)
gssgsp2

2γT

1−ρ ,

d2φb
dρ2

= G(γT )(Ppgps + σ2)gsp2
2γT

1−ρ ,

d2φc
dρ2

=
((
χK(γT + t)− ψG(γT + t)

)
2

2(γT+t)
1−ρ

−
(
χK(t)− ψG(t)

)
(Ppgpp

σ2 + 1)2
2t

1−ρ

)
gssgsp,

d2φd
dρ2

= G(γT + t)gssσ
22

2(γT+t)
1−ρ

−G(t)(2Ppgpp
σ2 + 1)gssσ

22
2t

1−ρ ,

d2φe
dρ2

= G(γT + t)(Ppgps + σ2)gsp2
2(γT+t)

1−ρ

−G(t)Ppgpp
σ2 (Ppgps + σ2)gsp2

2t
1−ρ .

(3.75)

In the expressions for d2φa
dρ2

and d2φc
dρ2

, both of them contain the item χK(y)−

ψG(y), where y takes the value γT , t, or (γT + t). By checking χK(y)− ψG(y),

it can be represented as the following

χK(y)− ψG(y) = χ
( 4(ln 2)y

(1− ρ)3
+

(
2(ln 2)y

)2
(1− ρ)4

)
− ψ

(
2(ln 2)y

)2
(1− ρ)3

=
4(ln 2)y

(1− ρ)3
(
χ+ (ln 2)yPe

)
,

(3.76)

in which the last equality uses (3.68).
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Then d2φa
dρ2
− d2φc

dρ2
is expressed as

d2φa
dρ2

− d2φc
dρ2

=
(
χK(γT )− ψG(γT )

)
gssgsp2

2γT

1−ρ

−
((
χK(γT + t)− ψG(γT + t)

)
2

2(γT+t)
1−ρ

−
(
χK(t)− ψG(t)

)
(
Ppgpp
σ2

+ 1)2
2t

1−ρ

)
gssgsp

= −
(4(ln 2)γT

(1− ρ)3
(
χ+ (ln 2)γTPe

)
(2

2t
1−ρ − 1)2

2γT

1−ρ

+
4(ln 2)t

(1− ρ)3
(
χ+ (ln 2)tPe

)
µp2

2t
1−ρ

+
8(ln 2)2γT t

(1− ρ)3
Pe2

2(γT+t)
1−ρ

)
gssgsp ≤ 0, (3.77)

in which the first equality is from (3.75), and the second equality is from the first

equality of (3.73), the first equality of (3.74), (3.10), (3.76), and (3.68).

Moreover, we have

d2φb
dρ2
− d2φe

dρ2
(ix)
= −

(
G(γT + t)2

2(γT+t)
1−ρ −G(γT )2

2γT

1−ρ

−G(t)Ppgpp
σ2 2

2t
1−ρ

)
(Ppgps + σ2)gsp

(x)

≤ −
(
G(γT )(2

2t
1−ρ − 1)2

2γT

1−ρ

+G(t)(µp + 1)2
2t

1−ρ

)
(Ppgps + σ2)gsp ≤ 0,

(3.78)

in which (ix) is from (3.75), and (x) is from G(γT + t) ≥ G(γT )+G(t) and (3.10).

From (3.75) and G(γT + t) ≥ G(γT ) +G(t), we have

d2φd
dρ2

≥
(
G(γT ) +G(t)

)
gssσ

22
2(γT+t)

1−ρ −G(t)
(2Ppgpp

σ2
+ 1
)
gssσ

22
2t

1−ρ

= G(γT )gssσ
22

2(γT+t)
1−ρ +G(t)(µp −

Ppgpp
σ2

)gssσ
22

2t
1−ρ

> 0.

(3.79)

Combining (3.69), (3.77), (3.78), and (3.79), it can be seen that
d2ξ

w/o
t

dρ2
< 0,

namely, ξ
w/o
t is a strictly concave function.
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Chapter 4

Optimal Resource Allocation in
Downlink Non-orthogonal
Multiple Access Networks

Since mobile users are usually deemed as individually distributed entities, they

may only care about their own demand of resources, which yields the inapplica-

bility of the centralized method. To overcome this drawback, game theory [43,44]

is usually resorted to tackle the efficient distribution of radio resources. In OMA

systems, various modeling of games have been adopted to address the resource

allocation. In [90], two sellers, constrained by their own spectrum budget, dy-

namically compete to lease the spectrum to users over multiple stages. The

optimal equilibrium solution to the amount of spectrum to lease for each seller

at each stage is provided. To address the power allocation for multiple users in

a multi-channel scenario with interferences, a Nash bargaining cooperative game

is adopted in [91]. In [92], with the aim of enhancing user’s achievable rate, each

user purchases the power resource from the relay. The optimal pricing strategy

at the relay and the power amount to purchase at each user are investigated.

The work in [93] considers an underlay cognitive network, in which the interfer-

ence power, incurred from the femtocell users, is sold by the macrocell BS. The
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optimal solutions to the prices and the amount of purchased interference power

are derived. The work in [94] investigates one cooperative multicast scenario, in

which the relaying services, provided by the successful users, are purchased by the

unsuccessful users. Then the pricing strategy is optimized under the framework

of evolutionary and Stackelberg game.

When game theoretical models are leveraged in NOMA systems, the wireless

system is envisioned to be not only spectrum-efficient, but also economically

efficient [23,24,81,95,96]. The work in [95] studies a multi-carrier NOMA system,

in which a matching game is designed to pair users and perform power allocation

for users. By considering a CR-inspired NOMA system with a group of primary

and secondary users, a matching game is exploited to pair each primary user

with one secondary user, and allocate power for each user pair in [81]. For

a small cell NOMA network, the problem of BS association and minimization

of power consumption is conducted by using a coalition game in [96]. Under

the Stackelberg game framework, sub-optimal solutions are provided to address

the power allocation for downlink NOMA systems in [23] and [24], respectively.

In specific, one iterative algorithm based on the interior point method is given

in [23]. One optimal solution for the two-user case, and one sub-optimal heuristic

algorithm for the multi-user case are investigated in [24].

In this chapter, we investigate the optimal solutions to the power allocation

for the multi-user downlink NOMA networks by using the Stackelberg game. The

contributions of our work are summarized as follows.

1) A novel game formulation is considered. Different from the adoption of fixed

total allocated transmit power to users in [23] and [24], we consider a variable total

allocated transmit power to users in our work. Also, a novel seller-level utility is

adopted, which stands for the profit per unit power. The profit characterizes the
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revenue from users’ payments and the cost of providing transmit power.

2) The optimal solution is obtained for the formulated problems. Based on

backward induction, the optimal solution to the buyer-level game is obtained

first. Although the optimization problem at the seller-level game is non-convex,

by using the inherent layered structure, a two-stage method is devised to tackle it.

Specifically, in stage 1, we show there exists a closed-form solution for the three-

user case. For the multi-user case, we provide an approach to transform the

original optimization problem into a tractable form. Then an efficient iterative

algorithm is also designed to identify the optimal solution to the transformed

problem, in which one efficient search method and one user admission strategy

are proposed. In stage 2, based on the concavity of the solution in stage 1, the

utility function in this stage is proved to be quasiconcave, and thus, the optimal

solution can be efficiently reached.

The rest of this chapter is organized as follows. In Section 4.1, the system

model is outlined. For the considered problems, the optimal solution to the buyer-

level game is offered in Section 4.2. Then at the seller-level game, the optimal

solutions in stage 1 and stage 2 are provided in Section 4.3 and Section 4.4,

respectively. In Section 4.5, simulation results are presented. At last, conclusion

is given in Section 4.6. The symbols used in Chapter 4 are listed in Table 4.1.

4.1 System Model

4.1.1 Network Model

We consider a multi-user downlink NOMA network scenario, in which one BS

serves N users, forming the set N = {1, 2, . . . , N}. Time is partitioned into

identical slots with unit length. The channel coefficient from the BS to user i is

denoted as hi, i ∈ N . We assume the channel is block faded, which indicates that
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Symbol Meaning

pi The transmit power for user i

hi The channel coefficient from the BS to user i

gi The channel power gain from the BS to user i

xi The information signal for user i

Ri User i’s achievable rate

P0 Circuit power consumption at the BS

ni AWGN noise at user i

ζi The price for the transmit power for user i

N User number in the system

Q The total transmit power allocated to users

Us The utility function at the BS

C0 The coefficients of cost for at the BS

Cu The gain per unit rate at the user side

Table 4.1: The notations used in Chapter 4

the channel coefficient is fixed in one slot and varies independently in another

different slot. Without loss of generality, the channel power gain, denoted as

gi = |hi|2, is ordered as: g1 ≤ g2 ≤ . . . ≤ gN . The power consumption at the BS

is divided into two parts, including the transmit power and circuit power con-

sumption. The transmit power is constrained by the maximal value Pt, while the

circuit power consumption is a constant P0. At each time slot, the BS broadcasts

a superimposed signal
∑N

i=1

√
pixi to all users with the total allocated transmit

power
∑N

i=1 pi = Q, in which pi is the power allocated to user i and xi is the

information signal intended to user i.

User i receives the signal of yi =
∑N

j=1

√
pjxjhi+ni, where ni is the background

AWGN at user i, distributed as ni ∼ CN (0, σ2). With the aim of decoding

information, the SIC technique is leveraged to remove the interferences. In other

words, the signal component from user j, ∀j < i, will be detected and subtracted.
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Then user i’s achievable rate can be represented by

Ri = log

(
1 +

pigi∑N
j=i+1 pjgi + σ2

)
. (4.1)

4.1.2 Game Formulation

To perform the power allocation, a Stackelberg game model is adopted. In our

game, the BS plays the role of the seller. The users play the role of the buyers.

Then we can formulate the two levels of games.

1) Seller-level Game

As the seller, the BS decides the price ξi of unit received power for user i. If the al-

located power amount for user i is pi, the BS gains the revenue of
∑N

i=1 ξipigi from

all users’ payments. Besides the revenue, the BS has the cost of C0Q for providing

total allocated transmit power Q to users with the coefficient of C0. Thus, the

profit at the BS is denoted as
∑N

i=1 ξipigi−C0Q, which characterizes the revenue

and cost. Afterwards, with the aim of maximizing the profit per unit consumed

power, the utility function at the BS is defined as Us(ξ, Q) =
∑N
i=1 ξipigi−C0Q

P0+Q
, in

which ξ = [ξ1, ξ2, . . . , ξN ]T . Note that P0+Q stands for the consumed power from

the total allocated transmit power Q and the circuit power P0. Accordingly, we

formulate the seller-level game into the following optimization problem.

Problem P1:

max
ξ,Q

Us(ξ, Q) =

∑N
i=1 ξipigi − C0Q

P0 +Q
(4.2a)

s.t.
N∑
i=1

pi = Q (4.2b)

Q ≤ Pt. (4.2c)
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2) Buyer-level Game

The achievable rate Ri is treated as the revenue at user i. Under the total

allocated transmit power Q, the variable decided at user i is the power pi, which

yields the cost of payment ξipigi. Thus, to maximize the profit, user i’s utility

function is represented as Ui(pi,p−i) = CuRi − ξipigi, where Cu is the gain of

per unit rate for each user, and p−i stands for the power allocation for all other

users except user i. Accordingly, we formulate the buyer-level game into an

optimization problem as

Problem P2:

max
pi

Ui(pi,p−i) = CuRi − ξipigi (4.3a)

s.t. 0 ≤ pi ≤ Q. (4.3b)

In the sequel, we solve the optimal solution to the formulated game.

4.2 Optimal Solution to the Buyer-level Game

Based on backward induction, to obtain the solution of Problem P2, by following

a similar approach as [23], we observe the first order optimality.

Then under given Q and ξ, we take the first order derivative of Ui(pi,p−i) with

pi, which is given as
dUi(pi,p−i)

dpi
= Cugi∑N

j=i pjgi+σ
2
− ξigi. After setting

dUi(pi,p−i)

dpi
= 0,

the optimal solution p∗i at user i can be written into a function of ξ as

p∗i =
Cu
ξigi
− Cu
ξi+1gi+1

+
σ2

gi+1

− σ2

gi
,∀i ∈ N , (4.4)

in which σ2

gN+1
= 0 and 1

ξN+1
= 0 are assumed.

Remark : Based on (4.4), we proceed to solve Problem P1 at the seller-level

game. Due to its inherent layered structure, we decompose Problem P1 into two

stages to obtain the optimal solution. To be specific, in stage 1, with given Q,
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maximizing Us(ξ, Q) is equivalent to maximizing
∑N

i=1 ξipigi. In stage 2, we will

show that maximizing Problem P1 boils down to maximizing function Us(Q) with

Q, and thus, we will get the optimal Q. In next section, the optimal solution in

stage 1 is provided.

4.3 Optimal Solution to the Seller-level Game

in Stage 1

At the seller-level game, for any given feasible Q ∈ [0, Pt], one can check that

maximizing Problem P1 in stage 1 is equivalent to maximizing

Problem P3:

max
ξ

Hs(ξ) =
N∑
i=1

ξipigi (4.5a)

s.t.
N∑
i=1

pi ≤ Q. (4.5b)

By using the optimal solution of Problem P2, we proceed to identify the

equivalent representations of the objective and constraint functions in Problem

P3.

4.3.1 Equivalent Representations in Problem P3

To facilitate the subsequent analysis, by denoting 1
ζi

= Cu
ξigi

, we further define

Gs(ζ) as

Gs(ζ) =
N∑
j=1

(
1

ζi
− 1

ζi+1

+
σ2

gi+1

− σ2

gi
)ζi, (4.6)

where ζ = [ζ1, ζ2, . . . , ζN ]T .

As for the objective function (4.5a) in Problem P3, we have Hs(ξ) = CuGs(ζ).

Also, it can be observed that maximizing Hs(ξ) is equivalent to maximizing

Gs(ζ).
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As for the constraint function (4.5b) in Problem P3, by checking
dUi(pi,p−i)

dpi
,

(4.5b) can be equivalently written as

1

ζ1
− σ2

g1
≤ Q. (4.7)

As for the feasible condition p∗i ≥ 0, from (4.4), it is equivalent to 1
ζi
− 1

ζi+1
+

σ2

gi+1
− σ2

gi
≥ 0. In Problem P3, when the optimality is achieved, the constraint

function (4.5b) should be active, which indicates 1
ζ1
− σ2

g1
= Q. This can be readily

observed from the equivalent Problem P4, to be presented in Section 4.3.3.

Remark: One can find that the equivalent objective function (4.6) is non-

convex. However, through conducting some mathematical manipulations, we

provide an efficient approach to solve the optimal solution of Problem P3. Specif-

ically, we first show there exists a closed-form solution for the scenario with three

users. For the general scenario with multiple users, we provide a method to

efficiently obtain the optimal solution.

4.3.2 The Existence of Closed-form Solution to Problem
P3 with Three Users

According to Section 4.3.1, when the user number N = 3, we equivalently solve

Gs(ζ) = (Q− 1

ζ2
+
σ2

g2
)

1

Q+ σ2

g1

+ (
1

ζ2
− 1

ζ3
+
σ2

g3
− σ2

g2
)ζ2 + (

1

ζ3
− σ2

g3
)ζ3. (4.8)

To obtain the optimal solutions, by taking the first order derivatives of Gs(ζ)

with ζ2 and ζ3, we have


∂Gs(ζ)

∂ζ2
=

1

ζ22

1

Q+ σ2

g1

− 1

ζ3
− σ2

g2
+
σ2

g3

∂Gs(ζ)

∂ζ3
=
ζ2
ζ23
− σ2

g3
.

(4.9)
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After setting ∂Gs(ζ)
∂ζ2

= 0 and ∂Gs(ζ)
∂ζ3

= 0, we have ζ2 = σ2

g3
ζ23 , and we also have

a univariate quartic equation of ζ3, which is given as

(
σ2

g2
− σ2

g3
)ζ43 + ζ33 −

g23
σ4

1

Q+ σ2

g1

= 0. (4.10)

It is known that quartic equation has a closed-form solution [97]. Thus, there

are four possible solutions ζ3,n, n ∈ {1, 2, 3, 4} for equation (4.10). The expressions

for ζ3,n are lengthy, and thus, they are omitted here.

For each real and positive ζ3,n, we denote ζn = [ζ1, ζ2,n, ζ3,n]T , in which ζ2,n =

σ2

g3
ζ23,n and ζ1 = 1

Q+σ2

g1

. Then we verify the feasibility and optimality of each ζn. As

for the feasibility, the condition 1
ζi
− 1
ζi+1

+ σ2

gi+1
− σ2

gi
≥ 0 should be satisfied. Among

all the feasible ζn, the optimal one is ζ∗, which should maximize the objective

function (4.8). Based on ζ∗ and (4.4), we can also obtain the optimal {ξ∗,p∗},

which constitutes the closed-form solution to the three-user case of Problem P3.

Since the root for an equation with a power higher than four does not generally

have closed-form solution, an algorithm is devised to optimally solve the general

scenario with multiple users.

4.3.3 Optimal Solution to Problem P3 with Multiple Users

For the general multi-user case of Problem P3, based on the equivalent represen-

tations in Section 4.3.1, we first conduct two transformations to yield a tractable

form. Then we perform the dual analysis, based on which some useful features

are identified. Subsequently, with the aid of these features, we design an iterative

method to obtain the optimal solution.
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1) Problem Transformations

Based on (4.6), we perform the first transformation by conducting a variable

replacement, which is given as

ti = (
1

ζi
− 1

ζi+1

+
σ2

gi+1

− σ2

gi
)ζi,∀i ∈ N . (4.11)

Note that for ti, the condition ti < 1 is always satisfied 1. Based on the

replacement in (4.11), our aim is to represent the equivalent objective function

(4.6) and constraint function (4.7) by t, where t = [t1, t2, . . . , tN ]T . To this end,

we first show how to represent ζ by t. Then we have the following Lemma.

Lemma 5. The variable ζi can be represented as a function of t, which is given

by

ζi =
1∑N

k=i(
∏k

n=i
1

1−tn )(σ
2

gk
− σ2

gk+1
)
,∀i ∈ N . (4.12)

Proof. We prove this lemma by induction. When i = N , we have tN = ( 1
ζN
−

σ2

gN
)ζN , and thus, we have ζN = (1 − tN)gN

σ2 . When i = m + 1, we assume that

ζm+1 = 1∑N
k=m+1(

∏k
n=m+1

1
1−tn

)(σ
2

gk
− σ2

gk+1
)

holds. Afterwards, when i = m, we have

tm = ( 1
ζm
− 1

ζm+1
+ σ2

gm+1
− σ2

gm
)ζm. Then the variable ζm is given as

ζm =
1− tm

1
ζm+1

+ σ2

gm
− σ2

gm+1

(ii)
=

1− tm∑N
k=m+1(

∏k
n=m+1

1
1−tn )(σ

2

gk
− σ2

gk+1
) + σ2

gm
− σ2

gm+1

=
1∑N

k=m(
∏k

n=m
1

1−tn )(σ
2

gk
− σ2

gk+1
)
,

(4.13)

in which the assumption of ζm+1 is used in (ii).

Therefore, the statement in (4.12) holds.

1Since we have 1
ζi+1

+ σ2

gi
− σ2

gi+1
> 0, then we have ti = 1− ( 1

ζi+1
+ σ2

gi
− σ2

gi+1
)ζi < 1.
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Remark: With the aid of variable replacement, we are able to transform the

equivalent objective function Gs(ζ) into Gs(t) =
∑N

i=1 ti. Moreover, based on

Lemma 5, we are also able to convert the equivalent constraint function 1
ζ1
− σ2

g1
≤

Q into
∑N

i=1(
∏i

n=1
1

1−tn )(σ
2

gi
− σ2

gi+1
)− σ2

g1
≤ Q.

Afterwards, we conduct a second transformation by introducing auxiliary vari-

ables in s = [s1, s2, . . . , sN ]T . Accordingly, it yields the following problem as

Problem P4:

max
t,s

Gs(t) =
N∑
i=1

ti (4.14a)

s.t.
i∏

n=1

1

1− tn
(
σ2

gi
− σ2

gi+1

) ≤ si,∀i ∈ N (4.14b)

N∑
i=1

si −
σ2

g1
≤ Q (4.14c)

ti ≥ 0, si ≥ 0,∀i ∈ N . (4.14d)

Note that ti ≥ 0 is equivalent to 1
ζi
− 1

ζi+1
+ σ2

gi+1
− σ2

gi
≥ 0. Moreover, all

constraint functions in (4.14b) and (4.14c) should be active at the optimality of

Problem P4, which means maximizing Problem P4 is equivalent to maximizing

Problem P3.

By observing Problem P4, we have two useful features, which are given in the

following two Lemmas.

Lemma 6. The constraint function (4.14b) is quasi-convex with t and s.

Proof. Since si > 0 and 0 ≤ ti < 1, ∀i ∈ N , inspecting (4.14b) is equiva-

lent to inspecting ωi(t, s) =
∏i

n=1
1

1−tn (σ
2

gi
− σ2

gi+1
) 1
si

. According to [85], for a

fixed non-negative number y, if the sub-level set {(t, s)|ωi(t, s) ≤ y} is a con-

vex set, the function ωi(t, s) is quasi-convex. As taking logarithm does not im-

pact set {(t, s)|ωi(t, s) ≤ y}, it subsequently leads to {(t, s)|ωi(t, s) ≤ y} =
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{(t, s)|
∑i

n=1 log( 1−tn
σ2

gi
− σ2

gi+1

) + log(si) ≥ − log(y)}, and thus, {(t, s)|ωi(t, s) ≤ y} is

a convex set.

Therefore, the constraint function (4.14b) is quasi-convex.

Lemma 7. When the optimality is achieved, we have t1 ≤ t2 ≤ . . . ≤ tN .

Proof. See Appendix 4.7.1

Note that Lemma 7 can be treated as a constraint function for Problem P4,

which is leveraged in the subsequent analysis.

2) Dual Analysis

In Problem P4, the objective function is linear, and the constraint function is

quasi-convex. This indicates Problem P4 is a quasi-convex program. Hence, the

Karush–Kuhn–Tucker (KKT) condition is sufficient in terms of optimality [98,99].

Accordingly, the Lagrangian function is given as

L =
N∑
i=1

ti −
N∑
i=1

λi

{ i∏
n=1

1

1− tn
(
σ2

gi
− σ2

gi+1

)− si
}
−

µ(
N∑
i=1

si −
σ2

g1
−Q) +

N∑
i=1

χiti, (4.15)

where µ, λi, χi and ψi, i ∈ N , are Lagrangian multipliers associated with the

constraint functions. Meanwhile, the KKT conditions are expressed as

∂L
∂ti

= 1−
N∑
k=i

λk

k∏
n=1

1

1− tn
(
σ2

gk
− σ2

gk+1

)
1

1− ti
+ χi = 0,∀i ∈ N (4.16a)

∂L
∂si

= λi − µ = 0,∀i ∈ N (4.16b)

λi

{ i∏
n=1

1

1− tn
(
σ2

gi
− σ2

gi+1

)− si
}

= 0,∀i ∈ N (4.16c)

µ(
N∑
i=1

si −
σ2

g1
−Q) = 0 (4.16d)

χiti = 0,∀i ∈ N . (4.16e)
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For the KKT conditions in (4.16a)-(4.16e), we have the observations as follows.

• We have λi = µ, ∀i ∈ N , which can be obtained from (4.16b). We have

µ > 0, which can be verified from λN > 0.

• When (4.15) is maximized for a fixed µ, there exists a user (say j†), satis-

fying conditions ti > 0, ∀i ∈ F = {j†, . . . , N} and ti = 0, ∀i ∈ N\F . This

feature is due to the aforementioned increasing property of ti in Lemma 7.

Since we do not know which user is j†, to identify the solution to ti, we will

treat one feasible user as j†, and call it a possible last-admitted user. When

(4.15) is maximized, the possible last-admitted user is called the optimal

last-admitted user.

• We have χi = 0, ∀i ∈ F and χi > 0, ∀i ∈ N\F .

• We have tN > 0. If we assume tN = 0, we must have ti = 0, ∀i ∈ N , which

is obviously not optimal.

Remark: Based on Lemma 7, there exists a maximal number of feasible users

under given µ. Thus, we should find the maximal number of feasible users, and

solve the optimal t∗ for the feasible users. Since we do not know which user

is feasible, we first assume one user is feasible, and we treat it as the possible

last-admitted user j†. Although it can be seen from the KKT equations that

the variables in t are coupled together, we provide a method to efficiently solve

t. Subsequently, we can design a user admission strategy to find the maximal

number of feasible users under given µ. Also, we identify the t∗ that maximizes

(4.15). Afterwards, we update µ. In such a way, the optimal solution to Problem

P4 can be found. Accordingly, the overall solving procedure to solve Problem P4

is provided in Algorithm 3.
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Then if one user is assumed to be feasible under fixed µ, we show how to solve

t.

3) Solving t under Given µ and j†

For a given µ, we assume one user is feasible, and it is set as the possible last-

admitted user j†. Then we have ti > 0, ∀i ∈ F and ti = 0, ∀i ∈ N\F . To obtain

the solution to ti, ∀i ∈ F , we have one useful feature, which is given as follows.

Theorem 6. For a given µ, the optimization variable ti, i ∈ F\j†, can be recur-

sively represented by tj†, based on the relationship of

ti = ti−1 + µ
i−1∏
n=j†

1

1− tn
(
σ2

gi−1
− σ2

gi
). (4.17)

Proof. By observing the KKT condition, if we multiply the both sides of (4.16a)

by 1− ti, we have

1− ti = µ
N∑
k=i

(
k∏

n=j†

1

1− tn
)(
σ2

gk
− σ2

gk+1

). (4.18)

Similarly, from (4.16a), we have

1− ti−1 = µ

N∑
k=i−1

(
k∏

n=j†

1

1− tn
)(
σ2

gk
− σ2

gk+1

). (4.19)

By subtracting (4.18) from (4.19), we can obtain (4.17).

This completes the proof.

Remark: According to Theorem 6, it can be seen that ti is a function of

tk, j
† ≤ k ≤ i − 1. Also, based on (4.17), by further iteratively expanding

ti−1 backward until tj† , we have another equivalent form of ti as ti = tj† +

µ
∑i−1

k=j†(
∏k

n=j†
1

1−tn )(σ
2

gk
− σ2

gk+1
). From this expression, if we check i from j† + 1

to N , we can find that each ti can be uniquely determined by tj† . Consequently,
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due to the one-to-one mapping, ti is a univariate function of tj† . Indeed, we can

treat (4.17) as a semi-closed form solution for ti.

Accordingly, when tj† = x, the value of ti, i ∈ F , can be determined by x,

which is denoted as ti(j
†, x). 2 Moreover, finding the solution to KKT condi-

tion (4.16a) is equivalent to finding the zero point of wi(j
†, x) = 1 − ti(j†, x) −

µ
∑N

k=i(
∏k

n=j†
1

1−tn(j†,x))(
σ2

gk
− σ2

gk+1
). Note that for any i ∈ F , if we substitute

ti(j
†, x) into wi(j

†, x), we can obtain the same equation. Therefore, to obtain the

solution of tj† , we can efficiently search the root of wi(j
†, x) = 0 for any i ∈ F ,

which is denoted as x∗. Since wi(j
†, x) is a univariate and decreasing function

of x, x∗ can be identified by existing numerical methods, such as bisection. The

solution to ti can also be obtained as ti(j
†, x∗).

4) User Admission Strategy, Determining Optimal t∗ for Given µ and
Updating µ

Then we design a user admission strategy to determine the user admission set

Fa, as shown in Algorithm 2. The set Fa has the maximal number of feasible

users, in which each feasible user i, i ∈ Fa, has a nonzero ti satisfying the KKT

condition (4.16a).

In Algorithm 2, we denote Fc as the set that includes the current admitted

users. Since user N should always be admitted, Fc is initialized as Fc = {N}.

Moreover, due to the increasing property of t from Lemma 7, users having larger

channel gains should be admitted first. Users should be sequentially determined

whether to be admitted into Fc backward from N − 1 to 1.

We show how to admit a new user uc. We suppose users who have larger

channel gains than user uc have been successfully admitted, and thus, we set

Fc = {uc + 1, . . . , N}. Then user uc is tentatively treated as a possible last-

2When i = j†, we have tj†(j†, x) = x.
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admitted user j†. Consequently, based on KKT condition (4.16a) and Theorem

6, the feasibilities of the already admitted users in Fc will be impacted if user uc

is admitted. The impacts are given in the two facts as follows.

• Fact 1: the minimal feasible value of ti, i ∈ Fc, will increase when a new

user uc is admitted. User uc should not be admitted if ti(uc, 0) ≥ 1 happens

for any user i in Fc.

Prior to admitting user uc, user uc + 1 is the smallest feasible user. The

minimal feasible value of tuc+1 is 0. For user i in Fc, the minimal feasible

value of ti is min{ti} = ti(uc + 1, 0) 3. After admitting user uc, the minimal

feasible value of tuc is 0. Moreover, due to the recursive form of ti(j
†, x), for

user i in Fc, the minimal feasible ti changes from ti(uc + 1, 0) to ti(uc, 0). It

can be observed that ti(uc, 0) > ti(uc + 1, 0), which can be readily verified

that min{tuc+1} = tuc+1(uc, 0) > tuc+1(uc + 1, 0) = 0. Thus, the minimal

feasible value of ti will increase.

According to Lemma 7, any user in Fc yields a higher ti than user uc. It

means user uc should not be admitted if any user i in Fc becomes infeasible.

Recall that a feasible ti is constrained by 0 ≤ ti < 1. When user uc is

admitted, it is possible that ti(uc, 0) ≥ 1 may happen and user i may

become infeasible. In this case, user uc should not be admitted.

• Fact 2: the root of wi(uc, x) = 0 exists when wi(uc, 0) > 0 is satisfied.

As aforementioned, the optimal solution to tuc can be found by searching

the root of wi(uc, x) = 0. We know that function wi(uc, x) is continuous

and monotonically decreasing with x. Also, as tN → 1, we have wi(uc, x)→

−∞. Thus, the root exists when wi(uc, 0) > 0 is satisfied. Otherwise, when

3Here we have tuc+1(uc + 1, 0) = 0.
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wi(uc, 0) < 0 happens, it indicates that KKT conditions cannot be satisfied

for users in Fc, which indicates user uc cannot be admitted.

Based on the above two facts, user uc should be successfully admitted only

when two feasibility conditions are satisfied, which include ti(uc, 0) < 1, ∀i ∈ Fc

and wi(uc, 0) > 0, for any i ∈ Fc. Thus, by using Algorithm 2, each feasible user

will be admitted in a one-by-one manner. In such a way, the user admission set

Fa can be determined.

After obtaining the user admission set Fa, we treat each user in Fa as a

possible last-admitted user j†, and then identify the solution to t by using one

bisection. For fixed µ, we search all the feasible users in Fa. The optimal solution

t∗ to (4.15) is identified under the possible last-admitted user that maximizes

(4.15). This user is also the optimal last-admitted user.

To update the multiplier µ, the sub-gradient method [85,100] is exploited. A

sub-gradient to update the Lagrangian multiplier µ is given by d(µ) = Q+ σ2

g1
−∑N

i=1 si, in which si is calculated when constraint functions (4.14b) and (4.14c)

are active.

5) Iterative Algorithm to Solve Problem P4

Based on the aforementioned analysis, we can design an iterative algorithm to

obtain the optimal solution to our Problem P4, as shown in Algorithm 3. The

overall solving process is described as follows. For a fixed multiplier µn in the

n-th iteration, the user admission set Fa can be determined by Algorithm 2.

Subsequently, for each possible last-admitted user, we determine the solution

to t. Under fixed µn, the optimal solution t∗ is found when function (4.15) is

maximized under the optimal last-admitted user. Afterwards, we use the sub-

gradient method to calculate a new sub-gradient. Our algorithm continues to
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Algorithm 2: User Admission Strategy

Input: The power budget Q and channel power gains for N users
Output: The user admission set Fa

1 Initialize the set Fc as Fc = {N};
2 for uc = N − 1 : −1 : 1 do
3 flag=1;
4 for i = uc + 1 : 1 : N do
5 Calculate ti(uc, 0);
6 if ti(uc, 0) > 1 then
7 flag=0; Break;

8 if flag==1 then
9 Calculate wi(uc, 0) for any uc + 1 ≤ i ≤ N ;

10 if wi(uc, 0) > 0 then
11 Fc = Fc ∪ {uc};
12 else
13 Fa = Fc; Break;

14 else
15 Fa = Fc; Break;

update µn until n reaches the maximal iteration number Mε, which is a predefined

number for convergence. When our iterative algorithm converges, we can obtain

the overall optimal t∗. Then from (4.12), the optimal ζ∗ and the optimal ξ∗ to

Problem P3 can also be found.

4.4 Optimal Solution to the Seller-level Game

in Stage 2

We denote the maximal value of Gs(ζ) in stage 1 as F (Q) = max
ζ

Gs(ζ). In

stage 2, by using F (Q), our Problem P1 boils down to the following optimization

problem.
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Algorithm 3: Iterative Algorithm to Solve Problem P4

Input: The transmit power Q, channel gain gi and noise variance σ2

Output: The optimal objective value of Gs(t
∗), and the optimal

solutions to t∗, ζ∗ and p∗

1 Set n = 0, and an initial value of µ0;
2 For a fixed µn, perform Algorithm 2 to obtain the user admission set Fa;
3 if |Fa| > 1 then
4 q = 0, L0 = 0;
5 for i = N − |Fa|+ 1 : 1 : N do
6 Set user i as user j†; Calculate t by using bisection; Obtain the

value of L in (4.15);
7 if L > L0 then
8 q = i, L0 = L, t∗=t;

9 Obtain Gs(t
∗) =

∑N
i=j† t

∗
i ;

10 else

11 Calculate t∗N by t∗N = 1−
√

µnσ2

gN
; Obtain Gs(t

∗) = t∗N ;

12 Set n = n+ 1; Calculate µn by using the sub-gradient method;
13 if n ≤Mε then
14 Go back to Line 2;

15 else
16 Calculate the optimal ζ∗ and powers p∗ by (4.12) and (4.4).
17 Terminate the algorithm.

Problem P5:

max
Q

Us(Q) =
CuF (Q)− C0Q

P0 +Q
(4.20a)

s.t. Q ≤ Pt (4.20b)

One can check that Problem P5 is non-convex. However, we show it can be

efficiently solved by leveraging F (Q). For F (Q), we have a useful feature, as

stated below.

Theorem 7. Function F (Q) is monotonically increasing and concave with Q.

Proof. First we show the monotonicity of F (Q). Given any feasible Qa and

Qb satisfying 0 ≤ Qa ≤ Qb ≤ Pt, we assume the associated optimal solutions
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for Problem P4 are {tm,i} and {sm,i}, ∀i ∈ N , m ∈ {a, b}. Then we have∏i
n=1

1
1−tm,n (σ

2

gi
− σ2

gi+1
) = sm,i, ∀i ∈ N and

∑N
i=1 sm,i −

σ2

g1
= Qm. We construct

another set of feasible solution {tc,i} and {sc,i} with objective value F̄ (Qb), sat-

isfying
∑N

i=1 sc,i −
σ2

g1
= Qb, sc,i = sa,i and tc,i = ta,i, ∀i ∈ N\N . Since Qa ≤ Qb,

we have sa,N ≤ sc,N and ta,N ≤ tc,N .

Then we have

F (Qa)
(iii)

≤ F̄ (Qb)
(iv)

≤ F (Qb), (4.21)

in which (iii) is due to ta,N ≤ tc,N , and (iv) is due to the optimality of F (Qb).

Therefore, F (Q) is a monotonically increasing function of Q.

Next we show the concavity of F (Q). In specific, we should prove F (θQa+(1−

θ)Qb) ≥ θF (Qa) + (1− θ)F (Qb) for any θ ∈ [0, 1]. In Problem P4, by replacing Q

with θQa+(1−θ)Qb, we have θ
∑N

i=1 sa,i+(1−θ)
∑N

i=1 sb,i−
σ2

g1
= θQa+(1−θ)Qb

when (4.14c) is active. From (4.14b), as for the item θsa,i + (1− θ)sb,i, ∀i ∈ N ,

we have

log
(
θsa,i + (1− θ)sb,i

)
≥ θ log(sa,i) + (1− θ) log(sb,i)

= θ
{

log(
σ2

gi
− σ2

gi+1

)−
i∑

n=1

log(1− ta,n)
}

+

(1− θ)
{

log(
σ2

gi
− σ2

gi+1

)−
i∑

n=1

log(1− tb,n)
}

≥ log
(σ2

gi
− σ2

gi+1

)
−

i∑
n=1

log
(

1− θta,n − (1− θ)tb,n
)
.

(4.22)

Consequently, we take the exponential operation in (4.22), and then, we can

obtain
∏i

n=1
1

1−θta,n−(1−θ)tb,n
(σ

2

gi
− σ2

gi+1
) ≤ θsa,i + (1− θ)sb,i, ∀i ∈ N . This means

θta,i + (1− θ)tb,i, is feasible under the power amount θQa + (1− θ)Qb.

Since the objective function is Gs(t) =
∑N

i=1 ti, the objective value associated

with θta,i+(1−θ)tb,i, ∀i ∈ N , is θF (Qa)+(1−θ)F (Qb). This indicates θF (Qa)+
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(1 − θ)F (Qb) is feasible under the power θQa + (1 − θ)Qb. Since F (θQa + (1 −

θ)Qb) is the optimal objective value under the power θQa + (1 − θ)Qb, we have

F (θQa + (1− θ)Qb) ≥ θF (Qa) + (1− θ)F (Qb).

Therefore, F (Q) is a concave function of Q.

This completes the proof.

For the objective function Us(Q), we also have a useful feature, which is given

as follows.

Theorem 8. Function Us(Q) is quasiconcave with respect to Q.

Proof. See Appendix 4.7.2.

Based on the quasi-concavity of Us(Q), we can use a bisection based two-level

method to identify the optimal solution of Q∗ [85], in which the outer level is

solved by bisection, and the inner level is solved by golden section search. Thus,

the optimal solution to Problem P1 can also be found. Then the optimal set

of {Q∗, ξ∗} forms the optimal solution to Problem P1. Accordingly, the optimal

solution {Q∗, ξ∗,p∗} is the Stackelberg Equilibrium to our formulated game.

In this chapter, we divide the formulated problem into two stages to solve

it. In terms of iteration number, the complexity of our proposed algorithm is

given as follows. In stage 1, we use bisection for certain times under a fixed

Lagrange multiplier. In the worst case, user number N is the running times of

bisection. It yields the complexity of NK1, where K1 is the iteration number of

bisection in stage 1. Then we update the Lagrange multiplier for a fixed iteration

times of Mε. So the complexity in stage 1 is NMεK1. In stage 2, the problem

is quasiconcave, which is solved by the bisection based two-level method. The

outer level bisection is solved with K2 iterations. The inner level golden section
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Figure 4.1: The solution F (Q) in stage 1 at the BS versus transmit power Q.

search is solved with K3 iterations. Thus, the overall complexity of the proposed

algorithm is NMεK1K2K3 iterations.

4.5 Numerical Results

To verify the performance of our proposed algorithm, simulations are designed.

The channel coefficient from the BS to user i, i ∈ N , is further modeled as

hi = h̃i/
√
dαi , in which h̃i is a circular symmetric complex Gaussian random

variable distributed as CN ∼ (0, 1), di is the distance from the BS to user i, and

α means the path loss exponent.

We first evaluate the solution F (Q) in stage 1 at the BS, 4 as demonstrated

in Fig. 4.1. The used parameters are given as follows. The distance di is chosen

as di = 100 m, ∀i ∈ N . The path loss exponent is fixed as α = 2. The variance

4Here we call F (Q) the solution in stage 1. Because the constant Cu does not impact the
maximization of H(ξ).
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Figure 4.2: The price and variable ξigi for each user in stage 1 solution.

of the background noise is σ2 = −30 dBm. We set the user numbers to N = 3,

4, 5 and 6, and vary the total allocated transmit power Q from 20 dBm to 40

dBm. Observed from Fig. 4.1, as the increase of transmit power Q, the value

of F (Q) increases, which is intuitive. Moreover, for a fixed Q, as the increase

of user number N , the value of F (Q) becomes larger. For example, at 40 dBm,

the value of F (Q) for the 6-user case is 1.5 times larger than the value for the

3-user case. The reason comes from the fact that the increase of user number

leads to the increase of the dimensionality of the feasible region. What is more,

we compare our algorithm with the power allocation strategy proposed in [24].

Clearly, our algorithm outperforms the comparison algorithm in [24].

As shown in Fig. 4.2, the price of the received power for each user is illustrated

under the 5-user case. The price is evaluated when Q is changing and F (Q) is

achieved. Observed from Fig. 4.2, as the increase of user i, the price follows an

overall increasing trend under fixed Q. When Q is high, the price for one stronger
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Figure 4.3: The allocated power at the user side in stage 1 solution.

user will be much higher than the price for one weaker user 5. To identify the

reason, we can inspect equation (4.4). To guarantee a feasible and nonnegative

power allocation at the buyer side, the BS should adopt a pricing strategy such

that the variable ξigi for a stronger user should be higher than that for a weaker

user, which is also illustrated in Fig. 4.2.

As shown in Fig. 4.3, the optimal amount of allocated power for each user is

evaluated under the solution F (Q). It can be seen that as the increase of transmit

power Q, the allocated power for each user increases. It can also be noted that

the slope of a weaker user is larger than that of a stronger user, which indicates

that the allocated power at a weaker user increases faster than a stronger user.

The reason for this can be found by observing Fig. 4.2. Because as the increase

of Q, the decreasing rate of the price for the stronger user is smaller than that

5For two users, the stronger user means the user with a larger channel gain. The weaker
user means the user with a smaller channel gain.
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Figure 4.4: The BS’s utility Us(ξ, Q) versus σ2.

of the weaker user. Compared with the algorithm in [24], it can be seen that

the algorithm in [24] allocates a higher power to the strongest user than our

algorithm. Since as shown in Fig. 4.1, our algorithm achieves a higher utility, it

means our algorithm concentrates on the overall revenue from users. This also

indicates that the algorithm in [24] allocates too much power to the strongest

user.

As shown in Fig. 4.4, the BS’s utility value Us(ξ, Q) is demonstrated. The

parameters used for evaluation are given as follows. The distance from the BS

to each user is set as di = 80 m. The transmit power budget is fixed as Pt = 40

dBm. The noise variance σ2 varies from −40 dBm to −30 dBm. The circuit

power consumption P0, the coefficients C0 and Cu are chosen as P0 = 0.02 W,

C0 = 0.001 and Cu = 1. It can be observed that the utility value declines with

the increase of noise variance σ2. The reason is because the increase of noise

variance will decrease the SINR for each user to decode information. As a result,
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Figure 4.5: The value of F (Q) versus σ2 when Us(ξ, Q) is maximized.

the revenue for the seller will decrease, which yields the decline of seller’s utility

Us(ξ, Q). When compared with the the comparison algorithm in [24], we replace

the power allocation strategy for calculating F (Q) in our algorithm by the method

in [24]. Obviously, our algorithm achieves a higher utility than the comparison

algorithm. We also evaluate the value of function F (Q) when the seller’s utility

value is maximized, as depicted in Fig. 4.5. It can be seen that F (Q) exhibits a

similar trend as Us(ξ, Q).

Since the full power allocation scheme is a widely adopted strategy, we com-

pare it with our algorithm. At the seller side, the ratio between our utility and

the utility of full power allocation scheme are evaluated, as illustrated in Fig. 4.6.

We use the parameters di = 80 m and Pt = 30 dBm. It can be seen that our

strategy can realize a utility at least 10 times larger than that of the full power

allocation scheme. The reason is because allocating all the power to users may

not achieve the maximal point of Us(ξ, Q).
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Figure 4.6: The ratio between our utility and the utility of full power allocation
scheme.

4.6 Conclusion

In this chapter, we investigate the Stackelberg game aided power allocation in

downlink NOMA system, in which two levels of games are formulated. To max-

imize the utility of profit per unit power, the BS determines the price and the

total power. Each user maximizes its own profit by determining the power. The

optimal solutions are derived. To be more specific, by using the solution at the

buyer side, we have a non-convex optimization problem at the seller side. Thus,

we design two stages to solve the optimization problem for the seller. An efficient

iterative algorithm is designed in the first stage. Then the solution in the first

stage is utilized to reach the optimal solution in the second stage.

96



4.7 Appendix

4.7.1 The Proof of Lemma 7

Proof. This lemma is proved by using contradiction. For two adjacent users, i†

and i† + 1, we assume the inequality ti† > ti†+1 is satisfied when the optimality

is achieved.

From the definition, we have ζk = gk∑N
j=k pjgk+σ

2
and tk = pkgk∑N

j=k pjgk+σ
2
, and

thus, we have Gs =
∑N

k=1 tk =
∑N

k=1
pkgk∑N

j=k pjgk+σ
2
.

By examining the first order derivatives of Gs with pi† and pi†+1, one can

obtain

∂Gs

∂pi†
=

1∑N
j=i† pj + σ2

g
i†

−
i†∑
k=1

pk

(
∑N

j=k pj + σ2

gk
)2

(4.23)

and

∂Gs

∂pi†+1

=
1∑N

j=i†+1 pj + σ2

g
i†+1

−
i†+1∑
k=1

pk

(
∑N

j=k pj + σ2

gk
)2
. (4.24)

To compare ∂Gs
∂p
i†

and ∂Gs
∂p
i†+1

, we have

∂Gs

∂pi†+1

− ∂Gs

∂pi†
=

∑N
j=i†+2 pj + σ2

g
i†+1

(
∑N

j=i†+1 pj + σ2

g
i†+1

)2
− 1∑N

j=i† pj + σ2

g
i†

. (4.25)

Since ti† > ti†+1 is assumed, inequality 1−ti† < 1−ti†+1 holds, which indicates∑N
j=i†+1 pj + σ2

g
i†∑N

j=i† pj + σ2

g
i†

<

∑N
j=i†+2 pj + σ2

g
i†+1∑N

j=i†+1 pj + σ2

g
i†+1

. (4.26)

By observing (4.26), we have

1∑N
j=i† pj + σ2

g
i†

<

∑N
j=i†+2 pj + σ2

g
i†+1∑N

j=i†+1 pj + σ2

g
i†+1

1∑N
j=i†+1 pj + σ2

g
i†

(v)

≤

∑N
j=i†+2 pj + σ2

g
i†+1

(
∑N

j=i†+1 pj + σ2

g
i†+1

)2
,

(4.27)

in which the fact σ2

g
i†+1
≤ σ2

g
i†

is used in (v).
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Combining (4.25) with (4.27), we have ∂Gs
∂p
i†
< ∂Gs

∂p
i†+1

. By fixing the power

allocation for all users in N\{i†, i† + 1}, one can check that tk for each user in

N\{i†, i† + 1} will not change. We also fix pi† + pi†+1. Then a small amount of

power, which does not violate ∂Gs
∂p
i†
< ∂Gs

∂p
i†+1

, can always be transferred from pi†

to pi†+1. Accordingly, the item ti† + ti†+1 will increase, and thus, we can have a

larger overall objective value Gs. This indeed contradicts with the optimality of

ti† > ti†+1.

As a result, for the two adjacent users i† and i† + 1, whenever the weak user

has a higher value of ti† , power can be transferred to the strong user such that

ti†+1 ≥ ti† is satisfied.

Therefore, when the optimality is achieved, we have t1 ≤ t2 . . . ≤ tN−1 ≤ tN .

This completes the proof.

4.7.2 The Proof of Theorem 8

Proof. For any 0 ≤ θ ≤ 1, we define Qc = θQa+(1−θ)Qb. To prove the quasicon-

cavity of function Us(Q), we should prove that Us(Qc) ≥ min{Us(Qa), Us(Qb)}

holds.

Based on (4.20a), we have

Us(Qc) =
CuF (θQa + (1− θ)Qb)− C0(θQa + (1− θ)Qb)

P0 + θQa + (1− θ)Qb

(vi)

≥ θ(CuF (Qa)− C0Qa)

P0 + θQa + (1− θ)Qb

+
(1− θ)(CuF (Qb)− C0Qb)

P0 + θQa + (1− θ)Qb

= η
CuF (Qa)− C0Qa

P0 +Qa

+ (1− η)
CuF (Qb)− C0Qb

P0 +Qb

(vii)

≥ min{Us(Qa), Us(Qb)},

(4.28)

where η = θ(P0+Qa)
θ(P0+Qa)+(1−θ)(P0+Qb)

and 1− η = (1−θ)(P0+Qb)
θ(P0+Qa)+(1−θ)(P0+Qb)

. The inequality

(vi) uses the fact that F (Q) − C0Q is a concave function of Q. The inequality

(vii) uses the fact that any point on the segment connecting two points has a

98



larger value than the minimum value of the two points.

Therefore, Us(Q) is a quasi-concave function of Q.

This completes the proof.
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Chapter 5

Optimal Resource Allocation in
Energy-aware Non-orthogonal
Multiple Access Networks with
Multi-access Edge Computing

Since NOMA can improve the spectrum efficiency and MEC offloading can reduce

the energy consumption and latency, the information transmission will be even

more efficient in NOMA MEC networks. The work in [101] investigates the

minimization of latency by considering different constraint conditions from power

or energy in NOMA MEC network. By utilizing NOMA MEC transmission

in one massive IoT network, the maximization of energy efficiency is studied

under the guarantee of target delay in [102]. The work in [103] studies one

two-user uplink NOMA system, in which user cooperation is carried out in the

process of data offloading. With the aim of minimizing energy consumption or

maximizing data transmission, the related resources are optimized, which include

time, data amount and power. When the information offloading of a two-user

NOMA system is threatened by one eavesdropper, one optimization problem to

enhance the physical layer security is investigated in [104]. In [105], NOMA MEC

transmission is conducted in the network scenario with IoT. The decoding order
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for SIC, together with the allocation of resource for computing are optimized.

By leveraging game theoretical models in MEC networks [43, 44] , efficient

approaches of resource allocation are expected from the economic perspectives.

In conventional OMA based MEC networks, many research works have been

presented, such as [25, 106, 107]. The work in [106] studies the minimization of

system overhead for information offloading, with the aid of the potential game.

The work in [107] investigates one industrial IoT system, in which a double

auction strategy is exploited to determine the pricing of the resource used for

information computation. The work in [25] studies a Stackelberg game based

network, in which data offloading is conducted through making payments, with

the aim of saving energy. Recently, NOMA is further integrated with MEC by

using game theoretical approaches. By treating each subcarrier as a coalition,

a coalitional game is utilized to group users into each subcarrier for the multi-

carrier NOMA MEC system in [108]. In [109], the association of users with edge

servers and allocation of related radio resources are investigated by combining

the matching game with coalitional game. The work in [26] investigates one

Stackelberg game based NOMA MEC network, in which the leader performs

the task and power allocation, while the follower conducts the allocation of sub-

channel.

In this chapter, we investigate the optimal resource allocation in an energy-

aware NOMA MEC network, by using a two-level Stackelberg game. The major

differences from the Stackelberg game approach in Chapter 4 are described as

follows.

1) Different problem formulations are adopted. In general, in our utility

function, the profit consists of the revenue and the cost. As for the buyer-level

game, in Chapter 4, to maximize the profit at each user, the achievable rate is
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treated as the revenue, while the payment for purchasing is treated as the cost.

In this chapter, each user minimizes the utility standing for the overall costs from

the computation energy and the payment to purchase the interference. Indeed,

this is equivalent to maximizing the profit by treating the energy saving for data

computation as the revenue. As for the seller-level game, the payment from

the user is the revenue. In Chapter 4, the cost of providing transmit power is

considered in the profit. The profit per unit power is maximized at the BS. In

this chapter, the BS maximizes the profit by treating the computational energy

as the cost.

2) Different methodologies are used to solve the formulated problems in the

two chapters. In Chapter 4, the buyer-level solution is found first. Then we

develop a two-stage solution for the seller-level game. Specifically, by fixing the

total allocated transmit power in stage 1, we offer an iterative method to op-

timally solve the optimization problem. Then we show the solution in stage 1

is concave with the power. Also, the quasiconcavity of the objective function is

theoretically proved and then is used to solve the overall optimal solution. In

this chapter, we use another approach to achieve the optimal resource allocation.

After solving the buyer-level game, we intentionally add one more dimension for

the time allocation in the seller-level optimization problem. Then by fixing the

time allocation, we show existing method can be applied to solve the optimization

variables. Afterwards, by varying the time allocation, we prove the optimization

problem is monotone, and thus, the Polyblock method can be adopted to reach

the optimal solution.

The contributions of this work are summarized as follows.

1) We provide a novel design of energy-aware resource allocation in NOMA

MEC networks. In [25], with the aim of promoting energy saving, one payment-
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based data offloading scheme is investigated in OMA MEC networks. When

Stackelberg game is adopted in NOMA MEC, the sub-channel allocation is per-

formed by using one game theoretical approach in [26]. However, to help to save

energy with making payments, how to allocate resource within the same chan-

nel by using the game theoretical approach has not been investigated in NOMA

MEC. Therefore, to fill the research gap, we study one Stackelberg game based

data offloading, and conduct the related resource allocation in NOMA MEC net-

works.

2) We offer an optimal solution to the formulated problem. We first identify

the optimal solution to the buyer-level game. As for the seller-level game, it

yields a non-convex optimization problem. Accordingly, we devise an approach

to optimally tackle it. To be specific, after adding one dimension in time, we

show that the optimization problem is separable under fixed time allocation.

The optimal solution can also be efficiently found by using existing methodology.

Subsequently, the monotonicity with time is proved, based on which the global

optima is obtained by employing the Polyblock algorithm.

The organization for the rest of this chapter is described as follows. In Section

5.1, we introduce the system model. In Section 5.2, how to identify the solution

to the buyer-level game is provided. In Section 5.3, we show the approach to

achieve the optimal solution to the seller-level game. The numerical results are

offered in Section 5.4. Section 5.5 draws the conclusion. Table 5.1 describes the

notations used in Chapter 5.
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Symbol Meaning

pi The transmit power for user i

hi The channel coefficient from user i to the BS

gi The channel power gain from user i to the BS

xi User i’s information signal

Ri User i’s achievable rate

Di User i’s offloading data amount

Ni User i’s information bits in the task

T Time slot length

τ Offloading time for users

fl,i Local CPU frequency for computation at user i

Pl,i Local power consumption for computation at user i

El,i Local energy consumption for computation at user i

a0,i Number of CPU cycles used for computing one input bit at user i

K User number in the system

Ui User i’s utility function

Ub The utility function at the BS

Cb The coefficient of cost for computing users’ information at the BS

Cu The coefficient of cost for computing user i’s own information

Table 5.1: The notations used in Chapter 5

5.1 System Model

5.1.1 Communication Model

An uplink NOMA scenario is considered in this chapter. In our system, there

are one BS and a set of K users. The user set is denoted as K = {1, 2, · · · , K}.

There is an edge server integrated with the BS, which is equipped with powerful

computational capacity to compute the offloaded information from users. Each

user, who has limited computational capacity, resorts to the assistance from the

BS for data offloading. We assume the time has a slotted structure, with the
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same slot length of T . We denote the channel coefficient from user i to the BS

as hi, i ∈ K, which is associated with the channel power gain gi. It is assumed

that the channel fading is quasi-static. In other words, the values of the channel

coefficients are fixed during one slot. But the values change independently during

another different slot. The channel power gains are assumed to be ordered as:

g1 ≤ g2 ≤ · · · ≤ gK .

Each time slot is divided into two phases. The first phase has a length of

τ , during which all users offload their data information to the BS. The second

phase has a length of T − τ , during which the BS computes the offloaded data

information from users. The time for the BS to send the computed results back

to users is considered to be sufficiently small, and thus, it is negligible.

There is a task to be computed at user i, which consists of Ni bits. Then

user i selects to partially offload Di bits to the BS during the first phase, by

transmitting information signal xi to the BS with the transmit power pi.

Accordingly, the received signal at the BS is represented as yb =
∑K

i=1

√
pihixi+

nb, where nb is the background AWGN, distributed as nb ∼ CN (0, σ2). After-

wards, to detect user i’s information, the BS employs SIC to eliminate the inter-

ference from user j, i + 1 ≤ j ≤ K. Thus, the achievable rate for user i is given

as

Ri = log

(
1 +

pigi∑i−1
j=1 pjgj + σ2

)
. (5.1)

Then the offloaded data amount at user i is given as Di = Riτ .

5.1.2 Computation Model

According to [110], the power consumption for computation at user i is expressed

as Pl,i = l0f
3
l,i, where l0 is a constant determined by the CPU architecture, and

fl,i is user i’s CPU frequency for local computation.
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Since Di bits are offloaded to the BS, there are still Ni−Di bits to be locally

processed at user i. If the number of CPU cycles used to calculate each bit

information are a0,i, the total number of CPU cycles used to locally compute

Ni−Di bits are a0,i(Ni−Di). Since the whole time slot is used to perform local

computation, we have T =
a0,i(Ni−Di)

fl,i
. Then the energy consumption for local

computation is expressed as

El,i =
l0a

3
0,i(Ni −Di)

3

T 2
. (5.2)

5.1.3 Game Formulation

In our system, to promote the efficient usage of energy from the economic per-

spective, a two-level Stackelberg game is leveraged to model the process of data

offloading in the NOMA MEC system. Specifically, the BS is deemed as the

seller, while users are deemed as the buyers.

1) Seller Level Game

During the first phase, the BS decides the offloading time τ and the price xi to

sell the interference per unit time for user i. Then the interference purchased

by user i is pigi, and thus, the BS’s revenue is the total payment
∑K

i=1 pigixiτ

earned from selling interferences during time τ . After making a payment, user i

is allowed to offload a data amount of Di.
1 During the second phase, due to the

multiple CPU or multi-core architecture at the edge server, users’ offloaded infor-

mation is computed at the same time within time duration T − τ . By following

a similar derivation as the user side, the energy consumption for computing user

i’s offloaded data amount Di is given as
l0a30,iD

3
i

(T−τ)2 . Then the cost of computing user

i’s offloaded data is
Cbl0a

3
0,iD

3
i

(T−τ)2 , in which Cb is coefficient of the cost. Thus, the

1Note that given τ and other users’ power strategies, Di can be determined by pigi.
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utility function at the BS is expressed as Ub =
∑K

i=1{pigixiτ −
Cbl0a

3
0,iD

3
i

(T−τ)2 }, which

consists of the revenue and the cost. Accordingly, we formulate the seller-level

game as the following optimization problem.

Problem P1:

max
{xi},τ

Ub =
K∑
i=1

{
pigixiτ −

Cbl0a
3
0,iD

3
i

(T − τ)2

}
, (5.3a)

s.t. 0 ≤ τ ≤ T. (5.3b)

2) Buyer Level Game

The computational energy without offloading at user i is
l0a30,iN

3
i

T 2 . With the aid of

data offloading, the energy saving can be written as
l0a30,iN

3
i

T 2 − l0a30,i(Ni−Di)3

T 2 , which

is deemed as user i’s revenue. User i decides the transmit power pi. Then the cost

of payment is pigixiτ . Accordingly, the profit can be expressed as Cu(
l0a30,iN

3
i

T 2 −
l0a30,i(Ni−Di)3

T 2 )− pigixiτ , where Cu is the coefficient of energy consumption. It can

be observed that maximizing the profit is equivalent to minimizing the utility

function as Ui =
Cul0a30,i(Ni−Di)3

T 2 + pigixiτ . Indeed, utility Ui can be regarded as

the overall costs from computational energy and the payment. Thus, for user i,

the buyer-level game is formulated into the following optimization problem.

Problem P2:

min
pi

Ui =
Cul0a

3
0,i(Ni −Di)

3

T 2
+ pigixiτ (5.4a)

s.t. 0 ≤ Di ≤ Ni. (5.4b)

In what follows, we use backward induction to solve the formulated problems

in the two-level game.
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5.2 Optimal Solution to Problem P2

To obtain the optimal solution to Problem P2, we observe the first order derivative

of the objective function (5.4a), which can be expressed as

dUi
dpi

= −
3Cul0a

3
0,i(Ni −Di)

2gi

(ln 2)(
∑i

j=1 pjgj + σ2)T 2
τ + gixiτ, (5.5)

in which the fact dDi
dpi

= dRi
dpi
τ = 1

ln 2
gi∑i

j=1 pjgj+σ
2 τ is used.

After setting dUi
dpi

= 0, the relationship between price xi and power pi is given

by

xi = h(pi) ,
3Cul0a

3
0,i(Ni −Di)

2

(ln 2)(
∑i

j=1 pjgj + σ2)T 2
. (5.6)

Then it can be checked that (5.6) is a decreasing function of pi. Thus, based

on the announced price xi, the optimal solution pi to Problem P2 can be obtained

as

pi = h−1(xi). (5.7)

5.3 Optimal Solution to Problem P1

By exploiting the expression in (5.6), the objective function Ub in Problem P1

can be equivalently rewritten as

Ub =
K∑
i=1

{
3Cul0a

3
0,i(Ni −Di)

2pigi

(ln 2)(
∑i

j=1 pjgj + σ2)T 2
τ −

Cbl0a
3
0,iD

3
i

(T − τ)2

}
. (5.8)

It can be seen that Ub is indeed a function of {pi} and τ , which is non-convex.

Thus, the optimal solution is generally hard to get. However, in this chapter, we

can devise an approach to efficiently identify the optimal solution. To this end,

we first have a useful lemma.

Lemma 8. The item pigi∑i
j=1 pjgj+σ

2 can be represented into a compact form as

1− 2−
Di
τ .
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Proof. Since the achievable rate is Ri = log(1 + pigi∑i−1
j=1 pjgj+σ

2
), we have

i−1∑
j=1

pjgj + σ2 =
pigi

2Ri − 1
. (5.9)

Subsequently, by using (5.9), we can obtain

pigi∑i=i
j=1 pjgj + σ2

=
pigi

pigi + pigi
2Ri−1

= 1− 2−Ri

= 1− 2−
Di
τ .

(5.10)

For the objective function Ub, we add one more dimension in time allocation

by replacing T−τ with ω. Moreover, with the aid of Lemma 8, it can be rewritten

as

Ub({Di}, τ, ω) =
K∑
i=1

{
3Cul0a

3
0,i(Ni −Di)

2

(ln 2)T 2
(1− 2−

Di
τ )τ −

Cbl0a
3
0,iD

3
i

ω2

}
. (5.11)

Accordingly, the original Problem P1 can be converted into the following

optimization problem.

Problem P3:

max
{Di},τ,ω

Ub({Di}, τ, ω) (5.12a)

s.t. 0 ≤ τ + ω ≤ T (5.12b)

0 ≤ τ ≤ T (5.12c)

0 ≤ ω ≤ T. (5.12d)

In Problem P3, it can be seen that the objective function Ub({Di}, τ, ω) is still

non-convex. However, after a careful inspection, we find that there is an inherent

layered structure in Problem P3. Thus, we can divide the solving procedure of

Problem P3 into two steps. To be more specific, in the first step, for given τ and
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ω, the optimal solutions to {Di} can be identified. Then based on (5.1), (5.6)

and (5.7), the solutions to {pi} and {xi} can be determined. In the second step,

how to reach the optimal solutions of τ and ω will be provided. We will show

solving Problem P3 is equivalent to solving Problem P1 in Section 5.3.2.

Then we proceed to obtain the optimal solution in the first step.

5.3.1 Solving Optimal Solutions to {Di} for Fixed τ and
ω

In the first step, for fixed τ and ω, it can be observed that function Ub in (5.11)

is separable. Thus, it can be further written as Ub =
∑K

i=1 Ub,i, in which Ub,i =

3Cul0a30,i(Ni−Di)2

(ln 2)T 2 (1− 2−
Di
τ )τ − Cbl0a

3
0,iD

3
i

ω2 . Then we have one useful feature for Ub,i,

which is given as follows.

Theorem 9. For fixed τ and ω, Ub,i is not concave. There is a unique root D∗i

to
dUb,i
dDi

= 0. Also, Ub,i is increasing over [0, D∗i ), and decreasing over [D∗i , Ni].

Proof. The first order derivative of Ub,i with Di is given by

dUb,i
dDi

= −
6Cul0a

3
0,i(Ni −Di)

(ln 2)T 2
(1− 2−

Di
τ )τ+

3Cul0a
3
0,i(Ni −Di)

2

T 2
2−

Di
τ −

3Cbl0a
3
0,iD

2
i

ω2
. (5.13)

The second order derivative of Ub,i with Di is given by

d2Ub,i
dD2

i

=
6Cul0a

3
0,i

(ln 2)T 2
(1− 2−

Di
τ )τ −

12Cul0a
3
0,i(Ni −Di)

T 2
2−

Di
τ −

3(ln 2)Cul0a
3
0,i(Ni −Di)

2

T 2τ
2−

Di
τ −

6Cbl0a
3
0,iDi

ω2
. (5.14)

From (5.14), it can be seen that Ub,i is not concave.

However, after a careful inspection, the first order derivative (5.13) can be
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rewritten as

dUb,i
dDi

= (Ni −Di)
2

{
−

6Cul0a
3
0,i

(ln 2)T 2(Ni −Di)
(1− 2−

Di
τ )τ+

3Cul0a
3
0,i

T 2
2−

Di
τ −

3Cbl0a
3
0,iD

2
i

ω2(Ni −Di)2

}
. (5.15)

We denote H(Di) = − 6Cul0a30,i
(ln 2)T 2(Ni−Di)(1−2−

Di
τ )τ+

3Cul0a30,i
T 2 2−

Di
τ − 3Cbl0a

3
0,iD

2
i

ω2(Ni−Di)2 . By

observing the first order derivative of H(Di), we have dH(Di)
dDi

< 0. Thus, H(Di)

is decreasing with Di. Moreover, when Di = 0 and Di → Ni, we haveH(Di)|Di=0 =
3Cul0a

3
0,i

T 2
> 0

H(Di)|Di→Ni = −∞.
(5.16)

Since (Ni −Di)
2 ≥ 0 and H(Di) is decreasing with Di, by combining (5.16),

it indicates that we have one unique root D∗i for
dUb,i
dDi

= 0. It also means
dUb,i
dDi

> 0

over [0, D∗i ), and
dUb,i
dDi
≤ 0 over [D∗i , Ni]. Thus, Ub,i is increasing over [0, D∗i ), and

decreasing over [D∗i , Ni].

This completes the proof.

Remark: Since there is a unique root D∗i to
dUb,i
dDi

= 0, existing methodology

can be employed to identify D∗i for Ub,i, ∀i ∈ K, such as the golden section search

method [111]. Recall that the objective function Ub is separable under given τ

and ω. Thus, the maximization of Ub is equivalent to the maximization of each

Ub,i. In other words, for fixed τ and ω, the optimal solutions to {Di} can be

efficiently solved.

Subsequently, we proceed to solve Problem P3 in the second step.

5.3.2 Solving Optimal Solutions to τ and ω

For fixed τ and ω, we denote the optimal objective value in the first step as

Gb(τ, ω) = max
{Di}

Ub({Di}, τ, ω). In the second step, with the aim of identifying

111



the optimal solutions to τ and ω, solving Problem P3 boils down to the following

optimization problem.

Problem P4:

max
τ,ω

Gb(τ, ω) (5.17a)

s.t. 0 ≤ τ + ω ≤ T (5.17b)

0 ≤ τ ≤ T (5.17c)

0 ≤ ω ≤ T. (5.17d)

For the objective function Gb(τ, ω), we have the following lemma.

Lemma 9. Function Gb(τ, ω) is increasing with τ and ω.

Proof. Based on (5.11), to prove the monotonicity of Gb(τ, ω) with τ , it is equiv-

alent to prove the monotonicity of f(τ) , (1− 2−
Di
τ )τ with τ . Then we take the

first order derivative of f(τ), which is given by

df(τ)

dτ
= 1− (1 + (ln 2)

Di

τ
)2−

Di
τ . (5.18)

Moreover, when τ → 0 and τ →∞, we have

lim
τ→0

df(τ)

dτ
= 1− lim

τ→0

d
dτ

(1 + (ln 2)Di
τ

)

d
dτ

(2
Di
τ )

(i)
= 1− lim

τ→0

−(ln 2)Di
τ2

2
Di
τ (ln 2)(−Di

τ2
)

= 1

lim
τ→∞

df(τ)

dτ
= 0,

(5.19)

in which the L’Hopital’s rule is used in (i).

The second order derivative of f(τ) is given by

d2f(τ)

dτ 2
= (ln 2)

Di

τ 2
2−

Di
τ − (ln 2)

Di

τ 2
(1 + (ln 2)

Di

τ
)2−

Di
τ

= −(ln 2)2
D2
i

τ 3
2−

Di
τ < 0.

(5.20)
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Since d2f(τ)
dτ2

< 0, it means df(τ)
dτ

is decreasing with τ . By further considering

limτ→0
df(τ)
dτ

> 0 and limτ→∞
df(τ)
dτ

= 0, it indicates that df(τ)
dτ

> 0 for any τ ∈

(0,∞). Thus, f(τ) is increasing with τ , which also indicates that Gb(τ, ω) is

increasing with τ .

For the monotonicity of Gb(τ, ω) with ω, it can be readily verified that (5.11)

is increasing with ω.

Afterwards, by assuming τ † ≤ τ ‡ and ω† ≤ ω‡, we have

Gb(τ
†, ω†)

=
K∑
i=1

{
3Cul0a

3
0,i(Ni −D†i )2

(ln 2)T 2
(1− 2−

D
†
i

τ† )τ † −
Cbl0a

3
0,i(D

†
i )

3

(ω†)2

}
(ii)

≤
K∑
i=1

{
3Cul0a

3
0,i(Ni −D†i )2

(ln 2)T 2
(1− 2−

D
†
i

τ‡ )τ ‡ −
Cbl0a

3
0,i(D

†
i )

3

(ω‡)2

}
(iii)

≤
K∑
i=1

{
3Cul0a

3
0,i(Ni −D‡i )2

(ln 2)T 2
(1− 2−

D
‡
i

τ‡ )τ ‡ −
Cbl0a

3
0,i(D

‡
i )

3

(ω‡)2

}
= Gb(τ

‡, ω‡),

(5.21)

in which (ii) is from τ † ≤ τ ‡ and ω† ≤ ω‡, and (iii) is from the optimality of {D‡i}

in Ub({Di}, τ ‡, ω‡) under given τ ‡ and ω‡.

Therefore, function Gb(τ, ω) is increasing with τ and ω.

Remark: Since both Gb(τ, ω) and the constraint function (5.17b) are in-

creasing with τ and ω, the constraint function (5.17b) should be active at the

optimality. As a result, solving Problem P4 or Problem P3 is equivalent to solving

Problem P1. Moreover, Problem P4 is a monotonic optimization problem. Thus,

the Polyblock Algorithm [112,113] can be leveraged to solve the optimal solution,

as shown in Algorithm 4. After solving Problem P4, we can obtain the optimal

τ ∗, ω∗ and {D∗i }, ∀i ∈ K. Then based on (5.1), (5.6) and (5.7), it indicates the

Stackelberg Equilibrium solutions τ ∗, {x∗i }, {p∗i } can also be reached.

Here we explain the complexity of the proposed algorithm. For fixed time
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allocation, the golden section search is used, which has a linear convergence. To

identify the optimal time allocation, the Polyblock algorithm is adopted, which

does not have an expression for the complexity. However, since there are only

two dimensions for the time allocation, the overall complexity is reasonable.

Algorithm 4: Polyblock Algorithm to Problem P4

Input: Function Gb(τ, ω) and the tolerance ε.
Output: The optimal τ ∗, ω∗ and objective value s∗.

1 Initialize v0 = [T, T ], V = {v0} and s∗ = 0.
2 while |V| 6= 0 do
3 for i = 1 : 1 : |V| do
4 Find the index i† = arg max

1≤i≤|V|
Gb(τi, ωi) and the associated vertex

vi† = [τi† , ωi† ].
5 Set λi† = T/(τi† + ωi†).
6 if Gb(λi†τi† , λi†ωi†) > s∗ then
7 Set y∗ = λi†vi† and s∗ = Gb(λi†τi† , λi†ωi†).

8 Delete any vertex vj ∈ V , j ∈ {1, 2, . . . , |V|} satisfying
Gb(τj, ωj) ≤ Gb(τi† , ωi†) + ε.

9 Delete any vertex vj satisfying vj > vi† .
10 if |V| 6= 0 then
11 Generate two new vertexes v]1 = vi† + (λi†vi† − vi†) ◦ (0, 1)

and v]2 = vi† + (λi†vi† − vi†) ◦ (1, 0).
12 Delete vi† from V , and let V = V ∪ {v]1,v]2}.

13 Output y∗ as [τ ∗, ω∗] and s∗ before |V| = 0

5.4 Numerical Results

Now we use simulations to evaluate the performance for our Stackelberg game

based resource allocation algorithm. We further model the channel coefficient

as hi = h̃i/
√
dκi , ∀i ∈ K, where h̃i is a circularly symmetric complex Gaussian

random variable with zero mean and unit variance, di is the distance between

user i and the BS, and κ stands for the path loss exponent. We set the distances

as di = 100 m, ∀i ∈ K. The path loss exponent is fixed as κ = 2. The system
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Figure 5.1: The BS’s utility value in our algorithm.

bandwidth is 1 MHz. The noise variance is σ2 = −30 dBm. The time slot length

is T = 1 ms. The coefficients Cu and Cb are Cu = 103 and Cb = 103. The

constant related to CPU architecture is l0 = 10−23. The number of CPU cycles

to compute one bit data are a0,i = 40, ∀i ∈ K.

As shown in Fig. 5.1, the BS’s utility value is evaluated. The user numbers are

set to: K = 2, 3, 4. We assume each user has a different number of data bits Ni

to compute, and Ni increase when i increases. In specific, we set N1 = N0,

N2 = 1.25N0, N3 = 1.5N0 and N4 = 2N0, where N0 = 500 : 100 : 1000.

Observed from Fig. 5.1, the utility value increases with the increase of N0. This is

because when N0 becomes larger, more interferences should be purchased for data

offloading at the user side. It results in the increase of revenue at the BS. The

BS’s utility also increases with the user number K. One conventional approach of

offloading is the fixed time allocation (FTA) scheme. We compare our algorithm

with one FTA scheme, in which the offloading time is set as τ = T/4. It can be
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Figure 5.2: The price of the interference and user’s payment in our algorithm.

seen that the gap between our algorithm and the FTA algorithm becomes larger

with the increase of N0.

The price of interference and user’s payment are shown in Fig. 5.2. For a

fixed number of data bits N0, user’s price follows an overall increasing trend

when user i increases. Moreover, observed from Fig. 5.2, a stronger user makes

a higher payment than a weaker user. For example, user 4’s payment is over 5

times larger than user 1’s payment. This also means the BS can earn a higher

revenue from a stronger user. The user’s utility value is illustrated in Fig. 5.3.

It can be seen from Fig. 5.3 that user’s utility value has a similar trend as the

payment made by the user. One reason is due to a larger number of data bits Ni

in the task of a stronger user. The other reason is due to a higher payment from

a stronger user.

As illustrated in Fig. 5.4, the offloaded data amount is evaluated. It can be

observed that user’s offloaded data amount increases with the increase of user i.
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Figure 5.3: The user’s utility value in our algorithm.
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Figure 5.4: Different user’s offloaded data amount in our algorithm.
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For example, user 4’s offloaded data amount is around twice larger than user 1’s

offloaded data amount. Moreover, the offloading time is illustrated in Fig. 5.5

under different user numbers. The time spent on data offloading goes up with

the increase of the number of data bits N0. which is intuitive. Recall that one

time slot has a duration of 1ms. We can see that the percentage of time used for

data offloading is around 50%.

5.5 Conclusion

In this chapter, we provide one design of energy-aware resource allocation in

NOMA MEC networks, with the aid of a two-level Stackelberg game. By using

the backward induction, after solving the buyer-level game, the seller-level game

is a non-convex optimization problem. Then we provide an efficient approach

to reach its global optimal point. Specifically, when the allocated time in our

system is fixed, we demonstrate that the optimization problem can be efficiently
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solved. Subsequently, the monotonic optimization method is utilized to allocate

the optimal time resource.

119



Chapter 6

Conclusions and Future Research

6.1 Conclusions

Under different networking scenarios, to achieve the goal of efficient transmissions,

we study the resource allocation problems in NOMA enabled networks.

Chapter 3 investigates an overlay cognitive NOMA system integrated with

energy harvesting. Based on the time switching protocol, the ST harvests energy

from the primary signal. When the throughput for the primary system is smaller

than a target, the ST helps the PT to relay information. Meanwhile, NOMA

transmission is leveraged to send the ST’s information. In our system, with the

aim of maximizing the secondary throughput, we optimize the time ratio to har-

vest energy and the power allocation in superposition coding. Two optimization

problems are formulated under the SIC case and non-SIC case. We convert the

original non-convex problems into some equivalent problems. For the equivalent

problems, theoretical proofs are offered to show the quasiconcavity of the ob-

jective functions. Then the optimal solutions are obtained by using a designed

two-level bisection method. Moreover, we have an interesting insight. We show

that the case performing SIC cannot always guarantee a larger performance.

Chapter 4 investigates the Stackelberg game based power allocation problem
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in downlink NOMA system. With the aim of maximizing the profit per unit

power, the BS optimizes its price and total allocated transmit power. To maxi-

mize its profit, each user decides the amount of power. The backward induction

is employed to solve the formulated game. Based on the solution at the user

side, we have a non-convex optimization problem at the BS. Thus, we propose a

method to solve it, which has two stages. In stage 1, an approach is designed to

convert the original problem into an equivalent form. Then the optimal solution

to the equivalent problem is also found by using one designed iterative algorithm.

Afterwards, with the aid of the stage 1 solution, the optimal solution in stage 2

can also be efficiently obtained.

Chapter 5 investigates the resource allocation problem in an energy-aware

NOMA MEC system. To promote energy saving from economic views, one ap-

proach of resource allocation is proposed by using a two-level Stackelberg game.

For the formulated game, a method is developed to solve it. Specifically, we plug

the obtained solution of the buyer-level game into the seller-level game, yielding

a non-convex optimization problem. To solve the seller-level problem, we first

efficiently obtain the optimal solution with given time allocation. Subsequently,

how to optimally allocate time resource is also given.

6.2 Further Extensions and Future Research

In our future research, we have three possible research topics in wireless networks

with NOMA. Firstly, based on our research work in Chapter 3, we can further

study the physical layer security concern. In our cognitive NOMA system, we

can consider that there exists one eavesdropper who can intercept the information

from the ST. Moreover, the ST can be considered to be equipped with multiple

antennas. An external jammer can also be used to jam the eavesdropper. With
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the aim of enhancing the secrecy performance, besides the harvesting ratio and

the power allocation, the design of the beamforming vector at the ST and the

jamming vector at the jammer can be investigated.

Secondly, based on our research work in Chapter 4, we can further investigate

how to deal with the free riding issues in NOMA systems. For example, we can

consider one network with multiple NOMA transmitters, in which the energy for

multiple NOMA transmitters can be harvested from multiple power beacons. The

NOMA transmitters purchase the transmit power from the power beacons. Due

to the broadcasting nature of wireless signals, some transmitters may choose to

harvest energy without making payments. This is the so-called free riding issue,

which can be addressed by using the evolutionary game. Thus, based on our

original network, one further research topic is to formulate a Stackelberg game,

which is combined with the evolutionary game.

Thirdly, based on our research work in Chapter 5, we can further study the

resource allocation in NOMA MEC network over multiple fading blocks. In our

considered NOMA MEC network, a single fading block is considered to perform

data offloading. However, the offloading time may be larger than one fading block

[114]. Therefore, a future research topic is to consider the data offloading for users

via uplink NOMA over multiple fading blocks, which has the target of minimizing

the average energy consumption. How to determine the data offloading amount

and the offloading time can be studied, which can be addressed by using the

dynamic programming method.
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