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ABSTRACT
Winter mortality is a major factor regulating population size of the mountain pine
beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). Glycerol is the
major cryoprotectant in this freeze intolerant insect. We report findings from a gene
expression study on an overwintering mountain pine beetle population over the course
of 35 weeks. mRNA transcript levels suggest glycerol production in the mountain pine
beetle occurs through glycogenolytic, gluconeogenic and potentially glyceroneogenic
pathways, but not from metabolism of lipids. A two-week lag period between fall
glycogen phosphorylase transcript and phosphoenolpyruvate carboxykinase transcript
up-regulation suggests that gluconeogenesis serves as a secondary glycerol-production
process, subsequent to exhaustion of the primary glycogenolytic source. These results
provide a first look at the details of seasonal gene expression related to the production
of glycerol in the mountain pine beetle.

Subjects Ecology, Entomology, Molecular Biology, Zoology
Keywords Bark beetle, Mountain pine beetle, Overwintering, Glycerol, Seasonal, Cyroprotectant,
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INTRODUCTION
While native to British Columbian forests, the mountain pine beetle, Dendroctonus
ponderosae Hopkins (Coleoptera: Curculionidae), population sizes have reached epidemic
levels, resulting in the largest infestation on record (Westfall, 2007), causing significant
economic and social impact in forestry dependent communities. Winter cold temperatures
are often cited as the largest single source of mortality in D. ponderosae (Safranyik,
1978; Cole, 1981; Safranyik & Carroll, 2006; Stahl, Moore & McKendry, 2006; Aukema et
al., 2008). While fall and winter temperatures regularly reach far below the equilibrium
freezing point of mountain pine beetle bodily fluids, larvae are able to avoid the damaging
effects of ice formation. The phenomenon of quiescence (Powell & Logan, 2005) grants
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overwintering mountain pine beetle larvae the ability to reallocate limited energy reserves
from developmental and basal metabolism toward biosynthesis of antifreeze compounds
(Li, Ding & Goto, 2002; Joanisse & Storey, 1994b).

Freeze avoidant insects, like themountain pine beetle, evade coldmortality by producing
cryoprotectants, often polyols, that alter the freezing properties of their bodily fluids
(Bale, 2002; Baust, 1983). Glycerol is the most common cryoprotectant used by insects
to achieve states of freeze avoidance (Storey & Storey, 2004). While little work has been
done to illuminate mechanisms by which the mountain pine beetle achieves a state of
cold tolerance, Bentz & Mullins (1999) assessed the composition and seasonal quantity of
polyols in mountain pine beetle hemolymph and showed that glycerol is the most abundant
cryoprotectant accumulated by overwintering larvae. The metabolic pathways that lead to
glycerol production in insects and other animals are well understood (Fig. 1).

The precise mechanisms by which mountain pine beetle larvae produce glycerol and the
timing of production are unknown. Because glycerol is important in cold tolerance
physiology in the mountain pine beetle, a better understanding of the dynamics of
gene expression related to glycerol biosynthesis is of significant ecological importance,
particularly as the insect moves into a new, and colder, habitat (Cullingham et al., 2011;
Janes et al., 2014).

The objective of this study was to document seasonal gene expression differences in the
mountain pine beetle for genes associated with glycerol production by assessing changes
in transcript levels for genes in that biosynthetic pathway.

MATERIALS AND METHODS
Sample and temperature collection
Eleven lodgepole pine (Pinus contorta) trees that had been attacked bymountain pine beetles
in the previous summer —located west of Tête Jaune Cache, British Columbia, Canada
(N53◦3′35.28′′W119◦36′52.74′′)—were sampled in 2008 and 2009. Three temperature data
loggers (iButton R© data loggers; Maxim, Sunnyvale, CA, US) were affixed to each tree—at
the base of the tree, at breast height on the north side of the tree, and at breast height on the
south side of the tree. Temperature data were recorded every 30 min throughout the study
period: September 19, 2008 through May 13, 2009. Due to technical difficulties, seventeen
hours of temperature data were lost between 9:36 a.m., 1 April, 2009 and 2:36 a.m., 2 April,
2009. Daily minimum, mean and maximum temperatures for 1 April, 2009 were estimated
by averaging daily minimum, mean and maximum temperatures for 31 March, 2009 and
2 April, 2009.

Multiple live mountain pine beetle larvae of mixed instar and undetermined sex were
manually removed from trees on the following dates: 19 September, 2008, 3 October,
2008, 17 October, 2008, 31 October, 2008, 14 November, 2008, 18 March, 2009, 1 April,
2009, 14 April, 2009, 29 April, 2009 and 13 May, 2009. Larvae were individually deposited
in 1.5mL microcentrifuge tubes, immediately flash frozen in liquid nitrogen, and were
transported back to UNBC laboratory facilities on dry ice where they were immediately
stored at −80 ◦C until RNA extractions were conducted.
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Figure 1 The processes of glycogenesis and glycogenolysis involve the following enzymes: glycogen
phosphorylase (GP); triosephosphate isomerase (TPI); glycerol-3-phosphate dehydrogenase (G3PDH);
alcohol dehydrogenase (ADH); glycogen synthase (GS). The metabolism of lipids, specifically triglyc-
erides, produces glycerol and occurs via triacylglycerol lipase (TAGL). Reducing equivalents required in
the production of glycerol can be produced via the pentose phosphate (continued on next page. . . )
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Figure 1 (. . .continued)
pathway (PPP), involving the enzymes 6-phosphoglucolactonase (6-PGL) and glucose-6-phosphate
dehydrogenase (G6PDH). The enzyme citrate synthase (CS) is involved in the citric acid cycle (CAC)
and gluconeogenic enzymes include phosphoenolpyruvate carboxykinase (PEPCK) and fructose-1,6-
bisphosphatase (FBP). Pyruvate kinase (PK) is an enzyme present within the lower-half of glycolysis. The
following substrates are involved in the above processes: glucose-1-phosphate (G1P), glucose-6-phosphate
(G6P), β-glucose-6-phosphate (β-G6P), glucono-1,5-lactone 6-phosphate (G-1,5-6P), fructose-6-
phosphate (F6P), fructose-1,6-bisphosphtate (F16P), dihydroxyacetone phosphate (DHAP), glycerol-3-
phosphate (G3P), glyceraldehyde-3-phosphate (GAP), glyceraldehyde (GA), phosphoenolpyruvate (PEP)
and oxaloacetate (OAA).

RNA isolation and cDNA synthesis
Larval samples were incubated for 18 h in RNAlater R©-ICE (Ambion, Austin, TX, USA)
at −20 ◦C and completely homogenized by use of a GeneoGrinder 2000 (SpexCertiprep,
Metuchen, NJ, USA). RNA extractions were conducted with MagMaxTM-96 Kits (Ambion,
USA) containing a DNase digestion step. RNA concentration was acquired by use of a
Qubit Quantification System (Invitrogen, Carlsbad, CA, USA). Estimates of sample purity
were obtained by use of a NanodropND-1000 (NanoDrop Technologies, Inc.,Wilmington,
DE, USA), with sample 260/280 ratios ranging from 1.8–2.2. Sample integrity was assessed
via Experion StdSens (BioRad, USA) microfluidics chips. RNA aliquots were assessed
for genomic DNA contamination via RT-qPCR, ensuring a minimum difference of 5 Cq

between RNA and cDNA runs for the same biological sample (Nolan, Hands & Bustin,
2006). RNA samples were stored at −80 ◦C until reverse transcription reactions were
conducted. Sample cDNA was produced from 800 ng of total RNA using random decamers
and the High Capacity cDNA Reverse Transciption Kit (Invitrogen, Carlsbad, CA, USA)
in a total reaction volume of 40 µL following the manufacturer’s protocol.

RT-qPCR target oligonucleotide information and protocol
Candidate gene sequences used for the identification of transcripts and proteins of glycerol
biosynthesis were identified from previously developed mountain pine beetle EST and
full-length cDNA databases (Keeling et al., 2012). We investigated differential transcript
accumulation for the following mountain pine beetle gene sequences: pyruvate kinase
(PK, BT127907), glycogen phosphorylase (GP, APGK01006417), citrate synthase (CS,
APGK01047658), 6-phosphoglucolactonase (6-PGL, BT128455), glucose-6-phosphate
dehydrogenase (G6PDH, APGK01024792), glycerol-3-phosphate dehydrogenase (G3PDH,
BT128609), fructose-1,6-bisphosphatase (FBP, BT128229), alcohol dehydrogenase
(ADH, BT127435), triosephosphate isomerase (TPI, BT127767), phosphoenolpyruvate
carboxykinase (PEPCK, BT127980), glycogen synthase (GS, APGK01035513) and
triacylglycerol lipase (TAGL, BT127387). Primer sequences and gene-specific properties
are shown in Table 1. Hydrolosis probes were designed for each of the genes of interest
and used TAMARA, ROX or FAM fluorophores (Table 2).

All reactions were conducted on an iQ5 (Bio-Rad, Hercules, CA, USA) real-time
quantitative PCRmachine and consisted of a denaturation step at 95 ◦C for 3 min followed
by 40 cycles of 10 s at 95 ◦C and 30 s at each gene of interest’s specific annealing temperature
(Table 1). cDNA for each sample was diluted 1:9 with nuclease-free water and was run

Fraser et al. (2017), PeerJ, DOI 10.7717/peerj.3284 4/17

https://peerj.com
http://www.ncbi.nlm.nih.gov/nuccore/BT127907
http://www.ncbi.nlm.nih.gov/nuccore/APGK01006417
http://www.ncbi.nlm.nih.gov/nuccore/APGK01047658
http://www.ncbi.nlm.nih.gov/nuccore/BT128455
http://www.ncbi.nlm.nih.gov/nuccore/APGK01024792
http://www.ncbi.nlm.nih.gov/nuccore/BT128609
http://www.ncbi.nlm.nih.gov/nuccore/BT128229
http://www.ncbi.nlm.nih.gov/nuccore/BT127435
http://www.ncbi.nlm.nih.gov/nuccore/BT127767
http://www.ncbi.nlm.nih.gov/nuccore/BT127980
http://www.ncbi.nlm.nih.gov/nuccore/APGK01035513
http://www.ncbi.nlm.nih.gov/nuccore/BT127387
http://dx.doi.org/10.7717/peerj.3284


Table 1 Sequences and properties of primers used in evaluation of twelve genes of interest employed to investigate seasonal cold tolerance inD. ponderosae.

Reference Gene Sequence (5′–3′) (Primer)
nM

%GC TA Amplicon
size (bp)

DLR E R2

PK Pyruvate kinase CTTATCCTTTGGCTATTGCTTTGG 600 41.6 62.5 123 24 pg –75 ng 91.5 0.996
ATCTGTGGTCAGCTTAATAGTATCG 300 40 62.5

GP Glycogen phosphorylase TGGATCAAATGCAGAACGGATTC 600 43.4 63.6 107 5 pg –75 ng 94.9 0.999
GTAATCGGCCAGCAAGAAGAAC 600 50.0 63.6

CS Citrate Synthase GACTTCGATTTGTGACGAGAGAG 600 47.8 63.0 142 12 pg –75 ng 93.9 0.999
CAGACGTATGGAGGCAAACATC 300 50 63.0

6-PGL 6-phosphoglucolactonase CCGATTTGATCTACTGCTGCTG 600 50 53.8 108 12 pg –75 ng 98.9 0.997
GTGATTGGAGCCACCCATTTG 900 52.3 53.8

G6PDH Glucose-6-phosphate dehydrogenase GCAGAAGTAAGAATTCAGTTTGAGG 900 40 62.5 137 5 pg –75 ng 100.1 0.995
GCCATACCAGGAGTTTTCACC 900 52.3 62.5

G3PDH Glycerol-3-phosphate dehydrogenase TGTTCTGCGAAACCACCATTG 900 47.6 53 126 24 pg –75 ng 95.5 0.999
CGCCGCAAACTTCCACAG 300 61.1 53

FBP Fructose-1,6-bisphosphatase CACAGCTACCGGAGAACTCAC 300 57.1 63.3 139 24 pg –75 ng 96.9 0.999
CACTTCTTCGCCCTGTACATTTG 900 47.8 63.3

ADH Alcohol dehydrogenase ATCCTCTACACGGCGGTTTG 900 55 63.3 147 12 pg –75 ng 90 0.996
ATCACCTGGCTTCACACTGG 300 55 63.3

TPI Triosephosphate isomerase ACGCCCCAGCAAGCTCAG 900 66.6 63.3 106 24 pg –75 ng 96.3 0.998
CCGAACCGCCGTATTGGATTC 900 57.1 63.3

PEPCK Phosphoenolpyruvate carboxykinase GGCATCGAACTCACTGACTCC 600 57.1 63.0 129 5 pg –75 ng 100 0.995
GGTGCCGACCGAGTGGAG 300 72.2 63.0

GS Glycogen synthase GAACGACCCGGTGCTCAG 300 66.6 57.8 125 24 pg –75 ng 92.9 0.996
CGTAGTCCAGCCCGAAGAG 600 63.1 57.8

TAGL Triacylglycerol lipase TCTACGTGTATACCTCTCAGAATCG 300 44 63.0 100 24 pg –75 ng 92.8 0.999
GTGTCTCTGTTAGCAGCGAATC 600 50 63.0
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Table 2 Sequences of hydrolysis probes used in evaluation of twelve genes of interest employed to investigate seasonal cold tolerance in
D. ponderosae.

Gene Probe sequence (5′–3′)

PK Pyruvate kinase 56-TAMN-CAGCAGATCCTCCGCCTTCCAACAA-3BHQ_2
GP Glycogen phosphorylase 56-ROXN-CAGCCCAAGCAATCCAGACGAGTTC-3BHQ_2
CS Citrate synthase 56-FAM-CCACAGCAACGAAATAACACCACCA-3BHQ_1
6-PGL 6-phosphoglucolactonase 56-TAMN-ACACCTGCTCTCTGTTTCCTGGACA-3BHQ_2
G6PDH Glucose-6-phosphate dehydrogenase 56-ROXN-AGCCTCGCCTGGTTGAACTCTAATC-3BHQ_2
G3PDH Glycerol-3-phosphate dehydrogenase 56-TAMN-TCATCGTCCACCACCACCACTCG-3BHQ_2
FBP Fructose-1,6-bisphosphatase 56-ROXN-AGCTACTCAATGCCATCCAGACTGC-3BHQ_2
ADH Alcohol dehydrogenase 56-FAM-TCCAACACTCTCGACCACTCCAGC-3BHQ_1
TPI Triosephosphate isomerase 56-TAMN-AAGTCCATCAGTCGCTACGCCAGTG-3BHQ_2
PEPCK Phosphoenolpyruvate carboxykinase 56-ROXN-TTGACGAACTCCTCCGCCTCTTGC-3BHQ_2
GS Glycogen synthase 56-TAMN-TCTTCAACACCGCCGAGGACCG-3BHQ_2
TAGL Triacylglycerol lipase 56-ROXN-ACCCAAATAAGAGCCAGTGACGCCA-3BHQ_2

in duplicate as a technical replicate. Reaction volumes consisting of 25 µL total volume
consisting of the following component volumes were conducted: 2.5 µL forward primer
(9 µM), 2.5 µL reverse primer (9 µM), 2.5 µL Probe (2.5 µM), 2.5 µL cDNA template,
2.5 µL nuclease-free water and 12.5 µL iQ Supermix (2X; Biorad, Hercules, CA, USA). No
template controls were utilized for all reactions. Gene transcript accumulation values were
obtained from 4-8 larval biological replicates, collected from eleven separate lodgepole
pine trees.

Data analysis
Transcript accumulation normalization for each biological replicate was achieved from a
normalization factor made up of: RNA polymerase II (RPII, BT126845), porphobilinogen
deaminase (PBD, GAFW01009520), actin (ACT, BT126695), tyrosine 3-monooxygenase
(YWHAZ, BT128603) reference gene transcript accumulation data. These four reference
genes were determined by geNorm analysis (Vandesompele et al., 2002) to be most
appropriate for transcript accumulation normalization consisting of biological replicates
from all treatment groups (i.e., all ten data time points). For statistical analysis of each gene
of interest, logarithmically transformed normalized mRNA expression data for biological
replicates were analyzed in R (Version 2.9.2). Analysis of variance (ANOVA) assumptions
of homoscedasticity (Levene’s test) and normality (histograms, quantile–quantile plots,
the Sahpiro-Francia normality test) were assessed for mRNA expression data. One-way
ANOVAs were conducted for mRNA expression data followed by Tukey’s HSD post-hoc
test for pair-wise multiple comparisons. For graphical analyses, data normalization was
performed as in Willems, Leyns & Vandesompele (2008). Geometric mean fold changes
for each treatment were set relative to 19 September, 2008 mean mRNA expression
level. Relative fold changes and their respective 95% confidence intervals were plotted in
Microsoft Excel.
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Figure 2 Geometric mean fold change in mountain pine beetle transcript accumulation relative to
19 September, 2008 and corresponding daily seasonal thermal data at the larval collection site for the
fall 2008 study period. (A) Glycogen phosphorylase relative mRNA expression (Fall 2008); (B) Phospho-
enolpyruvate carboxykinase relative mRNA expression (Fall 2008); (C) fructose-1,6,-bisphosphatase rel-
ative mRNA expression (Fall 2008); (D) Glycogen synthase relative mRNA expression (Fall 2008); (E)
triose-phosphate isomerase relative mRNA expression (Fall 2008); (F) glyerol-3-phosphate dehydrogenase
relative mRNA expression (Fall 2008). Gene transcript accumulation values were obtained from 4–8 lar-
val biological replicates, collected from eleven separate lodgepole pine trees, with 95% confidence intervals
being displayed. One-way ANOVA were conducted for transcript accumulation data followed by Tukey’s
HSD post-hoc test for pair-wise multiple comparisons. Means found to be statistically different (p< 0.05)
are denoted with different lowercase letters.

RESULTS AND DISCUSSION
RT-qPCR target gene expression results
In the fall (collection dates between September and November), statistically significant
increases in transcript levels were observed for GP, PEPCK, FBP, GS, TPI, and G3PDH
(Fig. 2). In the spring (collection dates between March and May), statistically significant
decreases in transcript levels were observed for GP, PEPCK, FBP, GS, TPI and G3PDH
(Fig. 3). TAGL, ADH, 6-PGL, G6PDH, PK and CS transcript levels did not exhibit
differential accumulation during either the fall or the spring study periods (not statistically
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Figure 3 Geometric mean fold change in mountain pine beetle transcript accumulation relative
to 19 September, 2008 and corresponding daily seasonal thermal data at the larval collection site
for the spring 2009 study period. (A) Glycogen phosphorylase relative mRNA expression (Spring
2009); (B) Phosphoenolpyruvate carboxykinase relative mRNA expression (Spring 2009); (C) fructose-
1,6,-bisphosphatase relative mRNA expression (Spring 2009); (D) Glycogen synthase relative mRNA
expression (Spring 2009); (E) triose-phosphate isomerase relative mRNA expression (Spring 2009);
(F) glyerol-3-phosphate dehydrogenase relative mRNA expression (Spring 2009). Gene transcript
accumulation values were obtained from 4–8 larval biological replicates, collected from eleven
separate lodgepole pine trees, with 95% confidence intervals being displayed. One-way ANOVA were
conducted for transcript accumulation data followed by Tukey’s HSD post-hoc test for pair-wise multiple
comparisons. Means found to be statistically different (p < 0.05) are denoted with different lowercase
letters.

significant, data not shown). When compared and contracted to proteomic data available
for the same sample population, our results mirror quite closely (Bonnett et al., 2012).

Transcript accumulation indicates that glycerol biosynthesis involves
both glycogenolysis and gluconeogenesis
One of the predominant carbohydrate energy reserves used by overwintering insects is
glycogen (Li, Ding & Goto, 2002; Han & Bauce, 1998; Klowden, 2002), whereas the most
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common lipid store comes in the form of triglycerides (Klowden, 2002). Because they do not
feed during the winter (Régnière & Bentz, 2007; J Fraser, pers. obs., 2008), mountain pine
beetle larvae are in a state of near-starvation and must efficiently allocate limited energetic
stores between maintaining basal metabolic levels and producing cryoprotectants, mainly
glycerol (Bentz & Mullins, 1999). Measures of how overwintering metabolic rates vary
and which energetic substrates are consumed in the production of glycerol have yet to
be obtained for the mountain pine beetle. As both glycogen and triglycerides have the
potential to be converted into glycerol (Fig. 1), genes involved in both glycogenolysis (GP)
and lipolysis (TAGL) were selected for investigation.

There was no significant differential transcript accumulation for TAGL in either fall
or spring study periods. This result does not support the hypotheses that glycerol is
produced from the metabolism of triglycerides, and that triglycerides are used as an energy
source for the mountain pine beetle post-quiescence. This finding is contrary to that
of a study of the closely related pine engraver Ips pini Say (Coleoptera: Curculionidae)
(Lombardero et al., 2000) which indicated that lipids were the source of overwintering
glycerol metabolism. Mixed evidence has been generated from similar metabolite assays
conducted within the goldenrod gall fly (Eurosta solidaginis). Early observations found a
concomitant decline in lipid content and an increase in glycerol accumulation (Morrissey &
Baust, 1976), but subsequent studies observed stable overwintering lipid levels for this same
insect species (Storey & Storey, 1986), which mirrors our findings for TAGL expression.
Furthermore, seasonal proteomic data obtained from the same population of mountain
pine beetles sampled for this study (Bonnett et al., 2012), specifically results for the LSD1
protein –responsible for activating triglyceride breakdown –added additional support our
TAGL findings.

During the fall study period a statistically significant increase in GP transcript
accumulation from 19 September to 17 October was observed and corresponded to
a substantial decrease in temperature. Conversely, during the spring study period, a
statistically significant decrease in GP transcript levels occurred from 18 March to 1 April
and correspondedwith a substantial increase in temperature. The opposing trends observed
between GP transcript accumulation and temperature in both the fall (Fig. 2A) and the
following spring (Fig. 3A) support the hypothesis that glycerol production is the result
of the metabolism of glycogen in the mountain pine beetle. This conclusion is similar
to the findings of numerous other studies of glycerol accumulation in overwintering
insects, including: metabolite assays observing glycogen depletion (Storey, Baust & Storey,
1981a; Storey & Storey, 1986; Pullin & Bale, 1989; Churchill & Storey, 1989; Han & Bauce,
1998; Li, Ding & Goto, 2002); increased glycogenolytic enzyme activities (Storey & Storey,
1981b; Joanisse & Storey, 1994a; Joanisse & Storey, 1995; Clow, Ewart & Driedzic, 2008); and
increased glycogenolytic gene transcript accumulation (Richards et al., 2010). Transcript
accumulation data reported for GP herein was found to be consistent with the proteomic
findings of Bonnett et al. (2012).

In the fall study period a statistically significant increase in PEPCK transcript
accumulation from 3 October to 17 October was observed and corresponded with a
substantial decrease in temperature. Conversely, in the spring study period a statistically
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significant decrease in PEPCK transcript accumulation occurred from 1 April to 14 April
and corresponded with a substantial increase in temperature. The opposite trends observed
between temperature and PEPCK transcript accumulation for both the fall (Fig. 2B), and
spring (Fig. 3B) study periods supports the hypothesis that, in addition to glycogenolysis,
gluconeogenesis contributes to the production of overwintering glycerol in mountain pine
beetle larvae. This hypothesis is further supported by proteomic findings for overwintering
mountain pine beetles from the same population (Bonnett et al., 2012).

A two-week lag period between fallGP and PEPCK transcript up-regulation suggests that
gluconeogenesis could serve as a secondary source for glycerol production subsequent to the
potential exhaustion of the primary glycogenolytic source; a successive ‘‘one-two’’ punch
of glycerol production. Further pieces of supporting evidence include the comparative
intensities at which GP mRNA and PEPCK mRNA up-regulation occur. Between 3
October and 17 October, GP relative fold-change values increased more than 282%. Over
this same period of time, PEPCK relative fold-change values increased by 919%. Where GP
mRNA up-regulation appears to be quite gradual over a four-week period, PEPCK mRNA
up-regulation displays a much larger fold-change increase over a shorter (two week) period
of time.

Increased PEPCK activity has been reported in cultured hepatocytes from fasting
mammals (Azzout et al., 1986) and fasting mammalian liver tissues (Hagopian, Ramsey &
Weindruch, 2008). Gluconeogenesis has been observed in other species of insects post-
fasting (Zhou et al., 2004) and it is possible that increased PEPCK transcript accumulation
in the mountain pine beetle larvae is induced by experiencing near-starvation during the
winter in conjunction with, or even in spite of, declining fall temperatures.

Further supporting the hypothesis that gluconeogenesis is induced in overwintering
mountain pine beetle larvae are the seasonal FBP transcript accumulation results (Fig. 2C
and Fig. 3C). FBP catalyzes reactions downstream of a mechanism branch point that can
route carbon produced from the catabolism of amino acids to glycerol production (Fig. 1).
The FBP seasonal transcript accumulation profile produced formountain pine beetle larvae
suggests that, in addition to glycerol production, gluconeogenesis may produce additional
glucose as well. In a similar way, in addition to producing glycerol, cold treatment of
rainbow smelt hepatocypes also produced glucose (Clow, Ewart & Driedzic, 2008).

Transcript accumulation dynamics indicate that glycerol is not
converted to glycogen by glycogenesis
We observed the transcript levels of genes associated with glycerol consumption by
mountain pine beetles after spring temperatures had increased and cryoprotection was
no longer essential. Our results indicate that a negative relationship exists between spring
glycogen synthase (GS) transcript accumulation and temperature, a finding similarly
observed in proteomic data from the mountain pine beetle (Bonnett et al., 2012). These
results fail to support the hypothesis that glycerol is converted to glycogen in the spring
(Fig. 2D). We did not expect to observe similar GS transcript profile and GP transcript
accumulation profiles, as these two enzymes catalyze competing glycogenolytic and
glycogenic reactions (Fig. 3D).
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Transcript accumulation dynamics indicate that glycerol is
metabolized from a DHAP intermediate and by glyceroneogenesis
Within arthropods there has been much debate about from which intermediary substrates
glycerol is produced (Storey, 1997). Consensus has centered around two triose-phosphate
substrates, both produced in the process of glycogenolysis: dihydroxyacetone phosphate
(DHAP) and glyceraldehyde-3-phosphate (GAP) (Fig. 1).

Findings from in vivo studies comparing enzyme activity levels for G3PDH and G3Pase
versus GAPase and ADH in the Asiatic rice borer (Li, Ding & Goto, 2002) and the goldenrod
gall fly (Joanisse & Storey, 1994a) support the metabolism of GAP, versus DHAP, as a
glycerol intermediate. Accumulation of G3P during the cessation of glycerol synthesis
(Storey, Baust & Storey, 1981a) and increased transcript accumulation of G3PDH both
prior and during glycerol production (Liebsher et al., 2006; Richards et al., 2010) present
the metabolism of DHAP as plausible source of glycerol synthesis.

While no differential transcript accumulationwas observed in the fall forADH transcript
(not statistically significant, data not shown), a seasonal decline in transcripts was detected
for TPI (Fig. 2E) and G3PDH (Fig. 2F). These results support the hypothesis that glycerol
is metabolized from a DHAP intermediate rather than from a GAP intermediate in the
mountain pine beetle.

Glyceroneogenesis is an abbreviated form of gluconeogenesis that leads from the
catabolism of amino acid precursors to produce G3P (Hanson & Reshef, 2003). Shown
previously to be important in fat metabolism in other insects (Okamura et al., 2007),
glyceroneogenesis, like gluconeogenesis, is highly regulated by the transcript accumulation
of PEPCK. Fold-change increases for PEPCK mRNA in mountain pine beetle larvae during
periods of cold exposure were far greater than any other gene investigated within this study,
reaching a high of 58.64-fold 18 March. This increased PEPCK transcript accumulation is
consistent with patterns expected during periods of cold-induced glyceroneogenesis.

As was indicated from the aforementioned GS transcript accumulation analysis (Fig.
3D), when spring temperatures increase and cryoprotectant reserves are no longer essential
to maintain, it is likely that the larvae do not reconvert glycerol into glycogen. Others
have hypothesized that glycerol is metabolized through the citric acid cycle (Storey &
Storey, 1986; Joanisse & Storey, 1994a). We did not observe mRNA up-regulation during
the spring study period for CS (an enzyme involved in the citric acid cycle); PK (a required
glycolytic enzyme); or enzymes from either of the two possible glycerol producing pathways
(ADH, G3PDH, and TPI ) which catalyze reversible glycerol metabolizing reactions. Failure
to observe mRNA transcript accumulation for these genes supports the hypothesis that
glycerol is metabolized by means other than via citric acid cycle.

Transcript accumulation dynamics indicate that glycerol production
does not involve the pentose phosphate pathway
Insect glycerol production involves a flux between oxidizing (i.e., NAD+ or NADP+)
and reducing (i.e., NADH or NADPH) equivalents (Meyer, 1978; Wood & Nordin, 1980;
Tsumuki et al., 1987; Storey & Storey, 1990). However differential transcript accumulation
for two key PPP enzymes—6PGL and G6PDH—was not observed in mountain pine beetle

Fraser et al. (2017), PeerJ, DOI 10.7717/peerj.3284 11/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.3284


larvae during the time course of our study. While our results do not support the hypothesis
that the PPP is involved in the production of glycerol in themountain pine beetle, regulation
of enzyme function could instead be accomplished at the protein activity control level as
observed in other insect species (Joanisse & Storey, 1995; Kostal et al., 2004) or through
other means, such as developmental state, diapause transition, or phosphorylation state of
enzymes (e.g., Li, Ding & Goto, 2002; Joanisse & Storey, 1994a; Joanisse & Storey, 1995).

CONCLUSION
Differential transcript accumulation of important glycerol biosynthetic pathway genes in
overwintering mountain pine beetle larvae support the hypothesis of glycerol production
through glycogenolytic, gluconeogenic, and potentially glyceroneogenic pathways, but not
through lipolytic means. Aerobic metabolism, as indicated by activity within the citric acid
cycle, seems to remain constant during periods of increased glycerol production. The PPP
appears to be potentially uninvolved with glycerol production, and an alternative source for
reducing equivalents may exist. Transcript accumulation results for TPI andG3PDH along
constant expression results for ADH support the hypothesis that glycerol is produced from
a DHAP, versus a GAP, intermediate. Glycogenesis does not appear to occur in the spring
when glycerol is no longer needed as a cryoprotectant for larvae. Our gene transcript results
closely mirror proteomic data produced from the same sample population (Bonnett et al.,
2012). This study, and the recently sequenced mountain pine beetle genome (Keeling et al.,
2013), provides a foundation for subsequent metabolite investigation, which can further
elucidate thermal cues, and levels of regulation other than transcriptional, of seasonal
production of glycerol in larval mountain pine beetles.
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