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Abstract.

Thais lamellosa hatchlings from five genetically isolated
populations were raised in the laboratory under a variety of
conditions (different food availabilities, exposure to large crab
predators, and varied water temperatures). The collection sites of
these five populations differed both in degree of wave exposure and
degree of predation pressure. All snails responded similarly to the
stmuli presented, regardless of parent population.

Limited food, the presence of crabs, and increased water
temperatures induced similar morphological responses in these
juveniles  decreased growth in shell length, decreased body growth,
and decreased spiral growth. Snails raised at clevated water
temperatures and those raised in the presence of crabs produced
relatively thick shells. Snails raised in the presence of crabs
increased their shell-weight to shell-length and shell-weight to
body-weight ratios, while no change was elicited in snails raised
with either limited food or elevated water temperatures with
respect to these parameters. A number of snails raised in the
presence of crabs initiated apertural tooth development; those
snails raised in the absence of crabs did not. Shell thickening and
apertural tooth secretion in the crab treated snails undoubtably
represent predator avoidance responses through shell strengthening.
Snails from one site (Argyle Creek) appeared significantly less
probable to produce apertural teeth than the remaining four sites.
Field-collecter; adults from this site showed markedly fewer

sublethal crab predation scars on their shells than did snails from
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Aguilar Point, Cattle Point, and Mar Vista. These data suggest the
capacity to respond phenotypically to chemical cues may vary among
natural populations. None of the remaining sheli and body
parameters measured in these experiments. however, exhibited
significant differences among sites n resnonse to the presented
stimuii.

Shells of T. lamellosa are composed of two microstructura!
layers: an inner aragonitic crossed lamellar laver and an outer
calcitic simple irrenular prismatic layer. The relative thicknesses
of the two shell microstructural layers did not vary in either the
food or in the water temperature treatments. Snails raised in the
presence of crabs did not vary the thickness of the inner crossed
lamellar layer, but the tnickness of the outer prismatic layer
increased markedly. This increased secretion of prisms may be
explained as an attempt to reduce the effect of the inner crossed
lamellar layer on the bending strength of the outer surface of the
shell. The function of this inner layer may be to increase the
resistance of the shell to either crack propagation or to abrasive

forces.
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Chapter |.

General Introduction

A conspicuous feature of most gastropods is the secretion of an
external shell composed of calcium carbonate. These shells vary
substantially among species both in overall form and internal
microstructure. Shell forms appear to reflect adaptations to the
various life hustories of snails. A globose shell, for example, may
act as a water reservoir in high intertidal species, where
desiccation may be a problem (Lewis, 1963; Vermeij, 1973).
External shell sculpture may act to break up the force from waves in
areas of high wave exposure (Vermeij, 1978), and in these same
areas, an enlarged aperture and foot may reduce the probability of
dislodgement (Kitching et al.,1966; Kitching & Lockwood, 1974;
Heller, 1975; 1976; Etter, 1988). Predation may be hindered by one
or a combination of features including a general thickening of the
shell, the secretion of external shell structures such as varices,
ribs, and spines, and the development of an elongate, dentate
aperture (see reviews in Vermeij, 1978, 1987°  Although the
occurrence of these features is well documented between and within
species, little is known of either the genetic or the environmental
factors affecting them.

The basic composition of gastropod shells is quite uniform. The
shell generally consists of two layers: an outer tough organic
periostracum, and an inner primarily calcareous layer, which
constitutes the bulk of the shell. This latter layer is composed of
calcium carbonate crystals ensheathed in organic material or

1



matrix. The arrangement of these crystals or prisms describes a
particular shell microstructure. See Appendix | for a brief summary
of Carter and Clark's (1980) description of some common shell
microstructural types. One or more of these microstructures may be
found arranged as layers within a single shell. Each of these layers
is generally composed of one of two minerals: calcite or aragonite.
Both minerals may occur within a single shell (Rhoads & Lutz, 1980).
'ne occurrence uf these layers within individuals of a single species
has been generally accepted to be uniform, and shell microstructure
has been used extensively as a major taxonomic character (Lindberg
& Kellogg, 1982; Wellington & Kuris, 1983: Chen, 1985; Lindberg,
1986; Lindberg & Hickman, 1986).

Due to both the crystalline arrangement and the associated
organic component, specific mechanical properties are associated
with each microstructure. Such properties include bending strength,
crushing strength, tensile strength, elasticity, plasticity,
resistance to abra-ion, and resistance to chemicals such as acids
and chelating age::ts (Currey & Taylor, 1974; Currey, 1976; Gabriel,
1981).

Variations in shell microstructural composition have been
strongly associated with life histories (Taylor & Layman, 1972;
Gabriel, 1981), and to a lesser degree, environmental conditions
(Kennedy et al., 1969; Rhoads & Lutz, 1980). Although shell
microstructure is frequently used as a taxonomic character, little
work has examined possible phenotypic plasticity within this
component of the shell. For this reason | chose to study both shell

morphological and microstructural variation in response to



controlled environmental conditions. | also examined the responses
of several genetically isolated populations of a single species.
Based on these data | assessed i. the genetic and plastic
components of both overall shell morphology and shell
microstructure, and ii. the inter-relationship between these two

components.

Study Animal

The snail Thais lamellosa [= Nucella lamellosa) (GMELIN, 1791)
(Prosobranchia: Thaididae) is found abundantly in the low intertidal
zone along the Pacific coast of North America, from the Bering
Strait to central California (Morris et al., 1980). Thais lamellosa is
a predator, feeding primarily on barnacles and mussels by drilling
their calcareous shells through the use of toth radula and accessory
boring organ (Morris et al., 1980).

These srails exhibit direct development. In the field sexual
maturity is reached during their fourth year, and snails generally
return to their hatching site, where breeding takes place in
aggregations. Because snails generally return to the same breeding
site over a period of years, breeting aggregations are persistent
(Spight, 1974). Also, because of a low aduit mobility, populations
tend to be genetically isolated, and a large number of these isolates
may be found within a relatively small geographic range (Grant &
Utter, 1988).

Thais lamellosa is morphologically highly variable. The shell

may range from very thin, with marked axial fluting and spiral



ribbing to heavy and thick, with littie development of surface
sculpture other than non-distinct spiral ribs and a pronounced
development of apertural teeth (Kincaid, 1957). The shell
morphology within a population is usually quite uniform (Spight,
1973). The morphological variation observed between populations of
this species appears to be due, at least in part, to an environmental
response to a common predator, the red rock crab, Cancer productus
RANDALL. 1833 (Appleton & Palmer, 1988).

The shell of T. lamellosa is composed of two microstructural
layers (see Chapter lll), similar to those of T. lapillus, consisting of
an outer calcitic simple irregular prismatic layer and an inner
aragonitic crossed lamellar layer (Beggild, 1930). These findings
are in contradiction with Vermeij and Currey (1980), who found both
T lamellosa and T. lapiilus to pe of an "ill-defined cross-lamellar”
microstructure. | believe these apparent differences in opinion lie
in the method of examinaticn of the microstructures: Vermeij and
Currey (1980) determined microstructural types solely with
scanning electron microscopy, while Beggild (1930) used thin
sections, and | used both thin cections (Chapter lll) and scanning

electron microscopy (unpubl.).

Systematic nomenclature

The systematics of the temperate thaidid gastropods has been a
source of much confusion. Dexter (1960), for example, cited a letter
by Clench who noted that during the years 1942 to 1949 a single

thaidid species could be identified by three generic synonyms:



Purpura, Nucella, or Thais.  Even in relativeiy recent years both
Nucella (Abbott, 1974; Smitr. & Carleton, 1975, Morris et. al., 1980)
and Thais (Morris, 1952, 1973; Kozloff, 1973; Carefoot, 1977,
Gosner, 1978) may be found in the general treatese involving
gastropods.

The name Nucella has primarily been used by the British for no
apparent reason other than tradition (Crothe-s, 1972). In North
America, however, this genus has generally ~een referred to as Thais
throughout the bulk of the hterature pa. ‘c.larly that lhiterature
referring to the Pacific coast spacis (rinc~i 2957, Spight, 1972,
1973, 1973, 1975a,b, 1976a,b, 1981, 1983; Lyu:s & Spight, 1973,
Spight et. al., 1974; Bertness & Schneider, 1976; Kitching, 1976;
Spight & Emlen, 1976; Bertness, 1977. Campbell, 1978; Vermeij &
Currey, 1980; Palmer, 1980, 1987, 1985; Appleton & Palmer, 1988).
Recent work, however, indicates that these two genera (Thais and
Nucella) are not synonymous and that these temperate thaidids may,
in fact, be members of the genus Nucella (Kool, 1986; as cited in
Kool, 1987). These data, however, have as yet to be published and
although the North American temperate species may officially be
identified as Nucella in the near future, | choose, at this time, to
attempt to avoid present confusion by following the North American
literature, and continue to refer to these temperate species as

members of the genus Thais throughout this paper.
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Chapter Il
Shell Morphological Plasticity ot Thais lamellosa

in Response to Environmental Conditions

Introductior

Molluscan shell form rn.ay be influenced environmentally by both
abiotic and biotic factors. The responses tc both of these above
factors are ¢ ‘etically controlled to a large extent, but some may be
phenotypic (Geisel, 1969; Lewis & - n, 1975; Crothers, 1977,
Seed, 1980; Emberton, 1982; Kemg ass, 1984).

Temperature, for example, is strv 1y associated with shell
shape and colour (Frank, 1965; Hallam, 1965 Feare; 1970; Philips et
al., 1973; Heller & Gadot, 1984; Ramos, 1984; Beukema & Meehan,
1985: Roberts & Kell, 1987). Seasonal effects on shell growth have
also been well documented (Frank, 1965, 1969; Blackmore, 1969,
Ritz & Crisp, 1970; Sutherland, 1970; Richardson et al., 1980).
Changes in salinity (Hallam, 1965; Manzi, 1970; Richardson et al.,
1980), high wave action (Menge, 1974; Creese & Underwood, 1976;
Menge, 1978; Boyden & Zeldis, 1979; Dudley, 1985; Simpson, 1985),
water flow rates (O'Loughlin & Aldrich, 1987; Lam & Calow, 1988),
and height in the intertidal zone (Sutherland, 1970; Boyden & Zeldis,
1979) have been found to effect the size and shape of apertural
formation, shell shape, and snail growth rate.

Growth rate alone appears to account for a great deal of variation
in shell morphology (Rhoads & Lutz, 1980; Vermeij, 1980). High

growth rates are associated with the secretion of relatively thin
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shells (Gould, 1968; Wellington & Kuris, 1983) with low spires
(Gould, 1968; Frank, 1975; Crothers, 1975; Spight, 1973). The
secretion of apertural teeth in Thais lapillus (Crothers, 1971), and
T. lamellosa (Appleton & Palmer, 1988), as well as inner ridges in
the aperture of Stagnicola elodes (Jokinen, 1977) have been
attributed to growth stoppages, although Appleton and Palmer
(1988) found greater tooth development to be correlated with the
presence of predatory crabs.

Growth rate and shell shape may also be affected by habitat
quahty, which includes amount of food items available (Leighton &
Boolootian, 1963; Phillips & Campbell, 1968; Laxton, 1970a; Hughes,
1972; Stimson, 1973; Eversole, 1978). Also associz2ted with
feeding, and subsequently habitat quality and growth rate, are
intraspecific (Seed, 1968; Sutherland, 1970; Black, 1977; Choat,
1977; Creese & Underwood, 1982; Ortega, 1985; Ahmed et al., 1986)
and interspecific (Haven, 1973; Choat, 1977; Choat & Black, 1979;
Creese & Underwood, 1982; Schoener, 1983) competition, as well as
predation pressures (Paine, 1969; Hamilton, 1976, 1977; Markowitz,
1980; Bertness & Cunningham, 1981; Garrity & Levings, 1981;
Garrity, 1984).

A number of shell characteristics appear to have evolved in
response to predation pressure. The effectiveness of a particular
trait, however, depends upon the mode of predation. Some predators
are capable of extracting body parts through the shell aperture of a
snail without damaging the shell itself, some predators break the
shell to extract the animal, others swallow the prey whole, and still

others are capable of drilling through shells (see Vermeij, 1987, for
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a review). 2roposed predator avoidance responses in shell
morphology include an unwieldy size or shape of an individual
(Vermeij, 1978), the secretion of a thick shell (Vermeij, 1978,
Bertness & Cunningham, 1981; Palmer, 1985), the development of an
elongate or reduced aperture, the development of apertural
structures such as teeth or a tight-fitting operculum (Vermeij,
1978: Bertness & Cunningham, 1981; Heath, 1985; Signor, 1385,
Appleton & Palmer, 1988), and the secretion ot strong external s
sculpturing {Spight & Lyon, 1974; Palmer, 1979; Vermeij, 1978,
Bertness & Cunningham, 1981).

Thick shells, highly ornamented external surfaces, lower spires.
and elongate, occluded apertures are found more commonly in
tropical regions as opposed to temperate (Vermeij, 1978). Vermei;
(1978) correlates this trend with higher predation pressures in
regions of lower latitudes. Similarly, the greater prevalence of
these same features in snails from the Pacific and Indian Oceans,
relative to those of the Atlantic is also correlated with predation
levels (Vermeij, 1973).

That both the biotic and abiotic factors of an environment
influence snail growth and shell morphology is obvious. What is not
obvious are the costs incurred by these snails as a result of these
variations. The cost of the production of a calcium carbonate
skeleton, for example, has been attributed to three major factors: .
the energetic expense of the actual secretion of the shell material,
ii. the energetic expense of transporting this skeleton, once formed,
and iii. a non-energetic cost due to body growth-rate limitations

imposed by the maximal rate at which shell material may be



physically deposited (Palmer, 1981). Pre-reproductive rates of body
growth and final body size have been found to be directly
proportional to reproductive output (Soight, 1981). In many species,
body growth does not continue significantly past maturity (Spight,
1981). Rates of shell and subsequent body growth are, therefore, of
marked importance to the fitness of an individual. Shell shape and
shell structure figure prominently as factors: shell thickness and
spire height are inversely proportional to maximal body growth
(Spight, 1981).

Snail shell and body growth represent a balance determined, at
least to some extent, by the environment. Through the examination
of a number of populations of snails, it may be possible to determine
what stimuli may affect shell and body growth, what effect these
stimuli may have on such growth parameters, and how these

responses vary across a number of populations

Methods

|. Collection sites and raising of hatchlings.

Adult individuals of Thais lamellosa were collected from five
study sites (Figure 1l-1) in the Pacific Northwest in September of
1986. These sites included Aguilar Point (48°50'18"N, 125°18'24"W)
and Sanford Island (48°52'18"N, 125°09'48"W), Barkley Sound,
British Columbia, and Cattle Point (48°27'06"N, 122°57'42"W), Mar
Vista (48°28'48"N, 123°04'W), and Argyle Creek (48°31'06"N,
123°00'48"W), San Juan lsland, Washington. All sites varied with

respect to degree of wave exposure and large crab predators, such as
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Figure ll-1.

Map of study sites. A = Sanford Island, B = Aguiler Point, C = Mar Yiste,

D = Cattle Point, E = Argyle Creek
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Cancer productus (see Table Il-1). Both Argyle Creek and Sanford
Island are relatively sheitered locations with low crab predation
pressures. Mar Vista is semi-exposed with high predation
pressures, ans Aguilar Point and Cattle Point are exposed with low
predation pressures at Cattle Point, and relatively higher predation
pressures at Aguilar Point. See Appendix 2 for an explanation of the
collection of the data and the calculation of the wave exposure
index.

The snails were maintained in cages submerged in water tables
supplied with a flow rate of approximately 50 mL/s at the Bamfield
Marine Station, Bamfield, British Columbia, Canaca. The cages were
constructed by removing two opposing sides of plastic freezer
containers (Frig-O-Seal) and replacing them with screening held in
place with hot melt glue.

In late December and early January the adults began to lay eggs,
which were removed and placed in a direct flow of water in screen
pouches (mesh size of approximately 1 mm). After three months the
screen pouches were placed into cages with a mesh size of 67 um
and within one month the eggs had completely hatched. Rocks with
juvenile barnacles (Balanus glandula) were added to the cages as
food for the hatchlings. These rocks were collected from a site with
no native T. lameliosa. The barnacles were replaced ecessary,
usually at monthly intervals, although cages were ~weekly.

Barnacle replacement coincided with a monthly cag«
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Table II-1. Relative degrees of wave exposures and predation pressures
at all five collection sites. SE = standard error, N = number of

samples

Site Wave exposure index® Emdamu.nmsune_mdm
Mean £ N N

Argyle Crk. 2286 152 3 571 132

Aguilar Pt. 144.78 6.76 3 8.20 117

Cattle Pt. 149.86 6.10 3 1.47 152

Mar Vista 128.27 423 3 22.73 143

Sanford Is. 101.60 353 3 0.00 140

* Height in centimetres from the top of the barnacle zone to the base of the
vascular plants. See Appendix 2 for the derivation cf this height.

t Percentage of adult snails bearing sublethal predation scars on their shells.

This measurement approximates predation pressures, as it only measures
snails not killed by predator attacks, and assumes those killed are
proportional to those scarred.
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II. Measurements.

At the initiation of the experiments, and at monthly intervals
thereafter, three measurements were taken on each tagged
individual: shell length (from the apex to the distal-most tip of the
siphonal canal), weight of the snail immersed in sea water, and
weight of the snail in air. Weight in air was measured after the
snails were chased into their shells and any water remaining in the
shell aperture was removed by blotting with Kimwipes. These latter
two measurements were later used to approximate dry shell weight
and dry body weight (Palmer, 1982). See Appendix 3 for a summary
of the calculations used to determine these dry weights. At both the
initiation and the termination of the experimants, the outer lip of
the aperture was marked with enamel paint. These marks were later
used to calculate shell spiral growth, as the spiral distance between
the old and new apertural lip. This distance was measured by
calibrating a length of flexible wire and coiling it around the shell
along the posterior-most spiral rib of the shell whorls, between the
marks. An approximation to translation rate was calculated by
dividing the spiral growth distance by shell length change. In using
this method of determining transiation rate, the assumption that
spiral growth does not occur upwards, towards the spire must be
made. Shells of Thais lamellosa do not appear to have such a type of
growth.

At the end of the three month experimental period, all snails
were terminated and their bodies removed from the shells with
forceps. The shells were air dried for at least forty-eight hours

before being cut for thin sections (see Methods, Chapter lil for a



description of the thin sectioning technique). The sections were cut
through the posterior-most spiral rib of the body whorl,
perpendicular both to the growth lines and to the outer surface of
the shell, (see Figure 11-2). Thin sections were examined with a
dissecting microscope and camera lucida drawings were made from
the magnified resulting thin sections. The area of the shell over a
set distance was measured from these drawings with a Maclntosh
512 Summographics tablet, using the Macintosh MacMeasure
program. One fixed endpoint of this area calculation was determined
as the last point of <ecretion of crossed lamellar microstructure
(see Chapter Wll) frc:~ t+ shell aperture. The distance of the
measurement was determined by approximating the section to be a
circle, estimating a aiamster (across the body whor' starting at the
agertural lip and passing through point i, the indentation of the shell
just prior to the columella), and calculating an arc length for an
angle of 15°. Ttis distance was extended from the fixed endpoint
towards the columella, or away from the apertural lip (see Figure Il-
2 for a diagramatic view). Shell thickness was then estimated by
dividing the calculated area by the distance over which it was
measured.

After the initial cut had been made on the shells, each shell was
examined for apertural tooth development. Apertural tooth
development was scored as follows. A value of one was given to a
snail exhibiting no sign of apertural tooth development. Tre value
two was assigned if apertural tooth development consisted solely of
two or more slight swellings, no more than 0.5 mm in height. Three

designated snails with moderately defined apertural teeth, with a



Figure 11-2.

A. Diagrammatic view of a representative cross-sectional cut through the shell
of 8 juvenile ladorsto-y-raised 7As/s /emel/ass The section vas cut aleng the
soster:or-most soiral r'h of the body whor!, approximately perpendicylar to both

the external suyrfa:e cf the sheil and to the surface growth lines of the shell.

8. Diagrammatic view of & representative longitudinal section through the shell
of 8 juvenile laboratory-raised 72ass Jame/lass The section 'was cut through the
langitudinal axis of the sheil, from the apex to the siphonal canal. Note the plane
of section identifuing the reaicn of 8 cross-sectional fut surh asie ranrecantad

above, inA.
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height greater than 0.5 mm, but with an angle of tooth developrent
frcm the tooth base to be less than 30°. The value four was assigned
if tooth development was well-defined in both tooth height and In
their angle of development (ie. steep-sided, with an angle greater

than 30°, as measured from the tooth base).

[il. Experimental design.

At a post-hatching age of approximately four months, the last
week of August, 1987, snails of approximately equal size were
randomly separated into treatment groups, with ten to fifteen
animals per group. Each group was then transferred to a sint e cage
with a mesh size of approximately one mm. At all times snails from
different sites were maintained in separate cages. All snails of
sufficient size at the initiation of the experiments, were numbered
with Brady wire labels and coated with a drop of Krazy glue. Al
experiments were conducted over a period of approximately three
months, from the first of September to the end of November, 1988.

A. Food availability.

Three sets of treatments were established for each of the
five study sites: 33%, 67%, and 100% food availability. Snails in the
100% food availability category were maintained with a constant
supply of barnacles. The barnacles in the cages of snails maintained
with food availabilities of 33% and 67% food, were removed from
the cages for six and three days of each nine, respectively. Past
work (Appleton & Palmer, 1988) has indicated a removal procedure
such as described avove, does limit the food intake of Thais

lamellosa. In all treatments, the barnacles were replaced with



Figure I1-3.

Diagrammatic representstion of the top view of the experimentasl designs used
in this paper. The 1arge case letters A, B, and C represent the food availability,
crab exposure, and water tempersture experiments, respectively. Replicates for
experimental designs A and B were identicsl to the representations here, bt were
conducted in separate water tables. The small cese letters s to f represent food and
temperature treatments: 8 = snails fed 33%, b = sneils fed 67%, ¢ =3nails fed
100%, d = snails reised st ambient water temperature (9-1i°C), e =snails raised
at 8 water temperature of 15°C, and f = snails raised at a water temperature of 18°C.

The 1abels d', e', and f' represent the replicate treatments of sneil cages d,e,and f.

O] = water table of constantly flowing ses water

’
\:: = gquarium of recirculating sea water

= aquarium of constantly flowing sea water

= snail cage

[ = see water outflow

- =seawater inflow
OAAAAR = sir inflow

G = submersible water hester
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fresh field collected individuals monthly. Only a small proportion,
approximately 15%, of the barnacles available to the snails had been
consumed by the end of each month. All treatments were maintained
in individual cages, and two sets of replicates were established.
The two sets of replicates were maintained constantly immersed in
separate water tables (see Figure |I-3A for a diagrammatic view of
the experimental set-up). The placement of the individual cages

within each water table was changed bimonthly.

B. Predation pressures.

Two treatment groups were established for each of the five study
sites. These two treatments consisted of 33% and 100% food
availabilities (see Experiment A for a description of the feeding
regimes). In both of these treatments, the snails were maintained in
separate cages, with two sets of replicates in separate water
tables. Two aquaria, each containing a red rock crab, C. productus,
were added to each of two water tables. Water was maintained at
an approximately 50mL/s rate of flow, and all water flowing into
each of these water tables first ran through the respective aquaria
containing the crabs. The snails in these treatments, therefore,
could detect the presence of, but had no actual contact with the
crabs (Figure II-3E° The four crabs were fed field-collected
individuals of T. lamellosa, and the number of snails consumed by
each of the crabs was recorded. Again, barnacles were replaced
monthly (less than 15% were consumed each month) and the
placement of individual cages within the water table was changed

bimonthly. The controls for these two treatments were the 33% and
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100% food availability treatments of Experiment A, maintained in

the absence of crab effluent.

C. Temperature.

Three treatments were established for each of two study
sites (Argyle Creek and Mar Vista). All treatments were carried out
in five gallon aquaria with recirculating water, maintained in a full
water table of constantly flowing sea water at an approximately
50mL/s flow rate (Figure 11-3C). The water in each of these aquaria
was replaced with clean water of the same temperature every two
weeks. One aquarium was kept at ambient sea water temperature
(approximately 9° to 11°C), while the other two aquaria were
equipped with Hagen 150 W submersible heaters. One of these latter
two aquaria was maintained at 15°C. and the other at 18°C and
barnacles were replaced monthly. Fnod was not limited. Two
replicates were conducted in se, ate recirculating aquaria within

the same water tabile

IV. Statistical analyses.

Pre-experimental differences among treatments in shell length,
dry shell weight, and dry body weight were tested with two-way
ANOVAs (site and treatment). ANOVAs were conducted on each
replicate separately because the purpose of these tests was to
compare pre-experimental values across site and treatment, only.

The degree of variation between replicates with respect to final

shell and body parameters (shell length, dry shell weight, dry body
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weight) was tested through one of two methods, depending on the
type of experimental design. The experimental design of the food
availability experiment consisted of two fixed (site and food) and
one random (replicate) variables. Because all cages for one

replicate were in a single water table, and all cages for the second
replicate were located in a separate water table, the replicate
factor is fully crossed with both the site and food factors, and may
e considered as a 'water table' affect. A three-way factorial
analysis of variance (ANOVA) was conducted on the food experiment
data, and the F-values for site, food and the site-food interaction
term were calculated as suggested by Soko! and Rohlf, 1981 (pp.
382-383) for a mixed model ANOVA (A,B fixed, C random). The mean
square (MS) for sites (A) was divided by the site-replicat

interaction (AC) MS to calculate the F-value for sites. Similarly the
food (B) and the site-food interaction (AB) were divided by the food-
replicate and the site-food-replicate interaction terms,
respectively. The F- values for the remaining mean squares of
replicate (C), site-repiicate (AC), food-replicate (BC), and the site-
food-replicate (ABC) were calculated by dividing by the error MS.
Exact P-values were calculated with a Hewlett-Packard 67
programmable calculator.

The experimental design of the crab-exposure and the water
temperature experiments were different from the food availability
experiment, and the analyses were conducted differently. For both
experiments, replicates for one treatment were held in different
aquaria than those for the second treatment (Figure II-3).

Consequently, replicates were most appropriately considered nested



within main effects. To circumvent the limited ability of most
statistical routines to compute the proper F-values for such a
design, i1e relative effects of replicate versus site and treatment
(crab-exposure or water temperature) on snail growth were
examined with three-way factorial (ANOVA), and subsequent
calculation of F-values as suggested by Hartley (1962) and Sokol and
Rohlf (1981). This method designates replicates as a "dummy”
variable and may be explained as follows. The sums of squares for
sites (A), treatment (B), and replicates (C) were computed through
the three-way ANOVA as if each were crossed in a fully factorial
design. The sums of squares for the replicate variable (C) and the
interaction terms in which it was included (AC, BC, ABC) were
summed. The mean squares (MS) for replicates was recalculated by
dividing the resultant total replicate sums of squares by the
summed degrees of freedom for these same four terms (C, AC, BC,
ABC). F-values were then calculated by individually dividing the MS
for sites (A), food availability (B), and their interaction term (AB)
by the recalculated MS value. The F-value for replicates was then
calculated by dividing the new replicate MS value by the error MS.
Exact P-values were calculated using a Hewlett-Packard 67
programmable calculator.

Variation in final shell and body parameters (shell length, dry
shell weight, dry body weight), spiral growth, and relative
translation rate (spiral growth/shell length change), were examined
through regression and analyses of covariance (ANCOVA) (final
plotted against initial growth values) where possible, and tnrough

ANOVAs otherwise. In cases where the linearity of the plots was

29
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questionable or when a reiatively large number of regressions were
of unequal slopes (shell length, shell weight, and body weight), both
of these analyses were conducted.

Due to a number of unusable thin sections, a number of cells for
shell thickness measurements were either empty or unequal. In
order to provide equal cells for the ANOVAs, a number of data points
were randomly excluded from the analyses. Because of empty cells,
only snails from Mar Vista and Sanford Isiand were included in the
shell thickness analyses. Otherwise, the ANOVA was conducted as
described previously.

Because of empty cells, all sites were pooled for snails fed 33%
in the crab-exposure experiment. A nested two-way ANOVA (crab-
exposure and replicates) was conducted on these data because both
the crab-presence and crab-absence treatments, as well as the
replicates for the crab-exposure factors were located in separate
water tables (see Figure II-3).

Due to an empty cell in the data of snails from the water
temperature experiment, initial analyses were conducted on snails
from Argyle Creek only. Because both the water temperature
treatments and each of their replicates were conducted in separate
aquaria, a two-way nested ANOVA (temperature and replicates) was
conducted on these data. In order to test for site differences, a
two-way factorial ANOVA (site and temperature) was conducted on
snails from both Argyle Creek and Mar Vista, but for replicate one,
only. The resultant design was factorial in nature, but was limited
in its ability to test for temperature differences due to possible

aquarium effects, which could not be factored out.
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Differences in final and initial relative weight of dry shell
versus shell length and dry body weight respectively were exa mined
through ANCOVAs, although these analyses revealed some
regressions to be of unequal slopes. The scattergrams of these data
(Figures 1l- 5-8, 11-14, 17-18) indicate slope ditferences to be
probably due to the small amount of scatter about each regression.
Because of the similarity in slopes, indicated by these
scattergrams, ANCOVAs were conducted on these data. Initial
measurements of shell and body parameters were conducted over a
period of three days, during which, the experiments were in
progress. In an attempt to factor out any initial effects of the
experimental stimuli, initial shell weight was added as a second
covariate for the final shell weight comparisons.

Contingency table analyses were conducted for site, food
availability, and replicates versus the presence versus absence of
apertural tooth development.

All ANCVAs, contingency tables, and basic statistics were
conducted using Statview 512+TM microcomputor package (Abacas
Concepts, Berkley, Ca.) and all ANCOVAs with a main frame MIDAS
(Statistical Research Laboratory, University of Michigan) statistical

package.
Results
Iritial shell morphology.

Comparisons of pre-experimental shell and body parameters

(shell length, dry shell weight, dry body weight) revealed no
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significant differences between treatmeins of the food availability
experiment (Means table 11-2; ANOVA Table Ii-4). Snails ot the crab
presence and water temperature experiments, however, were tound
to have been unequally grouped initially. Within the crab
experiments (Means Table 1i-2, ANOVA Table [1-5) initial shel!
lengths and shell weights exhibited only marginally significant
differences in two instances. The patterns in final growth, however,
appeared to be fairly constant among sites, regardless of degree of
difference in pre-experimental values (Figures A4-15 to 20). Initial
body weight differed in a number of instances. however, but the
effect of these differences in initial values appeared to be so slight
with respect to the overall responses elicited in these snails that
they were regarded as being negligible.

A proportionally larger amount of pre-experimental variation
was found within the temperature experimental groups (Means Table
11-3, ANOVA Table li-6). These variations, however, were not
consistent with final growth values: in fact, in most cases a
reversal in trend from pre-experimental to final variation was
noted. The observed patterns in final shell morphology appear to be
not due to these initial variations, but to persist in spite of them.

Again, these initial variations were regarded as negligible.

Final shell morphology.
Food availability.
Both the ANCOVA (Table 1I-7; means Table 1i-2) and ANOVA

(Table 11-8; means Table I-2) analyses revealed significant

35
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differences in final shell length, shell weight, and body weight
among snails exposed to different food availabilities (Figures 1l-4;
A4-1,2,3). Snails raised with a 33% food availability grew less than
those of either 87 or 100%. There was little difference in growth
between snails from the 67 and 100% food availability treatments.
There were no significant site differences with the exception of the
site-food irteract on term with respect to shell length. The
scattergrars ~f *rese data (Figure A4-15) do not indicate any
apparent site differences.

Anaiyses of variance results for snails of the 33% food
availability treatment, indicate a decrease in rate of spiral growth,
an increase in translation rate, and an increase in final shell
thickness over snails of the 67% food category (ANOVA ™ ble II-9;
means Table lI-2; Figures 1I-5; A4-4,56). Translation rate also
appeared to be significan: between sites at a 90% confidence level,
but the scattergram (Figure A4-17) of thcse data indicates that
these differences are slight. The apparent change in translation rate
among food availabilities, however, is probably an artifact due
simply to differences in spiral growth. When translation rate is
plotted against spiral shell growth, no differences between
treatments with respect to translation rate are evident (Figure A4-
6). Snails raised with 100% food also deposited relatively thick
shells (means Table 11-2). No significant difference was found
between snails of the 67 and 100% food treatments, with the
exception of shell thickness.

No significant differences were found between pre-experimental

ragressions of shell weight on shell length and on body weight,



Figure |1- 4.

Relative growth in shell tength (A) anc shell weight (B) of snails from the food
availability experir-ent. The patterns of growth were similar across treatments
for body weigh* and spiral growth as well. All means were calculated on pooled
site deta. The :tandard error bars in these disgrams represent the standard error

among sites.
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Figure 11-5.

Differences in final shell morphologies of snails from the food availability

experiment. All sites were pooled, and the means were calculated on the pooled

data. The standard error bars in these diagrams represent standsrd error among

sites. A = shell weight/shell length, B = shell weight/body weight, C = shell

thickness/ initial vhelllergth.
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respectively (Table 11-10; Figures 11-6,7). Difterences were found,
however, between the same comparisons of final growth parameters:
snails fed 33% appeared to secrete relatively thinner shells with
respect to shell length than did those of the 67% and 100% food
treatments. An examination ot the scattergrams (Figures 11-8,9) of

these data. however, revealed such differences to be small.

Crab presence.

Both the ANCOVA (Table II-11) and the ANOVA (Table 11-12)
results of final versus initial shell length, shell weight, body weight
(Figures 11-10; A4-7,8,9) revealed little variation between crab
treatments in snails raised with 33% food availability. The ANCOVA
results, however (Table 1l-11; means Table 1I-2), indicated snails
raised with 100% food had significantly reduced growth in shell
length (Figure 11-10) and body weight in the presence of crabs. Of
thece latter snails, two sites exhibited reduced growth in shell
weigi  while no significant difference was found in this
measurement in snails from the remaining three sites. The ANOVA
results of these same data (Table 1I-12; means Table II-2; Figure I[I-
10) showed decreased growth in shell length and body weight, but no
significant difference in shell weight between crab treatments.
Snails of replicate two, fed 33%, increased in shell weight, and
decreased in body weight over snails of replicate one. Similarly,
replicate two snails fed 100%, increased significantly in shell
weight and decreased in body weight over those of replicate one.
These results are assumed to be a response due to the higher rate of

field-collected snail consumption by the crabs of replicate two.
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Figure i1- 6.

Scattergrams of initial shell weight (g) versus initial shell length (cm) for
juvenile 7Aass lamellasa from five sites, raised in the 1aboratory at ambient water
temperature, in the absence of crabs, and at t+ -+ food availabilities.

o =fed 33, O=fed 67, < ="fed 100¥
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Figure 11-7.
Scattergrams of imtial shell weight (g) versus initial body weight (g) for
juvenile 7Aars lamel/asa from five sites, reised in the 1aboratory st ambient

wate: *emperature, in the absence of crabs, and st three food availabilities.

o=fed 33%, O=fed 67K, T ="fed 100%.
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Figure |I-8.

Scattergrams of final shell weight (g) versus final shell length (cm) for
juvenile 7Aars /amellase from five sites, raised at ambient water temperature,
in the absence of crabs, and a¢ three food aveilabilities. o =fed 33%K,

O=fed 67%, O ="fed 100K
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Figure I1-O.

Scattergrams of final dry shell weight (g) versus final dry body weight (g)
for juvenile 72ais Jame/lass from five sites, raised in the 1aboratory at ambient
water temperature, in the absence of crabs, and at three food availabilities.

e=fed 33K, 0O=fed 67%, T=fed 100%.
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Figure !1-10.

Relat've growth in shell length (A) and shell weight (B) of snails from the
crab-exposure experiment. The petterns of growth in shell length were similer
scross treatments to body weight and spirel growth. All sites were pooled,
and the means were calculsted on the pooled data. The standerd error bars in

these diagrams represent the standard errors among sites.
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Snails raised with both 33 and 10C% food availabilities showed a
decrease in spiral growth and an increase in shell thickness when
maintained in the presence of crabs (Table 1I-13; Figures A4-
10,11,12). Translation rate appeared to be significantly different
with respect to the site-crab interaction term, but the scattergrams
(Figure A4-17) of these data demonstrated no correlation between
translation rate and site. This apparent change in translation rate,
however, is probably an artifact due to spiral s:.ell growth rate
differences (Figure A4-12). No significant difference was found
between sites in snails of the 100% food category, and although the
ANOVA results indicated significant differences between sites with
respect to shell thickness at a 93% confidence level in snails of 33%
food, the scattergrams of these data (Figure A4-16) indicate
differences between sites to be small.

Final shell weight was significantly higher with respect to final
shell length and final body weight in snails raised in the presence of
crabs (Figure II-11). Pre-experimental values, however, also
demonstrated this trend (ANOVA Table 1I-14), but when fina! values
were re-tested with initial shell weight as a covariate, significant
results were still obtained with the final values (ANOVA Table Ii-
14, Figures 11-12,13,14,15), with the exception of snails from
Sanford Island, raised with 33% food. An explanation for this
variation in pre-experimental data could lie in the fact that due to
the duration of the measurement time, the crab-presence individuals
were exposed to crabs for a period of up to three days before being

measured.
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Fiqure l1-11.

Differences in final shell morphology of snails from the crab-exposure
experiment All sites were pooled, and the means were calculated on the
pooled data. The standsrd error bars in the diagrams represent the
standard error smong sites. A = shell weight/shell length, B = shell

weight/body weight, C =shell thickness/ initial shell length.
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Frqure 11-12,

Scattergrams of 1mtial dry shell weight (g) versus initial sheil length (cm)
for juvenile 72a1s Jamellass from five sites, reised at ambient way_r temperature,
in the presence and absence of crabs, and at two food availabilities.

O =fed 33K, nocrabs, o=fed 33K, crabs, D= fed 100%, nocrabs,

m=fed 100%, crabs.
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Fiqure 11-13

Scettergrams of initisl dry shell weight (g) versusinitial dry body weight (9)
fc- Juvemle 7Aass Jamellass from five sites, raised ot ambient water temperature,
in the presence and absence of cirabs, and at two food availabilities.
O=fed 33% nocrabs, & =fed 33%,crabs, O =fed 100%, no crabs,

®m=fed 100%, crabs
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Figure {1-14.

Scat*r~grams of final dry shell weight (g) versus final shell le~ *h (cm) for
juvenile Tha. : Jamellasa from fi.e sites, raised st ambient water temperature,
1n the presence and absence of cre' 5, and at two food availabilities
o=fed 33%, nocrevs, o= fed 33% crabs, ==fed 100%, nocrebs,

m=fed 100%, crabs.
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Figurell-15.

Scattergrams of final dry she. weight (g) versus final dry body we: Iht (g) for
. venile 7hars Jamellasa from five sites, raised in the laboratory at ambient water
tempera* re, in the presence and absence of crabs, and at two food availabilities
O="fed 33%, nocrabs, o =fed 33%, crabs, 0O =fed ! 00%, nocrabs,

@m=fea 100% crabs.
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The number of field-collec’ d snails consumed by the
experimental crabs d ‘ered by approximately a factor of two
between replicates (see Table II-15; Snails of replicate two (th.’
replicate of increased crab feec ng) showed a higher probability of
developing apertural teeth than those of replicate one (Table 11-15)
Of these snails, those from Argylc Creek showed a siguficantly
lower probability of developing apertural teeth (Table II-16; means
table !'1-15)  No apertural tooth devel,pment was noted n srails

raised 11 the absence of crabs.

remperature.

Both the ANCOVA (Table 11-17) and the ANOVA (Table iI-18) tests
of final versus initial growth measurements (shell length, shell
~veight, body weight) revealed similar results: snails raised at 15°
and 18°C grew at slower rates tha~ did snails raised at ambient sea
water temperatures (9-11°C) (Figures 11-16; A4-13). Snails raised
at ambient sea water temperature increased in spiral growth more
rap'dly, and secreted thinner shelis (Figure 11-17) than did snails
raized at increased water temperatures (ANGYA Tables 11-19.20;
Figure A4-14). The site-temperature interact. n appeared to
be significant with respect to translation rate, although the
scattergrams (Figure A4-20) of these Jata indicate site differencns
between treatments were small. No significant difference was
found between the 15° and the 18°C treatments.

Results from ANCOVAs for shell weight regressed against shell

length anc hody weight respectively, revealed statistically

74
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Figure I1-16.

Relative growth in shell length (A) and shell weight (B) of snails from the
water temperature experiment. The patterns of growth were s:milar across
treatments for body weight and spiral growtir. All sites were pooled, and the
means were calculated on the pooled data. The standard error bars of these diagrams

represent the standard error between sites.
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Figure t1-17.

Differences in final shell morphology of sneils from the water
temperature experiment. All sites were pooled, and the means were
calculated on the pooled data. The standerd error bars in these disgrams
represent the standard error between sites. (A = shell weight/shell

length, B = shell weight/body weight, C = shell thickness/initial shell length.
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significant differences in initial values (Table 11-21). The
scattergrams of these same data, however, revealed that these
differences were again slight (Figure iI-18). The ANCOVAs of final
shell znd body parameters, with initial shell weight as a covariate
show a significantly lower amount of shell depcsitiorr with respect
to body growth, but not to shell length, in snails raised at ambient
temperatures, rather than at either 15° or 18°C (Table I1-21). The
scattergrams for these data further illustrate the relative variation
in initial versus final measurements (Figures 11-18,19). An
explanation foi the variation in the pre-experimental data could lie
in the fact that due to the length of initial measurement time, the
snails were exposed to the varied water temperatures and allowed

to grow for a period of up to three days before beiny measured.

Discussion

Although all five sites differed in degree of both wave exposure
and predation pressures from crabs, few site differences were found
in response to the three types of experimental stimuli presented
here, and the scattergrams of these data indicated these differences
were slight. Such responses, although environmentally induced,
must be strongly conserved to be maintained throughout populations
which have not encourtered stimuli such as crab predators for an
indeterminate amonr¢ of time. The snails from each site did,

however, maintain the colour and surface structures of their parent

8(
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Figure I1-18.

A
Scattergrams of imtiei dry shell weight (g) versus initiel shell length (cm)

for yuvemle 7Aass /ame//ass Trom two sites, reisedir Jinthe absence
of crabs, with 100K food, and st three water temperatures. « - ambient water

temperature (9-11°C), o=15C, ©=18°C.

B.
Scettergrams of initial dry shell weight (g) versus initial dry body weight (9)

for juvemle 7Aars /amellase from two sites, reised in the 1aboratory in the absence
of crabs, with 100K food, and st three water temperstures. o =ambient water

temperature (9-11°C), o=15°C, ©=18°C.
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