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Abstract

phenotype of KL1 and AH2.

Background: Genomic analysis of bacteriophages infecting the Burkholderia cepacia complex (BCC) is an
important preliminary step in the development of a phage therapy protocol for these opportunistic pathogens.
The objective of this study was to characterize KL1 (vB_BceS_KL1) and AH2 (vB_BceS_AH2), two novel Burkholderia
cenocepacia-specific siphoviruses isolated from environmental samples.

Results: KL1 and AH2 exhibit several unique phenotypic similarities: they infect the same B. cenocepacia strains,
they require prolonged incubation at 30°C for the formation of plaques at low titres, and they do not form
plaques at similar titres following incubation at 37°C. However, despite these similarities, we have determined
using whole-genome pyrosequencing that these phages show minimal relatedness to one another. The KL1
genome is 42,832 base pairs (bp) in length and is most closely related to Pseudomonas phage 73 (PA73). In
contrast, the AH2 genome is 58,065 bp in length and is most closely related to Burkholderia phage BcepNazgul.
Using both BLASTP and HHpred analysis, we have identified and analyzed the putative virion morphogenesis, lysis,
DNA binding, and MazG proteins of these two phages. Notably, MazG homologs identified in cyanophages have
been predicted to facilitate infection of stationary phase cells and may contribute to the unique plaque

Conclusions: The nearly indistinguishable phenotypes but distinct genomes of KL1 and AH2 provide further
evidence of both vast diversity and convergent evolution in the BCC-specific phage population.

Background

The clinical administration of bacteriophages, referred to
as phage therapy, has now been used to treat bacterial
infections for nearly a century. Although this type of ther-
apy had been largely abandoned outside of Eastern Europe
since antibiotics became available in the 1940s, the emer-
gence of antibiotic-resistant pathogens has re-established
phage therapy as a viable antibacterial treatment [1]. Re-
cent studies have shown that phages and phage compo-
nents are effective both in animal models (against species
such as Staphylococcus, Pseudomonas, Klebsiella, Escheri-
chia, Salmonella, and Campylobacter) and in human clin-
ical trials [2-8]. Advances in phage delivery and storage
(such as nebulization, lyophilization, and spray drying for
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respiratory phage therapy) and genomic characterization
(including high-throughput sequencing and annotation)
have made phage therapy more feasible with respect to
both logistics and safety [9-12].

One group of bacteria that is thought to be an excel-
lent target for phage therapy is the Burkholderia cepacia
complex (BCC). These bacterial species, which primarily
infect patients with cystic fibrosis (CF), are problematic
because they can cause serious illness (including, in up
to 20% of cases, a fatal necrotizing pneumonia referred
to as ‘cepacia syndrome’), they are capable of patient-
to-patient spread (particularly in settings such as CF cen-
ters), and, perhaps most importantly, they are highly
antibiotic resistant [13-16]. Very few antibiotics are active
against the BCC, even in combination: Zhou et al. [16]
tested a panel of antibiotics against BCC clinical isolates
and determined that less than half of the strains were
susceptible to even the most effective drugs. Clinically,
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the most commonly isolated BCC species are Burkhol-
deria multivorans and Burkholderia cenocepacia, with
the latter thought to be the most pathogenic [17]. BCC
phage therapy trials have focused on this species and, to
date, phages have been shown to be effective against B.
cenocepacia in both invertebrate and mammalian infec-
tion models [18-20].

As B. cenocepacia infections are some of the most
problematic for the CF community, the isolation and
characterization of novel phages that infect this species
remains a priority. Many of these phages have been iso-
lated in recent years, but only some have been fully
sequenced (reviewed in [21,22]). Here, we describe the
isolation and characterization of KL1 and AH2, two
novel B. cenocepacia-specific phages with identical host
ranges and unique growth characteristics, but strikingly
dissimilar genomes.

Results and discussion

Isolation, host range and morphology

KL1 was isolated from sewage using B. cenocepacia K56-
2 as a host. In contrast to enterobacteria phages, which
are commonly found in sewage [23], this is the first re-
port of BCC phage isolation from this source. AH2 was
isolated from Nandina sp. (also known as heavenly bam-
boo) soil using B. cenocepacia C6433. BCC phages have
commonly been isolated from both rhizospheres and soil
samples, including that of onion and Dracaena sp.
[18,20,24-27].

KL1 and AH2 are very similar with respect to both
host range and growth characteristics. These phages
have a relatively narrow tropism, infecting B. cenocepa-
cia K56-2, C6433, 715], and K63-3. Both KL1 and AH2
exhibit a pattern of lysis that is unique in our collection
of BCC-specific phages: although high titre stocks of
these phages are very concentrated (up to 10" plaque
forming units [PFU]/ml), these phages do not produce
clear lysis in agar overlays after 16 h incubation like
other phages that we have previously characterized
[18,19,26,28-30]. Instead, turbid or no clearing is
observed at high titres, with mottling or individual pla-
ques observed at lower titres (approximately 10” PFU/ml
or less). At low titres, incubation at 30°C for greater than
16 h is required for plaque formation, but plaques are
not observed if incubation is at 37°C (Figure 1). Individ-
ual plaques are turbid with a diameter of 0.5-2 mm (lar-
ger plaques may have a punctate appearance). When
tested with a panel of K56-2 mutants with progressive
deficiencies in lipopolysaccharide (LPS) structure (from
the O-antigen to the core) [31,32], both phages were
able to infect each mutant, suggesting that neither KL1
nor AH2 uses LPS as a major receptor.

Both KL1 and AH2 belong to the order Caudovirales
and family Siphoviridae as determined by electron
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Figure 1 Development and morphology of KL1 and AH2
plaques. Phages were plated in half-strength Luria-Bertani (%4 LB)
agar overlays with a 16 h liquid culture of Burkholderia cenocepacia
(C6433. Plates were incubated at 30°C or 37°C and photographed
after 16, 24, and 48 h. C6433 30°C plates (center) are representative
of growth at both 30°C and 37°C.
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microscopy. The KL1 virion has a non-contractile tail
approximately 160 nm in length and a capsid approxi-
mately 55 nm in diameter (Figure 2A). The AH2 virion
is slightly larger, with a non-contractile tail approxi-
mately 220 nm in length and a capsid approximately
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Figure 2 KL1 (A) and AH2 (B) virion morphology. Phages were
stained with 2% phosphotungstic acid and visualized at 180,000-fold
magnification by transmission electron microscopy. Scale bars

represent 50 nm.
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60 nm in diameter (Figure 2B). The stacked rings com-
prising the tail structure are visible in the AH2 micro-
graph (Figure 2B).

Genome characterization

Despite the similarities in phenotype between KL1 and
AH2 with respect to host range and growth characteris-
tics, the genomes of these two phages are dissimilar. Re-
striction fragment length polymorphism (RFLP) analysis
shows distinct banding patterns of EcoRI-digested KL1
and AH2 genomic DNA, suggesting that their sequences
are substantially different (Figure 3). This prediction is
confirmed by the results of whole genome pyrosequen-
cing (discussed below) and is illustrated in Figure 4A: in
a Circos plot of a PROmer comparison of these two
phages, no regions of similarity at the protein level are
observed under the parameters used.

The KL1 genome is 42,832 base pairs (bp) in length
and has a 54.6% GC content. This percentage is lower
than that for most Burkholderia-specific phages, which
tend to have GC contents between 60-65% (excluding
phages such as BcepBlA [54.5%], BcepF1 [55.9%], and
BcepGomr [56.3%]). We were unable to identify a KL1
cos site following incubation of the DNA at 80°C, as the
RFLP profiles appeared identical both before and after
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Figure 3 RFLP analysis of KL1 and AH2 genomic DNA. 5 ug of
genomic DNA were digested overnight with EcoRI and separated on
a 0.8% agarose gel. The DNA in the ambient gel (left) was not
heated, while the DNA in the 80°C gel (right) was incubated 20 min
at 80°C and chilled on ice prior to loading. Arrows indicate bands
containing cos site DNA. L: 1 Kb Plus DNA Ladder (Invitrogen).
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heating (Figure 3). KL1 is predicted to encode 55 pro-
teins, all of which have an ATG start codon, except for
gp2 which has a GTG codon (Figure 5, Table 1).

KL1 is most similar to Pseudomonas phage 73 (PA73;
NC_007806), a siphovirus that infects Pseudomonas aer-
uginosa [33]. These phages are similar with respect to
genome length (42,999 bp for PA73 and 42,832 bp for
KL1), GC content (53.6% for PA73 and 54.6% for KL1),
and predicted number of proteins (52 for PA73 and 55
for KL1). BLASTN comparison of KL1 and PA73 indi-
cates that these sequences are similar over 69% of the
KL1 genome. KL1 encodes a protein most similar to
each PA73 protein from ORF001-ORF052 (excluding 12
proteins) (Table 1). Most PA73 proteins show limited
similarity to others in the NCBI database and have not
been assigned a putative function [33]. Of the 9 PA73
proteins with predicted functions, all but one (peptidyl-
tRNA hydrolase [peptide chain release factor]) is similar
to a KL1 protein: holin, terminase large subunit, head
morphogenesis protein, tail tape measure protein, DNA
polymerase, superfamily II helicase/restriction enzyme,
helicase (annotated here as recombinase), and dCMP
deaminase (KL1 gp2, gp7, gp9, gp21, gp27, gp30, gp33,
and gp52, respectively) (Table 1). Of the KL1 proteins
most similar to a PA73 protein, the most similar is gp33
(91% identity with ORF032) and the least similar is gp24
(36% identity with ORF023) (Table 1). In a Circos plot of
a PROmer comparison of these phages, the majority of
the two genomes are similar at the protein level
(Figure 4B).

The AH2 genome is 58,065 bp in length and has a
61.3% GC content. Incubation of the DNA at 80°C
caused a shift in the RFLP profile (Figure 3), suggesting
the presence of a cos site. Sequencing of the shifted frag-
ments indicates that AH2 has a 12 bp 5" overhang cos
site with a sequence almost identical (1 bp difference) to
that of Burkholderia phage BcepNazgul (NC_005091).
AH2 is predicted to encode 78 proteins (Figure 5,
Table 2). The majority of the start codons (70) are ATG,
6 are GTG and 2 are TTG (Table 2).

AH2 is most similar to BcepNazgul, a siphovirus iso-
lated from soil that infects Burkholderia ambifaria. Like
PA73 and KL1, these phages are similar with respect to
genome length (57,455 bp for BcepNazgul and
58,065 bp for AH2), GC content (60.6% for BcepNazgul
and 61.3% for AH2), and predicted number of proteins
(73 for BcepNazgul and 78 for AH2). In contrast to KL1
(which is closely related to a single phage), AH2 encodes
proteins similar to those from a variety of bacteria and
phages (Table 2) and so is less closely related to Bcep-
Nazgul than KL1 is to PA73. BLASTN comparison of
AH2 and BcepNazgul indicates that these sequences are
similar over 16% of the AH2 genome. Twenty-one AH2
proteins are most similar to a BcepNazgul protein
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Figure 4 Circos plots of KL1 and AH2 PROmer comparisons. Green ribbons indicate regions of similarity between two genomes at the
protein level. Each region is on the same strand in both genomes. The scale (in kbp) is shown on the periphery of the plots. PROmer parameters:
breaklen =60, maxgap = 30, mincluster =20, minmatch =6. A) KL1/AH2 comparison; B) KL1/Pseudomonas phage 73 (PA73) comparison; C) AH2/
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(Table 2) and 39 show some similarity based on BLASTP
analysis. Of the AH2 proteins most similar to a Bcep-
Nazgul protein, the most similar is gpl2 (74% identity
with Nazgull0) and the least similar is gp20 (24% iden-
tity with Nazgul21) (Table 2). In a Circos plot of a PRO-
mer comparison of these phages, the most similar
regions at the protein level correspond to AH2 gpl2,
gp71, gp78 (similar to BcepNazgul NazgullO, helicase,
and DR0530-like primase, respectively) and a portion of
the putative capsid morphogenesis and DNA packaging
module (Figure 4C).

Module analysis

Overview

We have identified the proteins encoded by KL1 and
AH2 as belonging to four different functional categories:
virion morphogenesis (including capsid morphogenesis/
DNA packaging and tail morphogenesis), lysis, DNA
binding (the largest and broadest category), and MazG
(a pyrophosphohydrolase [34]). Although the proteins
encoded by each phage perform many of the same func-
tions (e.g. both KL1 gpll and AH2 gp62 are predicted
to be major capsid proteins) (Tables 1 and 2), the pro-
teins themselves are dissimilar. As we discuss below, the
finding that KL1 and AH2 can create nearly identical

phenotypes with two dissimilar sets of proteins may be
compelling evidence for convergent evolution occurring
in these BCC-specific phages.

Virion morphogenesis

Although we have determined that KL1 is a siphovirus
(Figure 2A), the identity of many of the structural genes
remains unknown. As discussed above, KL1 is most
closely related to PA73, a phage whose proteins have
largely uncharacterized functions. Based on BLASTP
analysis, we have been able to predict the identity of only
eight KL1 structural proteins: three involved in capsid
morphogenesis and DNA packaging and five involved in
tail morphogenesis. Gp7 (terminase large subunit) and
gp9 (head morphogenesis protein) are similar to PA73
ORF006 and ORFO008, respectively, both of which have
been assigned putative functions in the PA73 annotation
(Table 1). Gp11 (major capsid protein) is similar to the
major capsid proteins of Escherichia phage K1H and Lis-
tonella phage HSIC. Gp20 is similar to tail proteins
from multiple Escherichia phages including K1G, K1H,
and K1ind1-K1ind3. Gp21 is predicted to be the tail tape
measure as it is the largest protein encoded by KL1
(1272 amino acids [aa]) and it is similar to the predicted
PA73 tape measure protein ORF020 (Table 1). Finally,
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Figure 5 Genome maps of KL1 and AH2. Genes transcribed in the forward direction are shown above and those transcribed in the reverse
direction are shown below. The scale (in kbp) is shown below the maps. Legend: light blue, lysis; purple, capsid morphogenesis and DNA
packaging; pink, tail morphogenesis; red, DNA binding; green, MazG; gray, unknown function.
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Table 1 KL1 genome annotation

Gene Start End Putative function Strand Predicted ribosome Length Closest relative Alignment Percent Source GenBank
binding site and (amino region identity accession
start codon acids) (amino acids) number

I 1 267 unknown + AGGGGCGAACttcgtATG 88 hypothetical protein ORF001 1-84/84 77 Pseudomonas phage 73 YP_001293408.1

2 264 560  holin AAAGGGGCGGtaacGTG 98 hypothetical protein ORF002 3-88/88 42 Pseudomonas phage 73 YP_001293409.1

3 514 1080 lysin + AAAAGGGGttatcgaATG 188 hypothetical protein 2-181/188 47 Burkholderia glumae BGR1 YP_002912484.1

bglu_1g27070

4 1091 1408 Rz + AAGTAAGGGGttcgaaATG 105 hypothetical protein ORF004 1-101/101 37 Pseudomonas phage 73 YP_001293411.1

5 1329 1592 Rzl + GAAAGGtgccgecgATG 87 conserved hypothetical protein  1-79/86 40 Burkholderia sp. Ch1-1 ZP_06842908.1

6 1647 2138  unknown + ACTAGGccgcgattATG 163 hypothetical protein ORF005 1-162/162 59 Pseudomonas phage 73 YP_001293412.1

7 2116 3756  terminase large + AACAGGAAttgcttaATG 546 hypothetical protein ORFO06 10-531/531 84 Pseudomonas phage 73 YP_001293413.1

subunit

8 3770 5266 portal protein AAAGGAAAcgaaatcATG 498 hypothetical protein ORFO07 3-494/501 85 Pseudomonas phage 73 YP_001293414.1

9 5269 6384 head morphogenesis GGGGCGTAatcATG 371 hypothetical protein ORFO08 1-364/364 73 Pseudomonas phage 73 YP_001293415.1

protein

10 6403 7110 unknown + AAGGAGtccttgaaATG 235 hypothetical protein ORF009 1-235/239 82 Pseudomonas phage 73 YP_001293416.1

11 7123 8097 major capsid protein + AAGGAcactttatcATG 324 hypothetical protein ORFO10 1-325/325 90 Pseudomonas phage 73 YP_001293417.1

12 8171 8587 unknown + AAGGAGtttcgaacATG 138 hypothetical protein ORFO11 1-134/134 69 Pseudomonas phage 73 YP_001293418.1

13 8656 9033  unknown + AAAGGAGcgtcgaacATG 125 hypothetical protein ORF012 1-123/123 70 Pseudomonas phage 73 YP_001293419.1

14 9047 9565 unknown + AAGGGGegeggcatcATG 172 hypothetical protein ORFO13 1-172/172 83 Pseudomonas phage 73 YP_001293420.1

15 9570 9944 head-tail joining protein + GATAAGGGtctaacgctATG 124 hypothetical protein ORFO14 1-124/126 59 Pseudomonas phage 73 YP_001293421.1

16 9941 10399 minor tail protein + ATACGGTAttgttcgcacaATG 152 hypothetical protein ORFO15 5-151/151 68 Pseudomonas phage 73 YP_001293422.1

17 10412 11965 unknown + AAGGAGttacgaaaATG 517 hypothetical protein ORFO16 3-511/511 78 Pseudomonas phage 73 YP_001293423.1

18 12030 12458 tail protein + GGAGTAAAccaaATG 142 hypothetical protein ORFO17 1-142/142 79 Pseudomonas phage 73 YP_001293424.1

19 12030 12823 tail protein + GGAGTAAACcaaATG 264 hypothetical protein ORFO17 1-142/142 79 Pseudomonas phage 73 YP_001293424.1

hypothetical protein ORFO18 1-118/118 78 Pseudomonas phage 73 YP_001293425.1

20 12792 13226 tail protein + AAAAGGCGGegcaacagaATG 144 hypothetical protein ORF019 1-144/144 80 Pseudomonas phage 73 YP_001293426.1

21 13232 17050 tail tape measure + AAGGAttagcagaaATG 1272 hypothetical protein ORF020 1-78,131- 61,57  Pseudomonas phage 73 YP_001293427.1

1202/1204
22 17069 18067 unknown + AGGAAtacgaattATG 332 hypothetical protein 1-295/307 30 Xanthomonas albilineans  YP_003374757.1
XALc_0225 GPE PC73

23 18070 19179 unknown + GAGGAAAActaatcATG 369 hypothetical protein ORF033 1-332/333 25 Pseudomonas phage M6 YP_001294541.1

24 19179 20870 tail assembly protein + AAGAAGAtcgcataATG 563 hypothetical protein ORF023 63-565/568 36 Pseudomonas phage 73 YP_001293430.1

25 20867 21688 tail assembly protein + AAGGAcgattccagaATG 273 hypothetical protein ORF024 1-273/274 49 Pseudomonas phage 73~ YP_001293431.1

26 21689 24100 tail assembly protein + AAGATGGGGtcggttaaATG 803 hypothetical protein ORF025 1-755/813 49 Pseudomonas phage 73 YP_001293432.1
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Table 1 KL1 genome annotation (Continued)

27
28

29

30

32

33
34
35
36

37
38
39
40

42
43
44
45

46

47

48

49

50

24097
26179

27323

27696

29344

30852

31696
32471
33059
33746

33924
36366
36735
37097

37728
38060
38302
38707
39201

39455

39652

39882

40138

40374

26166
27339

27691

29351

30342

31637

32412
32980
33598
33934

36233
36668
37091
37360

38024
38296
38703
39195
39458

39655

39840

40154

40374

40550

DNA polymerase

DNA polymerase Il
f subunit

unknown

superfamily Il
helicase/restriction
enzyme

exonuclease

unknown

recombinase
unknown
pyrophosphohydrolase

transcriptional
regulator

primase
unknown
unknown

unknown

unknown
unknown
unknown
Visr endonuclease

unknown

unknown

unknown

unknown

unknown

unknown

+ o+ o+ o+

+ o+ o+ o+ o+

AAGGAAtttgcccgATG
AAGGGGttaaaaATG

GAATGGtgaaattATG

AAGGGttacgaATG

GGAAGGcgaagaacgATG

GAAAGGtgaaacgaacATG

AGGTGAACGIATG
AAGGAAccccaaaATG
AGGGGcatcgtATG
GGGGcaagcATG

GAAGGcttgcgcaaatATG
GAAGGAgttacgaacATG
GAAGGAGtacacgccATG
AGAAGAAGGAGtaagcgccATG

AAAGGAGcgccagecATG
AAGGAAccccgatcATG
AAAGGGGtaattactATG
GACGAAGttgcattaagccATG
GGAAGGAGtaacccaaATG

GGCGAAGtcgtcgaATG

AAGGAGtacgcaccATG

AAAAGGAGtaacgaacATG

GAACCGGAttacgattATG

GGGTTAcgaataATG

689
386

551

332
261

98
78
133
162
85

66

62

90

78

58

hypothetical protein ORF026
hypothetical protein ORF027

hypothetical protein Dole_2913

hypothetical protein ORF029

hypothetical protein ORFO30
hypothetical protein Isop_2441

hypothetical protein ORF032
hypothetical protein ORF033
hypothetical protein ORF034
hypothetical protein ORF035

hypothetical protein ORF036
hypothetical protein
unnamed protein product

PREDICTED: photosystem |l
reaction center PSB28
protein, chloroplastic

hypothetical protein ORF039
hypothetical protein ORF040
hypothetical protein ORF042
hypothetical protein ORF043

hypothetical protein
Astex_0306

monooxygenase, FAD-binding

hypothetical protein
METUNv1_00516

hypothetical protein
Cflav_PD2164

hypothetical protein
ORF047

1-682/683
2-380/380

5-84/87

1-551/551

1-365/365

1-118/151

1-238/238
7-146/146
8-185/185
1-61/62

1-773/773
132-217/217
262-336/404
22-86/179

1-97/98
1-80/80
1-120/124
1-176/179
3-81/183

385-445/546

11-65/68

58-133/172

2-77/77

90-140/227

83
74

33

90

65
37

49
69

85
44
32
32

70
50
40
61
44

38

39

30

67

29

Pseudomonas phage 73

Pseudomonas phage 73

Desulfococcus oleovorans
Hxd3

Pseudomonas phage 73

Pseudomonas phage 73

Isosphaera pallida ATCC
43644

Pseudomonas phage 73
Pseudomonas phage 73
Pseudomonas phage 73

Pseudomonas phage 73

Pseudomonas phage 73
Deftia phage @W-14
Azospirillum lipoferum 4B

Vitis vinifera

Pseudomonas phage 73
Pseudomonas phage 73
Pseudomonas phage 73
Pseudomonas phage 73

Asticcacaulis excentricus
CB 48

Streptomyces griseoflavus
Tu4000

Methyloversatilis universalis
FAMS

bacterium Ellin514

Pseudomonas phage 73

YP_001293433.1
YP_001293434.1

YP_001530793.1

YP_001293436.1

YP_001293437.1

YP_004179564.1

YP_001293439.1
YP_001293440.1
YP_001293441.1
YP_001293442.1

YP_001293443.1
YP_003359005.1
YP_004974060.1
XP_002271666.1

YP_001293446.1
YP_001293447.1
YP_001293449.1
YP_001293450.1
YP_004086155.1

ZP_07309792.1

ZP_08503515.1

ZP_03630603.1

YP_001293454.1

YP_004435864.1
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Table 1 KL1 genome annotation (Continued)

51

52
53
54
55

40562

40930
41412
41826
42120

40933

41415
41786
42032
42674

unknown

dCMP deaminase
unknown
unknown

unknown

+ o+ o+ o+

GAAAGGtgaaatcATG

GGAACGtccggcATG
AAAGGctgaatcATG
GGGGAtgcccacattATG
AAGGAGttttacaaATG

123

161
124
68

184

hypothetical protein
Glaag_3667

hypothetical protein
BURMUCGD2M_4586

hypothetical protein ORFO49
hypothetical protein ORF050
hypothetical protein ORFO51
hypothetical protein ORF052

8-67/70

2-153/155
4-125/127
37-94/94

9-190/190

34

75
43
45
66

Glaciecola sp. 4 H-3-7 +
YE-5

Burkholderia multivorans
CGD2M

Pseudomonas phage 73
Pseudomonas phage 73
Pseudomonas phage 73

Pseudomonas phage 73

ZP_03569237.1

YP_001293456.1
YP_001293457.1
YP_001293458.1
YP_001293459.1
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Table 2 AH2 genome annotation

Gene Start End Putative function Strand Predicted ribosome Length Closest relative Alignment Percent Source GenBank
binding site and (amino region identity accession
start codon acids) (amino acids) number

1 619 1035 unknown AAGGAAAcgacATG 138 hypothetical protein 12-130/130 29 Burkholderia phage BcepNazgul  NP_918966.1

Nazgul32

2 1073 1423 unknown AGGGGGGAACggCcATG 116 conserved hypothetical 1-116/116 72 Burkholderia multivorans CGD1 ~ ZP_03586942.1

protein

3 1501 1818 unknown GGATTActgaccATG 105 family 2 glycosyl 292-387/387 32 Haloterrigena turkmenica YP_003404522.1

transferase DSM 5511

4 1809 2024 unknown GAGAAAtagagATG 71 mobilization protein 190-237/325 37 Escherichia coli E128010 EFZ49597.1

mbeA

5 2021 2578 unknown AGGGGttacatcATG 185 hypothetical protein 88-158/330 44 Burkholderia phage BcepNazgul  NP_919015.1

Nazguloé
6 2728 2877 unknown AGGTGcaaaaATG 49 hypothetical protein 6-38/38 48 Burkholderia oklahomensis EO147 ZP_02357945.1
BokIE_20935

7 2874 3002 unknown AGGGGCgatcATG 42 polysaccharide deacetylase 21-60/287 35 Bacillus mycoides Rock3-17 ZP_04156726.1

8 3071 3325 unknown AAAGAQCtATG 84 major facilitator 131-209/467 37 Burkholderia gladioli BSR3 YP_004349464.1

superfamily MFS_1

9 3322 3579 unknown GGAGTAtccgecATG 85 hypothetical protein 308-361/603 31 Planctomyces brasiliensis YP_004269441.1

Plabr_1809 DSM 5305

10 3663 3911 unknown GGGGGTAtgacATG 82 HAD-superfamily 70-119/268 38 Methanosphaerula palustris E1-9¢c YP_002465429.1

hydrolase
17 3913 4314 unknown AGGGGGAGtaacggccATG 133 hypothetical protein 1-129/141 59 Burkholderia phage BcepNazgul  NP_919018.1
Nazgul09

12 4320 4805 unknown AGGGGttacatcATG 161 hypothetical protein 1-151/160 74 Burkholderia phage BcepNazgul  NP_919019.2
Nazgul10

13 4846 5454 unknown AAAAAGGGGtttttgacATG 202 194 gene product 101-187/188 43 Salmonella phage PVP-SE1 YP_004894001.1

14 6021 6302 unknown AAGGAGcaatcATG 93 hypothetical protein 3-93/93 41 Burkholderia phage BcepNazgul  NP_919022.1
Nazgul13

15 6311 6550 unknown AGGCGGtcgtATG 79 hypothetical protein 1-67/67 45 blood disease bacterium R229  CCA83252.1
BDB_mp60418

16 6707 7015 unknown ACACGAcaccATG 102 hypothetical protein 43-84/88 45 Microcoleus chthonoplastes ZP_05027813.1
MC7420_4162 PCC 7420

17 7012 7218 unknown GAAGGtgccggcATG 68 hypothetical protein 53-81/152 45 Cyanothece sp. ATCC 51472 ZP_08976132.1
Cy51472DRAFT_4929

18 7215 8069 unknown AGGAAAGQgaaATG 284 hypothetical protein 5-175/177 45 Thioalkalivibrio sp. K90mix YP_003494636.1
TK90_2682

19 8123 8407 unknown GAGAAGGcacacacATG 94 GTP-binding protein 150-232/1016 29 Gemmata sp. Wal-1 AAX07516.1

20 8499 9128 DNA polymerase GAACGGTGAGCHATG 209 hypothetical protein 24-216/237 24 Burkholderia phage BcepNazgul ~ NP_918955.1

Il B subunit

Nazgul21
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Table 2 AH2 genome annotation (Continued)

21

22

23
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

9149 9343 unknown

9346 9645 unknown

9642 9938 unknown
9935 10171 unknown

10256 10711 pyrophosphohydrolase

10720 10977 unknown

11082 12074 unknown

12101 13075 transcriptional
regulator

13078 13497 unknown

13574 13768 transcriptional
regulator

13768 14031 transcriptional
regulator

14064 14450 Vsr endonuclease

14450 15025 excinuclease

15038 15892 restriction

endonuclease

15889 17031 cytosine
methylase

17107 17199 unknown

17511 18842 integrase

18990 19412 unknown

19462 20001 unknown

20034 20264 Rz1

+

AGGAGAAAGGagATG

GGGGGTAtctgaccATG

GGAGGGtcaTTG
GGGGcttggegtATG

AAGGAAAggacATG

GAGGccggcecATG

AGGAGAAatcGTG

AAGGAAccgacATG

GCTGACGAtctctgaccATG

AGGGAtttttcATG

AAGCGGAGccgtcctgATG

GGAGGAatgATG

AACAGAGttgcagcGTG

GGCAAAGGtcgccgcATG

AGGGGGttcgcGTG

ACGAAGccttgcttaATG

64

99

98
78

85

330

324

139

64

87

191

284

380

30

GAAGGAGGtcttgtagcactgATG 443

AAGGAGGAatcATG

GGAGALttttcATG

GGAGGACgccATG

140

hypothetical protein
R2APBS1DRAFT_0277

hypothetical protein
PFL_2108

aspA gene product

hypothetical protein
Nazgul19

hypothetical protein
BCAS0549

hypothetical protein
AGRO_3677

hypothetical protein

hypothetical protein
Pnap_4317

hypothetical protein
SCHCODRAFT_69044

hypothetical protein
APT_2164

hypothetical protein
Bcep1808_2468

DNA mismatch
endonuclease Vsr

Excinuclease ABC C
subunit domain protein

conserved hypothetical
protein

DNA-cytosine
methyltransferase

resistance-nodulation-cell
division acriflavin:proton

(H+) antiporter

chorismate mutase
family protein

hypothetical protein
Dda3937_00584

hypothetical protein
PcarcW_20243

hypothetical protein
BURPS668_A2333

9-63/344

3-63/70

38-122/317
18-97/97

15-139/140

208-273/300

8-95/113

25-252/342

549-631/848

9-65/75

2-85/86

15-141/141

3-183/192

1-285/285

1-385/385

850-868/1014

1-362/386

60-163/163

68-197/198

27-81/81

31

33

32
39

60

41

48

45

33

53

73

65

58

70

66

68

62

40

67

62

Rhodanobacter sp. 2APBS1

Pseudomonas fluorescens Pf-5

Rhodospirillum centenum SW

Burkholderia phage BcepNazgul
Burkholderia cenocepacia 12315
Agrobacterium sp. ATCC 31749
Escherichia phage

vB_EcoM_ECO1230-10

Polaromonas
naphthalenivorans CJ2
Schizophyllum commune H4-8
Acetobacter pasteurianus

NBRC 101655

Burkholderia vietnamiensis G4
Methylocella silvestris BL2
Pseudomonas syringae pv.
lachrymans str. M301315
Ralstonia solanacearum CMR15

Ralstonia solanacearum CMR15

Bacillus pumilus SAFR-032

Phaeobacter gallaeciensis BS107
Dickeya dadantii 3937
Pectobacterium carotovorum

subsp. carotovorum WPP14

Burkholderia pseudomallei 668

ZP_08951135.1

YP_259216.1

YP_002297975.1
NP_919028.2

YP_002153936.1

ZP_08529674.1

ADE87960.1

YP_973341.1

XP_003030158.1

GAB28674.1

YP_001120302.1

YP_002360880.1

EGH83133.1

CBJ36134.1

CBJ36133.1

YP_001486844.1

ZP_02147383.1

YP_003882998.1

ZP_03833564.1

YP_001063327.1
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Table 2 AH2 genome annotation (Continued)

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

20277 20588 Rz

20585 21091 lysin

21088 21339 holin

21336 21665 unknown

21807 22121 unknown

22133 23731 tail fiber protein

23809 26178 tail assembly protein

26175 26375 tail assembly protein

26372 26608 tail assembly protein

26618 27418 tail assembly protein

27415 29100 tail assembly protein

29097 30158 unknown

30160 31122 unknown

31124 35860 tail tape measure

35853 36538 tail protein

36098 36538 tail protein

36549 37337 unknown

37385 37897 minor tail protein

37897 38517 unknown

38514 38873 unknown

AGGGGGCcgtATG

AAGGAGAAGAacaGTG

GAAGGGGtggacccgaccATG

AAGGGGcecagaagATG

AAGGAGAAAtcacATG

GGAACGtggacATG

AGAGGAAGACaaATG

GGGGGCAAgaaATG

GAGGACtgatcATG

AGGGGGAtcaaacaATG

AAGAAGAtcacTTG

GACGAGGtttgaaATG

GAGCGAGGcataacGTG

GGACTGAACggaaATG

AAGGGGGCGagcATG

AAGGGGGCGagcATG

GAGGAAtcaatcATG

GAGGAAAGtataATG

GACGCAGGtttgccgacATG

GAGGCGCgtgATG

103

168

109

104

532

789

66

78

266

561

353

320

1578

228

146

262

170

206

119

hypothetical protein
ORFO004

hypothetical protein
HMPREF0005_02034

conserved exported
hypothetical protein

hypothetical protein
HDEF_1702

hypothetical protein
PPL19_05085

hypothetical protein
Bpse112_32291

hypothetical protein
HCH_05649

hypothetical protein
HCH_05650

putative transmembrane
protein

hypothetical protein
HCH_05652

hypothetical protein
HCH_05654

hypothetical protein
D11S_2171

hypothetical protein
XALc_0225

phage tape measure
protein

pre-tape measure
frameshift protein G-T

hypothetical protein
Sinme_1368

hypothetical protein
Sinme_1367

hypothetical protein
Sinme_1366

hypothetical protein
Nazgul55

hypothetical protein
Sinme_1364

2-101/101 35
1-161/163 60
1-83/85 35
3-87/92 31
1-103/161 53
69-240/282 45
2-727/728 34
4-67/71 50
7-82/82 47
1-268/269 39
35-560/563 32
1-326/327 23
1-194/307 35

1-109, 452-1680/1683 33

1-242/243 34
4-126/142 34
1-257/262 45
7177177 50
5-198/205 49
3-120/125 38

Pseudomonas phage 73

YP_001293411.1

Achromobacter xylosoxidans C54 EFV83908.1

blood disease bacterium R229

CCA83792.1

Candidatus Hamiltonella defensa YP_002924457.1

SAT (Acyrthosiphon pisum)

Pseudomonas psychrotolerans L19 ZP_09283635.1

Burkholderia pseudomallei 112
Hahella chejuensis KCTC 2396
Hahella chejuensis KCTC 2396
Rhodobacter sp. SW2

Hahella chejuensis KCTC 2396
Hahella chejuensis KCTC 2396
Aggregatibacter

actinomycetemcomitans D115-1

Xanthomonas albilineans

GPE PC73

Sinorhizobium meliloti AK83
Burkholderia phage BcepNazgul
Sinorhizobium meliloti AK83
Sinorhizobium meliloti AK83
Sinorhizobium meliloti AK83

Burkholderia phage BcepNazgul

Sinorhizobium meliloti AK83

ZP_02502292.1

YP_436732.1

YP_436733.1

ZP_05845047.1

YP_436735.1

YP_436736.1

YP_003256741.1

YP_003374757.1

YP_004548730.1

NP_918998.2

YP_004548729.1

YP_004548728.1

YP_004548727.1

NP_918988.2

YP_004548725.1
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Table 2 AH2 genome annotation (Continued)

61

62
63
64
65
66

67

68
69

70

71
72

73

74

75

76

77

78

38886 39134 unknown

39205 40233 major capsid protein
40290 40688 decorator protein
40743 42071 prohead protease
42068 43591 portal protein

43736 43960 head-tail joining protein

44097 46076 terminase large subunit

46210 46803 terminase small subunit
46796 46990 transcriptional regulator

47047 47736 repressor

47833 49446 helicase
49443 49745 resolvase

49742 51796 DNA polymerase
51875 52609 single-stranded DNA

binding protein
52655 53995 Cas4 superfamily
exonuclease
54140 54538 unknown
54718 55017 Cro

55054 57534 primase

AAAGGAAccatcATG

AAGGAGAAAGCcaaaATG
AGGAGAAccatcATG
AGGACCAGAACcaATG
GGAAcccgtcgATG
GGACAAcactATG

AAGACctcgATG

GAAGGTGAtagcgATG
AGGAGTACggtATG

GAAAGGCAAGGcagcagcATG

ACGAcctcctgcgATG
GAAAGGAGGAttcactGTG

ACGTcaccATG

AAAGGTGAcaaaaATG

GATCctctcgaccccATG

GGAGAAatcATG

AACGGAGAtcacaATG

GGAGGGYCaATG

82

342

442
507
74

659

64

229

537
100

684

244

446

99

826

hypothetical protein
Nazgul57

capsid protein E

decorator protein D

prohead protease ClpP

phage portal protein

head-tail joining protein

Lambda W

terminase large
subunit TerL

TerS

aminoglycoside
phosphotransferase

hypothetical protein
Rvan_1213

helicase

conserved phage
protein

hypothetical protein
ORF026

conserved phage
protein

conserved phage
protein

hypothetical protein
RUMHYD_01446

hypothetical protein
Nazgul73

DR0530-like primase

1-38/85

2-343/346
4-123/131
4-427/434
57-554/559
13-76/76

44-677/677

9-179/222
423-473/487

14-180/242

11-507/522
15-103/108

48-670/683

4-186/198

8-448/454

1-120/122

5-90/97

1-843/843

47

50
49
53
59
56

58

49
29

36

52
55

45

35

48

26

31

49

Burkholderia phage BcepNazgul

Burkholderia phage BcepNazgul
Burkholderia phage BcepNazgul
Burkholderia phage BcepNazgul
Staphylococcus phage SA1

Burkholderia phage BcepNazgul

Burkholderia phage BcepNazgul

Burkholderia phage BcepNazgul
Frankia sp. EUNT

Rhodomicrobium vannielii
ATCC 17100

Burkholderia phage BcepNazgul
Burkholderia phage BcepNazgul

Pseudomonas phage 73
Staphylococcus phage SA1
Burkholderia phage BcepNazgul
Blautia hydrogenotrophica

DSM 10507

Burkholderia phage BcepNazgul

Burkholderia phage BcepNazgul

NP_918990.1

NP_918991.1
NP_918992.1
NP_918994.2
ACZ55505.1

NP_918996.1

NP_918997.2

NP_918999.1
ZP_06416368.1

YP_004011581.1

NP_919000.2
NP_919001.2

YP_001293433.1

ACZ55548.1

NP_919005.2

ZP_03782010.1

NP_919007.1

NP_919008.2
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AACCGAAGCGGGAAACTGATAGAAG KL DNA

T E A G N gp18
N R s G K L [ E -
T E A G NOL ! E gp19

GGACTCCGCAAAAAAGTTCCTTCAG AH2 DNA
D S A K K F L Q gp56
G L, R K K v P S -1

D S A K K Vv P S gp55

Figure 6 Sequences of the KL1 and AH2 predicted translational
frameshift sites. For each phage, the first row shows the DNA
sequence (with the predicted frameshift site underlined); the second
row shows the amino acid sequence in the original frame (the KL1
gp18 stop codon is represented by an asterisk); the third row shows
the amino acid sequence in the —1 frame; the fourth row shows the
amino acid sequence of the frameshifted protein.

gp24-gp26 are similar to BcepNazgul tail assembly pro-
teins. Using HHpred analysis, we were able to identify
an additional three proteins at a probability threshold of
75%. Gp8 is similar to bacteriophage SPP1 portal protein
(99.44% probability), gp15 is similar to A gpFII head-tail
joining protein (82.86% probability), and gp16 is similar
to A gpU minor tail protein (77.70% probability) (Add-
itional file 1: Table S1).

In comparison with KL1, the structural proteins of
AH2 are well defined. Genes 62-68 make up the capsid
morphogenesis and DNA packaging module, containing
genes encoding the major capsid protein, decorator pro-
tein, prohead protease, portal protein, head-tail joining
protein, and terminase subunits (large and small)
(Table 2). Each of these proteins is similar to a BcepNaz-
gul protein, with percent identities between 49-58%. Sev-
eral genes between 47 and 56 are similar to genes
encoding BcepNazgul conserved tail assembly proteins,
tape measure protein, and pre-tape measure frameshift
protein G-T (with percent identities between 26-38%).
Two additional AH2 tail proteins were identified using
BLASTP (gp46, similar to Pseudomonas psychrotolerans
L19 phage tail fiber protein) or HHpred (gp58, similar to
A gpU minor tail protein) analysis (Additional file 2:
Table S2). Hypothetical proteins encoded in this region
are likely to be involved in tail morphogenesis based on
the proximity of their genes to this module.

Most tailed phages encode two tail proteins proximal
to the tail tape measure gene by way of a -1 transla-
tional frameshift [35]. We have previously identified
these frameshifted genes in the BCC-specific phages
KS9, KS5, KS14, and KL3 [19,29]. Using FSFinder and
manual scanning for XXXYYYZ motifs, we predict that
KL1 gp18/gpl9 and AH2 gp55/gp56 are expressed using
this mechanism. The predicted frameshift site in KL1 is
GGGAAAC, immediately upstream of the gpl8 TGA
stop codon (Figure 6 and Additional file 3: Figure S3).
A -1 ribosomal shift following the terminal C will allow
for expression of the 264 aa gpl19 and the 142 aa gpl8
from the same start codon (Figure 6). Although most
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phages encode their frameshifted proteins immediately
upstream of the tail tape measure gene, KL1 encodes an
intervening tail protein, gp20 (Table 1, Figure 5). This
organization is similar to that of Escherichia coli phage
HK97, Bacillus subtilis phage SPP1, Methanobacterium
thermoautotrophicum phage YM2, Methanothermobac-
ter wolfei phage WyM100, Lactococcus phages c¢2 and
BIL67, and Natrialba magadii phage ¢chl [35]. The
predicted frameshift site in AH2 is AAAAAAG (Figure 6
and Additional file 3: Figure S3), the same sequence
used by E. coli phage VT1-Sakai, M. thermoautotrophi-
cum phage YM2, Staphylococcus aureus phages PVL
and PV83, Lactococcus lactis phage ul36, and Borrelia
burgdorferi prophage Borreliapro [35]. In the case of
AH2, a -1 shift of the ribosome following the G in this
sequence will allow for the 228 aa gp55 to be expressed
instead of the 146 aa gp56 (Figure 6). Using BLASTP or
HHpred searches, we were unable to identify the KL1 or
AH2 major tail proteins. However, we predict that
these proteins may be gpl7 in KL1 and gp57 in AH2
as the major tail genes are generally positioned upstream
of the frameshifted protein genes [35]. Although not
present in all sequences, RNA secondary structures are
often found downstream of frameshift sites [19,29,35,36].
Mfold analysis of the 35 bases downstream of the puta-
tive KL1 and AH2 sites suggests that stem-loop struc-
tures could form in both of these regions (Additional file
3: Figure S3).

Lysis

In KL1, we have identified the genes putatively encoding
the holin, lysin, Rz and Rzl lysis proteins. In a BLASTP
search, gp2 shows similarity to putative holin proteins of
PA73 and BcepNazgul. TMHMM analysis of this protein
indicates that it has two transmembrane domains, so
gp2 is predicted to be a class II holin [37]. Gp3 is similar
to the endolysin of Erwinia phage vB_EamP-S6
(HQ728266) and contains lysozyme and peptidoglycan-
binding conserved domains. Although gp4 does not
show similarity to any Rz proteins in the NCBI database,
it is predicted to contain a single N-terminal transmem-
brane domain, characteristic of Rz proteins [38]. Gp5 is
predicted to be the KL1 Rzl protein as it is similar to
BcepNazgul Rzl and LipoP analysis identifies a signal
peptidase II cleavage site between positions 17 and 18
(resulting in a 70 aa protein with 4 proline residues
[5.7% proline]). The proportion of prolines in the pre-
dicted Rzl lipoprotein is low compared to previously
identified Rz1 proteins in BCC phages [19,29,39].

The same lysis proteins were identified in AH2. Like
KL1 gp2, the putative AH2 holin gp43 is similar to the
BcepNazgul holin, has two transmembrane domains,
and is predicted to be a class II holin. Although gp42
shows no similarity to endolysins in a BLASTP search,
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HHpred analysis reveals similarity to both eukaryotic
and prokaryotic lysozyme proteins. Gp41 is predicted to
be the AH2 Rz protein as it has a single N-terminal
transmembrane domain. Although manual annotation
has been required for identification of the Rzl gene in
KL1 and in our previous studies [19,29], we predict that
the GeneMark-assigned gp40 is the AH2 Rzl protein.
Gp40 is similar to BcepNazgul Rz1 and has a signal pep-
tidase II cleavage site between amino acids 15 and 16.
Similar to the predicted KL1 Rzl, the proportion of pro-
lines present in this protein is relatively low (3/61 or
4.9%). It is unclear from this analysis what protein(s)
may contribute to the unique plaque phenotype
observed in both of these phages. Aside from the low
proportion of proline found in the putative Rz1 proteins,
KL1 and AH2 appear to have relatively standard lysis
modules, suggesting that unique (and as yet unidenti-
fied) proteins may be responsible for controlling lysis
timing in each phage.

DNA binding

Of the 8 KL1 proteins similar to a PA73 protein with an
assigned function, half of these are DNA- or nucleotide-
binding proteins: DNA polymerase (gp27), superfamily
IT helicase/restriction enzyme (gp30), helicase (annotated
here as recombinase [gp33]), and dCMP deaminase
(gp52) (Table 1). In addition, KL1 encodes a putative
DNA polymerase III B subunit (gp28), exonuclease
(gp31), transcriptional regulator (gp36), primase (gp37),
and Vsr endonuclease (gp44) (Table 1 and Additional file
1: Table S1). In a multi-genome analysis performed by
Lopes et al. [40], it was determined that PA73 ORF032 is
distantly related to Lactococcus phage $31 Sak4d recom-
binase. When this protein was expressed in E. coli, it
exhibited recombinase activity, but was found to be less
efficient than X Redp [40]. Furthermore, PA73 encodes
an exonuclease, as is found in characterized phage re-
combinase pairs such as Redaf in A and RecET in rac
[40]. KL1 gp33 is most closely related to PA73 ORF032
and, with 91% identity, is the KL1 protein most similar
to a PA73 protein. In addition, KL1 gp31 has 65% iden-
tity with PA73 ORF030 and both of these proteins are
similar to A Reda (99.21% probability for gp31 and
99.17% probability for ORF030) (Table 1 and Additional
file 1: Table S1). It is interesting to note that, despite the
relatively limited similarity between KL1 and other pre-
viously sequenced BCC-specific phages, both gp31 and
gp33 are similar to proteins from Burkholderia phage
BcepGomr (BcepGomrgp43 and BcepGomrgp45, re-
spectively) [40]. Although further characterization of
these proteins is required in both KL1 and BcepGomr, it
is possible that these exonucleases and Sak4-like recom-
binases represent a conserved recombination system in
certain BCC-specific phages.
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AH2 encodes DNA replication, modification, and re-
pair proteins including a putative DNA polymerase III
subunit (gp20), Vsr endonuclease (gp32), excinuclease
(gp33), restriction endonuclease/methylase pair (gp34/
gp35), integrase (gp37), helicase (gp71), resolvase (gp72),
DNA polymerase (gp73), single-stranded DNA binding
protein (gp74), Cas4 superfamily exonuclease (gp75),
and primase (gp78) (Table 2). Other putative DNA bind-
ing proteins are predicted to be involved in transcrip-
tional regulation. Gp28 is similar to partitioning and
regulation proteins from Thermus thermophilus (100%
probability) and E. coli (99.86% probability) (Additional
file 2: Table S2). The gp30 and gp31 predicted proteins
belong to the helix-turn-helix MerR superfamily and the
pyocin activator superfamily, respectively. Both of these
proteins, in addition to gp69, also show similarity to
excisionase proteins (Additional file 2: Table S2). Gp70
and gp77 are similar to the lysogeny control proteins CI
from enterobacteria phage 186 (99.87% probability) and
Cro from Xylella fastidiosa Ann-1 (96.60% probability),
respectively (Additional file 2: Table S2).

AH2 gp32-gp35 are predicted to be part of a DNA
protection and repair module. Vsr (very short patch re-
pair) endonucleases are involved in the repair of 5-
methylcytosine to thymine deamination [41]. Previously,
we identified a Vsr endonuclease in the BCC-specific
phage KL3 that, along with an EcoRII-C endonuclease/
methylase pair, was predicted to be part of a novel non-
self DNA degradation and self DNA protection/repair
module [29]. Our model proposed that non-KL3 DNA
(ie. that of the host or a superinfecting phage) would be
degraded by the endonuclease (gp45), while KL3 DNA
would be protected by the methylase (gp47) (converting
cytosine to 5-methylcytosine). Vsr endonuclease (gp46)
and very short patch repair would then prevent the ac-
cumulation of mutations caused by 5-methylcytosine de-
amination [29].

The DNA protection and repair system of AH2 is
analogous to that of KL3. AH2 gp32 has 51% identity
with the KL3 Vsr endonuclease and is similar to E. coli
Vsr endonuclease (100% probability) (Additional file 2:
Table S2). AH2 also encodes an endonuclease/methylase
pair: gp34 is similar to Kluyvera ascorbata Kasl (64%
identity) while gp35 is similar to K. ascorbata M.Kasl,
Brevundimonas diminuta ATCC 11568 cytosine-specific
methyltransferase NlaX, and Acetobacter pomorum
DMO001 modification methylase Hpall (63-66% identity).
Gp35 also has several methylase conserved domains, in-
cluding Dcm (an enzyme that produces 5-methylcytosine
bases at sites recognized by Vsr endonuclease) [41].
Gp33 is similar to Thermotoga maritima UvrABC sys-
tem protein C (98.35% probability) and could function
together with UvrAB in nucleotide excision repair
(Additional file 2: Table S2) [42]. Although further
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experiments are required to identify the recognition sites
of gp34 and gp35, we predict that this module may func-
tion as follows: gp34 cleaves non-self DNA, while self
DNA is protected by gp35 methylation and subsequent
gp32 repair (with gp33 participating in nucleotide exci-
sion repair). Although the identity and arrangement of
genes in this module is different in AH2 than in KL3,
the identification of a similar module in an unrelated
BCC-specific phage suggests that these genes may be
widely used for DNA protection and repair in this group
of viruses.

MazG

A notable protein encoded by both KL1 and AH2 is
MazG. MazG is a pyrophosphohydrolase that acts on
ppGpp, one of the signaling molecules in bacteria pro-
duced during the stringent response [43]. When bacter-
ial cells are in an amino acid-limited environment, RelA
synthesizes pppGpp, the precursor of ppGpp, and the
latter activates the expression of genes required for cell
survival (such as rpoS) and represses genes required for
protein and DNA synthesis (reviewed in [44]). Recently,
there has been a great deal of interest in marine phages
(especially cyanophages) that encode MazG homologs,
such as Prochlorococcus phages P-SSM2 and P-SSM4,
Synechococcus phage S-PM2, Prochlorococcus and Syne-
chococcus phage Syn9, Roseobacter phage SIO1, Pseu-
doalteromonas phage H105/1, almost one-fifth of the
cyanophages tested by Bryan et al. [45], and all of the
cyanophages analyzed by Sullivan et al. [46] [47-51]. It
has been suggested that these MazG-encoding phages
are better able to infect and propagate within their hosts,
which are found in nutrient-limited water. By inactivat-
ing ppGpp, these phages can promote the expression of
genes that would usually be expressed by an exponential
phase cell under nutrient-rich conditions, such as those
required for protein and DNA synthesis [52]. There are
few published reports of the mazG gene in non-marine
phages, but it has been previously identified in Myxococ-
cus phage Mx8 and mycobacteriophage L5 [45].

The putative MazG proteins encoded by KL1 and
AH2 are gp35 and gp25, respectively. KL1 gp35 is simi-
lar to putative MazG proteins from phages infecting
Synechococcus (including S-CRMO1, S-SM2, and S-
ShM2), Prochlorococcus (including P-HM1, P-HM2, and
P-SSM2), and Bacillus (0305¢$8-36), as well as to PA73
hypothetical protein ORF034 (Table 1). AH2 gp25 is
similar to putative Clostridium MazG proteins and to
the Burkholderia phage proteins ¢$E255 gp37, BcepMu
gp06, and BcepB1A gp71. Both gp35 and gp25 are simi-
lar to E. coli MazG (100% and 99.76% probability, re-
spectively) (Additional file 1: Table S1 and Additional
file 2: Table S2). Because BCC bacteria found in soil and
water are likely to be nutrient-limited (similar to
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cyanobacteria), MazG proteins in BCC-specific phages
may help to facilitate infection in the environment. This
protein may also be involved in the unique plaque
phenotype of these phages, as the appearance of plaques
at low titre after >16 h incubation (at which time the
bacterial lawn appears intact) (Figure 1) suggests that
lysis of stationary phase cells may be occurring. Such a
trait would be especially important for clinical use, as
phage activity may be increased against stationary and/
or biofilm cells found in the CF lung.

MazG may also have an effect with respect to BCC
pathogenicity. Synthesis of ppGpp has been associated
with virulence in species such as Legionella, Listeria,
Pseudomonas, Salmonella, Mycobacterium, and Vibrio
(although the association in this species has been con-
troversial) [53-59]. In P. aeruginosa, relA mutants are
less virulent than the wildtype when tested in the
Drosophila melanogaster model [55] and relA spoT
mutants have reduced antibiotic tolerance [60]. Be-
cause MazG activity may mimic the effects of these
mutations, it is possible that phage-encoded MazG
could modulate the virulence and/or antibiotic toler-
ance of a lysogen. Further experiments are required to
determine if the putative KL1 and AH2 MazG proteins
have pyrophosphohydrolase activity, if these genes are
expressed in lysogens, and if MazG expression has an
effect on pathogenicity.

Convergent evolution

Although there have been relatively few papers pub-
lished on the subject, the occurrence of convergent evo-
lution in bacteriophages has been documented
previously. Most studies examine the phenomenon at
the molecular level by identifying identical base pair and
amino acid changes that occur in different phage
lineages under the same environmental conditions [61-
64]. Structural examples of convergent evolution, such
as the Caudovirales tail and the tectivirus pseudo-tail,
have been reviewed previously [65]. Given the ever-in-
creasing number of completed phage genome sequences,
it is expected that many more examples remain to be
identified (particularly at the whole genome level). Fur-
thermore, there are likely many examples in the litera-
ture of phages with similar phenotypes but dissimilar
genomes that have not explicitly been identified as
examples of convergent evolution, perhaps because they
exhibit what is considered to be a “standard” plaque
phenotype.

We predict that KL1 and AH2 represent examples of
phage convergent evolution at the whole genome level.
As discussed above, these two phages exhibit a plaque
phenotype that is both similar and unique in comparison
to all other BCC-specific phages that we have character-
ized previously. Because of these characteristics, KL1
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and AH2 were thought to be the same phage prior to
RFLP and genomic analysis. However, these phages ap-
pear to have convergently evolved because, as discussed
throughout, their genomes are almost entirely dissimilar
(Figure 4A). The relative rarity of this phenotype among
characterized phages of the BCC and other species may
be at least partially explained by sampling bias. Standard
phage isolation protocols most readily identify those
phages that have easily visible plaques on multiple hosts
after overnight incubation at a broad range of tempera-
tures. Phages such as KL1 and AH2 may be missed be-
cause of poorly visible plaques, incompatible hosts,
insufficient incubation times, incorrect temperatures,
titres that are too high or too low, overgrowth of bac-
teria, and/or competition by more rapidly lysing phages.
As novel phages continue to be isolated from environ-
mental samples using diverse bacterial hosts, the preva-
lence, distribution, and genetic basis of this phenotype
should become more apparent.

Several mechanisms could explain the delayed plaque
formation observed here, including long latent periods
or lysis inhibition (both with concomitantly large burst
sizes) [66], preferential infection of stationary phase
cells, or the gradual release of diffusible lytic enzymes
from small plaques. In order to differentiate these possi-
bilities, we performed one-step growth curves for both
phages using either exponential or stationary phase
C6433 as a host. Using a variation of a standard protocol
(described in Methods), the phage titres unexpectedly
remained stable (within one order of magnitude) over a
4 h period. Given the uninformative nature of these
results, we have thus far been unable to identify the
mechanism(s) responsible for the plaque phenotype.
Taking into consideration the very specific conditions
required for the observation of KL1 or AH2 plaques on
solid medium, we predict that the infection kinetics in li-
quid culture may be highly dependent upon host (both
strain and growth phase), incubation time, temperature,
titre, and potentially other factors (such as medium) that
are not accounted for using standard one-step growth
curve protocols.

Conclusions

A recent publication by Ceyssens et al. [67] provides an
interesting counterpoint to our study. While we identi-
fied KL1 and AH2 as phages that were phenotypically-
similar but genomically-distinct, this group analyzed a
set of Pseudomonas phages that were phenotypically-
distinct but genomically-similar. They found that, among
GKMV-like viruses with between 83-97% nucleotide
identity, there were significant differences observed with
respect to latent period, host range, and antibody re-
activity [67]. We have made similar observations with
our collection of BCC-specific phages: two phages can
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have distinct phenotypes with respect to liquid clearing
and host range while at the same time having almost
identical genomes [22]. Taken together, the observations
made by Ceyssens et al. [67] and those discussed in this
study provide a) novel examples of both divergent and
convergent phage evolution and b) further evidence of
the broad diversity of phages that infect Gram-negative
opportunistic pathogens.

Methods

Bacterial strains and growth conditions

Burkholderia cenocepacia strains K56-2 and C6433, part
of the Burkholderia cepacia complex experimental strain
panel [68,69], were used for phage isolation and propa-
gation. Strains used for host range analysis (also part of
the panel) were acquired from the Belgium Coordinated
Collection of Microorganisms LMG Bacteria Collection
(Ghent, Belgium) and the Canadian Burkholderia cepa-
cia complex Research and Referral Repository (Vancou-
ver, BC). Strains were grown aerobically overnight at 30°
C on half-strength Luria-Bertani (% LB) solid medium
or in % LB broth with shaking. Lysates for DNA isola-
tion were prepared from soft agar overlays made with %
LB medium containing agarose instead of agar.

Phage isolation and propagation

KL1 and AH2 were isolated from sewage and Nandina
sp. soil, respectively, using standard extraction protocols
[26]. Environmental samples were incubated with shak-
ing at 30°C in a slurry of % LB broth, suspension
medium (SM) (50 mM Tris—HCl [pH 7.5], 100 mM
NaCl, 10 mM MgSQOy, 0.01% gelatin solution), and BCC
liquid culture (K56-2 for KL1 isolation and C6433 for
AH2 isolation). Solids were pelleted by centrifugation
and the supernatant was filter-sterilized, plated in soft
agar overlays with the BCC strain used in the extraction,
and incubated overnight at 30°C and >24 h at room
temperature. Plaques were picked using a sterile Pasteur
pipette and transferred into 1 ml SM. Phage propagation
was performed using soft agar overlays: 100 pl liquid
culture and 100 pl phage stock (diluted in SM if neces-
sary) were incubated 20 min at room temperature,
mixed with 3 ml 0.7% % LB top agar, overlaid on a plate
of % LB solid medium, and incubated at 30°C and room
temperature until plaque formation was complete. High
titre stocks were made by transferring multiple plaques
into SM or by overlaying plates with SM and incubating
4-8 h at 4°C on a platform rocker.

Lysis characterization

Host ranges were performed using soft agar overlays (as
described above) or by spotting 10 ul aliquots of phage
stock (at multiple dilutions) onto a freshly-plated soft
agar overlay containing 100 pl liquid culture. K56-2 LPS
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mutant [31,32] host ranges were performed similarly
using wildtype K56-2, RSF19 (wbxE:pRF201), XOA7
(waaL:pGPQTp), XOA15 (wabR:pGPQTp), XOA17
(wabS:pGPApTp), XOA8 (wabO:pGPQTp), and CCB1
(waaC:pGPQTp) (kindly provided by Miguel Valvano).

One-step growth curves were performed using a vari-
ation of a standard protocol [39]. One hundred microli-
ters of diluted phage lysate containing 10° PFU of KL1
or AH2 was mixed with 10® colony forming units of
C6433 (900 pl 5 h liquid culture [for exponential phase
curves] or 100 pl 16 h liquid culture diluted in 800 pl
spent % LB broth [for stationary phase curves]). The
suspension was incubated 15 minutes at 30°C, diluted
1:1000 into a flask containing % LB broth (exponential)
or spent % LB broth (stationary), and incubated without
shaking at 30°C. One milliliter samples were withdrawn
at one hour intervals for 4 h. Two 100 pl samples were
plated immediately in soft agar overlays with C6433.
One hundred microliters of chloroform was then added
to the sample, mixed 5 s on a vortexer, and separated by
centrifugation for 1 min at 13,000 rpm. Two 100 pl
chloroform-treated samples were then plated immedi-
ately in soft agar overlays with C6433. Plates were incu-
bated 48 h at 30°C prior to plaque enumeration.
Experiments were performed in triplicate for each condi-
tion (KL1 exponential or stationary phase, AH2 expo-
nential or stationary phase).

Electron microscopy

Filter-sterilized high titre stocks of KL1 and AH2 were
used for electron microscopy. 5-10 ul of phage lysate
was deposited onto a carbon-coated copper grid and
incubated 5 min at room temperature. Following adsorp-
tion of excess lysate onto a filter paper, the grids were
stained with 2% phosphotungstic acid for 2 min. Grids
were viewed using a Philips/FEI (Morgagni) transmission
electron microscope with charge-coupled device camera
(University of Alberta Department of Biological Sciences
Advanced Microscopy Facility).

DNA isolation, RFLP analysis, and sequencing

Phage DNA was isolated using polyethylene glycol pre-
cipitation and guanidine thiocyanate lysis. One hundred
milliliters of phage lysate (propagated on C6433) was
collected by overlaying turbid-clear or mottled % LB
agarose plates with SM and incubating at 4°C 4-8 h on
a platform rocker. Following the addition of chloroform,
debris in the lysate was pelleted by centrifugation for
10 min at 10,000 rcf and 4°C and the supernatant was
filter-sterilized with a Millex-HA 0.45 um syringe dri-
ven filter unit (Millipore, Billerica, MA). Fifty milliliter
aliquots of the supernatant were incubated at 37°C
240 min with 10 pl DNase I, 10 pl DNase I buffer
and 6 pl RNase (Fermentas, Burlington, ON) to degrade
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contaminating bacterial nucleic acids. Following centrifu-
gation for 10 min at 4000 rcf and 4°C, phages in the
supernatant were precipitated in 1 M NaCl and 10% w/v
PEG 8000 at 4°C. The precipitated phages were pelleted
by centrifugation for 20 min at 10,000 rcf and 4°C and
resuspended in 1.6 ml SM. To eliminate residual DNase 1
activity, the phage suspension was incubated at 37°C
10 min with 40 pl 20 mg/ml proteinase K. Following ex-
traction of the phages with an equal volume of chloro-
form and the addition of EDTA to 100 mM, % volume of
6 M guanidine thiocyanate was added to disrupt the cap-
sids and release the phage DNA. DNA was then purified
using the GENECLEAN Turbo Kit (Qbiogene, Irvine,
CA). Phage DNA was quantified using a NanoDrop ND-
1000 spectrophotometer (Thermo Scientific, Waltham,
MA).

RFLP analysis was performed using 5 pg of phage
DNA digested overnight at 37°C with EcoRI (Invitrogen,
Carlsbad, CA). For cos site screening, 5 pg EcoRI digests
were incubated 20 min at 80°C, cooled on ice, and sepa-
rated on 0.8% agarose gels in 1x TAE (pH 8.0). Bands
present only in the heated sample were excised from the
gel, purified using a GENECLEAN III kit (Qbiogene),
cloned into pJET1.2 (Fermentas), and sequenced to iden-
tify the cos site. Preliminary sequencing of EcoRI phage
DNA fragments cloned into pUC19 was performed as
described previously [19,29]. For complete genome se-
quencing, phage DNA was submitted to 454 Life
Sciences (Branford, CT) for pyrosequencing. The gen-
ome sequences of KL1 and AH2 have been deposited in
GenBank with the accession numbers JF939047 and
JN564907. Sequence start sites for these files were
chosen based on alignment with PA73 for KL1 and at
the cos site for AH2.

Bioinformatics analysis

Annotation of the genome sequences and determination
of GC contents were performed using GeneMark (http://
exon.biology.gatech.edu/gmhmm?2_prok.cgi) [70]. Man-
ual annotations were performed for KL1 5 (encoding
Rz1) and KL1 19/AH2 55 (encoding translationally-
frameshifted tail proteins). Homology searches and con-
served domain searches were performed using HHpred
(http://toolkit.tuebingen.mpg.de/hhpred) [71] and NCBI’s
BLASTN/BLASTP (for full genomes and individual pro-
teins, respectively) (http://blast.ncbi.nlm.nih.gov) [72]
and Conserved Domain Search (http://www.ncbi.nlm.
nih.gov/Structure/cdd/wrpsb.cgi) [73]. FSFinder was
used for translational frameshift identification (http://
wilab.inha.ac.kr/fsfinder) [74]. Mfold was used for stem-
loop structure identification (http://mfold.rna.albany.
edu/?q=mfold) [75]. Sequence comparisons were visua-
lized using Circos (http://circos.ca) [76] and PROmer
(http://mummer.sourceforge.net) [77] with the following


http://exon.biology.gatech.edu/gmhmm2_prok.cgi
http://exon.biology.gatech.edu/gmhmm2_prok.cgi
http://toolkit.tuebingen.mpg.de/hhpred
http://blast.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://wilab.inha.ac.kr/fsfinder
http://wilab.inha.ac.kr/fsfinder
http://mfold.rna.albany.edu/?q=mfold
http://mfold.rna.albany.edu/?q=mfold
http://circos.ca
http://mummer.sourceforge.net

Lynch et al. BMC Genomics 2012, 13:223
http://www.biomedcentral.com/1471-2164/13/223

parameters: breaklen = 60, maxgap = 30, mincluster = 20,
minmatch = 6. Lysis protein analysis was performed using
TMHMM for transmembrane region identification (http://
www.cbs.dtu.dk/services/TMHMM) [78] and LipoP for sig-
nal peptidase II cleavage site identification (http://www.cbs.
dtu.dk/services/LipoP) [79].

Additional files

Additional file 1: Table S1. KL1 HHpred predictions.
Additional file 2: Table S2. AH2 HHpred predictions.

Additional file 3: Figure S3. Stem-loop structures predicted by mfold
analysis of the KL1 (left) and AH2 (right) frameshift regions (including the
putative frameshift sites and 35 downstream bases).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

KHL isolated KL1, performed electron microscopy, sequenced, annotated,
and analyzed the genomes, and drafted the manuscript. PS constructed
Figure 4 and performed FSFinder and preliminary HHpred analysis. JJD
devised the study and assisted with experimental design, data analysis, and
the writing of the manuscript. All authors read and approved the final
manuscript.

Acknowledgements

The authors would like to thank Amberlie Heaman for isolation and
preliminary host range analysis of AH2, Miles Peterson for assistance with
figure construction, Arlene Oatway (University of Alberta Department of
Biological Sciences Advanced Microscopy Facility) for assistance with
electron microscopy, and Miguel Valvano (University of Western Ontario) for
providing K56-2 LPS mutants.

JID gratefully acknowledges funding from the Canadian Institutes of Health
Research (CIHR grant 200705XNE-170954), and Cystic Fibrosis Canada (CFC
grant RES0001467), for operating grant support. KHL gratefully acknowledges
funding from Cystic Fibrosis Canada, NSERC, the Killam Trusts, and Alberta
Innovates — Health Solutions for scholarship support.

Author details

'6-008 Centennial Centre for Interdisciplinary Science, Department of
Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
21400 College Plaza, Department of Agricultural, Food and Nutritional
Science, University of Alberta, Edmonton, AB T6G 2C8, Canada.

Received: 17 October 2011 Accepted: 15 May 2012
Published: 07 June 2012

References

1. Merril CR, Scholl D, Adhya SL: The prospect for bacteriophage therapy in
Western medicine. Nat Rev Drug Discov 2003, 2:489-497.

2. Daniel A, Euler C, Collin M, Chahales P, Gorelick KJ, Fischetti VA: Synergism
between a novel chimeric lysin and oxacillin protects against infection
by methicillin-resistant Staphylococcus aureus. Antimicrob Agents
Chemother 2010, 54:1603-1612.

3. Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L:
Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic
fibrosis strains: First steps towards treatment and prevention. PLoS One
2011, 6:216963.

4. Kumari S, Harjai K, Chhibber S: Bacteriophage versus antimicrobial agents
for the treatment of murine burn wound infection caused by Klebsiella
pneumoniae B5055. J Med Microbiol 2011, 60:205-210.

5. Oliveira A, Sereno R, Azeredo J: In vivo efficiency evaluation of a phage
cocktail in controlling severe colibacillosis in confined conditions and
experimental poultry houses. Vet Microbiol 2010, 146:303-308.

6. Waseh S, Hanifi-Moghaddam P, Coleman R, Masotti M, Ryan S, Foss M,
MacKenzie R, Henry M, Szymanski CM, Tanha J: Orally administered P22

20.

21.

22.

23.

24,

25.

26.

27.

Page 17 of 19

phage tailspike protein reduces Salmonella colonization in chickens:
Prospects of a novel therapy against bacterial infections. PLoS One 2010,
5:213904.

Carvalho CM, Gannon BW, Halfhide DE, Santos SB, Hayes CM, Roe JM, Azeredo J:
The in vivo efficacy of two administration routes of a phage cocktail to
reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens.
BMC Microbiol 2010, 10:232.

Wright A, Hawkins CH, Anggdrd EE, Harper DR: A controlled clinical trial of a
therapeutic bacteriophage preparation in chronic otitis due to antibiotic-
resistant Pseudomonas aeruginosa; A preliminary report of efficacy. Clin
Otolaryngol 2009, 34:349-357.

Golshahi L, Seed KD, Dennis JJ, Finlay WH: Toward modern inhalational
bacteriophage therapy: Nebulization of bacteriophages of Burkholderia
cepacia complex. J Aerosol Med Pulm Drug Deliv 2008, 21:351-359.

Golshahi L, Lynch KH, Dennis JJ, Finlay WH: In vitro lung delivery of
bacteriophages KS4-M and OKZ using dry powder inhalers for treatment of
Burkholderia cepacia complex and Pseudomonas aeruginosa infections in
cystic fibrosis. J Appl Microbiol 2011, 110:106-117.

Matinkhoo S, Lynch KH, Dennis JJ, Finlay WH, Vehring R: Spray-dried respirable
powders containing bacteriophages for the treatment of pulmonary
infections. J Pharm Sci 2011, 100:5197-5205.

Henn MR, Sullivan MB, Stange-Thomann N, Osburne MS, Berlin AM, Kelly L,
Yandava C, Kodira C, Zeng Q, Weiand M, Sparrow T, Saif S, Giannoukos G,
Young SK, Nusbaum C, Birren BW, Chisholm SW: Analysis of high-
throughput sequencing and annotation strategies for phage genomes.
PLoS One 2010, 5:¢9083.

Isles A, Maclusky I, Corey M: Pseudomonas cepacia infection in cystic fibrosis:
An emerging problem. J Pedliatr 1984, 104:206-210.

Ryley HC, Doull IJM: Burkholderia cepacia complex infection in patients with
cystic fibrosis: Laboratory investigations, epidemiology and clinical
management. Rev Med Microbiol 2003, 14:15-24.

LiPuma JJ, Dasen SE, Nielson DW, Stern RC, Stull TL: Person-to-person
transmission of Pseudomonas cepacia between patients with cystic fibrosis.
Lancet 1990, 336:1094-1096.

Zhou J, Chen Y, Tabibi S, Alba L, Garber E, Saiman L: Antimicrobial
susceptibility and synergy studies of Burkholderia cepacia complex
isolated from patients with cystic fibrosis. Antimicrob Agents Chemother
2007, 51:1085-1088.

Baldwin A, Mahenthiralingam E, Drevinek P, Pope C, Waine DJ, Henry DA, Speert
DP, Carter P, Vandamme P, LiPuma JJ, Dowson CG: Elucidating global
epidemiology of Burkholderia multivorans in cases of cystic fibrosis by
multilocus sequence typing. J Clin Microbiol 2008, 46:290-295.

Seed KD, Dennis JJ: Experimental bacteriophage therapy increases
survival of Galleria mellonella larvae infected with clinically relevant
strains of the Burkholderia cepacia complex. Antimicrob Agents Chemother
2009, 53:2205-2208.

Lynch KH, Seed KD, Stothard P, Dennis JJ: Inactivation of Burkholderia cepacia
complex phage KS9 gp41 identifies the phage repressor and generates lytic
virions. J Virol 2010, 84:1276-1288.

Carmody LA, Gill JJ, Summer EJ, Sajjan US, Gonzalez CF, Young RF, LiPuma JJ:
Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia
pulmonary infection. J Infect Dis 2010, 201:264-271.

Semler DD, Lynch KH, Dennis JJ): The promise of bacteriophage therapy for
Burkholderia cepacia complex respiratory infections. Front Cell Inf Microbio 2012,
1:27.

Lynch KH, Dennis JJ: Cangene gold medal award lecture - genomic analysis
and modification of Burkholderia cepacia complex bacteriophages. Can J
Microbiol 2012, 58:221-235.

Imamovic L, Ballesté E, Jofre J, Muniesa M: Quantification of Shiga toxin-
converting bacteriophages in wastewater and in fecal samples by real-time
quantitative PCR. Appl Environ Microbiol 2010, 76:5693-5701.

Langley R, Kenna DT, Vandamme P, Ure R, Govan JRW: Lysogeny and
bacteriophage host range within the Burkholderia cepacia complex.

J Med Microbiol 2003, 52:483-490.

Summer EJ, Gonzalez CF, Bomer M, Carlile T, Embry A, Kucherka AM, Lee J,
Mebane L, Morrison WC, Mark L, King MD, LiPuma JJ, Vidaver AK, Young R:
Divergence and mosaicism among virulent soil phages of the
Burkholderia cepacia complex. J Bacteriol 2006, 188:255-268.

Seed KD, Dennis JJ: Isolation and characterization of bacteriophages of
the Burkholderia cepacia complex. FEMS Microbiol Lett 2005, 251:273-280.
Gill JJ, Summer EJ, Russell WK, Cologna SM, Carlile TM, Fuller AC,
Kitsopoulos K, Mebane LM, Parkinson BN, Sullivan D, Carmody LA, Gonzalez


http://www.cbs.dtu.dk/services/TMHMM
http://www.cbs.dtu.dk/services/TMHMM
http://www.cbs.dtu.dk/services/LipoP
http://www.cbs.dtu.dk/services/LipoP
http://www.biomedcentral.com/content/supplementary/1471-2164-13-223-S1.docx
http://www.biomedcentral.com/content/supplementary/1471-2164-13-223-S2.docx
http://www.biomedcentral.com/content/supplementary/1471-2164-13-223-S3.pptx

Lynch et al. BMIC Genomics 2012, 13:223
http://www.biomedcentral.com/1471-2164/13/223

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41,

42.

43.

44,

45,

46.

47.

48.

49.

CF, LiPuma JJ, Young R: Genomes and characterization of phages Bcep22
and BceplL02, founders of a novel phage type in Burkholderia
cenocepacia. J Bacteriol 2011, 193:5300-5313.

Goudie AD, Lynch KH, Seed KD, Stothard P, Shrivastava S, Wishart DS,
Dennis JJ: Genomic sequence and activity of KS10, a transposable phage
of the Burkholderia cepacia complex. BMC Genomics 2008, 9:615.

Lynch KH, Stothard P, Dennis JJ: Genomic analysis and relatedness of P2-
like phages of the Burkholderia cepacia complex. BMC Genomics 2010,
11:599.

Lynch KH, Stothard P, Dennis JJ: Characterization of DC1, a broad-host-
range Bcep22-like podovirus. Appl Environ Microbiol 2012, 78:389-891.
Loutet SA, Flannagan RS, Kooi C, Sokol PA, Valvano MA: A complete
lipopolysaccharide inner core oligosaccharide is required for resistance
of Burkholderia cenocepacia to antimicrobial peptides and bacterial
survival in vivo. J Bacteriol 2006, 188:2073-2080.

Ortega X, Silipo A, Saldfas MS, Bates CC, Molinaro A, Valvano MA:
Biosynthesis and structure of the Burkholderia cenocepacia K56-2
lipopolysaccharide core oligosaccharide: Truncation of the core
oligosaccharide leads to increased binding and sensitivity to polymyxin
B. J Biol Chem 2009, 284:21738-21751.

Kwan T, Liu J, DuBow M, Gros P, Pelletier J: Comparative genomic analysis
of 18 Pseudomonas aeruginosa bacteriophages. J Bacteriol 2006,
188:1184-1187.

Zhang J, Inouye M: MazG, a nucleoside triphosphate
pyrophosphohydrolase, interacts with Era, an essential GTPase in
Escherichia coli. J Bacteriol 2002, 184:5323-5329.

Xu J, Hendrix RW, Duda RL: Conserved translational frameshift in dsDNA
bacteriophage tail assembly genes. Mol Cell 2004, 16:11-21.

Alam SL, Atkins JF, Gesteland RF: Programmed ribosomal frameshifting:
Much ado about knotting! Proc Natl Acad Sci USA 1999, 96:14177-14179.
Young R, Wang I-N, Roof WD: Phages will out: Strategies of host cell lysis.
Trends Microbiol 2000, 8:120-128.

Summer EJ, Berry J, Tran TAT, Niu L, Struck DK, Young R: Rz/Rz1 lysis gene
equivalents in phages of Gram-negative hosts. J Mol Biol 2007, 373:
1098-1112.

Summer EJ, Gonzalez CF, Carlisle T, Mebane LM, Cass AM, Savva CG, LiPuma
J, Young R: Burkholderia cenocepacia phage BcepMu and a family of Mu-
like phages encoding potential pathogenesis factors. J Mol Biol 2004,
340:49-65.

Lopes A, Amarir-Bouhram J, Faure G, Petit M-A, Guerois R: Detection of
novel recombinases in bacteriophage genomes unveils Rad52, Rad51
and Gp2.5 remote homologs. Nucleic Acids Res 2010, 38:3952-3962.
Hennecke F, Kolmar H, Brundl K, Fritz H-J: The vsr gene product of E. coli
K-12 is a strand- and sequence-specific DNA mismatch endonuclease.
Nature 1991, 353:776-778.

Lin J-J, Sancar A: The C-terminal half of UvrC protein is sufficient to
reconstitute (A)BC excinuclease. Proc Natl Acad Sci USA 1991, 88:
6824-6828.

Gross M, Marianovsky |, Glaser G: MazG - A regulator of programmed cell
death in Escherichia coli. Mol Microbiol 2006, 59:590-601.

Magnusson LU, Farewell A, Nystrom T: ppGpp: A global regulator in
Escherichia coli. Trends Microbiol 2005, 13:236-242.

Bryan MJ, Burroughs NJ, Spence EM, Clokie MRJ, Mann NH, Bryan SJ:
Evidence for the intense exchange of MazG in marine cyanophages by
horizontal gene transfer. PLoS One 2008, 3:22048.

Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR,
DeFrancesco AS, Kern SE, Thompson LR, Young S, Yandava C, Fu R, Krastins
B, Chase M, Sarracino D, Osburne MS, Henn MR, Chisholm SW: Genomic
analysis of oceanic cyanobacterial myoviruses compared with T4-like
myoviruses from diverse hosts and environments. Environ Microbiol 2010,
12:3035-3056.

Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW: Three
Prochlorococcus cyanophage genomes: Signature features and ecological
interpretations. PLoS Biol 2005, 3:e144.

Mann NH, Clokie MRJ, Millard A, Cook A, Wilson WH, Wheatley PJ, Letarov A,

Krisch HM: The genome of S-PM2, a "photosynthetic" T4-type
bacteriophage that infects marine Synechococcus strains. J Bacteriol 2005,
187:3188-3200.

Weigele PR, Pope WH, Pedulla ML, Houtz JM, Smith AL, Conway JF, King J,
Hatfull GF, Lawrence JG, Hendrix RW: Genomic and structural analysis of

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

72.

73.

74.

Page 18 of 19

Syn9, a cyanophage infecting marine Prochlorococcus and
Synechococcus. Environ Microbiol 2007, 9:1675-1695.

Angly F, Youle M, Nosrat B, Srinagesh S, Rodriguez-Brito B, McNairnie P,
Deyanat-Yazdi G, Breitbart M, Rohwer F: Genomic analysis of multiple
Roseophage SIO1 strains. Environ Microbiol 2009, 11:2863-2873.

Duhaime MB, Wichels A, Waldmann J, Teeling H, Glockner FO:
Ecogenomics and genome landscapes of marine Pseudoalteromonas
phage H105/1. ISME J 2011, 5:107-121.

Clokie MRJ, Mann NH: Marine cyanophages and light. Environ Microbiol
2006, 8:2074-2082.

Hammer BK, Swanson MS: Co-ordination of Legionella pneumophila
virulence with entry into stationary phase by ppGpp. Mol Microbiol 1999,
33:721-731.

Taylor CM, Beresford M, Epton HAS, Sigee DC, Shama G, Andrew PW,
Roberts IS: Listeria monocytogenes relA and hpt mutants are impaired in
surface-attached growth and virulence. J Bacteriol 2002, 184:621-628.
Erickson DL, Lines JL, Pesci EC, Venturi V, Storey DG: Pseudomonas
aeruginosa relA contributes to virulence in Drosophila melanogaster.
Infect Immun 2004, 72:5638-5645.

Jeong J-H, Song M, Park S-I, Cho K-O, Joon HR, Choy HE: Salmonella
enterica serovar Gallinarum requires ppGpp for internalization and
survival in animal cells. J Bacteriol 2008, 190:6340-6350.

Klinkenberg LG, Lee J-H, Bishai WR, Karakousis PC: The stringent response
is required for full virulence of Mycobacterium tuberculosis in guinea
pigs. J Infect Dis 2010, 202:1397-1404.

Haralalka S, Nandi S, Bhadra RK: Mutation in the relA gene of Vibrio
cholerae affects in vitro and in vivo expression of virulence factors. J
Bacteriol 2003, 185:4672-4682.

Silva AJ, Benitez JA: A Vibrio cholerae relaxed (relA) mutant expresses
major virulence factors, exhibits biofilm formation and motility, and
colonizes the suckling mouse intestine. J Bacteriol 2006, 188:794-800.
Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G,
Siehnel R, Schafhauser J, Wang Y, Britigan BE, Singh PK: Active starvation
responses mediate antibiotic tolerance in biofilms and nutrient-limited
bacteria. Science 2011, 334:982-986.

Bull JJ, Badgett MR, Wichman HA, Huelsenbeck JP, Hillis DM, Gulati A, Ho C,
Molineux 1J: Exceptional convergent evolution in a virus. Genetics 1997,
147:1497-1507.

Wichman HA, Badgett MR, Scott LA, Boulianne CM, Bull JJ: Different
trajectories of parallel evolution during viral adaptation. Science 1999,
285:422-424.

Wichman HA, Scott LA, Yarber CD, Bull JJ: Experimental evolution
recapitulates natural evolution. Phil Trans R Soc Lond 2000, 355:1677-1684.
Bollback JP, Huelsenbeck JP: Parallel genetic evolution within and
between bacteriophage species of varying degrees of divergence.
Genetics 2009, 181:225-234.

Ackermann H-W: 5500 Phages examined in the electron microscope. Arch
Virol 2007, 152:227-243.

Abedon ST: Phage evolution and ecology. Adv Appl Microbiol 2009, 67:1—
45.

Ceyssens P-J, Glonti T, Kropinski AM, Lavigne R, Chanishvili N, Kulakov L,
Lashkhi N, Tediashvili M, Merabishvili M: Phenotypic and genotypic
variations within a single bacteriophage species. Viro/ J 2011, 8:134.
Mahenthiralingam E, Coenye T, Chung JW, Speert DP, Govan JRW, Taylor P,
Vandamme P: Diagnostically and experimentally useful panel of strains
from the Burkholderia cepacia complex. J Clin Microbiol 2000, 38:910-913.
Coenye T, Vandamme P, LiPuma JJ, Govan JRW, Mahenthiralingam E:
Updated version of the Burkholderia cepacia complex experimental
strain panel. J Clin Microbiol 2003, 41:2797-2798.

Lukashin AV, Borodovsky M: GeneMark.hmm: New solutions for gene
finding. Nucleic Acids Res 1998, 26:1107-1115.

Soding J, Biegert A, Lupas AN: The HHpred interactive server for protein
homology detection and structure prediction. Nucleic Acids Res 2005, 33:
W244-\W248.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ:
Gapped BLAST and PSI-BLAST: A new generation of protein database
search programs. Nucleic Acids Res 1997, 25:3389-3402.

Marchler-Bauer A, Bryant SH: CD-Search: Protein domain annotations on
the fly. Nucleic Acids Res 2004, 32:W327-W331.

Moon S, Byun Y, Kim H-J, Jeong S, Han K: Predicting genes expressed via
—1 and +1 frameshifts. Nucleic Acids Res 2004, 32:4884-4892.



Lynch et al. BMC Genomics 2012, 13:223
http://www.biomedcentral.com/1471-2164/13/223

75.

76.

77.

78.

79.

Zuker M: Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res 2003, 31:3406-3415.

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ,
Marra MA: Circos: An information aesthetic for comparative genomics.
Genome Res 2009, 19:1639-1645.

Delcher AL, Phillippy A, Carlton J, Salzberg SL: Fast algorithms for large-
scale genome alignment and comparison. Nucleic Acids Res 2002,
30:2478-2483.

Krogh A, Larsson B, von Heijne G, Sonnhammer ELL: Predicting
transmembrane protein topology with a hidden Markov model:
Application to complete genomes. J Mol Biol 2001, 305:567-580.
Juncker AS, Willenbrock H, von Heijne G, Brunak S, Nielsen H, Krogh A:
Prediction of lipoprotein signal peptides in Gram-negative bacteria.
Protein Sci 2003, 12:1652-1662.

doi:10.1186/1471-2164-13-223

Cite this article as: Lynch et al: Comparative analysis of two
phenotypically-similar but genomically-distinct Burkholderia
cenocepacia-specific bacteriophages. BMC Genomics 2012 13:223.

Page 19 of 19

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

e Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Isolation, host range and morphology
	Genome characterization
	Module analysis
	Overview
	Virion morphogenesis
	Lysis
	DNA binding
	MazG

	Convergent evolution

	Conclusions
	Methods
	Bacterial strains and growth conditions
	Phage isolation and propagation
	Lysis characterization
	Electron microscopy
	DNA isolation, RFLP analysis, and sequencing
	Bioinformatics analysis

	Additional files
	Acknowledgements
	Author details
	References

