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A bstract

In this thesis, we study periodic and multirate systems. In particular we are interested in 

rate changers, nonuniform filter banks, and nonuniform transmultiplexers.

We consider the general characteristics of multirate building blocks and the approxima­

tion of these systems by systems that have a different but compatible period. In the H i  

model-matching case, we show how to obtain the optimal approximant. Then, we use these 

multirate building blocks in the design of nonuniform filter banks and transmultiplexers.

Contrary to uniform filter banks, for nonuniform filter banks, if we use LT I filters in the 

analysis and synthesis filter banks, it may not be possible to achieve perfect-reconstruction. 

But, by using general multirate building blocks, we can eliminate some of the design con­

straints.

We assume that the analysis filter bank consists of finite impulse response (F IR ) filters. 

The initial F IR  analysis filters are designed according to the characteristics of the input. 

By the design procedure, the F IR  synthesis filters are found so that the norm of the error 

system is minimized over all synthesis filters that have a prespecified order. Then, the 

synthesis filters obtained in the previous step are fixed and the analysis filters are found 

similarly. By iteration, the norm of the error system decreases until it converges to its final 

value.

In the U 2 design of nonuniform filter banks, the problem is formulated in the frequency 

domain. In this approach, the frequency selectivity of filters can also be considered by
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adding penalty terms. A t each iteration, the least squares solution of a system of linear 

equations yields the local optimal filters.

In the "Wqo design of nonuniform filter banks, the problem is formulated in the state- 

space framework. The problem is then posed as an optimization problem based on linear 

matrix inequalities, which can be solved effectively by interior point methods.

Nonuniform transmultiplexers can be used for the conversion of signals that have differ­

ent sampling rates, between the time-division multiplexing (T D M ) format and the frequency- 

division multiplexing (F D M ) format. Here, we have posed the design of nonuniform trans- 

multiplexers as an iterated semidefinite programming problem.
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Chapter 1

Introduction

Multirate systems are systems that handle data at several sampling rates. Multirate sys­

tems typically consist of downsamplers that decrease the sampling rate, upsamplers which 

increase the sampling rate, and linear systems for filtering of signals.

One of the applications of multirate signal processing is in changing the sampling rates 

of signals. In digital audio industry different devices are operating at different sampling 

rates, i.e., the broadcast rate is 32 kHz, the sampling rate for CDs is 44.1 kHz and for 

studio work is 48 kHz. Therefore it is necessary to convert the signals from one sampling 

rate to another, so that the spectrums of the signals are similar in the frequency bands of 

interest [11, 24, 32, 31].

Another application of multirate signal processing is in the design and implementation 

of filters. In particular, in the design of finite impulse response (F IR ) filters with sharp 

transition bands, instead of direct implementation, it is possible to use multirate structures, 

and perform some of the computations at lower sampling rates [34].

The other important issue in multirate signal processing is the design of multirate filter 

banks [34, 18, 25, 6, 17]. M ultirate filter banks are mainly used for subband coding of signals. 

Statistically, although audio and visual signals have most of their energy concentrated in a

1
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particular frequency band, the suppression of other bands may result in a degradation of 

the quality. In subband coding, by using a multirate filter bank, the input signal is split into 

different subbands. In critically sampled case, the number of input samples per unit time is 

equal to the sum of the number of samples per unit time of the subbands. Subband signals 

are encoded according to the statistical or perceptual properties, and transmitted or stored 

according to the application. It is usually possible to represent the subband signals with 

fewer number of bits than the input signal. After transmission/retrieval, subband signals 

are processed, and the input signal is reconstructed. Therefore by using filter banks it is 

possible to represent signals more efficiently, and without any perceivable loss in quality.

A related topic is the design of transmultiplexers [33, 35, 19, ‘26, I]. Transmultiplexers 

are used for the conversion of signals between the time-division multiplexing (T D M ) format 

and the frequency-division multiplexing (F D M ) format. Here, we are interested in the design 

of nonuniform transmultiplexers. These systems can be used in cases where the sampling 

rates of the input signals are not necessarily the same. As we will see most of the methods 

developed here for the filter banks can be modified for use in nonuniform transmultiplexers.

In the rest of this section, we will discuss rate changers, filter banks, and transmulti­

plexers in more detail, and will give an outline of the thesis.

1.1 R ate Changers

In digital signal processing, different devices might be operating at different sampling rates. 

It  is often necessary to convert a signal with a given sampling rate to another signal that has 

a different sampling rate so that the frequency characteristics of the signal remains similar 

[11]. One way to do that is to convert the digital signal back to a continuous signal and

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



resample the signal at the sampling rate of interest. This process is expensive, inherently 

introduces noise, and is usually not adopted.

A better approach is to convert the discrete time signal directly from one sampling rate 

to the other. This can be done by the system shown in Figure 1.1. This system consists of 

an upsampler by p, f  p, a linear system G, and a downsampler by q , 4 q. The upsampler 

by p inserts p — 1 zeros between each two consecutive samples, and the downsampler by 

q deletes q — 1 samples between each consecutive q samples at kq and (k +  I )q, for any 

integer k. For such a system, if we delay the input sequence by q samples, the output will 

be delayed by p samples. We call a system with this property a (p. <7)-periodic system. In 

a real-time implementation, the time corresponding to q samples in the input sequence of 

the system is equal to the time corresponding to p samples of the output of the system. In 

other words the system is a sample rate changer, and the sampling rate of the output of 

the system u  is related to the sampling rate of the input a/,-, by

q
UJi =  - w .

P

As we argue later, by choosing the linear time-invariant (LT I) system G to be a lowpass 

filter with the cutoff frequency wc =  min(7r/p, tt/q ) ,  it is possible to expand (if p <  q) or 

contract (if p >  q) the spectrum of the input over the frequency range of interest. Therefore 

the system retains the shape of the spectrum in the given frequency range, while it changes 

the sampling rate.

1.2 F ilter Banks

By proper connection of rate changers that were described above, a multirate filter bank can 

be formed. A simple nontrivial case is the 2-channel quadrature mirror filter bank (Q M F)

3
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Figure 1.1: A sample-rate changer.

x ( k )

Figure 1.2: Q M F  filter bank.

shown in Figure 1.2. The filters Ho and H i are typically lowpass and highpass respectively. 

Thus xo and x i are the low-frequency and high-frequency components of x. Since xo and 

x i are band-limited, if they are downsampled aliasing will be negligible.

Assume that the input to the filter bank x (n ), has most of its energy in the lower half of 

the spectrum, but the energy of the higher half of the spectrum is not negligible. Denote the 

subband signals that are obtained by filtering and downsampling, t'o and iq, respectively. 

As most of the energy of the signal is in vq, we may allocate fewer bits to uj than to i?o- 

Thus the number of bits per second needed to transmit vq and t?i collectively, is less than 

that needed for the transmission of x (k ) ,  and it is usually more efficient to transmit or store 

the subband signals vo and uj instead of x. After transmitting/retrieving, the subband 

signals are upsampled by a factor of 2. Then the output of the upsamplers are processed by 

filters Fo and F i, and added together so that a replica of the original signal is reconstructed

4
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with a prespecified delay. Since the lower half of the spectrum is transmitted on the first 

channel and the higher half on the second channel, the filters Fo and Fi should be lowpass 

and high pass filters respectively.

I f  we delay the input to the filter bank by 2 samples, its output will be delayed by 2 

samples. Thus the Q M F  is a periodically time-varying system with period 2. By blocking 

the inputs and outputs of this periodic system a 2 by 2 LTI system results [34]. As we will 

show later, the blocked transfer matrix of a filter bank can be obtained by the multiplication 

of the transfer matrix of the analysis filter bank and that of the synthesis filter bank. Because 

it is desirable to reconstruct the input of the multirate filter bank, the transfer matrix of 

the filter bank should be as close as possible to a blocking of a pure delay transfer function.

The delay depends on the order of the filters. The order of the filters in turn depends 

on the stop-band ripples and the transition bands of filters.

Assume that all analysis and synthesis filters are finite impulse response filters. The 

simultaneous design of analysis and synthesis filters in a multirate filter bank is a nonlinear 

optimization problem, but if either analysis or synthesis filters are known and the other set 

is to be designed, the problem can be solved efficiently: The initial F IR  analysis filters may 

be designed according to the characteristics of the input. By the model-matching theory, 

the F IR  synthesis filters are found so that the norm of the error system is minimized over all 

synthesis filters that have a prespecified order [7, 6, 27]. Then, the synthesis filters obtained 

in the previous step are fixed, and the analysis filters are found similarly. By iteration, the 

norm of the error system decreases until it converges to its final value.

Nonuniform filter banks are obtained by using fractional rate changers instead of integer 

rate changers as their building blocks. In a nonuniform filter bank, the sampling rates

5
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are not the same in all channels, and thus filters in different channels may have different 

bandwidths, which in turn may result in a higher efficiency in coding. The objective is 

to recover the input signal at the output of the filter bank, while the efficiency of the 

transmission is improved.

The design of nonuniform filter banks is the main focus of this thesis. It can be shown 

that the design of a nonuniform filter bank can be converted to the design of a uniform 

filter bank, subject to some structural constraints. The structural constraints cause some 

of the coefficients of the analysis and synthesis filters to appear in more than one entry 

of the transfer matrices of the analysis and synthesis filter banks, respectively. In other 

words, the design of nonuniform filter banks can be posed as a model-matching problem 

with a constraint on the elements of the transfer matrices. Most of the methods that 

were previously proposed for the design of nonuniform filter banks were applicable only 

when there were no constraints on the elements of the equivalent uniform filter bank. Here 

we pose the design of a nonuniform filter bank as a model-matching problem, and find 

the optimal F IR  filter bank iteratively. Our approach is general and handles structural 

constraints. A related multirate system is a transmultiplexer, which we shall introduce 

next.

1.3 Transm ultiplexers

Assume that we intend to transmit signals x q ( t i )  and x t (n) through a channel. Take the 

transmultiplexer shown in Figure 1.3. Let Fo =  H i  =  1, and F \ =  Hq =  x“ l . By this 

choice, we have u(2n) =  xo(rc), v(2n + 1) =  i i ( n ) ,  yo(n) =  x 0(n — 1), and y i{n )  =  X | ( n  — 1). 

In other words, the transmultiplexer transmits the signal v in the T D M  format, and the

6
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v {k)
H \(s )

Figure 1.3: A ‘2-channel transmultiplexer.

outputs of the transmultiplexer are the delayed versions of the inputs. Note that here, the 

transmultiplexer is not doing any processing, and merely serves as a symbolic representation 

of the inputs in the T D M  format.

Alteratively, we may transmit the signals in the F D M  format, and recover the original 

signals at the outputs: The upsamplers by 2 compress the spectrum of the signals by a 

factor ‘2. For example, the spectrum of the xo in [ — tt  , t t ]  is compressed on [ — 7 t / ’2 .  jt/2] 

and repeated outside this interval. Let Fo and F\ be ideal lowpass and highpass filters 

respectively. Then, the spectrum of the transmission signal v is the compressed version of 

the spectrum of xo on [—tt /2 , jt/2 ], and that of x i on [tt/‘2 , jt]. Therefore in this case, v 

is the F D M  format representation of the inputs of the transmultiplexer. If  Ho and H i  are 

ideal lowpass and highpass filters, the upper channel and lower channel give the compressed 

versions of the spectrum of the input signals xo and x i, respectively. As these are now 

band-limited, downsamplers by *2 expand the spectrums by ‘2, and yield the spectrum of 

original signals. Hence this transmultiplexer can be used for the conversion of the input 

signals between the T D M  and the F D M  formats.

7
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By comparing transmultiplexers and filter banks, we see that they are the dual of each 

other, and that a transmultiplexer can be obtained by interchanging the analysis and syn­

thesis parts of a filter bank. Note that the above mentioned transmultiplexer is an LTI 

system, because a unit shift in the input sequences results in a unit shift in the output 

sequences. Thus, we can define a transfer matrix for the transmultiplexer. The transfer 

m atrix of a transmultiplexer can be obtained by post-multiplying the transfer matrix of the 

synthesis part by the transfer matrix of the analysis part. Therefore, the model-matching 

design of filter banks can be extended to transmultiplexers.

Nonuniform transmultiplexer were proposed recently [10, 20], and are obtained by in­

terchanging the positions of the analysis and the synthesis parts of nonuniform filter banks. 

Contrary to a uniform transmultiplexer, a nonuniform transmultiplexer is not an LTI sys­

tem, because the input of the different channels may have different sampling rates. A 

nonuniform transmultiplexer may be used for the conversion of input signals that have 

different sampling rates between the T D M  and the F D M  formats.

There are similarities between the design of nonuniform filter banks and the design of 

transmultiplexers. In the last part o f the thesis, we obtain the alias-component (AC) matrix 

of nonuniform transmultiplexers. Using the AC matrix, we show that by minimizing the 'Hca 

norm of the error system, various distortion measures of a nonuniform transmultiplexer are 

minimized. Then, we pose the Hoc design of a nonuniform transmultiplexer as an iterated 

semidefinite programming problem.

8
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1.4 Scope o f  th e T hesis

In Chapter 2, we discuss some issues related to the representation of linear periodically 

time-varying (L P T V ) systems. These systems which we also refer to as periodic systems 

are relevant to our study because multirate filter banks are L P T V  systems, furthermore it 

is sometimes straightforward to generalize the concepts from L P T V  systems to multirate 

systems. We study two different representations of L P T V  systems, namely, representa­

tions based on the alias-component matrices [30] and linear switching time-varying (LSTV) 

systems [28]. We show how to obtain these representations, and then we use the LSTV  

representation to address the issue of optimal approximation of an L P T V  system by an LTI 

system or by an L P T V  system with a period that is arbitrary but different from the original 

system. This is a generalization of the problem of approximating an L P T V  system by an 

LTI system which was solved using the AC matrices in [8].

In Chapter 3. we study multirate building blocks such as upsamplers, downsamplers, 

and rate changers in general. We discuss the blocking of rate changers, which is used in 

the study of nonuniform filter banks and transmultiplexers in the following chapters. We 

also use the LSTV representation of rate changers to generalize the optimal approximation 

problem studied in Chapter 2 to cover rate changers. In other words, we study the optimal 

approximation of a multirate system by another multirate system that has a given but 

compatible period, i.e., has the same input and output sampling rates.

Chapters 4 and 5 are about the optimal design of nonuniform filter banks. In these 

chapters, we use the more general blocks in the synthesis filter bank and usual filters in the 

analysis filter bank. The general blocks eliminate some of the design constraints, and result

9
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in lower reconstruction errors.

In Chapter 5, we formulate the H i  model-matching problem in the frequency domain 

[27]. In this approach, the frequency selectivity of filters can also be considered by adding a 

penalty term. We follow an iterative solution, and at each iteration the results are obtained 

by finding the least squares solution of a system of linear equations.

In Chapter 6, we formulate the Hoo model-matching problem in the state-space frame­

work [29]. We propose an iterative solution similar to the one proposed in the V.2 model- 

matching method. At each iteration, the problem is posed as an optimization based on 

linear matrix inequalities, and is solved by M A TLA B  LM I toolbox.

In Chapter 7, we extend the concept of alias-component matrices to nonuniform trans- 

multiplexers. Then we pose the model-matching design of nonuniform transmultiplexers in 

the state-space domain. Based on the AC matrices, we show that the model-matching design 

yields transmultiplexers with low distortions. The problem is then solved by semidefinite 

programming.

The last chapter summerizes the work in the thesis, and outlines some possible future 

research directions.

10
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Chapter 2

R epresentation of Linear 
Periodically Tim e-Varying System s

A linear periodically time-varying discrete-time system with period p is a system for which 

a shift in the input sequence by p samples results in a shift of p samples in the output 

sequence. We shall also refer to L P T V  systems as periodic systems. Periodic systems are 

usually simpler to deal with than multirate systems, and some of the results for periodic 

systems can be directly generalized to general multirate systems.

L P T V  systems appear frequently in control systems and signal processing: L P T V  con­

trollers are used to improve certain performance specifications of control systems [16]; and 

multirate filter banks, which are inherently L P T V , find application in digital communica­

tions [31, 34]. There are many ways to represent L P T V  systems; common ones include state- 

space models with periodically time-varying coefficients, equivalent linear time-invariant 

models obtained by the blocking (lifting) technique [16], and alias-component matrices 

which are popular in signal processing [31, 34].

Here, we first study the alias-component matrices of L P T V  systems and then examine 

two different structures for L P T V  systems, each consisting of a switch, either at the input 

or the output, which periodically switches to several L T I blocks. These structures are called

11
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linear switching time-varying systems. Due to the simplicity of LSTV systems, they are 

very useful in studying a class of problems associated with L P T V  systems, one of which 

is related to analyzing aliasing and interconnections of L P T V  systems, namely, how to 

approximate a given L P T V  system G  with period p by an L P T V  system G  with period p i  

The optimal choice, measured using the %2 norm of the error system G  — G, turns out to 

be simple using the LSTV representations. We remark that the approximation problem we 

study in this chapter is quite general in that p and p are arbitrary integers; a special case 

when G  is LTI (p =  1 ) was studied in [8 ] using alias-component matrices; see also the work 

in [4] for some approximation results.

The chapter is organized as follows. In Section 2.1, we will study the frequency response 

and the alias-component matrix of an L P T V  system. First, we use the Fourier series to 

find the steady-state response of discrete-time linear periodically time-varying systems to 

periodic inputs. Then, in order to obtain the response of L P T V  systems to general inputs, 

we use the Fourier transform and establish a direct link between alias-component matrices 

and L P T V  systems modeled by periodically time-varying difference equations; this is given 

in terms of the Fourier series of the parameters in the model. As we argue, the steady- 

state response of periodic systems can be calculated directly based on the alias-component 

matrices.

In Section 2.2, we study some basic properties for the two LSTV structures, including 

their time-domain and frequency-domain relationships and questions such as how to calcu­

late system norms (£i and 7 i2 norms), and how to characterize LSTV systems with period 

Pi in the class of P1P2 periodic systems, where both p i  and p2 are positive integers. This 

will lead us to the solution of optimal approximation problem of an L P T V  system with

12
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period p by another L P T V  system that has a given period q.

In Section '2.3, we present the optimal approximation of an L P T V  system G  with period 

p by an L P T V  system G  with a pre-specified but arbitrary period p, so that the norm of 

G  — G  is minimized. Using the tools developed in Section '2.3, we show that when p is not 

a divisor of p, the optimal approximant turns out to be L P T V  with period p, the greatest 

common divisor o f p and p. In other words, the class of L P T V  systems with period p will 

not yield any advantage over the class of L P T V  systems with period p in achieving a lower 

approximation error.

Finally, in Section ‘2.4 we provide some concluding remarks.

2.1 Fourier A nalysis o f L PT V  S ystem s

Complex exponential functions are the eigenfunctions of LT I systems. For an L P T V  system 

with period p, the subspaces spanned by the functions {eJum, eJ*u'+ p*n\  • • •, eJ*u'+£f - *n*} are 

invariant subspaces. In other words, the response of an L P T V  system to inputs in the 

subspace will remain in it. By defining the relationship o f the inputs and the outputs, a 

representation which is called the alias-component representation of the L P T V  system is 

obtained.

As reported in [22], we may use the blocked model of an L P T V  system, and obtain 

the alias-component matrix of the system. Here, we obtain an alternative, yet more direct 

formulation that relates the alias-component matrix to the Fourier series of the time-varying 

coefficients of the system. Then, we show that by using the alias-component matrix, the 

steady-state response to periodic inputs can be found directly.

In the next part, we use the Fourier series to compute the response of an L P T V  system

13
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to periodic inputs. Then, by using the Fourier transforms, we find the response of an L P T V  

system to general inputs. This will lead to alias-component matrices of LP TV  systems.

2 .1 .1  R e sp o n se  to  P er io d ic  In p u ts

Assume that G  is a periodic system with period p. As we discuss in the next section, if 

a periodic input with period p is applied, the output at the steady-state will be periodic 

with the same period p. If  we represent the input in terms of its Fourier series, as the

system is periodic, the parameters of the system will also be periodic in time with the same

period. Therefore if  we use the Fourier representation, we can obtain the coefficients of the 

Fourier series representation of the output of the system. Assume that G  is described by 

the difference equation

aQ{n)y{n)  +  a i ( n ) y { n  -  1 ) H +  a t(n )y (n  -  k) =  b0(n )u{n)  ------+  6 |(n )u(n  -  /) . (2 . 1 )

The condition that the system is periodic yields:

a,(n) =  a,(n  — p), for i  =  0 . 1 . • • •. k

b{(n) =  b{(n — p) , for i  =  0 , 1 , • • •, /.

Because a, and 6 , are periodic with period p, they can be expressed in terms of their Fourier 

series as
p - i

a, (n) =  Y ,  ai,me2Kjnm/p, for i  =  0 , 1, • • •, k
m =  0

and

&,-(„) =  Y  6 ,-,me2 ^ nm/P, for i =  0 , 1 , -
m = 0

Since the input and output are periodic with period p, we have:

U(n) =  Y  Sm€2lrJ'nm/P,
m = 0

14
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and
p - i

y(n)  =  £  yme2* jnm/p.
m = 0

The terms in the difference equation are periodic with period p, and we have

p - 1 p - i _

6 ,-(n)u(n - « )  =  £ £  h r - a u ae - j i2™ /pejn2* r ' p.
r = 0  or—0

Note that we have assumed that 6 ,->m have period p in their second indices. Therefore 

equation (2.1) can be replaced by its Fourier representation:

d i , r - ayae - ]i2na/p -  E E v .  Uae- j i2 *a /p)ejn' ixr/p _  q (2.2)
r = 0  Or —0  i=0 at=0 i—Q

By setting the coefficients of e^n2irr! p (for r  =  0 to p — 1 ) to zero in (2.2). we obtain p 

equations. By solving these equations for yo to yp_ i,  the output, y(n), can be found. It 

should be clear that this method is applicable only when the system is stable.

If  the input has a period pu that is different from the period of the system pa, we can 

show that the output of the system will be periodic with a period p that is given by the 

least common multiple of pu and p5, i.e., p =  lcm(pu,p ,): As a,, 6 ,- and u are all periodic 

with period p, we can find the coefficients of their Fourier series. Then by solving (2 .2 ), we 

get the coefficients of the Fourier series of the output. The following example shows the 

results for a case where p3 and pu are different.

Take the difference equations with period ps =  2:

y(n) +  0.5y(n  — 1) — 0.4y(n — 2) =  0.2u(n) +  0.3u(n — I)  for even n,

y(n)  +  0.6y(n — 1) +  0.3y(n — 2) =  0.1u(n) +  0.1u(n — 1) for odd re,

and assume that the input is periodic with period pu =  9:

u(n) =  0.37 — O .ls in (^ lp ) — 0.38 c o s (^ ^ ) .
y %7

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The output can be obtained by expressing the input and the parameters of the system 

in terms of their Fourier series with period p — 18 (least common multiple of 2 and 9). 

The output of the system as found directly from the difference equation with the initial 

conditions, y(0) =  0, and y( 1) =  0, is shown by the solid line in Figure 2.1. The dashed 

line in the Figure shows the periodic part of the output as obtained by solving (2.2). As 

shown here, the transients die out in less than 20 samples. In the next section, we study 

the response of L P T V  systems to aperiodic inputs.

Figure 2.1: The steady-state (dashed) and actual (solid) outputs of the periodic system in 
the example, to the periodic input.

2 .1 .2  A lia s -C o m p o n en t M atr ices

In order to obtain the output to a general input, we use the Fourier transform. As in the 

previous section, we treat the parameters of the system as a periodic modulating signal.

16
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For u; € [0 2tt], the Fourier transforms of a,- are given by

p— l *2

,4;(u;) =  T  (a ,(n )}  =  2tt d,,m£(u;----- — ),

where S is the Dirac-delta function. Similarly, we can express the Fourier transforms of 

bi(n)  by

m = 0  P

Applying the Fourier transform to the terms of the difference equation, we have 

jF {a ,(u )y (n  -  / ) }  =  ^  .4,-(0)Y(u> -  e ) e ~ ^ - &^ d e .
I K  JO

where Y  is the Fourier transform of the output. Substituting .4; by their Fourier series, we 

get

? {a .(n )y(n  - * ' ) } =  £  “ <̂ e" (“ ~ )J' Y ~  — — )• (2.3)
m=0 P

Therefore the Fourier transform of (2.1) is

* r —*  — lu j —  2 !rm  /  2 J T T /1 .  r —» r —> — ( u / — 2 ,rm  H i r  r  -  /• 2 TTTTl

m = 0  i = 0  P  m = 0  i= 0  P

where U  is the Fourier transform of the input of the system. Defining 

U { uj) =  [t/(u;) U { u  -  y ) • • • U { u  -  2?r(Pp~  L))

and

we have

Y (u ) ■ [ v h  1
T

A(w)K(u;) =  B { u ) U { u ) ,  (2.4)

where the (0 , m) elements of A are given by

k

1=0

17
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and the rest of the elements are found using the pseudo-circulant property of A. Note that 

the numbering starts from zero. Similarly the elements of the first row of the matrix B  can 

be obtained as

i= 0

From (2.4) we get

Y{ u )  =  A ~ l ( o j )  B(u;)U (u>). (2.5)

The matrix .4- l (u;)fl(u;) is called the alias-component matrix of the system G  and relates 

the input and the output of the system in the frequency domain.

Noting that the Fourier transform of a periodic input u(n) is given by

U [u )  =  2 ff 5 Z amS{uJ -  ^ - ^ ) ,  
m = 0  P

and substituting in equation (2.4), we see that the output will be periodic, and its Fourier 

coefficients can be obtained by solving

.4(0) Y  =  B{0)Lf,

where U  =  [u0  «P- i  “ P - 2  “ i]T > and Y  =  [yo yP- i  Qp- 2  **• y i]T - This is equation (2.2)

in the matrix form, as we expected. In other words, the steady-state output of the system 

can be calculated directly by using the alias-component matrix at u  =  0. From here, we 

see that equation (2.2) will be singular, if and only if matrix .4 does not have full rank at 

=  0 .

In the next section, we shall consider the representation of L P T V  system by LSTV  

systems.

18
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2.2 LSTV System s

An L P T V  system with period p  can be modeled by a system consisting of p LTI systems 

and a periodic switch at the output (Figure 2.2) or input (Figure 2.3). The LTI blocks

p - i

Figure 2.2: The structure of an LSTV system with a switch at the output.

Fp_,

Figure 2.3: The structure of an LSTV system with a switch in the input.

in Figure 2.2 can be obtained as follows. The input-output relationship of a linear causal 

time-varying system is given by

k

y (* )  =  S (2.6)
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where y{k)  is the output at time k , u(/) the input at time /, and g {k , l )  is the output of the 

system at time k  when the input is a unit impulse at time /. For an L P T V  system with 

period p, the shift invariance property results

g{k  +  p , l  +  p) =  g ( k , l ) .

By substituting

h( l ,  k) =  g(k, k — I) (2.7)

into (2 .6 ), we have
k

y ( k ) =  £  h ( k - l , k ) u ( l ) .
/=—OO

If we assume that the LTI system Hi  has the impulse response h( l ,  i ) ,  then y( i )  is the output 

of Hi  at time i to the input sequence u(l ) .  The p-periodic condition on g gives

h{ l ,  I) =  h{l ,  i  +  p).

Thus LTI blocks H i  and f / ,+ p are the same, and only p LT I systems H q, H i , .... / f p_ i are 

sufficient. Figure 2.2 shows the LSTV system that results. The switch connects the input 

to H q at time Ar =  0 ,  then to H i  at k  =  1 , and so on; at k =  p, it connects back to 

H 0 and repeats. When the switch is not connected to a block, the input to the block is 

assumed to be zero. For ease of reference, we will represent the LSTV system in Figure 2.2 

by {Ho,  H i ,  • • •, H p- i } 0, the subscript indicating the switch at the output.

From (2.7) it follows that there is a one-to-one correspondence between L P T V  systems 

and LS TV  systems. In other words there is no redundancy in the LSTV representation. 

The outputs of L T I blocks, H i  are the same as the output of the periodic system G  at time 

i  +  Ik,  for an integer I, thus G  is stable if  and only if  H i  are stable.
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It can be shown similarly that an L P T V  system with period p can be represented by 

a system consisting of p L T I systems and a periodic switch at the input, as shown in 

Figure 2.3. We will represent the system in Figure 2.3 by { Fq, F i, ■ • •, Fp_ i} , ,  the subscript 

indicating the switch at the input. Although the two LSTV systems are equivalent, for a 

specific application, one may be more useful than the other.

The frequency response of G  can be related to that of the LTI systems in the LSTV  

structure in Figure 2.3. Let G  =  {Fo, F i, • • •. Fp_ i} , ,  as shown in Figure 2.3. The input to 

Fi block, u,(n) is equal to the input u(n)  at time n =  i +  Ip, for any integer /, and zero 

otherwise. Thus we can write

u,(n) =  u(n) ,

where \Vp =  e~27T̂ p. Taking the s-transform of both sides of this equation, we have

1 p_l
Ui{z) =  - T u { z w $ ) \ v ; k.

The output of G  is

Jfc=0

p - i

Y{ z )  =  £ F , U ) F , ( r )
i = 0

P t=0 fc=0
p - t

-  Z
Jfc=0

i g f i l  z ) w *
?  i=0

U(zW£) .

The system G  is an LT I system, if V (^ ) depends only on U(z ) .  Thus G  is LTI, if and 

only if  53Pr ol F i{ z )W pk is equal to zero for 0 <  A: <  p. This is true if and only if  all of F  are 

equal.

Similarly it can be shown that an L S T V  system in Figure 2.2 becomes an L T I system 

if  and only if all H i  are equal.
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Such a condition can be generalized to find a subclass of L P T V  systems within a class 

of L P T V  systems. Let pt and p? be positive integers. An L P T V  system with period plt 

G  =  {Ho,  H i ,  • , H Pl- i } 0, is in the class of L P T V  systems with period P1P2 ; and thus it

can be represented by an LSTV structure G  =  {Ho,  H i ,  • • •, H PlP7- i } 0, consisting of ptp2 

LTI blocks and a periodic switch. Since a shift o f pi samples in the input sequence results 

in a shift of p\  samples in the output, for 0  <  i  <  pi  and 0  <  j  <  P2 , the systems Hi  and 

H i+ jPl are the same, and for 0 <  i  <  p i, H i  =  H i . In other words, in the class of LPTV  

systems with period P1P2 , the subclass of L P T V  systems with period pi are those satisfying

H i+j pi =  Hi,  j  =  0 ,1 , • • - ,p 2  — 1; t =  0,1, • • •, pi — 1.

Turning to norms for L P T V  systems, either the structure in Figure 2/2 or the one in 

Figure 2.3 may be more useful. For example, in the calculation of the £1 norm of an LPTV  

system, the structure in Figure 2/2 is simpler to use: The following lemma gives the norm 

of an L P T V  system.

L em m a 1  The £t norm o f  an L P T V  system G  =  {Ho,  H i ,  • • •, H p- i } 0 is given by

\ \ G \ \ i = m z x { \ \ H i \ \ i } .
0<t <p

Let fo o  be the discrete-time signal space of bounded signals; the norm of u, denoted 

| |u | |o o , is defined as the least upper bound of the sequence |u(n)|. Recall that the norm 

of a linear system G  is induced, i.e., if  y  =  Gu,  then

l ll / l lo ol|G||i = s u p
im ic

2 2
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I f  we represent G  by {Ho,  H i ,  • • •, H p- i } 0 as in Figure 2.2, then since the output of G is 

switched from the outputs of Hi,  we have

Now, let u be a maximizing input for Hi,  i.e., ||u|| =  I and Hf/.uHco =  (Here, we

assume that the supremum is actually obtainable by a maximizing input: otherwise, we 

have to use a maximizing input sequence {ujt} and the argument below is still valid.) Using 

this u with possibly some delay as an input to G  we get that ||Gu||oo >  ||ff;u||oc =  | | / / i | | i .  

Hence

Therefore, the result in Lemma I  follows.

Next, we turn to H.2 norms of LP TV  systems. To define the H 2 norm of an L P T V

of the system. The H.2 norm is the square root of the average of the squares of the 2-norms 

of the outputs to these inputs. The H 2 norm can be related to the LT I blocks in Figure 2.3 

as follows.

Lem m a 2 The % 2  norm o f  an L P T V  system G  =  {Fq, F i ,  • • •, Fp_ i} ,  is given by

P ro o f By applying the impulse Sk-i  to the input of the LSTV system G,  because of the 

switch, only the i-th  block Fi  has an input not identically equal to zero. The output of the 

system to this input is

l l ^ l l t  <  m a x f m i i } .0<i<p

system with period p, p unit impulses at time 0  through time p — 1 are applied to the input

(2.8)

Yi{z) =  Fi(z)z
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and the ‘2-norm of this output is equal to ||F;||2 . By averaging the squares of the norms of 

the outputs of G  due to impulses at time 0 through p — 1, the lemma follows. □

The % 2  norm of an L P T V  system can be also related to the LT I blocks in Figure '2.2.

Lem ma 3 The %2 norm o f  an L P T V  system G  =  {Ho, H ii * • *» Hp- 1}0 is given by

A ’ "  \ , / 2

H G i h =  I ^ E M l )  ■ < 2 - 9 >

P ro o f Since the switch is at the output, we need to use the polyphase decomposition [34] 

of the LTI blocks H j :

»;<*> =  E * j
1=0

The output of this block to the impulse at time k =  i  is $Zf.T0l H j <i { z p)z~^l+,K The output 

of the system at sampling times j  +  rp  (r  is an integer) are taken from the y-th block; so if 

we define Y j {z )  as the contribution of the j'-th block due to impulse input Sk-i, we have

- i ( z p) z - l j+pK for j  <  i, 
otherwise.

Thus, the overall output due to input 8k-i  is

y‘ = E
J = 0

and so

IIH ll = Ell%(J-Omodplll.
i = 0

where “a mod p” gives the remainder of the division of a by p. From the definition of the 

% 2  norm it follows that

IIGIIl = ; E  lini2 = i  E E  HJVi.o-i) „d,H3.
”  i=0 ”  t=0 j =0

•24
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Since all of the indices of polyphase components of H j  appear once in the above, we have

P 1 = 0  j —Q

The lemma follows immediately by noting

r a i l  =  £  i l l ' l l " -
i= 0

□

Based on (“2.8) and (“2.9), for an LSTV system, the minimization of the H 2 norm of the 

system can be done in terms of the % 2  norms of the LTI blocks. In the next section, these 

results are applied to find explicit solutions of some optimal approximation problem.

2.3  O ptim al A pproxim ation

In this section, we approximate an L P T V  system G  with period p by an L P T V  system G  

with period p so that the impulse response of G  is as close as possible to that of G.  The 

objective is to minimize the H 2 norm of the error system, G  — G.  as shown in Figure “2.4.

G

u
c

G

Figure ‘2.4: The approximation scheme.

We use the LSTV structure in Figure “2.2 for G  and G :

G  =  (2-10)

G  =  (2-11)
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The following theorem gives the T^-optimal approximation in the general case when p and 

p are two arbitrary positive integers.

T h e o re m  1 Let p be the greatest common divisor o f  p and p. Wr i te p =  qp. Then the opti­

mal approximant is in fact  L P T V  with period p: I f  we represent G opt =  { H qPI , H ° pt, • • •, HpÔ i }o, 

then

1 *
H ° r p t  =  -  Y .  r  =  0 ’  1 -  • • • ’  P  -  1 -  ( 2 - 1 2 )

^ m—0

The proof of this theorem involves the following result from the number theory.

L e m m a  4 (Chinese Remainder Theorem [3])

Let q and q be two coprime positive integers. For each pair o f  integers m and m satisfying 

0  <  m < q and 0  <  m  <  q, there exists one and only one integer k with 0  <  k <  qq such 

that

m  =  k  mod q, m =  k  mod q. (2.13)

This lemma establishes a one-to-one correspondence between the integer set { k  : 0 <  

k <  qq} and the set of integer pairs {(m , m) : 0  <  m <  q, 0  <  m <  q}  while the relations 

in (2.13) are satisfied.

P ro o f o f  T h eo rem  1  W rite p  =  qp and G' =  G — G.  It follows that G'  is LP TV  with 

period p'  =  qqp. the least common multiple of the periods for G  and G.  Hence G'  has 

an LS TV  structure G'  =  {H'0, H [ , • • To relate H [  to LT I systems in (2.10) and

(2.11), we note that G  also has an LSTV  structure with period p',  as was discussed in the 

preceding section:

G  =  {Ho,  H i ,  — , H p - i ,  Ho, H i ,  • • •, Ho, H i ,  — , H p- 1}„.
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Similarly, G  can be represented by an LSTV structure with period p':

G  =  {Ho,  H i ,  ■ • *, H p - i ,  Ho, H i ,  ■ ■ ■, H p - i ,  ■ ■ •, Ho, H i ,  • • •, H p - 1 }0- 

Thus the LTI blocks in G '  can be written:

Hi  =  H i  mod p ~  Hi  mod p’ * =  0 , 1 , • • •, p — 1 .

By the definition of the H 2 norm, our optimization problem is to find LTI systems Hi  to 

minimize

J  =  b  E  Il« ;il2  4 L  l l f f im o d ,  -  " i  m od ,113- (2 -14>
r  i=0 ^  1=0

In the above summation i  goes from 0 to p' — 1 ; this is the same as r  +  kp  where r  goes 

from 0 to p — 1 and k  from 0 to qq — I ,  since p' =  qqp. So the quantity J  in (2.14) can be 

written as
qq 1p_l

J  =  3  H^(r+A:p) mod p ~  ^(r+fcp) mod pi12 * (2*15)
^  fc=0 r=0

In order to simplify further, we invoke Lemma 4: For every k with 0 <  k <  qq -  L. there 

exist integers m and m  satisfying

m =  k  mod q, fh =  k mod q,

or equivalently, for some integers I and /,

k =  m +  lq =  m +  lq; (2.16)

moreover, as k  goes from 0  to qq — 1 , m  goes from 0  to q — 1 and fh from 0  to q — 1 .

Substituting (2.16) into (2.15) and noting

(r  +  kp)  mod p =  [r +  (m +  /g)p] mod p =  r  +  rnp,

(r  +  kp)  mod p =  [r +  (m +  lq)p] mod p =  r  +  mp,
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we get

9-1 9-1 p - l

J = 3  E E E
* m=0 m=0 r= 0

, 9~l P -l

- ‘ m= 0  r= 0

J2 \\Hr+mP ~ Hr+rhp\\l
9 - 1

E
j n = 0

Note that each H r+mp only appears q times in ./ in the inner summation: hence the optimiza­

tion problem of minimizing J  over H r +mp can be broken down into p (p =  qp) sub-problems 

of minimizing

9 - 1

Jr+mp — || Hr+mp ^r+rap 1| 2 ^  P' 0  ^  tTl <  q)
m = 0

over only a single LTI block. From here, it follows that the optimal f l r + m p  is given by

1 ,_ l
H?+mp =  -  Hr+mp, r  =  0 , 1 , • • •, p -  1 ; m =  0 , 1 , --•,<? -  1 . (2.17)

^  m = 0

It  is evident that this optimal approximant is in fact LSTV with period p and hence it can 

be represented with only the first p LTI systems in (2.17); this proves (2.12). □

In Theorem 1 , if p  and p are coprime, or more specifically, if p =  1 (in this case we would 

like to approximate an L P T V  system G  by an LTI one), then the optimal approximant is 

LTI and is given by the average of the LTI blocks of G.  The optimal approximation of 

L P T V  systems by LTI systems was reported in [8 ] in terms of aliasing component matrix 

representation of L P T V  systems.

2.4  Sum m ary

In this chapter, we studied the alias-component matrices and switching representation of 

L P T V  systems. For an L P T V  system the alias-component matrix yields the response to
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periodic and aperiodic inputs: For periodic inputs, the Fourier series is used, and the outputs 

are found by solving systems of linear equations. For aperiodic inputs, the Fourier transform 

is used and the alias-component matrix of the system is obtained. This results in expressing 

the alias-component matrix in terms of the Fourier series of the parameters of the system. 

As we showed, the steady-state response may be obtained using the alias-component matrix 

at uj =  0 directly. Although the results are obtained for difference equations, they can be 

extended to state-space models readily.

In the second part of the chapter, we have discussed representations of L P T V  systems 

using two linear switching time-varying structures: Basic properties have been derived and 

applied to optimal approximation problems involving L P T V  systems. The approximation 

results are useful in analyzing aliasing effects in L P T V  systems in a more refined manner: 

For example, for an LP TV  system with period p =  P1P2 , we can decompose the system 

into its LT I component, its component corresponding to an L P T V  system with period p\, 

and so on. The errors involved in representing the L P T V  system by its various component 

systems can be easily analyzed based on the results of this chapter. In the next chapter, 

we introduce rate changers, and generalize the results in Section 2.3 to multirate systems.
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Chapter 3 

R ate changers

Rate changers are used as interface between systems that are operating at different sampling 

rates. Rate changers also serve as building blocks in more complex multirate systems such 

as nonuniform filter banks and transmultiplexers.

We will start this chapter by reviewing some of the fundamentals of upsamplers, down- 

sampiers, and rate changers in Section 3.1. Then in Section 3.2, we shall discuss how to 

obtain the transfer matrix of a rate changer, which we need in the next chapters. In Sec­

tion 3.3, we extend the results presented in Section 2.3 to a more general setup involving 

multirate periodic systems.

3.1 Fundam entals

A rate changer is shown in Figure 3.1. It consists of three main elements, an upsampler by 

p which increases the input sampling rate by a factor of p. an L T I system that processes 

the data, and a downsampler by q which decreases the sampling rate of the signal by q. If  

either p or  q are equal to 1 , a rate changer that changes the sampling rate by an integer 

factor is obtained.

The upsampler by p inserts p — 1 zeros between each two consecutive samples, thus its
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Figure 3.1: A sample-rate changer.

output u is related to its input x  by:

x (k /p ) ,  if p divides k ,
0 , otherwise.

From this it follows that in the frequency domain we have

Lr(z) =  X(z») -

Therefore as shown in Figure 3.2, the upsampler contracts the input spectrum in [—tt, jt] 

to [—£, £], and the spectrum of the output becomes periodic with period y . .  By filtering 

this output, we may eliminate the portion of spectrum outside [— £, ^].

The downsampler by q deletes q — 1 samples between each consecutive q samples at kq 

and (k +  l)g  for any integer k. The output of the downsampler y is related to its input v,

where Wq =  e2’rj/,<j. The terms V(zW^)  are the shifted copies of V (z )  by the frequency shift 

If  the signal is not band-limited to the region |u/| <  i r /q ,  when these terms are added, 

they overlap in a region, and therefore aliasing will result. Because of the aliasing, it will 

not be possible to recover the original signal from the downsampled signal anymore. For

by

y{k)  =  v(k q).

In the frequency domain, we have
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(b)

(c)
Figure 3.2: a) Input signal, b) upsampled signal by 3 (p =  3), c) downsampled signal by 3 
(<7= 3 ), amplitude versus normalized frequency.

example if we downsample the signal in Figure 3.2a, as the bandwidth of the signal is more 

than rr/3, the translated versions will overlap, and the spectrum of the downsampled signal 

will not be the compressed version of the original signal. The effect of aliasing is shown in 

Figure 3.2c. In order to eliminate the effect of aliasing, we may pre-filter the input to the 

downsampler by a lowpass filter with a cutoff frequency of uic =  '2v/q.

The need for pre-filtering in case of sampling rate reduction, and post-filtering in case 

of sampling rate increase may be explained by an assessment of the Nyquist rate of signals
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in a multirate system. As we mentioned before, by rate changing we expect to obtain a 

signal that has the same characteristics of the original analog signal. An upsampler merely 

increases the sampling rate by inserting zeros between each two consecutive samples, but by 

filtering this signal we obtain a close replica of the original analog signal. The signal before 

upsampling contains only the portion of the analog spectrum with frequencies less than its 

Nyquist rate. Therefore the rest of the spectrum of the analog signal may not be recovered 

from the input signal. This results in an output signal with a spectrum that is identically 

zero for the frequency range |u;| >  2ir/p.  Similarly, when a signal is downsampled, its 

Nyquist rate decreases, and the portion of spectrum that is beyond the Nyquist rate of the 

downsampled signal may not be kept. Therefore, the signal should be pre-filtered to avoid 

aliasing.

Take the multirate system in Figure 3.1. For p >  q, as the upsampling factor is higher 

than the downsampling factor, the rate changer increases the sampling rate of the input by 

the fractional ratio of p/q.  The upsampler contracts the spectrum of the input in [—ir , n] 

to cover the range [— ̂  of the spectrum of u, and the rest of the spectrum of u is a 

shifted version of this portion. If  we assume that the kernel system F  is a lowpass filter 

with the cutoff frequency uic =  n /p ,  then the repeated part of the spectrum of u which 

appears outside [— j  , j ]  is deleted by the filter. The downsampler contracts the input 

spectrum in [—tt , jt] to [— , Jjt], and the rest of the spectrum of y is identically zero.

For p <  q, the rate changer decreases the sampling rate. Because in this case the rate 

changer expands a part of the input spectrum in the output, the rest of the input spectrum 

should be eliminated by the filter F  to avoid aliasing. If  we take the filter F  to be a lowpass 

filter with the cutoff frequency wc =  i r /q,  then with an argument similar to the previous
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case, we can show that the rate-changer maps input spectrum in [— , | 7r] to cover the

whole spectrum of the output y in [—ir , jt].

In summary, if we assume that the kernel system F  is a lowpass filter with the cutoff fre­

quency ujc =  min(7r/p, n /q ) ,  the rate changer will map the input spectrum in [0 , m in(r, ^rr)] 

to cover the range [0 m in(7r, ^ir)]  o f the spectrum of the output. Therefore, the filter F  

serves to eliminate the unwanted effects due to aliasing or imaging, and the rate changer 

retains the shape of the spectrum in the frequency band of interest.

3.2 Transfer M atrices o f  the Blocked S ystem s

Consider the system shown in Figure 3.1, where F  is an LTI filter. For this system, a delay 

of q samples in the input sequence results in a delay of pq samples in the input to the filter; 

because the filter is time-invariant, its output is delayed by pq samples, and consequently 

the output of the overall system is delayed by p samples. Thus by defining the blocking of 

a signal x  as

x(n) =  [ x (np )x (np  +  1 ) • • •x(np  +  p -  l ) ] r ,

we see that if we block the input sequence into blocks of length q and the output sequence 

into blocks of length p, we will get a p by q LTI system.

The transfer matrix of the blocked system is obtained as follows [6 ]: A block of q samples 

in the input corresponds to a block of pq samples in the input of the filter. In the frequency 

domain, the relation between the input and output of the filter is given by

Vl= FA .

where X  is the pq blocked input, Y  is the pq blocked output and F  is the pq by pq blocked 

transfer matrix of the filter F . The matrix F  is pseudo-circulant, and its components are
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related to the polyphase components F; of F  in

pq- 1
F{ z )  =  £  * - ' F ; ( ^ ) ,

1=0

as:
' F0 z~ l Fpq- i  ••• s- l Fi

. A  F0 • •  z - ' h
t  =  . .

. Fpq — \ Fpq—2

Because of the upsampler, all of the elements of X_ are zero except the 0, p, .... p{q — 1 ) 

elements. Furthermore, because of the downsampler, only the elements with indices that 

are a factor of q appear in the output, so if we take the pq polyphase m atrix of the filter, and 

set the inputs at sampling instances that are not a multiple of p to zero, then the output of 

the filter at sampling times 0 , q, ..., ( p — 1 )q, • • -, appears in the output of the overall system 

at the sampling instances 0. 1,..., p — ! , • • • ,  respectively. Thus, the effect of the upsampler 

is equivalent to eliminating all o f the columns of F  matrix except the 0, p, ..., p{q -  1) 

columns (we assume that the numbering starts from 0 ), and the effect of the downsampler 

is equivalent to eliminating all of the rows except 0, g, ..., p{q — 1 ) rows. In other words, 

the (it, /) element of the transfer m atrix of the blocked system F  is the (kq , Ip) element of 

the blocked transfer matrix of F  or,

£ (W ) =  £(fcq./p)f 0  <  it <  P, 0  <  / <  q.

(The underline indicates a blocked transfer matrix.)

It  is easy to show that each of the polyphase components of the filter F  appears only 

once in F  if and only if  p and q are coprime.

In the next chapter we use the results of this section in our analysis and design of 

nonuniform multirate filter banks. In the case the kernel system is not LT I, we get a system
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which is more general than the one we discussed in this section. We use these more general 

multirate systems in our design of nonuniform multirate systems. Because a system with 

an L P T V  kernel has the same input and output sampling rates as an LTI system, one 

interesting problem would be to study the relationship of such systems with regard to a 

subclass of systems that have LTI kernels. We will study this issue further in the next 

section.

3.3 O ptim al A pproxim ation o f  G eneral M ultirate System s

In this section, we extend the results that we obtained in Section ‘2.3 to multirate systems. 

Take the system shown in Figure 3.1. Let F  be an LTI filter. For this system the input x . 

and the output y are related by

y ( 0  =  M  *(*■*)•

From the above relationship we see that if the input sequence is delayed by q samples, the 

output will be delayed by p samples. Therefore, if we denote the system by Q and the 

unit-delay operator by s-1 , we have

z -pg  =  g s-«.  (3.1)

In other words, a delay of q samples in the input sequence results in a delay of p samples 

in the output sequence. Thus, in a real-time implementation, the output sampling rate is 

p /q  times the input sampling rate. We will refer to this system as a (p, ^J-periodic system.

We may compare two systems when they have the same input and output sampling 

rates, which means that they should have the same ratio p/q.  When p and q are coprime a 

rate changer representation with an LT I kernel is the most general form. A  (p, ^-periodic
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system is more interesting from an application viewpoint, if the integers p and q are not 

coprime [9]. In the general case, we may represent a (p, g)-periodic system similar to an 

L P T V  system, i.e.,

y ( l )  =  ' £ g ( l , k ) x ( k ) .

Because of the periodic condition on the system, the impulse response of the system has 

the property

g{k  +  p , l  +  q) = g { k j ) ,  VA:,/.

Let m be the greatest common divisor of p and q, and write p =  pm  and q =  qm. We 

can represent a (p, g)-periodic system by the system shown in Figure 3.3, which involves 

the upsampler f  p, the downsampler |  q, m  LTI systems Fo, F i, • • •, Fm_ i, and a periodic 

switch which connects each channel for pq samples starting from time k =  0  and system Fo 

[9].

F A  “ i  q
y

* m —1 •K J

Figure 3.3: The structure of a (p, (^-periodic system.

The structure in Figure 3.3 is written

a  =  {F 0 , F l , . - . , F m_ l } ^ .  (3.2)
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For a linear (p, g)-periodic system, the output of the system is known for any input, if the 

response of the system is known to unit impulses at time 0 through q — 1 . In order to define 

the norm of linear (p, <7)-periodic systems, we apply q unit impulses at time 0  through 

q — 1 . The % 2  norm is the square root of the average of the squares of the 2 -norms of the 

outputs to these inputs. W ith an argument similar to that in Lemma 2 and Lemma 3, the 

? i2 norm of Q  can be related to the LT I blocks in its representation in Figure 4.5:

i
m l = - E

9  ;=o

When p and q are coprime (m  =  1 ), the representation has a simple form; otherwise for 

an integer I  <  rh < m, we can pose the following approximation problem: Given a (p .q )- 

periodic system as in (3.2), find its ^ -o p tim a l approximant Q which is ( mp, mqj-periodic. 

Note that such Q  leaves the sampling conversion ratio unchanged.

The more interesting case is when m is a divisor of m; in this case we write m =  nm\  

such a system Q  can be represented by

S  =  { A ) , A ,  ‘ - , A n - , } * * .

It  is clear that this system is also (p, <7 )-periodic and hence can be also represented by

Q  =  { F q, A t  • • A n — 1 > A ), A »  • • ’ j A n —i)  • • *, Fa, F i ,  ■ ■ *, A n - i H ’A

where the total number of the LT I blocks is m. Now the error system Q' — Q — Q  is

(p,<jr)-periodic with Q' =  {F q, F{, • • •, the LTI blocks are given by

A  =  Fi — A  mo£j rh, i  =  0 , 1 , • • •, m — 1 .

So the optimal approximation problem is to select LT I systems Fq, F [ ,  • • •, A k - i  to minimize

lie'll! = f x V i - f ;  moduli!
^  x=0
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1 m — L n —I

=  - E l  IIFr+te -  Frll?.
9 r= 0  /=0

Thus it follows that the optimal approximant G  has the following L T I blocks

i " - 1

F?pt =  - ' E , F r + i p ,  r  =  0 , 1 , • • •, m — 1 . 
n  1=0

3.4 Sum m ary

In this section we studied some issues related to rate changers. We reviewed the response of 

rate changers in the frequency domain, and discussed their behavior when the kernel filter 

in a lowpass filter. Then we presented the transfer m atrix of a blocked rate changer. At 

the end of the chapter, we studied general periodic systems and the approximation of them 

by simpler multirate systems. In the next chapters we will use rate changers in the design 

of nonuniform filter banks and transmultiplexers.
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Chapter 4

W.2 Optimal D esign o f Nonuniform  
Filter Banks

In the previous chapters, we studied some issues related to periodic systems, rate changers, 

and general periodic systems. In this chapter, we will use some of the materials presented in 

the previous chapters to design nonuniform filter banks using the model-matching method. 

By some examples, we show that good filter banks can be designed for cases where even 

alias cancellation is not possible.

This chapter is organized as follows. In section 4.1, we will introduce the nonuniform 

filter banks. Sections 4.2 and 4.3 describe the solution method. In Section 4.2, the transfer 

matrix of the blocked system is discussed and in Section 4.3, the design problem is trans­

formed to the least squares solution of a system of linear equations. Section 4.4 provides 

some design examples. Section 4.5 concludes the chapter.

4.1 Introduction

A nonuniform multirate filter bank is shown in Figure 4.1. If  the ensemble average of the 

energy of the signal varies greatly in different frequency bands, a high coding gain can be 

achieved. In an m-channel maximally decimated uniform filter bank all channels have the
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same downsampling factor m =  m  and upsampling factor p,- =  1 . The design techniques for 

these filter banks are well developed, and it is generally possible to find filters so that the 

exact replica of the input is reconstructed in the output [34]. In a maximally decimated 

uniform filter bank, because of the Nyquist sampling theorem, the bandwidth of the filters 

should be equai to In a nonuniform filter bank, the sampling rates are not the same in 

all channels, and thus filters in different channels may have different bandwidths.

The nonuniform filter bank splits the signal into frequency bands:

[ ° - H -
(4 .!)

[El=!0 , E U  * = 1 , • • •, m -  1 .

The higher bound for the last channel should be equal to ir, i.e.,

m — I
5 Z  -  =  i-
to  K

For a fixed number of channels, the extra degree of freedom results in a situation where

I  P i

i  PoI  <lQ

m— 1 m— 1m— 1 T Qm— 1

Figure 4.1: A general nonuniform filter bank.

we can select the bandwidth of filters so that the variance of the energy of the signals 

in different channels is further increased; this in turn increases the coding gain. In some 

cases, the problem of the design of a nonuniform filter bank may either be converted to
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the problem of the design of a uniform filter bank [18] or solved by a method developed for 

uniform filter banks [6 , 9], but generally structural constraints may arise [9, 12] which make 

the design problem different from that of a uniform filter bank [7. 13, 14, 34].

Figure 4/2 shows a 3-channel nonuniform maximally decimated filter bank. As men­

tioned in [1 2 ], this filter bank can be converted to a uniform 6 -channel filter bank as shown 

in Figure 4.3, where the first two and the last three analysis and synthesis filters are related 

to each other. Therefore, the design problem of this nonuniform filter bank is reduced to 

that of a uniform filter bank, where some filters are related to each other.

Figure 4.2: A 3-channel nonuniform filter bank.

By substituting filters Fo and Ho by 2-periodic systems and filters F i  and H i  by 3- 

periodic systems, we are able to eliminate the interdependence between the filters in Fig­

ure 4.3. For example, consider the first channel of the nonuniform filter bank shown in 

Figure 4.2 and assume that H q is an LT I block, but Fo is a 2-periodic block. The combina­

tion of downsampler and upsampler by a factor of 3 can be represented by the subsystem 

shown in Figure 4.4, and the 2-periodic subsystem F0  can be represented by a subsystem 

consisting of a switch and two L T I blocks, as shown in Figure 4.5. The switch is periodic 

and connects to <&oo initially, to <&oi at the next sampling time, back to <&oo and repeats.
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. - 3

Figure 4.3: The equivalent uniform filter bank.

Figure 4.4: An equivalent representation of a downsampler followed by an upsampler by a 
factor of 3.

The output is formed by adding the outputs of $oo and $oi- Now, if we cascade these two 

equivalent subsystems, because of the presence of the periodic switch, the output of the 

first channel in the equivalent representation of Figure 4.4 does not affect the second block 

$oi and the output of the second channel does not affect the first block $oo- Therefore, 

we can eliminate the summation and the switch. By cascading Ho and the input block of 

Figure 4.4, we obtain a representation similar to the first two channels in Figure 4.3, but 

the Fo block is substituted by $oo and the z 3Fq block is substituted by s3 $o i- Since $oo
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and $ 0 1  are not interrelated, the interdependence between the synthesis filters in the first 

two channels of the equivalent representation is eliminated.

Similarly, by substituting H q by a 2-periodic system, we can show that the interdepen­

dence between the analysis filters can be eliminated. However, in this case we should use 

another equivalent representation of 2-periodic systems which consists of two LTI blocks 

with common inputs and a periodic switch in the output as discussed in Section 2.2. The 

constraints for other channels can be eliminated likewise.

Figure 4.5: The equivalent representation of a 2 -periodic system.

In order to deal with the constraints in a general setting, we will formulate the design 

problem as an % 2  optimization problem: We attem pt to minimize the T^-norm of the 

error system T  formed by subtracting the output of a pure delay transfer function from the 

output of the filter bank. This results in a filter bank that has an impulse response close to 

the desired impulse response, i.e., a pure delay. This is a nonlinear optimization problem. 

When either analysis or synthesis filters are fixed, the solution can be obtained by the least 

squares solution of a linear system of equations. In order to design the filter bank, we use 

an iterative solution: The initial analysis filters are designed according to the frequency 

characteristics of the input. At each iteration, the analysis filters are first fixed and the 

synthesis filters are found so that the Hz-notm  of the error system is minimized over all 

synthesis filters of a prespecified order. Then, similarly, the synthesis filters obtained in
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the previous step are fixed and the analysis filters are found so that the 7 £2 -norm of the 

error system is minimized over all analysis filters o f a prespecified order. By repeating the 

above procedure the % 2-noTm decreases until it reaches its final value. If  the frequency 

characteristics of the filters are not satisfactory, instead of the 7 2̂ -norm of the error system, 

we may consider an objective function that takes into account the stopband attenuation of 

the filters and the 'H.2-noTm of the error system.

In the rest of the chapter, we use the results of Section 3.2, and find the the transfer 

matrix of a blocked nonuniform filter bank. Then, we will formulate the model-matching 

design of filter banks, and give some design examples.

4.2 Transfer M atrices o f B locked M ultirate F ilter Banks

The analysis and synthesis parts of a nonuniform filter bank usually consist of the subsystem 

shown in Figure 4.6, where G  is an LTI filter. It is possible to use more general blocks as 

discussed in Section 3.3, and [24. 9, 15], but when p and q are coprime this building block 

is quite general [6 ], and in this section we will restrict our study to filter banks using this 

basic building block.

As discussed in Section 3.2, if we block the input sequence into blocks of length q and 

the output sequence into blocks of length p, we will get a p by q LTI system. We denote 

the p by q transfer matrix of this blocked system G. It  is easy to show that each of the

Figure 4.6: A sample-rate changer.
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polyphase components of the filter G  appears only once in G  if and only if p and q are 

coprime.

As is shown in Figure 4.1, the i-th channel of a nonuniform filter bank consists of a (p,-, <7,) 

periodic subsystem cascaded with a (g,-,p,) periodic subsystem. A delay of <7, samples in 

the input sequence results in a delay of p, samples in the output of the first subsystem, 

which in turn results in a delay of m samples in the output of the channel. Therefore, 

the i-th channel is periodic with period <7;, and by postmultipiying the transfer matrix of 

the analysis part H± by the transfer matrix of the synthesis subsystem F\, we can obtain 

the transfer m atrix for the <7; blocked representation of the cascaded subsystems. This 

matrix is <7; by <7,-. The output of the filter bank is obtained by adding the outputs of the 

channels. The filter bank is periodic with period q =  lcm(«7o, 9 i* -m 9 m -i) (1cm is the least 

common multiple). Therefore, if we block q inputs and outputs of the filter bank, an LTI 

system will result, and the transfer matrix for the blocked system can be obtained using q 

blocks in the input instead of <7; blocks in the input of each channel. This is equivalent to 

eliminating all of the columns and rows that are not a multiple of p,- and (7,, respectively, of 

the <7p,-fold polyphase matrix of analysis filters / / , .  The polyphase representation of F, may 

be obtained similarly. By postmultipiying H ±  by F± the q  blocked transfer matrix of the 

channels is obtained. Because the outputs of all channels are added, the blocked transfer 

matrix of the filter bank T  can be found by adding the transfer matrix of the channels, i.e.,

m —I
T = Y , E i K i  =  L K ,  (4.2)

1 = 0

where

h  =  [ m  m  ■■■ a ™ - .  ] ' .
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Here superscript * represents the conjugate transpose. Depending on the upsampling and 

downsampling factors in the filter bank, the elements of the matrices F  and H_ may or may 

not be interdependent. When all of the m are not equal, some of the polyphase components 

appear at two different entries of H_ and F , which means that some of the elements of 

these matrices are interdependent. The design method should be capable of handling these 

structural dependencies.

4.3 W2 O ptim ization

The use of H 2 optimization in the time domain was discussed in [25]. In this section, we 

discuss the optimization in the frequency domain. As was mentioned before, we take all of 

the filters to be F IR . We will first show that when the analysis filters are fixed, the synthesis 

filters that minimize the T^-norm of the error system are found by the least squares solution 

of a linear system of equations. Then we will point out the dual problem of finding the 

analysis filters when the synthesis filters are fixed. In the last part, we will use the first two 

cases and discuss an iterative procedure for designing filter banks.

In the % 2  optimization, the coefficients are found so that the impulse response of the 

filter bank is close to the delayed version of the input sequence, i.e.. we would like to have 

a filter bank that is close to the LTI system:

Td(z) =  z - K

Because the filter bank is a periodically time-varying system with period q, the impulse 

responses of the filter bank for impulses at time 0  through time q — 1 are compared with
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the respective desired outputs. Thus, the optimal filter bank minimizes

q - l 1/2 q - l 1 /2

II"•s - T du i\\\
J - °

— £  l lw  -  - * - ( l + ' ) ll?
l=°

where ui(z) =  z~l and yi are the inputs and the outputs, respectively. J e is equal to the 

H i  norm of the error system R  =  — T j, where, as discussed in the previous section, F

is the blocked transfer matrix of the synthesis filter bank, H_ is the blocked transfer matrix 

of the analysis filter bank, and is obtained by blocking Td{z) =  z~^: W riting k =  Iq +  r  

with 0  <  r <  q, we have

Td(z) =  z~[
0 Z ~ l I r

l q - r  0

where I r is the r x r identity matrix.

In the frequency domain the " ^ “norm of the error system is given by:

\\m\2  =  {  2^ f o ^  trace [ & ( * “ ) - & & " ) }  .

where the trace of a square matrix is the sum of the diagonal elements. By expanding the 

trace, we can relate the 'Hj-norm of the error system to the 'W2-norm of the elements of its 

blocked transfer matrix R as:
1/2fq - lq - 1  *

{ k=0 1=0 J
j *  =  \\m \2 =  < w i i r ^ ' ii^  . (4.3)

We assume that the filter bank is F IR , thus the elements of R  are also F IR  and can be

nM
expressed as

fl(W ) =  £  R kJ,nz ~ \
n = 0

where nk,i is the highest degree of the polynomial of the (fc, /) component of R. The "^-norm  

of the elements of R  is related to the coefficients of the polynomial as:

n=0

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Substituting in (4.3), we have

i<7—l <7 -1  nk i

E E I C
fc=0 1=0 n = 0

As can be seen in (4.4), Rk,t,n is the coefficient of z~n in the (k, I) element of the blocked 

transfer matrix of the error system R. These coefficients are the coefficients of polynomials 

which result by deducting the (k, I) element of T j from the multiplication of the Ar-th row

of F  by the /-th column of H_. Since the coefficients of the analysis filters are multiplied by

the coefficients of the synthesis filters in (4.4), minimization of this expression is a nonlinear 

optimization problem. In order to solve this problem, we use an iterative approach. We 

start with a set of frequency-selective analysis filters having prespecified orders nt, and 

find the H 2 optimal synthesis filters F^1* over all F IR  filters F; having orders rat. Since the 

coefficients of the analysis filter bank are fixed, the expression in (4.4) becomes a quadratic 

expression and can be found as the least squares solution of a set of linear equations that 

yield Rk.i,n for 0  <  fc <  <7, 0 <  I <  q, 0  <  n <  r ik j .

Assume that the filters F i  have the following representation

F i { e - n = Y , f n e - j “ l .

1=0

By defining a vector whose elements consist of the coefficients of the filter F  as«

<Pi =  [ f iO  f i l  ‘ ‘ f i n , ]  <

and defining <t> as the vector of coefficients of the synthesis filter bank

<P =  [<t>0<t>\ • • •  < 2 > m -l ] ’ >

we have

J l  =  (A < t> -C )m{A ( t> -C ).
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The matrix A  and vector C  depend on the delay of the filter bank and the coefficients of 

the analysis filter bank. Thus the least squares solution of the systems of equations

A<p =  C

will result in the coefficients of the synthesis filters that minimize the T^-norm of the error 

system for the given set of the analysis filters. Since the coefficients of different synthesis 

filters do not appear in the same equation, the system of linear equations can be decomposed 

into m  sets of linear equations:

A{<t>i =  C, 0 <  i  <  m

where .4, and C, are submatrices of .4 and C , respectively. Thus the objective function 

reduces to
m — I

J ]  =  Y 1  (•4^« -  -  C i) .
i-0

Note that the structural dependencies can be handled without any difficulty.

The T^-norm of the error system is related to the aliasing distortion and magnitude 

distortion of the filter bank. Defining the alias distortion A D ,  magnitude distortion M D ,  

and phase distortion P D ,  as:

A D * =  £ *  \ S f c n \2d“

M D 2 =  ± £ \ \ S 0(ei“ ) \ -  l ) 2du; (4.5)

P D 2 =  max|£So(./u;) +£u;|,u/

where for / =  1, ‘2 , • • •, q — 1, Si are the alias components and So is the linear component of 

the filter bank [34, 8 ], we can show that:

M D 2 +  A D 2 <  J 2/q .  
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Therefore, these distortions are bounded from the above by a factor 1 /y/q of the orm 

of the error system.

The frequency selectivity of filters Fo through Fm_ i can be taken into account by adding 

penalty terms for the stopband ripples of the filters to the objective function. Assume that 

the filters F, have the passband [W2 ;, We define the following objective function

J 2 = J l + J l

where

J l  =  E  Q^ r ‘ F : ( e n F i ( e JW) d u +  f  F ‘ (e ^ )F ,(e ^ )d w ]. (4.6)
, _ 0  ■ ' " 21+1

In a maximally decimated filter bank, if we minimize the norm of the error system 

subject to the constraint on the stop-bands, the minimization of the norm will cause the 

passbands to be almost flat in there passbands. Thus, we only need to consider a penalty 

term for the stopband attenuation of the filters.

By taking

«  =  [ 1  e~JW • • • e~n' j “ ]m,

we have,

F ( e ^ )  =  0 > , .

The penalty function can be simplified as follows:

/*"2 i /•W
Jl = Y. <*«#[/ nnmdu+ /

, _ 0  • ' 0  ■ ' " 2 1 + 1

The term in the brackets can be substituted by a real positive definite matrix T, with the 

(fc, I) element given by:

-  I)) -  s in (u 2 i+ l(k -  I))],  if l ^ k
otherwise
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Thus, the objective function reduces to:

m— 1

J2 =  E  -  CiY{Ai4>i -  C i )  +  O io -r.o ,].
:=0

To get the coefficients of the optimal filters, we set the derivative of J 2 with respect to the 

vectors <?>,- equal to zero:

dJ2
=  2[(.4*.4,- +  -  -4‘ C,] =  0.

Thus, if .4*.4, +  a,T; is invertible, we have

<2>°p£ =  (.4-.4i +  Q ,r t) - l .4*Cl.

If the synthesis filters that minimize the "Wj-norm of the error system do not result in 

satisfactory filters, we may proceed by finding the set of analysis filters that obtain the 

minimum objective function for the synthesis filters that were found in the previous step. 

The steps are similar and thus are omitted. By repeating this procedure, we may be able 

to design acceptable nonuniform filter banks. The algorithm for the iterative design of a 

nonuniform filter bank is summarized as follows (the number in parentheses in superscript 

refers to the iteration):

1 . Use a conventional method like the Remez exchange algorithm to design the initial 

analysis filters through with desired order and frequency characteristics.

2. Find the synthesis filters F q 1̂ through so that the nonuniform filter bank that 

results by cascading the synthesis filter bank to analysis filters is optimal in the H 2 

sense.
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3. Find the analysis filters H q through so that the filter bank consisting of these 

filters and the synthesis filters through F ^ l l , obtained in the previous step is 

optimal in the % 2  sense.

4. Evaluate the objective function J^nK Terminate if — J ^ \  <  e for a prespecified

positive value of e; otherwise increment n by 1, and go to Step 2.

The algorithm minimizes an objective function defined by:

P  = J t { o , y )  +  J l  +  J l ,

where 0  is a vector containing the coefficients of the analysis filters / / , ,  J^  takes into 

account the stopband attenuation of analysis filters, and are defined similarly to o, J& in 

(4.3) and (4.6), respectively. In the algorithm, Step 2 minimizes J  when ip is fixed, and Step 

3 minimizes j  when <j> is fixed. In either case the minimum is found by solving a set of (over 

determined) linear equations. This optimization problem can also be solved by gradient- 

based optimization procedures. The gradient methods rnay or may not yield the global 

optimum. In every step of the method described here, the minimum has a unique analytic 

solution, making this method more suitable than gradient-based methods. Because of this, 

the method converges very fast during the initial iterations; in some cases the initial results 

might even be satisfactory, without any need for iteration. By this algorithm J  decreases 

until it reaches the local minimum. The method may not converge to the global minimum, 

and it is necessary to start from suitable initial filters; otherwise, even when the "Wj-norm 

of the system is low, the sensitivity of the final filters to the noise might be too high. The 

initial filters may be obtained by considering the nonuniform perfect-reconstruction filter 

bank with ideal filters. This point is discussed further in the examples given in the next
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section.

4.4 Exam ples

A filter bank that divides the input signal into three consecutive bands as shown in Figure 4.2 

is considered. It was shown in [12] that this filter bank can not cancel aliasing. As was 

discussed in [18], in some cases, if we use the same ideal filters for analysis and synthesis, 

we are not able to obtain a perfect-reconstruction filter bank. For example, if we assume 

that Ho, H i and H 2 have the passbands [ |  . ^£], [ ^  , tt] and [0 , | ]  respectively, then 

the signals in the output of the analysis filter bank are aliased in such a way that it is not 

possible to recover them by ideal filters. In those cases, it may be possible to use the method 

presented here and obtain a reasonably low norm for the error system, but the frequency 

responses of the synthesis filters will not resemble those of ideal filters, and some of the 

filters may have high sensitivity to noise.

Now, assume that Ho, H i ,  and H 2 split the input signal into the following bands: 

[0 ' §]> [ f  * §]> an<̂  [§ > Following the procedure mentioned in the previous sections, 

the transfer matrix of the blocked system is T_= F_H_ with

H  =

' Hoo z - l Hos Z~1H o4 Z~l Ho3 Z~l Ho2 Hoi
H 03 H 02 H oi Hoo Z~1H o5 H 04

H 10 Z~l H {5 3~l H l4 z - l H i3 Z~l H l2 H n
H 20 z - 1H 25 Z~l H 2 4 Z~1H 23 Z~l H22 H 21

H 22 H 2 1 H 20 Z~l H25 Z - l H 24 H 23

. H 2a H 23 H 22 H 21 H 2q H 25

Fq0 Z - 'F o3 F10 F20 Z ' l F24 Z~l F22 '
F01 Z~1Fo4 F u  F2i Z - \F 2 5 z - l F23
Fq2 Z - 1 Fo5 F12 F22 F20 Z - l F24
Fq3 Foo F l3 F 2 3 F21 Z - [F 23
Fq4 F o i F u  F 24 F22 F20

. Fq5 Fq2 F l5 F 2 5 F 23 F 21 .

F  =

where H i j  and FV, are the j -th components in the 6-fold polyphase decompositions of H i
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and F{, respectively. Note that the elements of F  are interrelated and thus the optimization 

technique that was discussed in [6 ] through [9] for the minimization of the "Woo-norm of the 

error system is not applicable. The initial analysis filters are designed using the M A TLA B  

function f i r l .  The length of the filters Ho, H i  and H 2 are 15, 17, and 15, respectively. 

These analysis filters and the synthesis filters of length 30 are to be designed so that the 

filter bank approximates a delay of 19 samples. We take a , =  0, thus we do not consider any 

penalty term for the frequency characteristics of the filters. If we do not iterate and simply 

obtain the synthesis filters that result in the minimum norm of the error system with the 

initial analysis filters, the minimum attainable T^-norm of the error system will be 0.084*2. 

By iterating, the ‘Wj^norm decreases to 0.035 after *200 iterations. Thus, the average of the 

norm of the error of the impulse response of the filter bank is 0 .0 3 5 /\/6  =  0.0143. The 

T^-norm of the error system versus the iterations is shown in Figure 4.7.

Figure 4.7: The %2~norm of the error system versus the number of iterations for a 3-channel 
filter bank with LTI blocks.

The final analysis filters are shown in Figure 4.8. The final synthesis filters are shown in 

Figure 4.9. It is interesting to note that, although no penalty for the frequency selectivity 

of filters is imposed, the final filters are frequency selective.
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Figure 4.8: Analysis filters Ho (dash), H \  (dot), and / / 2 (solid): amplitude versus normal­
ized frequency.

10*

10* '

10-

Figure 4.9: Synthesis filters Fq (dash), F\ (dot), F2 (solid): amplitude versus normalized 
frequency.

A random input signal with a uniform distribution in [ - 1 ,  L] was applied to the input 

of this filter bank. The error, which is the difference between the output signal and the 

delayed version of the input signal, is shown in Figure 4.10. By using synthesis filters that 

have higher orders and increasing the delay of the filter bank accordingly, it is possible to 

decrease the 7£2-norm of the error system.

If  we allow the synthesis F q and F2 to be 2-periodic and 3-periodic, respectively, while 

keeping analysis filters Ho through H 2 as LT I blocks, for systems with the same order as 

in the previous part, we are able to achieve an W2-norm of 0.0013 for the error system,

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.01

60 00 70 oo OO

Figure 4.10: The error signal (versus time) of the filter bank with LT I blocks for a random 
input with a uniform distribution in [—1 , 1 ].

which is a significant improvement. The final analysis filters are shown in Figure 4.11. It is 

interesting to note that the analysis filters are frequency selective as before. The coefficients 

of the initial and final analysis filters are given in Table 4.1. There is not a significant change 

in the coefficients of the filters after iterating, which means that the method converges to 

the local minimum. Therefore, although the subband signals are similar to those in the 

previous part, the error in the output is significantly smaller.

The frequency characteristics of the LTI blocks in the switched representation of syn­

thesis blocks, as per Figure 4.5, appear in Figures 4.12- 4.13. These filters have frequency 

characteristics similar to those of filters Fo through F j in the filter bank with the LTI syn­

thesis filters. The total of floating point operation count is 2.853 x 109. Thus, the floating 

point count per iteration is 14.2 x 106.

Similarly, a random input signal with a uniform distribution in [ -1 ,1 ]  was applied to the 

input of this filter bank. The error of the output of the filter bank is shown in Figure 4.14. 

Various distortions of the filter banks in the above examples are calculated as per (4.5). 

The results are summarized in Table 4.2.
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to’

Figure 4.11: Analysis filters, for the filter bank with general synthesis blocks Hq (dash), H i  
(dot), and H 2 (solid): amplitude versus normalized frequency.

to'

to**

to"*

Figure 4.12: Synthesis filters for the filter bank with the general blocks, <?oo (solid), 0 01 

(dash), F i  (*-.’): amplitude versus normalized frequency.

4.5  Sum m ary

In this chapter, we have proposed the H.2 optimal design of nonuniform filter banks. Our 

method handles the structural dependency in the design procedure and yields a solution 

that has an impulse response close to a pure delay. A t each iteration, the least squares 

solution of a system of linear equations is found, allowing the final analysis and synthesis 

filters to be obtained easily. In the next chapter, we shall study the model-matching design 

of nonuniform filter banks by using the Tloo norm of systems.
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n On 2 n
0 0.0054 0.0060 -0.0047
1 0 . 0 0 1 2 -0.0070 -0.0075
2 -0.0152 -0.0057 -0.0119
3 -0.0312 0.0623 0.0032
4 0.0004 0.0613 0.0668
5 0.1141 -0.1155 - 0 . 0 0 1 1

6 0.2620 -0.1871 -0.3046
7 0.3315 0.0622 0.5020
8 0.2608 0.2594 -0.3052
9 0.1105 0.0662 - 0 . 0 0 0 1

1 0 -0 . 0 0 2 0 -0.1838 0.0689
1 1 -0.0270 -0.1203 0.0009
1 2 -0.0009 0.0493 -0.0158
13 0.0088 0.0614 -0.0019
14 -0.0069 0.0041 0 . 0 0 1 0

15 0.0051
16 0.0119

n h(6)On n l n hm2 n
0 0.0031 -0.0043 0.0037
1 0 . 0 0 0 0 -0.0151 0 . 0 0 0 0

2 -0.0139 0 . 0 0 0 0 -0.0162
3 -0.0300 0.0671 0 . 0 0 0 0

4 0 . 0 0 0 0 0.0578 0.0684
5 0.1133 -0.1179 0 . 0 0 0 0

6 0.2617 -0.1851 -0.3049
7 0.3315 0.0639 0.5019
8 0.2617 0.2587 -0.3049
9 0.1133 0.0639 0 . 0 0 0 0

1 0 0 . 0 0 0 0 -0.1851 0.0684
1 1 -0.0300 -0.1179 0 . 0 0 0 0

1 2 -0.0139 0.0578 -0.0162
13 0 . 0 0 0 0 0.0671 0 . 0 0 0 0

14 0.0031 0 . 0 0 0 0 0.0037
15 -0.0151
16 -0.0043

(a) (b)

Table 4.1: Coefficients of (a) Initial analysis filters, (b) final analysis filters

Synthesis filters Periodic synthesis blocks
% j-norm 0.035 0.0013
A D 0.0132 0.00046
M D 0.0042 0.00018
P D  (deg.) 0.4033 0.0285

Table 4.2: The 'Ha-norni and various distortions of filter banks in examples
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030.2

Figure 4.13: Synthesis filters for the filter bank with the general blocks, <£20 (solid). <z>2 i 
(dash), 0 2 2  ( ’-•’) : amplitude versus normalized frequency.

Figure 4.14: The error signal (versus time) of the filter bank with general blocks for a 
random input with a uniform distribution in [—1 , 1 ].
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Chapter 5

1-Loo Design o f Nonuniform Filter  
Banks

In the previous chapter we formulated the H 2 model-matching design of nonuniform fil­

ter banks in the frequency domain. In this chapter, we give another formulation. This 

formulation attempts to minimize the Hoc model-matching problem in the time domain.

5.1 Introduction

As we mentioned in the previous chapter, it is usually possible to relate a nonuniform 

filter bank to a uniform filter bank with possibly interrelated filters. Thus, the design of 

a nonuniform filter bank can be converted to the design of a uniform filter bank subject 

to some structural constraints. The design process should be capable of handling these 

constraints. For example, methods presented in [6 , 18] are suitable for the cases where no 

structural constraints are present. In [7], it was shown that filter banks may be designed by 

model-matching, i.e., by minimizing the Hoo norm of an error system, formed by subtracting 

the output of a pure delay transfer function from the output of the filter bank. By such 

a design method the analysis filters are designed in advance and I IR  synthesis filters are 

found so that the Hoc norm of the error system is minimized, then the IIR  filters are
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approximated by F IR  filters. The filters are found by solving two Riccati equations. Because 

of the approximation, the final filters are suboptimal. Moreover, this method can not 

accommodate the structural constraints.

In this chapter, we follow an iterative approach. At each iteration, we use semidefinite 

programming and obtain the F IR  synthesis filters for a given set of F IR  analysis filters or 

vise versa. The problem is a convex optimization problem, and since no approximation is 

involved, at each iteration the solution is optimal, i.e., the F IR  synthesis (analysis) filters 

are optimal for the given analysis (synthesis) filters. Here, we consider the 'H<x norm as the 

optimality criterion. Thus the designed filter bank is closest to the desired ideal system in 

the worst case scenario. As we will see, the constraints will not pose any difficulty in the 

design process.

The semidefinite programming (SDP) problem is the optimization problem of a linear 

function subject to the constraint that a matrix be positive definite. In other words, the 

following problem is a semidefinite programming problem:

minimize cTa, 
subject to G (o ) >  0,

where
m

G (o ) =  Go +  ^  <*iG,-,
i=i

and the matrices G o ,- - - ,G m 6  R nxn are symmetric. Here, for real symmetric matrices .4 

and B , A  >  B  whenever A — B  is positive definite. The inequality G (a )  >  0 is called a linear 

matrix inequality (L M I). The SDP problems are convex optimization problems and can be 

solved using interior point methods. Thus SDP problems are polynomial time solvable if 

an a p r io r i  bound on their solution is known [2, 5].
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The chapter is organized as follows: In Section 5.2, we discuss the model-matching 

formulation for filter banks. In Section 5.3, this problem is then converted to an SDP 

problem. In Section 5.4, we give an example for the design of a three channel nonuniform 

filter bank. The example involves periodic blocks in the synthesis filter bank and frequency 

selective filters as the analysis filters. Finally, Section 5.5 provides some concluding remarks.

5.2 Form ulation

A nonuniform filter bank as shown in Figure 5.1 is considered. In this section, we will discuss 

how a model-matching problem for the design of multirate filter banks can be obtained.

I  P it  9i

I  9ot  Po

m —1

Figure 5.1: A general nonuniform filter bank.

As we discussed in the previous chapter, this nonuniform filter bank is a periodic system 

with period q =  lcm(<7o,<7i, • • •» 9 m-i)> where </,- are the downsampling factors. By blocking 

the input and output signals, a multi-input multi-output q by q LT I system results. The 

transfer matrix of the blocked filter bank T_(z) is the tandem connection of the transfer 

matrix of the blocked analysis filter bank H_{~) and that of synthesis filter bank, F (s ), i.e.,

T { z ) =  F { z ) H { z ) .

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We are interested in a system which has a transfer function close to a pure delay. Since 

blocking is norm-preserving, we can compare the blocked transfer function of a filter bank 

with that of a pure delay.

The q blocked transfer matrix, Td(z), of the pure delay by k  =  Jq +  r with 0  <  r <  q, is:

0
, - i

F j- r 0Z k ( * )  =

Assume F , H_ and Td have the state-space realizations:

F  =

I r

H  =

Td =

•4/ B j
[C'f

‘ A h B h ‘

. Ch Dh

’ A d B d '
c d D d

We use the controllable canonical form and thus the coefficient of filters appear in the 

matrices C  and D  above and the structures of the matrices .4 and B  in the realizations 

of transfer matrices are similar. It is straightforward to show, H{z)  =  F (z )  HXZ) has the 

following realization:
A k 0 Bh

T (z )  = B jC h A f B /D h
D f Ch C f D /D h

Since we assume that the filter bank is F IR , all of the .4 matrices in the realization of F , 

H , Tj., and T ( - )  have all of their eigenvalues equal to zero.

The "Woo norm of the error system is by definition the £ 2  induced norm o f R  =  F  H_ — Td- 

The realization of R  can be obtained with little effort. In order to reduce the realization,
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note that the (1,2) block of the realization .4 matrix of T  is 0. When the order of T± is less 

than or equal to that of H_, we have

Ah 0 B h
ft(s ) = B /C h A f B /D h

1

0 £ i £ © C f D fD h  -  Dd

A similar relationship can be written for the case that the order of Td is higher than that 

of H_, but such a realization may not be minimal (this will not pose any problems).

The coefficients of the analysis filters appear in Ch and Dh and those of synthesis filters 

appear in C j  and D j .  In uniform filter banks there are no structural constraints on the 

elements of C j  and D / ,  but in nonuniform filter banks some of the coefficients of filters 

may appear in more than one entry of these matrices. Thus the model-matching problem 

should be solved subject to these structural constraints.

When the delay and the analysis filters are given and the synthesis filters that minimize 

the 'Woo norm of the error system are to be found, Td(z) and H_{z) are known and the 

coefficients of the synthesis filters appear only in F (z ). Therefore, C /  and D j  are variable 

and the rest of the matrices are fixed. Note that in this case, .4 and B  matrices of the real­

ization of R are fixed and only C  and D  matrices are variable. Furthermore the coefficients 

of the synthesis filters appear directly in the above matrices. For this case, the design of a 

multirate filter bank can be cast as the following optimization problem:

Find matrices C /  and D f  (or equivalently the coefficients of filters F q through Fm_!) 

so as to minimize || R(z) ||oo •

Since C j  and D j  appear directly in R, as discussed in the next section, using the bounded 

real lemma, this problem can be converted into semidefinite programming. Once the prob­

lem is converted, it can be solved by interior point methods.
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The dual problem of finding the F IR  analysis filters that result in the minimum Hoo 

norm of the error system can be solved by minimizing the norm of the transpose of the 

error system R? (z) =  H j ( z ) F t (5 ) -  T ^ ( z ) .  This can be done since the Hoo norm of 

R? {z) is equal to that of R and the variable coefficients appear in C  and D  matrices of the 

realization of H j .

Using the above mentioned cases, we are able to design a filter bank iteratively. The 

algorithm for the iterative design of a nonuniform filter bank is summarized as follows (the 

number in the parenthesis in superscript refers to the iteration):

1. Use a conventional method like Remez exchange algorithm to design the initial analysis 

filters H q0* through with desired order and frequency characteristics.

2. Find the synthesis filters Fq"* through F ^ i i  so that the nonuniform filter bank that 

results by cascading the synthesis filter bank to analysis filters Hq71-1* through

is optimal in the Hco sense.

3. Find the analysis filters H q̂  through H ^ _  t so that the filter bank consisting of these 

filters and the synthesis filters Fq through F ^ , ,  obtained in the previous step, is 

optimal in the Hoo sense.

4. Evaluate the objective function | | H ^ | | o o -  Terminate if | | i ^ n - l * | |oo  — l l i ^ n * l |o o  <  f for 

a prespecified positive value of c; otherwise increment n by 1, and go to step '2.

Note that the order of the filters are fixed throughout the design procedure.
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5.3 Conversion to  LMI

In order to perform the minimization, we apply the bounded real lemma [5]. A discrete 

time system

m = )  =
’ A B

C D
(5.1)

has an l i  induced norm less than or equal to 7  if and only if there exists a positive definite 

symmetric matrix P  so that the following L M I is satisfied:

A t  P A - P  +  C t C  C t D  +  A t P B
D t C  +  B t P A  D T D - y 2I +  B t P B

<  0. (5.2)

Since the products C TC, D TD , C T D  and D TC  appear in the above relationship, it is 

not a standard LM I. However, using Schur complement, it can be transformed to a standard 

form: Since

A T P A  — P  +  C TC  C t D  +  A t P B  
D t C  +  B t P A  D t D - ~ ( 2I  +  b t p b

A t  P A  -  P  a t p b  
B t  P A  B t P B  - 7 21
r T rpr (-/-') [c  D

using Schur complements [2], (5.2) is satisfied if and only if

A t  P A  -  P  A t  P B  C t  '
B t P A  B t  P B  — 7 2/  D t

C  D  - I
<  0 .

We are interested in finding F IR  filters Fo through Fm_i so that the £2 induced norm of

R is minimized. This is equivalent to the following optimization problem: Assuming a

state-space model for R[z) as given in (5.1) 

minimize 7

subject to
A t P A - P  A t P B  C t  

B t P A  B T P B - 7 2f  D t  
C  D  - I

P  >  0.

< 0 .
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In steps 2 and 3 of the algorithm, the coefficients of the filters that are to be designed 

appear directly in the C  and D  matrices. Thus, by finding the solution of the above 

problem subject to some constraints on the elements of C  and D,  the coefficients of the 

filters can be obtained. This is a standard L M I problem and can be solved readily.

5.4  Exam ple

A nonuniform filter bank that divides the input signal into three consecutive bands as shown 

in Figure 5.1 is considered, with Po =  Pi =  P2 =  I  and qo =  3, qi =  6  and <72 =  2. It was 

shown in [1 2 ] that in this case, alias cancellation is not achievable if non-ideal filters are 

used.

Assume that Hq, H i  and H 2 split the input signal into the following bands [0 , §], 

[§ , f ]  and [ j  , ?r]. The initial analysis filters are designed using the M A TLA B  function 

f i r  I .  The lengths of the filters Hq , H i  and H 2 are 15, 17 and 15, respectively. The synthesis 

filters of length 24 and analysis blocks of lengths given above are to be designed so that the 

filter bank approximates a delay of 18 samples.

We allow the synthesis F q and F2 to be 2-periodic and 3-periodic, respectively, while 

keeping synthesis filter F i  and the analysis filters H q through H 2 as LT I blocks (filters). By 

this choice, in step 3 of the algorithm, the coefficients of the the matrices Ch and Dh are 

interrelated, and in step 2 , the coefficients of synthesis filters are independent [6 ].

The Hoo norm of the error system reduces to 0.0383 after 5 iterations. The final anal­

ysis filters are shown in Figure 5.2. The frequency characteristics of the LTI blocks in the 

switched representation of synthesis blocks, as was shown in Figure 4.5, appear in Fig­

ures 5.3- 5.4. Th  filters in the LSTV  representation of the synthesis filters have parameters
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Figure 5.2: Analysis filters H q (dash), H i  (dot), and H 2  (solid): amplitude versus normal­
ized frequency.

10'

Figure 5.3: Synthesis filters for the filter bank with the general blocks, <2>qq  (solid), 0 0 1  

(dash), Ft ( ’-•’): amplitude versus normalized frequency.

that are close to each other, which makes their frequency characteristics similar.

A random input signal with a uniform distribution in [—1,1] is applied to the input 

of this filter bank. The error which is the difference between the output signal and the 

delayed version of the input signal is shown in Figure 5.5. This shows that the results are 

satisfactory.
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Figure 5.4: Synthesis filters for the filter bank with the general blocks, 0 2 0  (solid), © 2 1  

(dash), 0 2 2  ( -- ) : amplitude versus normalized frequency.

0.03

002

- 0  02

-0 03
00 80 10020

Figure 5.5: The error signal of the filter bank for a random input with a uniform distribution 
in [ - 1 , L].

5.5 Concluding R em arks

By the design procedure given here, the "Woo-norm of the error system decreases until it 

reaches some local minimum. The design procedure does not guarantee convergence to the 

global minimum. But if  we start from suitable analysis filters, after a couple of iterations 

the filter coefficients will converge. Furthermore, as no constraints on frequency selectivity 

of filters are imposed, after some iterations, the frequency characteristics of the filters may 

become undesirable. In this case, it might be desirable to impose constraints on the stopband
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of the filters. This can be done by adding some LMIs as discussed in [21]. The Woo model- 

matching formulation presented in this chapter is computationally more intensive than 

the n 2 model-matching problem given in the previous chapter. Furthermore, the results 

seem to give filters that are slightly less frequency selective that those obtained by the 

% 2  model-matching design. In the next chapter, we study a nonuniform transmultiplexer 

that is obtained by interchanging the positions of the analysis and the synthesis parts of a 

nonuniform filter bank.
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Chapter 6

Nonuniform  Transmultiplexers: 
Analysis and Design

In the previous chapters, we studied the design of nonuniform filter banks. In this chapter 

we discuss a multirate system which is the dual of a nonuniform filter bank, i.e, a nonuniform 

transmultiplexer.

6.1 Introduction

A general nonuniform m channel transmultiplexer is shown in Figure 6.1. It has two parts, 

the synthesis part and the analysis part. The synthesis part transforms signals that have 

different sampling rates from the time-division multiplexing format to the frequency-division 

multiplexing format. The F D M  signal is then transmitted. At the receiving end, the analysis 

part of the transmultiplexer reconstructs the original signals.

In the design of nonuniform transmultiplexers, it is desired that the outputs of channels 

be delayed versions of the inputs of the channels, i.e.,

y, (n) =  i , ( n  — dt ) for t =  0 , ..., m — 1 ,

where </,- is the delay of the t-th channel. In an ideal maximally decimated transmultiplexer,
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Figure 6.1: A general nonuniform transmultiplexer.

the spectrum of the input signal x, appears on the frequency bands

[0 , aa-rr] , for i  =  0 ,
(6.1)

[ £ l = lo for i =  1 , • • •, m — I,

of the transmitted signal u. The higher bound for the component due to the last channel

should be equal to rr, i.e.,
m — 1

£ -  =  i .  
t o P k

As we mentioned in previous chapters, it may not be possible to allocate frequency 

bands arbitrarily. Rather the i-th frequency band has to be located at [|S  for some

s i e  {o, - - -, p.-} [is].

In a nonuniform transmultiplexer, the synthesis part of the transmultiplexer consists 

of rate-changer subsystems described by the upsampler by p,-, the linear filter H i with an 

impulse response /i,(n ), and the downsampler by qr,-. The i-th  subsystem of the synthesis 

part maps the spectrum of the inputs of channels to the frequency bands given by (6 .1 ). 

Because all outputs of these subsystems are added to obtain the resulting F D M  signal u, 

the sampling rate of the outputs of all these subsystems are the same. Thus, the input
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sampling rates u;,-, and the output sampling rate u> of all synthesis channels are related by

QiUi =  —u .
Pi

A t the other end, the analysis part of the transmultiplexer receives the signal u, and re­

constructs the inputs to the transmultiplexer. In summary, a nonuniform transmultiplexer 

may be used for the conversion of signals that have different sampling rates, between the 

T D M  and the F D M  formats.

As we will discuss later, a nonuniform transmultiplexer can be converted to a uniform 

transmultiplexer. Similar to nonuniform filter banks [12], some of the filters in the equiva­

lent representation of a nonuniform transmultiplexer may be interrelated. Thus, it can be 

shown that in some cases, it may not even be possible to eliminate cross talk distortions 

in nonuniform transmultiplexers. The interdependency between filters in the equivalent 

representation translates into interdependency between elements of the transfer matrices 

of the synthesis or analysis parts. If we use linear periodically time-varying systems with 

appropriate periods instead of linear time-invariant filters, we obtain an equivalent uniform 

transmultiplexer with no interdependence between filters [27, 9].

The use of L P T V  systems may not be acceptable for the filters in the synthesis part, 

because by using L P T V  systems aliasing will be present in the channels, and it will be 

hard to ensure that the output of the synthesis part are in the F D M  format. In this case, a 

transmultiplexer with LT I filters in the synthesis part, and L P T V  subsystems in the analysis 

part eliminates the design constraints on the analysis part in the equivalent representation, 

and provides the T D M  to F D M  conversion.

The theory and design of transmultiplexers have been studied extensively, see [33, 35, 19,
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26, 34, 1], and the references therein. Nonuniform transmultiplexers have been proposed 

recently [10, 20]. Once the design of nonuniform transmultiplexers is converted to the 

design of the uniform transmultiplexers, if there are no constraints on filters, a method 

developed for the design of uniform transmultiplexers may be used. One of the methods 

of designing multirate systems is the model-matching method. Similar to nonuniform filter 

banks [12, 18, 25], in nonuniform transmultiplexers, it may not be possible to achieve perfect- 

reconstruction. The model-matching method results in a transmultiplexer that behaves 

almost like a perfect-reconstruction transmultiplexer. In [20], the blocking method was 

used, and the H i  model-matching which minimizes the norm of the impulse response of an 

error system, was proposed for the design of transmultiplexers. The Hz model-matching 

problem results in the solution of a linear system of equations. Although the design is 

simple in the Hz model-matching, for the worst case scenario the errors may be too high.

The model-matching method was used in [6 , 7, 14, 9] for the design of filter banks for 

the worst case scenario by solving two Riccati equations. The use of two Riccati equations 

cannot deal with the structural constraints that may appear in the design of nonuniform 

transmultiplexers. But, by the semidefinite programming approach [5, 29], we can design 

nonuniform transmultiplexers in the most general case.

In this chapter, we study the alias-component matrices for non-uniform transmultiplex­

ers, and use semidefinite programming for the design of transmultiplexers in the worst case 

scenario. As we show, the distortions in transmultiplexers can be related to the Hoo norm 

of some error systems. Therefore, a design based on the minimization of the Hoo norm of 

error systems results in transmultiplexers with low distortions.

The chapter is organized as follows: In Section 6.2, it is first shown that a nonuniform
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transmultiplexer can be transformed into a uniform transmultiplexer, and then the transfer 

matrix of nonuniform transmultiplexer is obtained. In Section 6.3, the alias-component 

matrices of transmultiplexers are studied. In Section 6.4, the model-matching design of 

transmultiplexers is disussed. Some design examples are given in Section 6.5. Section 6 . 6  

concludes the chapter.

6.2 Transfer M atrices o f  N onuniform  Transm ultiplexers

Take p =lcm (po,pi, • • - ,pm- i ) ,  and set n,- =  p/p,-. A delay in the input sequence by n,<7,- 

samples in the i-th input of nonuniform transmultiplexer results in a delay of p samples in u. 

Such a delay in u, in turn results in a delay of n^,- samples in the output sequence of the i-th 

channel. Therefore the transmultiplexer is a general linear periodically time-varying system 

for which a delay of re,<7, in the input sequence of channel i, results in a delay of the same 

duration in the output to the channel. Because the inputs to the transmultipiexer should be 

reconstructed at the outputs of the channels, the channel response should be close in some 

sense to a pure delay. Therefore, although the nonuniform transmultipiexer is n^j-periodic 

from the i-th input to the i-th  output, it should behave similar to an LTI system with a 

pure delay transfer function. Furthermore there should be no cross talk between channels.

As we show in the following, a nonuniform transmultipiexer can be converted to a 

uniform transmultipiexer with upsampling factor p = lc m (p o ,P i, • • - ,P m -i)- Take n, =  p fpu  

and for the simplicity of discussion, for the rest of the chapter, we assume that q,- =  I .  In 

order to obtain the equivalent representation, we place the re,-channel perfect-reconstruction 

filter bank in Figure 6.2 in front of the upsampler by p,-. Moving the upsampler by p,-, and 

F i inside the delay ladder and noting that the cascade connection of f  Pi and f  n i is T P> we

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r - l

Xi

Figure 6.2: An n,-channel maximally decimated perfect-reconstruction filter bank.

see that the i-th channel of the transmultipiexer is replaced by the left side of Figure 6.3. 

Similarly, by cascading the output of the i-th channel of the analysis part to the input 

of the perfect-reconstruction filter bank shown in Figure 6.2, we obtain the right side of 

Figure 6.3.

In Figure 6.3, the inputs to the upsamplers by p are the n,-polyphase representation of 

x,. Similarly the outputs of the downsamplers by p yield the n, polyphase decomposition 

of the output I/;. Therefore the part between upsampler by p and downsampler by p results 

in an equivalent p channel uniform transmultipiexer, and the inputs and outputs of this 

equivalent transmultipiexer are the polyphase components of the inputs and outputs of the 

nonuniform transmultipiexer.

The n,- filters in the equivalent analysis part and synthesis part of Figure 6.3 are related 

to the analysis filter H i and synthesis filter Ft, respectively. Because of this interdepen­

dence between filters, it can be shown that in some cases of nonuniform transmultiplexers, 

similar to nonuniform filter banks [1 2 ], it may not even be possible to eliminate cross talk
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distortions.

If  we allow F{ and H i to be LP TV  systems with period p instead of LTI filters, the 

interdependence between filters in the synthesis and analysis parts of the equivalent repre­

sentation of the i-th  channel will be eliminated. Take the periodic system with the repre­

sentation shown in Figure 6.4, where F,/t are LTI systems, and the switch connects to Fi0, 

Fu, ..., at sampling times 0, p,-, ... p,(n, — I) ,  and repeats. For the A-th subchannel

of the equivalent representation of the i-th synthesis subsystem of Figure 6.3, the input to 

F, is obtained by first upsampling a polyphase component of the input signal, and then 

delaying it by Arp, samples. As the switch is periodic with period p =  p,n, and is connected 

to Fio at sampling time equal to zero, for this subchannel only F,fc will have an input not 

identically equal to zero, and for the A-th subchannel, we can replace the block z ' ^ 'F i  by 

z -P 'F ik. Thus, the use of this switching system can eliminate the interdependency between 

filters in the synthesis part.

Similarly, let / / ,  be an L P T V  system with period p shown in Figure 6.5, where //,•* are 

LTI systems, and the switch connects to ff,o, H u , ..., Hi,nt- i at sampling times 0 , p,-, ..., 

p,-(n, -  1 ), and repeats. We can show that z ^ 'H ,  in Figure 6.3 will be replaced by zkp,Hik 

in the equivalent representation of the i-th channel. This will result in the elimination of 

interdependency between the filters in the equivalent representation of the i-th analysis 

subsystem.

Therefore, by using proper L P T V  systems with period p, the design of a nonuniform 

transmultipiexer converts into the design of a uniform transmultipiexer. In particular, if 

Fi k and / / , ,*  are frequency selective, and the equivalent transmultipiexer achieves perfect- 

reconstruction, the nonuniform transmultipiexer will also be perfect-reconstruction, and the
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spectrum of the i-th  signal will be mapped into the frequency band given by (6.1). However, 

the spectrum of the output of synthesis part will not simply be the concatenation of the 

spectrum of the inputs of the nonuniform transmultipiexer as is the case for a uniform 

transmultipiexer. Rather, the spectrum of polyphase components of the input signal will 

be mapped into different subbands within the frequency band of the i-th channel in (6 . 1 ). 

If  we want to have the T D M  to F D M  conversion, we should use LT I synthesis filters Ft. 

In that case, it may not even be possible to eliminate the cross talk between channels. In 

order to solve the problem in the case where H i and/or F  are LTI, we first discuss the 

transfer matrix of a transmultipiexer, and then formulate the model-matching problem in 

the following.

Figure 6.3: The equivalent representation of the general nonuniform transmultipiexer. The 
representation of the i-th channel is shown.

If  we block the input and output signals, a multi-input multi-output p by p LTI system 

results. By blocking this equivalent representation, we obtain the input-output relationship 

of the system: Assume that F; and H i are LTI. Take the polyphase components of the

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



^,71,-1 \ - t>

Figure 6.4: The representation of F).

Figure 6.5: The representation of H i.  

channel inputs x,-, and channel outputs y,:

X i( z ) =  £ x ik (zn' ) z - k ,
k= 0

fc= 0

-fc

Defining the p-polyphase versions

X i{z )  =  [A't0( - )  -V,i(x) •••  A't,(„l_i)(~')]T .

and

£ •(*) =  [ * » ( * )  v - i U ) - - -  v;-.(„.-i)(^)]T , 
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we see that the equivalent uniform transmultiplexer has inputs and outputs given by X  and 

Y , where

A' =  [.Y0r  X j  ••• A ^ _ l ]T ,

and

r  =  [V7  y f  . . .  y jr^ T

The synthesis filters in the equivalent uniform transmultiplexer are

Gk0 =  z~koPoF0, for 0  <  kQ <  n0,

and
i—l

Gic =  z~k,PtF i, k =  k{ +  ^  ni, for 0 <  A:,- <  rat , and 0 <  i  <  m.
l=o

Similarly, the analysis filters in the equivalent uniform transmultiplexer are

Eko =  zkop°H o, for 0 <  <  n0,

and
t—i

Efc =  zk,p' H i, k =  k i +  ni, for 0  <  fc, <  n,, and 0  <  i  <  m.
l=o

The transfer matrix of the nonuniform transmultiplexer can be found in terms of the 

polyphase components of the equivalent filters E,- and G , as follows: Let

k=o

A  delay of n, samples in the input of t-th channel of the nonuniform transmultiplexer for 

i  =  0 , • • •, m — 1 , corresponds to a unit delay of the inputs to the equivalent uniform trans­

multiplexer, and results in a delay of p samples at the output of the synthesis part. Thus
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by decomposing the output of the synthesis part u, in terms of its p-polyphase components 

as

U (z) =  Pj 2 &^ ) z - k,
k= 0

and defining the blocked version of u

U (z) =  [Uo(z) Lfl (z) •••  U(p_ l ) (z )]T , 

we see that the polyphase components of u and x are related by

f7(z) =  F ( z ) X ( z ) ,  (6.4)

where elements of F  are given by

j r ( ‘ . 0  _  . for o <  i  <  p, 0  <  / <  p.

(Note that we start the numbering from 0, and the superscript shows the index of elements 

of matrices.) Therefore, all of the polyphase components of filters F, appear on every row 

equal or higher than Yl'iZo ni an<̂  l°wer than 5 Z!=o nl • other words, there is a structural 

constraint on the elements of the rows of these matrices, as they are not totally free to 

change, and are interrelated.

Similarly, the outputs of the transmultiplexer can be found in terms of the polyphase 

elements of the synthesis filters F,,^

p - i

£,•(*) =  E £ - * ( * P) * ‘ fe>
k=0

as

Y (z ) =  H (z )U (z ) ,  (6.5)
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where the elements of p by p matrix H_ are given by

£L(i'0) =  E i0, for 0  <  i  <  p,

H }U) =  z~ l E i,p - l for 0  <  i  <  p, 0  <  I <  p.

Again we see that the elements of some of the columns of H_ are interdependent. Sub­

stituting (6.4) in (6.5), we have

Y {z )  =  H (z )F (z )X (z ) .  (6 .6 )

This relationship gives the polyphase components of the output of the nonuniform trans- 

multiplexer in terms of the polyphase components of the input of the transmultiplexer. 

Based on the presentation, we see that unless all of the upsampling factors p, are equal, 

the filters in the equivalent representation will be interrelated, which results in interdepen­

dence between the elements of some of the rows of F  or some of the columns of H_. If 

H-{z)E.{z) is a proper blocking of pure time-delay transfer functions from inputs to out­

puts of each channel, the transmultiplexer will be perfect-reconst ruction. Because of the

structural constraints, in general it may not be possible to have a perfect-reconstruction 

nonuniform transmultiplexer.

6.3 A lias-C om ponent M atrices

Consider the m-channel nonuniform transmultiplexer in Figure 6.1. As we discussed in 

Section 6.2, we can transform a nonuniform transmultiplexer to a uniform transmultiplexer 

subject to some possible constraints on the filters. In order to be consistent with the results 

of the previous section, we assume that g, =  1 . The general case can be obtain by slight 

modifications, i.e., by replacing n,- by n,g, in the following. The inputs and outputs of
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this system are the n,- polyphase components of the inputs and outputs of the nonuniform 

transmultiplexer. Thus, if we block the input and output signals, a multi-input multi-output 

p by p LTI system results. By blocking this equivalent representation, we obtain the input- 

output relationship of the system: Defining r ,(e JU') =  d iag(l, e-JU/, • • and a 1

by rii vector of ones as l„, =  [ 1  1 • • • 1 ], equation (6 .2 ) can be written in terms of «,■

blocked version of input A\- given by

X i ( e n  =

For k =  0, • •• ,«,•  — 1, we have

X i(eJ'(“'+2,r£ )) =  \ ^ r n i( e n X i( e jn n ^

where A ^ is the Ar-th row of the n, by n,- D F T  matrix An, with the ( l , k ) element given as 

e- j 2*v+k)/n, _ By defining

X i (eJ“') =  [X t(eJUJ) X i(e J*'~u+2K” ' )) ••• A . V 0̂ 2* ^ ) ] 7'.

and

X (e i“ ) = [ X Z ( e n  X j { ^ )  ••• A '£_ 1 (e ^ ) ] r .

we see that the blocked version of input X can be calculated in terms of the input as

A '.(e^ ) =  An,r„ , (eJU')A't(e;n,u').

Defining

A =  d iag{A 0 , A 1 , - - - , A „ m_l } ,

and

r(e JU') =  diag | r 0 (eJ' ^ ) ,  r ^ e ^ ) ,  ■ • - , r m_ 1 (eJ;^ ‘ ) j * ,
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we have

X {e j “ ) =  \ r { e jw )X (e JUJ). (6.7)

Similarly, let

Yi(e>w) =  [Yi(ejw) V-(ej(u/+2,r^ )) ••• V,(ej(u'+2’r2^ ))]T

and

Y ( e n  =  [?0T ( e n  •••  f 7J _ l (e ^ ) ] r .

for the output, we can write

Y i( e n  =  An| Tu, (eJW) V; (ejn,u/).

and we have

Y{ejw ) =  Ar(e-'")Vr(eJU') . (6 .8 )

Substituting (6.7) and (6 .8 ) in (6 .6 ), we obtain the alias-component representation of the 

transmultiplexer as

V' =  A r / / £ r - l A - l . \ \

where the dependence of the matrices on the frequency is suppressed. The matrix

f  =  A r H F r ~ l A ~ l

is the alias-component matrix of the nonuniform transmultiplexer.

In a transmultiplexer, cross-talk between channels is not desirable. Furthermore, the 

output of each channel should be close to a delayed version of the input to that channel. 

Therefore, if we take

f t ,  = d i a g { > \  « * « + * *
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and

td  =  diag {Tdo, Tdi, • • • ,  Td,m- i } ,

then T  should approximate Td-

The alias-component matrix is p by p. I f  we partition the matrix according to the di­

mensions of the inputs and outputs in the equivalent representation, we obtain the following 

representation

7  =

Too 7o i • • •  T o .m -i
7io T n  ••• T i,m-1

7 m_l,0 7 m_ i, i  • • •  7 m - l ,m - l  

The n, by n/ submatrices Tu gives the relationship of the output of the i-th channel to the

input of the /-th  channel. When i and I are different, this represents the leakage or cross

talk between channels. We may define, the cross talk distortion of the i-th channel C D ,, as

the contribution of the inputs of other channels to the i-th  output. In terms of the elements

of the transfer matrix, we can write

m—1 n, — 1

where the indices in the parenthesis represent the elements of the matrices. We can show 

that:

CD? =  sup ^ * ' 12— rjj . subject to x,- =  0.

where the '2 -norm of the signal is given by the square root of its energy.

The Ta submatrix is n,- by n,-. Its (0,0) element, f^ ° ’0) represent the transfer function 

between the input of the i-th channel and its output. If  the system is LT I from the i-th  

input to the i-th output, the matrix Tu will be diagonal. In the general case <7, /  I ,  the off 

diagonal elements of Tu may not be equal to zero, because even if  F, and H i are LT I, the
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nonuniform transmultiplexer is qi periodic from its i-th input to its i-th  output. Thus an 

aliasing distortion may be present. We can define the aliasing distortion, A D , as

A D ? =  max £  |
Jt=i

Deviation of the diagonal elements of Tu from those of the matrices T u  represent the 

amplitude and the phase distortion of the i-th channel. The magnitude distortion M D  can 

define as

The Hoo norm of a row submatrix of any matrix, is less than the H,x  norm of the matrix. 

Taking the /- th row of the alias-component matrix of the error system T  — Td yields

||f(I.O) _  j ( / . 0 ) f ( l ,  1 ) _  j ( U )  . . . 1) _  f (S/tP_l)||0O < | | f  -  frflloo.

Writing this in terms of the partition of the alias-component matrices gives

+  £  £  | f j 0 ^ ( e ^ ) l 2 <  \ \ f - f d \ \ L  Vw.
k= l 1=0 k= 0

Maximizing over u; yields

D i, A D i,C D i)  <  \\T  — Td\\oo-

Therefore, the distortions are bounded from above by the infinity norm of the error system. 

In other words, by minimizing the norm of the error system, a transmultiplexer results that 

has distortion measures less than the infinity norm of the error system. In the next section, 

we study a method for the design of transmultiplexers based on the minimization of the 

Hoo norm of the error system.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.4 M odel-M atching Form ulation

The Hoo model-matching design of nonuniform transmultiplexers is similar to that of the 

nonuniform filter banks discussed in the previous chapter. In this section, we will only 

discuss the parts of the model-matching design that are specific to nonuniform transmulti­

plexers, and refer the reader to the previous chapter for the rest of the details.

As we mentioned in the previous section, the p by p transfer matrix of the blocked 

ncnuniform transmultiplexer, T(~)t is given by postmultipiying the transfer matrix of the 

blocked representation of the synthesis part F(s),  by that of the analysis part, / / (s ) ,  i.e.,

£ ( * )  =  £ ( * ) £ ( * ) •

The desired transmultiplexer is a system which has a transfer function close to a pure delay 

from the input to the output of each channel, and zero leakage between different channels. 

Since blocking is norm-preserving, we may compare the blocked transfer matrix of the 

transmultiplexer, with a transfer matrix Td{z), which corresponds to a proper blocking of 

a zero transfer function from the inputs to the outputs of different channels, and a pure 

delay from the input to the output of channels i  =  0 to m — I .  I f  the desired delay for 

the i-th channel is d; samples, the n, blocked transfer matrix of the channel, Tdi(z),  can be 

obtained by writing d,- =  -|- r,-, with 0  <  r,- <  re,-, as

T « (z ) =  z - r‘ °  Z~ l j .
in . - r ,  U

The p blocked transfer matrix of the nonuniform transmultiplexer is

Td(z) =  d ia g (7 jo , Td i , • • • ,  T ^ .m - t )-
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Assuming state-space for transfer matrices H_, F , and Td, we can formulate the model- 

matching design of transmultiplexers as discussed in Section 5.2 and Section 5.3. We will 

discuss this procedure further in the next example.

6.5 D esign  Exam ple

Take the 3-channel nonuniform transmultiplexer with upsampling factors po =  3, p i =  6 , 

P2 =  2, and down sampling factors q0 =  qx =  q2 =  I.  For this transmultiplexer, we 

can show that, it is not possible to cancel cross-talk distortions, thus we proceed with the 

method discussed in previous sections to minimize the error measure from the inputs of the 

transmultiplexer to its outputs.

Figure 6 .6 : A three-channel nonuniform transmultiplexer.

Let the sampling rate of the transmitted signal be w, the transmultiplexer takes signals 

with sampling rates u;/3, u> / 6  and u>/'2 as the inputs to the channels, upsamples the signals 

and filters the signals so that the output of the channels of synthesis filter bank, occupy the 

frequency bands : [0 , §], [ f  , f ]  and , ff] of the transmitted signal, respectively. At 

the receiving end, if  we use filters with the same frequency characteristics as the synthesis
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filters and downsample the signals, we may obtain signals with a spectrum close to the 

original signals. But here, instead of L T I filters in the analysis part, we use periodic blocks 

with period 2 and 3, for the first and last channel, and an LTI filter for the second channel. 

By this choice, the structural constraints in the design of analysis bank are eliminated, and 

thus we can achieve a transmultiplexer that has a low error.

We expect the transmultiplexer to have a delay of 6 , 3, and 9 samples from the inputs 

of the first, second and third channels to the outputs of these channels, respectively. In 

order to design the transmultiplexer, we chose F IR  equiripple filters with orders 15, 15, 17 

as the initial synthesis filters. We design periodic analysis blocks with the above mentioned 

periods and with order 24, and LTI synthesis filters with the same order as the initial 

filters iteratively, and according to the method discussed in the previous sections. The final 

synthesis filters are shown in Figure 6.7. The analysis subsystem for each channel consists 

of L T I systems with a switch a t the output as per Figure 6.5. The LTI blocks for the 

switching realizations of the L P T V  systems are shown in Figures 6 . 8  to 6.10. As can be 

seen, the LTI blocks in the switching representation are ail frequency selective, and have 

similar frequency characteristics. The coefficients of the filters in the representation of each 

block are close to each other. Therefore the aliasing caused by the blocks are relatively 

small, and the L P T V  blocks H q and H i  are close to LTI. The Hoo norm of the error system 

is 0.017.

Figure 6.11, shows the error of the first channel of the nonuniform transmultiplexer, 

when random inputs with uniform distribution in [-1 , 1 ] is applied to the inputs of the 

transmultiplexer. The error in the output of other channels are comparable in magnitude.
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Figure 6.7: Synthesis filters Fq (dash) , F | (dot), F2 (solid): amplitude versus normalized 
frequency

10 ' r

Figure 6 .8 : Analysis filters //o,o (solid), //o ,i (dash): amplitude versus normalized frequency

6.6  Concluding R em arks

We have studied nonuniform transmuitiplexers, and presented a design based on the min­

imization of the Tioo norm of the error systems. Here, the presentation was based on the 

assumption that downsamplers are not present, i.e., gt- =  1 for i  =  0, 1, • • •, m  — 1 . For 

the generalization to the case where for some or all of channels 17, 1 , we should consider 

n,<7,-polyphase decomposition of inputs i f- and outputs y,. For this case, we can show that
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Figure 6.9: Analysis filters H i ,q: amplitude versus normalized frequency

Figure 6.10: Analysis filters t f 2,o (solid), H 2 , 1 (dash), ^ 2 .2  (dot): amplitude versus normal­
ized frequency

the delayed versions of ^-polyphase components of F,- and H i will appear as the filters 

in the equivalent p-band uniform transmultiplexer. The structural constraints will still be 

present, and the rest of the work will be fairly similar.

The case where F, and H i are L P T V  rather than LTI was also discussed. As pointed 

out, this case will result in equivalent uniform transmultiplexers with no interdependency 

between the analysis and synthesis filters of the equivalent uniform transmultiplexer. In the 

last section, we furnished an Woo design example with L T I synthesis filters F;, and L P T V
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Figure 6.11: Error in the response of the first channel of the transmultiplexer 

systems H i.
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Chapter 7

Conclusion and Future Extensions

This chapter summarizes the results reported in this thesis, and proposes some possible 

future research directions.

7.1 Sum m ary

In this thesis, we have studied periodic and multirate systems. We discussed the response of 

of a periodic system to periodic and aperiodic inputs, and showed that by using the Fourier 

series, we can find the response of a periodic system to periodic inputs. For general inputs, 

we used the Fourier transform, and obtained the alias-component matrix of the system. As 

we argued, by using the alias-component matrix at Q =  0 , we can find the response of the 

system to an input with the same period as that of the system. We discussed the LSTV  

representations of periodic systems. Using these representations, we solved the problem of 

approximating an L P T V  system by another L P T V  system that has a given but different 

period so that the K 2 norm of the error system is minimized. The LSTV representations 

were then used for extending these results to multirate systems.

The rest of the thesis deals with the design of nonuniform filter banks and transmul­

tiplexers. The design of F IR  nonuniform filter banks and transmultiplexers was posed as

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a model-matching problem, and an iterative method was proposed. For example in the 

design of a nonuniform filter bank, the initial analysis filters are designed according to the 

characteristics of the input. By the design procedure, the F IR  synthesis filters are found 

so that the norm of the error system is minimized over all synthesis filters that have a 

prespecified order. Then, the synthesis filters obtained in the previous step are fixed and 

the analysis filters are found similarly. By iteration, the norm of the error system decreases 

until it converges to its final value. This algorithm only finds the local optimal solutions 

of the W.2 and 'H0o norms of the error systems. Based on the results it can be argued that 

the %2 norm is computationally less intensive, and yields filters that have better frequency 

characteristics.

In order to reduce the error in these systems, we used L P T V  filters. Based on the 

results, we see that in the LSTV representation of any of these L P T V  systems, the blocks 

have frequency characteristics that are similar to each other, and since their coefficients are 

also close to each other, these L P T V  systems behave close to L T I systems.

In the next section, we give some possible future research directions.

7.2 BYiture E xtensions

In this thesis, we have presented a general design procedure based on model-matching for 

nonuniform filter banks and transmultiplexers. One of the crucial issues is the selection 

of the initial analysis or synthesis filters in a nonuniform filter bank or transmultiplexer, 

respectively. I f  the initial filters are not selected properly, the final results will not be 

satisfactory. Furthermore, we have not directly attempted to take bit allocation into con­

sideration. Instead, this was done indirectly by the choice of the initial filters.
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A direct improvement in the method would be to optimize the coding gain for a filter 

bank. For a nonuniform filter bank, we may also generalize the optimization criteria to take 

into account the statistical characteristics of the signals. This has been done in [17] for 

perfect-reconstruction filter banks. But, in general, for a given set of decimation factors, 

as we discussed before, it may not be possible to have perfect-reconstruction filter banks. 

Thus, the design of nonuniform filter banks should include the effects of the coding gain 

and the norm of the error system.

In the methods presented here, the final designs are only locally optimal, as at each 

iteration, the method presented here finds the best set of analysis filters for the given 

synthesis filters or vice versa. Finding the global solution of the problem should be the next 

step, but without taking into account the frequency characteristics of the filters, the global 

optimal solution might not even be acceptable. Therefore, a plausible future direction would 

be to effectively include the desired frequency characteristics of the filters into the design 

procedure, and attempt to find the global optimal solution to the nonlinear optimization 

problem that results.

Another interesting extension to the present work is to study general multirate system. 

Consider the nonuniform transmultiplexer shown in Figure 6.1. As we discussed in the the­

sis, the transmultiplexer can be considered as a multi-input multi-output general multirate 

system, where a delay of d,, in the input sequence x,-, results in a delay of d, in the output 

sequence y,-, respectively. A  more general system is an m  input n output system where a 

delay of qo, 9 1 ,... , qm- 1 in the input sequence results in a delay of qo, q i, ..., yn_ 1 in the out­

put sequence. For the single-input single-output case, realization of general multirate blocks 

were studied in [8 ]. By blocking these systems, LTI multi-input multi-output systems are
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obtained. We can also define an aliasing-component matrices for these systems. Therefore, 

an interesting topic for the future work is the realization and structural characteristics of 

these general multi-input multi-output multirate systems along with some implementable 

examples for possible new applications.
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