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ABSTRACT 

In on-field studies considering impact to athletes, biomechanical parameters are measured to 

quantify the severity of a head impact and in some cases estimate the risk of head and brain 

injury. Wearable sensors play an important role in such studies because they are devices that 

measure head kinematics. Kinematics can be used as inputs to numerical models of the head-

brain that estimate tissue strain. These strains have been proposed as metrics on which risk and 

severity of brain injury can be inferred. Kinematics from wearable sensors have systematic and 

random errors – they measure head motions that differ from the actual motion of the athlete's 

head. Kinematic errors will undoubtedly lead to brain strain estimates that differ from strains 

estimated based on the actual motions of the head. The difference in strains estimated from 

wearable sensor kinematics, and the kinematics describing the actual head motion, can be 

considered as strain error. It is not known which kinematic errors explain strain errors best. 

Knowledge of which kinematic errors explain strain errors is important because: 

(1) This knowledge could inform the ongoing improvement of wearable sensors; 

specifically wearable sensors could be refined to minimize the kinematic errors that 

lead to strain errors; and 

(2) This knowledge could inform researchers conducting on-field studies; specifically by 

quantifying the extent of strain errors that result from imperfect wearable sensors. 

While brain injury researchers are relying more and more on finite element brain models, it is 

essential to try and understand which kinematic errors lead to strain errors.  

Football helmet impacts were simulated in laboratory-based experiments using the Hybrid III 

head and GforceTracker (GFT) mounted football helmets. Impact kinematics from both the 
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Hybrid III and the GFT sensor were collected and used in a finite element brain model (the 

Simulated Injury Monitor (SIMon)) to calculate the corresponding brain strain response. Errors 

in brain strain response between the Hybrid III and the GFT data were compared with 

corresponding input kinematic errors using regression analysis to determine the input error that 

has the highest coefficient of determination (R2) with the output error. Maximum principal 

strain (MPS) from both rotationally transformed, and linear and rotationally transformed GFT 

kinematics to the Hybrid III reference frame were also compared to determine the effect on 

brain strain calculation. In addition, the distribution of strains predicted by Hybrid III and GFT 

was examined.  

The overarching findings from this study were: (1) errors in resultant angular velocity are most 

explanatory of strain errors; and (2) errors in component directions of angular velocity affect 

the magnitude and the spatial distribution of strains throughout the brain. The results of this 

study also suggest that linear accelerations do not contribute to SIMon predicted brain strains. 

Therefore, the complex kinematic transforms that re-express linear accelerations measured on 

the helmet to a co-ordinate system with the origin at the head center, may be unneeded. Also, 

through regression of MPS with 99.9%, 99% and 95%-ile strains, it was found that variations 

in any of the 95%, 99%, and 99.9%-ile strains could explain over 96% of the variations in 

MPS. 

The primary interpretation of these findings is that the accurate measurement of both resultant 

and component rotational velocity is neccesary to obtain accurate estimates of strain magnitude 

and strain distribution.  
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NOMENCLATURE 

a Linear acceleration (g) 

v Linear velocity (m/sec) 

ω Angular velocity (rad/sec) 

α Angular acceleration (rad/sec2) 

K Kinematics  

Δ Error 

ax, vx, ωx, αx x-axis kinematics 

ay, vy, ωy, αy y-axis kinematics 

az, vz, ωz, αz z-axis kinematics 

ΔK Error in Kinematics (GFT – Hybrid III) 

MPS Maximum Principal Strain or 100%ile strain 

Vol Volume 

R2 Coefficient of determination 

CI Confidence Interval 

SE Standard Error 

Top 1% strains FE brain model elements with strain magnitude greater than 

99%ile strain 

Top 5% strains FE brain model elements with strain magnitude greater than 

95%ile strain 

Category X Impacts with maximum rotation about the x-axis 

Category Y Impacts with the maximum rotation about the y-axis 

Category Z Impacts with maximum rotation about the z-axis 
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95th percentile strain Strains of 95% of the elements in the FE brain model falls 

below this strain magnitude. 

99th percentile strain Strains of 99% of the elements in the FE brain model falls 

below this strain magnitude. 

99.9th percentile strain Strains of 99.9% of the elements in the FE brain model falls 

below this strain magnitude. 

Full transformation Rotational transformation and linear transformation of GFT 

axis to Hybrid III head COG 

Partial transformation Only rotational transformation of GFT axis directions to match 

with that of Hybrid III axis directions. The origin of GFT 

kinematics still located at the center of the device. 
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1. Introduction 

This chapter discusses brain trauma in sports and corresponding epidemiological studies, the 

role of wearable sensors in these studies and why the investigation of the errors in these 

wearable sensor measurements is necessary. 

1.1 Repetitive brain trauma in sports 

The likelihood of repetitive brain trauma in sports has been a concern since the 1920s, during 

which the ‘punch drunk’ condition was common in boxing. Martland examined the relation 

between punch drunk to post-traumatic encephalitis and stated that a single or repeated blow 

to the head or jaw could result in a definite brain injury [1]. His study shed light on the potential 

brain damage associated with impacts that were considered minor merely based on external 

damage. Brain trauma in other contact sports garnered attention after Omalu et al. published a 

report associating Chronic Traumatic Encephalopathy (CTE) to the neuropsychiatric history 

of a former National Football League (NFL) player who had no known brain trauma outside 

professional football [2]. Approximately 300,000 sport-related injuries were estimated to occur 

annually in the United States [3]. Repetitive head injuries that have an increased probability of 

brain damage form a considerable percentage of the estimated count. Due to the increased 

pathological evidence of CTE in deceased football players [4]– [6] and high exposure of 

impacts per player [7]– [10], traumatic brain injury in football has gained major attention 

among researchers. A cohort study conducted by the National Collegiate Athletic Association 

(NCAA) on 2905 collegiate football players reported 6.3% had a concussion and 6.5% of them 

had repeat concussion within the same season [11]. Of the football players in the 1997 season 

Canadian Football League (CFL) 44.8% of players experienced symptoms of a concussion and 

69.6% of all concussed players experienced repetitive concussions [12]. A study by Crisco et 

al. on 188 collegiate football players during 2007 fall season reported that an individual player 

could receive up to 1400 head impacts during a single season [9] with a median value of 14.3 

impacts per game. The high risk of exposure to head impacts in the game of football demanded 

prompt improvement in player safety.   
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1.2 Early steps towards traumatic brain injury prevention  

To reduce the risk of repetitive brain trauma, both changes to the rules of football and 

improvements to the testing and certification of protective gear like helmets are needed. 

Though current football helmets have successfully prevented most fatal focal injuries [13], 

[14], their ability to limit diffuse brain injury that results in Mild Traumatic Brain Injury 

(MTBI) is not proven  [15]. In response to the safety concerns in football, the MTBI committee 

formed by NFL identified two areas that require attention. The first was to monitor the 

frequency of the MTBIs in NFL through clinical symptoms and the second was to define 

concussion biomechanics in professional football  [16]. The earliest study to quantify the 

concussion biomechanics was conducted by Pellman et al. through video reconstruction of 

NFL league games in laboratory tests using Hybrid III test dummies  [17]. As an initial step, 

Pellman’s study focused on obtaining kinematic thresholds relating to a concussion as impact 

kinematics have been causally linked to diffuse brain injuries since the 1940s [17], [18]. 

Despite this and other efforts to characterize thresholds for concussion [19] [21], the kinematic 

thresholds for MTBI are yet to be confirmed. 

1.3 Wearable sensors in traumatic brain injury research 

Early studies on brain injury in football players estimated head kinematics through a 

complicated process beginning with video analysis. Based on those video analyses, impacts 

were recreated in a laboratory. While the methods applied were rigorous in their design, an 

arguably more direct method to ascertain athlete head kinematics could be wearable sensors 

that measure kinematics of the athlete. Early systems included helmet-based accelerometers  

[18], [19], and more recent sensors include skin-mounted  [20], [21]and mouth-guard systems  

[22]. Specific to helmet-based (sometimes referred to as helmet-mounted) systems, most of the 

available literature that examines the accuracy of kinematic measurements details both 

systematic and random errors. The general tendency is that helmet-mounted systems over-

estimate head kinematics  [15], [18], [23]. One commonly identified error source in wearable 

sensors is poor contact of the wearable sensor with respect to the head [23]. Despite the known 

kinematic inaccuracies in the wearable sensors, there is little research on how the kinematics 

from a wearable sensor translates to tissue level injury in the brain. A limited number of articles  
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[24]– [26]document kinematics measurements from athletes and the use of these kinematics as 

inputs to numerical models of the head-brain. The overarching goal of these past studies is to 

use kinematics to compute stress and strain in brain tissue using finite element (FE) 

approximations, and from these stresses and strains attempt to ascertain threshold limits on 

head kinematics that could be used to estimate injury in athletes. Currently, brain strain 

computation using FE models are predominantly studied in laboratory-based experiments 

using reference sensors and anthropometric head models. To identify real-time in-vivo brain 

injuries, researchers are now more and more using wearable sensors [9], [10], [21]. Brain 

models are also now commonplace in sports brain injury research. If wearable kinematics is to 

be used as inputs to brain models, then a clear understanding of how kinematic errors can alter 

strain predictions is needed. This thesis aims to contribute to the understanding of kinematic 

errors that lead to altered strain predictions. 

1.4 Problem statement   

Impact kinematics are essential for continued research to better understand head kinematic 

parameters and traumatic brain injury in sports. Though wearable sensors are a better option 

compared to laboratory based reconstruction techniques in collecting real-time impact data, 

their inaccuracies are a major concern as they could lead to wrong brain injury predictions. 

The objective of this thesis is to determine the kinematic error sources from a wearable sensor 

that are most explanatory of brain strain errors using a simple linear regression model. This 

thesis will also examine the extent to which kinematic errors can lead to errors in the 

distribution of strain from a skull-brain FE model. 

1.5 Contributions 

Upon a detailed comparative study of the FE brain model response from the wearable head 

impact sensor kinematics and reference sensor kinematics, this thesis will provide the 

following contributions: 

 The kinematic errors that are most explanatory of strain error. 

 The extent to which misalignment in wearable sensor component axes relative to 

reference axes, affects strain error magnitude. 
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 A quantitative analysis of MPS and several percentiles of principal strain that suggests 

any of MPS, 99.9%ile, 99%ile or 95%ile could be used in statistical analyses. 

 The extent to which kinematic errors affect the distribution of strains in the brain. 

 Data suggesting that a simplified kinematic transform of wearable sensor kinematics 

could suffice to yield accurate predictions of brain strain. 
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1.6 Thesis organization 

 

Figure 1.1 Thesis organization 
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2. Background 

This chapter provides fundamental information related to brain injury research including brain 

anatomy, mechanisms of brain injury, research approaches used in predicting the risk of brain 

injuries and the common tools used by brain injury assessment researchers. 

2.1 Brain injury mechanics 

To understand head injury mechanics, it is essential to understand the structure and the 

composition of the brain. The brain is a complex organ and research is still in progress to 

understand it completely. The brain has mostly uniform density with an average of 1.081 

g/mm3, slightly more than water and suspended in the cerebrospinal fluid within the skull. It is 

highly incompressible similar to water and has a very low modulus of rigidity [27].  The brain 

is protected by meninges which are formed by three layers - dura mater, arachnoid mater and 

pia mater (Figure 2.1).   

.  

Figure 2.1: Layers of the brain [28] 

This image is modified from OpenStax College. (2014). “Microbiology" and is licensed under the Creative 

Commons Attribution 3.0 Unported license. 

https://cnx.org/contents/5CvTdmJL@5.28:K5Qgugxa@4/Anatomy-of-the-Nervous-System
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The dura mater is attached to the skull relatively firmer than the other two layers [29]. The 

middle arachnoid mater is fibrous and has tubular structures that merge with the pia mater. The 

cerebrospinal fluid (CSF) circulates in this region between the arachnoid mater and the pia 

mater. Unlike other layers, only the pia mater follows the contours of the brain.  

Injuries to the brain are often classified as i) focal injury and ii) diffuse injury [30]. Focal 

injuries are a result of direct loading to the brain that may lead to localized skull deformation 

or skull fracture at the location of impact ('coup') or at the location opposite to the impact 

('contrecoup') [28]. Focal injuries include contusions, epidural, subdural and intracerebral 

hematomas. A contusion is hemorrhagic necrosis of brain tissue due to the impact of the brain 

with the inside of the skull and is frequently associated with a skull fracture. The dural 

hematomas are laceration of the veins or arteries due to the shear stress caused by relative 

motion of the meningeal layers in the brain during an impact. Intracerebral hematomas are 

homogeneous collections of blood within cerebral parenchyma due to sudden acceleration, 

deceleration or penetrating wounds [28]. Focal injuries hence are often fatal. 

Diffuse injuries involve a spectrum of injuries ranging from mild concussion to diffuse white 

matter injuries [30]. One mechanism that can lead to diffuse injury is the sudden rotational 

motion of the head  [29] caused by the direct or indirect impact to the head. In general, sliding 

motion of the brain along the intracranial wall is induced by blunt impacts resulting in shear 

stress between the meningeal layers. This shear stress, as opposed to volume change in the 

brain tissue, is due to the brain having relatively much lower shear modulus than bulk modulus. 

The shear motion of the brain also causes cerebrospinal fluid displacement that increases the 

intracranial pressure which could lead to laceration of vessels in deeper parts of the brain. The 

laceration of the vessel due to intracranial pressure was explained by Cassasa  (1924) as an 

event caused by sudden overfilling of spaces surrounding the nerve and blood vessels with 

CSF  [29]. Diffuse axonal injury (DAI) is one type of diffuse injury that involves damage to 

the axons. Contrary to focal injuries that occur mostly at the outer brain layer, DAI can extend 

below the midbrain and into the brain stem. The severity of the DAI varies from mild traumatic 

brain injuries (MTBI) to fatal injuries. The mild diffuse injuries can be either due to a single 

impact or multiple traumatic impacts to the brain. Repeated low-grade injuries are believed to 
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cause delayed post traumatic changes due to the biochemical cascades induced by cumulative 

effects of the blows [2]. 

In contact sports, the incidence of focal injuries was significantly reduced due to the adoption 

of improved helmet designs [13], [31]. By 1980, there was a 51% reduction of fatal head 

injuries in youth football [2]. But the risk of MTBI is still a concern as the symptoms of 

neurodegeneration related to mild traumatic brain injuries are not immediate, some of which 

can only be diagnosed under microscopic examination [2], [30]. Due to this and because of the 

reluctance of athletes in reporting head injuries, most MTBI cases are not detected at an early 

stage. All these factors increased the need to monitor impact biomechanics in contact sports to 

predict brain injuries.  

Translational and angular kinematics of head impact have been traditionally studied to explain 

head injuries since the 1940s [29]. Linear acceleration was commonly related to focal injuries 

and skull fracture and less related to diffuse injuries. A widely accepted theory is that the strains 

produced by linear acceleration forces are small compared to those produced by rotational 

kinematics [25], [29], [32]. Holbourn in 1943, was the first to explain this theory with a gelatin 

brain model suspended in water and by applying rotational forces. The resulting shear strains 

in the brain model matched with hemorrhage locations noted in autopsies. The same has been 

proved in later studies that used primates instead of gel brain model. The velocity of head 

rotation has been shown to correlate with concussion, contusion and sub-dural hematoma in 

adult rhesus monkeys with and without direct impact to the head [33], [34]. A study by 

Gennarelli et al., [35] related angular acceleration of monkey heads to concussion and reported 

agreement with clinical findings. Denny-Brown and Ritchie Russel on their experiments to 

study cerebral concussion using cats noted that concussions were difficult to create when the 

head is fixed, and rotational movement of the head resulting from a blow is essential to create 

concussion in the brain [36] which confirms that rotational forces are major contributors in 

concussion. However, the consideration of linear acceleration in brain injury prediction is not 

entirely dismissed due to its role in intracranial pressure and severe focal injuries [32]. In the 

case of diffuse injuries, the role of angular acceleration, as opposed to angular velocity on brain 

strain, was discussed extensively in earlier literature [35], [37]. While researchers agree that 

angular acceleration might be explanatory for long duration impacts [17], [35],  [39], the 
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angular velocity is still a better mechanism for brain strain for the impact durations in football 

[25], [38], [40].  

2.2 Brain injury metrics 

Because head kinematics during an impact is a convenient and effective measure that correlates 

with head injuries, several researchers have focused on quantifying head injury using impact 

kinematics. A fundamental method in kinematic brain metric was to use peak linear 

acceleration (PLA) or peak rotational velocity (PRV) [41]. The earliest head injury prediction 

method using kinematics was proposed by Gurdjian et al. [30] which was later termed as 

Wayne State tolerance curve (WSTC). The curve was developed by studying linear 

accelerations that caused skull fracture in cadavers and concussive effects of varying pressure 

pulses in animal experiments [42], [43].  The WSTC curve relates the probability of head injury 

to the duration of linear acceleration pulse. Gadd Severity Index (GSI) (Equation 2.1) was later 

proposed by Gadd which is an extension of WSTC curve [42] with an approximation factor (n 

= 0.25), acceleration (a) and time (t). 

                                                            𝑆𝐼 =  ∫  [𝑎(𝑡)]𝑛𝑑𝑡                                           (2.1) 

GSI was adopted by the National Operating Committee on Standards for Athletic Equipment 

(NOCSAE) as a standard helmet testing measure and is used to date. But the index was not 

considered valid by researchers for longer duration impacts [42].  

Considering the ineffectiveness of GSI in longer duration impacts, Versace proposed the Head 

Injury Criterion (HIC) by combining impact duration data to linear acceleration measurements 

[44] which was later adopted by NHTSA. HIC (Equation 2.2) is the most commonly used 

metric in head injury assessments. However, HIC as an injury criterion lead to concerns, as it 

is based on a single parameter and disregarded rotational influences. 

                                                    HIC = (t2 − t1) [ (t2 − t1)−1 ∫ a(t)dt
t2

t1
 ]Max

2.5                          (2.2) 

GAMBIT (Generalized Acceleration Model for Brain Injury Threshold) proposed by Newman 

in 1986 was one of the earliest metrics to consider both linear and angular kinematics. This 

method assumed the relationship between linear and angular acceleration analogous to normal 



10 

 

and shear strain in the brain  [41]. GAMBIT was followed by other metrics that considered 

both linear and angular kinematics to quantify head injuries. One such metric, Kleiven’s Linear 

combination (KLC) combined peak change in angular velocity with HIC(Equation 2.3) that 

resulted in high correlation (R2=0.98) with brain strain [32]. 

                                                                      KLC =  β1 ωmax + β2 HIC                                     (2.3) 

Other metrics that modified HIC by including rotational parameters were PRHIC (Power 

Rotational Head Injury Criterion) and RIC (Rotational Injury Criterion) [45]. 

Takhounts et al. developed a metric that was purely based on rotational kinematics  [25]. The 

study used Simulated Injury Monitor (SIMon), a FE head model to calculate brain strain using 

real-time impact kinematics obtained from collegiate football players. Brain Injury Criterion 

(BRIC) was then formulated (Equation 2.4) to correlate with the calculated brain strain.  

                                                                      𝐵𝑅𝐼𝐶 =  
𝜔𝑚𝑎𝑥

𝜔𝑐𝑟
+  

𝛼𝑚𝑎𝑥

𝛼𝑐𝑟
                                              (2.4) 

Maximum angular velocity and angular acceleration are denoted as ωmax and αmax respectively 

and corresponding critical values are denoted as ωcr and αcr. Takhounts et al. later updated the 

BRIC [46] to contain only angular velocity components after finding that angular velocities 

are sufficient for brain strain predictions. The updated BRIC (Equation 2.5) considered 

directional components of angular velocity instead of resultant value. 

                                                𝐵𝑟𝐼𝐶 =  √(
𝜔𝑥

𝜔𝑥𝑐𝑟
)

2

+  (
𝜔𝑦

𝜔𝑦𝑐𝑟
)

2

+  (
𝜔𝑧

𝜔𝑧𝑐𝑟
)

2

                                   (2.5) 

Where ωx, ωy, ωz, are maximum angular velocities in x, y and z directions and ωxcr, ωycr, ωzcr 

are corresponding critical angular velocities. Similar to the BRIC, the RVCI (Rotational 

Velocity Change Index) by Yanaoka et al.  [47] used directional velocity components in 

predicting the brain strain. RVCI used a theoretical consideration that the response of brain 

element is similar to a simple mass-spring.   

                       𝑅𝑉𝐶𝐼 =  √𝑅𝑥( ∫ 𝛼𝑥𝑑𝑡
𝑡2

𝑡1
)2 + 𝑅𝑦( ∫ 𝛼𝑦𝑑𝑡

𝑡2

𝑡1
)2  + 𝑅𝑧( ∫ 𝛼𝑧𝑑𝑡

𝑡2

𝑡1
)2                     (2.6) 
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The αx, αy, αz in the RVCI equation corresponds to directional angular accelerations and Rx, Ry 

and Rz are corresponding weighing factors. The weighing factors were calculated from the 

average ratio of tissue level predictors obtained by applying sine curve inputs to each axis of 

the Global Human Body Models Consortium (GHBMC) FE model. Gabler et al. compared 15 

injury metrics and concluded that metrics based on rotational kinematics predict brain injury 

better than other kinematic-based metrics [41]. The study also found that BRIC and RVCI had 

the highest correlation with brain strains calculated using FE brain models. 

Though the kinematic brain injury predictors were shown to predict brain injury risk, the 

predictors do not quantify brain strain. Quantifying the brain injury was made viable by FE 

brain models that calculate tissue level brain strain response from impact kinematics. Of late 

researchers are relying more on numerical brain models to calculate the mechanical response 

of the brain due to an impact. Commonly used strain based injury risk assessment metrics are 

MPS (Maximum Principal Strain) and CSDM (Cumulative Strain Damage Measure). Strain 

has been related to cell death through multiple studies [48], [49] and large strain region has 

been reported to coincide with the highest incidence of injury [37]. The MPS provides the 

highest strain predicted through the FE brain models. CSDM is the cumulative volume of a 

given percentage of the brain model that exceeds a certain strain level [50]. Damage in single 

axon does not reflect diffuse injury. Increasing levels of axonal damage result in increasing 

pathological changes  [50]. Hence, CSDM was used to define the severity of the brain strain 

by considering strain over a minimal volume of the FE brain model to define diffuse brain 

injury. 

2.3 FE head models in head injury risk assessment 

For decades research on brain injury often involved cadaver and animal experiments which are 

experimentally complex and involved ethical concerns. FE brain models allowed researchers 

to estimate the mechanical response of the brain to impact and created possibilities to explore 

the tissue-level response of the brain to impact kinematics. Early brain FE models mostly 

considered the head-brain complex as a fluid-filled spherical shell [42]. A notable study by 

Hardy et al. provided the much-needed data on the relationship between kinetic input and 

corresponding head injury [51]. Thirty-five impact tests were conducted by the team using 
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eight human cadavers, neutral density targets (NDT), bi-planar and high-speed x-rays. The 

documented kinematics, intracranial pressure, and NDT data showing relative motion between 

the brain and skull corresponding to each impact were intended to be used in validation of FE 

brain models. Complex FE models evolved with access to information on the brain from 

magnetic resonance imaging (MRI), computer tomography (CT) and NDT experimental data 

available from the cadaveric experiments. A few of the FE brain models are the Wayne State 

University Brain Injury Model (WSUBIM) developed by Zhang et al.  [52], Simulated Injury 

Monitor (SIMon) by Takhounts et al. [50], Atlas Based Model (ABM)  [53], Global Human 

Body Models Consortium (GHBMC) head model [54] and Kungliga Tekniska Högskolan 

(KTH) model [55]. More numerical brain models in addition to the listed exist that vary in the 

number of distinct parts in the brain, material properties, and mesh size. 

SIMon was developed by the National Highway Traffic Safety Administration (NHTSA) for 

automotive crash tests [50]. The topology of SIMon was primarily based on CT scans of a 

single male individual and scaled uniformly to a total mass of 4.5kg analogous to the 50th 

percentile male. SIMon was modelled with distinct parts for cerebrum, cerebellum, skull, 

brainstem, ventricles, CSF and Pia-arachnoid layer combined, falx-tentorium and parasagittal 

blood vessels (Figure 2.2). The initial SIMon model (released in 2003) was constructed with 

10,475 nodes and 7,852 elements. A later version of SIMon released in 2008 had geometrically 

detailed parts with 42,500 nodes and 45,875 elements. The material properties were tuned to 

match real impact data, by measuring the shear stress of material models from literature and 

comparing it with cadaver experiment neutral density targets and animal injury data [50], [56].   

FE brain models designed for high-resolution brain injury prediction includes the Atlas Based 

Model (ABM, Miller et al.,2016), Global Human Body Models Consortium (GHBMS) head 

model (Mao et al.,2013) and Wayne State University Brain Injury Model (WSUBIM). Brain 

response curves of these FE models are however shown to be similar though their resultant 

magnitudes vary  [26], [57]. L.E.Miller et al. conducted a study comparing 6 brain FE models 

including ABM, SIMon, and GHBMC with experimental data over a range of impact severities 

and directions. The displacements predicted by the models were evaluated using CORelation 

and Analysis (CORA) which compares the error in shape, magnitude, and phase between two 

curves. SIMon was ranked second in this study following ABM in predicting the brain 
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displacements [58]. It is to be noted that ABM and WSUBIM models are developed with an 

aim to create a high resolution, anatomically accurate head model that mimics human head as 

close as possible, with finer mesh sizes and distinguished brain regions and parts. The 

WSUBIM underwent continuous changes since its first version at 1993. The latest version of 

WSUBIM by Zhang et al. has 281,800 nodes and 314,500 elements [52]. The ABM is 

constructed with 2 million nodes and elements [53]. 

 

 

Figure 2.2: The improved Simulated Injury Monitor brain finite element components 

(Image rendered using Ls-PrePost) 

The SIMon model contrarily gives priority to the simulation time to make brain strain 

prediction viable. The complexity of the FE model was hence limited in SIMon, to be able to 

simulate the brain response to an impact event of up to 150 milliseconds within 2 hours on a 

high-end PC. The brain strain response generated by the model was also comparable to high-

resolution models  [26], [58]. SIMon uses three different injury metrics- Cumulative Strain 

Damage Measure (CSDM), DDM (Dilation Damage Measure) and RMDM (Relative Motion 

Damage Measure) as correlates to diffuse axonal injury, contusions, and acute subdural 

hematoma respectively, since the mechanisms that cause these injuries are different.  The 

critical values for each injury metric are determined by data from animal experiments which 

was then scaled to human head response. The model's response was validated against both 
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cadaver and animal experiment data. For the earlier validation method, all of Hardy et al. 

neutral density target displacement-time history data was used to compare with SIMon model 

response.  Animal injury data was used to validate the model by scaling kinematic loading 

conditions to corresponding stress/velocity scale between the particular test animal and human 

brain [56]. 

Tissue level strains in the brain are often associated with diffuse axonal injury. As the intensity 

of the strains to the axons increase, a series of pathological changes occur which could lead to 

axonal swelling and loss of axonal transport. The loss of axonal transport is observed at a strain 

level of 15 and 18 percent by a few studies [59], [60]. Hence, CSDM was introduced to 

specifically predict DAI by monitoring the accumulation of strain greater than specified strain 

levels [50]. Like CSDM, MPS has been proposed as a correlate to brain injury risk. SIMon 

simulation calculates the MPS experienced by every element in the brain model and reports 

the maximum MPS which is the strain magnitude experienced by a single, maximally 

deformed element. 

2.4 Test devices to simulate head injury biomechanics 

To measure the kinematic response of the human head to impacts, the anthropomorphic test 

device (ATD) referred as dummy that mimics the biofidelity of a human head is often used. 

One such dummy head model adopted in head injury research is that of the Hybrid III head 

which was primarily developed for automotive crash testing. The Hybrid III head is an updated 

model of multiple earlier versions used in crash testing to achieve the biofidelity it has today. 

The first crash test dummy was Sierra Sam developed in 1949 for ejection seat tests by US air 

force [61]. 1n 1972, GM developed a mid-size adult male dummy called Hybrid II to mimic 

the 50th percentile human male [61]. It was the first dummy specified in Federal Motor Vehicle 

Safety Standards for compliance testing of vehicles with passive restraint.  The limitations of 

the Hybrid II family of dummies is they were sparsely instrumented and lacked humanlike 

response stiffness for head, neck, thorax, and knees. The Hybrid III midsize male developed 

in 1976, overcame the above-mentioned limitations and had excellent biofidelity compared to 

Hybrid II. Hence in 1977, NHTSA replaced Hybrid II with Hybrid III making it the only 

midsize adult male dummy specified for regulatory frontal restraint evaluation throughout the 



15 

 

world. Hybrid III dummy is specified in worldwide regulation and approved by various 

regulatory bodies. It is instrumented with 3-2-2-2 array of the accelerometer, tri-axial force, 

and moment sensors to measure the 3-dimensional response of the head during an impact [61].  

Another commonly used ATD is Hodgson-WSU head model developed specifically for helmet 

testing by National Operating Committee on Standards for Athletic Equipment (NOCSAE) 

[62]. This model was more human-like with a gel-filled cavity for brain and nylon based 

human-like material for the skull and is fitted with a triaxial accelerometer. One main 

disadvantage of the Hybrid III is it does not extend down far enough to fit the padding at the 

back of the helmets. The NOCSAE headform is designed to fit the helmet better and has the 

upper part of the neck [62]. The profile view of the two headforms is illustrated in Figure 2.3. 

The Hybrid III has narrower jaw and chin which makes it anatomically less perfect for helmet 

testing compared to NOCSAE [56]. The larger gap between the helmet and Hybrid III head at 

the base of skull, jaw, and chin allows for increased relative rotation between head and helmet 

which is not desirable for a helmet impact study. But, when it comes to the instrumentation of 

these headforms, the NOCSAE headform has a shaft from the underside of the chin designed 

to allow only a triaxial accelerometer and does not include a 3-2-2-2 accelerometer array 

system as in Hybrid III [63]. To implement 6 DOF instrumentation, the model demands the 

use of external sensors or accelerometer packages [63]. Also, a study by Kendall et al. has 

shown that Hybrid III generates linear acceleration peaks closer to cadaver data than Hodgson-

WSU model, though their dynamic responses are similar [62], [64]. In addition, there are fewer 

documents that are available on NOCSAE instrumentation and validation of its measured 

kinematics. Despite the anatomical disadvantage of Hybrid III, it is standardized globally and 

its instrumentation is validated by multiple studies [64], [65]. 
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Figure 2.3: Profile view of the a) Hybrid III and b) NOCSAE headforms  [66]  

Used with permission from “Proceedings of the Institution of Mechanical Engineers”. 

2.5 Head impact sensors 

Head impact data of players during the game are valuable additions for on-field studies. 

Laboratory-based impact experiments using ATDs, however, cannot replicate all the 

environmental factors in real-world such as the different head size of players and helmet fit. 

Thus, wearable sensors are preferred in collecting real-time impact data of the players. 

Wearable impact sensors measure kinematics during impact, the most common kinematics are 

linear acceleration and rotational velocity. These systems can either measure kinematics about 

a coordinate system that is centered at the center of gravity of the head[67], [68], or about a 

coordinate system that is centered at the location of the wearable sensor [69] (i.e. at a location 

on the helmet). When using measures from wearable sensors for estimation of head injury risk 

(and indeed with brain models), many researchers presume that wearable kinematics must be 

expressed relative to the head center of gravity [67], [70], ostensibly because kinematics based 

head injury assessment functions (e.g. BRIC) use kinematics expressed about the head center. 

Interestingly, many of these assessment functions rely upon rotational velocity which can be 

measured anywhere on the head, and through principles of rigid body mechanics shown to be 

the same at the head center of gravity. Therefore it is unclear whether or not measures from 

wearable sensors require transformation to be expressed at the head center and indeed this 

question has not been examined in the research literature. 
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HITS or Head Impact Telemetry System introduced in 2003 by Simbex marked itself as a 

pioneer for in situ measurement of head impacts in sports. HITS uses a 6 accelerometer array 

to measure the linear acceleration at a sampling rate of 1000 Hz and 40 ms time window [10]. 

Multiple inventions followed HITS in the wearable sensor market thus contributing to new 

design changes and testing methods. GForceTracker© (GFT) is a wearable sensor that can be 

mounted on the helmet. It uses both accelerometers and gyroscopes to record linear 

acceleration at 3,000 Hz (low-pass filtered at 300 Hz) and angular velocity at 800 Hz (low-

pass filtered at 100 Hz) [24].  X2 Biosystems (Seattle, WA) designed mouthguard sensor 

system (X2 mouthguard) and skin patch sensors (Xpatch) to measure impact kinematics using 

linear accelerometers and angular rate sensors and recorded 100ms traces for an impact[20], 

[67]. Few other wearable sensors include Shockbox (i1 Biometrics, Kirkland, WA) and 

mouthguard sensors by Stanford researchers and Cleveland clinic. 

Validation studies on most of these wearable sensors have reported a high incidence of false 

positives or overestimation of head impact kinematics. In a study by Cortes et al., skin patch 

sensor was used to measure the head impact on girls' lacrosse participants, and the GFTs were 

deployed in boys' lacrosse helmets. The impacts were verified by a video recording of the game 

time-synchronized with sensors. In the results, 38% of boys and 65% of girls head impacts 

recorded by the sensors suggested false positive impacts [15]. Duma et al. collected a total of 

3312 impacts from 38 players on a 2003 football season where players were instrumented with 

the HITS system. The study observed that most of the impacts that exceeded the tolerance level 

for concussion did not result in any reported concussion [10]. Another experiment with the 

HITS system also reports 55% of the peak linear acceleration data with errors in excess of 

15%. This error magnitude could lead to a concussed player being missed or non-concussed 

player being falsely removed from the game  [23]. In a study comparing mouthguard, skin 

patch and skull cap with mouthguard as a reference, skin patch and skull cap are reported to 

overpredict linear acceleration up to a maximum of 22g and 81g respectively. Angular 

acceleration of the sensors also had high errors  [21]. Mouthguards were tested to report linear 

acceleration and angular velocity in better correlation with ATDs. However, the errors were 

high when it came to facemask impacts  [22]. Siegmund et al. conducted helmeted impact tests 

using HITS and X2 mouthguards at 12 impact sites and 5 speeds and found that neither system 

accurately estimated the direction and magnitude for all the impact sites and speeds[67]. Brain 
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strain estimation with wearable sensor kinematics using FE brain models was shown to 

overestimate brain injury risk up to 40% for impacts with peak kinematic errors less than 10% 

[24]. Given the overwhelming evidence in the literature on the inaccuracies in wearable sensor 

kinematic measurements, it is worth considering how these kinematics errors could lead to 

inaccurate strain prediction (inaccurate relative to strains resulting from correct kinematics of 

the athlete head) when used on the field, on athletes.  

2.6 Open questions in the area 

The resultant linear and rotational kinematics are used by MTBI tolerance estimates to predict 

the presence or absence of a concussion  [10]. Research that validates wearable sensor have 

also focused on peak resultant kinematic errors [24], [70]. However, if correcting the peak 

resultant kinematic errors measured by wearable sensors will result in approximate brain injury 

prediction using FE brain models is unknown. Additionally, in research comparing impact 

kinematics to numerically calculated brain strain, there is a gap in literature regarding the 

reference axis of the impact kinematics recorded and the choice of MPS. Research 

recommends that sensors measure impact kinematics with respect to head COG  [70]. 

However, whether the strain varies between the kinematics measured at the head surface 

(coordinate axis of wearable sensor) and the head center is unknown. Also, the MPS (100th%ile 

strain) in brain strain analysis is questioned in few studies as it corresponds to the strain of a 

single element in the FE brain model and hence 95th percentile MPS is used [45], [71]. The 

choice of 95th percentile MPS over the 100th percentile MPS is not justified in literature. These 

facts and unanswered questions combine into the following list of open questions: 

 Will the outcome of a regression analysis vary between the choice of MPS and other 

percentiles of strain (e.g. 95%ile)? 

 Are coordinate transforms of kinematics from a wearable sensor to head COG essential 

to reduce strain errors? 

 Will kinematic errors lead to significant strain error in FE brain strain calculation?  

 If so, error in which kinematic variable best explains or influences the strain error? 
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2.7 Objectives 

The overarching objective of this thesis is to identify the error sources in wearable sensor 

measurements that contribute towards an error in brain strain calculation using FE brain 

models. Towards the fulfillment of the objective this thesis is structured to answer the open 

questions in the area through the steps mentioned below 

 Determine the appropriate strain level (MPS or percentile-ranked MPS) to be used in 

regression analysis.  

 Determine if the wearable sensor kinematic inputs to the FE brain models should be 

linearly transformed to the head center of gravity (Details and rationale related to 

transformation will be supplied subsequently). 

 Identify the kinematic error that best explains the strain error. 

 Determine if limiting the identified kinematic error will limit the strain errors in FE 

brain model calculations. 
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3. Methods 

The overall methods used in this thesis include experimental football helmet impacts, FE brain 

model simulation, and statistical analysis, towards the goal of comparing the brain strain 

response corresponding to the kinematics from a reference sensor and wearable sensor. The 

experimental football helmet impacts use a Hybrid III head sensor system as the reference 

sensor and a GforceTracker (GFT) for the wearable sensor. Impact kinematics were obtained 

from laboratory drop tower experiments using these sensors. The simulation section employs 

a FE brain model to calculate the brain strain response from the kinematics recorded by both 

the Hybrid III and the GFT. Error in input kinematics and brain strain response were then used 

in regression analysis to identify which kinematic error has the highest coefficient of 

determination with the output strain error. Figure 3.1 provides an overview of the methods used 

in this study. In addition to analysis using experimental data, this thesis also conducts a sub-

study with synthetic kinematics, to understand the effect of different kinematic data on brain 

strain calculation. 

 

Figure 3.1: Methods used in the study 

The experimental study comprised of simulated laboratory impacts to football helmets on the 

Hybrid III head and the data generated from these laboratory impacts (kinematics measured 

from the Hybrid III and GFT), were input to SIMon to allow estimation of strain (Figure 3.2). 

The kinematics and strains were then used in the regression analysis structured to determine 

which kinematic errors explain strain errors. 
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Figure 3.2: Overview of the experimental method 



22 

 

The sub-study used both laboratory impact data, and synthesized kinematics to understand 

effects of each input kinematic and kinematic transform (rotational) on SIMon-predicted strain 

(Figure 3.3). 

 
Figure 3.3: Overview of sub-study 
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3.1 Experimental setup         

The overall experimental setup including the Hybrid III head with GFT mounted football 

helmet on a drop tower assembly is as shown in Figure 3.4. Flat anvil and angled anvil 

(inclination 30˚) were used as impact surfaces for different experimental categories.  

 

Figure 3.4 Overview of the experimental setup for football impacts 
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3.1.1 Drop tower assembly and Hybrid III 

The 50th percentile male crash test standard dummy Hybrid III head was used as the test subject 

in this experiment. Football helmet impacts were conducted in the laboratory-based setup with 

a guided rail drop tower assembly that allows for repeatable drop impacts. The drop tower 

consists of a vertical rail with an anvil at the bottom of the test-bed. A gimbal is attached to the 

vertical rail, using a rail mount and grooved wheels to allow guided free fall of the Hybrid III 

head mounted on the gimbal. The gimbal design allows the Hybrid III head and neck to be 

positioned at different angles or to be rotated about the axis of the neck, providing the 

flexibility to create impacts at different locations of the Hybrid III head.  A velocity gate 

attached near the bottom of the rail structure measures impact speed and triggers the data 

acquisition from the Hybrid III instrumentation system [72]. The impacts were conducted with 

a flat anvil and an angled anvil to create both centric and oblique impacts respectively. The 

anvils were fit with a hard plastic (ABS) surface to replicate helmet to helmet impact. The 

angled anvil was custom made with layers of plywood and with an inclination angle of 30ᵒ. 

The inclination of the angled anvil was chosen based on literature that achieved sufficient 

increase in angular kinematics with anvil inclinations up to 30ᵒ [73], [74]. 

The Hybrid III head and neck have a combined mass of 6.08 kg 

and is equipped with 9 uniaxial accelerometers (Measurement 

Specialties Inc. Hampton VA, model 64C-2000-360) in a 3-2-2-

2 array to allow measurement of linear accelerations about the 

COG of the head. Three accelerometers are mounted on the head 

center of gravity, and the additional 6 accelerometers are located 

at the left side (A), the front (B) and at the crown(C) as shown 

in Figure 3.5. Acquisition of the impact kinematics was made 

using National Instruments hardware and software (PXI 6251 

and LabVIEW v8.5, Austin TX) at a rate of 100 kHz. The 

signals were filtered with a low-pass cut-off frequency of 1650 

Hz as per Channel Frequency Class (CFC) 1000 [2]. Though few 

researchers have considered lower cut-off frequencies (300 Hz – 1000 Hz)  [76]– [78] to 

eliminate noise, it is a known fact that lower cut-off frequencies attenuate peak magnitudes of 

Figure 3.5 Hybrid III 

uniaxial accelerometers 

position and alignment 
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acceleration as well as the injury severity measure [78], [79]. Wu et al. estimated the 

bandwidths required for head impact sensors by measuring the attenuation of injury criterion 

with different bandwidths [79]. The study concluded that most rotation-based injury criterions 

required a minimum of 1650 Hz bandwidth of angular acceleration to achieve less than 10% 

attenuation. The cut-off frequency of 1650Hz was thus selected to filter Hybrid III kinematics. 

Butterworth filter in Matlab was used for software filtering the acceleration signals. Angular 

kinematics were calculated from the linear accelerations using the method proposed by 

Padgoankar [80].  The laboratory impacts were conducted using a Hybrid III head model that 

was tested for polarity conformance as per instrumentation standards [75] and accelerometer 

compatibility [24]. The polarity conformance is recommended by instrumentation standards to 

validate that the sensors correctly report the negative and positive directions of the component 

kinematics. This was achieved through test drops where the polarity of the component 

kinematics is validated against the impact direction. For example, during a front impact, the 

linear acceleration about the x-axis is expected to be negative, corresponding to the backward 

motion of the head. The test was repeated with trial drops for different impact directions and 

polarities were confirmed.  

3.1.2 Wearable sensor setup 

A GFT is a wearable sensor designed to be mounted on sports helmets to measure the helmet 

kinematics during an impact. The device weighs approximately 20 grams and has dimensions 

of 52 mm x 28 mm x 10 mm. It is instrumented with a triaxial accelerometer that measures 

linear acceleration at a rate of 3000 Hz and a gyroscope measuring angular velocity at an 800 

Hz frequency. The GFT records impact data for a 40 ms time span. However, it continues to 

collect consecutive 40 ms data until the impact acceleration falls below the minimum threshold 

(10 g) [70]. The device was fitted to the inside of the helmet to the left side as shown in Figure 

3.6.b. The location of the device on the helmet was chosen based on the recommendations in 

GFT user manual [81]. Double sided tape (3M) was used to secure the GFT to the helmet. The 

Hybrid III head was fit with NOCSAE certified football helmets (Schutt F7, Size: Large) over 

an unmodified scalp surface of the Hybrid III. A vertical distance of one inch from the brow 

to the helmet rim was ensured for consistent helmet fitting. Schutt chin straps were used to 

secure the helmet tightly to the Hybrid III head to minimize the head helmet relative movement. 

The tightness of the fit was not measured. Prior to recording any impact kinematics, the GFT 
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software application requires the device to be calibrated after fitting it on the helmet. GFT 

calibration procedure was hence performed every time the sensor is changed, or a new helmet 

is used. Four helmets were used in total. In the software calibration procedure of the GFT, the 

location of the GFT device is first logged (inside or outside the helmet). The calibration 

procedure then instructs the user step by step to place the helmet on its three different sides 

(upright, left and back). With this procedure, the software predicts the location of the GFT in 

the helmet and uses the information to re-orient the axis of the device. GFT software calibration 

system then transforms the GFT kinematics from the axis orientation of the device to the axis 

orientation of the head as shown in Figure 3.6.a. The calibration system ensures that the impact 

directional kinematics reported by all GFT devices corresponds to the same direction 

irrespective of the location of the sensor in the helmet. However, it is to be noted that the GFT 

axis orientation does not agree with the axis orientation of the Hybrid III (Figure 3.6.b). This 

mismatch of axis directions could potentially affect the brain strain response calculation since 

the SIMon FE model uses a coordinate system in agreement with Hybrid III head axis 

directions.   

 

Figure 3.6: Direction of GFT kinematics after software calibration where the GFT coordinate 

directions are shown with respect to a) head and b) Hybrid III axis  

Correction algorithms were designed to match the GFT kinematic directions with the Hybrid 

III head. Linear transformation of wearable sensor’s kinematics to the Hybrid III head COG 

was practiced in studies validating the kinematics of a wearable sensor [21], [22], [82]. 

However, for strain calculations using wearable sensor kinematics, there is no existing research 

that studied the necessity of a linear transformation. Hence, to fill the gap in existing literature, 
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the correction algorithms were designed to calculate brain strain response with and without 

linear transformation of GFT kinematics. The two methods used to process the GFT kinematics 

are discussed below.  

i) Rotational or partial transformation of GFT kinematics 

Though the GFT calibration system aligns the component 

kinematics to a consistent orientation as given by Figure 

3.6.a, the direction of the component axes does not align 

with the Hybrid III axes. To correct the direction 

mismatch, Matlab codes were prepared to swap GFT x-

axis and y-axis kinematic data and reverse z-axis 

kinematics. This method was validated against a 

computational rotation transformation using a rotation 

matrix (180˚ rotation about the y-axis and 90˚ rotation 

about the z-axis). The resultant angular velocity 

magnitudes were confirmed to be unaltered with the 

rotational transformation. Figure 3.7 illustrates the 

expected GFT axes position and orientation after applying the rotational transformation to the 

GFT kinematics in its calibrated orientation (Figure 3.6.b). To validate if the corrected GFT 

kinematics matched with the Hybrid III kinematic directions, LS-PrePost simulations of 

Hybrid III and GFT impacts were analyzed. LS-PrePost is a free post processing software for 

FE results. An example of the motion of the head due to a facemask impact at different 

timeframes is shown in Figure 3.8. It is to be noted that the direction of the head movement 

simulated from GFT kinematics is comparable with that of Hybrid III. This method was 

repeated to compare the brain displacements due to impacts at the front, back, left and right 

side of the head. After comparing the FE brain model’s displacement directions for multiple 

impacts, it was confirmed that both the Hybrid III and the GFT kinematics resulted in a similar 

motion of the head for each impact, which suggested that the corrected GFT kinematics was 

in agreement with the Hybrid III axes directions. In summary, the rotational transform results 

in kinematics that are expressed relative to the GFT coordinate system shown in Figure 3.7. In 

Figure 3.7 GFT axis orientation 

after rotational transformation 
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this orientation the component axes are parallel to the Hybrid III system, but not coincident 

with the Hybrid III system.  

 

Figure 3.8: Example of FE brain model displacement from Hybrid III and GFT data for a 

facemask impact, with the displacement path of a node 
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For some analyses in this thesis, it was necessary to transform GFT kinematics to be expressed 

relative to a coordinate system that matched the Hybrid III system (i.e. the component axes are 

parallel and coincident), and this was achieved through a linear transformation (as described 

below). 

ii) Linear or full transformation of GFT kinematics 

Linear transformation of the kinematics from GFT coordinate system origin to the Hybrid III 

head center of gravity requires a position vector to be determined between the two reference 

frames. This was achieved by marking the 

approximate position of GFT origin on the outside 

of the football helmet (B). Pictures of the GFT 

mounted football helmet fit over Hybrid III head 

were then taken from different directions. A 

pixel/inch scale was used to measure the distance 

between B and Hybrid III head boundaries as xref 

and zref (Figure 3.9). zref was adjusted for the 

distance between B and GFT center (at the inside 

of the helmet). The point A in Figure 3.9 refers to 

Hybrid III center of gravity. The distance between 

the helmet’s center (along the coronal plane) and 

B was measured as yref distance. The position of 

GFT center with reference to Hybrid III head outer dimensions being gathered, rA/B was then 

defined as a position vector that documents the straight-line path (i.e. position vector defining 

the GFT location relative to the Hybrid III head center of gravity) between the GFT coordinate 

system origin and Hybrid III head center of gravity. Note that the location of the Hybrid III 

head center of gravity is determined from publicly available Hybrid III engineering drawings 

[83]. Matlab code was then generated using the position vectors to apply linear transformation  

[61, p.523] to the GFT kinematics using Equation 3.1. 

𝑎𝐶𝐺  =  𝑎𝐺𝐹𝑇  +  𝛼𝐺𝐹𝑇 𝑋 𝑟𝐴/𝐵  +  𝜔𝐺𝐹𝑇 𝑋 ( 𝜔𝐺𝐹𝑇 𝑋 𝑟𝐴/𝐵)                                                (3.1) 

Figure 3.9 Position vector measurement 

of GFT COG w.r.t Hybrid III COG 
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Where 𝑎𝐶𝐺 refers to linear acceleration at the center of the Hybrid III head. The GFT angular 

acceleration (𝛼𝐺𝐹𝑇) was calculated using five point stencil method [85]. Equation 3.1 is a 

vector equation that transforms linear accelerations expressed relative to the GFT coordinate 

system to linear accelerations expressed at the Hybrid III coordinate system.  

3.1.3 Football helmet impacts 

A test matrix for the football impacts was created to generate impacts up to 120 g. In a study 

by Pellman et al. that used reconstructed NFL game data [86], the average linear acceleration 

for concussive impacts in different location did not exceed 117g. An upper boundary of 120g 

for the impact ranges targeted in test matrix was set based on this data. The test matrix of most 

research on the helmet impacts also recommends impacts to be conducted at different locations 

of the head such as front, back, side and crown to replicate real-time impact scenarios  [22], 

[70], [82].  Multiple impacts sites were also considered in this thesis; however, they are chosen 

based on corresponding kinematic directions. Kinematics being the physical quantity used to 

measure an impact, the impact direction categorization can be translated to kinematic direction 

categorization. For example, an impact to the front of the head will create higher linear 

acceleration in the x-axis of the Hybrid III head and greater rotation about the y-axis. This will 

simplify the category from several impact directions to three (corresponding to x, y, z 

directions) and further help in better understanding of the relationship between kinematics and 

brain strain response. Though both linear acceleration and angular velocity are used in brain 

strain response calculation, an overwhelming number of studies have shown angular 

kinematics to be a mechanism for diffuse brain injuries [24], [25], [29], [87]. Hence rotation 

about the x, y and z axes was chosen for the kinematic direction categorization. To obtain 

impact kinematics over a range of values, impacts were repeated at every 10 g increments. The 

impact directions were selected such that the crown and the back impacts were expected to 

have maximum rotation about the y-axis, the side impacts create maximum rotation about the 

x-axis, and the facemask impacts were designed to create maximum rotation about the z-axis. 

Table 3.1 shows the football test matrix with the count of impacts obtained in each g range 

from the drop test considering different impact locations and anvil types.  

The direction of rotation was not always as anticipated and drop tests tend to create more 

rotation about the y-axis. The facemask drop impacts created more y-axis rotations, and impact 
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with maximum z-axis rotations were challenging to achieve with the drop test setup. Hence, to 

create impacts with maximum rotation about the z-axis, the Hybrid III head was suspended at 

a 1.3 meter height from the ground with facemask facing roof and slightly tilted towards the 

left (Figure 3.10). Impacts were created manually by hitting the helmet facemask with another 

helmet. These impacts created mostly rotational head motion and corresponding linear 

accelerations were much lower compared to other drop impacts. Due to these reasons, the 

repeatability in terms of g-ranges was not plausible for the facemask impacts, though angular 

velocities were achieved up to a range of 50 rad/sec.  

 

Figure 3.10: Illustration of test setup for manual impacts to generate Hybrid III head rotation 

about the z-axis 
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Table 3.1: Football impact test matrix: Count of impacts obtained in each g range from the drop 

tests conducted on different impact location and with two anvil types 

Impact 

Location 

Vs g 

range 

<40 g 

  

  

40-69 g 

  

  

70-99 g 

  

  

>100 g 

  

  

Total 

Impacts 

 10g 20g 30g 40g 50g 60g 70g 80g 90g 100g 110g > 

120g 

 

 Flat Anvil  

Crown - - - - - - - 3 1 4 4 11 23 

Back - 1 9 3 10 5 3 - 6 4 1 11 53 

Left 3 6 7 4 4 1 4 2 4 2 6 3 46 

 Angled Anvil  

Crown - - 5 8 1 7 8 5 3 3 1 - 41 

Left 7 16 6 2 6 10 4 1 - - - - 52 

Facemask 3 12 2 3 4 4 - - - - - - 28 

Facemask 

(Helmet-

helmet 

impact) 

20 12 1 - - - 33 

Total 

impacts 

97 84 45 50 276 

In the case of the drop tests, higher g range impacts with angled anvil were limited due to the 

below reasons, 

1. For crown impacts, the linear acceleration did not increase with the increase of the drop 

height after 90g. This was believed to be due to the increased engagement of the helmet 

cushions at higher drop heights. 

2. For the facemask and left impacts, the Hybrid III neck flexing was greater which posed 

a risk of damaging the Hybrid III neck and instrumentation.  

The impacts were repeated with both flat anvil and angled anvil. A total of 276 impacts were 

achieved over a range of peak magnitudes in both linear acceleration and angular velocity as 

given in Figure 3.11. Few impacts with low g-ranges (<30g) in crown impacts were removed 

from the test due to errors in the GFT signals because of loosely adhered GFT device to the 

helmet surface. Though high g-ranges could not be achieved in few impact categories, 

sufficient sample size of these g ranges in other categories restricted any skewed distribution 

of impact kinematics in the overall experimental data. Of the 276 samples, 91 impacts had 

maximum angular velocity about the x-axis, 131 impacts had maximum angular velocity about 

the y-axis, and 54 impacts had maximum angular velocity about the z-axis (considering Hybrid 
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III kinematic magnitudes). Though the targeted peak range was only up to 120g, few impacts 

with higher drop heights (> 2 meter) resulted in linear accelerations greater than 120g. The 

peak magnitudes in Figure 3.11 correspond to the Hybrid III impact kinematics recorded from 

the drop tests and the impacts with peak magnitudes that did not fall within 10g -120g were 

not removed. 

 

Figure 3.11 Peak resultant angular velocity (ωR) vs. peak resultant linear acceleration (aR) of all 

impacts conducted, showing peak impact kinematics achieved in all g ranges and angular 

velocities in drop impacts 

3.1.4 Sample size estimation 

When using regression analysis for prediction purposes, it is often necessary to determine the 

sample size large enough to obtain a useful prediction. Hence for the football impacts tests 

conducted for this thesis, a sample size estimation formula (Equation 3.2) proposed by Sande 

Milton [88]  for multiple regression studies was used. Though this thesis will mostly work on 

simple regression models, a multiple regression model was used for sample size estimation. 

                                                     𝑛 = 𝑘 + 1 +
𝑡2(1−𝑅2)

𝛥𝑟2                                         (3.2) 

Where n refers to sample size, R2 is the anticipated coefficient of determination, k is the number 

of variables used in the final regression model for which the input kinematics to SIMon that 

are used to calculate strain was considered. The variable t is the desired t-statistic value, and 

Δr2 could be elaborated as the addition to R2 when a new variable is entered at last to the 

regression prediction. It could also be stated that when a variable added at last to a regression 
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analysis contributes an addition to R2 by the specified value (Δr2), the sample size calculated 

will assure the desired confidence level (or t-level) [88]. To allow detection of changes in R2 

of 5%, or in other words to detect 5% increase/decrease in the ability of a model to explain 

error, Δr2 was set at 0.05. The desired t-value of 2 was set to assure a statistically significant 

regression coefficient of p < 0.05 from the sample size [88]. Anticipated values for R2 were 

determined from data collected previously collected in our laboratory by Knowles et al. [24] 

in a similar experiment that compared GFT and Hybrid III brain strain response using hockey 

helmets. This previous work by Knowles et al. examined a hypothesis that differed from those 

posed in the present thesis. The hockey helmet impact experiments conducted by Knowles et 

al. used the same experimental setup including the drop tower, Hybrid III head and the FE 

brain model that was utilized in this thesis. A total of 109 impacts from the hockey helmet 

impact database were used to calculate the R2 between input parameter errors and output strain 

error. Two sets of data were used to calculate the sample size. One with the k value set to 8 

including component and resultant kinematic errors of both linear acceleration and angular 

velocity. Though resultant is a function of component kinematics, it was decided to treat the 

resultant separately.  The historic R2 value obtained from the multiple regression considering 

8 independent variables and MPS error (dependent variable) was 0.58. For the second set of 

data, only resultant angular velocity errors were considered (k=1) for the independent variable. 

The linear regression between ΔωR and strain errors yielded an R2 of 0.55. The sample size for 

football helmet impact experiments was thus calculated with  

i) R2=0.58, k=8, t=2 and Δr2=0.05 which yielded n=43. And, 

ii) R2=0.55, k=1, t=2 and Δr2=0.05 which yielded n=38.  

Though for a simple linear regression with one predictor (k=1), a sample size of 38 might be 

sufficient as per the above result, a higher number was chosen to have a sample size larger than 

what is required. Thus, a minimum sample size of 43 was targeted in each category of impact 

direction and impact speed ranges of the football impact test matrix to have sufficient data in 

category (Category X, Y and Z) based statistical analysis.  
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3.1.5 Brain Finite Element Model 

The handling of SIMon brain FE model output data that was used in further regression analysis 

is discussed in this section. Figure 3.12 provides an overview of the types of data that were 

retrieved from SIMon. 

 

Figure 3.12: Overview of outputs from simulation using SIMon brain model including a) the MPS 

output for both Hybrid III and GFT in time domain b) 3D brain plot with red dots showing top 

5% strains obtained from element level strain data and c) the displacement path of the 3D brain 

model due to an impact 
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The SIMon includes major parts of the brain such as cerebrum, cerebellum, brain stem, 

ventricles, parasagittal blood vessels, falx tentorium, cerebrospinal fluid, foramen magnum and 

skull. The material properties for these parts were based on Kelvin-Maxwell model after 

comparing the brain model response with several other material models [56]. The Kelvin-

Maxwell material model was used in SIMon for its softest stress response as well as numerical 

stability in LS-Dyna environment [56]. The model with its material properties was also 

validated against the NDTs displacement-time histories and pressure-time histories [56]. The 

material properties used for different parts of the model is given in Table 3.2. 

Table 3.2: Material properties of SIMon FE brain model parts 

Material 

properties 

Cerebrum/

Cerebellum/

Brain stem Ventricles 

Blood 

vessels 

Falx-

tentorium CSF 

Foramen

-

magnum 

Type 

Kelvin-

Maxwell 

Viscoelastic 

Elastic 

Fluid 

Cable 

Discrete 

Beam Elastic 

Kelvin-

Maxwell 

Viscoelastic Elastic  

Density, ρ (kg/m3) 1040 1000 5000 1130 1050 1050 

Bulk Modulus, K 558.47 2100 - - 4.97 - 

Short time shear 

modulus, G0 (MPa) 0.00166 - - - 0.1 - 

Long time shear 

modulus, Gl (MPa) 9.28E-04 - - - 0.02 - 

Decay Constant 16.95 - - - 0.01 - 

Young's modulus, E - 0 0.275 31.5 - 6933.3 

Poisson's ration, υ - 0.5 - 0.45 - 0.45 

Viscosity 

coefficient, VC - 0.2 - - - - 

* The data in the table is adapted from  [56] 

The SIMon brain model calculates the brain strain response using linear acceleration (ax, ay, 

and az) and angular velocity (ωx, ωy, and ωz) data generated during an impact. To obtain angular 

kinematics for Hybrid III, the method proposed by Padgoankar [80] was used to calculate 

angular accelerations αx, αy and αz from the linear acceleration data obtained by the nine 

acceleration sensors. The calculated angular acceleration was then integrated to generate 

angular velocities. Hundred milliseconds of Hybrid III impact data were extracted for each 

impact. With GFT, for impacts that had more than one 40 ms data, first two sets were combined 

to create an 80 ms data file. Of the 276 GFT kinematic files, 112 of these comprised two, 40 

ms duration, kinematics files in succession. For 76 of the 112, the two consecutive 40 ms files 
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were required so that the strain magnitude for these impacts reached a stable maximum. In 

addition, for 16 of the 112 impacts the strain magnitude did not reach a stable maximum value 

even at 80 ms. 164 GFT kinematic files were 40 ms duration. As specified earlier the GFT 

kinematics are filtered with 300Hz low pass filter for linear acceleration and 100Hz filter for 

angular velocity [15], [24]. Hence no further filtering was applied to the GFT kinematics. 

The maximum principal strain (MPS) of the brain model is obtained as a direct output of the 

SIMon simulation (Figure 3.12.a). MPS is the largest principal strain computed for any element 

in the brain model over the entire time-duration of the simulation. Therefore, MPS represents 

the biggest tensile strain experienced over the impact simulation. Further information from the 

simulation including brain displacement due to an impact and strain data for each element in 

the brain model were obtained using LS-PrePost, an advanced pre and post-processor delivered 

by LS-Dyna. The three-dimensional displacement of the brain model can be simulated with 

LS-PrePost using the output files from SIMon. The brain model displacement was used to 

verify that the brain motions simulated with corrected GFT directional kinematics matches 

with brain motions obtained from Hybrid III data. The strain data of each element in the brain 

model were used in percentile MPS calculation (detailed subsequently) and to compare the 

location and volume of the highest strains predicted by the Hybrid III and the GFT kinematics. 

3.2 Sub-study: Test methods using synthetic kinematics and sample impacts 

A sub-study involving three different methods was designed to understand how each input to 

SIMon affects the brain strain magnitude individually. The kinematic inputs (ax, ay, az, ωx, ωy, 

ωz) to the SIMon brain model are treated as vectors of Hybrid III Cartesian coordinate system. 

A wearable sensor’s coordinate system, however, may not perfectly align with Hybrid III like 

in GFT, where the sensor’s coordinate system is both rotationally and linearly misaligned. This 

section was hence aimed at studying the errors in brain strain magnitude calculation due to 

possible angular misalignment between the Hybrid III and the wearable sensor.  This was 

achieved by using computationally generated kinematics and by simulating angular errors in 

Hybrid III impact data. Two methods were designed to study the effect of axis direction 

mismatch and rotational misalignment of angular kinematics respectively. Only angular 

kinematics was considered in this first two methods based on earlier literature that states 
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rotational kinematics a better predictor for brain strain than translational kinematics [25], [40].  

However, a third test method was designed to compare the brain strain response of linear 

acceleration and angular velocity when treated individually. 

Simulated angular velocity curves were generated using Matlab code for the input files used 

in the method I and method II. Angular velocity data was obtained by integrating the angular 

acceleration curve with an acceleration peak (Pα) and a deceleration peak as illustrated in 

Figure 3.13. Angular velocity curves with different peak velocities were obtained by varying 

the acceleration peak Pα value. Null kinematics was applied to all linear acceleration input files 

in method I and method II. 

 

Figure 3.13: Angular velocity curve generated from angular acceleration curve 

In the method I, 15 SIMon datasets were designed in total with a set of five angular velocity 

input files with peak magnitudes (Pω) of 6, 10, 20, 30 and 40 rad/s. This method was designed 

to analyze the sensitivity of strain to each of the x, y and z axes. Each angular velocity input 

file generated was applied to one axis (x or y or z axis) at a time, and null kinematics was 

applied to the rest of the axes as shown in Figure 3.14.  
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Figure 3.14: Method I sub-study: Input dataset design with software generated files 

Method II had 18 datasets in total with angular rotation errors of 15˚, 30˚, 45˚, 60˚, 75˚ and 

90˚ at each axis as in Figure 3.15. Software generated velocity curve with a peak magnitude of 

30 rad/sec was applied in an axis other than the rotating axis. A rotational transformation was 

then applied to the angular velocity data using rotation matrix R as given in equation 3.3. 

𝜔′ = 𝑅. 𝜔                                                           (3.3) 
 

𝑅𝑥 =  [
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

] , 𝑅𝑦 =  [
cos 𝜃 0 sin 𝜃

0 1 0
− sin 𝜃 0 cos 𝜃

] ,  𝑅𝑧 =  [
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] 

Where Rx, Ry, and Rz are rotation matrix for a rotation about the x-axis, y-axis and z-axis 

respectively. The datasets were created by repeating rotational transformation with each of the 

above R matrix with six different angles (θ). 
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Figure 3.15 Method II sub-study: Generation of SIMon input files with rotational error applied 

to the component axes. ωx, ωy, and ωz are component angular velocities and ωx’, ωy’ and ωz’ are 

angular velocities after rotational error. θ – Error angle 

For the test method III, a set of 5 impacts were chosen from the GFT football impact data with 

high linear acceleration magnitude (110 g to 250g). The sample impact chosen include two 

facemask impacts, a side impact, a back impact, and a crown impact. Each impact data was 

split into three datasets, one with only linear acceleration inputs, the second with only angular 

velocity inputs and third dataset with both linear acceleration and angular velocity inputs.Brain 

strain response (MPS) was calculated for all the datasets created in the above three methods 

using SIMon. The resulting brain strains in each method were compared to study the effect of 

individual input kinematics of SIMon. 
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3.3 Statistics 

The three major steps followed towards statistical analysis conducted in this thesis are 

described in Figure 3.16. First, percentile strain values of the distribution of the strain in the FE 

brain model was calculated for each impact from element level strain data. Second, the error 

between Hybrid III and GFT was calculated for each of the input and the output parameter. 

Third, the calculated error variables were used in the regression analysis to obtain the R2 values 

to determine which input error is most explanatory of the strain error.  

 

Figure 3.16 Overview of statistical analysis where the histogram a) at the top shows percentiles 

calculated from strain distribution of the elements, the kinematic comparison plot b) illustrates 

error (Δ) determination between two sensor variables and regression analysis c) explains 

regression (R2) between two error variables 
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3.3.1 MPS percentile calculation 

The use of MPS calculated by the FE brain models as a metric on which to infer the likelihood 

of brain injury is currently under debate in the biomechanics community, because it is based 

on the output of a single element in the FE model[71].  To clarify why this is a source of debate, 

one should consider that it is possible (in any FE model) that some elements (due to poor mesh 

quality or other factors) calculate strains that are not representative of the strains in adjacent 

elements and therefore could calculate strain magnitudes that are considered spurious  [39], 

[41]. In brain FE models, if such spurious elements calculate strains that are greater than 

adjacent elements, and if the strain is used to infer injury risk, then inferences on injury could 

be argued as poorly motivated because they are based on high (spurious) strain levels. One 

approach that has been proposed and applied by researchers to prevent the influence of spurious 

strain on their studies is to use strain magnitudes that are lesser than the maximum principal, 

typically the 99%ile or 95%ile in principal strains. The rationale is that by disregarding the 

greatest 1% or 5% of strains, respectively, then the influence of spurious strains is eliminated. 

However, a full justification explaining the choice of 95%ile strain, as opposed to another 

percentile, is absent in the literature. In this thesis, we examined regressions between MPS (or 

100%ile principal strain) and other percentiles to examine whether or not the findings of this 

thesis would be specific to a choice of a certain percentile. 

The distribution of the maximum strains of all the 45,875 elements in the SIMon brain model 

was compared to decide on the appropriate percentile value of MPS to be used in this research. 

The strain data of all the elements were extracted using LS-PrePost for all 276 impact data 

(GFT & Hybrid III). Matlab code was then used to obtain the maximum strain of each element. 

The strain magnitude of 95th, 99th, 99.9th, and 100th percentiles were then calculated for each 

of the 276 impacts. The 99th and 99.9th percentiles were calculated for additional information 

on how the magnitudes of these percentile data compare with the 100th percentile and to 

understand the distribution of the strain magnitudes across percentiles (Figure 3.16.a).  
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3.3.2 Error calculation 

After input kinematics and the output brain strain response data were collected, the error 

between both the sensor data was calculated. Literature and brain strain metrics comparing 

brain strain to impact kinematics have predominantly focused on peak magnitudes of the 

impact kinematic data [24], [41], [67], [70], [86]. While an error in peak kinematics is time 

independent, another possible error definition could be a time domain error between impact 

kinematics from the two sensors. Because there is no agreed upon definition of error in 

kinematic measures, both errors based on peak magnitudes and maximum difference in time 

series kinematics were considered. Errors based on peak magnitudes were calculated because 

the literature suggests brain strain correlates well to peaks [38], [56]. Time series error was 

calculated to consider the differences in kinematics that vary in time. However, a time domain 

kinematic error calculation in this study has the following challenges: 

i) The Hybrid III and the GFT are two independent systems operating at different 

frequencies (100 kHz and 3 kHz, respectively) and time synchronization between such 

systems was therefore not possible without employing down-sampling of Hybrid III 

data, and perhaps more importantly; 

ii) The GFT that records the helmet kinematics might record impact data earlier than the 

Hybrid III (which records the head kinematics). Thus any synchronization of the impact 

kinematics based on the kinematic profiles may not be accurate. 

Despite the known challenges in a time-domain analysis, a simple time domain error definition 

was formulated to analyze its ability to explain the strain errors. In addition, error in peak 

kinematics was compared against strain error because peak head impact kinematics are good 

predictors of brain strain. 

Time-domain kinematic error definition: One of the approaches to quantify kinematic error, 

used in this thesis, is based on computing the numerical difference in kinematics for all time 

in the impact data, and choosing the maximum difference as the error. A time-domain 

comparison of a closely aligned kinematics of Hybrid III and GFT is given in Figure 3.17. The 

Hybrid III kinematics were down sampled to the frequency of the GFT kinematics (linear 
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acceleration: 3000Hz, angular velocity: 800 Hz) for this time domain comparison. In the plot 

comparing the angular velocities, the maximum difference in magnitude between the two 

angular velocity curves was driven by a valley in the GFT signal. This influence of the valleys 

in the signals in time domain difference was noticed in more than 50% of the impacts 

conducted in this thesis. A time-domain analysis was however made by comparing the 

maximum difference in the Hybrid III and the GFT kinematics against the maximum strain 

error. With time-domain kinematic errors, using signs in the error variables resulted in equal 

scatter of data on all quadrants and hence no relationship could be obtained. Thus, only 

absolute differences (|ΔK | & |ΔMPS|) were considered in this method. Both component 

kinematics errors and resultant kinematic errors were calculated using equation 3.4. Strain 

errors were calculated using equation 3.5. 

|ΔK| = max |KGFT – KHybrid III|                                                     (3.4) 

 |ΔMPS| = |max KGFT – max KHybrid III|                                                     (3.5) 

 

 

Figure 3.17: Time-domain error between Hybrid III and GFT resultant kinematics 

Peak kinematic error definition: This thesis also considered kinematic errors that were 

computed based on the magnitudes of peak kinematics measured by the GFT and Hybrid III, 

considering both resultants in measurements and component kinematics. The kinematic peaks 

for GFT were chosen within a window of 40ms or 80ms if simultaneous two 40ms files were 

available for an impact. For Hybrid III data, the peaks were chosen within a window period of 



45 

 

80ms. The kinematic peaks were chosen irrespective of the time and the Hybrid III and GFT 

kinematics were not time synchronized.  

Different methods of error calculation were employed to treat the peak differences of resultant 

kinematics, component kinematics and the volumetric data differently. All error variables in 

this thesis are denoted by a prefix delta (Δ).  

1. Resultant Error: Since resultant kinematics is always positive, it is treated as a scalar 

quantity in this error calculation. Error calculation for the resultant kinematics was done 

using simple mathematical subtraction GFT – Hybrid III. In a regression plot, this  means 

that  

i. Error variable is positive (positive quadrant) if VARGFT > VARHybrid III. 

ii. Error variable is negative (negative quadrant) if VARGFT < VARHybrid III. 

Where VARGFT and VARHybrid III are GFT variable and Hybrid III variable respectively. 

2. Component error: Peak component kinematics measured by the GFT and Hybrid III can 

be both positive and negative valued, and therefore it is an open question on how best to 

define errors. For completeness, two different types of errors were thus defined for the 

component kinematics based on the choice of the GFT peak.  

Component error type I: This error definition considers GFT component kinematic peak 

that has the highest absolute magnitude irrespective of the polarity of Hybrid III peak 

(Figure 3.18.a). 

Component error type II: This error definition considers the polarity of the Hybrid III in 

choosing the GFT peak. In Figure 3.19.a the GFT peak with the highest absolute magnitude 

is in the opposite direction of the Hybrid III peak. However, there is another GFT peak in 

the same direction as the Hybrid III peak. This error type was defined to ignore the negative 

peaks in GFT. Figure 3.19.b shows another example of an impact’s kinematics where the 

GFT peak in the direction of the Hybrid III peak is chosen. However, in this case the GFT 

peak with highest absolute magnitude is also the peak in the direction of the Hybrid III 

peak. 
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Figure 3.18: Examples of choice of peaks to calculate the error. In both a) and b) GFT 

peaks are chosen based on the magnitude irrespective of the polarity of the Hybrid III peak 

 

 

Figure 3.19: Examples of choice of peaks to calculate the error. In both a) and b) GFT peaks 

are chosen based on the polarity of the Hybrid III. The maximum GFT angular velocity in 

the direction of the Hybrid III peak is selected for error calculation 

The component kinematics are not treated as scalar and the positive and negative directions 

of the kinematics are considered in error magnitude calculation. The error magnitude for 

the component kinematic vectors was obtained by mathematical subtraction of GFT and 

Hybrid III peak variables. The sign of the error variable was however assigned as per 

condition in Figure 3.20. 
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Figure 3.20: Condition for the error variable sign assignment 

The error variable would take a positive sign if the absolute value of the GFT variable was 

greater than the corresponding absolute Hybrid III variable else the error variable is 

assigned a negative sign. This was done to ensure that the direction of the error variable is 

not driven by the polarity of the higher component kinematic peak but rather conveys 

which sensor kinematic data is higher (similar to resultant kinematic error variable). In both 

Figure 3.18 and Figure 3.19 the Hybrid III peak is greater than the GFT peaks and hence 

the error variable is assigned a negative sign. 

3. Strain error: Strain error was calculated using simple mathematical calculation (MPSGFT 

– MPSHybrid III) similar to resultant peak kinematic error calculation.  

4. Strain volume error: Strain volume error is the volume of error in strain distribution 

predicted by GFT kinematics. To quantify the strain volume error between GFT and Hybrid 

III, elements were sorted by descending the strain magnitude, and the first 459 (1%) and 

2294 (5%) elements and their corresponding volumes were extracted from each impact 

data. Figure 3.21.a shows the top 5% of elements with the highest strain predicted by Hybrid 

III, GFT and both. The volumes A, B and C are calculated by summation of the volume of 

elements represented by ‘ο’, ‘Δ’, ‘x’ in Figure 3.21.a respectively.  The error volume is 

calculated as a percentage of volume error predicted by GFT which is given by the equation 

3.6. 

𝛥𝑉𝑜𝑙% = (
𝐵−𝐶

𝐵
) ∗ 100                                                                  (3.6) 
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Where Δ𝑉𝑜𝑙 is the error volume percentage. B is the volume of elements with maximum 

strain(1% and 5%) predicted by GFT and C represents the volume of elements among B 

that are predicted in agreement with Hybrid III respectively as explained in the Figure 3.21. 

 

a) 

 

b) 

Figure 3.21: Strain distribution error where a) 3D brain plot displaying 5% elements with highest 

strain predicted by Hybrid III, GFT and both and b)Venn diagram to explain the error strain 

volume equation 3.6 
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3.3.3 Regression analysis 

All the error variables were compared using simple linear regression analysis to determine the 

R2 between the input and output errors. To determine the input kinematic error that best 

predicts the output brain strain error, the MPS error was regressed on all the kinematic error 

variables. In addition to regression analysis including all impacts in a single dataset, the process 

was repeated for impact subsets based on kinematic directions categorized as follows. 

i. Category X – Impacts with maximum rotational head motion about the x-axis. 

ii. Category Y– Impacts with maximum rotational head motion about the y-axis. 

iii. Category Z – Impacts with maximum rotational head motion about the z-axis. 

The regression analysis based on kinematic directions were to determine the effect of the 

directional kinematic error on brain strain. The R2 of all the regressions were compared to 

determine the predictor that is most explanatory of the MPS errors with wearable sensor 

kinematics. 

As discussed in the earlier section, for error definition with peak kinematics, it was ensured in 

error calculation that both the resultant and component error variables convey the same 

message where the positive error variable denotes higher VARGFT magnitude and negative 

error variable denotes a higher VARHybrid III magnitude. This method allowed decomposition of 

scatter plot into four quadrants, each conveying a different association as shown in Figure 3.22. 

For the volumetric analysis where GFT volume error was calculated as a percentage, the data 

was scalar and hence comparing it against the error variables with direction will not provide a 

meaningful regression. Hence for the volumetric analysis, absolute error variables (|ΔMPS| or 

|ΔK|) was used against the volumetric error for the regression comparison and the scatter plot 

is not decomposed into quadrants.  
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Figure 3.22: Interpretation of quadrant formed by the scatter plot of independent kinematic 

error variables against dependent brain strain error variable 

 

The confidence intervals for one standard deviation of the R2 variables were calculated using 

the equation 3.7 [89] The confidence intervals and the standard error (Equation 3.8) were 

calculated to construct the error bars for the regression analysis.  

                           CI = R2 ± SE                                             (3.7) 

 

SE =    √
4𝑅2(1−𝑅2)2(𝑛−𝑘−1)2

(𝑛2−1)(𝑛+3)
                                (3.8) 

 

Where CI is the confidence interval, SE is the standard error, n is the sample size and k is the 

number of independent variables in the regression analysis. Statistical significance for R2 was 

not inferred in this thesis. SE was used to convey only the standard deviation in R2 and not as 

a basis to determine statistical significance for R2.     
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4. Results 

Because this chapter documents a large number of findings, the below list attempts to help the 

reader by offering a concise summary of key results. The results from the limited laboratory 

study and post hoc simulation and statistical analysis suggest: 

1. Variations in 95%ile, 99%ile, 99.9%ile and 100%ile strain can explain the variation of 

one another. 

2. Linear and rotational transformation of GFT kinematics to head COG did not result in 

an appreciable change in strains when compared to the strains predicted from 

kinematics that were rotationally transformed. 

3. Angular velocity errors are most explanatory of strain errors. 

4. Error in both the direction and magnitude of kinematics create strain errors. 

5. When errors in strain are relatively small in magnitude, the percentage volume of the 

error in strain distribution, can be large. 

An overview of the parameters compared in each section and results, the key findings and how 

the results from the section contribute to the thesis findings is provided in Figure 4.1. To aid 

the reader, Figure 4.1 conveys the key logical relationships between results, in hopes that the 

order of results presentation is clarified. 
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a) 
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b) 

Figure 4.1: Overview of each section in the results chapter. a) Contain sections 4.1 to 4.4 and b) 

contain sections 4.5 to 4.8 
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4.1 Linear regression of MPS with 95%ile, 99%ile and 99.9%ile strain 

As implied by the three scatter plots of 95%ile, 99%ile and 99.9%ile strain with MPS (Figure 

4.2), at least 96% of the variation in MPS can be explained by the three percentiles plotted. The 

95%ile, 99%ile and 99.9%ile regression comparison against the 100th percentile MPS result in 

R2 > 0.96. Figure 4.2 shows the plots comparing the percentile strain magnitudes of all 276 

impact data used for regression analysis. Strain is a quantity that has units of length change per 

unit reference length, therefore it can be written absent a unit system, as it is in this thesis. The 

regression comparison of percentile strains suggests that using different percentiles may not 

alter the outcome of a regression analysis. Hence, the regression analysis comparing input 

kinematic errors with strain errors in this thesis was performed using only MPS. 

 

Figure 4.2: MPS plotted against 95%ile, 99%ile, and 99.9%ile strain 

The choice of the percentile strain used can further be explored by looking into the histograms 

of the strain distribution in the FE brain model. The element level strain data obtained from 
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both the Hybrid III and the GFT data show a similar distribution with a bimodal trend (Figure 

4.3). The first peak of the bimodal curve is near zero indicating the maximum density of 

elements having strains closer to zero and the second curve is right-skewed.  

 
Figure 4.3: An example MPS histogram plot with strain distribution calculated from Hybrid III 

and GFT kinematics for the same impact 

Magnitude comparison of percentile strain data of all the impacts collected in this experiment 

shows that the 95th percentile strain was less than half of the MPS. After 95th percentile, there 

was an exponential increase in strain difference between each percentile strain values as in 

Figure 4.4 due to the right-skewed distribution. The amplified value of the MPS compared to 

95th percentile strain can be explained as an outcome of the right skewness.  

 

Figure 4.4: An example MPS histogram plot with percentile distribution 
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The scaling of the MPS with other percentile strains (Figure 4.2) also suggests that all the 

impacts in the experiment follow similar strain distribution. Thus, the choice of MPS in this 

thesis for regression analysis will not affect the outcome of the analysis. 

4.2 Comparison of brain strains from fully and partially transformed kinematics 

MPS predicted by fully transformed kinematics differed by less than 1% from MPS predicted 

from partially transformed kinematics, when considering all data in this thesis (Figure 4.5). 

GFT strain data from kinematics that were fully transformed to Hybrid III head COG compared 

with strains from partially transformed GFT kinematics is shown in Figure 4.5. The scatter 

plot exhibits that the strains from fully transformed and partially transformed data can explain 

the variation of one another (R2 > 0.99) which implies that linear transformation does not affect 

the MPS magnitude.  

 

Figure 4.5: MPS (100th percentile strain) obtained from GFT kinematics that was fully 

transformed to head COG vs MPS from GFT kinematics that were not linearly transformed to 

head COG 

The volume of the brain elements considered to be in error, between cases where kinematics 

were linearly and rotationally transformed, differ by only 2% (from the equation on the slope 

in Figure 4.6).  Error in strain distribution observed with linearly transformed GFT data and 

rotationally transformed GFT data is compared in Figure 4.6. The volume of elements with 
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strain distribution error from the fully transformed and the partially transformed data are 

similar except, full transformation improves the volume strain error by ~2%. Also, the minimal 

residual errors in the regression comparison support the conclusion that rotational 

transformation is sufficed in brain strain calculations. Hence the regression analysis between 

kinematic errors and strain errors in this thesis will focus on the partially transformed GFT 

kinematics. 

 

Figure 4.6: Comparison of errors in maximum strain volumes predicted by GFT fully 

transformed and partially transformed data. The error in the volume of a) top 1% elements with 

maximum strains predicted and b) top 5% elements with maximum strains predicted are 

compared 

4.3 Regression of time domain kinematic error and strain error  

Coefficients of determination for kinematic errors regressed against strain errors indicated that 

the best kinematic error predictor varied based upon the primary axis about which the head 

rotated (Figure 4.7). The coefficients of determination obtained from regression analysis of all 

the impacts’ maximum time domain kinematic errors and MPS errors was less than 0.3 (Figure 

4.7). No single kinematic error was consistently the better predictor of strain error across the 

different categories. A single kinematic error could not be found as the obvious best predictor 

of strain error in this method which suggests that the maximum kinematic error in time series 

may not be the best error definition towards predicting the strain error.   
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Figure 4.7: R2 of ΔMPS vs time domain kinematic resultant error under different categories 

4.4 Regression of peak kinematic errors and strain errors 

Regression analysis results comparing all the resultant kinematics errors with the 

corresponding MPS errors show resultant angular velocity errors having higher R2 with MPS 

errors (Figure 4.8). R2 for angular velocity error (Δω) vs. MPS error (ΔMPS) is greatest for the 

entire dataset as well as in each category, outside the bounds of one standard error. The 

regression results suggest that the peak resultant angular velocity errors could predict the strain 

errors best compared to other kinematics errors. The Δα has the second high R2 following Δω 

except for the impacts in category X. However, the confidence interval (for one standard 

deviation) of R2 for Δω vs ΔMPS does not overlap with R2 from other kinematic errors which 

suggest that angular velocity errors are best explanatory of the strain errors. 
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Figure 4.8: R2 of ΔMPS vs peak resultant kinematic error under different categories 

The coefficient of determination of Δa in category X differs largely compared to results from 

other categories where Δa has a low R2 (<0.2). This behavior is explained by inspecting the 

kinematics specific to Category X for both Hybrid III and GFT. The resultant peak linear 

acceleration exhibits high R2 with MPS under conditions when linear acceleration regressed 

against angular velocity have high R2. In categories where the variation in linear acceleration 

did not explain the variation in angular velocity, linear acceleration and linear acceleration 

error had poor R2 in regressions against strain and strain error respectively. This trend can be 

observed in Table 4.1. 

Table 4.1 : Results of regression comparison showing high R2 of linear acceleration with MPS is 

driven by its relationship with angular velocity 

 Hybrid III GFT Error 

(GFT – Hybrid III) 

Regression 

variables 

aR vs ωR aR vs MPS aR vs ωR aR vs MPS ΔaR vs ΔωR ΔaR vs ΔMPS 

All Impacts 0.28 0.21 0.56 0.68 0.04 0.15 

Category X 0.80 0.73 0.77 0.80 0.30 0.50 

Category Y 0.14 0.27 0.22 0.47 0.08 0.01 

Category Z 0.15 0.15 0.85 0.83 0.15 0.17 
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The strains from purely linear acceleration kinematics simulated on SIMon showed that linear 

accelerations with magnitudes as high as 249 g did not have an appreciable effect on strain 

compared to the effect of angular velocity (Figure 4.9). SIMon simulations using only angular 

velocity kinematics were able to generate MPS magnitudes equal to the MPS generated using 

both linear and angular kinematics.  

 

Figure 4.9: Comparison of MPS magnitude calculated with GFT linear acceleration (a input only) 

and angular velocity (ω input only) separately, with MPS magnitude obtained by using both 

kinematics (a + ω input) 

The linear acceleration ranges tested in the sub-study were chosen to determine the strain 

response of the highest possible linear acceleration. The impacts with 199g and 249g are 

exaggerated by the GFT (corresponding Hybrid III measurements are 143g and 64g 

respectively), and such magnitudes may not occur in real game impacts.  

4.5 Comparison of component angular velocity errors and strain error 

Since the resultant angular velocity errors resulted in highest R2 with strain errors, the angular 

velocity errors were focused for further component kinematic error analysis. The R2 of ΔMPS 

regressed with each angular velocity component kinematic errors (from both error type I and 

error type II) are compared in Figure 4.10. Error in the primary axes of rotation had higher R2 

with MPS errors compared to the other two axes, indicating that MPS error is influenced by 

directional errors.  For example, for impacts with primary axis of rotation about the z-axis, the 
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z-axis errors were most explanatory of MPS errors compared to other two axis (excluding 

resultant), outside the bounds of one standard error. Since resultant is a vector sum of 

component kinematics, the resultant error consistently explained the strain errors best. 

However, it is also necessary to identify which angular velocity error (resultant or component) 

influences the strain error most and if it is sufficient to address only the resultant angular 

velocity error to minimize the strain errors.  

 

a) 

 

b) 

Figure 4.10: Regression results between MPS errors and component angular velocity errors from 

a) component error type I and b) component error type II 
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The effect of resultant and component angular velocities on strain distribution is compared by 

using data of 3 impacts with approximately same resultant magnitude (~33.4 rad/sec) but with 

the maximum peak value in different axes components as given in Table 4.2. The impacts 

chosen correspond to a crown impact (CR) with primary rotation about the y-axis, facemask 

impact (FM) with high ωz and left impact (LE) with high ωx. In addition to exhibiting different 

maximum principal strains, the difference in the distribution of strains could also be noted 

between these impacts as shown in Figure 4.11. In the localized strain distribution (> 95%ile 

strain) of these impacts (Figure 4.11.a) , the strains due to the facemask impact could be seen 

extending to cerebellum whereas the crown impact with same resultant angular velocity creates 

major strains in the cerebrum. Though the left impact and facemask impact appear to create 

similar strain distribution, a closer view on the location of the maximum strain (100%ile strain) 

reveals that the left impact (with high ωx) comparatively creates strain in a deeper part of the 

cerebrum (Figure 4.11.b).  

Table 4.2: Example impact data that was chosen to compare the effect of resultant and 

component angular velocities on the strain 

Impacts Peak ωR 

(rad/sec) 

Peak ωx 

(rad/sec) 

Peak ωy 

(rad/sec) 

Peak ωz 

(rad/sec) 

MPS 

CR  33.38 7.12 32.22 -7.40 0.51 

FM 33.38 -9.87 5.72 -31.93 0.73 

LE 33.36 30.26 12.92 -21.89 0.44 
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Figure 4.11: Strain distribution corresponding to a) >95%ile strain and b) MPS in the crown 

impact (CR), facemask impact (FM) and left impact (LE) from Table 4.2 
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Despite similar resultant angular velocity, the high difference in the distribution of the strains 

when the magnitude of the directional angular velocities change convey that between resultant 

and component angular velocities, the latter might have higher influence over the strain and 

the strain errors.  

4.6 Effect of measurement axis misalignment on strain magnitude 

Misalignment in axes between the GFT and Hybrid III head will lead to errors in component 

kinematic measures that will in turn lead to strain errors. When analyzed separately, each axis 

in the SIMon brain model subjected to the same angular velocity (sub-study method I) resulted 

in different MPS values as given in Figure 4.12. For example, a 40 rad/sec angular velocity, 

applied about the x-axis generated a strain of magnitude 0.53 whereas the same angular 

velocity about the z-axis produced a maximum strain of 0.76. A similar trend was observed for 

different magnitudes of input angular velocity where the x-axis exhibited the least sensitivity 

and the z-axis exhibited the highest sensitivity to strain.  This suggests that directional velocity 

has an influence over strain magnitudes and measuring only resultant error may neglect the 

underlying directional velocity errors, which could eventually lead to error in strain prediction 

using the impact kinematics. 

 

Figure 4.12: MPS results of angular velocity inputs in different axis directions 

Sub-study Method II (determining the MPS errors due to angular misalignment) demonstrated 

that up to 15% error occurred in calculated strains in the presence of angular misalignments of 

30˚ (about y-axis). MPS errors due to simulated angular misalignment about each axis from 

30˚ to 180˚ are given in Figure 4.13. From these results, it is evident that a rotational error about 
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an axis could alter the strain calculated from the wearable sensor kinematics. The output strain 

errors corresponding to rotational error about each axis is explored using Figure 4.14.   

 

Figure 4.13: Change in MPS observed with simulated rotation error about each individual axis 

Errors in MPS due to rotation about each axis were examined by comparing the MPS with 

input data at each rotation step. The rotational errors redistributed the component angular 

velocity magnitudes, altering the corresponding MPS value. As the y-axis and z-axis input 

magnitudes increased due to the rotation, there was an increase in the strain value. When the 

input values in these axes decreased, an eventual decrease in the MPS occurred. The positive 

and negative direction of the angular velocity magnitude also affected the resulting MPS 

differently which could be observed in the 0˚ and 180˚ data points of Figure 4.14. At these data 

points only one component axis has a non-zero angular velocity in each plot with the same 

magnitude, but the direction reversed between 0˚ and 180˚.  The resulting strains were however 

different despite the identical input angular velocity magnitude at the same axis. MPS error of 

up to 20% was noticed in this test method, though the resultant angular velocity was constant 

for the entire dataset used. Comparing the results from Figure 4.12 and Figure 4.14, it can be 

stated that rotational data about z-axis has the highest sensitivity followed by y-axis rotational 

data. The rotation about the z-axis created higher strains and rotational error altering the data 

corresponding to the z-axis displayed high strain errors.  
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Figure 4.14: Plots comparing the change in component angular velocity magnitude and the 

corresponding change in strain due to rotational error about a) x-axis, b) y-axis and c) z-axis 

Experimental data was used to determine how errors in all the 3 axes create strain errors. Figure 

4.15 compares the R2 results of GFT angular velocity vs. corresponding MPS with average 

component velocities under each category. R2 was highest between MPS and whichever axes 

had the highest average angular velocity in each category. In category X and category Y, 

though the ωy average was greater than ωz average, the z-axis component had high R2 with 

MPS. This can be explained due to the higher sensitivity of z-axis data to MPS as determined 

in an earlier paragraph. When x-axis average velocity was significantly higher than z-axis 

(category X), ωx gave a better coefficient of determination. Under other condition (category 
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Y), ωz resulted in higher R2 with MPS than ωy. This suggests that MPS is determined by the 

magnitude of component angular velocities combined with the strain sensitivity of each axis. 

 

Figure 4.15: Regression results of GFT peak angular velocities and corresponding MPS along 

with the average of the peak angular velocities in each regression  

The results in this section show that MPS is an outcome of directional kinematics and therefore 

sensitive to errors in directional kinematics. From these findings, it can be understood that the 

alignment of the wearable sensor kinematic direction to that of the reference sensor axis is 

crucial in brain strain prediction using these sensor measurements. Also, attention towards axes 

kinematics, as opposed to absolute resultant kinematics, will benefit in achieving brain strain 

prediction with limited errors. 

4.7 Volumetric errors in the distribution of maximum strain locations predicted 

Nearly half of the impacts exhibit more than 50.48% volume error in the top 1% strains 

predicted, and there are 23 impacts with more than 90% volume error in the same category. 

For strains greater than 95%ile (top 5%) the mean volume error is 40.34%. Error in the 

distribution of strain also result in the wrong part of the brain being predicted to have a 

maximum strain. An example of the case where a different part of the brain was predicted by 

Hybrid III and GFT is given in Figure 4.16. In this example, most elements with maximum 

strain predicted by Hybrid III is seen in cerebrum whereas GFT predicts most of the elements 

in the brain stem. In an ideal condition where GFT predicts the strain distribution exactly the 
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same as Hybrid III, the Figure 4.16 will not have the blue and the red data points and all the 

elements with maximum strain (top 5%) will be in green.  

 

Figure 4.16: An example plot showing the location of top 5% brain strains predicted by Hybrid 

III and rotationally transformed GFT for the same impact 

Impacts with strain errors less than 0.1 (10%) still had error in maximum strain volume 

predicted, where the error percentage was noticed up to 93% (top 5%) and 99% (top 1%). 

Comparison of strain error vs. error volume in the top 5% and top 1% elements with maximum 

strain (Figure 4.17) found no relationship between strain errors and corresponding volume 

errors. A considerable number of samples with low MPS errors had volume error greater than 

80%.  
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Figure 4.17 Scatter plots comparing ΔMPS with volume error in a) top 5% elements with maximum strain 

and b) top 1% elements with maximum strain 

4.8 Regression of kinematic errors with brain volume error 

Regression of kinematic errors against volume error in brain elements suggest that angular 

velocity errors were the only errors exhibiting positive slope. In regression plots to explore 

how the volume of error in strain distribution compare with errors in kinematic inputs, a 

positive R2 relationship was noticed only with angular velocity errors (R2 = 0.42). In addition 

to the negative regression relationship of linear acceleration, linear velocity and angular 

acceleration against volumetric strain errors, the goodness of fit corresponding to these 

regression analyses was also low (Figure 4.18). This further strengthens the earlier findings 

that the linear kinematics or angular acceleration has less effect on strain errors compared to 

angular velocity. The regression analysis suggests that the distribution of strain errors may also 

be related to resultant angular velocity errors. However, the residual errors are compelling 

which suggests the possibility of factors other than the resultant angular velocity that might 

influence the distribution of strain. An explanation for the residual errors may be component 

velocity errors as discussed in the Section 4.5. 
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Figure 4.18: Scatter plots comparing input kinematic error with corresponding strain volume 

error 
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5. Discussion 

The goal of this thesis was to identify the input error sources in wearable sensors that influence 

errors in FE strain calculation, including element level strain errors. Football helmet impacts 

were simulated in the laboratory using the Hybrid III head and the GFT wearable sensor. The 

impact kinematics from both the sensors were collected and used in brain strain simulations. 

Regression analysis was performed using data collected from both Hybrid III and GFT sensor. 

The results obtained in this thesis convey, 

 The MPS percentile values scale with each other and hence the choice of a specific 

percentile will not affect the outcome of a simple regression analysis. 

 A full transformation of wearable sensor kinematics does not alter the strain magnitude 

compared to partially transformed kinematics. 

 Limiting angular velocity errors in wearable sensor measurement could ultimately 

reduce brain strain errors. 

 Strain magnitudes from FE brain models are sensitive to direction of the head rotation 

and the axis about which the rotation is greatest. 

 High strain distribution errors can still occur in impacts with low MPS error. 

The multiple results from the thesis aim to encompass the possible input and output errors in 

brain strain prediction using a wearable sensor. The initial finding from the regression analysis 

suggests that resultant angular velocity errors explained the strain errors the best. Further 

analysis examining the directional sensitivity of SIMon demonstrated the possibility of high 

strain errors even in the absence of resultant angular velocity error which in turn imply that 

component angular velocity error has greater influence on strain error. A much-detailed study 

of brain strain by looking into element level strains showed that low MPS strain errors can still 

have an error in the distribution of maximum brain strain predicted. Error possibilities at 

multiple stages of brain strain calculation using FE models are discussed in this thesis along 

with the research gaps in brain strain prediction with impact kinematics.  
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5.1 Strain percentiles and their ability to predict MPS 

MPS was used in all regression analysis against kinematic errors in this thesis after confirming 

that MPS scaled with other percentile strains. The FE distribution of strain elements in blunt 

impacts with football helmet displayed a bimodal trend with a right-skewed curve for all 

impacts conducted in this thesis. The strain values for 95th, 99th, and 99.9th percentiles scaled 

proportionally with the MPS and using either of these strain magnitudes will not affect the 

outcome of the regression analysis. In all impacts conducted in this thesis, the 95th percentile 

MPS was less than 50% of the MPS value, and 99th percentile MPS was ~50% of the MPS. 

A major concern in using the 100th percentile MPS is the possibility of spurious elements [39]. 

A magnified histogram (top 0.01% elements with high strain) of few impact data reveals a 

discontinuity in the MPS magnitude of the maximum element (Figure 5.1). The discontinuity 

in the strain magnitude of the element with highest strain is generally noticed above 99.9th 

percentile. Despite this fact, the maximum strain is always scaled with other percentile strains 

and generally falls within the top 5% brain strain region (Figure 5.2). However, in this thesis 

MPS (100th percentile strain) is predominantly used in regression analysis since it has been 

shown that MPS scales with other percentiles in the dataset used. 

 

Figure 5.1 Example histogram plot displaying the distribution of strains above 99.9th percentile 

with a jump in the strain value of 100th percentile MPS 
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Figure 5.2 3D plot of distribution of strains greater than 95%ile in the impact corresponding to 

Figure 5.1 

5.2 Linear acceleration does not create strains comparable to an angular velocity 

Evidence suggests that brain strain magnitudes obtained from both linear acceleration and 

angular velocity could just be achieved by only using angular velocity. Linear acceleration 

magnitudes as high as 143g and 249g created strains up to 0.2 (Figure 4.9). However, such a 

high magnitude of linear acceleration is rare in real-world impacts  [68], [86], [90]. The sub-

study result has shown that a strain of 0.2 could be created by pure angular velocity as low as 

10 rad/sec (Figure 4.12). Since impacts with linear acceleration above 140g are characterized 

by angular velocities greater than 10g (Figure 5.3) the resulting strain is mostly driven by the 

angular velocity. For example, comparing the results from sub-study, linear acceleration of 

143g to influence strain more, the corresponding angular velocity should be less than 10 rad/sec 

which was not noticed in any of the 276 impacts conducted in this thesis (Figure 5.3). Similar 

finding was reported by Kleiven [32] using FE brain model by Royal Institude of Technology 

(Stockholm). In this study the author have shown that angular velocity alone was able to 

achieve strain created by both linear acceleration and angular velocity. This suggests that the 

strain is driven by angular velocities including the impacts whose linear acceleration range 
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exceeds 140g. Hence, limiting the angular velocity errors (both directional and magnitude 

error) is sufficient to limit the corresponding brain strain error magnitude. 

 

Figure 5.3: Scatter plot comparing peak linear acceleration and corresponding peak angular 

velocity with dotted lines marking the minimum peak angular velocity recorded by Hybrid III 

and GFT for a peak linear acceleration of 140g 

5.3 Full transformation in wearable sensors 

Transformation of GFT kinematics to the Hybrid III head center may not be required for strain 

calculation with SIMon. On the usage of wearable sensors in brain strain prediction, literature 

have suggested a linear transformation of kinematics to head COG [21], [22], [70]. By 

comparing the strain results of partially transformed kinematics and fully transformed 

kinematics, this study has shown that full transformation to head COG is optional for wearable 

sensor impact data. Though the accuracy of the direction of the sensor’s component angular 

kinematics is crucial in brain strain prediction, the linear distance of the sensor’s axis from the 

reference axis does not affect the strain magnitude. In the tissue level strain prediction, though 

the full transformation does show an increase in the agreement of elements with the highest 

strain predicted by both sensors, the difference is less than 2%. The role of linear acceleration, 

as well as full transformation on the distribution of element level brain strain is not explored 

in detail in this research. Though strain magnitude is unaffected by a full transformation of 

GFT kinematics, outliers in Figure 4.6 suggest that a full transformation might have an effect 

on strain distribution. Impact samples for which the volumetric strain error changes with full 

transformation (Figure 4.6) requires specific research methods focusing on the effect of 
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individual kinematics on strain distribution in FE brain models. However, the preliminary 

regression analysis suggests that the full transformation of sensor kinematics to head COG has 

a negligible effect on the strain or strain distribution errors. This is due to the fact the full 

transformation only affects the linear kinematics and not the rotational kinematics. Since linear 

kinematics have a negligible effect on brain strain, full transformation also turns to be 

ineffective in brain strain calculation. Thus wearable sensors can disregard the much 

complicated full transformation of its kinematics to head COG. Rather, the relatively simpler 

rotational or partial transformation of the sensor kinematics to the head axis is necessary. 

5.4 Peak errors vs. time domain errors 

The effort to compare time domain kinematic error with MPS error did not provide sufficient 

information to determine a predictor for strain errors. In addition to the unsynchronized 

kinematic data, a time domain difference failed to provide a consistent outcome in multiple 

categories as the maximum difference between two kinematic curves in time domain was often 

governed by a valley in the signals at a time period much earlier than the maximum strain 

occurred as shown in Figure 5.4. Though these signals are closely aligned, the difference in the 

time-domain is driven by the GFT valley at an approximate time of 20 ms. It is to be noticed 

that the majority of the angular velocity signals that contribute towards the final strain occurs 

after 20 ms in this example. Also, the strains are unaltered during a valley in the signals, which 

suggest that a valley may not be the kinematic characteristics that explain the brain strain 

magnitude. As this method of time-domain comparison fails to capture the characteristics of a 

signal that contributes to the maximum strain, the corresponding regression analysis did not 

yield a consistent outcome across different categories. However, a consistent finding was 

possible with peak kinematics as they are essential characteristics in kinematic curves that 

contribute to strain. The fact that peak kinematics have been effectively used in brain strain 

metrics to predict brain strain [25], [38], [39] suggests peak kinematics as a better choice 

among kinematic curve characteristics in brain strain prediction.  
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Figure 5.4: Time domain Hybrid III and GFT resultant angular velocities and corresponding 

strain for a left impact 

Hybrid III and GFT peak kinematics in this thesis having R2 of up to 0.98 with strain (Figure 

5.5) are believed to be the reason why peak kinematic errors were better predictors for strain 

errors compared to time-domain errors. 

 

a) 
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b) 

Figure 5.5: Regression result showing the coefficient of determination (R2) of a) Hybrid III and 

b) GFT peak resultant kinematics with maximum strain 

5.5 Kinematic error predictor for strain error 

The regression results of peak kinematic errors with strain errors suggest that peak angular 

velocity errors are the best predictors for strain errors. The primary goal of the thesis was to 

determine the kinematic error that best predicts strain error. In a comparison among different 

kinematics errors (Δa, Δv, Δω and Δα) vs. strain error, the resultant errors were better predictors 

compared to component errors since resultant kinematics are a function of component 

kinematics. By an overall comparison and by impact sub-sets stratified based on angular 

velocity direction, peak resultant angular velocity error predicts the strain errors best compared 

to the other kinematics outside the bounds of one standard error. Though resultant angular 

acceleration error exhibited second high R2 value, the regression result of angular velocity (ωR) 

with MPS (R2
Hybrid III = 0.80±0.02, R2

GFT = 0.90±0.01) was more than twice that of angular 

acceleration (αR) with MPS (R2
Hybrid III = 0.39±0.05, R2

GFT = 0.37±0.05). This agrees with 

earlier research which states peak angular acceleration alone cannot be used for brain injury 

prediction whereas peak angular velocity alone is sufficient for brain injury prediction [25], 

[38]. Hence, evidence suggesting brain strain as a function of peak angular acceleration is poor, 

which in turn indicates that reducing the errors in peak angular acceleration may not improve 

strain prediction compared to angular velocity. These findings confirm that, between all the 

input kinematics, the error in peak angular velocity of GFT best predicts the error in brain 

strain calculations.  
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5.6 Resultant vs. component angular velocity errors 

Though resultant angular velocity error is the best predictor for strain error, the component 

angular velocity errors exhibit influence over the error in strain magnitude and distribution of 

strains. Since the resultant kinematics used in this thesis ignores component direction, it cannot 

be concluded that limiting the resultant angular velocity error will limit the strain error without 

considering the effect of directional angular velocity errors on strain error. The component 

kinematic data (ωx, ωy, ωz) being used as input to SIMon in brain strain calculations, the 

possibility of directional angular velocity errors, as opposed to resultant angular velocity error 

influencing the brain strain error is high.  

A better insight on the role of component angular velocity on strain distribution was obtained 

by the comparison of three impacts with the same resultant magnitude. The strain magnitude, 

as well as the strain distribution of these impacts, were shown to vary, though the resultant 

angular velocity was similar. The interpretation of this result is that direction of angular 

velocity influences the distribution of brain strain. Because the distribution of brain strain is 

relevant in studying potential brain injury, it is important that a wearable accurately measure 

the components of angular velocity. Also, it is to be emphasized that the resultant angular 

velocity error is the best standalone predictor for strain error but is not the most useful for 

eliminating strain error. Strain errors can still occur between identical resultant angular 

velocities when there is a change in component data. Hence relying only on ΔωR to predict 

strain errors can be misleading. 

5.7 Direction sensitivity of the SIMon FE model 

Evidence suggests that a higher percentage of strain errors can still be observed in impacts with 

no errors in the amplitude of the resultant angular velocity. In addition to strain errors created 

by a mismatch of sensor axis direction, strain errors of up to 20% were noticed due to rotational 

misalignment of the wearable sensor’s axis. Rotational misalignment of the sensor axis alters 

the angular kinematics of x, y and z axes. Redistribution of the axis kinematics, especially in 

angular velocity about the sensitive z and y axes, lead to high strain errors. Both the direction 

(+ve and –ve) and the magnitude changes in the component angular velocity were shown to 

have effects on the output strain. For example, an angular velocity of +5rad/sec and -5rad/sec 
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in z-axis could result in different MPS. All these results confirm that the component angular 

velocity errors have a causal effect on the strain errors. Research that focuses on validation of 

the wearable sensors predominantly focus on resultant kinematics [24], [68], [70], [91] and 

little or no importance is given to directional kinematics. Though resultant angular kinematics 

can predict the strain errors, it is the underlying component angular kinematics that influences 

the strain and strain distribution errors. Given the sensitivity of brain strain to directional 

kinematics, it is essential that wearable sensor manufacturers and sensor validation research 

address the inaccuracies in directional kinematic measurements. Limiting the component 

angular velocity errors should be prioritized over limiting resultant angular velocity errors. 

This will ensure that both the resultant angular velocity errors and the strain errors are 

corrected. 

Though many studies agree that brain strain is influenced by impact direction[42], [67], [70], 

very few studies have focused on the direction sensitivity of brain strain to impact kinematics 

[39], [46], [47]. The findings in this thesis convey that the brain strain sensitivity is greater for 

rotation about z-axis and least for x-axis rotation. This agrees with the weighing factors used 

in the equation for the brain strain injury metric RVCI. The weighing factors which is the ratio 

of MPS calculated between different axis used in RVCI (with the x-axis as reference) is given 

as 1, 1± 0.18, 1.17 ± 0.17 for the x-axis , y-axis and z-axis respectively [47]. A 

pathophysiological study by Margulies [37] states that the presence of falx-cerebri in the 

sagittal plane reduces the intracranial deformation in a side to side motion of the head. This 

may be one reason for the least sensitivity of brain strain to x-axis rotations. Thus, accuracy of 

component kinematics is important for the prediction of brain strain and strain distribution. 

Also, many proposed brain injury metrics are equations that require component kinematics. 

Hence, it is of paramount importance to measure components correctly so that the brain injury 

metrics we compute are also correct in magnitude. It is essential for wearable sensors to ensure 

their axis direction complies with SAE J211-1 [75] standard which is followed by standard 

head models if the sensor measurements are to be used in FE brain strain calculations.  
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5.8 Limitations 

As with other laboratory-based experimental methods, the limitations of this study is the ATD 

Hybrid III which may not precisely replicate the biomechanics of a human head and neck. The 

Hybrid III head form which was primarily constructed for automotive crash tests and may not 

be perfectly suited to be used with helmet compared to the NOCSAE head form. In the 

presented experiments, however, it was ensured that the helmet fit with the Hybrid III was 

intact after every impact. Hybrid III is the standardized head form available to date along with 

NOCSAE head form developed specifically for helmet testing and research have shown that 

the difference in response between these two head forms tends to be small [63]. 

The brain strain response from this study was also based on a single FE brain model which 

could also be considered as a limitation. However, the brain model has been validated by 

comparing its response with cadaver and animal brain strain responses [48], [54]. Literature 

comparing multiple FE models including SIMon have concluded that all models show similar 

trends in brain strain responses [55] and SIMon brain strain response was comparable to high-

resolution FE brain models [56]. Also, in the presented study the choice of the ATD or the FE 

head model may not have a significant impact on the outcome since the study focuses on 

comparative analysis on two sensors.  

Another limitation of this study is that the pulse width of the signals was ignored in the analysis. 

Research by Gabler et al. which studied impact kinematics along with the duration of the 

impact suggests that only peak angular velocity is sufficient for predicting brain injuries 

however longer duration (>50ms) do have minor effects on the strain [38]. An R2 value of 0.80 

(Hybrid III) and 0.90 (GFT) between peak angular velocity and MPS in this study confirms 

that peak angular velocity data may be sufficient. Though pulse width of the angular velocity 

does not affect strains compared to peaks [38], future studies could explore the effect of pulse 

width errors on strain errors.  

The unsynchronized kinematic data between the two sensors as discussed in Section 3.3.2 

limited the ability to perform appropriate time-domain analysis. Though analysis with peak 

kinematics in this study was able to yield consistent outcome with the unsynchronized data, 
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future studies could investigate a system design that will ensure the time-synchronization of 

the two sensors.  

Only simple statistical analysis was used in this study since the goal was to determine the 

kinematic error that was most explanatory of strain error. Complex statistical analysis to study 

the interactions of impact locations or combination of kinematics were not performed in this 

study. Though simple linear regression was sufficient in the analysis with peak kinematics and 

maximum strain, an extensive study is required to better understand the role of directional 

kinematics in strain distribution where a complex statistical tool could be of importance. 
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6. Conclusion 

 The objective of this thesis was to determine the kinematic errors that explain the strain errors 

in FE brain strain predictions using wearable sensor kinematics. Impact kinematics of real-

world head impacts in sports are sought after by researchers for brain injury predictions in 

sports where there is a high risk of head injury. Though wearable sensors provide the possibility 

of acquiring real-world impact kinematics, brain strain predictions with wearable sensor data 

are restricted due to the uncertainty of the sensor’s accuracy. Extensive research have thus 

focused on quantifying the error in wearable sensor kinematics by comparing it with reference 

sensors. However, there is no research that measured the effect of these kinematic errors on 

brain strain prediction using FE models. This study thus compared the brain strain errors to 

kinematic errors which in turn provide insight into the kinematic factors that influence strain. 

Peak resultant angular velocity errors regressed with strain errors achieved highest R2 

compared to the other kinematics. However, it was also determined that MPS is sensitive to 

directions and accuracy of directional component angular velocities and not just resultant is 

essential for better FE-based brain strain predictions. To achieve better brain injury 

measurement, it is essential that direction of the component rotational velocities are expressed 

relative to the head coordinate system prescribed for the brain model. Kinematic measurements 

by wearable sensors that are rotationally misaligned to reference axis are required to be 

rotationally transformed. But, a linear transformation of the wearable sensors kinematics to the 

head COG is not essential, as it does not affect the brain strain predictions. Error in the input 

kinematics to the FE brain model, in addition to affecting the strain magnitude, created a larger 

error in the location of the maximum strains predicted. Since FE models use directional 

component angular velocities as input, limiting errors in the same will lead to better brain strain 

prediction with wearable sensors. 

The distribution of element level strains was studied to fill the gap in the literature on the choice 

of the 95th percentile strain for regression analysis. The study reveals that the 95th percentile 

along with 99th and 99.9th percentile strain scaled with MPS and usage of the MPS in regression 

analysis will not affect the reliability of the outcome. 
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6.1 Significance of the study 

Literature to date on validation of a wearable head impact sensor is limited to resultant 

kinematics and have widely ignored directional component kinematics. In addition, the 

ultimate purpose of measuring head impact kinematics being in brain injury prediction, it has 

not been explored yet how the error in head impact kinematics will affect a brain injury 

prediction when using FE brain models. This thesis has laid the foundational steps towards 

using the wearable head impact sensors in FE brain model injury prediction by identifying the 

error sources in the sensor measurements that lead to errors in the brain injury prediction. The 

major finding of this study implies the following significance.  

1. If a wearable does not measure component rotational kinematics accurately, accurate 

brain strain distribution cannot be calculated, and this could have implications for the 

overall utility of a wearable sensor in brain injury research with athletes. 

2. Researchers using wearable head impact sensors should validate component kinematics 

in addition to resultant kinematics if the sensor kinematics are intended to be used in 

FE brain models for brain injury prediction. 
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7. Recommendations 

Based on the observations made from the thesis, the following recommendations are proposed 

for wearable sensor kinematics validation. 

 Calibration of wearable sensors should focus on accurate measurement of component 

kinematics, in particular rotational kinematics, and not resultants.  

 The direction of the component kinematics from wearable sensors should be aligned 

with the axes standard outlined by SAE [75] which is followed by standard ATDs and 

FE brain models. In addition, based on the findings in this study that uses the SIMon 

model, linear of transformation of kinematics may be unnecessary if the goal of the 

researcher applying the wearable sensor is to estimate brain strain from a kinematics-

driven finite element brain model. 
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