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Abstract 

Range restriction has long been a methodological problem in educational 

and psychological research (Hunter & Schmidt, 2004), and this usually leads to a 

downward-biased estimate of a statistic. Even though much research has 

examined the performance of Pearson’s correlation under range restriction in both 

single and meta-analytic studies (e.g., Li, Chan, & Cui, 2011a), the assessment of 

reliability coefficients (e.g., coefficient alpha) under range restriction is relatively 

limited. Regarding a single study, Fife, Mendoza, and Terry’s (2012) have 

recently examined the performance of the uncorrected and bias-corrected 

coefficient alpha; as an extension, the performance of the confidence intervals 

(CIs) and widths also need to be examined. Regarding a meta-analytic study, 

Rodriguez and Maeda (2006) have proposed a framework for conducting a meta-

analysis of coefficient alpha; as an extension, the accuracy of the bias-corrected 

mean alpha as well as the associated CIs also need to be evaluated.  

In light of these unexamined issues, this dissertation sought to evaluate the 

performance of the uncorrected and bias-corrected alphas—as well as their CI—in 

both single and meta-analytic study research situations. This provides a 

comprehensive assessment of reliability under range restriction, thereby providing 

guidelines about the treatment of biases that come from range restriction. The 

Monte Carlo results showed that the uncorrected alpha suffered as a function of 

the selection ratio and the correlation between the test and the selection variable 

in both single and meta-analytic studies. By contrast, the bias-corrected alpha 

could adjust for the bias appropriately. Moreover, the bootstrap CIs constructed 
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for the bias-adjusted alpha in both single and meta-analytic studies were generally 

accurate across different simulation conditions, including sample size, item 

number, etc. Application of the correction procedure and CI construction in a real 

study is demonstrated. Based on these results, conclusions, discussions, and 

recommendations are also presented.  
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Chapter 1 - Introduction 

In educational and psychological research, reliability plays a central role in 

evaluating the consistency of test scores across replications (Brennan, 2006). It is 

defined as the correlation between total scores on two independent 

administrations or two parallel forms of a test (Gulliksen, 1987). In many 

practical situations, however, test scores across replications are often unavailable. 

A reliability coefficient is, therefore, often estimated based on scores from a 

single test administration. Among these single-test reliability coefficients, 

coefficient alpha (Cronbach, 1951; Guttman, 1945) is regarded as one of the most 

frequently used and reported indices in the education and psychology literature 

(Bonett, 2010).  

Coefficient Alpha 

Coefficient alpha characterizes the reliability of measurement based on the 

average correlation of k test parts. According to Bonett (2010), the k test parts can 

represent k raters, k occasions or testing situations, k alternative forms, or k 

questionnaire/test items. When the k test parts refer to the k questionnaire/test 

items, coefficient alpha is a measure of internal consistency reliability of the 

scores in a test. Note that coefficient alpha is regarded as one of the lower bound 

estimates of the reliability; these estimates are often used to evaluate the 

minimum reliability level of a test because neither the true score nor measurement 

error of each person is known, and hence statistical algorithms can only be 

derived to approximate the lowest possible reliability value of a test. Some 

authors (e.g., Sijtsma, 2009) have suggested that researchers should also provide 
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other lower bound estimates [e.g., McDonald’s (1999) omega] in addition to 

coefficient alpha. Details will be discussed in Chapter 2. 

Range Restriction 

Despite its common use in evaluating reliability, coefficient alpha is a 

downward-biased estimate of its true parameter value when a sample is subject to 

range restriction. Selection of participants is a common cause of range restriction 

(Hunter, Schmidt, & Le, 2006). Selection is not problematic itself, but it becomes 

problematic when one estimates the alpha based on a restricted sample, and seeks 

to generalize the result to the unrestricted population. Given that coefficient alpha 

depends on the variance of the restricted scores and selection often causes a 

smaller variance, the observed alpha is often downward-biased. 

In light of the adverse effect of range restriction, many researchers (e.g., 

Chan & Chan, 2004; Hunter & Schmidt, 2004; Li, Chan, & Cui, 2011a) suggested 

that one can adjust for a biased sample estimate of a statistic using the standard 

deviation obtained from an unrestricted sample (e.g., study report, technical 

manual). These studies, however, focused primarily on the correction procedures 

for Pearson’s correlation. To my knowledge, there are two empirical studies—

Sackett, Laczo, and Arvey (2002) and Fife, Mendoza and Terry (2010)—which 

have examined the issue of reliability under range restriction. Both studies 

suggested that one should use correction procedures to adjust for bias whenever 

the correction factors (e.g., the standard deviation of scores in an unrestricted 

sample) are available.  
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Confidence Intervals 

In addition to the point estimate of the alpha, the associated confidence 

interval (CI) has important implications for evaluating the accuracy of the sample 

estimate of coefficient alpha, and for comparing different tests, scoring rubrics, or 

training procedures for raters or observers (Haertel, 2006). Indeed, many 

publication manuals have stated that the CI surrounding a statistical estimate 

should be provided in research studies. For example, Section 2.07 of the manual 

of the American Psychological Association (2010, p. 34) suggested that “because 

confidence intervals combine information on location and precision and can often 

be directly used to infer significance levels, they are, in general, the best reporting 

strategy.” Thus this dissertation also examines the performance of the CIs 

surrounding the uncorrected and corrected alpha. 

Meta-analysis  

As an extension, evaluating reliability based on a single study may not be 

sufficient, as argued by Vacha-Haase (1998) and Rodriguez and Maeda (2006). 

Vacha-Haase suggested that “[b]ecause tests are not reliable, it is important to 

explore score reliability in virtually all studies” (p. 6). Researchers are therefore 

encouraged to evaluate reliability based on multiple studies, and this can be 

achieved through a quantitative technique called meta-analysis. Meta-analysis is a 

statistical procedure that synthesizes the quantitative findings (e.g., correlation, 

coefficient alpha) reported in each single study conducted by independent 

researchers (Hunter & Schmidt, 2004). Meta-analysis produces a mean estimate 

of these measures, thereby providing a summary of these measures in a research 
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domain (also known as the “typical” reliability). In addition, CIs are often 

generated in a meta-analytic study, so that researchers can evaluate the associated 

precision and sampling error of the mean reliability. Rodriguez and Maeda (2006) 

have recently proposed a framework specific to the meta-analysis of coefficient 

alpha. Since then, a large number of studies have examined the mean alpha 

reliability level of educational and psychological scales, including Vassar and 

Bradley (2010), Vassar and Crosby (2008), and Warne (2011). 

As in a single study, however, a meta-analysis of coefficient alpha may be 

biased when the alpha reported in each single study is subject to range restriction. 

It appears to be a common practice, especially in the personnel psychology 

literature, to adjust for the correlations in each single study before they are used to 

compute the mean correlation in meta-analysis (Hunter & Schmidt, 2004). 

However, a consensus about how to conduct a meta-analysis of coefficient alpha 

when it is subject to range restriction has not yet been reached, given different 

concerns and suggestions (e.g., Blixt & Shama, 1986; Bonett, 2010; Feldt & 

Qualls, 1999; Hunter & Schmidt, 2004; Lord, 1984; Rodriguez & Maeda, 2006), 

which will be discussed in Chapter 2.  

Summary 

In sum, the primary purpose of this dissertation is to evaluate the 

performance of the uncorrected and bias-corrected coefficient alpha—as well as 

their CIs—in single and meta-analytic study research scenarios, respectively. This 

purpose can be separated into four goals below. 
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Goal 1 (Monte Carlo Study 1): To evaluate the accuracy of the 

uncorrected and corrected coefficient alphas in a single study. In the literature, 

much attention has been devoted to the correction procedures for Pearson’s 

correlation under range restriction. Given that the effect of range restriction 

should be comparable to other statistics (e.g., reliability), this dissertation seeks to 

extend the framework of range restriction to reliability coefficients. Coefficient 

alpha is selected in this dissertation because it is one of the most frequently 

reported reliability coefficients, and hence its application should be more relevant 

to applied users and researchers, especially for meta-analytic studies. Two 

conventional correction procedures for coefficient alpha can be found in 

Gulliksen (1987) and Schmidt, Hunter, and Urry (1976), but their performances 

may need further examination. Thus, the first goal of this dissertation is to 

conduct a Monte Carlo study—a widely used strategy for evaluating the 

robustness of a data-analytic method across replications—to evaluate the 

performance of the uncorrected and two bias-corrected coefficient alphas in a 

single study.  

Goal 2 (Monte Carlo Study 1): To examine the performance of the non-

parametric bootstrap confidence intervals in a single study. In addition to the 

accuracy of the point estimate of the uncorrected and corrected alphas, the 

construction of the confidence intervals (CIs) has important implications for 

evaluating the sampling error and making statistical inferences. Thus, this 

dissertation evaluates the performance of the non-parametric bootstrap CIs 

surrounding the uncorrected and corrected alphas. The non-parametric bootstrap 
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procedure is selected because it has recently been found to construct an adequate 

CI for the correlation corrected for range restriction (e.g., Chan & Chan, 2004; Li 

et al., 2011a; Mendoza, Hart, & Powell, 1991). By drawing (or bootstrapping) 

successive samples with replacement from an observed dataset, one can 

approximate the sampling behavior of a test statistic, so as to make the statistical 

inferences about the estimate. Hence the second goal of this dissertation is to 

evaluate the performance of the bootstrap CIs. The results of this Monte Carlo 

study provide empirical evidence about the bias of the range-restricted alpha and 

the accuracy of the two bias-corrected alphas across different data conditions, 

which applied researchers and users may encounter in practice.  

Goal 3 (Monte Carlo Study 2): To evaluate the accuracy of the 

uncorrected and corrected coefficient alphas in a meta-analytic study. As 

noted by Bonett (2010), the CI constructed for coefficient alpha in a single study 

may not be sufficient (i.e., it is usually too wide), and this may lead to an 

inaccurate evaluation of the sampling error surrounding the alpha. Rather, 

evaluating the CI based on a meta-analytic study of coefficient alpha is an 

alternative. However, the alphas reported in each single study may also be 

affected by range restriction. Some authors (e.g., Rodriguez & Maeda, 2006; 

Botella, Suero, & Gambara, 2010) argue that researchers cannot evaluate the 

mean alpha and its CI because of the range-restriction bias in each alpha, while 

others (e.g., Hunter & Schmidt, 2004) recommend that researchers should adjust 

for the alpha to an unrestricted SD from a large sample (e.g., technical manual) 

before evaluating the mean alpha and the associated CI.  
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In light of these different views, the third goal of this dissertation is to 

evaluate the performance of the uncorrected and corrected mean alphas through 

the use of a second Monte Carlo study. Results of this study provide empirical 

evidence about the accuracy of the uncorrected and corrected mean alphas in a 

meta-analytic study. This study also provides empirical results so that researchers 

can consider the merits and drawbacks that come from the uncorrected and 

corrected mean alphas, and hence sheds light on the most appropriate practice of 

conducting a meta-analysis of coefficient alpha.  

Goal 4 (Monte Carlo Study 2): To examine the performance of the non-

parametric bootstrap confidence intervals in a meta-analytic study.  As in a 

single study, the performance of the CIs surrounding the mean alphas are also 

important for making statistical inferences about the typical alpha level in a 

research domain. Rodriguez and Maeda (2006) suggested that one can use the 

conventional parametric method to construct the CI for the mean alpha in a meta-

analytic study. Recently, Li, Cui, and Chan (in press) found that the non-

parametric bootstrap CI built for the mean correlation corrected for range 

restriction outperformed the conventional CI. Such an improvement is expected to 

be found for the case of the mean corrected alpha, but no study to date has 

examined this potential improvement. Hence the fourth goal of this dissertation is 

to examine the performances of the non-parametric bootstrap CIs surrounding the 

mean uncorrected and corrected coefficient alphas in the second Monte Carlo 

study. 
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This dissertation is organized into five chapters. Chapter 2 is the literature 

review section, which discusses the background related to reliability, range 

restriction, correction procedures, and meta-analysis. Chapter 3 is the method 

section, which describes the design of the two Monte Carlo studies. Chapter 4 

presents the results of the two studies, in order to provide empirical evidence for 

the corrected and uncorrected alpha in both single and meta-analytic studies. In 

Chapter 5, application of the correction procedures in a single and meta-analytic 

study of coefficient alpha in reference to the Spence’s Children Anxiety Scale 

(SCAS; Spence, 1997) is discussed. Based on these findings, discussion, 

conclusions and recommendations are presented in Chapter 6. 
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Chapter 2 – Literature Review 

The issue of reliability in psychometric testing can be traced back to the 

early 20
th

 century when researchers, including Spearman, Guttman and Cronbach, 

sought to examine the consistency of examinee test scores. Reliability is defined 

as the correlation between total scores on two independent administrations or two 

parallel forms of a test (Gulliksen, 1987). In practice, however, test scores across 

replications are rarely available. A reliability coefficient is, therefore, often 

estimated based on scores from a single test administration. Among different 

single-test reliability coefficients, coefficient alpha (or α; Cronbach, 1951; 

Guttman, 1945) is regarded as one of the most frequently reported and used 

indices in the education and psychology literature. The next section will review 

different reliability coefficients.  

Background of Reliability Coefficients 

Spearman’s test-retest reliability coefficient (  ). Spearman (1904) was 

the first one who sought to evaluate the reliability of total scores on two 

independent administrations or two parallel forms of a test. He suggested that one 

can measure the same persons with two alternative or parallel forms of a test, so 

that the correlation of their total scores between the two forms represents the 

reliability level. The reliability of a test Y, denoted by    , can be measured by  

               ,                                          (2.1) 

where     is the Pearson correlation r between the total scores in the test forms j 

and q. The two forms are comparable in terms of the content domains, variances 

and means, as assumed in classical test theory (CTT). 
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Spearman-Brown split-half reliability coefficient (   ). Although 

Spearman (1904) developed a procedure to measure reliability, it is generally 

impractical for one to construct two strictly parallel or alternative forms of tests. 

Even if one can do so, the true score of person i,    (e.g., learning motivation), is 

expected to vary after the first administration; this affects the consistency of the 

scores across replications. To deal with this problem, Spearman (1910) and 

Brown (1910) proposed to measure reliability based on a single-test 

administration. Specifically, one can split the items in half to mimic a test-retest 

scenario. The correlation between the two halves represents the reliability of the 

scores across two replications. However, given that this correlation is based on 

two-half forms, which consist of only half the items of the original test, it is a 

downward-biased estimate of the true test-retest correlation and needs to be 

adjusted. Spearman and Brown proved that the reliability coefficient can be 

estimated based on the correlation between the total scores of the two halves,     

(o indicates the odd items and e represents the even items), by     

                  ⁄                                      (2.2) 

As in Equation 2.1 the assumption that the two halves are comparable in terms of 

the content domains, variances and means is required for this equation.  

Rulon-Flanagan-Guttman’s split-half reliability coefficient (    ). 

Based on Spearman and Brown’s work, Rulon (1939), Flanagan (1937), and 

Guttman (1945), developed a reliability coefficient for the split-half situation, in 

which the assumption of the equality of the variances for the two halves is relaxed. 

They proposed that a reliability coefficient,    , can be estimated by  
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          [     
    

    
 ⁄ ],                          (2.3) 

 where   
  is the variance of the scores of the odd items,   

  is the variance of the 

scores of the even items, and   
  is the variance of the scores in the full test. 

Coefficient alpha (  ). Although the split-half strategy provides a way of 

evaluating the reliability in a single test administration, there are many ways to 

split a test into two halves. If a test has k items, then we have    [     ⁄ ] ⁄  ways 

of dividing a test into two halves. Cronbach (1951) described that one can split a 

test into k parts, where k is the number of test items. By doing so, there is only 

one way to split a test into k parts, thereby removing the ambiguity of how to split 

a test into two halves. Conceptually, coefficient alpha for k parts represents the 

average correlation of all possible items in the test; this indicates the amount of 

internal consistency reliability of item scores of a test. Coefficient alpha is by far 

the most commonly reported and used reliability coefficient (e.g., Bonett, 2010; 

Rodriguez & Maeda, 2006).  

General framework and assumptions of coefficient alpha. Suppose we 

have k items (i.e.,          ) measuring a psychological construct (e.g., 

learning motivation) for n persons (i.e.,          ). On the basis of the linear 

model, an observed score for person i on item j can be expressed as 

                   (2.4) 

where   is the mean item score across the entire population of persons and items, 

   is the effect of item  ,    is the (true score) effect of person  , and     is the error 

of measurement for person i on item j. According to Cronbach (1972), five 

assumptions are required: (a) the   persons are a random sample from the 
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population of persons; (b) the   items are a random sample from the population of 

items; (c) the true scores,   , are normally distributed over the population of 

persons; (d) the errors of measurement,    , are normally distributed over the 

entire persons-by-items matrix, and independent of each other and of   ; and (e) 

the error variances,     

 , are assumed to be identical for any infinite subpopulation 

of persons and items, i.e.,,     

    
 . Given assumptions (d) and (e), the variance 

of the observed scores on item  ,    

 , consists of two components, 

   

    
    

   (2.5) 

where   
  is the (true score) person effect variance and   

  is the error variance. 

The covariance between observed scores on items j and q can be expressed as 

     
   

   (2.6) 

When   
  and   

  are held constant across items, the observed scores on k items,    

(         ), are assumed to have equal variances and covariances. These items 

are regarded as essentially parallel measurements, in which the covariance matrix 

of the k items is assumed to be compound symmetric (i.e., equal variances and 

covariances). 

Data that meet the essentially parallel condition are important for an 

accurate estimation of the true reliability. However, violating such a condition is 

unavoidable in practice (Barchard & Hakstian, 1997a, 1997b). It is generally 

impractical to construct interchangeable items with equal variances and 

covariances, and these items are measuring the same underlying construct. A 

more relaxed condition, known as the essentially tau-equivalent condition, is 

characterized by unequal variances and equal covariances (Lord & Novick, 1968). 
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For this condition, error variances   
  can vary across items. In addition, the effect 

of person  , namely    in Equation (2.4), is not constant across items. Rather than 

that, for any two items   and  , the person effect for item   is equal to the person 

effect for item   plus a constant     across all persons, i.e.            . Given 

that variances are unaffected by the addition of a constant to a variable, the person 

effect variance is still constant across items. Therefore, items that are essentially 

tau-equivalent take the properties of unequal variances (i.e.,    

    
     

 ) but 

equal covariances (i.e.,      
   

 ). Thus the covariance matrix of the k items 

does not have equal diagonal elements (variances), but the off-diagonal elements 

(covariances) are equal. 

In addition to the essentially tau-equivalent condition, the k items can be 

neither equal variances nor covariances in real situations. Hence a third level of 

measurement data, namely the congeneric condition (Jöreskog, 1971), is 

introduced. This level represents the most relaxed condition because the 

covariance matrix of k items has neither equal diagonal elements (variances) nor 

equal off-diagonal elements (covariances). For any two items   and  , the person 

effect for item   is equal to the person effect for item   multiplied by a positive 

constant     and plus a constant     across all persons, namely               . 

This leads to a covariance matrix with unequal item variances and covariances, 

i.e.,     

     

     

 , and      
       

 .  

Given any one of the three aforementioned data conditions, coefficient 

alpha (  ) estimates the reliability of k items in a test through 
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[
 
  
    ∑    

  
   

 
  
 ], (2.7) 

where k is the number of items,    

  is the variance of observed scores on item j, 

   
  ∑    

 
    is the total item score for person i, and    

  is the variance of the 

total item scores across n persons (Cronbach, 1951; Guttman, 1945). Note that 

coefficient alpha is only one of the lower bound reliability estimates, and it may 

become less accurate, especially when the congeneric condition is violated (Cui & 

Li, 2012). Some studies (e.g., Sijtsma, 2009; Revelle & Zinbarg, 2009) suggested 

that researchers should report other greater lower bound estimates of reliability 

[e.g., McDonald’s (1999) omega] in additional to coefficient alpha. Hence 

researchers are encouraged to check the assumption of observed scores before 

using coefficient alpha. Graham (2006) has discussed the details about how to 

check these assumptions with the aid of a structural equation modeling (SEM) 

package.  

Range Restriction 

Range restriction has long been recognized as a common phenomenon by 

researchers and applied users since Pearson (1903) developed the formula for the 

correlation r. To date, a great number of studies have examined the performance 

of various bias-correction formulae for the range-restricted correlation (e.g., 

Alexander, Hanges, & Alliger, 1985; Andre & Hegland, 1998; Chan & Chan, 

2004; Darlington, 1998; Gulliksen, 1987; Hunter & Schmidt, 2004; Li et al., 

2011a; Sackett & Yang, 2000; Schmidt et al., 1976; Thorndike, 1949). These 

studies generally regarded range restriction as a phenomenon due to participants’ 

selection. On the other hand, Hunter and Schmidt (2004) have conceptualized 
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range restriction as a type of study artifacts when researchers conduct a meta-

analysis. To offer a better understanding of the relationship between range 

restriction and reliability, the next section will first present Hunter and Schmidt’s 

framework of range restriction, and then discuss its relationship with reliability.  

Range restriction as a special type of study artifacts. According to 

Hunter and Schmidt (2004), study artifacts are defined as spurious observations or 

findings that come from investigative procedures made by human beings. They 

identified a list of study artifacts which may change the value of statistical 

outcomes or estimates. These artifacts include range restriction, sampling error, 

reporting or transcriptional error, and attrition artifacts (Hunter & Schmidt, 2004). 

For example, due to range restriction, the reliability of a study is expected to be 

systematically lower than the true reliability in the unrestricted population. 

Regarding sampling error, the observed reliability tends to vary randomly from 

the true population value because of the sampling error, which in part depends on 

the number of participants in the study. For reporting or transcriptional error, it is 

expected that the observed reliability differs from the true population value due to 

a variety of reporting problems, such as “inaccuracy in coding data, 

computational errors, errors in reading computer output, typographical errors by 

secretaries or by printers” (Hunter & Schmidt, 2004, p. 35). Thus, the observed 

reliability is systematically lower than its true value to the extent that there is a 

systematic attrition in the number of participants on the study. As noted by Hunter 

and Schmidt, these artifacts may work in conjunction to induce “quantitative 

errors so large as to create qualitatively false conclusions” (Hunter and Schmidt, 
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2004, p. 34), and hence researchers are encouraged to adjust for these artifacts 

whenever correction factors are available. 

According to Hunter et al. (2006), the artifacts described above are expected 

to affect the observed reliability of a test in a sample. That is, a general 

attenuation formula for the observed reliability can be expressed as 

                                         (2.8) 

where     is the observed reliability of test Y,     is the true reliability of test Y, 

and A is the artifact multiplier. For example, suppose we know that the reporting 

or transcriptional error leads to 10% reduction in reliability. We can adjust the 

observed reliability for this error by 

         ⁄                               (2.9) 

where       in this example. However, for artifacts due to sampling error or 

reporting or transcriptional error, it is generally impossible for one to know the 

exact value of the artifact multiplier A in practice because these artifacts tend to 

affects the observed reliability     nonsystematically, meaning that we do not 

know the degree to which or even the direction in which they affects the 

reliability.  

By contrast, the artifact due to range restriction is relatively more 

manageable, given that the extent of this artifact can be estimated whenever the 

correction parameters are available and the type of selection process can be 

inferred (Hunter & Schmidt, 2004). In fact, the importance of reporting and 

evaluating the reliability adjusted for range restriction has received increasing 

attention in the literature in education, psychology, and business (e.g., Bonett, 
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2010; Botella, Suero, & Gambara, 2010; Brennan, 2006; Rodriguez & Maeda, 

2006; Sackett et al., 2002). Despite their recent use, the correction procedures for 

range restriction were mainly developed for Pearson’s correlation. Hence the next 

section will first present four different cases of range restriction for Pearson’s 

correlation, and then discuss the comparable cases of range restriction for 

coefficient alpha.  

Thorndike’s Three Conventional Cases of Range Restriction for Pearson’s 

Correlation  

Case I correction procedure for correlation. Thorndike (1949) proposed 

three well-known procedures adjusting for a biased correlation for range 

restriction. Among them, Thorndike’s Case I and II (direct) range restrictions 

present a fundamental selection process, in which selection occurs based on the 

rank-ordered X scores. For example, a researcher may examine the correlation 

between variable X (e.g., SAT) used in selection of college applicants and 

variable Y (e.g., learning motivation) measured in a group of restricted students. 

Given that selection occurs based on the rank-ordered X scores, and this causes 

range restriction on Y, the measured correlation between X and Y is often 

downward-biased. Note that the difference between the two cases lies in the 

availability of the unrestricted standard deviation (SD). That is, Case I assumes 

that the unrestricted SD of the criterion Y is known whereas Case II assumes that 

the unrestricted SD of the predictor X is known. 

Figure 1 shows a conceptual model for the Case I restriction for Pearson’s 

correlation, in which selection occurs based on the rank-ordered X, and the 
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unrestricted SD of Y (i.e.,   ; usually through a large sample estimate from a 

technical manual) is available for making a correction. In equation form, the data 

can be expressed as  

                                                           [
    

       

]                                                    (2.10) 

where    and     are the vectors that contain the observed X and Y scores, 

respectively, for a restricted sample, and    and     are the vectors that contain 

the observed X and Y scores, respectively, for an unselected (or missing) sample. 

Case I assumes that the unselected sample of Y (i.e.,   ) is available but the 

unselected sample of X (i.e.,   ) is unobservable. Hence the data become 

                                                            [
    

          

]                                              (2.11) 

According to Chan and Chan (2004), when the regression of Y on X is both linear 

and homoscedastic (which will be explained in the following section), the Case I 

correction equation for Pearson’s correlation can be written as 

         √    
 (      

 ),                        (2.12) 

where      is the unrestricted correlation between X and Y,      is the restricted 

correlation between X and Y, and          is the ratio of the restricted to the 

unrestricted SD of Y (Thorndike, 1949). Note that in practice the unselected Y 

scores (i.e.,   ) are not necessarily available but the unrestricted SD of Y (i.e.,   ) 

is required, as implied in Equation 2.12.    
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Figure 1. A conceptual model for the Case I and II range-restricted correlation. 

 

 

 

 

Note:             indicates the direction of range restriction 

             denotes the relationship between two variables (no 

causal relationship is assumed).  

X is the observed score of variable X. Y is the observed score of variable Y.     is 

the population correlation between    and Y. 

Although it is statistically sound, the Case I correction procedure is usually 

not practical in educational and psychological studies because it is difficult for 

researchers to gather information on the unrestricted SD of Y. For example, 

assume the college students in a study have been selected according to their SAT 

(X) scores. The unselected students may not have a chance to participate in the 

study and provide their learning motivation (Y) scores. Hence an estimate of the 

unrestricted SD of Y is generally not available (Stauffer & Mendoza, 2001). 

Case II correction procedure for correlation. The correction procedure 

for the Case II restriction is generally more practical. In fact, it had been 

commonly used in meta-analytic studies that involved restricted job incumbents 

before the development of Hunter et al.’s (2006) Case IV correction procedure. 

Although Case II shares the same conceptual model as in Case I (i.e., selection 

occurs based on X; see Figure 1), Case II assumes that the unrestricted SD of X 

(  ) is known. Thus, the observed data matrix is different from that in Case I, i.e.,  

𝜌𝑋𝑌 
Y X 



20 

 

                                                      [
    

            
]                                          (2.13) 

When the regression of Y on X is both linear and homoscedastic, the Case II 

correction equation for correlation can be expressed as 

                                      (
 

  
)     √(

 

  
   )     

   ⁄                  (2.14) 

where      and      are defined above, and          is the ratio of the 

restricted to the unrestricted SD of X (Thorndike, 1949). 

In many research situations,    (i.e., the unrestricted SD of X) is easier to be 

obtained than   . For example, a researcher can get access to a university 

database, which may contain the SAT (X) scores of both the selected and 

unselected students. In another example, a human resources manager in a 

company may be interested in the relationship between a cognitive-skill test (X) 

and job performance (Y). The manager may get access to a database, which 

contains the X scores of both the selected and unsuccessful job applicants.    

Case III correction procedure for correlation. In addition to Case I and 

Case II, Thorndike (1949) proposed a third type of range restriction, namely Case 

III (indirect) range restriction which occurs when the correlation between X and Y 

is range-restricted by a third variable Z, as shown in Figure 2. A university, for 

example, may use a variable Z (e.g., SAT) to select students for admission. Later, 

if a researcher is interested in the predictive validity of a cognitive skill test (i.e., 

X) to a learning motivation test (i.e., Y), the measured correlation between X and Y 

using a restricted sample is often downward-biased. In this case, participants are 

selected based on the rank-ordered Z scores, and this causes range restriction on 
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both X and Y, thereby reducing the variances of observations in X and Y. In 

equation, the data can be expressed as 

[
      

             
]  (2.15) 

where    and    are defined as above,    is the restricted sample that contains 

the restricted Z  scores, and    is the unselected or missing sample that contains 

the unselected Z scores. When the regression of Y on X is both linear and 

homoscedastic, the correlation corrected for the Case III restriction can be 

expressed as  
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,      (2.16)

    

 

where     ,     
, and     

 are the restricted correlations between X-Y, X-Z, and Y-

Z, respectively, and          is the ratio of the restricted to the unrestricted SD 

of Z (Thorndike, 1949).  
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Figure 2. A conceptual model for the Case III range-restricted correlation. 

 

 

 

 

 

 

Note:             indicates the direction of range restriction 

            denotes the relationship between two variables (no 

causal relationship is assumed).  

X is the observed score of variable X. Y is the observed score of variable Y. Z is 

the observed score of variable Z.      is the population correlation between    and 

Y.     is the population correlation between    and X.     is the population 

correlation between    and Y. 

 

Hunter et al.’s (2006) Case IV correction procedure for correlation   

Since Thorndike’s (1949) work, a large number of studies have examined 

the biasing effects of range restriction on correlation in various disciplines, 

including education (e.g., Andre & Hegland, 1998; Brennan, 2006; Darlington, 

1998; Gulliksen, 1950), psychology (e.g., Alexander, Hanges, & Alliger, 1985; 

Chan & Chan, 2004; Li et al., 2011a; Li, et al., in press; Mendoza & Mumford, 

1987), and business (e.g., Burke, Normand, & Doran, 1989; Hunter & Schmidt, 

2004; Hunter, Schmidt, & Le., 2006; Olson & Becker, 1983; Schmidt et al., 1976; 

Z 

Y X 
𝜌𝑋𝑌 

𝜌𝑍𝑋 

𝜌𝑍𝑌 
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Yang, Sackett, & Nho, 2004). Among them, the recent papers discussed by 

Hunter, Schmidt, Le, and Oh (e.g., Hunter et al., 2006; Le & Schmidt, 2006; 

Schmidt, Le, & Oh, 2006) are regarded as the most influential, given that they 

provide a more general and practical range restriction model for correlation. They 

called this correction procedure the Case IV formula.  

According to Schmidt et al. (2006), although the Case III correction 

equation (Equation 2.16) seems computationally manageable, it has not been 

commonly used in the education and psychology literature (Li, et al., 2011a). 

Schmidt et al. stated that “[i]n practice, this equation can rarely be used” (p. 284) 

because, first, it is unlikely to be true that participants have been restricted based 

on a single variable Z, as other variables including reference letters, experience, 

interview performance, etc. are not taken into consideration. Second, the five 

parameters—    ,     
,     

,   , and    —are seldom available.  

To deal with these limitations, Schmidt et al. (2006) proposed a new range-

restriction model, which is known as the Case IV correction procedure. Unlike 

Case III, Case IV assumes that the third variable is a composite of several 

unobservable or unquantifiable variables used in selection (named suitability S; 

see Le & Schmidt, 2006). In this framework, a university may use a composite of 

several unquantifiable variables (e.g., achievement test scores, reference letters 

and interview performances, denoted as the suitability construct S) to recruit 

applicants, and those with an S score below a cutoff are not selected. Later, if a 

researcher examines the correlation between a cognitive skill test (i.e., X) and a 



24 

 

learning motivation test (i.e., Y), the measured correlation between X and Y is 

downward-biased. 

Figure 3 shows a conceptual model for the Case IV restriction. There are 

three characteristics. First, it assumes that the selection composite S causes range 

restriction on the true score of X (i.e.,   ), and this causes range restriction on the 

true score of Y (  ). If the effect of range restriction from S to    is fully mediated 

by   , then the ratio of the restricted to the unrestricted SD of S (i.e.,         ) 

can be fully reflected by the ratio of the restricted to the unrestricted SD of    

(i.e.,    
    

    
). Hence one only needs to know    

 in order to make a 

correction, and this can be estimated through Equation 2.19 below. Second, the 

effect of range restriction from S should go to    rather than X as assumed in the 

Case III model (Hunter et al., 2006). Third, given the complex structure of the 

five variables or constructs (i.e., S,   , X,   , and Y), the effects of range 

restriction from S to others should differ substantially. This means that the 

conventional Case I to III models ignore the complexity of the range-restriction 

effects implicit in these variables or constructs, thereby leading to a potentially 

over-simplified correction procedure.   
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Figure 3. A conceptual model for the Case IV range-restricted correlation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:             indicates the direction of range restriction 

            denotes the relationship between two variables (no 

causal relationship is assumed).  

S is the selection construct. X is the observed score of variable X. Y is the observed score of 

variable Y.    is the true score of X.    is the true score of Y.    is the measurement error of X.    

is the measurement error of Y.     
 is the population correlation between S and   .      

 is the 

population correlation between    and   .      is the population correlation between     and X, 

and its square indicates the population reliability of X, i.e.,    , as shown in Equation 2.22 below. 

Likewise,     
 is the population correlation between     and Y, and its square indicates the 

population reliability of Y, i.e.,    .  

Y X 
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In equation form, the data matrix under the Case IV restriction can be 

shown as  

[
      

               
]. (2.17) 

where    and    are defined as above,    is the restricted sample that contains the 

restricted S  scores, and    is the unselected (or missing) sample that contains the 

unselected S scores. In practice, the S scores are unobservable, and hence the data 

become 

[
    

              
]. (2.18) 

According to Schmidt et al. (2006), the quantity    
    

    
 is defined as the 

ratio of the restricted to the unrestricted SD of the true score of X, which can be 

estimated through 

2 (1 )u

T

u

XXX
X
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u r
u

r

 
 , (2.19) 

where     
 is the reliability coefficient of X in a group of unrestricted applicants, 

and          is defined as the ratio of the restricted to the unrestricted SD of X.  

Given Equation 2.19, the parameter    
 can be substituted into    in the Case II 

correction Equation 2.14, producing the Case IV correction procedure,  

2
4

2

1 1
1 1c c

c XY XY
t t

r r r
u u

   
      
    

, (2.20) 

where      is the restricted correlation between X and Y corrected for unreliability, 

and this is computed by 
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 c r r rXY XY XX YYr r r r  , (2.21) 

where      is the restricted correlation between X and Y,     
 is the restricted 

reliability of X, and      is the restricted reliability of Y. 

Since Hunter, Schmidt, Le, and colleagues’ work, the procedure of 

adjusting the correlation for the Case IV restriction in both single and meta-

analytic studies has received increasing attention in the literature. For example, Li 

et al. (2011a) conducted a Monte Carlo study, and found that the Case IV 

corrected correlation in a single study was accurate across different data 

conditions, thereby providing empirical evidence for the adequacy of the Case IV 

corrected correlation.  

The Case IV corrected correlation has not only received more attention in a 

single study, but it is also becoming more popular in a meta-analytic study, 

especially in the area of personnel psychology. Generally, meta-analysis is a 

statistical procedure that synthesizes the correlations reported in each single study, 

thereby producing a mean correlation and summarizing a general pattern of the 

correlational effect in a research domain. For example, Le and Schmidt (2006) re-

analyzed a previously published meta-analysis, which examined the validity of 

employment interviews. They corrected all of the range-restricted correlations for 

the Case IV restriction before these correlations were used for estimating the 

mean correlation for meta-analysis. Such a correction can also be found in recent 

meta-analyses such as Christian, Bradley, Wallace, and Burke (2009) and Banks, 

Batchelor, and McDaniel (2010).  
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Two Conventional Correction Procedures for Reliability  

The effect of range restriction on reliability is expected to be comparable 

with that on Pearson’s correlation, given that both statistics depend on the 

variance of the sample. In fact, some researchers have regarded reliability as a 

type of correlation because reliability is conceptually considered as the squared 

correlation between true and observed scores, i.e.,  

        
       

            
 

      

     
 √    √           (2.22) 

The next section will present two conventional (labeled Case I and III in this 

dissertation) correction procedures for reliability.  

Case I correction procedure for reliability. Early discussion of the effect 

of range restriction on reliability can be found in Gulliksen’s (1950, 1987) 

handbook, which proposed a correction equation for the first type of selection 

process. Figure 4 shows a Case I conceptual model. When selection or range 

restriction occurs on total true scores of Y, the variance of these scores is usually 

reduced. Hence the measured reliability based on this sample is typically 

downward-biased. This type of restriction is in fact similar to the Case I 

correlation as displayed in Figure 1.  
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Figure 4. A conceptual model for the Case I restricted reliability coefficient. 

 

 

 

 

Note:             indicates the direction of range restriction 

             denotes the relationship between two variables (no 

causal relationship is assumed).  

   is the true score of variable Y. Y is the observed score of variable Y.    is the 

error of measurement of variable Y.      is the correlation between     and Y, and 

its square indicates the reliability of Y, i.e.,    , as shown in Equation 2.22. Note 

that the ratio of the restricted to unrestricted SD of Y is known in Case I. 

 

Conceptually, although the Case I correction procedure assumes that 

selection occurs based on the true score of Y, empirical studies showed that it 

appears to be robust to a situation in which selection is based on the observed 

score of Y. For example, Li, Cui, Gierl, and Chan (2012) simulated a situation, in 

which selection occurred based on the observed score of Y, and the Case I 

correction procedure was applied to adjust for the bias for reliability. Results 

showed that the Case I corrected alphas were consistently more accurate than the 

uncorrected alphas across different simulation conditions, including a highly 

stringent selection ratio (i.e., 10%) and a moderate sample size (i.e., 50). 

Y 
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In equation form, the data observed under the Case I restricted reliability 

can be expressed as 

     [
  

  
], (2.23) 

where    is the    (restricted sample size) by k matrix containing the item scores 

of the restricted persons due to the rank-ordered total scores of   , and    is the 

       by k matrix containing the item scores of Y of the unselected persons. 

When the data matrix     is unavailable, Equation (2.23) becomes  

[
  

 
]. (2.24) 

For example, supposing that a researcher collects a sample of college students and 

estimates the reliability of an academic achievement test Y (e.g., SAT), but 

attempts to generalize this result to the general population of students. The 

estimated reliability of SAT is often downward-biased because the variance is 

much reduced with this restricted sample. 

According to Gulliksen (1987), when the regression of Y on    is both linear 

and homoscedastic (which will be discussed in the following section), a reliability 

coefficient (e.g., coefficient alpha) corrected for the Case I range restriction (   ) 

can be expressed as  

                                      
 (      ),                              (2.25) 

where     is a sample estimate of the coefficient alpha corrected for the Case I 

range restriction,      is the sample unrestricted reliability of Y,      is the sample 

restricted reliability of Y, and          is the ratio of the restricted to the 

unrestricted standard deviation (SD) of the total scores of Y. Gulliksen called this 
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the homogeneity formula (i.e., Equation 20, p. 151), which lays a foundation 

correcting for the range-restricted reliability. 

Note that Equation 2.25 is technically the same as Equation 2.12. 

Substituting    into X in Equation 2.12, we get  

      √    
 (       

 ).  (2.26) 

According to Equation (2.22), the population correlation between    and Y (i.e.,  

    ) is equal to the square root of the population reliability (i.e., √   ), and thus 

Equation 2.26 can be expressed as  

√     √    
 (      ).  (2.27) 

Taking the square root on both sides, Equation 2.27 becomes the correction 

equation for the Case I restricted reliability (i.e., Equation 2.25). 

Case III correction procedure for reliability. As in the Case III correction 

procedure for correlation, selection can occur based on another variable Z. 

Regarding reliability, suppose Y is a cognitive ability test that is evaluated by a 

researcher. When the researcher collects a sample of college students and 

estimates the reliability of Y but attempts to generalize the result to the entire 

population of students, the observed reliability is usually downward-biased, given 

that these students are selected based on another variable Z (e.g., SAT). In this 

case, the variance of Y is reduced by the selection process that occurs in Z. The 

correction procedure for this case of range restriction is called the Case III 

correction procedure for reliability in this dissertation. 
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Figure 5 shows a conceptual model for the range restriction that occurs in 

reliability, in which the SD ratio of the restricted to the unrestricted scores of Z 

(i.e.,        ⁄ ) is used to adjust for the bias. 

 

Figure 5. A conceptual model of the Case III range-restricted reliability. 

 

 

 

 

 

 

Note:             indicates the direction of range restriction 

            denotes the structural relationship between two 

variables (no causal relationship is assumed).  

   is the true score of variable Y. Y is the observed score of variable Y. Z is the 

observed score of variable Z.      is the population correlation between    and Y. 

    
 is the population correlation between    and   .      is the population 

correlation between     and Y, and its square indicates the reliability of Y, i.e.,    , 

as in Equation 2.22. 

 

In equation form, the data matrix for the Case III restriction can be 

expressed as  

                                   [
     

  

              
]                                             (2.28) 
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Y 
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where    is the restricted sample containing the restricted Z scores,    is the 

unselected (or missing) sample containing the unselected Z scores, and    
 and 

   are the     by k matrices containing the restricted true and observed Y scores as 

a result of the rank-ordered Z scores. In practice, the true scores are never 

available, and hence Equation 2.30 becomes 

                                            [
    

              
]                                          (2.29) 

According to Schmidt et al. (1976), when the regression of Y on Z is both 

linear and homoscedastic, the correction procedure for the Case III restricted 

reliability can be expressed as 

                  
      

      
 [  (   

 ⁄ )]
               (2.30) 

where     is the sample coefficient alpha corrected for the Case III restriction, 

     and      are the unrestricted and restricted sample reliability,      is the 

sample restricted correlation between Z and Y, and          is the ratio of the 

restricted to the unrestricted SD of Z.  

A note on the assumption of the correction procedure for reliability. 

Although the correction procedures for correlation and reliability have been 

discussed extensively in the literature and can be found frequently in 

measurement textbooks, it is important to note that these procedures are based on 

a key assumption; using the Case I corrected reliability as an illustration, this 

assumption requires that the regression of Y on    is both linear and 

homoscedastic. Some studies regarded this assumption as the homogeneity of the 
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standard errors of measurement for the restricted and unrestricted groups of 

participants (e.g., Rodriguez & Maeda, 2006). 

In statistics, the assumption of homoscedasticity means that the variance 

around the regression line is the same for all values of the predictor variable. 

Regarding the case of a reliability coefficient in the classical test theory, the 

horizontal axis indicates the true scores of Y (i.e.,   ), and the vertical axis refers 

to the observed scores of Y, as shown in Figure 6. According to classical test 

theory,       , where Y is the total observed item scores,    is the total true 

item scores, and e is the standard error of measurement associated with Y. As 

indicated in Figure 6, the observed scores Y are not the same as the true scores   , 

and they should contain standard errors of measurement e. When e is normally 

distributed and is independent of the true score of Y, the assumption of 

homoscedasticity is met. The opposite refers to heteroscedasticity, meaning that 

the standard error of measurement e (and hence the observed score Y) depends on 

the true score of Y. For example, as shown in Figure 6, when one has a low score 

on   , her or his observed score Y should contain a larger standard error of 

measurement. 
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Figure 6. Diagrams showing the conditions of homoscedasticity and 

heteroscedasticity for a reliability coefficient in the classical test theory. 

 

 

 

The reliability coefficients (e.g., the internal consistency reliability 

coefficients) developed from classical test theory are based on the assumption of 

homoscedasticity. Coefficient alpha is not an exception. This assumption implies 

the homogeneity of the standard errors of measurement for the restricted and 

unrestricted groups of participants. For example, supposing that a group of top    

achievers is selected in Figure 7, the standard error of measurement of this 

restricted group is assumed to be the same as the unrestricted group. 
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Figure 7. A situation in which participants with the true scores of Y above the 

cutoff are selected. 

 

 

In light of the equivalency between the two assumptions (i.e., 

homoscedasticity and homogeneity of standard errors for the restricted and 

unrestricted groups), one may adjust a reliability coefficient for the artifact of 

range restriction, when the data meet the homoscedastic assumption presumed in 

the classical test theory. For the case of coefficient alpha, the data are assumed to 

meet at least the congeneric condition. That is, when the congeneric condition is 

met, the homoscedastic assumption is expected to be tenable.  

Regarding the potential violation of the homoscedastic assumption, different 

studies found different results. For example, Blixt and Shama (1986) analyzed 

responses of 1,824 college freshmen on the Descriptive Tests of Mathematics 

Skills (DTMS) Elementary Algebra Skills Test (College Entrance Examination 

Board/Educational Testing Service, 1978), and found that the assumption of 

homoscedasticity was generally tenable. They concluded that “because of the 

simplicity of the classical approach in both calculation and practical use, it is 

recommended that the classical form of calculating standard error be retained” (p. 

𝑌  𝑌𝑇  𝑒 

 

𝑌𝑇 
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550). By contrast, Feldt and Qualls (1999) evaluated the data of the Iowa Tests of 

Educational Development (ITED; Feldt, Forsyth, Ansley, & Alnot, 1993) from 

170 districts, and found that this assumption was generally not tenable. 

Fortunately, Fife et al. (2012) found that the corrected reliability still 

outperformed the uncorrected reliability substantially, even when this assumption 

is severely violated. In applied settings, researchers can check the standard error 

of measurement in their sample with the unrestricted sample (e.g., study report, 

technical report) before they use the correction procedure. For details, readers can 

refer to the aforementioned studies or Chapter 5 (i.e., a real study demonstration) 

in this dissertation. 

Previous studies evaluating the performance of the corrected reliability 

estimates  

Although the majority of the studies have focused on the accuracy of the 

corrected correlation, some recent empirical studies have started to examine the 

performance of the uncorrected and corrected reliability coefficients.  

Sackett, Laczo, and Arvey (2002). In light of the fact that “range 

restriction affects estimates of reliability in the same manner as it affects estimates 

of criterion-related validity” (Sackett, Laczo, & Arvey, 2002, p. 56), Sackett et al. 

sought to examine the impact of the degree of range restriction on the (inter-rater) 

reliability coefficient by the use of a simulation study. In particular, they 

manipulated four levels of reliability (.60, .70, .80, and .90) and nine levels of 

selection ratio (.10 to .90 with an interval of .10), and evaluated the impact of 

range restriction on the reliability coefficient. They found that the downward 
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biases ranged from 0.54% to 50.9% for the three scenarios, in which direct range 

restriction resulted in the largest biases when other factors were held constant. In 

addition, a smaller selection ratio led to a larger downward bias when other 

factors were held constant, because the variance of the variable is much more 

reduced given a smaller selection ratio. Generally speaking, these results 

suggested that the restricted reliability estimates are noticeably downward-biased, 

and they should be corrected for range restriction whenever the correction factors 

are available. 

Fife, Mendoza, and Terry (2012).  In a recent study, Fife et al. (2012) 

examined the performance of different reliability coefficients (i.e., coefficient 

alpha, McDonald’s omega, test-retest) under range restriction based on a Monte 

Carlo study. They generated dichotomized responses (i.e., 1 or 0) according to the 

item response theory (IRT) model, and evaluated the performance of these 

uncorrected and corrected reliability coefficients. Their results showed that all of 

the uncorrected reliability estimates were substantially downward-biased (with 

percentage biases ranging from -365.5% to -0.18%, i.e., Table 2) for the (more 

stringent) direct range restriction, while the corrected reliability coefficients were 

accurate (with percentage biases ranging from -0.18% to 13.76%, i.e., Table 4). 

Moreover, they provided a set of recommendations for dealing with the correction 

procedures for reliability. In particular, they suggested that when the sample is 

indirectly range-restricted by another variable, which is a usual case in practice, 

all of the three reliability coefficients (i.e., coefficient alpha, McDonald’s  , test-

retest) should be adjusted for range restriction. Fife et al. concluded that this can 



39 

 

give more accurate estimates of the true reliability with reasonably small standard 

errors. 

Further issues. This dissertation adds to the aforementioned studies by 

assessing the accuracy of the CIs surrounding the corrected reliability, and 

evaluating the issue of range restriction and reliability in the framework of meta-

analysis. Both Sackett et al. (2002) and Fife et al. (2012) have examined the 

biases that come from the uncorrected reliability, and evaluated the performances 

of the correction procedures adjusting for the bias (i.e., Case I in Sackett et al., 

2002, and Cases I and III in Fife et al., 2012). As an extension, this dissertation 

evaluates the performance of the CIs surrounding the uncorrected and corrected 

reliability. Fife et al. have assessed the standard error of the corrected reliability, 

and concluded that it is adequate because it produced a precise (or narrow) 

estimate. However, a narrow standard error does not necessarily mean a good 

estimate, given that it can produce too narrow CIs which adversely affects the 

coverage of the true reliability. Hence this dissertation also evaluates the coverage 

probability yielded by the CIs as well as their widths, in order to provide a more 

comprehensive assessment of the sampling error surrounding the uncorrected and 

corrected reliability. Furthermore, these studies did not examine the biases yielded 

by the uncorrected mean reliability and the benefits of reporting the corrected 

mean alpha in a meta-analytic study.  

The following sections will first describe the CIs that can be built for the 

alpha in a single study, and then discuss the mean alpha and the associated CIs in 

a meta-analytic study. 
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Confidence Intervals  

In addition to the corrected coefficient alpha, one may also be interested in 

the associated sampling error and precision. The sampling error can be used to 

construct the confidence interval (CI) of the corrected alpha, which provides a 

way for statistical inferences about the estimate. For example, if one seeks to test 

whether a statistic (e.g., Pearson’s correlation) is significant from zero at the .05 

level, she or he can report the 95% confidence interval of the correlation estimate. 

If the interval does not contain the value of zero, this correlation estimate is 

significant at the .05 level. In the case of coefficient alpha, given that the value of 

zero means that there is no consistency of the test scores, one often seeks to 

evaluate coefficient alpha relative to a cutoff higher than zero. Often, in 

educational and psychological testing, a reliability of .70 is considered reasonable, 

and a reliability of .80 is considered good (Henson, 2001). Given these values, 

one can make statistical inferences about the reliability of a test relative to the pre-

assigned value. Moreover, reporting the confidence intervals of different tests 

allows one to evaluate the accuracy of the sample estimate of alpha and different 

tests, scoring rubrics, or training procedures for raters or observers (Haertel, 2006). 

In addition, Section 2.07 of the manual of the American Psychological 

Association (2010) states that “because confidence intervals combine information 

on location and precision and can often be directly used to infer significance 

levels, they are, in general, the best reporting strategy” (p. 34). 

Considerable progress has been made on the parametric confidence interval 

(CI) estimation of coefficient alpha, thereby providing methods for making 
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statistical inferences. For example, Feldt (1965) demonstrated that the       

     confidence interval for coefficient alpha, which is not subject to range 

restriction, can be estimated based on the central  -distribution, which is given by 

                      [                     ],           (2.31) 

where    is the sample estimate of coefficient alpha, and    and    are the 

       ⁄   and          ⁄   percentile points of the central  -distribution 

with       and            degrees of freedom.  

Hakstian and Whalen (1976) used a normalizing transformation to 

approximate the confidence interval for coefficient alpha with standard normal 

distribution: 
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and         ⁄   is the          ⁄   percentile point of the standard normal 

distribution.  

van Zyl, Neudecker, and Nel (2000) derived the asymptotic normal 

distribution of sample coefficient alpha based on the assumption of the 

multivariate normal distribution of item responses.  That is, as    , √     

    is normally distributed with a mean of zero and a variance of  

  [
   

             
] [                               ]   (2.35) 
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where   is a     vector of  s, and   is the variance-covariance matrix of item 

responses. Given that the population coefficient alpha    is a constant, then the 

sample coefficient alpha is normally distributed with mean of    and variance of 

  ⁄ . Therefore, the            confidence interval for coefficient alpha can 

be formed by 

[          ⁄  √
 

 
]   (2.36) 

In a recent study, Cui and Li (2012) conducted a Monte Carlo study, which 

comprehensively evaluated the performance of these parametric CIs and three 

types of non-parametric bootstrap CIs [i.e., bootstrap standard interval (BSI), 

bootstrap percentile interval (BPI), and bootstrap bias-corrected and accelerated 

interval (BCaI). They found that the non-parametric bootstrap CIs, especially BSI, 

consistently outperformed the parametric CIs across data situations, including 

number of items, sample size, and item response distribution.  

The aforementioned parametric methods, however, assume that the sample 

estimate of coefficient alpha is not subject to range restriction. Given that the 

sampling behaviors of the unrestricted and bias-corrected alphas should differ, 

these parametric procedures may not be applicable. For this reason, this 

dissertation evaluates the non-parametric bootstrap procedure in order to 

approximate empirically the sampling distribution of the corrected alpha so as to 

construct their bootstrap CIs. Generally, the bootstrap procedure is a non-

parametric method for making statistical inferences. By drawing successive 

samples with replacement from an observed dataset, one can approximate the 

sampling behavior of a test statistic. According to Beasley and Rodgers (2009), 
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the non-parametric bootstrap method has two unique advantages over the 

traditional parametric (distributional) method. The first advantage is that one can 

create an entirely new statistic without deriving the mathematical formula for 

estimating the standard error and confidence interval of the statistic. In this case, 

the sampling distribution of the corrected alpha is generally unknown; hence the 

non-parametric bootstrap procedure can be used to estimate the associated 

sampling error and confidence interval. A second advantage is that statistical 

inferences about nonnormal statistics are typically more accurate with the non-

parametric bootstrap procedure. Because the maximum value of the corrected 

alpha is bounded by +1, its distribution is naturally nonnormal, especially when 

the true alpha of the test is high. Given these advantages, the non-parametric 

bootstrap procedure is used to derive the sampling error and estimate the 

confidence intervals of the alpha corrected for the two cases, thereby making 

statistical inferences about these statistics. 

Indeed, using the bootstrap procedure to build the confidence interval for 

the bias-corrected correlation can be found in recent studies. For instance, to 

construct the confidence interval for the correlation corrected for the Case II 

restriction, Chan and Chan (2004) evaluated the performance of three types of 

bootstrap confidence intervals across different data situations, including the size 

of the correlation, selection ratio, and restricted sample size. They found that the 

bootstrap bias-corrected and accelerated interval (BCaI) produced good results 

systematically across the manipulated conditions. As an extension, Li et al. 

(2011a) conducted a simulation study in order to examine the accuracy of the 
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same bootstrap confidence intervals for the correlations corrected for the Case III 

and Case IV restrictions. Their results showed that the BPI yielded accurate 

results across different data conditions. Given the reasonable results from these 

studies, this dissertation applies the bootstrap procedure to the alpha corrected for 

range restriction. Details will be discussed in Chapter 3. 

Meta-Analysis  

As noted by Bonett (2010), the confidence width for coefficient alpha may 

be too wide for an accurate sampling error evaluation, especially when the sample 

size is small (e.g., less than 30) in a single study. An alternative is to evaluate the 

alpha of a test from multiple studies, and this technique is known as meta-analysis. 

Meta-analysis is a statistical procedure that synthesizes the quantitative findings 

provided in multiple studies conducted by independent researchers. In the 

literature, there are many approaches to meta-analysis, but most of them were 

based on a pioneer paper written by Glass (1976). Specifically, Glass was 

interested in the effect sizes (i.e., correlation) of four types of psychotherapy in 

relation to untreated control groups. The empirical findings reported in multiple 

studies were combined to a common effect size metric. Moreover, the distribution 

of these effect sizes was reported, and study level characteristics that could 

explain the distributions or variations of these effect sizes were discussed. Glass 

addressed the importance of meta-analysis in educational research—“[t]he need 

for the meta-analysis of research is clear. The literature on dozens of topics in 

education is growing at an astounding rate” (p. 3). Hence synthesizing empirical 

outcomes reported in each single study can provide a general pattern of these 
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findings in a research domain, and evaluate the study characteristics (e.g., culture, 

gender) that cause the variability of these outcomes. 

Vacha-Haase (1998) suggested that reliability evaluation of a test may be 

less accurate if it is based on a single study only. The meta-analysis of reliability 

coefficients appears to be a more trustworthy method, given that the empirical 

findings are based on multiple studies, which are expected to reflect the true 

reliability of a test more adequately. In particular, Vacha-Haase mentioned that 

“reliability generalization characterizes (a) the typical reliability of scores for a 

given test across studies, (b) the amount of variability in reliability coefficient for 

given measures, and (c) the sources of variability in reliability coefficients across 

studies” (p. 6). 

Meta-analysis of coefficient alpha. Vacha-Hasse’s (1998) framework has 

included different types of reliability coefficients such as test-retest, internal 

consistency, and inter-rater reliability. Rodriguez and Maeda’s (2006) proposed 

and developed a framework specific to the meta-analysis of coefficient alpha. The 

framework is important and particularly relevant to the education and psychology 

literature, given that most authors have reported their coefficient alpha for the 

scores in their studies. Applied studies examining the mean alpha level of 

different educational and psychological scales can be found in Vassar and Bradley 

(2010), Vassar and Crosby (2008), and Warne (2011).  

The following sections discuss the two common measures—the mean alpha 

and its CI—that are often generated from a meta-analysis of coefficient alpha. 
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The mean alpha. The meta-analysis of coefficient alpha is a statistical 

procedure that synthesizes the sample coefficient alphas [             ] 

reported in primary studies, thereby producing a mean alpha estimate (  ̅) in a 

research domain. Given that coefficient alpha is non-normally distributed, 

Rodriguez and Maeda (2006) suggested that one needs to transform each singe 

alpha into the standardized alpha    by 

      |       |
   .                  (2.37) 

These standardized alphas are assumed to be asymptotically normally distributed, 

and hence they can be used to make statistical inferences. The variance of each 

transformed alpha in study q is  

     
       [      ][       ]   

[      ][        ] 
   (2.38) 

where      is the item number in study q, and      is the sample size in study q. 

The mean standardized alpha (  ̅̅ ̅) is  

  ̅̅ ̅  
∑     

 
        

∑     
 
   

    (2.39) 

where           ⁄          (2.40) 

is the reciprocal of the variance of each standardized alpha      . Consequently, 

the weighted mean alpha (  ̅) is 

  ̅  |    ̅̅ ̅
 
|,          (2.41) 

which summarizes the mean alpha effect of the studies in a research domain. Note 

that if one seeks to evaluate the mean alpha corrected for range restriction, she or 

he can adjust the alphas for range restriction in each single study before they are 
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used to estimate the mean alpha in Equation 3.24. Details will be discussed in 

Chapter 3. 

The CI surrounding the mean alpha. As in a single study, meta-analysts 

may also be interested in the precision and sampling distribution of the mean 

alpha   ̅. In the literature, there are two common types of intervals—confidence 

interval (CI) and credibility interval (CV)—that can be constructed around the 

mean coefficient alpha   ̅ in a meta-analysis. Comparatively, CI is preferred when 

one seeks to make statistical inferences about the mean coefficient alpha   ̅, 

whereas CV is preferred when one intends to evaluate the mean and variability of 

the population reliability underlying the primary studies. To provide a more 

comprehensive evaluation, meta-analysts have tended to report both intervals in 

recent studies (e.g., Crook et al., 2011; Ziegler, Dietl, Danay, Vogel, & B ̈hner, 

2011). 

Regarding the CI, meta-analysts usually construct a parametric CI 

surrounding the mean correlation estimate in validity generalization. This strategy 

was also proposed and discussed for reliability generalization in Rodriguez and 

Maeda (2006). The non-parametric bootstrap procedure for the mean alpha, which 

has not been examined in the literature, will be discussed in Chapter 3. 

Parametric CI. According to Rodriguez and Maeda (2006), the       

     confidence interval for the standardized mean alpha    ̅̅ ̅ is  

  ̅̅ ̅      ⁄ √ ̅,        (2.42) 

where  ̅   ∑      
   ⁄ ,       (2.43) 

and      [
       [      ][       ]   

[      ][        ] 
]
  

         (2.44) 
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Consequently, the lower and upper limits of Equation 2.39 can be converted back 

into the metric of coefficient alpha, i.e., 

  ̅    |       
 |,      (2.45) 

and   ̅    |       
 |,     (2.46) 

where l is the lower limit and u is the upper limit. 

Summary 

This chapter reviewed the development of various reliability coefficients, 

discussed the background of range restriction, and presented the correction 

procedures for Thorndike’s (1949) three conventional cases and Hunter et al.’s 

(2006) fourth case of range restrictions for correlation. Moreover, it presented the 

two conventional cases of range restrictions for coefficient alpha, and discussed 

findings of the previous studies that examined their performances. In practice, 

researchers and applied users may also be interested in the confidence intervals 

(CIs) surrounding the corrected coefficient alpha. This chapter also introduced the 

parametric and non-parametric procedures for building these intervals. Given that 

the effect of range restriction on reliability is equally important in a meta-analytic 

study, this chapter also reviewed the background of estimating the mean alpha in 

a meta-analytic study, and discussed the methods for constructing the associated 

parametric and non-parametric CIs. Building on these concepts, the next chapter 

will present the design and methods in order to evaluate the empirical 

performance of the uncorrected and corrected coefficient alphas as well as the 

associated CIs in both single and meta-analytic studies. 
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Chapter 3 – Method 

The purpose of this chapter is to present the method that can be used to 

evaluate the four goals as discussed in Chapter 1. The first section presents the 

first Monte Carlo study, which evaluates the performance of the uncorrected and 

corrected alphas as well as their CIs in a single study; these correspond to Goals 1 

and 2 as mentioned in Chapter 1. The second section presents the second Monte 

Carlo study, which evaluates the uncorrected and corrected mean alphas as well 

as their CIs in a meta-analytic study; these correspond to Goals 3 and 4 in this 

dissertation. As noted above, the Monte Carlo studies are regarded as a class of 

computational algorithms that generate empirical results across replications based 

on a repeated random sampling strategy. This can provide empirical evidence 

about the accuracy of uncorrected and corrected alphas in both single and meta-

analytic research situations. 

Monte Carlo Study 1 – Single Study 

Goal 1: To Evaluate the Accuracy of the Uncorrected and Corrected Alphas 

in Single Study 

Eight factors that may affect the accuracy of the uncorrected and corrected 

alphas were evaluated: type of measurement data ( ), numbers of item (k), 

restricted sample size (  ), selection ratio ( ), unrestricted population coefficient 

alpha (  ), type of item responses ( ), correlation between Z and    for item k 

[    
   ], and correlation between Z and   for item k [      ]. 

Factor 1: Type of measurement data ( ; three levels). Three types of 

measurement data—the essentially parallel, essentially tau-equivalent, and 
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congeneric data conditions—were evaluated. As noted above, the essentially 

parallel condition is assumed to possess equal item variances and covariances, the 

essentially tau-equivalent condition is assumed to have unequal item variances but 

equal covariances, and the congeneric data condition is assumed to have items 

with unequal variances and covariances. Conventionally, coefficient alpha was 

developed based on the essentially parallel assumption. This dissertation evaluates 

whether the accuracy still exists when the data deviate from the most stringent 

essentially parallel condition to the less restrictive congeneric condition.  

Factor 2: Numbers of item (k; three levels). Three levels were controlled: 

5, 10, and 20. Five items represent a typical short scale measuring an educational 

and psychological construct (e.g., the mastery goal orientation scale in the 

Achievement Goal Questionnaire [AGQ] by Elliot and Church, 1997), and 20 

items indicate a relatively long scale (e.g., the hypochondriasis construct, i.e., 

concern with bodily symptoms, in the Minnesota Multiphasic Personality 

Inventory [MMPI-2]; Tellegen et al., 2003).  

Factor 3: Restricted sample size (  ; three levels). Restricted sample 

sizes were manipulated at values of 30, 50 and 100. In a classic large-scale 

employee selection study, the median sample size is found to be 68 in 1500 

validation studies (Lent, Aurbach, & Levin, 1971; Salgado, 1998). Recently, the 

sample size requirement has tended to increase. For example, the median size is 

found to be 138 across 36 studies in an employee selection meta-analysis study 

(Cass, Siu, Faragher, & Cooper, 2003). Hence, a restricted sample size of 100 is 

also controlled to evaluate whether or not a larger sample size is associated with 
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better performance of the corrected alphas and the bootstrap procedure. The last 

level, 30, was used to evaluate whether the accuracy decreased with a small 

sample size. 

Factor 4: Selection ratio ( ; five levels). Selection ratio is the ratio of the 

number of persons in the restricted sample over the unrestricted sample (i.e.,   

    ). Five levels were manipulated: .10, .30, .50, .70, and .90. The former (.10) 

represents a very stringent selection, meaning that only the top 10% of test 

achievers are selected. By contrast, the latter (.90) represents a very lenient 

restriction. These levels are comprehensive enough to represent different selection 

ratios in practice. 

Factor 5: Population coefficient alpha (  ; three levels). Three levels of 

coefficient alpha were evaluated: .70, .80, and .90.  Le and Schmidt (2006) stated 

that the mean of the unrestricted reliability was found to be .802 in the area of 

personnel psychology, according to previous meta-analyses and simulation 

studies. These levels also followed Nunnally’s (1967) reliability benchmarks, 

i.e., .7 for tests in early development, .8 for basic research, and .9 to .95 for tests 

or instruments that are used to make important decision.   

Factor 6: Item responses ( ; two levels). Two levels—continuous and 

dichotomous—were examined. The continuous item responses meet the 

assumption of the alpha. In practice, dichotomous item responses are even more 

common, and hence they were examined in this dissertation. 

Factor 7: Correlation between Z and    for each item (    
; two levels). 

According to Hunter et al. (2006, p. 594), “range restriction in most data sets is 
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indirect”, meaning that range restriction usually occurs based on another variable 

as in the Case III model discussed in Chapter 2. Thus this dissertation followed 

Hunter et al.’s approach, in which a more general and realistic restriction model 

was used to generate the range-restriction effects. Specifically, the correlation 

between Z and    is allowed to vary across items; this mimics a practical situation 

in which the effect of range restriction from another variable Z on each item can 

be different. Following Le and Schmidt (2006), two levels of     
—.30 

and .60—were examined. These values represent a moderate to large relationship 

between Z and   , and they were frequently found and commonly used in both 

empirical and simulation studies (Hunter & Schmidt, 2004; Le & Schmidt, 2006). 

The associated SD was manipulated as one fifth of the population values. 

Factor 8: Correlation between Z and   for each item (   ; two levels). 

The same two levels—.30 and .60—were evaluated as in the case of     
. 

Likewise, the associated SD was manipulated as one fifth of the population values. 

To summarize, the eight factors were combined to produce a design with 

                      conditions. According to Mooney (1997), 

the minimum number of replications should be 1,000 for a Monte Carlo study. In 

addition, for a Monte Carlo study with a large number of design factors, Skrondal 

(2000) suggested that researchers can use fewer numbers of replications. Given 

that the present study involved 3,240 conditions and each condition consisted of 

2,000 bootstrap samples, it was regarded as a complex design. Hence each 

condition was replicated 1,000 times.  
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Data generation. Generally, the data generation procedure followed Cui 

and Li’s (2012) study. First, for each combination of the simulated factors, 

without loss of generality, continuous normal item scores were generated 

according to the essentially parallel, essentially tau-equivalent, and congeneric 

data conditions, respectively. To generate the essentially parallel and essentially 

tau-equivalent data, the Type 12 sampling procedure proposed by Barchard and 

Hakstian (1997a) was used. This procedure assumes that both items and persons 

are a random sample from their corresponding populations (details will be 

discussed in the next section). To generate the congeneric data, the Type 12 

sampling procedure was modified by removing a constraint, i.e., the person 

effects are assumed to be identical across items. By contrast, the person effects 

(i.e., person true scores,    and   ) for any two items i and j were assumed to take 

a linear relationship. 

After continuous normal data are generated, the dichotomous item 

responses (i.e., 0 or 1) were obtained by dichotomizing the continuous data with 

the manipulated cut score of zero. Details will be discussed in the following 

section. 

Essentially parallel data. According to Barchard and Hakstian (1997a), the 

Type 12 sampling procedure for generating the essentially parallel data was based 

on the linear model,                  as shown in Equation (2.4). To obtain 

observed scores for    , the four unknowns:  ,   ,   , and     were generated. First, 

without loss of generality, the grand mean   was fixed at 0. Second, the item 

effects    were assumed to vary across the items, which were generated from 
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              . Third, the person effects (i.e., true scores),   ,   ,…,    were 

generated from a normal distribution with mean 0 and variance   
 ,  

       
  

     
 

          
                                    (3.1) 

where    is the population coefficient alpha,   is the number of items, and    

  is 

the item variance, which is fixed at 100. Fourth, the measurement errors,    , were 

generated for each item from             
  , where   

     

    
 . Given the 

generated   ,   , and     , and   is fixed at 0, an observed score for person   on 

item   (i.e.,    ) was obtained by the linear equation in (2.4). By doing so, the 

generated data were multivariate normal and met the essentially parallel condition. 

Dichotomous responses were generated through categorizing the continuous 

normal data using different cut scores. The z score of zero was selected as the cut 

point, and hence half of the generated normal data were assigned to the score of 0 

and another half became the score of 1. Note that such a categorization led to 

changes in the values of the population item variance-covariance matrix, which 

resulted in a change in the population value of the coefficient alpha. To compute 

the population coefficient alpha for the dichotomous data, the population 

variances and covariances for items with   categories scored from   to     

were calculated as (Maydeu-Olivares, Coffman, & Hartmann, 2007; p. 175), 

             [  ]   ∑             
       

     (3.2) 

and 

         [    ]  (∑ ∑    [          
   

   
   (    )])          (3.3) 
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where  [       (    )] is the probability that item   takes the value   and 

item   takes the value  , and  

                                [  ]  ∑            
                        (3.4) 

Essentially tau-equivalent data.   ,    , and   were generated identically as 

in the essentially parallel condition, except for the person effects   . The 

difference between the essentially parallel and essentially tau-equivalent 

conditions lies in the unequal variances across items,    

 . Therefore, instead of 

setting item variance    

  to be a constant and equal to 100 for all items,    

  was 

generated from a normal distribution with mean 100 and variance 225. The person 

effect variance was, therefore, calculated by 

                                  
  

      (   
 )

          
                                   (3.5) 

Although the essentially parallel condition assumes            , without loss 

of generality,     was set to 0 because variances and covariances are unaffected 

by adding a constant to a variable. Therefore, the person effect  ,   , was 

generated from a normal distribution with mean 0 and variance   
 . For item  , 

measurement error     was generated from a normal distribution with mean 0 and 

variance    

 , which was calculated by    

     

    
 .    was generated in the 

same way for the essentially parallel and essentially tau-equivalent data. Finally, 

the observed score for person   on item   was obtained by                . 

The generated data were normally distributed and met the essentially tau-

equivalent condition.  
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Congeneric data. The same procedure of generating the item effect     for 

essentially parallel and essentially tau-equivalent data was used in the generation 

of congeneric data. However, the person effects vary across items for congeneric 

data. The person effects for any two items   and   were assumed to be linearly 

related, that is,               , which implies    
     

    

 . The variance of 

person effects for any item  ,    

 , was generated from a normal distribution with a 

mean equals to 

                            (   

 )  
      (   

 )

          
                                    (3.6) 

and SD equals to     (   

 ) divided by 4. This SD is selected to ensure that 

negative values of    

  will rarely be generated. Next, person effects for item 1, 

                  were randomly generated from a normal distribution with 

mean 0 and variance    
 . Person effects for any other item   are calculated by 

                      , where     is equal to √   

    
 ⁄ . It should be noted 

that     is again set to 0 without loss of generality. For any item  , measurement 

error     was generated from a normal distribution with mean 0 and variance    

 , 

which was calculated by    

     

     
 . Finally, the observed score for person   

on item   was obtained by                 . The generated data were 

normally distributed and met the congeneric condition. 

After generating the essentially parallel, essentially tau-equivalent, and 

congeneric data, the observed scores     were obtained, and this formed a data 

matrix, Y. Given the range-restriction model manipulated in this dissertation, it is 
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another variable Z that causes range restriction on   . Therefore, the observations 

in Z were generated by 

                                                                           (3.7)                                                                                                   

where    is the regression slope for    [i.e.,        
    √        ⁄ ],    

is the regression slope for Y [i.e.,            √        ⁄ ], and    is the 

error of measurement of Z, which was generated from a normal distribution with 

mean 0 and    √        

 , where       
 is the correlation between Z and Y 

partial for   , which is  √    
      

          √         ⁄ . By doing so, 

the mean correlation between Z and     is fixed at     
 and the mean correlation 

between Z and   is fixed at    , according to the manipulated values of .3 and .6, 

respectively. After generating the    scores for all items, the selection composite 

variable Z for each examinee was obtained by averaging all of the       scores, 

i.e.,   ∑       ⁄ 
   .  

Next, the generated    and Y scores were rank-ordered by the Z scores top 

down, thereby forming a restricted sample,  

[
    

              
].                                          (3.8) 

For the Case I correction, the required data matrix can be simplified as 

[
  

 
]                                                     (3.9) 

The sample estimates of the unrestricted parameters can be obtained from a 

simulated sample; these includes the sample unrestricted SD of total score of Y 

(i.e.,   ) for Case I, and the sample unrestricted SD of Z (i.e.,   ) for Case III.  
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The remaining simulation steps followed the bootstrap procedures from 

Equations (3.10) to (3.18), which will be discussed below. Consequently, the 95% 

parametric CIs, and the bootstrap standard interval (BSI), bootstrap percentile 

interval (BPI), and bootstrap bias-corrected and accelerated interval (BCaI) for 

the uncorrected and corrected alphas could be constructed. The number of the 

bootstrap samples was fixed at B = 2,000 to allow an accurate computation of a 

bootstrap percentile (Efron & Tibshirani, 1993). Each condition was replicated 

1,000 times in order to evaluate the performance of the alphas and the CIs.  

Goal 2: To Examine the Performance of the Bootstrap CIs Surrounding the 

Uncorrected and Corrected Alphas in Single Study 

By drawing successive samples of data with replacement, the bootstrap 

procedure can derive the sampling distribution as well as the confidence interval 

of the statistics. In this section, the construction of the CI for a corrected alpha 

(i.e.,    ) is presented.  

For illustrative purposes, only the Case I correction procedure is 

demonstrated here. Generally, the bootstrap procedure resampled the data matrix 

[
  

 
] B times in order to obtain B numbers of the resampled corrected alpha 

estimates, thereby constructing the associated sampling distribution and CI. 

In particular,    number of 1 by k vector (i.e., a vector containing the Y 

scores of a person) in Yr (i.e., Equation 3.9) were randomly resampled with 

replacement to form a first bootstrap sample, 

                                                [
  
    

 
]                                                        (3.10) 
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Given this data matrix, the first bootstrap corrected alpha    
     was obtained 

from Equation 2.25. We can convert this estimate into a standardized unit by 

      |        |
   .  Repeating the bootstrap process B times, 

  
       

         
     were obtained. The bootstrap standard error is 

     √∑ [             ] 
 
        ⁄ ,                   (3.11) 

where   
     ∑   

     ⁄ 
    is the mean of the B number of   

 s.  

Bootstrap Standard Interval (BSI). The 100(1 -   )% BSI for the 

corrected alpha was then given by   

           ⁄                                                  (3.12) 

where (1 2)Iz  is the          ⁄  th
 percentile point in a standard normal 

distribution, and    is the Type I error, which is fixed at 5%. This interval can be 

converted back on the alpha unit by     |    
 |. 

Bootstrap Percentile Interval (BPI). To construct the BPI, 

  
       

         
     were rank-ordered such that   

         
         

  
       . The 100(1 –  )% BPI for    

is  

                                  
 [ ]    

 [ ]                                                 (3.13) 

where          ⁄  and           ⁄  . This interval can be converted back 

on the alpha unit by     |    
 |. 

Bootstrap Bias-Corrected and Accelerated Interval (BCaI). As reported 

in Chan and Chan (2004), the BPI tended to be biased, especially when the 

distribution of the bootstrap statistics is skewed. To correct for the skewness, 

Efron and Tibshirani (1993) proposed the bootstrap bias-corrected and accelerated 

percentile interval (BCaI). Two correction factors—u and v—were required. Of 
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the two factors, u was used to adjust the median bias of the bootstrap corrected 

reliability coefficient,  

                                 [    
         ⁄ ],                  (3.14) 

where        is the inverse of the cumulative standard normal distribution 

function, and  [  
       ]  ⁄  is the proportion of the bootstrap   

 s below the 

original sample estimate of   . When the bootstrap distribution is symmetric, 

 [  
       ]  ⁄  will be close to 0.5 and hence u will be close to 0. The second 

correction factor v is regarded as the rate of change of the standard error of 

   with respect to its true parameter value, which can be obtained by 

   ∑ [           ]
  

    {∑ [           ]
  

   }
 

 ⁄            (3.15) 

where       is the jackknife value of    generated by removing the jth row in 

Equation 3.30, and       is the mean of the   jackknife estimates. With u and v, 

the lower and upper limits of BCaI became  

                        {  
       ,  

 [        ]},        (3.16) 

where     {  [(     (
  

 ⁄ )) [   (     (
  

 ⁄ ))]⁄ ]}               (3.17) 

and     {  [      (
  

 ⁄ ) [         (
  

 ⁄ ) ]⁄ ]}                (3.18) 

This interval can be converted back on the alpha unit by     |    
 |. 

Monte Carlo Study 2 – Meta-Analysis 

Goal 3: To Evaluate the Accuracy of the Uncorrected and Corrected Mean 

Alpha in Meta-Analysis 

Studying the effect of range restriction on reliability is not only important in 

single study, it is also important in meta-analysis. As noted above, meta-analysis 
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is a statistical procedure that synthesizes the alphas [             ] reported 

in primary studies, thereby producing a mean alpha estimate (  ̅) in a research 

domain. In the literature, there are two data-generation models—the fixed-effects 

(FE) and random-effects (RE) models—which govern the distribution of the 

population coefficient alphas in multiple studies. This dissertation generated data 

based on the random-effects (RE) model, which is characterized by the 

heterogeneity of population coefficient alphas across studies. Assume the variance 

of the true unrestricted population alphas    
 across k studies is       

 . The RE 

model is presumed to allow       
   . A second model, known as the fixed-

effects (FE) model, is also available in the literature. It presumes the homogeneity 

of population coefficient alphas across studies, i.e.,       
   . According to 

Schmidt, Oh, and Hayes (2009), the FE model is only a special case of the RE 

model. It often underestimates the variability of estimates in meta-analysis, and 

hence it is of limited use in practice. 

Following the procedures outlined in Rodriguez and Maeda (2006), this 

dissertation examines and develops a meta-analytic procedure in order to 

synthesize the alphas corrected for range restriction, producing a summary of the 

mean corrected alpha in a research domain. Assume    
    is the population 

unrestricted alpha across W single studies, where          . The RE model 

assumes that    
       

         
   , meaning that there is a variability 

of the true unrestricted alpha for each study. In practice, the sample in each study 

may be subject to range restriction due to another correlated variable Z. Hence, 

the alphas reported in these studies are typically the sample restricted alphas, i.e., 



62 

 

           
       

         
   .      (3.19) 

These restricted alphas can be corrected for range restriction, producing a vector 

of sample corrected alphas, 

                      .        (3.20) 

According to Rodriguez and Maeda (2006), they can be transformed to the study 

effects, T(q), through  

      |        |
   .     (3.21) 

These study effects are assumed to be asymptotically normally distributed, and 

hence they can be used to make statistical inferences. The variance of each 

transformed alpha in study q is  

     
       [       ][        ]   

[      ][         ] 
     (3.22) 

where k(q) is the item number in study q, and       is the restricted sample size 

in study q. The mean transformed study effect T corrected for range restriction (  ̅) 

is  

  ̅  
∑     

 
        

∑     
 
   

    (3.23) 

where           ⁄ .      (3.24) 

is the reciprocal of the variance of each study effect      . Consequently, the 

weighted mean corrected alpha (   ̅̅ ̅̅ ) is  

   ̅̅ ̅̅  |    ̅
 
|,     (3.25) 

and this is a statistic which summarizes the mean alpha effect of the studies in a 

research domain. The next section will discuss the levels of the simulated 

conditions. 
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Factor 1: Measurement data ( ; three levels). The same three data 

conditions—essentially parallel, tau-equivalent, and congeneric—were evaluated. 

Factor 2: Number of items (k; two levels). The same two levels were 

evaluated: 5 and 20. The middle level of 10 in Study 1 was excluded to reduce the 

number of simulation conditions. 

Factor 3: Restricted sample size (  ; two levels). Restricted sample sizes, 

     , were generated from two normal distributions: N(100, 30) and N(300, 100). 

The mean of 100 was selected because the median incumbent sample size was 

138 across 36 studies in a meta-analysis of employee selection (Cass, Siu, 

Faragher, & Cooper, 2003). The mean of 300 was used to evaluate whether a 

larger sample size would improve the accuracy. Regarding the variability, the 

sample-size distribution in meta-analysis tends to possess a large variability (i.e., 

30 -150; Brannick, Yang, & Cafri, 2011). Thus the associated SDs were 30 and 

100, which were approximately one third of the associated values. Note that these 

mean values were larger than those of 30 and 100 in Study 1 because this study 

needs to generate the variance of the restricted sample sizes. Hence a larger mean 

value is required to capture such the variance. The lower bound of the simulated 

sample size was fixed at 10.  

Factor 4: Selection ratio ( ; five levels). The same five levels—

.10, .30, .50, .70, and .90—were evaluated. In addition, given that the selection 

ratio should vary across studies in meta-analysis, the associated SD was 

controlled as one fourth of the mean levels. The lower bound was set at .03 and 

the upper bound was set at .97. 
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Factor 5: Population coefficient alpha (  ; three levels). The same three 

levels of coefficient alpha were evaluated: .70, .80, and .90. The associated SD 

was controlled as one fifth of its unrestricted value. 

Factor 6: Item responses ( ; two levels). Two levels—continuous and 

dichotomous—were examined. The continuous item responses lay a theoretical 

foundation for the performance of the corrected alpha. In practice, dichotomous 

item responses are even more common, and hence they were examined in this 

dissertation. 

Factor 7: Correlation between Z and    for each item (    
; two levels). 

The same two levels—.30 and .60—were examined. The associated SD was 

manipulated as one fifth of the corresponding value. 

Factor 8: Correlation between Z and   for each item (   ; two levels). 

The same two levels—.30 and .60—were evaluated. The associated SD was 

manipulated as one fifth of the corresponding value. 

Factor 9: Number of studies (q; two levels). As noted in Field (2005), the 

minimum number of studies for a meta-analysis is around 15. In addition, the 

value of 30 is also evaluated to examine if an increased number of studies can 

improve the accuracy. Hence two numbers, 15 and 30, were selected and 

evaluated.  

To summarize, the nine factors were combined to produce a design with 

                        conditions. Each condition was 

replicated 1,000 times. 
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Data generation. The data generation process followed the same procedure 

as in Study 1. The only difference lies in the generation of the data for Q single 

studies in Study 2, rather than only one single study in Study 1. Therefore, the 

first step was to generate the unrestricted population coefficient alphas,    
   , 

         , for multiple studies. Second, the data were generated for each 

single study based on the manipulated and generated    
    in Step 1. The 

remaining procedures follow those in Study 1, except that the selection ratio for 

each single study was generated from their corresponding normal distributions 

rather than fixed in Study 1. After obtaining the observations for all the variables 

in each single study, they could be used to estimate the uncorrected and corrected 

coefficient alphas as in Equation 3.19. After that, the remaining procedures 

followed those outlined in Equations 3.20 – 3.25, and this produced the mean 

uncorrected and corrected alpha estimates for meta-analysis. 

Goal 4: To Examine the Performance of Bootstrap CIs Surrounding the 

Uncorrected and Corrected Mean Alphas in Meta-Analysis 

As noted above, Adams et al. (1997) proposed a non-parametric bootstrap 

procedure so that one can resample the effect sizes reported in primary studies 

with replacement to derive the sampling distribution of the mean effect size. Li et 

al. (in press) also conducted a Monte Carlo study, and found that the bootstrap CIs 

surrounding the mean Case IV corrected correlation achieved better results than 

the conventional CIs. In this dissertation, suppose one collects Q coefficient 

alphas, corrects for range-restriction biases, and converts them in a standardized 

unit,      , by the use of |        |
   . One can apply a correction procedure in 
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order to adjust for their range-restriction biases, and include the restricted sample 

sizes to form a matrix  

[
          

  
          

].      (3.26) 

Given this data matrix, one can resample    and    together [i.e., each row 

in Equation 3.26] with replacement to form a bootstrap sample,  

[
  

      
    

  
  

      
    

]      (3.27) 

With (3.27), the first bootstrap mean standardized alpha,   ̅
 
(1), can be computed 

by (3.23). Repeating this process B times (B can be fixed at 2,000, as suggested 

by Efron and Tibshirani, 1993), B numbers of bootstrap   ̅
 
s are obtained 

    [  ̅
 
(1),   ̅

 
(2),…,   ̅

 
(B)].  (3.28) 

Next, we can estimate the associated standard error by measuring their SD 

empirically, i.e., 

      √∑ [  ̅
 
      ̅

 
   ]

  
        ⁄ ,  (3.29) 

where   ̅
 
    ∑   ̅

 
    ⁄ 

    is the mean of the B numbers of   ̅
 
s. 

Consequently, the 100(1 -   )% bootstrap standard interval (BSI) is constructed 

by   

[  ̅         ⁄     
 ],  (3.30) 

where        ⁄   is the          ⁄  th
 percentile point in a standard normal 

distribution. This interval can be converted back on the alpha unit by    ̅̅ ̅̅  

|    ̅
 
|. 
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To construct the bootstrap percentile interval (BPI), 

  ̅
 
      ̅

 
        ̅

 
    are rank-ordered such that   ̅

 
[   ]    ̅

 
[   ]    

   
̅̅ ̅̅  

[   ]. The 100(1 –   )% BPI is  

   {  
 [ ]   

 [ ]},     (3.31)  

where         ⁄  and          ⁄  . This interval can be converted back 

on the alpha unit by    
̅̅ ̅̅  |    ̅

 
|. 

As in Study 1, the BPI tends to be biased, especially when the distribution 

of the bootstrap statistics is skewed. To correct for the skewness, two correction 

factors—u and v—are required. Of the two factors, u is used to adjust the median 

bias of the bootstrap   ̅ estimates,  

                 [ (  ̅
 
      ̅)  ⁄ ],  (3.32) 

where        is the inverse of the cumulative standard normal distribution 

function, and  [  ̅
 
      ̅]  ⁄  is the proportion of the bootstrap   ̅

 
s below the 

original sample estimate of    ̅̅ ̅̅ . When the bootstrap distribution is symmetric, 

 [  ̅
 
      ̅]  ⁄  will be close to 0.5 and hence u will be close to 0. The second 

correction factor v is regarded as the rate of change of the standard error of 

  ̅ with respect to its true parameter value, which can be obtained by 

      ∑ [  ̅      ̅   ]
  

    {∑ [  ̅      ̅   ]
  

   }
 

 ⁄                  (3.33) 

where   ̅    is the jackknife value of   ̅ generated by removing the kth row in (8), 

and   ̅    is the mean of the   jackknife estimates. The lower and upper limits of 

BCaI become  

                 {  ̅
 
      ,   ̅

 
[        ]},                         (3.34) 
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where     {  [(     (
  

 ⁄ )) [   (     (
  

 ⁄ ))]⁄ ]}               (3.35) 

and     {  [      (
  

 ⁄ ) [         (
  

 ⁄ ) ]⁄ ]}                     (3.36) 

This interval can be converted back on the alpha unit by    
̅̅ ̅̅  |    ̅

 
|. 

Evaluation Criteria 

Criterion 1: Evaluating the accuracy of the uncorrected and corrected 

alphas. To examine the accuracy of the corrected alpha, percentage bias (Bi s∀) 

was used: Bi s∀  [ ∀       ⁄ ]      , where ∀ can be the restricted, Case I 

or III coefficient alphas, indicating their mean scores across 1,000 replications, 

respectively. As stated in Li et al. (2011a), a parameter estimate is considered 

good if a Bi s∀ is within   %, and reasonable if a Bi s∀ is within    %. To 

summarize the Bi s∀s across the simulation conditions, Flores (1986) proposed a 

mean absolute percentage error:  AP ∀  ∑ |Bi s∀   |
𝑁𝑚 
    𝑚 ⁄ , where  𝑚 is the 

number of model conditions. A  AP ∀ within 10% is considered an appropriate 

fit (Li et al., 2011a). 

Criterion 2: Evaluating the Performance of the CIs. Because all of the 

CIs used in this study were based on the 5% significance level, the coverage 

across 1,000 replications should ideally be as close to the nominal value of 950 as 

possible (or .95 in terms of coverage probability). However, researchers seldom 

obtain an exact point estimate even if the true mean value is .95 underlying a 

distribution. To allow for sampling errors, an empirical coverage probability 

falling within [.922, .968] is considered appropriate, as stated in Li et al. (2011a). 

However, some researchers found that this criterion may still be too stringent to 
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be fulfilled in practice. For example, Schmidt found that the average coverage 

probability of the CI surrounding Hunter et al.’s (2006) corrected correlation was 

around .89, and he suggested the use of the 10% cutoff as a criterion (Schmidt, 

personal communication, October 18
th

, 2010). Hence the 10% bias is still 

regarded as a reasonable result, meaning that an empirical coverage probability 

should be at least .855 [i.e.,              ], which is regarded as the lenient 

criterion of this study.   

This study also evaluates the widths of the CIs. On one hand, it is desirable 

to have a narrower interval because it indicates a precise point estimate. On the 

other hand, an over-precise interval tends to produce an under coverage 

probability because it is too narrow and does not span the population value 

appropriately. In this sense, a CI with a desirable coverage probability and a 

reasonable width is the most adequate procedure. 
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Chapter 4 –Results 

Monte Carlo 1 – Single Study 

This section presents the results for the uncorrected and corrected 

coefficient alphas, as well as for their CIs, in a single study. These results seek to 

provide empirical findings about the biases that come from the uncorrected alpha, 

and examine whether or not the two corrected alphas and the associated CIs can 

improve the accuracy of these measures. Given that the patterns of the 

uncorrected and corrected alphas did not differ across the three data conditions 

(i.e., parallel, tau-equivalent, and congeneric data), the results based on the most 

relaxed congeneric condition are discussed. Hence, a total of 540 conditions (i.e., 

3 levels of item number by 3 levels of restricted sample size by 3 levels of alpha 

by 2 levels of correlation between Z and    by 2 levels of correlation between Z 

and Y by 5 levels of selection ratio) are presented in the following sections. The 

results are discussed based on the continuous and dichotomous responses, 

respectively. 

Results for Goal 1: Evaluating Coefficient Alpha in Single Study  

Continuous Responses 

Figure 8 shows the means of the 1,000 replicated uncorrected and two 

corrected alphas across the 540 simulation conditions, and Figure 9 displays the 

associated percentage biases. Generally, the uncorrected alphas were inadequate 

and fluctuated substantially, especially across levels of selection ratio, correlation 

between Z and   , and correlation between Z and Y. Of the 540 conditions, only 

22 (or 4.1%) were within the stringent level of    , and 74 (or 13.7%) were 
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within the lenient level of     . The percentage biases ranged from -99.7% to -

1.2%. Regarding the overall bias, the MAPE was 30.9%, which fell outside the 

nominal level of 10%. Hence the uncorrected alpha estimates were generally 

inadequate.  

 

Figure 8. Means of the 1,000 replicated uncorrected and corrected coefficient 

alpha estimates across 540 simulation conditions for continuous responses.
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Figure 9. Means of the 1,000 replicated percentage biases obtained by the 

uncorrected and corrected alphas across 540 simulation conditions for continuous 

responses. 
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By contrast, the two bias-corrected alphas were more accurate than the 

uncorrected alpha. For Case I, the percentage biases ranged from -9.4% to 7.3%. 

Of the 540 conditions, 524 (or 97.0%) produced a percentage bias within the 

stringent level of    , and 540 (or 100%) were within the lenient level of     . 

Overall, the MAPE was 1.2%, which was within the criterion of 10%. For Case 

III, the percentage biases ranged from –18.3% to 8.5%. Of the 540 conditions, 

427 (79.1%) were within the stringent level, and 522 (or 96.7%) were within the 

lenient level. The MAPE was 3.1% which was also within the nominal level of 

10%. These findings are summarized in Table 1. They are comparable with the 

findings reported in Fife et al. (2012), in which the MAPE yielded by the 

corrected alpha was .75% (see Table 3 in their study). Their slightly smaller 

MAPE was probably, first, due to the relatively simpler range restriction process 

in their study, i.e., the correlation between Z and    was the same for all items. 

Second, their study assumed that the true population unrestricted SD was known, 

while this study mimicked a more realistic situation in which only a sample 

estimate of the unrestricted SD from a simulated sample was obtained to make a 

correction, leading to a slightly larger fluctuations in the findings. 
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Table 1. Summary of the percentage biases obtained by the uncorrected and 

corrected alphas for continuous responses. 

Alpha 

 

Mean 

 

SD  [Max, Min] MAPE 

# within 

 5% bias 

# within 

 10% bias 

UnCor -30.9% 21.4% [-99.7%, -1.2%] 30.9% 29(5.4%) 92(17.0%) 

Case I -0.4% 1.8% [-9.4%, 7.3%] 1.2% 524(97.0%) 540(100%) 

Case III -2.4% 3.4% [-18.3%, 8.6%] 3.1% 427(79.1%) 522(96.7%) 

Note: UnCor is uncorrected. # is number of conditions. 

 

This section discusses the specific effect of each factor on the findings. 

Given that the number of items and restricted sample size did not show an 

obvious effect on the uncorrected alpha, the results are presented based on a total 

of 60 conditions (i.e., 3 population alpha levels by 2 correlation levels between   

and    by 2 correlation levels between   and Y by 5 levels of selection ratio). 

Three key findings emerged, as shown in Table 2. First, when the selection ratio 

increased, the percentage bias decreased gradually. This is reasonable because a 

less stringent ratio produces a more heterogeneous sample, which represents an 

unrestricted sample more adequately. Second, when the correlations between   

and    or between   and Y (or both) became stronger, the biases increased 

gradually. It is because a stronger relationship between Z and    (or between Z 

and Y, or both) could generate a more homogeneous sample, resulting in a more 

downward-biased estimate of coefficient alpha. Third, when the alpha increased 

from .7 to .9, the bias decreased gradually. It appears that, when the scores are 

more internally consistent, the impact of range restriction on reliability is reduced. 
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Table 2. Means of the 1,000 replicated percentage biases obtained by the 

uncorrected alpha across 60 selected simulation conditions when the item number 

=10, restricted sample size = 50, and items were continuously scored.  

  

    7             

          
    .6     

    .6     
    .6 

.3 .1 -.542 -.685 -.330 -.552 -.291 -.331 

 

.3 -.350 -.595 -.274 -.407 -.226 -.224 

 

.5 -.303 -.424 -.210 -.374 -.131 -.140 

 

.7 -.126 -.191 -.138 -.214 -.074 -.075 

 

.9 -.137 -.119 -.053 -.156 -.029 -.035 

.6 .1 -.883 -.851 -.585 -.814 -.433 -.380 

 

.3 -.539 -.833 -.457 -.471 -.206 -.240 

 

.5 -.464 -.630 -.331 -.351 -.153 -.203 

 

.7 -.332 -.312 -.188 -.246 -.119 -.112 

 

.9 -.173 -.183 -.099 -.120 -.072 -.087 
 

Note.    is the population alpha,     is the population correlation between Z and 

Y.   is the selection ratio.     
 is the population correlation between Z and   . 

Biases that are outside the nominal range of      are presented in bold. 

 

Regarding the Case I corrected alpha, most of the conditions (i.e., 524 out of 

540) produced a percentage bias within the stringent nominal level of    . Only 

very few minor exceptions could be found when the population alpha was small 

(i.e., .70), the item number was few (i.e., 5), the selection ratio was stringent 

(i.e., .10), the restricted sample size was small (i.e., 30) and the correlations 

between Z and Y (and Z and   ) were large, as shown in Table 3. These levels are 

regarded as the most challenging conditions in this study, but the biases are in fact 
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quite small. Similar patterns but slightly larger biases could also be found for the 

Case III corrected alpha; these are shown in Table 4.  

 

Table 3. Means of the 1,000 replicated percentage biases obtained by the Case I 

alpha across 20 selected simulation conditions when the population alpha = .70, 

item number = 5, and restricted sample size = 30 for continuous responses. 

 

              

      
    .6     

    .6 

.1 .016 -.055 .012 -.057 

.3 .000 .023 .039 -.028 

.5 -.010 -.045 .031 .004 

.7 -.004 .009 -.006 -.035 

.9 .041 -.026 -.018 .004 
 

Note.   is the selection ratio.     is the population correlation between Z and Y. 

    
 is the population correlation between Z and   . Biases that are outside the 

stringent criterion of     are presented in bold. 
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Table 4. Means of the 1,000 replicated percentage biases obtained by the Case III 

alpha across 20 selected simulation conditions when population alpha = .70, item 

number = 5, and restricted sample size = 30 for continuous responses. 

 

              

      
    .6     

    .6 

.1 -.062 -.114 -.088 -.167 

.3 -.109 .048 .014 -.066 

.5 -.085 -.094 -.018 -.033 

.7 -.062 -.024 .000 -.069 

.9 .011 -.083 -.040 .002 
 

Note.   is the selection ratio.     is the population correlation between Z and Y.  

    
 is the population correlation between Z and   . Biases that are outside the 

nominal criterion of      are presented in bold. 

 

Dichotomous Responses 

The previous section presents the results based on the continuous responses, 

providing theoretical support for the adequacy of the bias-corrected alphas when 

the scores are represented by the original continuous scales. In practice, 

researchers often use a test or scale with dichotomized responses, i.e., either 0 or 1. 

Generally, the findings and patterns of relationships are similar to those in 

continuous data, as shown in the previous section, although less accurate (or more 

fluctuated) results are obtained.  

Because the initial results showed that the selection ratio of .1 often led to a 

perfectly homogenous sample (i.e., all 1s in any item) with zero variance, this 

condition was dropped and will not be discussed in the following section. As a 
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result, a total of 432 conditions (i.e., 3 levels of item number by 3 levels of 

restricted sample size by 3 levels of alpha by 2 levels of correlation between Z 

and    by 2 levels of correlation between Z and Y by 4 levels of selection ratio) 

are discussed. 

Figure 10 shows the means of the 1,000 replicated uncorrected and two 

corrected alphas across the 432 simulation conditions, and Figure 11 displays the 

associated percentage biases. Generally, the uncorrected alphas were inadequate. 

The percentage biases ranged from -136.2% to -3.3%, with a mean of -43.1%. Of 

the 432 conditions, only 13 (or 3.0%) were within the stringent level of    , and 

48 (or 11.1%) were within the lenient level of     . The overall MAPE was 

43.1% outside the nominal level of 10%. Note that data dichotomization resulted 

in smaller true alpha values, and the corresponding true population values are 

presented on the horizontal axis of Figures 10 – 11.  
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Figure 10. Means of the 1,000 replicated uncorrected and corrected alpha 

estimates across 432 simulation conditions for dichotomous responses. 
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Figure 11. Means of the 1,000 replicated percentage biases yielded by the 

uncorrected and corrected alphas across 432 simulation conditions for 

dichotomous responses. 
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As in the continuous responses, the Case I and III corrected alphas 

improved the performance noticeably, and the former outperformed the latter. For 

Case I, the percentage biases ranged from -8.7% to 18.2%, with a mean of 4.8%. 

Of the 432 conditions, 339 (or 78.5%) resulted in a bias within the stringent 

criterion of    , and 406 (or 94.0%) within the lenient level of       The 

overall MAPE was 3.4% within the nominal level of 10%. For Case III, the mean 

percentage bias was -7.9% with a range of [-40.3%, 1.6%]. Of the 432 conditions, 

only 190 (or 44.0%) produced a bias within the stringent criterion, and 317 (or 

73.4%) yielded a bias inside the lenient region. A summary of the results yielded 

by the uncorrected and corrected alphas is provided in Table 5. 

 

Table 5. Summary of the percentage biases obtained by the uncorrected and 

corrected alphas for dichotomous responses. 

Alpha Mean  SD [Max, Min] MAPE 

# within 

 5% 

# within 

 10% 

UnCor -43.1% 29.1% [-136.2%, -3.3%] 43.1% 13(3.0%) 48(11.1%) 

Case I 0.3% 4.8% [-8.7%, 18.2%] 3.4% 339(78.5%) 406(94.0%) 

Case III -7.9% 8.0% [-40.3%, 1.6%] 8.0% 190(44.0%) 317(73.4%) 

Note: UnCor is uncorrected. # indicates number of conditions  

 

This section discusses the specific effect of each factor on the findings. 

Given that the item number and restricted sample size did not show obvious 

effects on the uncorrected alpha, the results are presented based on a total of 48 

conditions (i.e., 3 population alpha levels by 2 correlation levels between   and 

   by 2 correlation levels between   and Y by 4 levels of selection ratio), as 
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shown in Table 6. The effects of the four factors remained the same as in the 

results obtained from the continuous response, and hence details are not repeated 

here.  

 

Table 6. Means of the 1,000 replicated percentage biases obtained by the 

uncorrected alpha across 60 selected simulation conditions when the item number 

was fixed at 10 and restricted sample size was fixed at 50 for dichotomous 

responses. 

  

           7         

          
    .6     

    .6     
    .6 

.3 .3 -.572 -.750 -.471 -.728 -.392 -.667 

 

.5 -.402 -.616 -.323 -.527 -.208 -.364 

 

.7 -.307 -.441 -.236 -.293 -.104 -.246 

 

.9 -.192 -.166 -.095 -.120 -.058 -.075 

.6 .3 -1.032 -.991 -.992 -.835 -.757 -.794 

 

.5 -.880 -.796 -.639 -.564 -.438 -.461 

 

.7 -.580 -.456 -.417 -.365 -.219 -.221 

 

.9 -.198 -.215 -.133 -.135 -.052 -.062 
 

Note.    is the population alpha,     is the population correlation between Z and 

Y.   is the selection ratio.     
 is the population correlation between Z and   . 

Biases that are outside the nominal range of      are presented in bold. 

 

Regarding the Case I corrected alpha, most of the conditions produced a 

percentage bias within the lenient level of     , as shown in Table 7. Only 

some minor exceptions could be found when the population alpha was small 
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(i.e., .70), item number was small (i.e., 5), selection ratio was stringent (i.e., .30), 

and the correlations between Z and Y (and Z and   ) were large. As noted above, 

these levels are regarded as the most challenging conditions in this study, but the 

biases are still quite reasonable (with a maximum of 17.9%). Note that the bias 

appeared to be slightly positive when the selection ratio became more stringent. 

Similar patterns of relationships were found for the Case III corrected alpha, as 

shown in Table 8; however, the magnitudes of the biases were slightly larger, and 

the positive biases found in Case I disappeared even when the selection ratio was 

stringent. 
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Table 7. Means of the 1,000 replicated percentage biases obtained by the Case I 

alpha across 48 selected simulation conditions when the population alpha = .58 

and restricted sample size = 50 for dichotomous responses. 

   

k = 5 k = 10 k = 20 

              
    .6     

    .6     
    .6 

.58 .3 .3 .085 .131 .051 .073 .029 .039 

  

.5 -.004 .009 -.001 .000 -.003 -.004 

  

.7 -.040 -.063 -.027 -.035 -.021 -.020 

  

.9 -.054 -.053 -.032 -.030 -.021 -.021 

 

.6 .3 .179 .162 .080 .081 .038 .037 

  

.5 .000 .001 -.003 -.003 -.002 -.003 

  

.7 -.084 -.080 -.043 -.040 -.023 -.023 

  

.9 -.069 -.050 -.035 -.035 -.021 -.024 

 

Note.    is the population alpha,     is the population correlation between Z and 

Y.   is the selection ratio.     
 is the population correlation between Z and   , k 

is item number. Biases that are outside the nominal range of      are presented 

in bold. 
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Table 8. Means of the 1,000 replicated percentage biases obtained by the Case III 

alpha across 48 selected simulation conditions when the population alpha = .58 

and restricted sample size = 50 for dichotomous responses. 

   

k = 5 k = 10 k = 20 

             
    .6     

    .6     
    .6 

.58 .3 .3 -.147 -.263 -.155 -.147 -.022 -.086 

  

.5 -.104 -.139 -.081 -.106 -.042 -.080 

  

.7 -.052 -.065 -.039 -.088 -.074 -.053 

  

.9 -.045 -.024 -.053 .005 -.038 -.029 

 

.6 .3 -.237 -.264 -.147 -.124 -.082 -.085 

  

.5 -.203 -.175 -.108 -.111 -.062 -.044 

  

.7 -.093 -.079 -.055 -.053 -.050 -.061 

  

.9 -.025 .004 -.015 -.034 -.020 -.052 

 

Note.    is the population alpha,     is the population correlation between Z and 

Y.   is the selection ratio.     
 is the population correlation between Z and   , k 

is item number. Biases that are outside the nominal range of      are presented 

in bold. 

 

Summary  

The uncorrected alpha was found to be generally inaccurate. The largest 

percentage bias was found to be -99.7% (or alpha = .002) for continuous 

responses, and it was -136.2% (or alpha = -.185) for dichotomous responses; this 

reflects a very poor reliability but it is in fact due to a restricted sample. The bias 

became less problematic when the true alpha increased gradually and the selection 

ratio became less stringent. By contrast, the two corrected alphas performed 
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desirably, and comparatively, the Case I correction procedure yielded slightly 

more accurate estimates.  

Results for Goal 2: Evaluating the Confidence Intervals in Single Study 

Continuous Responses  

Uncorrected CIs. As shown in Figure 12, the bootstrap CIs surrounding the 

uncorrected alpha were generally inadequate due to an inaccurate point estimate 

of the uncorrected alpha. The mean coverage was .438 for BSI, .208 for BPI, 

and .252 for BCaI. The number of conditions that produced a coverage probability 

within the stringent criterion of [.922, .968] was 47 (or 8.7%) for BSI, and 0 for 

either BPI or BCaI. Even with the lenient cutoff of .855, the number of conditions 

became 78 (or 14.4%) for BSI, 3 (or .6%) for BPI, and 8 (or 1.5%) for BCaI. 

 



87 

 

Figure 12. Means of the 1,000 replicated coverage probabilities obtained by the 

uncorrected confidence intervals across 540 simulation conditions for continuous 

responses. 
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with a mean of .892. For BPI, they ranged from .624 to .966, with a mean of .883. 

For BCaI, they ranged from .494 to .971, with a mean of .869. These results are 

similar to the average coverage probability (i.e., .89) yielded by the parametric CI 

surrounding Hunter et al.’s (2006) Case IV corrected correlation (Schmidt, 

personal communication, October 18
th

, 2010). The number of conditions that 

produced a coverage probability within the stringent criterion [.922, .968] was 

201 (or 37.2%) for BSI, 171 (or 31.7%) for BPI, and 129 (or 23.9%) for BCaI. 

However, if we use a more lenient cutoff of .855, the results seem to behave more 

reasonably. For BSI, of the 540 conditions, 447 (or 82.8%) produced a coverage 

probability that exceeded this criterion. For BPI, 410 (or 75.9%) conditions 

passed this benchmark. For BCaI, 371 (or 68.7%) conditions were beyond this 

criterion. These findings are similar to Cui and Li’s (2012) simulation, in which 

the BSI surrounding the alpha (when it was not subject to range restriction) 

achieved more adequate coverage probabilities than the BPI and BCaI. Note that 

the sample in that study was not subject to range restriction. Hence, the current 

findings add to the literature that the BSI is also accurate when it is used to 

resample a restricted sample and apply the correction procedure in order to 

construct the CI for the bias-corrected alpha. 
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Figure 13. Means of the 1,000 replicated coverage probabilities obtained by the 

Case I corrected confidence intervals across 540 simulation conditions for 

continuous responses. 
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however, their performances were slightly poorer than those of the CIs 

surrounding the Case I corrected alpha, as shown in Figure 14. The mean 

coverage probability was .883 for BSI, .854 for BPI, and .852 for BCaI. For BSI, 

of the 540 conditions, 193 (or 35.7%) resulted in a coverage probability within the 

stringent interval [.922, .968]. For BPI and BCaI, only 85 (or 15.7%) and 92 (or 

17.0%) conditions, respectively, produced a coverage probability that fell inside 

this interval. Likewise, if we use a more lenient criterion (i.e., .855), BSI appears 

to be more adequate, with 390 (or 72.2%) conditions within this criterion. 

Moreover, the number of acceptable conditions becomes 321 (or 59.4%) for BPI, 

and 310 (or 57.4%) for BCaI. 
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Figure 14. Means of the 1,000 replicated coverage probabilities obtained by the 

Case III corrected alpha across 540 simulation conditions for continuous 

responses. 
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the bootstrap CIs surrounding the corrected alpha—especially the BSI for the 

Case I and III corrected alphas—were found to be more adequate across the 

simulation conditions. Details of these results are presented in Table 9. 

 

Table 9. Summary of the coverage probabilities yielded by different bootstrap CIs 

when items were continuously scored.  

 CI  Alpha Mean 

 

 

SD [Min, Max] 

# within 

[.922, .968] 

# beyond 

[.855] 

BSI UnCor .438 .330 [0, .970] 47(8.7%) 78(14.4%) 

 

Case I .892 .058 [.613, .968] 201(37.2%) 447(82.8%) 

 

Case III .883 .076 [.565, .986] 193(35.7%) 390(72.2%) 

BPI UnCor .208 .253 [0, .879] 0(0%) 3(0.6%) 

 

Case I .883 .064 [.624, .966) 171(31.7%) 410(75.9%) 

 

Case III .854 .081 [.376, .971] 85(15.7%) 321(59.4%) 

BCaI UnCor .252 .272 [0, .899] 0(0%) 8(1.5%) 

 

Case I .869 .076 [.494, .971] 129(23.9%) 371(68.7%) 

 

Case III .852 .083 [.380, .979] 92(17.0%) 310(57.4%) 

Note: UnCor is uncorrected. # is number of conditions. The more adequate CIs 

for Case I and III are presented in bold. 

 

Regarding the specific effects, some factors did not make an obvious impact 

on the coverage probability. Given that the Case I corrected BSI yielded the most 

accurate results, this section presents the findings based on this CI. Specifically, 

the restricted sample size and selection ratio did not show specific effects on the 

CI performance. The remaining factors only demonstrated minimal impact on the 
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coverage probability, as shown in Table 10. Three key findings emerged. First, 

when the item number increased from 5 to 20, the coverage probability tended to 

increase gradually. This finding is reasonable because more items are expected to 

improve the precision and accuracy of the reliability when other factors are held 

constant. Second, when the alpha increased from .7 to .9, the coverage probability 

decreased slightly. This was probably due to the too-narrow confidence width for 

a large (or very precise) alpha value, which affected the probability of spanning 

the true population value. Third, when the correlations between Z and Y (or Z and 

   or both) increased, the coverage probabilities tended to decrease slightly; this 

was due to the more stringent or challenging selection procedure. Generally, the 

average coverage probabilities in each of the 36 aggregated conditions did not 

differ substantially.   
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Table 10. Means of the 1,000 replicated coverage probabilities obtained by the 

Case I corrected BSI in 36 aggregated simulation conditions for continuous 

responses. 

  

k = 5 k = 10 k = 20 

Alpha         
    .6 .3 .6 .3 .6 

.70 .30 .893 .897 .900 .881 .915 .916 

 

.60 .886 .882 .909 .907 .928 .909 

.80 .30 .900 .884 .888 .914 .923 .919 

 

.60 .849 .846 .914 .893 .931 .917 

.90 .30 .871 .859 .847 .885 .887 .905 

 

.60 .878 .859 .869 .870 .905 .894 

Note.   is the item number.     is the population correlation between Z and Y.  

    
 is the population correlation between Z and   . 

 

Confidence width. The fluctuations of the widths were due to the factors 

evaluated in this dissertation. Specifically, a decrease in the width was due to a) 

an increased item number, b) an increased sample size, c) an increased selection 

ratio, and d) a larger coefficient alpha. These patterns remain the same for the 

dichotomous data, and hence they will not be repeated in the following sections. 

Regarding the uncorrected CIs, their confidence widths were generally wider than 

those of the corrected CIs, as shown in Table 11. For example, the widths ranged 

from .070 to 1.385 for the uncorrected BSI. The exceptionally wide widths were 

not meaningful in evaluating the sampling error of the alpha, and these results 

were mainly found in conditions with a small number of items, a small restricted 

sample size, and a very stringent selection ratio. By contrast, the Case I CIs 
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produced the most precise (or narrowest) widths. For instance, the Case I 

corrected BSI produced coverage widths ranging from .013 to .179, with a mean 

of .057. 

 

Table 11. Summary of the confidence widths yielded by different bootstrap CIs for 

continuous responses. 

 

  Mean SD Min  Max 

BSI Uncorrected .420 .239 .070 1.385 

 

Case I .057 .033 .013 .179 

 

Case III .223 .158 .027 .928 

BPI Uncorrected .415 .234 .070 1.360 

 

Case I .059 .033 .013 .178 

 

Case III .219 .152 .027 .888 

BCaI Uncorrected .379 .206 .067 1.230 

 

Case I .059 .035 .013 .191 

 

Case III .213 .144 .027 .858 

Note. The more adequate CIs for Case I and III are presented in bold. 

 

Dichotomous Responses  

As in the results obtained from the continuous responses, the bootstrap CIs 

surrounding the uncorrected alpha were generally inadequate due to an inaccurate 

point estimate of the uncorrected alpha (see Figure 15). The mean coverage 

probability was .488 for BSI, .302 for BPI, and .337 for BCaI, and they were not 

desirable.  By contrast, the two corrected CIs were more accurate than the 

uncorrected CI. Comparatively, the Case III corrected BSI was the most accurate, 

as shown in Figures 16 and 17. The coverage probabilities ranged from .575 

to .996, with a mean of .905. Of the 432 conditions, 353 conditions (or 81.7%) 
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were larger than the lenient criterion of .855. However, it may not be realistic for 

one to know the selection variable Z that causes range restriction on the test. The 

best alternative for the CI surrounding the Case I alpha was its BPI, with a mean 

coverage probability of .859, and a range of [.548, .997]. Of the 432 conditions, 

259 (or 60.0%) produced a coverage probability beyond the lenient criterion. 

Details of the results for the other methods are presented in Table 12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 

 

Figure 15. Means of the 1,000 replicated coverage probabilities obtained by the 

uncorrected confidence intervals across 432 simulation conditions for 

dichotomous responses. 
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Figure 16. Means of the 1,000 replicated coverage probabilities obtained by the 

Case I corrected confidence intervals across 432 simulation conditions for 

dichotomous responses. 
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Figure 17. Means of the 1,000 replicated coverage probabilities obtained by the 

Case III corrected confidence intervals across 432 simulation conditions for 

dichotomous responses. 
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Table 12. Summary of coverage probabilities yielded by different bootstrap CIs 

when items were dichotomously scored 

 CI  Alpha Mean 

 

SD [Min, Max] 

# within 

[.922, .968] 

# beyond 

[.855] 

BSI UnCor .488 .370 [0, 1] 46(10.6%) 105(24.3%) 

 

Case I .803 .121 [.484, .993] 56(13.0%) 147(34.0%) 

 

Case III .905 .069 [.575, .996] 140(32.4%) 353(81.7%) 

BPI UnCor .302 .317 [0, .953] 3(0.7%) 21(4.9%) 

 

Case I .859 .101 [.548, .997] 93(32.4%) 259(60.0%) 

 

Case III .857 .078 [.509, .992] 60(13.9%) 275(63.7%) 

BCaI UnCor .337 .330 [0, .963] 6(1.4%) 39(9.0%) 

 

Case I .718 .177 [.286, 1] 41(9.5%) 111(25.7%) 

 

Case III .855 .088 [.455, .990] 82(19.0%) 259(60.0%) 

Note: UnCor is uncorrected. # is number of conditions. The results of the more 

adequate CI for Case I and III, respectively, are presented in bold. 

 

Note that data categorization tended to decrease the accuracy of the 

bootstrap CIs, especially for the Case I corrected alpha. One possible reason is 

that the Case I correction depends on the accuracy of the ratio of the restricted to 

unrestricted SD, but data categorization may lead to a small and unstable 

restricted SD. As shown in Table 13, the coverage probability became smaller 

with a more stringent selection ratio, which is regarded as the most influential 

factor on CI performance for the Case I corrected alpha. For Case III, the 

selection ratio had an adverse effect on the coverage probability when the true 

alpha value was large (i.e., .82). To summarize, a more stringent selection ratio 

decreases the accuracy of the Case I corrected CIs; however, the Case III 
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corrected CI is relatively robust to this factor when the true alpha value is small to 

moderate. 

 

Table 13. Means of the 1,000 replicated coverage probabilities obtained by the 

Case I and III corrected BSI in 32 selected conditions for dichotomous responses. 

   

 k = 5  

       
        

    

Alpha       Case I Case III Case I Case III 

.58 .3 .3 .768 .981 .845 .959 

  

.5 .976 .956 .908 .982 

  

.7 .946 .967 .887 .990 

  

.9 .947 .948 .881 .919 

 

.6 .3 .686 .963 .712 .946 

  

.5 .981 .947 .939 .984 

  

.7 .887 .937 .880 .925 

  

.9 .917 .933 .902 .855 

.82 .3 .3 .694 .830 .679 .809 

  

.5 .965 .973 .957 .881 

  

.7 .941 .934 .904 .916 

  

.9 .981 .943 .958 .892 

 

.6 .3 .810 .718 .777 .646 

  

.5 .952 .855 .985 .925 

  

.7 .912 .952 .894 .989 

  

.9 .884 .880 .936 .851 

 

Note.   is the item number.     is the population correlation between Z and Y.  

    
 is the population correlation between Z and   ,   is the selection ratio. 

Coverage probabilities that are smaller than the lenient criterion of .855 are 

presented in bold. 



102 

 

Confidence width. As in the continuous data, similar patterns of confidence 

widths were obtained for the dichotomous data, as shown in Table 14. Regarding 

the uncorrected CIs, their confidence widths were generally wider than the 

corrected CIs, as shown in Table 7. For example, the widths ranged from .105 to 

1.423 for the uncorrected BSI. The exceptionally wide widths were not 

meaningful in evaluating the sampling error of the alpha. By contrast, the Case I 

CIs produced the most precise (or narrowest) widths. For instance, the Case I 

corrected BPI produced a mean width of .070, and they ranged from .018 to .190.  

 

Table 14. Summary of the confidence widths yielded by different bootstrap CIs 

when items were dichotomously scored. 

 

  Mean SD Min  Max 

BSI Uncorrected .522 .262 .105 1.423 

 

Case I .070 .042 .018 .190 

 

Case III .351 .203 .050 1.133 

BPI Uncorrected .519 .258 .105 1.376 

 

Case I .070 .041 .018 .190 

 

Case III .349 .199 .050 1.091 

BCaI Uncorrected .484 .232 .102 1.282 

 

Case I .067 .041 .018 .186 

 

Case III .344 .195 .050 1.093 

Note. The more adequate CIs for Case I and III are presented in bold. 

 

Summary  

The BSIs constructed for the Case I and III corrected alphas appeared to be 

reasonable when the items were continuously scored. The mean coverage 

probability was .892 for Case I, and it was .883 for Case III. These results were 
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better than the bootstrap CIs surrounding the uncorrected alpha with a maximum 

mean coverage probability of .438 only yielded by the BSI. When the items were 

dichotomously scored, the Case III BSI and Case I BPI seemed to be reasonable. 

Monte Carlo 2 – Meta-Analysis 

This section presents the results for the uncorrected and corrected 

coefficient alphas, as well as for their CIs, in a meta-analytic study. These results 

seek to evaluate biases that come from the uncorrected alpha, and to examine 

whether or not the two corrected alphas and their associated CIs can improve the 

accuracy of these measures. As in Study 1, given that the patterns of the results 

did not differ across the three data conditions (i.e., parallel, tau-equivalent, and 

congeneric data), the results based on the most relaxed congeneric condition are 

discussed. Thus, a total of 480 conditions (i.e., 2 levels of item number by 2 levels 

of restricted sample size by 5 levels of selection ratio by 3 levels of alpha by 2 

levels of correlation between Z and    by 2 levels of correlation between Z and Y 

by 2 levels of number of studies) are presented in the following sections. 

Moreover, the findings are discussed based on the continuous and dichotomous 

responses, respectively. 

Results for Goal 3: Evaluating the Mean Alpha in Meta-Analysis  

Continuous Responses 

Figure 18 shows the means of the 1,000 replicated percentage biases yielded 

by the uncorrected and corrected mean alphas across 480 simulation conditions. 

As in Study 1, the biases of the uncorrected mean alpha were generally 

undesirable. They ranged from -86.4% to -3.7%, with a mean of -26.6%. Of the 
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480 conditions, only 103 (or 21.5%) were within the lenient level of     . By 

contrast, the two corrected mean alphas were highly accurate, and their biases 

were close to zero. Specifically, the Case I corrected mean alpha yielded a mean 

bias of -0.4%, with a range of -1.2% to 0.1%. All of the 480 conditions yielded a 

bias that fell within the stringent level of    . The overall MAPE was 0.4%, 

which was much smaller than the nominal level of 10%. The Case III corrected 

mean alpha also achieved highly accurate results, and all of the 480 conditions 

produced a percentage bias within the stringent level of    . These biases 

ranged from -1.2% to 0.7%, with a mean of -0.3%. The overall MAPE was 0.4%, 

which was smaller than the nominal level of 10%. Details of these results are 

presented in Table 16. 
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Figure 18. Means of the 1,000 replicated alphas and percentage biases obtained 

by the uncorrected and corrected alpha in meta-analysis across 480 simulation 

conditions for continuous responses. 
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Table 15. Summary of the percentage biases obtained by the uncorrected and 

corrected mean alphas in meta-analysis for continuous responses. 

Alpha 

Mean 

Bias 

 

SD [Max, Min] MAPE 

# within 

 5% 

# within 

 10% 

UnCor -26.6% 19.0% [-86.4%, -3.7%] 13.5% 24(5%) 103(21.5%) 

Case I -0.4% 0.2% [-1.2%, 0.1%] 0.4% 480(100%) 480(100%) 

Case III -0.3% 0.3% [-1.2%, 0.7%] 0.4% 480(100%) 480(100%) 

Note: UnCor is uncorrected. # is number of conditions. 

 

Regarding the specific effects of each factor on the biases, given that the 

restricted sample size and the number of studies did not show any obvious 

relationships with the uncorrected alpha, the results are discussed based on 

restricted sample size =     and number of studies = 15, as shown in Table 16. 

Moreover, the patterns of relationships repeated for increasing levels of alpha, and 

thus the results are fixed at alpha = .7. Three key findings were obtained. First, 

when the selection ratio became more stringent (or smaller), the uncorrected mean 

alpha became smaller (i.e., more downward biased). As in a single study, a more 

stringent selection process led to a more homogenous sample, which could not 

represent the scores in the original unrestricted sample appropriately. Second, 

when the correlations between Z and Y (or Z and    or both) became stronger, the 

uncorrected mean alpha became smaller. This was due to the stronger range-

restriction effect from Z to the true and observed scores, and hence a more 

homogenous sample. Third, the downward bias became slightly more severe with 

an increasing number of items. This result was unexpected at first because an 

increase in this number might help improve the accuracy of reliability evaluation. 
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However, upon further examination, one may find that the item correlation matrix 

tends to be more adversely affected by range restriction for twenty items than five 

items, when the alpha is held constant. For instance, when the alpha value was .70, 

selection ratio was .10, stringent correlations (i.e., .60) between Z and Y (and   ), 

restricted sample size was 100, and item number was fixed at 5, the item 

correlations could range from .24 to .39 for an unrestricted sample, and they 

ranged from -.05 to .33 for a restricted sample. By contrast, given the same 

conditions except with the item number equaled 20, the item correlations ranged 

from .09 to .33 for an unrestricted sample, and they ranged from -.27 to .27 for a 

restricted sample. In this sense, the low item correlations in a longer test (e.g., 

from .09 to -.27) were more adversely affected by range restriction than those in a 

shorter test (e.g., from .24 to -.05). This resulted in a smaller alpha value for a 

long test than a short test, when a sample is subject to range restriction. This 

situation seemed to be more problematic in a meta-analytic study than a single 

study, given that the item-correlation matrix in a long test in each single study can 

have a chance to be much reduced. Further examination is needed to investigate 

this pattern. 
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Table 16. Means of the 1,000 replicated uncorrected mean alpha values across 40 

selected simulation conditions when the population alpha = .7, restricted sample 

size = 100, and number of study = 15 for continuous responses. 

  
          

          
    .6      

    .6 

.3 .1 .482 .293  .334 .219 

 

.3 .520 .388  .421 .342 

 

.5 .555 .465  .483 .436 

 

.7 .601 .546  .558 .530 

 

.9 .638 .614  .617 .601 

.6 .1 .209 .128  .099 .108 

 

.3 .339 .283  .266 .265 

 

.5 .438 .396  .384 .393 

 

.7 .530 .510  .504 .509 

 

.9 .604 .594  .589 .596 
 

Note.   is the item number.     is the population correlation between Z and Y.  

    
 is the population correlation between Z and   ,   is the selection ratio. 

 

Dichotomous Responses 

As in Study 1, the selection ratio of .10 was too challenging for the 

execution of the simulation study, so this level was dropped, resulting in 384 

simulation conditions. Given that the patterns for the uncorrected and corrected 

mean alphas across 384 simulation conditions were similar to those for the 

continuous data (i.e., Figure 18), the results obtained from the dichotomous scores 

can be simplified and summarized in Table 17. The uncorrected mean alpha 

estimates, likewise, were inaccurate. The percentage biases ranged from -93.65% 

to 4.0%, with a mean of -37.1%. The overall absolute bias (MAPE = 37.1%) was 

also inappropriate outside the nominal level of 10%. Comparing the two corrected 
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cases, the Case I mean alpha yielded slightly better results. The percentage biases 

ranged from -8.0% to 11.8%, with a mean of 1.8%. The overall absolute MAPE 

was 3.7%, which was within the nominal level of 10%. Of the 384 conditions, 308 

(or 80.2%) were within the stringent nominal level of  5%. The Case III mean 

alpha also produced good results, with the percentage biases ranging from -34.3% 

to 4.7%, and the mean was -5.9%. The overall absolute bias MAPE was 6.1%, 

which was also inside the nominal level of 10%. Of the 384 conditions, 231 (or 

60.2%) were within the stringent nominal level of  5%. 

 

Table 17. The performance of the uncorrected and corrected mean alpha 

estimates in meta-analysis for dichotomous responses. 

Alpha 

Mean 

Bias 

 

SD [Max, Min] MAPE 

# within 

 5% 

# within 

 10% 

UnCor -37.1% 22.4% [-93.6%, -4.0%] 37.1% 4(1.0%) 36(9.4%) 

Case I 1.8% 0.6% [-8.0%, 11.8%] 3.7% 308(80.2%) 348(90.6%) 

Case III -5.9% 1.7% [-34.3%, 4.7%] 6.1% 231(60.2%) 311(81.0%) 

Note: UnCor is uncorrected. # is number of conditions. 

 

When evaluating the impact of each factor on the alpha estimate, the 

selection ratio was found to be the most influential factor, as shown in Table 18. 

As predicted, increasing the selection ratio decreased the restricted alpha value. In 

addition, when the correlation between the selection construct Z and    became 

stronger, the downward bias became more severe. This can be explained by a 

stronger relationship between the selection variable and the variable of interest 

should lead to a more homogeneous sample, leading to a smaller mean alpha 
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estimate. Regarding the performance of the Case I and III corrected mean alphas, 

both of them became more accurate when the selection ratio became less stringent 

or the correlation between Z and    became weaker, or both. 

 

Table 18. Means of 1,000 replicated percentage biases of the uncorrected and 

corrected mean alphas for dichotomous data with number of studies fixed at 15, 

alpha = .7, item number = 5, and mean restricted sample size of 100 for 

dichotomous responses. 

    Alpha Ratio     
        

    

Uncorrected .3 -.441 -.789 

 

.5 -.313 -.559 

 

.7 -.235 -.315 

 

.9 -.097 -.143 

Case I .3 .106 .127 

 

.5 .034 .035 

 

.7 -.040 -.011 

 

.9 -.013 -.012 

Case III .3 -.126 -.230 

 

.5 -.045 -.107 

 

.7 -.045 -.027 

 

.9 .009 .014 

 

Note.     
 is the population correlation between Z and   . Biases that are outside 

the nominal range of      are presented in bold. 

 

Summary  

 The uncorrected mean alpha was generally undesirable. The largest 

percentage bias was found to be -86.4% for continuous responses, and it was        
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-93.6% for dichotomous responses. The bias became less problematic when the 

true alpha increased gradually and the selection ratio became less stringent. 

Moreover, it tended to be slightly smaller when the number of items decreased 

from 20 to 5; this pattern needs further examination. By contrast, the two 

corrected alphas were accurate, and the Case I correction procedure yielded 

slightly better results when the items were dichotomously scored. 

Results for Goal 4: Evaluating the Confidence Intervals in Meta-Analysis  

Continuous Responses 

Coverage probability. The bootstrap CIs surrounding the Case I and III 

corrected mean alphas appeared to be more adequate than the non-parametric CIs, 

as shown in Figures 19 and 20. For Case I, the BSI appeared to be more adequate. 

The coverage probabilities yielded by the Case I BSI ranged from .702 to .970, 

with a mean of .897. Of the 480 conditions, 189 (or 39.4%) were within the 

stringent criterion of [.922, .968], and 332 (or 69.2%) were larger than the lenient 

level of .855. For Case III, the BSI produced the coverage probabilities ranging 

from .732 to .989, with a mean of .893. Of the 480 conditions, 192 (or 40.0%) 

were within the stringent criterion, and 390 (or 81.3%) were higher than the 

lenient criterion. Details of the results yielded by the other methods are presented 

in Table 19.  
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Figure 19. Means of the 1,000 replicated coverage probabilities yielded by the 

Case I bootstrap CIs across 480 conditions for continuous responses. 
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Figure 20. Means of the 1,000 replicated coverage probabilities yielded by the 

Case III bootstrap CIs across 480 conditions for continuous responses. 
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Table 19. Means of 1,000 replicated coverage probabilities of the CIs 

surrounding the uncorrected and corrected mean alphas in meta-analysis for 

continuous responses. 

    Mean 

 

 

SD [Min, Max] 

# within 

[.922, .968] 

 

# beyond 

[.855] 

BSI UnCor .005 .024 [0, .320] 0(0%) 0(0%) 

 

Case I .897 .150 [.702,.970] 192(40.0%) 332(69.2%) 

 
Case III .893 .110 [.732, .985] 192(40.0%) 390(81.3%) 

BPI UnCor .003 .018 [0, .260] 0(0%) 0(0%) 

 

Case I .851 .148 [.660, .980] 89(18.5%) 255(53.1%) 

 

Case III .879 .111 [.651, .989] 136(28.3%) 353(73.5%) 

BCaI UnCor .003 .016 [0, .230] 0(0%) 0(0%) 

 

Case I .828 .147 [.651,.971] 50(16.4%) 194(40.4%) 

 

Case III .868 .111 [.623, .987] 107(22.3%) 320(66.7%) 

Note: UnCor is uncorrected. # is number of conditions. The more adequate CI for 

Case I and III are presented in bold. 

 

To summarize, the BSIs surrounding the Case I and III corrected mean 

alphas appeared to be more adequate than other methods, given that their mean 

coverage probabilities (i.e., .897 and .893) were closer to the ideal value (i.e., .95), 

and the percentage of conditions within the lenient criterion were acceptable (i.e., 

69.2% and 81.3%). Moreover, these methods outperformed the CIs surrounding 

the uncorrected mean alpha with 0% of the conditions that fell within the criterion. 

These results are also comparable to a Monte Carlo study on the performance of 

the CIs surrounding the corrected mean correlation (Li et al., in press). In that 

study, the percentage of conditions that fell within the stringent criterion was 

45.4% for the BSI, whereas these values are 40.0% for both the Case I and III 

BSIs in the present study. If we evaluate the performance based on a more lenient 
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criterion, both BSIs seem to be more reasonable, with 69.2% acceptable 

conditions for Case I and 81.3% for Case III. 

Confidence width. Given that a meta-analysis involves a much larger 

sample size than a single study, the sampling error and the confidence width are 

expected to be narrower, and this may affect the coverage of the true reliability. 

As shown in Table 20, the Case I BSI produced a mean width of .0027, with a 

range (.0005, .0060). The Case III BSI yielded a mean width of .0032, with a 

range (.0008, .0082). Because the Case I and III BSIs produced reasonable 

coverage probabilities of the true alpha values, these widths provided highly 

precise evaluation of the sampling error of the mean alpha level of a test in a 

research domain. Regarding the specific effects, as in Study 1, a decrease in the 

width was due to a) an increased item number, b) an increased sample size, c) an 

increased selection ratio, and d) a larger coefficient alpha.  

 

Table 20. Summary of the confidence widths of the CIs surrounding the 

uncorrected and corrected mean alphas for continuous responses. 

  

Mean SD Min Max 

BSI Uncorrected .0073 .0027 .0023 .0176 

 

Case I .0026 .0012 .0005 .0060 

 
Case III .0032 .0015 .0008 .0082 

BPI Uncorrected .0073 .0027 .0023 .0176 

 

Case I .0026 .0012 .0005 .0060 

  Case III .0032 .0015 .0008 .0082 

BCaI Uncorrected .0744 .0279 .0227 .1817 

 

Case I .0259 .0124 .0048 .0613 

  Case III .0327 .0153 .0079 .0839 

Note: The more adequate CI for Case I and III are presented in bold. 
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Dichotomous Responses  

Coverage probability. As in the continuous responses, the uncorrected 

mean alpha estimates produced very poor results, as shown in Table 21. Generally, 

the bootstrap CIs surrounding the uncorrected mean alpha led to a zero percentage 

of the conditions within the nominal range of [.922, .968]. These findings were 

even worse than those in the continuous data, given that the dichotomous data led 

to even narrower widths, which adversely affected the coverage of the true 

reliability. By contrast, the bootstrap CIs surrounding the Case I and III corrected 

mean alphas were better than the uncorrected CIs; however, they were less 

accurate than those found in the continuous data. The mean coverage probabilities 

were .816 for the Case I BSI, and .805 for the Case III BSI. The proportions of 

conditions within the nominal range of [.922, .968] were 27.1% and 26.6%, 

respectively; they became 66.4% and 67.2% when the lenient cutoff of .855 was 

used. As noted above, this was due to an extremely narrow width that came from 

the dichotomous scores and the large sample size in meta-analysis; this will be 

discussed in the next section. 
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Table 21. Coverage probabilities of the CIs surrounding the uncorrected and 

corrected mean alphas in meta-analysis for dichotomous responses. 

  

 

Mean 

 

 

SD [Min, Max] 

# within 

[.922, .968] 

 

# beyond 

[.855] 

BSI UnCor .003 .012 [0, .531] 0(0%) 0(0%) 

 
Case I .816 .108 [.210, .941] 104(27.1%) 255(66.4%) 

  Case III .805 .126 [.203, .944] 102(26.6%) 258(67.2%) 

BPI UnCor .004 .045 [0, .532] 0(0%) 0(0%) 

 
Case I .693 .113 [.202, .937] 93(24.2%) 215(56.0%) 

  Case III .682 .128 [.213, .938] 88(22.9%) 217(56.5%) 

BCaI UnCor .004 .032 [0, .530] 0(0%) 0(0%) 

 
Case I .660 .112 [.252, .867] 25(6.5%) 48(12.5%) 

  Case III .673 .111 [.221, .871] 12(3.1%) 50(13.0%) 

Note: UnCor is uncorrected. # is number of conditions. The more adequate CI for 

Case I and III are presented in bold. 

 

Confidence width. The relatively poor coverage probabilities can be 

explained in part by the associated confidence widths in meta-analysis. Again, the 

width of the uncorrected mean alpha was wider than the corrected mean alpha. 

The non-parametric bootstrap CIs surrounding the Case I and III corrected mean 

alphas produced the narrowest widths. Given that the BSIs for the Case I and III 

corrected mean alphas yielded acceptable coverage probabilities (see Table 22), 

these narrow confidence widths appeared to provide precise evaluation of the 

sampling error of the mean alpha in a meta-analytic study. However, one still 

needs to note that these results were still less desirable than those obtained from 

the continuous responses, and their adequacy still needs further examination.  
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Table 22. Confidence widths yielded by the CIs surrounding the uncorrected and 

corrected mean alphas in meta-analysis for dichotomous responses. 

  

Mean SD Min Max 

BSI Uncorrected .0034 .0012 .0000 .0075 

 
Case I .0014 .0006 .0005 .0028 

  Case III .0018 .0007 .0005 .0036 

BPI Uncorrected .0035 .0011 .0015 .0075 

 

Case I .0014 .0006 .0005 .0027 

 

Case III .0018 .0007 .0005 .0036 

BCaI Uncorrected .1182 .0368 .0494 .2565 

 

Case I .0462 .0193 .0156 .0913 

  Case III .0609 .0252 .0184 .1238 

Note: The more adequate CI for Case I and III are presented in bold. 

 

Summary 

The bootstrap CIs, especially the BSI, constructed for the corrected mean 

alpha were more reasonable than those built for the uncorrected mean alpha. In 

fact, the coverage probability was highly inaccurate for the CIs surrounding the 

uncorrected mean alpha, and the number of conditions within the lenient criterion 

was 0%. On the other hand, the CIs surrounding the corrected mean alpha in 

meta-analysis were slightly less accurate than those in single study. This was in 

part due to the more precise (or narrower) confidence width in meta-analysis than 

single study, and hence the coverage of the ideal alpha value became more 

problematic. Better procedures for constructing the CIs are needed especially 

when the items are dichotomously scored. 

Conclusion 

The results showed that the uncorrected alphas and the associated CIs could 

be highly inaccurate in either a single or meta-analytic research situation. In this 
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sense, the alpha values reported in the published articles may be larger than 

researchers thought; this affects the accuracy of reliability evaluation of a test or 

scale. Alternatively, the results showed that the Case I and III correction 

procedures yielded accurate alpha estimates. Moreover, the bootstrap CIs 

constructed for the corrected alpha led to good results in single study and 

reasonable results in meta-analysis. In sum, these procedures can be summarized 

in Table 23.    

 

Table 23. Summary of the procedures for correcting the alpha for range 

restriction and for constructing the confidence interval. 

Type of study Item response Point estimate Confidence interval  

Single Continuous  Case I 

Case III 

BSI 

BSI 

 Dichotomous Case I 

Case III 

BPI 

BSI 

Meta-analysis Continuous  Case I 

Case III 

BSI 

BSI 

 Dichotomous Case I 

Case III 

BSI 

BSI 

 

The next chapter considers how to apply the corrected procedures in a real 

single and meta-analytic study using reliability assessment data from the Spence’s 

Children Anxiety Scale (Spence, 1997). After that, discussion, conclusions, and 

recommendations of the findings are presented.  
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Chapter 5 – A Real Study: Spence Children’s Anxiety Scale (SCAS; Spence, 

1997) 

This section uses data from a real study (Spence, 1997)—which developed a 

scale which measures children’s anxiety (i.e., Spence Children’s Anxiety Scale; 

or SCAS)—to demonstrate how to use the (Case I) correction procedures for 

reliability. In the literature, anxiety disorder is regarded as one of the most 

commonly diagnosed psychological disorders for children (Merikangas & 

Avenevoli, 2002). If anxiety disorders are not treated properly, they tend to persist 

and interfere with daily functioning (Saavedra & Silverman, 2002). Anxiety is a 

subjective cognitive and emotional experience, and it can be measured by using a 

self-report scale.  

Spence Children’s Anxiety Scale (SCAS; Spence, 1997) is regarded as one 

of the most commonly used self-report scales. It was developed to measure the six 

anxiety dimensions specified in the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-IV). These dimensions include separation anxiety disorder (SAD; 

sample item: “I worry about being away from my parents”), social phobia (SP; “I 

feel scared when I have to take a test”), obsessive-compulsive disorder (OCD; “I 

get bothered by bad or silly thoughts or pictures in my mind”), panic attack and 

agoraphobia (PAA; “My heart suddenly starts to beat too quickly for no reason”), 

physical injury fears (PIF; “I am scared of the dark”), and generalized anxiety 

disorder (GAD; “I worry about things”). SCAS contains 38 anxiety symptom 

items and six positive filler items to reduce negative response bias. Children are 

asked to report the frequency of each item on a 4-point scale (never, sometimes, 
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often, and always). The conceptual and theoretical framework of SCAS has been 

discussed in detail (e.g., Spence, 1997, 1998; Li, Chan, & Au, 2011b; Nauta et al., 

2004; the Spence Children’s Anxiety Scale website, 2010). 

Spence (1997, 1998) provided the psychometric properties of SCAS with a 

normative sample, which consisted of 698 children in six urban primary schools 

in Australia. She evaluated the reliability of each dimension based on Cronbach’s 

coefficient alpha. Specifically, the alpha was .70 for separation anxiety 

disorder, .70 for social phobia, .73 for obsessive-compulsive disorder, .82 for 

panic attack and agoraphobia, .60 for physical injury fears, and .73 for generalized 

anxiety disorder. In addition, she provided the mean and standard deviation (SD) 

of each item, as well as the variance-covariance matrix for the 44 items (see Table 

A2 in Spence, 1997).  

The data presented in Spence (1997, 1998) were based on a sample of 

typical children, who attended ordinary primary schools. Good psychometric 

properties (e.g., coefficient alpha) have been documented with the original 

validation samples in Australia (Spence, 1997, 1998). However, the psychometric 

properties appear to vary to some extent across cultures (Whiteside & Brown, 

2008). They differed, for example, between Japanese and German samples (Essau, 

Sakano, Ishikawa, & Sasagawa, 2004), and between Hellenic (i.e., Greek-

speaking) and other cultural groups (e.g., Australian, Japanese, German; Mellon 

& Moutavelis, 2007) (Li et al., 2011b). One possible reason for this difference is 

related to the sample the researchers used to evaluate the psychometric properties. 

Some studies used a sample of ordinary children in primary schools, whereas 
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other studies examined the properties according to a clinical sample, which tends 

to be a restricted sample of the general population.  

Single Study 

Mellon and Moutavelis (2007). Mellon and Moutavelis (2007) evaluated 

the psychometric properties of SCAS according to a sample of Hellenic (Greek-

speaking) children. They found that the alphas of some of the anxiety dimensions 

were noticeably smaller than those reported in Spence’s (1997, 1998) validation 

study (Table 1; Mellon & Moutavelis, 2007). For instance, the alpha was .56 for 

obsessive-compulsive disorder (OCD; .73 in Spence’s study), and.78 for panic 

attack and agoraphobia (PAA; .82 in Spence’s study). These findings suggest that 

their sample may be restricted in range compared with the sample in Spence’s 

normative study. Moreover, the SDs support this claim. They were 2.8 for OCD 

and 3.9 for PAA in Mellon and Moutavelis’ (2007) study. In comparison, the SDs 

were 3.67 and 4.24, respectively, in Spence’s study.  

The Case I corrected coefficient alphas for Mellon and Moutavelis’ study 

are presented in Table 24, and they are found to be .74 for OCD and .81 for PAA, 

respectively. These values are highly comparable with those in Spence’s (1998) 

normative sample (i.e., .73 and .82). This means that the reduced alpha values 

were probably due to the artifact of range restriction. If the authors could recruit a 

more heterogeneous sample, they would obtain the comparable reliability levels 

to those in the normative sample. Because the selection variable Z was given in 

Mellon and Moutavelis’ study, the Case III corrected alpha cannot be estimated. 

Note that the standard errors of measurement (SE) are quite comparable between 
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the two studies (i.e., OCD: 1.89 in Spence and 1.86 in Mellon and Moutavelis; 

PAA: 1.80 in Spence and 1.83 in Mellon and Moutavelis), and this satisfies the 

assumption of equal standard errors between the two samples.    

 

Table 24. Coefficient alphas for the dimensions OCD and PAA in Spence (1997) 

and Mollen and Moutavelis (2007). 

Dimension Study SD  Type Alpha 

OCD 

Spence 3.64 Normative .73 

Mellon & 

Moutavelis 

2.80 Uncorrected .56 

 Case I .74 

PAA 

Spence 4.24 Normative .82 

Mellon & 

Moutavelis 

3.90 Uncorrected .78 

 Case I .81 

 

Li, Lau, and Au (2011). The aforementioned section evaluates only the 

Case I corrected alpha in a published article. In conducting a research study, 

researchers should have the scores, and hence they can use the non-parametric 

bootstrap procedure to construct the confidence intervals (CIs). This dissertation 

uses one of our studies (Li et al., 2011b)—which evaluated SCAS in a Hong 

Kong Chinese sample—to estimate the Case I corrected alpha and the associated 

bootstrap CIs. Likewise, it is not easy to identify the selection variable Z in this 

example, and hence the Case III correction procedure is not demonstrated here. 

For the purpose of illustration, I selected a homogenous group of 10-year-

old children (N = 62), and calculated the uncorrected and Case I corrected alphas, 
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and CIs, as displayed in Table 25. The coefficient alpha for OCD was only .65 

(.73 in Spence, 1997). When I used the correction procedures, the Case I 

corrected alpha was .73, which is the same as in Spence’s study. In addition, the 

BSI, BPI, and BCaI are presented in Table 25 for researchers who seek to 

understand the precision of the alpha estimate. The Case I bootstrap CIs are more 

precise (narrower) than the restricted CI, thereby providing more accurate 

evaluation of the associated sampling error.  

 

Table 25. Coefficient alpha for the dimension OCD in Spence’s (1997) and Li et 

al. (2011b). 

 

Type SD Alpha BSI BPI BCaI 

Spence Normative 3.64 .73 n.a. n.a. n.a. 

Li et al. Uncorrected 3.23 .65 (.45, .81) (.44, .76) (.45, .77) 

 

Case I 

 

.73 (.67, .79) (.67, .79) (.66, .78) 

 

Meta-analysis 

This section presents an application of the correction procedure to a meta-

analytic study of SCAS coefficient alphas. Note that this section focuses on the 

statistical aspect of the meta-analytic technique, and hence it demonstrates the 

possibility of using the correction procedure in meta-analysis. Hence the true 

mean alpha value of the scale needs further investigation. Moreover, due to the 

data complexity in a meta-analytic study, it is quite subjective for a meta-analyst 

to determine whether some of the alphas need adjustments.  
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A small-scale meta-analytic study was conducted (see Table 26). To 

determine which studies had used the SCAS, I searched the PsycINFO database 

using the keywords Spence’s children anxiety scale and SCAS between 1995 and 

June 2012. Conceptual and theoretical papers were eliminated. The literature 

search resulted in six studies that used the SCAS with eight independent samples. 

The dimension physical injury fears (PIF) was chosen for illustrative purposes. 

Note that Mellon and Moutavelis’ (2007) study discussed in the previous section 

was excluded because it reported the alpha of seven items (rather than five) based 

on their exploratory factor analysis. This alpha included two items from another 

dimension, PAA, and hence its value could not be synthesized in the meta-

analysis.  

 

Table 26. Previous studies that reported statistics for the physical injury and fear 

(PIF) dimension. 

Study Sample Age group Region SD Alpha N 

Spence (1997) Community 8 - 12  Australia 2.68 .60 698 

Li et al. (2011b) Community 6 - 11  Hong Kong 3.55 .63 207 

Spence et al. 

(2003) Community 13 - 14  Australia 2.34 .60 875 

Muris et al. 

(2002) 

Regular 

School M = 15.1  Belgium 2.20 .54 521 

*Nauta et al. 

(2004)  

Clinic 6 - 18  Australia, 

Netherlands 

2.30 .58 261 

Whiteside 2008 

(sample 1)  Community 9 - 18  US 2.40 .53 82 

*Whiteside 2008 

(sample 2)  Clinic 9 - 18  US 2.10 .47 80 

* sample suspected of range restriction  
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In the literature on children’s anxiety, participants are often recruited from 

two populations: general and anxious groups. The majority of the studies 

collected data from a regular school or community sample, which represents a 

population of typical children. By contrast, other studies appear to have recruited 

children from a clinical sample. Generally, a clinical sample is a restricted sample 

of the general population, and hence the SD and alpha may be biased. If one 

performs a bare-bone meta-analysis (i.e., a strategy without considering any 

range-restriction artifacts, so called by Hunter and Schmidt, 2004), the 

uncorrected mean alpha is found to be .586, and the 95% CI is [.560, .610]. On 

the other hand, if one follows Hunter and Schmidt’s method of adjusting the 

restricted alpha for range restriction, she or he can obtain a sample estimate of the 

unrestricted SD from a large sample or technical manual. In this case, the pooled 

SD estimated from the remaining studies (i.e., 2.50) or the SD from the normative 

sample in Spence’s (1997) study (i.e., 2.68) can be used. By using the first pooled 

SD, the two corrected alphas become .645 for Nauta et al.’s (2004) sample 

and .626 for Whiteside’s (2008) sample 2. The mean corrected alpha 

becomes .596 with the 95% CI [.572, .620], which may indicate that the reliability 

level is more adequate for the general population of children and adolescents. The 

bootstrap CIs appear to be more adequate as evidenced by the Monte Carlo results. 

Specifically, the 95% BSI is [.571, .621], BPI is [.568, .619], and BCaI is 

[.570, .620]. Although the difference between the two methods appears to be 

small in this example, it can be more substantial when one includes more samples 

in a typical meta-analysis, which often includes more than 20 study samples. 
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Details are shown in Table 27. Note that the standard errors of measurement are 

comparable between Spence’s and Whiteside’s studies, i.e., 1.69 for Spence’s 

sample, and 1.65 and 1.53 for Whiteside’s samples.  

 

Table 27. The uncorrected and corrected mean alphas and their bootstrap CIs  

 

Mean alpha BSI BPI BCaI 

Uncorrected meta-

analysis .586 [.560, .609] [.553, .601] [.550, .600] 

Bias-corrected 

meta-analysis .596 [.571, .621] [.568, .619] [.570, .620] 
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Chapter 6 – Discussion and Conclusions 

Range restriction has long been a common methodological problem in 

social sciences research, and it often leads to a downward-biased estimate of a 

statistic (e.g., Pearson’s correlation r, reliability coefficient alpha, etc.). The 

problem appears to be more prominent in psychological measurement than one 

thinks, because it can sometimes occur without researchers being aware. For 

instance, one may incorrectly reach a conclusion of an unreliable test without 

even knowing that the sample used (e.g., college, clinic, etc.) is actually range-

restricted. 

Although two conventional correction procedures for reliability have been 

proposed and discussed in the literature (e.g., Gulliksen 1950, 1987), much 

attention has been focused on the four correction procedures for Pearson’s 

correlation. Hence, this dissertation sought to examine the accuracy of the two 

correction procedures for reliability, so as to provide empirical evidence for their 

usefulness in practice. In addition, researchers may be interested in assessing the 

CI surrounding the alpha, and this is regarded as the best strategy in many 

publication manuals (e.g., APA, 2010). Thus, this dissertation also sought to 

evaluate the performance of the CI surrounding the uncorrected and corrected 

alphas.  

The first Monte Carlo study shows that the uncorrected alpha can be very 

misleading. In some adverse data situations (e.g., a stringent selection ratio and a 

large correlation between the selection variable and test), the uncorrected alpha 

can be as small as .002, which is 99.7% below its true population value. This 
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means that one may mistakenly conclude that a test is highly unreliable without 

being aware of the problem of range restriction. To adjust for the bias, researchers 

can use either the Case I or III correction procedure for reliability, depending on 

whether the unrestricted SD of the variable Y or the unrestricted SD of the 

selection variable Z is known. Both methods are found to result in adequate alpha 

estimates across the simulation conditions, including the selection ratio, number 

of items, sample size, etc. Moreover, the real world example shows that, when the 

alphas reported in Mellon and Moutavelis (2007) are corrected for the Case I 

restriction, they are highly comparable to the values found in Spence’s (1997) 

normative sample. This suggests that the bias-corrected alpha is not only 

theoretically supported, but it is also practical in a real research situation. 

When one intends to make a statistical inference about the bias-corrected 

alpha, she or he can use the non-parametric bootstrap procedure in order to build 

the confidence interval (CI). Assuming that one seeks to examine whether there is 

a significant difference between the reliability level of a test between two 

populations (e.g., male and female), she or he can construct the CIs surrounding 

the corrected alpha, if the samples are actually range-restricted. Suppose the 95% 

CIs are [.71, .78] and [.80, .88], respectively, for the two samples. The researcher 

can conclude that there is a significant difference at the .05 level. Hence the CI 

construction for reliability is important for comparing different tests, scoring 

rubrics, or training procedures for raters or observers (Haertel, 2006). 

Unfortunately, such an evaluation may be biased when the sample is actually 

range-restricted; thus researchers are encouraged to construct the CI for the 
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corrected alpha as an alternative. In particular, three bootstrap CIs (i.e., BSI, BPI, 

BCaI) for Case I and III, respectively, are examined in this dissertation. When the 

items are continuously scored, the BSI is found to be the most adequate method 

for both Case I and III. When the items are dichotomously scored, the BPI is 

recommended for Case I, and the BSI is suggested for Case III. To demonstrate 

the application of these procedures, I also constructed the 95% BSI, BPI, and 

BCaI for the uncorrected and bias-corrected alphas for the dimension OCD, as 

originally investigated in Li et al.’s (2011b) study. The CIs surrounding the bias-

corrected alpha appear to be more reasonable, given that they are more precise in 

terms of their widths, and they are more likely to span the alpha value reported in 

Spence’s (1997) normative sample.   

As discussed in Bonett (2010), the confidence width for coefficient alpha in 

a single study, however, may be too wide for an accurate sampling error 

evaluation. An alternative is to evaluate the alpha of a test from multiple studies, 

and this technique is known as meta-analysis. Meta-analysis is a statistical 

procedure that synthesizes the quantitative findings provided in multiple studies 

conducted by independent researchers. Rodriguez and Maeda (2006) have 

proposed and developed a framework specific to the meta-analysis of coefficient 

alpha, and they called this concept reliability generalization. Since then, various 

studies—e.g., Vassar and Bradley (2010), Vassar and Crosby (2008), and Warne 

(2011)—have evaluated the mean or typical alpha reliability level of different 

psychological scales. 
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Despite its recent popularity, the meta-analysis of coefficient alpha is also 

biased when the alpha reported in each single study is subject to range restriction. 

Hence the second Monte Carlo study sought to examine the performance of the 

uncorrected and corrected mean alpha in meta-analysis. The results show that the 

smallest uncorrected mean alpha is .095, which is 86.4% below its true value, for 

continuous responses. Moreover, it can be as small as .037 for dichotomous 

responses, which is -93.6% below its true value. This means that evaluating the 

typical reliability level of a test in a meta-analytic study based on the uncorrected 

mean alpha is undesirable. Rather, both the Case I and III corrected mean alphas 

can improve the accuracy substantially. In addition, the bootstrap CIs—especially 

BSI—surrounding the Case I and III corrected mean alphas appear to be more 

reasonable than the uncorrected mean alpha. The benefits of reporting the bias-

corrected mean alpha and its CI have also been shown in the real world example. 

For instance, some single studies used a clinical sample to evaluate the reliability 

alphas, and they should be adjusted for range restriction. I found that the bias-

corrected mean alpha was .596 with the 95% BSI of (.571, .621); by contrast, the 

uncorrected mean alpha was .586 with the 95% BSI of (.560, .609). Although the 

difference between the two alphas was small, one can predict that the discrepancy 

will be larger when more samples or studies are included in a meta-analysis. 

Importantly, this example shows that the bias-corrected mean alpha and its CI are 

practical in real research situations. 

In sum, the corrected alpha estimates, as well as the associated bootstrap 

CIs, have been found to be adequate in both single and meta-analytic research 
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scenarios, thereby providing a useful and trustworthy method of reliability 

evaluation when a sample is subject to range restriction. The following sections 

will first discuss the benefits of applying the correction procedures according to 

the four goals respectively, and will then present the limitations and directions for 

future research. 

Implications of Goal 1: Evaluating the Corrected Alpha in Single Study 

As noted above, the problem of range restriction seems to be more 

prominent in psychological measurement than one thinks, because it can 

sometimes occur without researchers being aware. One may incorrectly conclude 

that a test is unreliable without even knowing that the sample in hand (e.g., 

college, clinic, etc.) is actually range-restricted. As shown in the Monte Carlo 

results, one may obtain a severely downward-biased estimate of reliability—i.e.,  

-99.7% for continuous scores and -136.2% for dichotomous scores—when the 

data conditions are highly challenging (e.g., a stringent selection ratio, or a large 

correlation between the selection variable and the variable of interest). Even when 

the data conditions become less stringent, one is expected to obtain a noticeable 

negative-biased reliability estimate, with an average of -30.9% bias for continuous 

scores, and an average of -43.1% bias for dichotomous scores. 

Fortunately, the aforementioned biases can be adjusted based on the Case I 

or III correction procedure depending on whether the unrestricted SD of the 

variable Y or the unrestricted SD of the selection variable Z is known. Here I note 

Schmidt’s advice that researchers and practitioners can trace the sources of these 

estimates from the existing literature (Li et al., 2011a). For instance, “most 
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measures have a manual that contains the SD for a norm sample, which is usually 

an unrestricted sample. Alternatively, practitioners can find research manuscripts 

where the SD is presented for a sample that is not suspected of range restriction” 

(Li et al., 2011a, p. 371). Applying the Case I correction procedure, one can 

obtain a more accurate alpha with minimal biases, i.e., a mean of -0.4% for 

continuous responses, and a mean of -2.4% for dichotomous responses. Likewise, 

the Case III adjusted alpha results in adequate estimates, with a mean of -2.4% 

bias for continuous responses and a mean of -7.9% bias for dichotomous 

responses.  

Implications of Goal 2: Constructing the CIs Surrounding the Corrected 

Alpha in a Single Study 

When a researcher seeks to evaluate the sampling error and to make 

statistical inferences about the alpha, she or he is encouraged to examine the 

effect of range restriction on the alpha estimate. As shown in the simulation 

results, given that the point estimate (i.e., approximately the middle point) of the 

CI is inaccurate with a restricted sample, the constructed CI becomes inadequate, 

with mean coverage probabilities ranging from .208 to .488 obtained by BSI, BPI, 

or BCaI (as opposed to the ideal value of .95 or the lenient criterion of .855). 

Applying either the Case I or III correction procedure in building the CIs can 

improve the accuracy of estimation. Generally, the mean coverage probabilities 

range from .859 to .905 given these correction procedures, meaning that the 

accuracy improves substantially.  
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Implications of Goal 3: Evaluating the Corrected Mean Alpha in a Meta-

Analysis 

As an extension, evaluating reliability based on a single study may not be 

sufficient. An additional method is to conduct a meta-analysis of coefficient alpha 

in order to evaluate the typical reliability level of a test or scale; this involves 

using all of the empirical findings provided in the literature. As in a single study, 

however, the mean alpha can be misleading when the alphas reported in single 

studies are subject to range restriction. The second Monte Carlo study shows that 

the uncorrected mean alpha estimate was found to be highly inadequate. The 

largest percentage bias was -86.4% (or mean alpha = .095) for continuous 

responses and it was –93.6% (or mean alpha = .037) for dichotomous responses, 

and this may lead a researcher to conclude an unreliable test incorrectly. By 

contrast, the Case I and III corrected mean alphas could adjust for this bias 

adequately. Both methods could result in a mean estimate which was very close to 

its true unrestricted value, with percentage biases ranging from -5.9% to 1.8%; 

this provides a useful method for evaluating the mean or typical alpha reliability 

level across published studies in a research domain. 

Implications of Goal 4: Constructing the CIs Surrounding the Corrected 

Mean Alpha in a Meta-Analysis 

The problem of constructing the CI for the uncorrected mean alpha has been 

demonstrated in the second Monte Carlo study, in which the mean coverage 

probability is close to zero, meaning that the CI cannot span the true alpha value 

adequately. Therefore, one should correct the biased alpha for range restriction 
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before they are used to estimate the mean alpha value. The benefits of applying 

the corrections procedures can be seen in terms of their improved coverage 

probability. For instance, the coverage probability yielded by the Case I method 

increases to .897 for continuous responses and .816 for dichotomous responses. 

Likewise, the Case III mean alpha produces a mean coverage of .893 for 

continuous responses, and .805 for dichotomous responses.  

Based on the empirical findings obtained in the two Monte Carlo studies, a 

summary of how to correct the alpha coefficient for range restriction and 

construct the associated confidence intervals is presented in Table 28. Researchers 

and applied users can follow these guidelines to evaluate the alpha level of the 

scores in their study when the sample is suspected of range restriction. This 

provides a useful and trustworthy method for examining the reliability level of the 

scores whenever the correction factors (e.g., the sample estimate of the 

unrestricted SD) are available. 

 

Table 28. Summary of the procedures for correcting the alpha for range 

restriction and building the corresponding confidence interval. 

Type of study Item response Point estimate Confidence interval  

Single Continuous  Case I 

Case III 

BSI 

BSI 

 Dichotomous Case I 

Case III 

BPI 

BSI 

Meta-analysis Continuous  Case I 

Case III 

BSI 

BSI 

 Dichotomous Case I 

Case III 

BSI 

BSI 
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Limitations and Directions for Future Research 

Investigating other reliability coefficients under range restriction. This 

dissertation provides a comprehensive assessment of coefficient alpha under 

range restriction in both single and meta-analytic studies. Coefficient alpha is 

selection because it is one of the most commonly used reliability coefficients in 

the literature. Moreover, most of the recent studies about reliability 

generalizations involve meta-analysis of coefficient alpha (Vassar & Bradley, 

2010; Vassar & Crosby, 2008; Warne, 2011). Despite its common use, coefficient 

alpha is only one of the lowest bound estimates of the internal consistency 

reliability. In fact, some studies (e.g., Sijtsma, 2009) found that it becomes less 

accurate when its underlying assumption (i.e., congeneric data) is violated. Some 

researchers, such as Sijtsma (2009) and Revelle and Zinbarg (2009), suggested 

that researchers should also provide other lower bound estimates (e.g., 

McDonald’s omega) in addition to coefficient alpha. Future research can extend 

the current framework to other reliability coefficients. 

Examining the assumption of the correction procedures for reliability. 

Some authors have questioned the need to meet the assumption of 

homoscedasticity (or equal standard errors). As shown in the Monte Carlo results, 

when the data meet (at least) the congeneric data assumption and undergo a 

selection process, the standard errors of measurement for the restricted and 

unrestricted groups appeared to be similar. This means that if the scores meet the 

congeneric assumption in the original unrestricted sample, the assumption of 

homoscedasticity may be met. On the other hand, the present Monte Carlo results 
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showed that when the unrestricted sample contains scores that met (at least) the 

congeneric condition, and then underwent an indirect range restriction process, 

the standard errors appeared to be similar between the restricted and unrestricted 

samples. This may provide empirical evidence about the adequacy of the 

correction procedures. Further research can examine the need for this assumption 

more comprehensively. 

Evaluating the correction procedures for reliability under different 

data situations. As in other simulation studies, some controlled environments 

may not reflect the complex data situations that exist in real practice. On one hand, 

the current design follows most other simulation studies in this area assuming that 

a sample estimate of the unrestricted SD can be estimated. On the other hand, the 

present study seeks to be more realistic than other studies (e.g., Fife et al., 2012; 

Li et al., 2011a) in that only a sample estimate of the unrestricted SD from a 

simulated sample was obtained. It thus differed from other studies which assumed 

that the true population unrestricted SD is known. For instance, Fife et al. (2012) 

stated that “[t]his simulation assumes that the unrestricted variance of Y is 

known…otherwise, it could not be corrected” (p. 25), meaning that the true 

population value could be known in practice for whatever reasons. Further 

research can investigate the possibility of the published studies in different areas 

(e.g., educational, governmental, and organizational settings), thus providing a 

good estimate or proxy of the unrestricted SD, so that researchers can use them 

for the correction procedures.   
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Another area of research lies in examinations of the effects of data 

complexity on the alphas and their CIs associated with real meta-analyses. As 

noted by Cheung (2008), “data in meta-analyses are usually more complex in 

terms of conceptualization and data collection than data in primary studies” (p. 

195). An example is related to missing data in primary studies, in which only a 

portion of the samples provides the essential statistics for performing a correction. 

Another example is where only some but not all of the reported alphas are subject 

to range restriction. Further studies may be designed to mimic different complex 

scenarios for meta-analyses, and to evaluate their impacts on the uncorrected and 

corrected alphas as well as their CIs. 
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