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ABSTRACT

Behavior of continuous composite beams is investigated
theoretically and experimentally. Analyses for local flange buckling
and lateral buckling in negative moment regions.are proposed based on
torsional buckling theory and thin-walled beam theory, respectively.
Deformations, including the effects of shear and slip, are studied in
the elastic and inelastic regions. Procedures based on Newmark's in-
tegration, finite difference and virtual work are employed for the eva-
luation of moment-curvature relationships, beam deflection due to bend-
ing and shear deformation, respectively. Three two-span continuous
composite beams were tested. The test beams varied in terms of steel
section size and amount of longitudinal slab reinforcement in the nega-
tive moment region. Behavioral studies are conducted for failure loads
and failure modes for a series of beams in which steel section size,
concrete slab thickness and amount of Tongitudinal slab reinforcement
are varied. Analyses satisfactorily predict ultimate loads, failure
modes and behavior throughout the loading range. Based on experimental
and analytical results design requirements are proposed for ultimate
strength design of continuous composite beams.

It is concluded that the maximum flange width-thickness
ratio for the steel section should be less than 54//5;} if the amount
of longitudinal reinforcement in a negative moment region is greater

than the web area of the steel section. Strength of shear connectors



in a negative moment region is comparable with the strength of connectors
in a positive moment region if sufficient development length of the

lTongitudinal slab reinforcement is provided into the positive moment

region.
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CHAPTER I
INTRODUCTION

1.1 Introductory Remarks

Presently in North America composite design is based to a
large extent on elastic theory(l)(z). However elastic design is not
entirely routine in the case of continuous beams, because the beam stiff-
ness is different in positive and negative moment regions. An ultimate
design approach would eliminate this complication. Design based on
ultimate strength may tend to produce a reduction in steel section size
and in total depth. This reduction is related to the shape factor of the
composite section which may reach a value of 2.0 in a positive moment
region and 1.6 in a negative moment region. These values are signifi-
cantly larger than those for wide flange steel sections.

Extensive research on ultimate strength of simple span beams
has resulted in the first requirements for 1imit design of simply-supported
composite beams published in Britain in 1963 as Part I of CP 117(3). How-
ever further research on ultimate strength of continuous composite beams
is still required, especially concerning conditions in a negative moment
region. Research at the University of Alberta has included investigations

by Piepgrass(4), Davison(s), Lever(s) into the behavior of composite

beams under negative bending.



1.2 Previous Research on Continuous Composite Beams

Research on ultimate strength of continuous composite beams
has been conducted since 1960 at several universities including the Uni-
versity of Cambridge, Imperial College, Lehigh University, University of
Canterbury (New Zealand), University of Warwick, and University of Alberta.
A brief summary of main conclusions of this research is presented in this
section.

Culver et a1(7) tested a two-span continuous beam with a
small amount of longitudinal slab reinforcement to establish the feasi-
bility of designing continuous composite beams on the bases of ultimate
strength. The results of the investigation concluded that only the steel
section is effective in the negative moment region, and an expansion
Jjoint in the slab should be provided in the negative moment region to
permit large rotation.

Barnard (8)(9) tested a series of four continuous three-span
beams in order to study the behavior of the most highly strained critical
sections and the effect of their combined action on the behavior of the
beam as a whole. Two beams failed by crushing of concrete in the posi-
tive moment region and the other two failed due to lateral buckling of the
steel section in the negative moment region. The results indicated that
continuous composite beams can be designed by the conventional plastic
hinge method, if the positive moment hinge is the last to form; that the
presence of slip strain does not significantly change the moment-curvature
relationships from those obtained by assuming no slip strain; and that
longitudinal slab reinforcement strengthens the negative moment regions,

provided that buckling and shear failure can be avoided.



(10) conducted tests on fifteen

Johnson, Van Dalen and Kemp
simply-supported beams in negative bending and six two-span continuous
beams. The continuous beams were l1oaded in such a manner that they were
affected py transverse bending in the slab. The slabs were reinforced
with various amounts of longitudinal reinforcement. The results indi-

cated that complete interaction occurred in negative moment regions

where the concrete slab was cracked due to longitudinal tension. The

actual ultimate loads for the continuous beams exceeded theoretical values

by 11 to 31 percent.

(11) tested to failure four continuous

Daniel and Fisher
beams which had been previously fatigue tested. The beams contained
longitudinal reinforcement in the negative moment region. In each beam
crushing of the concrete at the load points occurred at maximum load
except in the beam with the largest amount of reinforcement where local
buckling also occurred at ultimate load. Furthermore the longitudinal
slab reinforcement in the negative moment regions attained its yield
stress at ultimate load. It was concluded that plastic analysis ade-
quately predicted ultimate loads.

Park(lz) tested four two-span continuous beams with various
amounts of longitudinal slab reinforcement in the negative moment region.
It was concluded that continuous beams with longitudinal slab reinforce-
ment in the negative moment regions can be satisfactorily analyzed by
simple plastic theory. Very little redistribution of bending moments
was fequired in the test beams to develop an ultimate condition, since

there was little difference between the distribution of elastic and ul-

timate bending moments in spite of the large variations in the longi-



tudinal reinforcement content. Shear connectors, designed on the basis
of ultimate capacity, performed adequately.

Extensive research on the behavior of stud shear connectors
in a negative moment region was conducted by Van Dalen et a1(10)(13)(14).
As a result, it was recommended that the design load for connectors in
a negative moment region should be taken as 80 percent of the design
values in a positive moment region.

(15)(16) investigated theoretical and ex-

In 1970 Climenhaga
perimental post-buckling behavior of composite beams in negative moment
regions. His proposed approximate method, based on the upper-bound plastic
limit theorem, gave a reasonable prediction of the moment-rotation charac-
teristics for I-shape sections after local buckling.

Daniel et a1(17)(18)(19) tested beams connected to columns
simulating part of a multi-story frame. It was concluded that the ulti-
mate strength of a composite section adjacent to the column face and su-
jected to positive bending can be conservatively based on the strength of
the steel section plus a portion of the concrete slab whose width equals
the column width. Results indicated that ultimate strength of a composite
section in negative bending can be based on the steel section plus the
longitudinal slab reinforcement. Test beams exhibited sufficient rota-

tion capacity in the vicinity of the joint so as to develop a mechanism

at ultimate load.

1.3 Previous Investigations at the University of Alberta

Research on continuous composite beams at the University of

Alberta was initiated in 1965 by Ferrier(zo) with behavioral studies of



composite beams under positive moment. The slab dimensions used in
Ferrier's test beams were chosen so that in one beam the neutral axis
was in the slab whereas in the other the neutral axis was below the
slab. It was found the beams deflected more at working loads than
predicted by usual analysis. This difference was likely due to resi-
dual stresses in the steel section; however residual stress did not
influence the ultimate strength. Ultimate concrete slab strains in ex-
cess of 0.005 were developed. Slip between the concrete and steel sec-
tion did not prevent the beams from developing their theoretical ultimate
moment values, provided that the total strength of the shear connectors
supplied the required horizontal shear resistance.

The second investigation, by Piepgrass(4) in 1968, was con-
cerned with the behavior of composite beams in an isolated negative
moment region. The main variables in this investigation were the amount
of longitudinal reinforcement and slab width. Compression flanges of
some steel sections were reinforced with cover plates in order to pre-
vent premature local buckling. Beams without cover plates failed in
local buckling in the flange and web whereas beams with cover plates
failed in lateral buckling. Ultimate moments ranged from 98 to 107
percent of the theoretical plastic moment values. The average stress
in the longitudinal slab reinforcement at ultimate moment was less than
the yield stress, which implied little rotation capacity. It was there-
fore suggested that the use of steel sections defined as compact under
the provisions of CSA Standard S16 may not necessarily guarantee adequate
rotation capacity for the formation of a plastic hinge in a composite

beam in negative bending.



Extensive tests of composite beams under negative moment
were conducted by Davison(s) in 1969 and Lever(s) in 1970. The main
variables in these tests were size of steel section, amount of longi-
tudinal slab reinforcement and slab width. A1l beams failed in local
buckling of the compression flange. It was concluded that significant
increases in the negative moment capacity of composite beams can be
achieved by the addition of Tongitudinal reinforcement, but these in-
creases are not directly proportional to theoretical simple plastic
moment values. For a given steel section, an increase in amount of longi-
tudinal slab reinforcement results in a significant reduction in the ro-
tation capacity. Therefore, to ensure the formation of a mechanism in
beams where the negative hinge is first to form, it may be necessary to

1imit the amount of longitudinal slab reinforcement.

1.4 Object and Scope

This dissertation consists of both theoretical and experi-
mental studies of the behavior of continuous composite beams. The ex-
perimental study provides further information on deformations, moment
redistributions and failure modes for continuous beams. Since relatively
little analytical investigation has been conducted into local and lateral
buckling in negative bending, an objective of this investigation is a
theoretical determination of ultimate strength and rotation capacity in
a negative moment region. A further objective is the prediction of
ultimate load and failure modes for continuous composite beams. The
study also includes a theoretical analysis for the deformation of con-
tinuous composite beams. Finally design criteria for continuous com-

posite beams are proposed.



CHAPTER I1I
STRENGTH OF COMPOSITE BEAMS

2.1 Introduction

Characteristics of composite sections are different in
positive and negative moment regions. In a positive moment region the
concrete sTab or a portion thereof is in compression and contributes
significantly to the moment resistance of the section as in Figure 2.1(a).
Behavior under positive moment therefore is related to characteristics
of the steel section, concrete slab and shear connectors.

Since concrete cracks when subjected to relatively small
tensile stress, a beam under negative moment essentially consists of
the steel section and longitudinal reinforcement in the slab with the
concrete acting as a transfer medium. For usual amounts of longitudinal
slab reinforcement the shear force transferred by the concrete slab
through the shear connectors to the steel section is small in a negative
moment region compared with that in a positive moment region. The be-
havior of a composite beam under negative moment is essentially related
to the characteristics of the steel section, the longitudinal slab re-
inforcement and the shear connectors. In a negative moment region the

lower flange is subjected to compressive stress, and local flange buck-

"~ ling may be a factor in the ultimate moment capacity. A number of com-

posite beams tested under negative moment at the University of A]berta(s)(G)



and the University of Cambridge(lo)(ls)(ZI) failed in local flange

buckling. It was observed in the University of A]berta(4) tests that
composite beams with a cover plate on the compression flange failed in
lateral buckling because of increased resistance to local flange buck-

ling.

2.2 General Behavior of Composite Beams
2.2.1 Positive Moment

Since in a positive moment region the concrete slab is
subjected to compressive stress, the composite section is similar to
a steel section with a cover plate on the compression flange. Stress
distributions for a composite section are illustrated in Figure 2.2 for
three conditions, namely, prior to yielding, prior to strain-hardening
and after strain-hardening. A typical moment-curvature relationship is
shown in Figure 2.3.

In order to evaluate elastic stiffness for composite sections,
it is customary to transform the concrete slab area into an equivalent
area of steel by reducing the slab width by a factor, n = Es/Ec’ The
bending moment derived from the idealized stress distribution shown in
Figure 2.4 is defined as the theoretical ultimate moment capacity. At
ultimate conditions the stress in the steel section is equal to the yield
stress and the stress in the concrete slab is in terms of a Whitney
stress b]ock(zz). The ultimate bending moment Mu for a beam with the

- neutral axis in the slab as in Figure 2.4(1) is therefore defined by

Mu = Asoy(d/Z i, - a/2) 2.1



where a-= Asoy/0.85f(':bc

Mu for a beam with its neutral axis below the slab, as in

Figure 2.4(b) is defined by

Mu = Cle1 + Cze2 2.2
where C1 = 0.85f(':AC
and C, = (Asoy - C1)/2

Effective interaction between concrete slab and steel sec-
tion can be achieved by providing adequate shear connectors. Inadequate
amounts or inadequate stiffness of shear connectors produces incomplete
interaction. In the case of incomplete interaction two netural axes
exist due to slippage as illustrated in Figure 2.5. The ultimate mo-
ment capacity for a beam with inadequate shear connectors is obtained
in a manner similar to that for a beam with adequate shear connectors.
Since inadequate shear connectors cannot transmit the required force,
the maximum compression force in the concrete is limited to the ulti-
mate strength of the shear connectors, zQu. Therefore a stress distri-
bution at ultimate moment is as shown in Figure 2.6 and

M =Ce +Ce 2.3
u 11 272



10

where C

IQ

o
]

and , = (Ascy - Cl)/Z

The values of e and e, in the above equations are dependent on the
geometry of the beam section.

Equations 2.2 and 2.3 form the basis for Figure 2.7 which
represents the relationship between the ratio of the shear strength

zQu/C, and moment capacity(23)(24).

2.2.2 Negative Moment

When a composite beam with longitudinal reinforcement and
shear connectors in the slab is subjected to negative moment, such as
in the vicinity of interior supports in a continuous span, the beam
section may be considered to consist of the steel section and the lon-
gitudinal reinforcement, since concrete cannot resist appreciable ten-
sile stress. The behavior is similar to that of a plain steel beam, if
slippage does not occur between the slab and the steel section. Typi-
cal stress distributions are illustrated in Figure 2.8 for conditions
before yielding, before strain-hardening and after strain-hardening of
the steel. Typical moment-curvature relationships obtained from Uni-
versity of Alberta tests(s)(s) are shown in Figure 2.9.

The simple plastic moment for negative moment conditions

may be expressed as

Mp = Arorye1 + Te, 2.4
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where e and e, are defined in Figure 2.10. The simple plastic moment
Mp for a section, which has no longitudinal reinforcement, is the same
as that for the steel section alone.

Davison(5) and Lever(ﬁ) observed that the principal failure
mode for composite beams subjected to negative bending was local flange
buckling. Piepgrass(4) observed lateral buckling failures in tests of
composite beams with cover plates on the compression flanges. Figure
2.11, based on University of Alberta tests, indicates that the ratio of
the experimental ultimate moment to the theoretical ultimate moment

decreases with an increase in the amount of longitudinal reinforcement.

2.3 Properties of Material
2.3.1 Steel

Mechanical properties of steel significantly affect the
behavior of composite beams. The typical stress-strain curve for a
structural stee] in tension consists of an elastic range, a plastic
range and a strain-hardening range as shown in Figure 2.12(a)(25).
The stress-strain relationship has been idealized by bilinear or multi-
linear functions as illustrated in Figure 2.12(b). Function (1)swhich
idealizes the material as elastic and perfectly plastic, is employed
in the simple plastic theory. Functions (2) and (3) express the stress-
strain relationship by means of multilinear functions known as elasto-
plastic strain-hardened functions. Function (2) is widely employed

for structural analysis; however, since the tangent modulus after

strain-hardening is defined as the initial tangent modulus at a



strain Egt? significant differences in strain occur between the approxi-
mation and actual condition at higher stresses. In order to reduce the
difference Lay and Smith(ze) proposed function (3) which approximates
the strain hardening range by two straight lines.

For purposes of the present investigation the stress-strain
relationship after strain-hardening is idealized by function (4), which
is a second order curve defined by three conditions; namely, the coor-

dinates at the onset of strain-hardening (sst,o ), the coordinates at

Yy
ultimate stress (eu,ou) and the slope at the onset of strain-hardening

Est' The stress-strain relationship may be expressed as follows:
o = Ee for e:<s-:‘y 2.5(a)
g = Uy fOY‘ €y<€<sst 2.5(b)
c=a+vb + ce for e ,<e 2.5(c)
2 _ 42 - -
where L. %y oy ZEStoy(eu ESt)
2lo, - Oy ~ Est ey = es¢)?
b = (oy - a)(oy -a- 2Est€st)

(g
1

= ZESt(Uy - a)

For example G40.12 structural steel with oy = 44ksi, o, = 68ksi, Est = 750ksi,

12
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ey = 0.0146 and ey = 0.20, Equation 2.5(c) is defined by

o = 41.5 + v/-48.5 + 3720¢

The same relationship is assumed in compression
2.3.2 Concrete

The stress-strain relationship for concrete, which has been
the subject of extensive research related to the development of ulti-
mate strength of concrete members, consists of an ascending portion
and a descending portion as shown in Figure 2.13.

In order to define the stress-strain relationship, various
approximations have been proposed. Hognestad(27) proposed a parabolic
equation for the ascending portion and a linear equation for the des-

cending portion.

EC €c 2 ] .
f =f" {2—1-- [—TJ } for ascending portion 2.6(a)
c c €c €c
0.15¢
f.=f"'"|1.0 - —— for descending portion 2.6(b)
Cc (o ecu - c

Smith and Young(zs) proposed a single exponential function in the form

of

f.o=KEel 2.7
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where K is a constant and m is an exponent related to the concrete
strength. A simple expression for the stress-strain relationship pro-
posed by Desayi and Krishnan(zg) has the form

Eiec

c S TF (Ec/eé)z 2.8

f

where Es is the initial tangent modulus such that Ei = Zfé/eé. This
expression is well fitted to the ascending portion as well as descending
portion.

Ultimate concrete strain based on results of axial compres-
sion tests of plain concrete and beam tests of reinforced concrete has
been discussed by many researchers. Chambaud(Bo) reported an ultimate
concrete strain of 0.0036 for cube strengths ranging from 3,000 to 7,000

(31) observed ultimate strains in beam tests

(32)

psi. Billet and App]eton
varying from 0.0028 to 0.0040 with an average of 0.0038. Ros » Brand-

tzaeg(33), Jensen(34) and Hognestad et a1(35) found that ultimate strain

varied with concrete strength and proposed
= - ! 6
€cu 0.004 fc/(6.5 x 108) 2.9

from axial compression tests. A constant value ¢ 0 0.003 1is given

o
in ACI Standard 318-71(36)(37)(38) for design purposes and is considered

conservative.
In contrast to the ultimate strain, the strain eé at maximum
stress appears to be independent of concrete strength. Liebenberg(39)

observed values of sé in the order of 0.002 in compression tests.
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2.3.3 Shear Connectors

Shear connectors are provided for‘two purposes in composite
beams, i.e., transmission of horizontal shear between the concrete slab
and the steel section and prevention of uplift of the concrete slab.
Various types of shear connectors which fulfill these functions have
been developed. Some types are rigid and give expectations of complete
interaction. However, widely used types such as sfud and channel con-
nectors are f1exip1e and permit slippage between the concrete slab and
steel section. This slippage is due to deformation of the connectors
and deformation of the concrete in the region of the connectors.

Push-out tests have been widely used to determine the shear
strength and load-slip characteristics of shear connectors. The strength
and load-slip relationship for connectors may be correlated with concrete
strength. However, if load is expressed as a function of the static
ultimate Toad, load-s1ip curves appear to be independent of concrete
strength as shown in Figure 2.14(40).

(41)

Yam and Chapman represented the load-slip curve by the

exponential function

g = a {1 - exp(-ba.)} 2.10

where Qg is the ratio of shear force Q to ultimate strength Qu’ and
a and b are constants. By choosing two points on the exponential curve

so that A, = 2ASl as in Figure 2.14, the constants may be defined as

2
qSl

a=—.—_——_
29, - 9,
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q
In S1

b1 %, T 9,

In order to investigate the behavior of shear connectors
in a negative moment region, push-out tests on studs set in reinforced
slabs as shown in Figure 2.15 have been conducted by Johnson and Van
Da]en(lo)(13)(14). Ultimate push-out strengths obtained varied between
64 and 108 percent of the strengths obtained in conventional push-out
tests, and slip at the failure load was approximately double that at
80 percent of the failure load, although the load-slip curves were
widely scattered. The behavior of studs was found to mainly depend
on the location of cracks on the slab surface which influence the load-
slip relationship and the tensile force in the stud, resulting from the
separation of the steel and concrete sections which influence the ulti-

mate strength of sheér connectors.

2.4 Flange Local Buckling
2.4.1 Previous Research

Research on inelastic flange local buckling of plain steel

beams has been conducted by various investigators, including Haaijer(42)(43),

(15)(21)

Lay(44) and Climenhaga A11 these studies began with a consi-

deration of buckling of an isolated plate in a region of yielding.

(42) analyzed local buckling by plate theory. The

Haaijer
differential equation for an orthogonal anisotropic plate subjected to

edge compression, as in Figure 2.16, has the form



altw oltw atw _ t‘-’x 52w
Dy oxv ¥ M gz * D) oom = - 1 o0z 2.11

where 2H = ny + Dyx + 4Gt' Dy, ny and Gt were sug-

gested from the incremental theory of plasticity taking the second

The moduli Dx’

invariant of the deviatoric stress tensor as the loading function.
These moduli are functions of stress and strain, and Haaijer selected
for his analysis the following values: DX = 3,200 ksi, Dy = 32,800 ksi,
ny = Dyx = 8,100 ksi and G, = 2,400 ksi.

Lay(44) analyzed local buckling by employing torsional
theory as shown in Figure 2.17(a). The torsional buckling equation is

in the form of

P
3% d2e z d2¢
Eelyazr -Gl @zt ke = - 37 gz 2.12

Lay evaluated Gt on the basis of slip band theory which recognizes the
basic discrimination of the behavior of steel in the region of yielding.
This characteristic is not considered in the incremental theory. The

ratio of inelastic to elastic shear moduli Gt/G, was determined as

- 2 2.13
1+ D tanZa
4{1+v)

o9 D
ot

where a 1is the angle of slip plane as in Figure 1,17(b). Lay proposed

the angle of s1ip plane is 45°, and Equation 2.13 becomes

17
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G .
t_ 2
ol 2.14

The warping constant Iw and spring constant due to web buckling k were

estimated as

_ 7 (b3t3
G, w3
K = gt 2.16
3(d - 2t) :

Using these values for Gt’ Iw and k, the critical buckling Toad Pcr

is determined as

_1 nwl2 L ]2
Pcr = Fg-{GtJ +[E—J EIw + [ﬁ;J k} 2.17

By differentiating the critical load, Pcr’ with respect to length L,

the minimum buckling length is obtained as

v/ tw 2.18

Since the local buckling shape is one full wave, the ratio L/b is ob-

tained from Equation 2.18 as

",

Af)*
§= 0.713 3[ ] 2.19
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There is some question as to the validity of this expression, since it
indicates that the minimum buck]ingvlength increases as the web thick-

ness decreases, which is contrary to what might be expected.

(42) (44)

Based on their respective analyses, Haaijer and Lay
proposed maximum flange width-thickness ratios required to prevent local
buckling.

Haaijer proposed

b _ |8.16 for 8 = 0.0 220

2t 8.91 for g = 0.1 ’
where B is a constant for web restraint.

Lay proposed

b _

77 = 1.026/6, 75, 2.21

In his study of local buckling of composite beams, Climen-
haga (15)(21) derived a relationship between the elastic-inelastic modu-
lar ratio, h = E/Et, and the ratio of ultimate stress to yield stress,

ou/o » on the basis of tests. He proposed

y

b __
7% © 0.348//éy(3.18 - ou/oy) 2.22

An approximate method for obtaining the moment-rotation

(15), based

relationship after local buckling was proposed by Climenhaga
on yield line theory developed for limit analysis of concrete slabs.

A Tocal buckling wave was first assumed as a series of straight lines
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derived from yield lines as shown in Figure 2.18, and the web deforma-
tion was derived from a geometrical relationship for flange deformation.
The moment-rotation relationship was then obtained by applying the princi-
ple of virtual work. Subsequent composite beam test results showed
reasonable agreement, although the theory is quite conservative for

stocky sections.
2.4.2 Proposed Analysis

In the past considerable attention has been concentrated
on establishing flange proportions for plain steel beams which guaran-
tee that local flange buckling does not occur prior to the onset of
strain-hardening. It is necessary in the present study to develop a
moment curvature relationship which extends into the strain-hardening
range.

The basic equation for torsional buckling of a plate sup-

(45)

ported by a spring at its centerline is expressed as

d? d2e) _d [e,de - d_{opde
EEE{EIw EEYJ ) dz[Gsz] ke = dz[r sz) 2.23

in which the warping rigfdity EIw, St. Venant's torsional rigidity
GJ, web restraint k and normal force P are all functions of z for a
beam under varying moment.

Figure 2.19 indicates the variation in tangent modulus Et
with regard to strain. For a parabolic stress-strain relationship Et
_decreases with increase in strain as shown in Figure 2.19(b). The strains

measured in the plastic region in a tension test represent over-all
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strains, as would be measured over the gage length of a strain measuring
device. Based on the theory of Luders Tines,the plastic region is com-
posed of an elastic zone, slip lines and a strain-hardened zone(42)(43)(46)(47).
Therefore the tangent modulus in the plastic region is indeterminate.

The value of the inelastic shear modulus Gt in compression
has been proposed by Bij]aard(48), Haaijer(42), Lay(44) and others on
the basis of deformation theory, incremental theory and slip band theory.
Various expressions for Gt are tabulated in Table 2.1.

The finite difference equation equivalent of Equation 2.23

at an arbitrary point i may be written as

. + . + .+ . + s =
a-261-2 a-le'l"l aoe1 ale'l‘l‘l a261"‘2

b 8,  +bwoa, +b.o 2.24

-17i-1 01 179+1

where a A2c

a_, = -2A2(c1._1 - ci) - (d1._1 + di)/z

8p = Aoy Aoy ogy) +(dy +2dy +dy )72
a, = -2A2(ci tc; 1) - (di + di+1)/2

a, = A%

2 i+l
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= 2
b_, = (P, +P.)r?/2

= 2
by = (P, + 2P5 + P, )r2/2
b, = (Pi + Pi+1)r2/2
and c; = (Eth)i’ di = (th)i

The boundary conditions for a flange plate as shown in Figure
2.20(a) may be considered as torsionally simple supports, that is, the
rotation 6 and the second derivative of rotation 6" are equal to zero.
However, the boundary conditions for a flange plate with multiple bear-
ing stiffeners as in Figure 2.20(b) may be taken as a torsionally fixed
support, i.e., 6 = 6' = 0.

The warping constant Iw for a thin rectangular section is
equal to b3t3/144(149)(150) and Saint-Venant's torsional constant J
for a thin rectangu]ak section is approximately bt3/3.0 or more accu-
rately bt3(1 - O.63t/b)/3.0(51). The web restraint constant k accord-
ing to Lay is Gtw3/3.0(d - 2t).

2.5 Lateral Buckling

2.5.1 Introduction

If the compression flange is reinforced with a cover plate,

the resistance to local buckling is increased and lateral buckling may
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occur prior to local buckling. Piepgrass(4) observed lateral buckling
under negative moment in composite beams with a cover plate on the com-
pression flange. The ultimate moment for the beams tested by Piepgrass
was 3 to 7 percent higher than the plastic moment, and the curvature

at lateral buckling was about five times the curvature at initial yield-
ing. To simulate conditions in composite beams in negative bending,

(15) tested steel beams with a cover plate on the tension flange

Climenhaga
in place of a concrete slab with longitudinal reinforcement. Lateral
buckling occurred in beams where 5 x 3 RSJ steel sections were used.

The lateral buckling configuration for a composite beam is
illustrated in Figure 2.21. This configuration indicates that only the
inverted tee section need be considered in a lateral buckling analysis.
Elastic torsional buckling of a tee section with lateral restraint at
the end of_the stem has been analyzed for the case of axial load by
B]eich(sz) on the basis of thin-walled beam theory and Bu]son(53) on
the basis of plate theory.

Lateral buckling of an inverted tee section in a composite
beam due to axial force and bending may occur in the elastic-plastic

range. Since plate theory is complicated in a plastic region, thin-

walled beam theory is used in the elastic-plastic range. General equa-
(50)

(54)

tions for thin-walled beams have been developed by V]asov(49), Oden
and others. Vlasov's theory, later modified by Rajasekaran and Murray
is applied herein. Based on the assumption that a cross section remains
plane, a lateral configuration for an inverted tee section is idealized

in Figure 2.21(b).
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2.5.2 Lateral Buckling Analysis

The stress distribution in a composite section under negative
moment is shown in Figure 2.22(a). It is assumed that concrete can not
transfer tensile stress, but the longitudinal slab reinforcement is effec-
tive in tension. Isolating the inverted tee section, when lateral buck-
ling occurs, an external force Tk must be applied along the end of the
stem to balance the forces in the reinforcement and the upper flange
as shown in Figure 2.22(b). The stress resultant in the inverted tee
section may be separated into components due to normal force Nz and due
to bending moment Mx for the principal coordinates shown in Figure 2.22(c).
When the section rotates about the hinge C, i.e., when the section
buckles, additional indeterminate forces denoted as q; and q; in the
x and y directions in Figure 2.22(b) occur at the hinge location C, be-
cause of restraint in the x and y directions.

For the above-mentioned conditions, buckling equations

can be obtained from the general equations derived in Appendix A as

follows:

(EIXE")" - {NZ(E' + aye')}' + (Me0')" + TXg + (Mke')' = q; 2.25(a)

(EIn")" - {Nz(n' - a,0')}" + Tyyy = a} 2.25(b)

(E1 8")" - (GJ8')" - {N,(-an' + aye')}' + (Mig')! - (Mpe')'

+

Tiwy = (ME')" = a3(c, - ay) - af (c, - a)) 2.25(c)
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where Cy and cy are x and y coordinates of the hinge 1oéation, and a,
and a, are coordinates of the shequcenter, which is located at the junc-
tion of the web and the bottom flange.

The coordinates Cus s Xy and wy are zero, since the sec-
tion is symmetrica]labout the y axis. Displacements £e and ne are
zero in the x and y directions at the location C. Therefore displace-

ments & and n become functions of & as defined by

o 2.26(a)

m
il

(cy -y

n = -(cx - ax)e 2.26(b)

The coordinates a5 Cys Xy and wp are zero as shown in
Figure 2.22(b). Substituting Equations 2.26 into Equations 2.25, the

lateral buckling equation can be expressed as a function of e by

(EIwce")" - (Gae'")' = (Mpe')' 2.27 .

where Ie= Iw + (cy -3,
to the hinge location C, and Mp is defined as

)ZIy, which is a warping constant with respect

= 2 -c )2
M Jo {x2 + (y cy) }dA 2.28

The Tocal buckling equation, Equation 2.23, is developed as a par-

ticular case of Equation 2.27 by setting cy=ay and a constant stress o>
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and by adding a term for torsional restraint by web. The hinge loca-
tion for local flange buckling is aSsumed to be at the junction of the
lower flange and the web.

The warping constant Iwc with respect to hinge location C,
shown in Figure 2.22(b), is given by b3(dw + t/2)2/12 from thin-walled
beam theory.  The warping constant Iwc for an inverted-tee section
with a cover plate on the flange is evaluated as

3 2 3 2 .29
I b3(d, + t/2)2t + b3(d, + t + t/2)%t }/12 2

wc={
The torsional constant J for a flange with a cover plate

is defined as

J={1-0.63(t + tp)/bn}bn(t + tp)3/3.0 +
- - - 3
{1-0.63t /(b, bw)}(bn bw)tw/3.0 2.30

where bn and qN are the smaller and the larger of the widths of the
flange and cover plate, and tw is the thickness of the plate corres-
ponding to bw'

For the case where the difference between bn and by, is
small, the second term may be neglected. For example, the ratio of
the second term to first term is 2.7 percent for Piepgrass' test beams.

The torsional constant may be expressed for such cases as

J ={1-0.63(t + tp)/bn b (t + tp)3}/3.0



TABLE 2.1  VALUES OF INELASTIC SHEAR MODULUS

INELASTIC SHEAR MODULUS

.......... SOURCE N -
(52) ..... E
BLEICH T
(55) E
s1aLAARD (48) Esgc
(56) E
HANDELMAN AND PRAGER Ty
nan1ger(42) 2400 Ksi
Ly (44) E

(I+v) + n/4

27
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FIGURE 2.1 ELASTIC STRAIN AND STRESS DISTRIBUTIONS FOR COMPOSITE BEAMS
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FIGURE 2.5 EFFECT OF INTERACTION ON STRAIN DISTRIBUTION
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CHAPTER III

DEFORMATION OF COMPOSITE BEAMS

3.1 Introduction

Beam deformations are produced by bending and shear. De-
formation in composite beams is affected by slip along the interface
between the concrete slab and steel section.

Bending deflections are dependent on the moment-curvature
relationship. This relationship is obtained by direct integration for
a linear elastic stress-strain relationship. For non-linear stress-
strain relationships a numerical integration procedure may be used.
Several such procedures have been proposed, and most of them are based
on dividing a cross section into a number of segments. Numerical inte-
gration herein is based on the assumption of a linear stress variation
in a segment, This assumption will provide adequate accuracy for a
small number of segments. Since the stress varies in two directions
for a section with residual stresses, the section is divided into seg-
ments in two directions.

Bending deformations may be calculated by means of such
methods as the conjugate beam method, the finite difference method,
the Newmark's method and the finite element method. The finite dif-
ference method modified herein has several advantages for analyzing

inelastic beam deformation. The method does not require the solution
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of a large number of equations in each iteration since the number of
unknowns equals the number of redundants. Although the conventional
finite difference method produces second order errors O(AZ)(57), where
A is spacing, this error may be reduced appreciably by modification of
the load term.

Shear deformation can be evaluated independent of bending
deformation, since it does not affect bending deformation, and in a
continuous beam can be evaluated independently in each span. One of
the simplest methods for evaluation of shear deformation in an inelastic
beam is based on the principle of virtual work. This method is employed
in the present study.

The basic equation for slip deformation has been derived by
Newmark(ss), Yam(41) and others. The equation derived by Yam can be ap-
plied to the deformation in an inelastic beam. However, the solution of
the equation requires considerable computation time, especially for con-
tinuous beams. The solution is simplified if we assume that slip strain,

i.e., the derivative of slip with respect to length, is constant through-

out the span.

3.2 Moment-Curvature Relationships

The stress resultants for a section, i.e., normal force

Nz and bending moment MX are defined by

N, = fpodA 3.1(a)

M, = [poydA 3.1(b)
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where the origin of the coordinates is the neutral axis as shown in
Figure 3.1(a).

Integration of Equations 3.1(a) and (b) can be performed
for a Tinear stress-strain relationship without difficulty. However,
a numerical method must be applied to more complex stress-strain rela-
tionships such as those for concrete and for steel after yielding.
Conventionally the integration of Equations 3.1 has been performed by

- a summation procedure

Nz = IAch = chdAj 3.2(a)
MX = [AoydA = ZojyjdAj 3.2(b)

where%.,yj and Aj are the stress, coordinate of the centroid of dAj and
area, respectively, as shown in Figure 3.1(b).

Equations 3.2 do not provide sufficient accuracy for certain
stress distributions. Accuracy is improved if yj is defined as the
coordinate of the center of the gravity for the stress block suggested
by Barhard(s) and shown in Figure 3.1(c).

It is also possible to perform numerical integration by
Newmark's method(sg). Assuming a linear stress distribution in a seg-

ment as shown in Figure 3.2(a), the integration of Equations 3.1(a) and

(b) results in

n
= =1
N, = ondA 6 51 { Gj-ldAj-l + Zoj(dAj_l + dAj) +

°j+1dA:i} 3.3(a)



=

]
N—
<

o
>

1}
o [

™M 3

‘ (dA: . + dA.
1,, {qj-ldAj—l + 20\](dAJ_1 J)

MRATS Rt }yj 3.3(b)

For equal areas of segments, the stress resultants NZ and MX can be

simplified as

Nz = —E'Z(Oj-l + 40J + Gj+1) 3.4(a)
_dA_ ‘
MX =6 Z(o._l + 40j + Gj+1) ¥; 3.4(b)

It may be necessary to expand these expressions for normal
force and bending moment to two dimensions for sections with residual
stress. Denoting the equal intervals in the x and y directions by

Ay and Ay and the stress at a mesh point by ;4 @s shown in Figure

J
3.2(b), Equations 3.4(a) and (b) become

=
i

, = [podA = [fodxdy

X
-—E-fz(ci_l’j + 4o + Ui+1,j)dy

i
AJA
= XYy
36 ?? {(01‘-13\1-1 ¥ 401 3j"1 ¥ O.i+1:j"l)
Aoy A Y %)
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* oy, 500 Y9 5 Y °i+1,j+1)} 3-5(a)
AA
v Mx = «%gx Zz{}ji—l,j-l + 4Oi,j-1 + 9i+1,j-1
+ 4( O5.1,5 * 93,5 * °i+1,j)
MR B TR TS B P }yﬁ 3.5(b)

3.3 Effect of Residual Stresses on Bending

Residual stresses occur in rolled sections as a result of
plastic deformation during the cooling process after rolling. Usually
compression occurs at the tips of the flanges and tension occurs at the

(61)(62)(63)  14eatized

Jjunction of flange and web in a wide flange shape
residual stress patterns have been proposed by various investigators.
The two examples shown in Figures 3.3 have been employed for analysis

(63) and Lee et a1(64).

of torsional column buckling by Galambos
Any residual stress pattern must satisfy equilibrium condi-

tions, therefore the following equations must be satisfied(54).

fpopdA = 0 3.6(a)

]
[aw]

onrydA 3.6(b)

3.6(c)

{]
(=]

f I-\or‘x dA



-( JowdR)' + Mot M8 =0 3.6(d)

In Equation 3.6(d) relating to twisting moment, the terms
represent warping torque, Saint Venant's torque and a stress resultant
which is defined by Equation A.25. If residual stresses are assumed
constant along the member, the warping torque must be zero. Therefore

Equation 3.6(d) can be rewritten as

M + Mpre' =0 3.6(e)

ttr
which shows that twisting moment due to Mpre' balances Saint Venant's
torque due to residual shear stress. If the twist is zero, that is,

8' = 0, Saint Venant's torque must be zero.

3.4 Bending Deformation

The differential equation for bending deformation of a

beam subjected to distributed load q, is expressed as

(EIy")" = q, 3.7
Equation 3.7 can be divided into two parts

EIy" = -M 3.8(a)

M* = -q, 3.8(b)
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The finite difference equations for Equations 3.8 are ex-

pressed in matrix form as

1 [B]{y} = -{M} 3.9(a)

[B]{M} = ~{a,} 3.9(b)

For a simply supported beam, the matrix [B] for equal seg-

ments A can be established as

~2 1 y
1 -2 1 .
B - = 3.10

The inversion of the matrix [B] is of the form,

B = 22[b;) 3.11

where the elements of the n x n matrix [B]™', by ; are

b.,. =

1]

i(n=3)/n for i > J
3.12

ij/n for i < j

56



57

By multiplying by [B]_l, Equations 3.9 are expressed as

{yYy = -[B]TYED] MM 3.13(a)

-[8 ' tq,) 3.13(b)

M)

where [EI]™! is a diagonal matrix with diagonal elements 1/E1,.

Conventionally Equation 3.13(b) is substituted directly
into Equation 3.13(a); however this procedure may yield second order
errors 0(r2). As shown in Figure 3.4, constant moment is assumed in
each segment, rather than varying moment as produced by loads. However
the moment which is introduced into Equation 3.13(a) must be related to
the actual bending moment diagram. By assuming a linear moment varia-
tion between pivotal points i and (i+1), an equivalent moment at the
point i may be given by %—(Mi_1 + 4Mi + M1+1). This may be expressed
in matrix form by introducing co-efficient matrix [C] as

1 4 1
K -% 3.14

Since this procedure is also applied to a distributed load, the equi-

valent distributed Toad qeq and bending moment Meq are defined as
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{aggt = [C]1a,} 3.15(a)

M} = [C1M) 3.15(b)

By using Equations 3.15 and substituting Equation 3.13(b) into 3.13(a),

the deflection for a beam subjected to distributed loads is obtained as

[y} = B EDTEIE T} 3.16

Since a concentrated load P may be expressed as a distributed
load equal to P/A, the bending moment {M} for a beam subjected to ex-
ternal moments'{Mex}, concentrated loads {P/A} and distributed loads

{q,} is expressed as

M} = (M} - B7H({paY + [E{ag,}) 3.17

The corresponding deflection is

= [ DL [ b B e+ [ ah)] 3.8

Once the deflection {y} and moment {M} are obtained, the
slope and shear can be evaluated by differentiating {y} and {M} res-
pectively. The shear Vi+; at the pivotal point (i+%) is expressed in

2

finite difference form as

V.., = (M

i+
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The shear Vi at the location i is obtained by adding to the shear force
Vi, the additional shear aV, produced between i and (i+s), resulting

in

V1 = V1.+li + AV
= - A
= (Mi+1 Mi)/x + E(Zqi + qi+1) 3.20

where the second term is the shear at i for linearly distributed loads

between i and (i+l). Similarly the slope can be evaluated as

o (2M. 0 M.
- - P 1+1
87 = Wiy ~¥3)/2 6[EIi ¥ E11+1J 3.21

Since the conventional finite difference equation
does not include the co-efficient matrix [C], it implies that a unit
matrix [E] is the co-efficient matrix, which is equivalent to a rec-

tangular integration.

3.5 Shear Deformation

Shear deformation is often neglected, since it is not usually
significant when compared with bending deformation. However, it is sig-
nificant for short beams and for beams with small shear resistance.

A composite beam has relatively large bending stiffness,

but may not have large shearing stiffness, since the web of the steel
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section provides the major shear resistance. The ratio of shear de-
formation to bending deformation also depends on the boundary conditions,
and the type of loading. Bending deformation varies significantly for
different boundary conditions. Shear deformation, however, is the
same for all boundary conditions except for those at a free end or a
yielding support. Shear deformation at z for the beam shown in Figure
3.5 may be expressed as Ksh z(1-a) where kSh is the shear correc-

GA1
tion factor defined by

N )2
_ A q

where Nq is the first moment of the section A1 shown in Figure 3.6(b)
with respect to the neutral axis. The shear correction factor is 1.2
for a rectangular section, 2.94 for a W12x36 section, 6.63 for a com-
posite beam.consisting of a W12x36 and a 5"x60" concrete slab, and 3.1
for a composite beam consisting of a W12x36 section and 3.6 in2 of
longitudinal reinforcement in a negative moment region. Generally ksh
is close to unity for wide-flange sections if only the web is considered
to resist shear.

Shear deformation should not be neglected for an indeter-
minate structure. For a beam with fixed supports the ratio of shear
deformation to bending deformation is approximately 4 times that for a
simply supported beam.

Elastic shear deformation can be obtained by the virtual

work method. Shear deformation is defined as



$ '-'J - TydVol 3.23
sh Vol

where the virtual shear stress T equals to Vt/V, and V and V are the
virtual shear and real shear. Therefore shear deformation ash is re-

presented by

= J %J rydA 3.24
Via

fA1ydA in Equation 3.24 can be derived from the normal stress a, due

to bending at any location in the beam, since shear stress T is given

by

9z

o0
T = -I-J —Z dA 3.25
Al

The shear strain y is obtained from the stress-strain relationship

which is similar in shape to the normal stress-strain relationship. The
integration may be performed numerically by the same method as that ex-
plained in Section 3.2. The computation of shear deformation is rela-
tively simple, once (ftydA)/V is calculated at intervals throughout the

span.

61
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3.6 Effect of Slip

Analytical studies of composite beams with incomplete in-
teraction were first undertaken by Newmark(58), who assumed linear
stress-strain relationships for steel and concrete and a linear force-
deformation relationship for shear connectors. The basic equation for

the compression force C in the slab was expressed as

S
"+ Ef'(flm - 0 =0 3.26

where s is spacing, kS is a constant related to the shear connectors,

and

PO 3.27
1T E T+ EL .
1,1
P gy 3.28
2 EcAc EAS 1”s

where Y is the distance between the centroids of the slab and steel
section.

In an analysis involving non-linear stress-strain rela-
tionships and a non-linear force-slip relationship, Yam and Chapman(41)
derived two first order simultaneous equations with two independent

variables C and B (Figure 3.7) as

o

dac
dz

c' =

mlm

{1 - exp(-bAS)} 3.29(a)
y
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da

==
AL = —g5 = -F(M,C) 3.29(b)

s
where a and b are constants defined in Section 2.3.3. Yam solved Equations
3.29 by means of the predictor-corrector method which is used for numeri-
cal integration. For a simply supported beam a value of slip is assumed.
However, for an indeterminate structure the bending moment must also be
assumed. Since two assumed values are required for continuous beams,
more iterations must be carried out to obtain correct values.

Yam's approach requires considerable computational time.
However, computational time may be significantly reduced by making an
assumption that the slip strain, which is the differentiation of slip,
is constant along the shear span. The slip distribution based on this
assumption is linear as shown in Figure 3.8. The conditions in a shear
span are illustrated in Figure 3.9 with all shear connectors in the
shear span acting to resist the concrete compression force. The slip
strain is defined as €q = AS/LS, where A is obtained from the force-
slip relationship and LS is the shear span. There are two neutral axes
in a section due to slip, and the distance between them is defined by
sd/¢, where ¢ is curvature. The moment-curvature relationship can be
obtained for this condition by employing numerical integration as dis-
cussed in Section 3.2. Presumably the moment-curvature relationship
depends onthe shear span and shear connector spacing. For the case
of linear stress-strain relationships for steel and concrete and a
linear force-slip relationship for shear connectors, the equivalent moment

of inertia, accounting for slip, is derived in Appendix B.



Expressions for force-slip relationships in negative moment
regions have not been proposed. Davison(s) measured strains in longi-
tudinal slab reinforcement, and evaluated the ratio of measured strains
to calculated strain, which he defined as an interaction factor. The
interaction factor for the beams tested by Davison was approximately

equal to 0.6.

3.7 Deformations in Continuous Beams

Stiffness in a negative moment region is usually smaller
than that in a positive moment region, since in a negative moment
region the concrete slab cracks when subject to relatively small ten-
sion stresses. Therefore stiffness is dependent upon the bending
moment, resulting in a material non-linear probiem.

Several methods have been proposed for the analysis of con-
tinuous beams; however all methods require an iteration procedure for
a non-linear problem. Finite difference and flexibility procedures
are employed in the following. The flexibility matrix for finite dif-

ference can be readily obtained for simply-supported beams as discussed

64

in Section 3.3. Continuous beams may be considered as a series of simply

supported beams to which the flexibility method is applied.
If Gio js the deformation at the support i of the primary
structure, and E}j is the deformation produced at i due to unit value of

redundant Xj, where 3} is also defined as the flexibility factor, the

J
displacement As at the support i becomes

Ay =850 zaijxj 3.30(a)
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or {a }={s,}+ [Fl{x} 3.30(b)

Generally, moments or reactions are selected as the redun-
dants in continuous beams. If moments are taken as redundants, the
primary structure consists of n simple beams for an n-span continuous
beam. One of the advantages of selecting moment redundants is that
less computation is required in Equation 3.18. For example, a continu-
ous beam with each span divided into m segments provides n[B:]'1 with
m x m elements for a beam where moments are selected as redundants,
instead of a Eﬂ'l matrix with n(m + 1) x n{(m + 1) elements for a beam
where reactions are selected as redundants.

The first step in the analysis procedure for continuous
beams is to assume redundants {X}. The second step is to find {s}
and [F] from Equations 3.18 and 3.26. Then redundants {X} can be solved
from Equation 3.30(b). The third step is to find the moment in the
real structure. If bending moments are close enough to those previously
assumed, then the assumed redundants {X} are correct. If not, success-

. th

ive iteration must be carried out. The i== assumption of {X}, is pro-

vided by
{Xpy = Xk, +eliXh ) - {X},) 3.31

When the factor o is greater than unity, it is the so-called over-relaxation
factor for elastic analysis. When it is less than unity, it is the so-

called under-relaxation factor for inelastic analysis.
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Several analytical methods have been proposed for an in-
elastic region. One of the methods is based on using the stiffness
EI in Equation 3.18 as defined by the secant modulus in the moment-
curvature relationship. This method requires the evaluation of Equation
3.18 in every iteration. As illustrated in Figure 3.9 , the total cur-
vature for moment M can be divided into elastic and plastic curvature.
Instead of changing the stiffness, an additional external moment, cor-
responding to plastic curvature is applied to the inelastic region.
This additional external moment is given by EI¢p where EI is elastic
stiffness and ¢p is plastic curvature.

Since shear deformation does not affect redundants, shear
deformation is determined after bending deformation. A computer pro-

gram for deformation analysis is presented in Appendix D.
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FIGURE 3.1 CO-ORDINATE SYSTEMS FOR NUMERICAL INTEGRATION PROCEDURES
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FIGURE 3.4

ASSUMED MOMENT DIAGRAM FOR
L— CONVENTIONAL FINITE DIFFERENCE

METHOD

ACTUAL MOMENT DIAGRAM

ASSUMED BENDING MOMENT DIAGRAM FOR CONVENTIONAL FINITE
DIFFERENCE METHOD
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CHAPTER IV
TESTS OF CONTINUOUS COMPOSITE BEAMS

4.1 Introduction

The object of the tests conducted as part of the present
study was to provide additional information on the behavior of continu-
ous composite beams. Although a number of tests have been conducted in

12),it was felt

the past by Barnard(g)(g), Daniel et a1(18) and Park(
necessary to conduct further tests with particular emphasis on the ef-
fects of longitudinal slab reinforcement on ultimate strength, failure
modes and general behavior. Three two-span beams were tested under

concentrated loads applied at the midspans.

4.2 Test Program
4.2.1 Design of Specimens

The size of beam specimens was determined to a large extent
by limitations imposed by laboratory facilities. W12 x 31 and W12 x 27
steel sections were selected, since these sizes have been used in pre-
vious tests at the University of A]berta(s). CSA Standard 816-1969(1)
limits width-thickness ratio of compression flanges and webs for sections
used in plastic design, and the ratios for W12 x 31, W12 x 27 and W10 x 21
steel sections are approximately equal to these limitations. G40.12

steel was specified.

76



77
4.2.2 Fabrication

A11 steel sections were delivered to the laboratory complete
with shear connectors and bearing stiffeners. Additional 3'-0" lengths
of the W12 x 31, W12 x 27 and W10 x 21 sections were supplied for ma-
terial property tests. The steel surface at locations for electrical
resistance strain gages was ground smooth. 13" x 1%" styrofoam blocks
were placed at these locations and were subsequently removed after the
concrete hardened.

The slab reinforcing bars were also ground smooth at the
strain gage locations, and then tied together to form a grid. Styro-
foam blocks were attached to the bars at gage locations. Plastic chairs
held the reinforcement in place. Plate 4.1 shows details of the fabri-
cated steel specimens, reinforcing grids and form work in position prior
to casting.

Concrete was mixed in a 9 cubic foot Erich mixer in the
University of Alberta Structural Engineering Laboratory. The mix propor-
tions are shown in Table 4.4. One beam specimen together with 8 test
cylinders was cast from 4 batches of concrete. The concrete was vibrated
into place by a mechanical vibrator and was finished by means of a wooden
screed and steel trowel. The beams were moist-cured for 5 days and
removed from the formwork to cure under laboratory conditions for periods
ranging from 69 to 72 days before testing.

After a beam was positioned in the testing apparatus and
strain gages were connected to the indicators, the steel section was

white-washed so that the development of yielding could be observed.
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A 4" slab thickness and a 4'0" slab width were selected,
since these dimensions had been used in previous tests at the University
of Alberta. A concrete strength of 4500 psi, which is a common strength
used in actual structures, was selected.

The amount of longitudinal slab reinforcement at the interior
support significantly affects ultimate loads and failure modes. Local
buckling may be the dominant failure mode in a beam with a relatively
large amount of longitudinal reinforcement. On the other hand, crushing
of concrete may be the dominant failure mode for a section with a small
amount of longitudinal steel. The amount of longitudinal slab reinforce-
ment as shown in Table 4.1 were selected to produce different failure
conditions. The Tongitudinal bars were placed at mid-depth in the nega-
tive moment regions.

Shear connectors as shown in Figure 4.1 were provided ac-
cording to provisions of CSA Standard S16-1969, which are based on
ultimate connector strength. The shear connectors were 3/4 inch diameter,
3% inches long,headed stud connectors.

Transverse reinforcement was introduced in order to control
Tongitudinal cracking. Ferrier(zo) encountered longitudinal cracking
in beam specimens with transverse steel in the amount of 0.2 percent of
the concrete area,which corresponds to temperature reinforcement require-
ments. The present beams were reinforced transversely with #3 bars
placed at 4%" intervals throughout the length of the slab. This rein-
forcement is equal to 0.67 percent of the concrete slab area or three times
the nominal temperature reinforcement.

Complete details of the test specimens are shown in Figure 4.1.
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4.2.3 Test Equipment

Test specimens were supported at mid-length on a hinge reac-
tion unit anchored to a concrete pedestal and at each end by a roller
unit fitted with a rocker plate assembly seated on a concrete pedestal,
as shown in Figure 4.2.

Two 100-ton Amsler hydraulic jacks were used as loading units
centered on the longitudinal centerline of the specimen. Loads were
transmitted to the concrete slab through 12" x 8" x 1%" spreader plates
set in plaster of Paris to ensure uniform contact.

Details of the lateral support system are shown in Figure
4.3(a) and Plate 4.2(a). At each support, steel channels, attached to
the web stiffeners and supported by vertical steel columns, resisted
lateral rotation of the specimen as shown in Figure 4.3(b) and Plate
4.2(b). The slab was supported laterally by rollers on vertical guides

near midspans.
4.2.4 Material Properties

Results of tension tests performed on samples of #3, #4
and #5 bars used as longitudinal and transverse reinforcement are shown
in Table 4.2. Test coupons, two from each flange and three from the web,
were cut from 3'-0" lengths of W12 x 31, W12 x 27 and W10 x 21 provided
for this purpose. Results of coupon tests are shown in Table 4.3.

Eight concrete cylinders were cast for each beam and cured
under laboratory conditions. Five cylinders were tested in compression
and three were subjected to a splitting test at the time of the test on

the corresponding beam. Test results are shown in Table 4.4.
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4.2.5 Instrumentation

Measurements of strains in the steel sections, reinforcing
bars and concrete slabs were obtained by means of KFC-5-C1-11 and SR4-

A7 electrical resistance strain gages. Deflections, rotations and slip
deformations were measured by mechanical means.

Deflections were measured by means of a precise level fo-
cused on graduated scales suspended from the bottom flange of the speci-
men. Deflection measurements were taken at the centers of the two spans
and at locations 30 inches from the interior support in the vicinity of
the points of inflection.

Rotations were measured by means of mechanical rotation meters
at the beam ends and by means of sets of two dial gages at locations
30 inches from the interior support. These mechanical rotation meters
consisted of a level tube, an extension dial and two arms connected by
a hinge as shown in Figure 4.4. A vertical steel bar was welded to the
steel section and two dial gages 24 inches apart were mounted by magnetic
bases on the interior support as shown in Figure 4.4. Rotations were

determined from the relationship
6 = [Adl B Adz}”‘a

where Adl and Aq, are displacements measured by the dial gages and % is
the distance between the gages.
Curvatures were measured at the interior support and the

load points by means of electric resistance strain gages. For measuring
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curvature, three gages were attached to the steel section, six gages were
attached to the concrete slab in positive moment regions and three gages
were attached to reinforcing bars in the negative moment region.

Points of inflection were determined from measurements ob-
tained from sets of two electric resistance strain gages. Since in-
flection points were expected approximately 30 inches from the interior
support, gages were positioned at 24" and 36" from the support. Assuming
that strains in the flange vary linearly, the inflection point can be
simply located from the measurements obtained from these two gages.

Once inflection points are located, reactions and bending moments are
easily evaluated from an analysis of a statically determinate structure.

Slip and slip strain measurements were obtained by means
of dial gages and electric resistance strain gages, respectively. Six
locations for these measurements were selected in the positive moment
region. Slip strains are defined by the difference of strains in the
steel section and concrete slab at the interface. Therefore two strain
gages were required at each location. Slip was measured by means of
dial gages attached to the steel sections by magnetic mounts, and react-
ing against a steel angle attached to the concrete slab.

Strains in the transverse reinforcing bars were measured
at four locations.

Complete instrumentation details are shown in Figure 4.4 and

Plate 4.3.

4.2.6 Testing Procedure
Prior to testing, the electric resistance strain gages were

connected through switch boxes to strain indicators. Immediately prior
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to loading all gages were balanced for initial reading and mechanical
gages were positioned securely. A load of 5 Kips was applied through
each jack and then removed before initial readings were taken. Existing
cracks in the slab were marked at this time.

Load increments were different in each test. For steel
strains less than the yield strain 10 Kipsor 20 Kips increments were
applied. After yielding began, load increments were gradually reduced
to provide sufficient values to plot an accurate load-deflection relation-
ship. For each load, strain and deflection measurements were recorded
and cracks were marked. At each Toad sufficient time was allowed for
stabilization of deflection and rotation. After maximum loading the test
was continued in order to obtain the falling portion of the load deflec-
tion curve. When deflection approached the 5 inch maximum extension
of the jacks, load was removed and additional 1 inch plates were posi-
tioned under the jacks and load was re-applied. Beams were tested
well beyond ultimate load conditions to the point where concrete crushing
and/or significant flange buckling at the interior support occurred.
Failure modes and crack patterns were photographed before the specimen

was removed.

4.3 Test Results

4.3.1 Introduction

A1l original data obtained from the beam tests is filed in
the Department of Civil Engineering at the University of Alberta. Data

presented herein is in tabular, graphical and photographic form.
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4.3.2 General Behavior

4,3.2.1 Beam CB1

‘No visible cracks could be found in the concrete slab at the
start of the test. At a load of 30 Kips, cracks appeared on the top
surface of the slab in the negative moment region. These cracks ex-
tended to the bottom surface of the slab at a load of 50 Kips. Cracks
appeared on the bottom surface in the positive moment regions at a load
of 50 Kips. Spalling of the white-wash on the steel section began at a
load of 80 Kips in the negative moment region and at a load of 100 Kips
in the positive moment regions.

At a load of 100 Kips it required approximately 5 minutes to
establish equilibrium, and more than 15 minutes were required to sta-
bilize the load at 120 Kips. Cracking progressively spread throughout
the slab and crushing began at the top surface at a load of approxi-
mately 131 Kips. At a load of 135 Kips it was still possible to stabi-
lize conditions in the beam, though crushing extended over 15 inches.
The load was then increased to 137 Kips. After 15 minutes the slab was
crushed completely, and the load could not be held. After crushing of
the concrete, local flange buckles formed and the load decreased.

Crushing and local flange buckling failures are shown in Plate 4.4.
4.3.2.2 Beam CB2

This beam was the first beam tested in this program. It
was loaded initially without a bracing system. However, at a Toad of
70 Kips the beam rotated transversely to such an extent that the test
was terminated. After the bracing system was introduced, the beam

was load to failure without any further difficulty.
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The first cracks were observed at a load of 20 Kips in the
negative moment region and at a load of 50 Kips in the positive moment
regions. Local flange buckling initiated in the negative moment region
at a load of 120 Kips and extended gradually with increasing Toad. Local
buckling was completely formed at a load of 130 Kips. At this load
crushing of concrete started at the load locations. Deflections were
stabilized at a load of 133 Kips, but could not be stabilized at 136
Kips. The load decreased to 130 Kips at which point crushing was ini-
tiated. During unloading, web buckling occurred between the load point
and the interior support at a load of 126 Kips. Finally a section of the
concrete slab at a load point spalled off at a load of 116 Kips. The

failure modes are shown in Plate 4.5.
4.3.2.3 Beam CB3

A visible crack existed on the top slab surface near the
interior support prior to loading. Tension cracks began to appear in the
negative moment region at a load of 10 Kips, and in the positive moment
regions at 50 Kips. Local buckling initiated at a load of 87 Kips and
slowly developed as the Toad increased. At a load of 92 Kips crushing
of concrete occurred at a load point and at a Toad of 94 Kips the con-
crete was completely crushed. The flange buckles were completely formed
at the interior support as the deflection increased. Failure modes are

shown in Plate 4.6.
4.3.3 Load-Deflection and Load-Rotation Relationships

Load-deflection relationships are shown in Figures 4.5.

Deflections were measured at midspans and at locations 30 inches from
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the interior support. Rotations at the exterior support and at loca-
tions 30 inches from the interior support are plotted against load in

Figures4.6.
4.3.4 Load-Reaction and Load-Moment Relationships

Inflection points were determined from strain data obtained
at locations 24 inches and 36 inches from the interior support. Reac-
tions were then calculated on the basis of a statically determinate
structural analysis. Resulting load-reaction relationships are shown
in Figures 4.7. Bending moments at the load locations and at the interior
support were obtained from reactions and Toads. Load-moment relation-

ships are shown in Figures 4.8.
4.3.5 Moment-Curvature Relationships

Moment-curvature relationships at the midspans and at the
interior support are shown in Figures 4.9. The maximum strain values
obtained from electric resistance strain gages were 2 to 3 percent. This
magnitude of strain was sufficient to establish moment-curvature relation-

ships.
4.3.6 Slip Deformation and S1ip Strains

Load-s1ip relationships are shown in Figures 4.10. Distri-

bution of slip and slip strain are shown in Figures 4.11 and 4.12.
4.3.7 Strain Distribution Across Slab Width

Strains were measured at the slab edges andthe longitudinal
slab centerline. Figure 4.13 shows the ratio of slab edge strain to slab

centerline strain at the load points for various load values.



86

4.3.8 Transverse Strains

Strains were measured in the transverse reinforcing bars at
the longitudinal centerline and at various locations in the span. Load-

strain relationships were shown in Figures 4.14.

4.3.9 Crack Patterns

Crack patterns in the concrete slabs are shown in the Figures

4.15.

4.4 Discussion of Test Results
4.4.1 General Behavior

Transverse rotation may occur as a result of warping of the
slab or steel section prior to testing. Transverse rotation due to load
was effectively resisted by the bracing system and by the reaction system
described in Section 4.2.3.

Initial cracks were observed only in Beam CB3. This crack

may have been due to shrinkage, or, since it was located over the interior
support, it may have occurred during positioning in the test apparatus.
The first transverse cracks appeared in the negative moment region. Later
transverse cracks appeared on the bottom surface in the positive moment re-
gions. Diagonal cracks developed at the approach of failure. Longitudinal
splitting was effectively prevented by means of the transverse reinforcement.
Although a few longitudinal cracks appeared near the load locations before
failure, they did not appear to affect the ultimate moment capacity of the
beam.

Failure of Beam CBl was a concrete crushing failure. Local

buckling followed as a result of reduced stiffness in the positive moment
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regions. The amount of longitudinal reinforcement in Beam CB1 was 1.6 in2
or 17 percent of the area of the steel section, which was the smallest amount
in the three beams. Failure of Beam CB2 occurred as a result of local buck-
1ing followed by concrete crushing. The area of Tongitudinal reinforcement
was 3.1 in2, i.e., 38.9 percent of the area of the steel section which was
the highest amount in the three beams. Failure of Beam CB3 resulted from
concrete crushing followed by local buckling. Although local buckling ini-
tiated prior to crushing of concrete, it did not produce a sudden failure.
The area of longitudinal reinforcement in Beam CB3 was 32.3 percent of the

area of the steel section.
4.4.2 Load-Deflection and Load-Rotation Relationships

Load-deflection and load-rotation relationships have similar
characteristics as indicated in Figures 4.5 and 4.6. They consist of three
ranges, i.e., elastic, plastic and unloading ranges. The deflections at the
maximum load were 2.6, 1.8 and 2.1 inches for Beams CB1, CB2 and CB3, respec-
tively. These values indicate an increase in deflection with decrease in the
ratio of the area of longitudinal reinforcement to the area of the steel sec-
tion.

Rotation measurements at the ultimate load were not dependable.
Since the rotation bars were welded to the web of the steel section, deforma-
tion of the web affected the rotation measurement. End rotations at ultimate
load were approximately 5 times the rotations at initial yielding. The un-
loading portions of the load-rotation curves are different to those obtained
for isolated simple beams under negative bending due to the fact that con-

tinuous beams have greater ductility than isolated simple beams.
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4.4.3 Load-Reaction and Load-Moment Relationships

Reactions were determined from the location of points of
inflection. The moment diagram is Tinear for concentrated loads. If
the concrete slab does not have tensile cracks, the strain can be assumed
to vary linearly along the span and the Tocation of a point of inflection
may be determined by linear interpolation between strains measured on
both sides of the point of inflection. If the concrete slab has tensile
cracks, the location of a point of inflection is related to the stiffness
and the distance from the neutral axis to the gage location in positive
and negative moment regions. However, the effect of cracking to moments
is not significant. Strains 24 and 36 inches from the interior support
did not exceed yield strain values in any of the beams. The points of
inflection in each span were almost equidistant from the interior sup-
port and therefore the two exterior reactions and the moments at the
load positions were almost equal in the elastic range. However, in the
plastic and unloading portions they differed slightly as shown in Figures
4.7 and 4.8 probably due to imperfections in the beams affecting symme-
try.

Bending moments are proportional to the applied load in the
elastic range. Figures 4.8 show slight moment redistribution in Beams
CB1 and CB2 for loads greater than 90 Kips and significant redistribution

in Beam CB3 for loads greater than 50 Kips.
4.4.4 Moment-Curvature Relationships

Curvature values were obtained from strains at the top and
bottom of the steel sections. The range of curvatures which could be

measured by this means was limited because the strain gages were not



effective beyond strains of 2 to 3 percent. Therefore curvatures were
not obtained for the unloading range.

Although moment-curvature relationships for Beam CBl indicate
that stiffness in the positive moment regions was greater than in the
negative moment regions for elastic conditions, inelastic stiffness was
approximately the same in both regions. Therefore the ratio of inelastic
to elastic stiffness in the negative moment region is greater than that
in the positive -moment regions. This may be related to the descending
portion of the stress-strain relationship for concrete. This effect is

apparent in all beams tested.
4.4.5 Slip and Slip-Strain

Maximum slip occurred at locations near the Toad, as shown
in Figures 4.10. This behavior is similar to that observed in simpie

(20)(40). Since shear forces are in opposite directions on

span beams
opposite sides of the load, slip deformations reverse at the load loca-
tion. Load-slip relationships presented in Figures 4.9 include the un-
loading portion, which is not defined in the pushout test.

As shown in Figures 4.11, there is no particular trend in

the slip-strain distribution.
4.4.6 Strains in Transverse Reinforcement

Strains were measured in the transverse reinforcing bars
which were located 3 inches from the bottom of the slab in positive mo-
ment regions and 2% inches from the bottom of the slab in negative mo-
ment regions. Figures 4.14 indicate that strains in the transverse re-
inforcement exceeded yield strain in positive moment regions but not in

the negative moment region.
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4.4.7 Effective Slab Width

The effective slab width may be evaluated from the stress
distribution. The ratio of strain at the edge of the slab to that at the
center, Y o Was approximately 70 percent as shown in Figure 4.13. The
theoretical strain distribution over the slab width is an exponential

(51)

function Assuming the function as a parabola, the effective slab

width, be’ may be expressed as
b = bC -z (1 - Ye)(bc - b) 4.1

For the beams tested, b = 6.5 in., b_ = 48 in. and Ye = 0.7.

o
Therefore the effective slab width is 39.7 inches. This results in
(be - b)/(bc - b) equal to 0.81 or in (bC - bY%equal to 0.23.

According to CSA Standard 516(7) the effective projection
of the slab beyond the flange of the steel section is considered to be the
smaller of: (i) one-sixth of the beam span and (ii) twelve times the
slab thickness for a slab which is not supported along its edges, and
the smaller of: (i) one-fourth of the beam span and (ii) sixteen times
the slab thickness for e slab which is supported along its edges. The
effective design width, therefore, is 30.5 inches for the former case and
40.5 inches for the latter case. The effective slab width for the test

beams with unsupported slab edges was therefore greater than the Code

value and was close to the Code value for a beam with supported slab edges.
4.4.8 Crack Patterns

Three crack patterns were developed in the slab, i.e.,
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transverse cracking, longitudinal cracking and herringbone cracking

as shown in Figures 4.15. Transverse cracks were developed in the nega-
tive moment regions due to tensile stress at relatively small loads.
Longitudinal cracks at the load points were produced along the centerline
of the beam at relatively large loads. Herringbone cracks were developed
at large loads and the direction of the cracks was approximately 45° to
the beam centerline near the ends of the beams. The angle decreased as
the load point was approached. These two crack patterns, i.e., longi-
tudinal and herringbone, are caused by the stresses produced around shear
connectors(65’66) and by the relatively large tensile strain as a result

pf Poisson's ratio effect.
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TABLE 4.2 PROPERTIES OF SLAB REINFORCEMENT

[Tear s1ze | VYELD STRESS T ULTIVATE STRESS

#3 53.4 75.1
52.6 76.0

52.8 75.2

Ave. 52.9 Ave. 75.4

#o 59.1 83.3
59.3 84.1

59.6 84.1

Ave. 59.3 Ave. 83.8

#5 52.2 76.3
49.4 76.6

49.4 76.8

Ave. 50.3 Ave. 76.6
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TABLE 4.3 PROPERTIES OF STRUCTURAL STEEL
YIELD TULTIMATE|MODULUS OF|  STRAIN AT |STRAIN-HARDENING
COUPON| STRESS| STRESS. | ELASTICITY|STRAIN-HARDENING| . MODULUS
T ks1) | (ksi) | (ksi) | (inches/inch) | (ksi)
40.4 | 66.3 | 29400 .0096 1330
Wi2x3ila1.0 | 67.1 | 31700 10070 1250
FLANGE|41.4 | 67.5 | 30000 10126 1330
39.1 | 66.3 | 30100 -0068 1360
Ave. [40.5 | 66.8 | 30200 000} 1317
46.7 | 73.8 | 30700 0197 1050
né§X31 a7.8 | 70.7 | 31600 0200 1140
- 46.2 | 68.8 | 30500 0176 1470
Ave. |46.9 | 71.1 | 30900 0194 1220
45.7 | 67.1 | 32200 .0065 1180
W12x27143.3 | 65.8 | 29200 10120 1160
FLANGE|45.4 | 68.0 | 32400 10028 1000
46.3 | 69.1 | 29500 .0128 1130
Ave. [45.2 | 67.5 | 31300 0085 1160
48.8 | 67.1 | 29800 0192 1110
ﬁESXZ7 48.9 | 66.3 | 30400 10258 -
49.6 | 66.6 | 30400 10232 890
Ave. |49.1 | 66.7 | 30200 0226 1000
43.4 | 68.7 | 32600 0180 850
wiox21]43.7 | 69.5 | 31900 0142 850
FLANGE|43.1 | 68.8 | 32200 10158 700
43.9 | 68.7 | 31500 0177 750
Ave. 143.5 | 68.9 32100 | . 0164 790
1475 | 69.0 | 27800 .0242 -
ﬁégXZ1 48.2 | 68.6 | 29000 10252 -
47.3 | 68.7 | 27700 10230 -
we. |47.7 | 688 | 2200 | o -
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TABLE 4.4  PROPERTIES OF CONCRETE*
AGE AT COMPRESSTVE SPLITTING
BEAM TEST STRESS TENSION STRESS
(days) _(psi) | (psi)
5358 486
5340 407
CB1 72 5500 --
5924 --
5924 . . --
. Ave. 5577. .. | . .. .. 446
5553 354
5641 433
CB2 69 5447 451
5535 --
5128 -
{- Ave. 5460 410
6012 487
5588 442
CB3 72 5659 --
6118 --
_____ 6366 . | .... ... -
_ Ave. 5948 465
* MIX PROPORTIONS
CEMENT 133 1bs.
WATER 66 1bs.
SAND 344 1bs.
COARSE AGGREGATE 500 1bs.
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PLATE 4.1

FORMWORK AND REINFORCEMENT DETAILS
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(@) LATERAL BRACING

(b) SUPPORT SYSTEM

PLATE 4.2  LATERAL BRACING AND SUPPORT SYSTEM
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PLATE 4.3  INSTRUMENTATION
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CHAPTER V
BEHAVIOR OF CONTINUOUS BEAMS

-5.1 Introduction

The present chapter compares results of the proposed analysis
with experimental data from tests conducted at the University of Alberta,
the University of Cambridge and Lehigh University.

Deformations in continuous composite beams have received
relatively Tittle attention in the past. Deformations have been mainly
analysed assuming elastic properties. Barnard(s) discussed deformation
and moment-curvature relationships without consideration of moment redis-
tribution. In the present chapter deformation behavior is discussed for
Both elastic and plastic ranges. The analysis includes the effect of
s1lip and shear as well as bending. Moment redistribution, which occurs
in the process of the formation of a mechanism, is taken into account.

Crushing of concrete in the positive moment region and Tocal
flange buckling in the negative moment region are the major failure modes.
Shear connector failure and longitudinal splitting can be prevented by

proper design provisions.

5.2 Local Flange Buckling

5.2.1 Presentation of Data

(5) (6) beams were composed of W12 x 27,

Davison's and Lever's
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W12 x 31 and W12 x 36 sections and concrete slabs with various amounts
of longitudinal slab reinforcement. A1l beams failed in local flange
buckling after ultimate moment capacity was achieved. Dimensions of test
beams are shown in Figure 5.1.

Theoretical values shown in Table 5.1 are based on Lay's
and Bijlaard's proposed shear modulus values. Figures 5.2(a), (b) and
(c) compare test and analytical ultimate moment values with plastic moment
values. They also illustrate the effect of longitudinal slab reinforce-
ment on the ratio of test ultimate moment to the plastic moment values.
Table 5.2 compares test and theoretical values of curvature at the onset
of local flange buckling. Theoretical values are based on Lay's and Bij-
laard proposed'shear modulus. The relationships between curvature
based on Lay's proposed shear modulus and the amount of longitudinal rein-
forcement are shown in Figure 5.3.

To simulate the effect of longitudinal slab reinforcement in
a composite beam under negative moment, Clinenhaga (18) tested beams
consisting of a steel section and a coverplate welded on the tension flange.
Some beams contained longitudinal stiffeners welded on the web as indi-
cated in Figure 5.4. Test and analytical results are tabulated in Table

5.3.

5.2.2 Discussion

For beams tested at the University of Alberta, experimental
and theoretical values for local buckling moments are very similar. Lay's
inelastic shear modulus results in higher moment values for stockier

sections such as W12 x 31 and W12 x 36. Generally theoretical values
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based on Bijlaard's shear modulus are higher than those based on Lay's shear
modulus in the vicinity of the onset of the strain-hardening, and tend to
decrease with increasing strain. Composite beams with W12 x 27 sections
appear to buckle shortly after the onset of strain-hardening.

The difference between experimental moment values and theore-
tical moment values based on Lay's shear modulus for beams tested at the
University of Alberta is within 15 per cent. The difference is large
for beams with W12 x 27 and W12 x 31 sections and lower amounts of rein-
forcement, and also for beams with a W12 x 36 section with larger amounts
of reinforcement as shown in Figures 5.2. The figures also indicate that
theoretical values increase in proportion with the simple plastic moment
values for increasing amounts of reinforcement. However experimental
values do not increase as much with increased amounts of reinforcement.
Values of Mu/Mp indicate this behavior as shown in the same figures.
Although for beams with W12 x 36 sections experimental and theoretical
values are fairly close, they still exhibit the same above-mentioned
trend. This may be due to underestimating the web restraint for small
amounts of longitudinal reinforcement, or due to the effect of lateral
displacement for large amounts of longitudinal reinforcement. However,
since the difference is not significantly large, the proposed analysis
is considered acceptable for predicting local flange buckling.

Figures 5.2(a), (b) and (c) show that the ratio of ultimate
moment to the simple plastic moment, Mu/Mp’ for beams with Wi2 x 36 sec-
tions is larger than that ratio for beams with Wl2 x 31 and W12 x 27 sec-
tions. This is presumably due to the large flange torsional resistance

of W12 x 36 sections. The width-thickness ratio of a W12 x 36 section
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is 6.1 which is considerably larger than that specified in CSA Standard
$16-1969(1)

Table 5.3 shows good agreement between theoretical and experi-
mental ultimate moment values for Climenhaga's beams, except for beams
with 5x3 RSJ sections and for beams with longitudinal stiffeners on the
webs. The average ratio of test to theoretical moment values is 1.11.

The shallowest sections (5 x 3 RSJ) exhibit the largest ratio of test

to theoretical values. The presence of longitudinal web stiffeners increases
the ratio Mu/Mpby'approximate1y 10 percent for 16 x 5% UB26 sections

and by approximately 20 percent for an 8 x 5% UB17 section. A comparison

of experimental and theoretical moment values for 8'-4" and 12'-4" spans
indicates 1ittle difference, although theoretical ultimate moment values

for the smaller span are about 2 percent higher.

Table 5.2 and Figure 5.3 show a significant difference between
experimental and theoretical curvatures at local flange buckling for the
University of Alberta tests. This may be partly due to the fact that
curvature in the inelastic range is greatly affected by relatively small
increase in moment, and partly due to the fact that there is a difference
between the actual stress-strain relationship and that used in the analysis.
A stress increment of 3 Ksi at a stress level of 60 Ksi for a yield
stress of 44 Ksi may produce a strain increment of 0.01 based on an in-
elastic tangent modulus of 300 Ksi. This strain increment of 0.01 cor-
responds to the strain at the onset of the strain hardening, or to a
curvature increment 0.00133 for a 12 inch depth section such as a W12 x 36
section. For example, a beam which buckled locally at a stress of 60 Ksi
and a curvature of 0.0088, such as Beam 18 in Table 5.2, may show a 15

percent difference in curvature in spite of only a 5 percent difference in
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moment.

As shown in Figure 5.3, curvatures at the onset of Tocal
buckling decrease fairly rapidly with increasing amounts of longitudinal

slab reinforcement.

5.3 Lateral Buckling
5.3.1 Presentation of Data

As indicated in Chapter II, lateral buckling of composite beams
under negative moment may occur for beams where local buckling is pre-
cluded. Beams tested by Piepgrass were composed of a W12 x 16.5 steel
section with a 3" x 3/8" coverplate welded on the compression flange and
a concrete slab with various amounts of longitudinal reinforcement as
shown in Figure 5.5, Table 5.4 compares Piepgrass' test results with
analytical values. Figure 5.6(a) shows analytical values of Mu/Mp for
various span lengths and amounts of longitudinal reinforcement. The

effect of varying size of coverplate is shown in Figure 5.6(b).

5.3.2 Discussion

The difference between experimental and theoretical uitimate
moment values are within 5 percent as shown in Table 5.4. This agree-
ment indicates that it is acceptable to assume a hinge located at the
end of the stem of the inverted tee section.

The effect of span length on lateral buckling values is
shown in Figure 5.6(a) for the section used in Piepgrass' test beams.

The ratio Mu/Mp decreases with increasing span, and the ultimate moment
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values become Tess than the plastic moment values in the span range of
115 to 165 inches with longitudinal slab reinforcement varying from
0 to 2.4 in? The length of the negative moment region for actual beams
may vary from 50 to 150 inches. Therefore lateral buckling effects
must be considered when designing continuous beams.

Figure 5.6(a) shows the effect of coverplate size on lateral
buckling. A wider coverplate produces a lower value of Mu/Mp'

Figures 5.6(a) and (b) and Table 5.4 show that the ratio
Mu/M> is influenced by the amount of longitudinal slab reinforcement.

P

5.4 Moment-Curvature Relationships

Moment-curvature relationships for various beam sections are
shown in Figures5.7 to 5.13. Figures 5.7 and 5.8 show the effect of
residual stress patterns on moment-curvature relationships in a positive
moment region. Residual stresses at flange tips are assumed 0, 0.3 and
0.5oy. Residual stress pattern I, which is a linear stress pattern,
produces little effect on the moment-curvature relationships. However,
residual stress pattern II, which is a parabolic pattern, produces con-
siderable effect on the relationships as shown in Figure 5.8. Test results
shown in these figures are those obtained by Ferrier and Davison. The
test results for a plain W12 x 36 section compares favorably with the
analytical results based on pattern II with o, = 0.3oy. The experimental
moment-curvature relationships for composite sections do not fit the
analytical relationships in the plastic range, but they compare favorably

in the elastic range. The presence of residual stresses decreases the
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stiffness of the composite sections in positive bending as shown in
Figures 5.7 and 5.8.

Figures 5.9 and 5.10 show the effect of residual stress on
moment-curvature relationships in a negative moment region. These
figures include results of Davison's tests for comparison. With in-
creasing amounts of longitudinal reinforcement, the actual stiffness of
the composite section decreases in comparison with theoretical stiffness.
This may be due to the effect of slip. According to Davison's test(5) s
the interaction factor, which is discussed in Chapter III, was approximately
equal to 0.6 when the longitudinal reinforcement reached yield strain.
From a comparison of theoretical and test results, the interaction factor
appears to decrease with increasing stress in the longitudinal slab
reinforcement, since theoretical values based on the interaction factor
agree with test values in the elastic range, but not in the plastic range.
Presumably this difference may also relate to the behavior of shear con-
nectors.

The effect of residual stresses on the moment-curvature rela-
tionship in a negative moment region differs from that in a positive moment
region. Since the stress in the bottom flange is compression in nega-
tive bending and tension in positive bending, residual stresses have a
different effect on moment in positive and negative bending. The stiff-
ness is increased by residual stresses after yielding in a negative moment
region as shown in Figures 5.9 and 5.10.

Figures 5.11 to 5.13 show experimental and theoretical
moment-curvature relationships for beams tested in the present study.

Theoretical relationships are in good agreement with experimental rela-
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tionships in positive moment regions. However the agreement is not good
in negative moment regions, except for Beam CB1 which has the smallest
amount of longitudinal slab reinforcement. In the elastic range, the
difference is large with the actual stiffness approximately two times the
theoretical stiffness. Strain-hardening begins shortly after initial
yielding of the steel in the negative moment regions. A1l three beams
tested lattained ultimate moments greater than simple plastic moments

as shown in Figures 5.11 to 13.

5.5 Deformation
5.5.1 Deflection

Load-deflection relationships obtained in previous investiga-
tions and in the present study are compared with theoretical relation-
ships in Figures 5.14 to 5.19. Figure 5.14 compares theoretical and ex-
perimental load-deflection relationships for a simple span tested by Yam

and Chapman(41).

Yam's analysis includes the effect of slip. The load-
deflection relationship based on the writer's proposed analysis dis-
cussed in ChapterIII is also shown. In the elastic region the proposed
analysis agrees well with Yam's analysis. As ultimate load is approached,
the proposed method results in deflections larger than those obtained in
Yam's analysis. This difference is due to the fact that the stress-strain
relationship for concrete employed by Yam is an idealized elasto-plastic
relationship whereas that employed in the proposed analysis is based in

Desayi's approximate formula as given in Equation 2.8. The latter rela-

tionship has a falling portion after maximum stress, causing reduced
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stiffness at high loads. Both Yam's analysis and the proposed analysis
yield values close to experimental results.

Some complete load-deflection relationships for continuous
beams have been reported in previous investigations (7)(11)(12). Test
results presented by Culver et a1(7) are compared with theoretical values
in Figure 5.15. Theoretical values are in good agreement with the test
values.

Figure 5.16 compares results of tests on continuous beams
conducted at Lehigh University by Daniels et al(ll) with theoretical
values. Since the beam span was comparatively long, the effect of shear
on the defiection is relatively small. However, it still amounts to 17
per cent of the bending deflection. Theoretical results are in fairly
good agreement with experimental results. In the simple plastic analysis
hinges form almost simultaneously at the interior support and load points.
The load point hinges form first, followed closely by the formation of
the hinge at the interior support.

Deflection at the load point at the formation of the last
hinge 1is determined by the slope-deflection method. The coefficients
of the beam stiffness matrix for a composite beam are related to the ratio
of the stiffness in positive bending to that in negative bending and are
also related to the ratio of the length of the positive moment region
to that of the negative moment region. Appendix C includes tables of
values for stiffness matrix coefficients for the slope-deflection method.
The Toad-deflection relationships for beams tested in the present investi-
gation are compared with theoretical relationships in Figures 5.17 to

5.19. The effect of shear on deflection is appreciable, since the beams
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are relatively short. As indicated in the previous section there is

a relatively large difference in the moment-curvature relationships in
negative moment regions for Beam CB2 and Beam CB3. However, the analytical
load-deflection relationships are in good agreement with the test rela-
tionships. In the analysis the effective width is taken as 40 inches

as discussed in Chapter IV.

In the simple plastic analysis the first hinge forms at the
interior support in all beams. The second hinges at the load points form
immediately after the first hinge formation for Beams CBl and CB3.

For Beam CB2 the first hinge forms at a load of 95 Kips and the second
hinge forms at a load of 121 Kips. Deflections in the elastic range,

determined by simple plastic analysis, are small.
5.5.2 Rotation

Little load-rotation information for continuous composite beams
is available in previous research. A certain amount of rotation data was
obtained in the present study. As discussed in Chapter IV, rotations
were measured at the ends of beams. Results are shown in Figures 5.20
to 5.22 together with analytical relationships. The characteristics of
the load-rotation relationships are similar to those of load-deflection
relationships. The effect of shear on the end rotation is not as sig-
nificant as on the center deflection. The ratio of the center deflection
due to shear to that due to bending is 12kShEI/AGsL2 for a simply supported
beam with span length & and a concentrated P at the midspan, and the ratio
of the end rotation due to shear to that due to bending is 8kShEI/AG£2.
This implies that the effect of shear on end rotation is two-thirds of

that on the center deflection.
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5.6 Load-Moment Relationships

The theoretical load-moment relationship is Tinear up to
initial yielding. After yie]ding}begins the moment is redistributed and the
relationship is no longer linear. Figure 5.23 shows experimental and
theoretical load-moment relationships for beams tested in the present
investigation.

The theoretical load-moment relationships are in good agree-
ment with test results, with the theoretical values being slightly greater
than the test values for positive moment in the elastic range. This in-
dicates that the stiffness of the beam in a positive moment region was
greater than theoretical stiffness, or the stiffness in the negative
moment region was smaller than the theoretical stiffness.

For a two-span continuous beam with a load P at each midspan

M, - M,/2 =PL/4 5.1

where Mland M2 are bending moments at the load point and the interior
support, respectively. The increment in positive moment, AM, there-
fore, produces an increment in negative moment equal to 2aM. The dif-
ference between the theoretical and the test load-moment relationships
is large in the negative moment region.

The experimental values of the negative moment M2 in Beam CB2
began to increase fairly rapidly at a load of 100 Kips and to approach
the positive moment Ml. This implies that the ratio of stiffness in the

negative moment region to that in the positive moment region increased for
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loads greater than 100 Kips. This condition can also be seen in the moment-
curvature relationships for Beam CB2 in Figure 5.12.

The moment redistribution in Beam CB3 commenced at a Toad
of 50 Kips and thereafter negative moment ceased to increase proportion-
ally with the 1oad due to a decrease in stiffness. This behavior can be
explained by the moment-curvature relationships for Beam CB3 shown in
Figure 5.13. The test curve in the figure shows yielding at approximately
800 in-Kips which is equivalent to the load of 50 Kips as indicated in
the load-moment relationships in Figure 5.23. Since the stiffness in
the negative moment region is greater than that in the positive moment
region after yielding, as shown in Figure 5.13, the negative moment
increased at a higher rate when the load reached 60 Kips, when the posi-
tive moment at the load points reached the yield moment. Load-moment
relationships based on simple plastic theory shows good’agreement with

the experimental relationships.
5.7 Failure Modes

Figures 5.24 show the relationships between the failure loads
and the amounts of longitudinal slab reinforcement for beams tested in
the present study. Failure modes are local buckling in the negative
moment region and crushing of concrete in the positive moment region.

The ultimate concrete strain at failure is determined by Equation 2.9
as 0.0032 for a concrete strength of 5.5 Ksi. EXperimenta] and theore-
tical ultimate loads are shown in Table 5.5, Beam CB1 failed due to
crushing of concrete at a load of 135 Kips, after which local buckling

occurred at the interior support. The proposed analysis predicts crushing
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of concrete at a load of 135 Kips, and local buckling at a Toad of 141
Kips which of course means that failure is predicted at a load of

135 Kips. Since the stiffness in the positive moment region decreased
considerably after crushing of the concrete, local buckling occurred
at a load lower than the ultimate Toad.

Beam CB2 failed in local buckling which initiated at a load
of 120 Kips and completely formed at 130 Kips and subsequently in crushing
of concrete at a load of 133 Kips. Figure 5.24(b) shows that analysis
predicts Tocal buckling at a load of 122 Kips and crushing of concrete
at a Toad of 131 Kips. In a continuous beam the ultimate load can be
greater than that causing local buckling because of redistribution of
moment.

Beam CB3 failed in local buckling which began at a load of
85 Kips and completely formed at a load of 90 Kips, followed by crushing
of concrete. The analysis predicts crushing of concrete at a load of
89 Kips and Tocal buckling at a load of 90 Kips as indicated in Figure
5.24(c). As in the case of Beam CB2, local buckling was not the direct
cause of failure.

Theoretical predictions for local buckling and crushing failures
are in good agreement with experimental results for all beams. Although
local buckling actually initiated at lower loads than predicted for
Beams CB2 and CB3, the beams attained the predicted loads based on con-
crete crushing at an ultimate concrete strain of 0.0032. This may indi-
cate that the beam stiffness was not significantly reduced by the ini-
tiation of local buckling. Crushing of concrete causes immediate failure

and the beam cannot sustain additional load. A1l three beams tested in
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the present study attained ulfimate loads 8 to 12 percent greater than
those predicted by simple plastic theory.

Ultimate loads based on simple plastic theory are not directly
proportional to the amount of longitudinal slab reinforcement. Values of
ultimate Toad do not change significantly for areas of longitudinal slab

reinforcement in excess of Aw“ s Since the plastic negative moment

y/%ry
does not increase appreciably once the neutral axis reaches the tension

flange. The Tlimiting value Awo is shown in Figures 5.24. Failure

v/%ry
Toads due to concrete crushing increase proportionally with the simple
plastic ultimate Toads. Ultimate loads based on local buckling are almost
constant regardless of the amount of reinforcement, although local buckling
Toads for simply-supported beams are almost proportional to the simple
plastic ultimate loads as discussed in Section 5.2. This is due to the
fact that an increase in longitudinal slab reinforcement produces an

increase in negative bending moment capacity because of increased stiff-

ness.

5.8 Behavioral Study

Additional theoretical analyses were conducted for a number
of composite beams with a_stee] section varying in depth from 10 and 16
inches and with flange width-thickness ratios less than 54//5;'which is
a limitation for plastic design of plain steel sections. This limiting
width-thickness ratio is 8.14 for G40.12 steel with a yield stress of
44Ksi. The beams were two-span continuous beams with each span equal

to 20'-0". Slab thicknesses of 4 and 6 inches were chosen. A slab
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width of 60 inches was used in all beams. The concrete strength was
3500 psi. The amount of Tongitudinal reinforcement was varied up to a
maximum value equal to twice the area of the web of the steel section.
Steel properties such as yield stress and strain-hardening modulus were
the same for the steel section and the reinforcement for convenience.
Details of the beams are shown in Figure 5.25.

Analytical results related to failure loads and failure modes
are shown in Figures 5.26 and 5.27. The failure modes are local buckling
at the interior support and crushing of concrete at the load points.
Ultimate concrete strains of 0.003, 0.0035 and 0.004 are considered in
determining ultimate loads based on a crushing failure. The ultimate
lToads are expressed by the ratio to the ultimate simple plastic load for
the beam with no longitudinal slab reinforcement on the vertical co-
ordinate and the amounts of longitudinal slab reinforcement are expressed
by the ratio to the web area of the steel section on the horizontal
coordinate in the figures.

The analyses indicate that the flange width-thickness ratio
significantly effects the ultimate loads based on local flange buckling.
W12 x 27 and W16 x 36 sections have b/t ratios equal to 8.14 which is
equal to the upper 1limit of 54/%5;1 For these two sections the local
buckling loads are very close to the simple plastic ultimate loads for
longitudinal slab reinforcement greater than Aw and the Tocal buckling
loads are smaller than the simple plastic ultimate loads for amounts of
longitudinal reinforcement equal to 2Aw. The local buckling Toads for
such stocky sections are significantly greater than the simple plastic

ultimate loads.
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Ultimate loads based on concrete crushing increase almost
proportionally with the increase in the simple plastic ultimate loads.
Ultimate load based on an ultimate strain of 0.0035 is greater than the
simple plastic ultimate Toad by more than 5 percent. Ultimate load
based on a strain of 0.003, the value employed in the ACI 318-71 Build-
ing Code, is greater than the simple plastic ultimate load by only 2 to
3 percent.

The failure load curves for W12 x 27 in Figure 5.26 are
quite similar to those in Figure 5.24(b), in spite of different beam
Tength, different strength of concrete and different slab width. Results
of the analysis for # inch and 6 inch slab thickness are very similar.

Ultimate loads for composite beams with W10 x 25 and W14 x 34
sections are greater than theoretical values based on simple plastic
theory for an amount of longitudinal reinforcement equal to 2Aw. The
flange width-thickness ratios for W10 x 25 and W14 x 34 sections are
6.5 and 7.4, respectively, or 20 and 10 percent less, respectively, than

the provision in CSA Standard S16-1969.



TABLE 5.1

COMPARISON OF EXPERIMENTAL AND THEORETICAL ULTIMATE

MOMENT VALUES FOR BEAMS TESTED BY DAVISON(S) AND LEVER(6)
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ULTIMATE MOMENT

AREA OF MATE MO

BEAM | STEEL |LONGITUDINAL . (‘“'k‘RﬁgLYSIS

NO. |SECTION |REINFORCEMENT —

‘ (1n2) EXPERIMENT |, ., OASED ON BIJLAARD'S
LAY'S PROPOSED
PROPOSED SHEAR
_____ | sHEAR MoDULUS | PROFOSED S
18 0.0 2900 2891 2537
1 1.18 3320 3284 2950
12 |wi2x36 1.96 3390 3449 3133
13 2.45 3420 3557 3233
14 3.68 3510 3742 3383
21 0.0 2550 2246 2077
22 0.80 2860 2499 2354
23 [W12x31 1.86 2990 2749 2606
24 2.48 3010 2895 2698
25 3.72 2900 3005 2844
31 0.0 2270 1915 1996
32 0.80 2400 2183 2244
W12x27

33 1.60 2580 2425 2489
34 3.10 2700 2652 2740
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TABLE 5.2 CURVATURE AT LOCAL FLANGE BUCKLING MOMENT FOR BEAMS TESTED BY
pavison'®) anp Lever(®)

BEAM STEEL LONGITUDIRAL (radianS/i"ﬁaZigg%s 3

NO. SECTION REINE?E?%MENT expeRIMenT | BASED ON

MODULUS
18 0.0 | 8.80 6.92
11 1.18 8.00 5.41
12 W12x36 1.96 | 6.00 4.31
13 2.45 4.90 4.02
14 3.68 2.50 3.09
21 0.0 | 4.54 3.31
22 0.80 3.72 2.89
23 W12x31 1.86 2.60 1.91
24 2.46 2.26 1.64
25 3.72 1.95 1.46
31 0.0 4.20 4.50
32 0.80 3.78 3.90

W12x27

33 1.60 2.87 3.06
34 3.10 2.29 2.41
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TABLE 5.3 COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS FOR BEAMS
TESTED BY cLIMENHAGA(1®)

RATIO OF
ST, e B WIRATE ST | G,

o 0.0 [EXPERIMENT|ANALYSIS MOMENT
5x3RSJ 25x% |12 -4" NO 355 266 1.33
5x3RSJ 25x% |-8'-4" NO 362 275 1.32
8x54UB17  |4%x4 |12'-4" NO 1040 956 1.09
8x5%UB17  |4%xd- | 8'-4" NO 1010 968 1.04
8x5%UB20  |A%xd- |12'-4" NO 1235 1019 1.21
8x5%UB20  |4%xs- | 8'-4" NO 1275 1043 1.22
12x4UB16.5 [3%x1 |12'-4" NO 1477 1566 .94
12x4UB16.5)3x#+ | 8'-4" NO 1540 1502 1.03
14x5UB22  {4%x1 |12'-4" NO 1930 2153 .90
14x5UB22 |4%x% | 8'-4" NO 1877 1916 .98
16x5%UB26 [4%x1 |12'-4" NO 2580 2504 1.03
16x5%UB26 (4%} | 8'-4" YES 2622 2295 1.14
8x54UB17  |&%xd- | 8'-4" YES 1145 909 1.26
12x4UB22 |3%xd- | 8'-4" NO 1730 1818 .95
16x5%UB26 |4%x4 | 12'-4" YES 2808 2422 1.16
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LATERAL BUCKLING MOMENT FOR BEAMS TESTED BY PIEPGRASS(4)
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TABLE 5.4
AREA OF SIMPLE ULTIMATE MOMENT EXE@E§3E3$AL
STEEL | LONGITUDINAL | PLASTIC (in-Kips) EXPERINENTAL
SECTION | REINFORCEMENT | WOMENT FpamiE:
(in2) (in-kips) EXPERIMENT | anaLysts| — ULTIFAT
W12x16.5 1.20 1637 1920 1820 1.05
W12x16.5 2.48 1982 2112 2175 .97
W12x16.5 2.48 1982 2116 2175 .99
W12x16.5 3.10 2260 2260 2307 .98
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o————8 EXPERIMENT M,/M,
O—— =~ PROPOSED ANALYSIS M,/M,
O————"0 EXPERIMENT

A= = = —A PROPOSED ANALYSIS
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3000

3000
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3500

2500

|
Y
)
1
—
-
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() W12x36

FIGURE 5.2 ULTIMATE MOMENT - AMOUNT OF LONGITUDINAL SLAB
REINFORCEMENT RELATIONSHIPS
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radians
inch x 103

CURVATURE AT ULTIMATE MOMENT (
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ki T T I
O PROPOSED ANALYSIS
® EXPERIMENT }W'2”27

A PROPOSED ANALYSIS
+ A EXPERIMENT }W]2x3'

O PROPOSED ANALYSIS }W]2X36

B EXPERIMENT
8 - [ -

0 I ] ] ] ] | l
0] 1.0 2.0 30
AREA OF LONGITUDIN%L REINFORCEMENT
A, (in®)

FIGURE 5.3  CURVATURE AT ULTIMATE MOMENT
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RATIO OF ULTIMATE MOMENT TO
PLASTIC MOMENT Mu/Mp

1 LS I T 1 1 1
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® Ar=1.2in2

2 A Ar:24in? N
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1 1 | [ 1 i |
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(a) EFFECT OF SPAN LENGTH ON Mu/Mp RATIO

T T T T
12k Lo o o o o] .
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Q a
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5= i i
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[~4
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REINFORCEMENT A, (in?)

(b) EFFECT OF AREA OF LONGITUDINAL REINFORCE-
MENT ON Mu/Mp RATIO

FIGURE 5.6

FACTORS AFFECTING Mu/Mp RATIO
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4000 B
m.= 0.5
m.= 0.3
bext.=36"x4"
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3000 |- i
2000 -
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0 ] | ] | | | ITTEIRN II | ]
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FIGURE 5.7 EFFECT OF RESIDUAL STRESSES ON MOMENT-CURVATURE RELATIONSHIPS
IN A POSITIVE MOMENT REGION
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FIGURE 5.8 EFFECT OF RESIDUAL STRESSES ON MOMENT-CURVATURE RELATION-
SHIPS IN A POSITIVE MOMENT REGION
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IN A NEGATIVE MOMENT REGION
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FIGURE 5.16  LOAD-DEFLECTION RELATIONSHIPS FOR BEAMS TESTED
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CHAPTER VI

SUGGESTIONS FOR ULTIMATE STRENGTH DESIGN
OF CONTINUOUS COMPOSITE BEAMS

6.1 Introduction

At present no design standards specifically cover ultimate
strength design of continuous composite beams, although theoretical
and experimental investigations provide substantial information on ul-
timate strength behavior of such members. British Standard CP 117 Part
1 includes provisions for ultimate strength design of simply-supported
composite beams. However, additional requirements may be necessary for
ultimate strength design of continuous beams. Such further requirements

as discussed herein, are mainly based on the present investigation.

6.2 Present Specifications

In British Standard CP 117 Part 1, which specifies require-
ments for simply-supported beams, the specified load factor is 1.75
for both dead and Tive loads. The stress in the steel section at ulti-
mate is the specified yield stress, whether in tension or compression.
The concrete compression strength is 4/9 of the specified concrete cube
strength. This fraction is derived from the assumption that the strength

of the concrete in the slab is 2/3 of the cube strength and the pro-
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vision of a higher factor against concrete crushing than the factor against
yielding of the steel. This Tatter provision results in assuming com-
pression strength as 2/3 of the slab strength. Furthermore the standard
requires that in no case should elastic stress under working loads in

the steel section exceed 0.9 times the specified yield stress and in

the concrete exceed one third of the concrete strength. Deflections are
calculated on the basis of a fully composite section, using a modular
ratio of 15 for live loads and 30 for dead loads.

Reference might be made to ACI 318-71 for concrete ultimate
strength design requirements in a positive moment region and CSA Stan-
dard S16-1969 for steel design requirements in a negative moment region.
Provisions of ACI 318-71 for flexural members permit the use of an
equivalent rectangular concrete stress distribution in which a concrete
stress of 0.85 fé is assumed uniformly distributed over an equivalent
depth of compression zone. Ultimate moment capacity is modified by
introducing a capacity reduction factor equal to 0.9. CSA Standard S16-
1969 requires a maximum flange width-thickness ratio for plastically
designed steel sections. It also provides for tbe design of shear

connectors based on ultimate strength considerations.

6.3 Moment Capacity

(8)(20)(24) indicate that ultimate moment capa-

Test results
city in a positive moment region can be satisfactorily evaluated on the
basis of an idealized stress distribution in which the steel stress is
equal to the yield value and the stresses in the concrete slab are repre-

sented by an equivalent rectangular stress block with a value of stress
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equal to 0.85 fé.

Test resu]ts(5)(6)(10) indicate that ultimate moment capa-
city in a negative moment region can be satisfactorily evaluated on the
bases of an idealized stress distribution in which stresses in the steel
section and in the longitudinal slab reinforcement are equal to their
respective yield values. However, it is necessary to check for the
possibility of premature local flange buckling which may have the ef-

fect of reducing the moment capacity.

6.4 Flange Width-Thickness Ratio

For plastic design CSA Standard S16-1969 requires a maxi-
mum flange width-thickness ratio equal to 54//5;'f0r compression flanges
of plain steel beams. However, local flange buckling of composite beams
is related to the area of longitudinal slab reinforcement as discussed
in Section 5.8. Therefore it is suggested that the flange width-thickness
ratio be a function of the longitudinal slab reinforcement area. For
composite beams with an area of Tongitudinal slab reinforcement less
than the web area of the steel section, a maximum flange width-thickness
ratio equal to 54/#5;'15 suggested. If the area of longitudinal slab
reinforcement is greater than the web area but less than twice that

area, the flange width-thickness ratio should be reduced to 49//3;.

6.5 Shear Connectors in a Negative Moment Region

CSA Standard S16-1969 requires that shear connectors in a

negative moment region resist a horizontal shear force equal to Arory

which represents the force in the longitudinal slab reinforcement at
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yield conditions. Based on results of pushout tests Van Dalen et a1(13)(14)
proposed a design Toad per connector in a negative moment region equal
to 80 percent of that in a positive moment region. However, results of

5) and Lever(6) and results of the pre-

beam tests conducted by Davison(
sent beam tests do not indicate that a reduction in capacity is indicated.
It is therefore suggested that the design of shear connectors in a nega-
tive moment region be based on the same connector strength as for a
positive moment region, provided that the longitudinal slab reinforce-

ment is adequately anchored in a positive moment region.

6.6 Deflection

At working 1oads, the deflection of composite beams may be
based on elastic theory. The bending deformation at midspén may be

expressed as

gt
w 3B4EI

for a uniformly distributed load q and

for a concentrated load P at midspan. The coefficients kw and kc are
functions of the ratio of stiffness in the negative moment region to
that in the positive moment region as discussed in Appendix C. Values

of these coefficients are given in Figure C.2(b). For a simply-supported



beam kw and kc are equal to 5 and 4, respectively, and for fixed end
beams with equal stiffness in positive and negative moment regions
kw and kc are each equal to 1.0.

Shear deflection of composite beams may be significant as
discussed in Section 3.5. Since shear is primarily resisted by the web

(67)

of the steel section only » the shear deflection may be expressed as

= _qe?
Ssh = _qmw
for a uniformly distributed load and

§ . = Ps
sh 4AwG

for a concentrated load at the midspan.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Summary

Behavior of continuous composite beams has been investigated
theoretically and experimentally. Analyses for local flange buckling
and Tateral buckling in a negative moment region are proposed and com-
pared with experimental results. Deformations including the effects of
shear and s1ip were studied in the elastic and inelastic region. Three
two-span continuous composite beams were tested in order to provide addi-
tional information on deflections, moment redistribution and ultimate
loads. The test beams varied in terms of steel section size and amount
of longitudinal slab reinforcement in the negative moment region. Behavi-
oral studies were conducted in order to obtain failure loads and modes
of failure for continuous beams in which steel section size, concrete slab
thickness and amount of longitudindal slab reinforcement were varied.
Based on theoretical and experimental results, requirements are proposed

for ultimate strength design of continuous beams.

7.2 Conclusions

The major conclusions resulting from the present investigation
are:

1. The proposed analysis for local flange buckling in a negative
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moment region gives good agreement with test results. The ratio of

local flange buckling moment to simple plastic moment is decreased signi-
ficantly with increase in the flange width-thickness ratio and is slightly
affected by the amount of Tongitudinal slab reinforcement and the span
length. Curvature at the local fTange buckling moment is decreased sig-
nificantly with increase in the amount of longitudinal slab reinforce-
ment.

2. The proposed lateral buckling analysis based on thin-walled
beam theory for composite beams in a negative moment region agrees with
results of beam tests. The analysis indicates that the ratio of lateral
buckling moment to simple plastic moment is decreased significantly with
increase in span length and is slightly affected by the amount of longi-
tudinal s1ab_reinforcement and slightly affected by the size of coverplate
on the compression flange.

3. The proposed analysis provides satisfactory predictions of
ultimate Toad and failure modes, i.e., crushing of concrete in a positive
moment region or local flange buckling in a negative moment region.

4, Failure modes are significantly affected by the amount of
longitudinal slab reinforcement in the negative moment region.

5. The proposed analysis for deflections, which includes the
effect of shear and slip, predicts satisfactorily the actual deflections
obtained from the tests. The shear deformation was significant in the
beams tested.

6. The proposed analysis for evaluation of moment-curvature
relationships based on Newmark's integration is in good agreement with

experimental values.
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7. The effect of residual stress on the moment-curvature relation-
ships in a negative moment region differs from that in a positive moment
region.

8. The assumption that s1ip strain is constant throughout the
shear span is a satisfactory approximation in the evaluation of the effect
of slip on deflection.

9. A maximum compression flange width-thickness ratio equal to
54/#55'15 required when the amount of longitudinal slab reinforcement is
less than the web area of the steel section in order to prevent local
flange buckling before a mechanism forms. This maximum ratio is reduced
to 49//5;‘f0r an amount of longitudinal slab reinforcement greater than

the web area but less than twice the web area.

10. Moment redistribution in continuous beams is affected signi-
ficantly by the inelastic stiffness in the positive and negative moment
regions.

11. Shear connectors in a negative moment region are capable
of developing the full yield value of the longitudinal reinforcement
if sufficient development length of the longitudinal slab reinforcement is

provided into the positive moment regions.
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APPENDIX A
STABILITY EQUATIONS FOR THIN-WALLED BEAMS

A.1 Kinematics of Deformation

If displacements £ and n in x and y directions, respectively,
and angle of twist 6 are applied to a thin-walled beam section at A(ax,ay)
as shown in Figure A.l, the displacements &g and g of an arbitrary point

B(bx,by) are

g =& - (by - ay)e A.1(a)

ng =n+ (b, -al)e A.1(b)
where the sign convention for @ 1is based on the right hand rule. The

displacements Vgs W in the tangential and normal directions to the

cross section at S are

<
Lt}

EgCOSa + nssina A.2(a)

-gsina + n_cosa A.2(b)

=
]

where Es and ng are displacement at S in the x and y directions, and o
is the angle between the tangent at S and the Ox axis as shown in Figure
A.1.
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Substituting Equations A.1 with respect to S into Equations

~ A.2, the displacements at S in the tangential and normal directions become

Vg = ECOSa + nsina + ery A.3(a)

W = =g sina + n cosa + érn A.3(b)
where re = (x - ax) sina - (y - ay) cosa.

ry, = (x - ax) cosa + (y L ay) sina

and are shown in Figure A.l.

Noting that the shear strain Ysz is assumed to be zero for

a thin-walled beam section in Figure A,2(49)(50),

ou oV
S —_—F — = .
Ysz "3 Tz =0 A.4

the displacement u is obtained by integrating Equation A.4

u=c-Ja—vds A.5

where ¢ is the initial displacement in z direction.
By differentiating v with respect to z in Equation A.3(a) and

multiplying by ds, Equation A.5 may be expressed by

u=zg-£t¢'x-n'y -8'n A.6



200

since ds cosé = dx
ds sina = dy A.Z
Y‘t ds = dw

The quantity » is independent of x and y coordinates, and is
called the warping function. The strain €, in the z direction is obtained

by differentiating Equation A.6 with respect to z;

-£" - T]",y - énw A.8

EZ=C

A.2 Normal Stress-Strain Relationship

From Hooke's law and € equal to zero, the stress-strain

relationships with respect to z and s directions may be given by

=1 -
€2 TE | 92 T V9%

-n -1 -
es—O-f[oS vcz]

From these two equations, the relationship between the normal stress g,

and normal strain e, may be obtained by

where E.;.T_:;UT
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E is defined as the modified elastic modulus. Since v2 is small, it

may be neglected and the elastic modulus E used instead of E.

the normal stress becomes

°z = E (Cl' - E"X - n".V - e.nw)

A.3 Equilibrium Equations for a Thin-Walled Beam

Then

A.9

For a small element shown in Figure A.3 equilibrium in the

longitudinal direction requires that

—%J-+i‘.[£=o
0z 9s

A.10

Equilibrium of a strip of thin-walled beam between z and

(z + dz) as shown in Figure A.4 may be expressed by the following equa-

tions

o0
= _Zz (T - =
tZ =0, Jsaz tdzds + (TL TR + qZ) dz = 0

]
(o]

at
X =0, J aiz tdz cosa ds + qxdz
3

Ly

aT
sz .
0, Js 57 tdz sina ds + qydz =0

¥4 y

+ M|

tt dz + mtdz =0

A.11(a)

A.11(b)

A.11(c)

aTSZ
IM, = 0, J tdz [}x - ax) sina - (y - a_) cosalds
s

A.11(d)



202

where Mtt is Saint Venant's torsional moment defined as

Mtt = GJe A.12

in which J is St. Venant's torsional constant.

Substituting Equations A.7 into Equations A.11 results in

( .90

y4 o
). SE_'dA +Tp-T +9q,=0 | A.13(a)
r 0T

Y4 -
), 75z tdx + qy = 0 A.13(b)
¢ 9T

sz

+ =0 A.13

), T3z tdy qy 13(c)
r aTSZ
). 5 tdw + Mtt + m, = 0 A.13(d)

The first term in Equation A.13(d) contains the stress re-
sultant due to the warping torsional moment. Differentiating equations
in Equation A.13(b), (c) and (d) part by part and noting that shear flow

Tsq t at the boundary equals the external force, that is,

]
—

(te,)ece t
sz’s sL L

ﬂ
It
—

(te,)es
¥4 s-sR R

yields Equations A.14 as follows:
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3, \ '
JsﬁrdA'TR+H+qz7° A.14(a)
- x'ﬁ--_aTsz-1 ds + T'x, - Tix, + q, = 0 A.14(b)
¢ 17 L Tos XL = "R'R T % .
3 faTsz—
- . ! - T =
Js Y 33 ol ds + T)y, - Tpyp + qQ, 0 A.14(c)
- 2 Eiﬁl-' ds + M!, + T'w, - Thopt m, =0 A.14(d)
¢z | 7o ST Py TN 7 TRRT My y

The functions aoz/az and arsz/as in Equations A.14 are ob-

tained from Equations A.9 and A.10 as

.aoz

s—=E (' -g"% - n"y - 0")' A.15(a)
Z

ot a0
a:Z = _ azz =-E (C' -£" - n"y - ellw)l A.15(b)

Substituting Equations A.15 in Equations A.14, the following

equilibrium equations result:

E (Ag' - §y£" -Sa"-8e") =-q, -T +Tp A.16(a)

E(=Sye’ + Iye" + Lyn" + 1, 9")" = ay + Tix - Tpxg
A.16(b)
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_ ' ] n wyn - ' .
E ( ch + Ixyg + Ian + Iywe ) qy + TLyL TRyR

A.16(c)

E (-Sw; + Ing + IXwn + Iwe - G(Je')! =

m, + TiwL - TéwR A.16(d)

where
A= J dA
A
S, = J ydA, S = J xdA, S = [ wdA
X Ja Yy Ja @ Jp
= s = ’ = A.

Ixy JA xydA IXw IAdeA Smy fA wydA 17

Equations A.16 may be simplified by choosing a particular
coordinate system, i.e., the principal coordinates. Some of the values
in Equation A.17 become zero for principal coordinates and Equations

A.17 may be expressed by

E(Ac')' = -q, - T +7T

L R A.18(a)
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E.(Iyn")" =q,* Ty - TéyR A.18(c)
E (Iweﬁ)" -G (J8') = Mt + TimL - TéwR A.18(d)A

By introducing Equation A.9 the stress resultants in the

form of a normal force N, = J dsz, bending moments Mx = J&ZydA and

M‘y = chdi, and a bimoment Bi =VJ&zmdA are defined as
N, = EA | A.19(a)
Woener | A.19(b)
My = -EIyn" A.19(c)
B, = -EI o A.19(d)

The normal stress o., may be expressed in terms of stress

resultants by substituting Equations A.18 into A.9 to give

=

M B
Z X w
FEXt Tyt A.20
y X Iw

:ﬂhfz
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A.4 Stability Equations for a Thin-Walled Beam

In order to investigate torsional buckling of a thin-walled

beam subjected to an axial force NZ and bending moments Mx and My, equi-
librium after a small displacement must be stablished. The normal stress

o, due to an axial force NZ and bending'moments Mx and My is given by

Equation A.20 as

N ..M M
. Z : X

o = 2+ x+ =y A.21
z A Iy IX

Referring to Figure A.5, the components of the internal

stress o, in x and y directions are

ook 30, o 3%
'O'ZAA"E—"‘ cz+8—z'—dZ AA E—"F-——z-—az dz

and

. an 302 . an ans
- >+ |l + =5 AR | —S +
%0A 57 o, * 357 Uz BA I57 t 5 @2

respéctive1y. Neglecting smaller quantities, the components can be ex-
pressed by (c&&é)'dZAA and (c&n;)dZAA, respectively. The total trans-

verse forces per unit length 9y and qy due to the components can be

obtained as



q, = j (0.£!)" dA
X A 2°S

= | (o) e

The torque m,. produced by the internal force q, and

given by

m, = JA {(ozn;)' (x - ax) - (oZE;)' (y - ay)} dA

207

A.22(a)

A.22(b)

q, is

Y

A.23

Substituting Equations A.l into Equations A.22 and A.23,

and integrating across the cross section, results in
] ! 1 ]
q, = {Nz(s + aye-)} - (Me')

ay = {Nz(n' - axe')}' + (Mye').

A.24(a)

A.24(b)

m = {N (a0t +a e} - 0L+ )t + (mer):

where Mp is a new stress resultant defined by

= | otz e e}

A.24(c)

A.25

Stability equations for thin-walled beams result from substituting
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Equations A.24 into Equations A.18 as
= . ! . ' - I ' - i
E (L,g")" = {Nz(z + aye)} - (M) + Tix - Thxe  A.26(a)
E (In")" = {Ni(n' - axe')} +(Me')' + Ty - Tayp A.26(b)

E (I6")" - G(Je')" =‘{Ni(-axn' + aya')}':- (MEg")" +

(Myn')* + (Me')" + Tjwy - Tpup A.26(c)
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FIGURE A.1  DISPLACEMENTS FOR A THIN-WALLED BEAM
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FIGURE A.2  CO-ORDINATE SYSTEM
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o, +do,

Tez"' d Tsz

FIGURE A.3  STRESSES IN LONGITUDINAL DIRECTION



}x

FIGURE A.4

STRESSES ON AN ELEMENT OF A THIN-WALLED BEAM
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(a) DISPLACEMENTS
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(b) PROJECTION ON xz PLANE (c)PROJECTION ON yz PLANE

FIGURE A.5 DISPLACEMENT OF A STRIP
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APPENDIX B

APPROXIMATE METHOD FOR DETERMINING THE EFFECT OF SLIP

The effect of slip on the stiffness of a composite beam

may be calculated on the assumption that slip strain is constant along

the shear span and is defined as the slip divided by the shear span.

The

stress-strain relationships for concrete and steel are assumed linearly

elastic, the tensile strength of concrete is assumed to be zero and the

force-s1lip relationship is assumed to be linear.

There are two specific cases to be considered in the eval
ation of the stiffness as in the evaluation without slippage; namely,
the neutral axis is in the concrete slab (Case I) and the neutral axi

is in the steel section (Case II).

Case I: Neutral Axis in Concrete Slab

Based on conditions shown in Figure B.1(a), the equilibri

equation for the beam is

IOdA=J 0dA+I oda
A AC AS

(=2

= -¢EC §E-y§ + ¢ EAS (%—+ tc - Y4 - ed/¢ ) =0

where £q is slip strain and can be expressed as

214

u_

S

um

B.1
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= A_/JL B.2

and LS is the shear span. The relationship between concrete force C

and slip Ag is expressed by
C=k.a B.3

The shear force on the shear connectors in the shear span

is ¢Ecby§/2. S1ip strain is then obtained from Equations B.2 and B.3
_ $EDYg
® " T2k L.

S'S

B.4

By introducing Equation B.# into Equation B.1, the following

equation related to Y4 is obtained.

yﬁ + 2pyy - p(d + 2t - k;yé) =0 B.5
EAs nAS
where P =E—E=T
c
and k! = "ebe | e
S ZbSL 2nkSLS

The solution of Equation B.5 gives the location of the neutral

axis as
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vy = I‘iEE;E'(“l @ +2E )T + kp/p - 1) B.6

For a beam with complete interaction

yg=p (IT+{@+2t])7p - 1)

The bending moment is defined by

=
i

. J oydA + J "aydA
AC AS

EI_ ¢ B.7

where Ie is an equivalent moment of inertia for the section and is

q
defined as

= 2 I
qu IS + Ases + Ic B.8

in which IS and Ié are the moment of inertia of the steel section and
concrete slab, respectively. Ié is evaluated by by3/3 and e is expressed

- - 2
by d/2 + tc Yq Ecbcyd/stLS.

Case II: Neutral Axis in Steel Section

Based on Figure B.1(b) the equilibrium equation is

I odA = j odA + J odA
A AC AS



¢E
= 5 At + 2y,) + $EAL(d/2 - yy - e4/9) = 0

Introducing the slip strain eq = eEc(tC + 2yd) AC/ZLSkS,

the neutral axis location defined by'yd can be obtained as

_ERn - (d - ket A

2t (1+ kA

For a beam with complete interaction

_ t A/M - dA
Yd 2R Ty * A

The bending moment Mxis expressed as

=
]

N Icrydl-\

EI_ ¢
where qu is an equivalent moment of inertia expressed by

= 2 2
I IS + Ases + Ic + Acec

where e = a2 - ) Ec&c'+'2yd)Ac
s Yd 2Lk

217

B.9

B.10

B.11

B.12

B.13
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e = tC/Z - Y4

In the evaluation of the beam stiffness by the above proce-
dure, the value of the constant ks is required. This value may be ob-

tained from a force-slip relationship obtained from push-out tests.



[ )
-
-

€d/¢

N
IR
|

d / Y

Y L

(a) NEUTRAL AXIS IN SLAB

"/ 3V Y
(
€d/¢

(b) NEUTRAL AXIS IN STEEL SECTION

FIGURE B.1 EFFECT OF SLIP ON STRESS DISTRIBUTION
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APPENDIX C
APPLICATION OF SLOPE-DEFLECTION METHOD TO COMPOSITE BEAMS

C.1 Deflection at Ultimate Moment for Simple Piastic Theory

For a segment between sections at which plastic hinges are
located elastic continuity exists up to the load at which the last hinge
forms. Therefore slope-deflection equations may be used to determine

deflections. The slope-deflection equation is given for a beam with

constant rigidity by

M
Ay —3:-[Mr - —55} c.1

0 = O v 7 T 3EC A8 T 2

where the sign convention is defined in Figure c.1(a).

Since stiffness is not constant for a composite beam subjected
to positive and negative moments, equation C.1 can not be directly em-

ployed. However, the case may be handled by means of equations similar

to Equation C.1.

Y )
% = %A T 7t EL (k Mg + K Mgp) C.2(a)
0. =) +84+ 2 (k M o+ Kk My,) c.2(b)
BA BA 2 EIp 21 AB 22 BA '

where EIp is the rigidity of a positive moment region. The quantities
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BAB and eéA are rotations at ends A and B, as shown in Figure C.1(b),
due to similar loading of a simply supported beam. The constants kj;,

ki2s koy and kpo, which are related to the flexibility co-efficients,

are defined by

o' (1 - 83)} |

'41%{1'- o' (302 - 2a3)}

ko = ':1§' (1- D'd3)

—
=
1

kip = 3

o~
—
N
fl
=
N
—
1]

' = ;.l
and o 1 5

where o and B are illustrated in Figure C.1(c) and o is the ratio of
stiffness in a negative moment region to that in a positive moment region.
The co-efficients ky;, k;, and k,, are tabulated in Table C.1 to C.3.

For constant stiffness the rotations GAB and eéA for a uni-

formly distributed Toad are given as

t =_n! = 923
9a8 ="9BA = 27T ¢.3

For composite beams with different stiffness in positive and negative mo-

ment regions, these rotations become

0ap = S 24EIp C.4(a)
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Coe e Q83
"n © %, ZET) C.4(b)

where S 1-p'a?(6 - 80 + 3a2)

U
i}

1 - 0'a3(4 - 3a)

Co-efficients S, and S, are tabulated for values of a and p
in Tables C.4 and C.5. The deflection at ultimate moment can be evalu-
ated from Equations C.2, since the moments are equal to the plastic mo-

ment values.

C.2 Slope-Deflection Equations for Composite Beams

The equations in Section C.1 are applicable between plastic
hinges, therefore they are based on one positive and one negative moment
region as shown in Figure C.1. However an interior span consists of one
positive and two negative moment regions as shown in Figure C.2. For

such cases the flexibility co-efficients k11 ~ k22 are given by

=L 1 (1 2R3} o 513
11 3 {1 py (1 -8 pz“z}

- S U R 2 _ 0.3y _ ot 2 _ 0.3
Kio Ky, 6 {1 0 (3a1 2a1) 0, (3oc2 2a2)
Kk =1 1-0'ad -p' (1~ 83)
22 3 11 2 2
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o1

p, =1- o)

. "1

and pl=1-=
VA p2

where the co-efficients o o > Bys Bys 0y and p, are shown in Figure C.2.

2
The values of S, and S, in Equations C.4 are given by

1-o0/a2 (6 -8 + 3¢§) - péag (4 - 3a)

w
[

1 11
= ...,l.3 - - 1.2 - 2
S 1 ‘bial (4 3a1) P05 (6 8a2 + 3a2)

Solving Equations C.2, the end moments MAB and MBA may be

expressed by
=_P (5 -c A 1
Mag ) [alleA f a,,6g = €, z] * Map C.5(a)
A 1
} ML C.6(b)

where —
a



and MAF and MéF are fixed-end moments at A and B, and are expressed by

Map = by Map

Mga = DoMgr

where MAF and MBF are the fixed end moments for a beam with constant
stiffness. The values of b1 and b2 for a uniformly distributed load are

given by

The midspan deflection for a uniformly loaded beam with span

and fixed ends may be expressed by

I
Be = Ky 3B4ET C.6
where . - 12  1 c,S, . czsz]
W C1 + C2 12 12 )
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For a concentrated load at midspan, the midspan deflection becomes

c c 192EIp
12
where k. =
c c + c,

The values of k,, and kC are shown in Figure C.3(a). For a uniform

load the bending moment Mfe at the ends is given by

Mo = 'mﬁ.%%i

b k
where m. = §1-+ .

W 9

o

and for concentrated load P at the midspan as

¢
where m. =g

The values of m, and m. are shown in Figure C.3(h) as a function of the
ratio of stiffness in a negative and positive moment region. The moment
at midspan is obtained from the equilibrium equation for a statically

determinate beam, if the bending moment at the ends is known.
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0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

TABLE C.1
0.15 0.20
0.8478 0.9840
0.7192 0.8213
0.6335 0.7129
0.5722 0.€354
0.5263 0.5773
0.4905 0.5321
0.4620 0.4960
0.4386 O0.u466l
0.4191 0.4418
0.4026 0.4209
0.3885 0.4030
0.3762 0.3876
0.3655 0.3740
0.3560 0.3620
0.3476 0.3514
0.3401 0.3419
0.3333 0.3333
0.60 0.65
1.5813 1.6095
1.2693 1.2905
1.0€13 1.0778
0.9128 0.9258
0.8013 0.8119
0.7147 ©.7233
0.6453 0.6524
0.5886 0.5944
0.5413 0.5460
0.5013 0.5051
0.4670 0.4701
0.4373 0.4397
0.4113 0.4131
0.3884 0.3896
0.3€¢&0 0.3688
0.3498 0.3501
0.3333 0.3333

VALUES OF CO-EFFICIENT k, , IN EQUATION C.2

0.25

1.1042
0.9115
0.7830
0.6912
0.6224
0.5689
0.5260
0.4910
0.4618
0.4371
0.4159
0.3976
0.3815
0.3673
0.35u7
0.3435
0.3333

0.70

1.6307
1.3063
1.0901
0.9357
0.8198
0.7297
0.6577
0.5987
0.5496
0.5080
0,4723
0.u4u1y
0.4148
0.3306
0.3694
0.3504
0.3333

0.30

1.2093
0.9903
0.8443
0.7400
0.6618
0.6010
0.5523
0.5125
0.4793
0.4513
0.4272

- 0.4063

0.3881
0.3720
0.3577
0.3449
0.3333

0.75

1.6458
1.3177
1.0990
0.9427
0.8255
0.7344
0.6615
0.6018
0.5521
0.5100
0.4740
o.uu27
0.4154
0.3912
0.3698
0.35086
0.3333

0.35

1.3005
1.0587
0.8975
0.7824
0.6960
0.6289
0.5751
0.5312
0. 4945
0.4635
0.4370
0.4139
0.3938
0.3760
0.3602
0.3461
0.3333

0.80

1.6560

1.3253
1.1049
0.5474
0.8293
0.737%
0.6640
0.6039
0.5538
0.5118
0.47¢0
0.4836
Cc.4160
0.3917
0.3701
0.3507
0.3333

0.40

1.3787
1.1173
0.9431
0.8187
0.7253
0.6527
0.5947
0.5472
0.5076
0.4741
0.4453
0.4204
0.3987
0.3795
0.3624
0.3471
0.3333

0.85

1.6622
1.3300
1.1085
0.9503
0.8316
0.7394
0.6655
0.6051
0.5548
0.5122
0.4757
04401
0.416u
0.3920
0.3702
0.3508
0.3333

0.45

1.4448
1.1670
0.9817
0.8494
0.7501
0.6730
0.6112
0.5607
0.5186
0.4830
0.452¢
0.4260
0.4028
0.3824
0.3642
0.3U80
0.3333

0.90

1.6653

1.3323

1.1103
0.9518
0.8328
0.7403
0.6663
0.6058
0.5553
0.512¢
0.4760
0.u4uu3
0.4166
0.3921

0.3703

0.3509
0.3333

0.50

1.5000
1.2083
1.013¢
0.8750
0.7708
0.6898
0.6250
0.5720
0.5278
0.4904
0.4583
0.4306
0.4063
0.38u48
0.3657
0.3487
0.3333

0.55

1.5452
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1.2422.

1.0402
0.8960
0.7878
0.7036
0.6363
0.5812
0.5353
0.0965
0.4632
0.4343
0.4091
0.3868

0.3670

0.3493
0.3333



TABLE C.2  VALUES OF CO-EFFICIENTS -k,, AND -k,, IN EQUATION

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.20
0.25
0.30
0.35
0.u40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.15

0.2072
0.1970
0.1903
0.1855
0.1819
0.1790
0.1768
0.1750
0.1734
0.1721
0.1710
0.1700
0.1692
0.1685
0.1678
0.1672
0.1667

0.60

0.5987
0.4907
0.4187
0.3672
0.3287
0.2987
0.2747
0.2550
0.2387
0.2248
0.2130
0.2027
0.19237
0.1857
0.1787
0.1724
0.1667

0.20

0.2360
0.2187
0.2071
0.1989
0.1927
0.1879
0.1840
0.1808
0.1782
0.1760
0.1741
0.1724
0.1710
0.1697
0.16¢€6
0.1676
0.1667

0.65

0.6455
0.5258
0.4460
0.3890
0.3462
0.3130
0.28¢64
0.2€46
0.24€5
0.2311
0.2180
0.20€6
0.1966
0.1878
0.1800
0.1730
0.1667

0.25

0.2708
0.2448
0.2274
0.2150
0.2057
0.1985
0.1927
0.1880
0.1840
0.1807
0.1778
0.1753
0.1732
0.1713
0.1696
0.1680
0.1667

0.70

0.6893
0.5587
0.4716
0.4093
0.3627
0.3264
0.2973
0.273¢
0.2538
0.2370
0.2227
0.2102
0.1993
0.1897
0.1812
0.1735
0.1667

0.30

0.3107
0.2747
0.2507
0.2335
0.2207
0.2107
0.2027
0.1961
0.1507
0.1861
0.1821
0.1787
0.1757
0.1730
0.1707
0.1686
0.1667

0.75

0.7292
0.5885
0.4948
0.4278
0.3776
0.3385
0.3073
0.2817
0.2604
0.2424
0.2269
0.2135
$.2018
0.1915
0.1823
0.1741
0.1667

0.35

0.3545
0.3075
0.2762
0.2539
0.237
0.2241
0.2136
0.2051
0.1980

0.1920

0.1868
0.1823
0.1784
0.1750
0.1719
0.1691
0.1667

0.40

0.4013
0.3427
0.3036
0.2756
0.2547
0.2384
0.2253
0.2147
0.2058
0.1983
0.1918
0.1862
0.1813
0.1770
0.1732
0.1698
0.1667

0.45

0.4502
0.3793
0.3320
0.2983
0.2730
0.2533
0.2375
0.,2247
0.2139
0.20u48
0.1970
0.1903
0.18u4
0.1792
0.1745
0.1704
0.1667

0.50

0.5000
0.4167
0.3611
0.3214
0.23917
0.2685
0.2500
0.2348
0.2222
0.2115
0.2024
0.1944
0.1875
0.1814
0.1759
0.1711
0.1667

0.95

0.8285
0.6630
0.5527
0.4739
0.4149
0.3689
0.3321
0.3020
0.2770
0.2558
0.2376
0.2218
0.2080
0.1959
0.1851
0.1754
0.1667

C.2

0.55

0.5498
0.4540
J3.3902
0.3446
0.3104
0.2837
0.2625
0.2450
0.2305
0.2182
0.2077
0.1986
0.1906
0.1836
0.1773
0.1717
0.1667

1.00

0.8333
0.6667
0.5556
0.4762
0.4167
0.3704
0.3333
0.3030
0.2778
0.2564
0.2381
0.2222
0.2083
0.1961
0.1852
0.1754
0.1667
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TABLE C.3

o
o]

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
- 0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.20
0.25
0.30
0.35
0.40

0.45 -

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.15

0.3378
0.3367
0.3360
0.3354
0.3350
0.3347
0.3345
0.3343

0.3341

0.3339
0.3338
0.3337
0.3336
0.3335
0.3335
0.3334
0.3333

0.60

0.6213
0.5493
0.5013
0.4670
0.4413
0.4213
0.4053
0.3922
0.3813
0.3721
0.3€642
0.3573
0.3513
0.3460
0.3413
0.3371
0.3333

VALUES OF CO-EFFICIENT k,,

0.20

0.3440
0.3413
0.339¢
0.3383
0.3373
0.3366
0.3360
0.3355
0.3351
0.3348
0.3345
0.3342
0.3340
0.3338
0.3336
0.3335
0.3333

0.65

0.6995
0.6080
0.5469
0.5033
0.4706
0.4452
0.4249
0.4082
0.3944
0.3826
0.3726
0.3638
0.3562
0.3495
0.3435
0.3382
0.3333

0.25

0.3542
0.3490
0.3455
0.3430
0.3811
0.3397
0.3385
0.3376
0.3368
0.3361
0.3356
0.3351
0.3346
0.3343
0.3339
0.3336
0.3333

0.70

0.7907
0.6763
0.6001
0.5457
0.5048
0.4731
0.4477
0.4269
0.4096
0.3949
0.3823
0.3714
0.3619
¢.3535
0.3460
0.3394
0.3333

0.30

0.3693
0.3én3
0.3543
0.3500
0.3468
0.3443
0.3423
0.3407
0.3393
0.3382
0.3372
0.3363
0.3356
0.3349
0.3343
0.3338
0.3333

0.75

0.8958
0.7552
0.6615
0.5945
0.5443
0.5052
0.4740
0.4484
0.4271
0.4091
0.3936
0.3802
0.3685
0.3581
0.3490
0.3407
0.3333

0.35

0.3905
0.3762
0.3667
0.3599
0.3548

0.3508

0.3476
0.3450
0.3429
0.3410
0.3395
0.3381
0.3369
0.3359
0.3349
0.3341
0.3333

0.80

1.0160
0.8453
0.7316
0.6503
0.5893
0.5419
0.5040
0.4730
0.4u471
0.4252
0.4065
0.3902
0.3760
0.3635
0.3523
0.3423
0.3333

IN EQUATION C.2

0.40

0.4187
0.3973
0.3831
0.3730
0.3653
0.3594
0.3547
0.3508
0.3476
0.3448
0.3425
0.3408
0.3387
0.3371
0.3357
0.3345
0.3333

0.85

1.1522
0.9475
0.8110
0.7135
0.6404
0.5835
0.5380
0.5008
0.4698
0.4436
0.4211
0.4016
0.3845
0.3695
0.3561
0.3u441
0.3333

0.45

0.4548
0.4245
0.4042
0.3897
0.3789
0.3705
0.3637
0.3582
0.3536
0.3497
0.3464
0.3435
0.3409
0.3387
0.3367
0.3349
0.3333

0.90

1.3053
1.0623
0.9003
0.7846
0.6978
0.6303
0.5763
0.5322
0.4953
D.u642
0.4375
0.4143
0.3%41
0.37¢62
0.3603
0.3461
0.3333

0.50

0.5000
0.4583
0.4306
0.4107
0.3958
0.3843
0.3750
0.3674
0.3611
0.3558
0.3512
0.3472
0.3438
0.3407
0.3380
0. 3355
0.3333

0.95

1.4765
1. 1907
1.0002
0.8641
0.7620
0.6826
0.6191
0.5672
0.5239
0.4872
0.4558
0.4286
0.4048
0.2838
0.3651
0.3u84
0.3333

0.55

0.5552
0.4997
0.4627
0.4363
0.4165
0.401%
0.3888
0.3787
0.3703
0.3632
0.3571%
0.3518
0.3472
0.3431
0.3395
0.3363
0.3333

1.00

1.6667
1.3333
1.1111
0.9524
0.8333
0.7407
0.6667
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0.6061"

0.5556
0.5128
0.4762
0.4444
0.4167
0.3922
0.3704
0.3509
0.3333



TABLE'C.4 VALUES OF CO-EFFICIENT s,
!

o & o.15

0.20 1.0479
0.25 1.0359
0.30 1.0280
0.35 1.0223
0.40 1.0180
0.45 1.0146
0.50 1.0120
0.55 1.0098
0.60 1.0080
0.65 1.0065
0.70 1.0051
0.75 1.0040
0.80 1.0030
0.85 1.0021
0.90 1.0013
0.95 1.0006
1.00 1.0000

0.60

0.20 2.9008
0.25 2.425¢
0.30 2.1088
0.35 1.8825
0.40 1.7128
0.45 1.5808
0.50 1.4752
0.55 1.3888
0.60 1.3168
0.65 1.2559
0.70 1.2037
0.75 1.1584
0.80 1.1188
0.85 1.0839
0.90 1.0528
0.95 1.0250

1.00

1.0000

0.20

1.1088
1.0816
1.0635
1.0505
1.0408
1.0332
1.0272
1.0223
1.0181
1.0146
1.0117
1.0091
1.0068
1.0048
1.0030
1.0014
1.0000

0.65

3.2519
2.6889
2.3136
2.0455
1.8445
1.6881
1.5630
1. 4606
1.3753
1.3031
1.2413
1.1877
1. 1407
1.0993
1.0€26
1.0296
1.0000

0.25

1.2031
1.1523
1.1185
1.0943
1.0762
1.0621
1.0508
1.0415
1.0339
1.0273
1.0218
1.0169
1.0127
1.0090
1.0056
1.0027
1.0000

0.70

3.6068
2.9551
2.5206
2.2103
1.9775
1.7965
1.6517
1.5332
1. 4345
1.3509
1.2793
1.2172
1.1629
1.1150
1.0724
1.0343
1.0000

0.30

1.3348
1.251
1.1953
1.1554
1.1255
1.1023
1.0837
1.0685
1.0558
1.0451
1.0359
1.0279
1.0209

1.0148 .

1.0093
1.0044
1.0000

0.75

3.9531
3.2148
2.7227
2.3711
2.1074
1.9023
1.7383
1.6040
1.4922
1.3975
1.3164
1.2061
1.1846
1.1303
1.0820
1.0389
1.0000

0.35

1.5059
1.3794
1.2951
1.2349
1.1897
1.1546
1.1265
1.1035
1.0843
1.0681
1.0542
1.0422
1.0316
1.0223
1.0141
1.0067
1.0000

0.80

4.2768
3.4576
2.9115
2.5214
2.2288
2.0012
1.8192
1.6703
1.5061
1.4811
1.3511
1.2731
1.20u8
1.1446
1.0910
1.0431
1.0000

IN EQUATION C.4

0.40

1.7168
1.5376
1.4181
1.3328
1.2688
1.2190
1.1792
1.1466
1.1195
1.0965
1.0768
1.0597
1.0448
1.0316
1.0199
1.0094
1.0000

0.85

4.5619
3.6714
3.0778
2.6538
2. 3357
2.0884
1.8905
1.7286
1.5937
1.4795
1.3816
1.2968
1.2226
1.1571
1.09¢89
1.0469
1.0000

0.45

1.9659
1.7244
1.5635
1.4485
1.3622
1.2951
1.2415
1.1976
1.1610
1.1300
1.1035
1.0805
1.0604
1.0426
1.0268
1.0127
1.0000

0.90

4.7908
3.8431
3.2113
2.7600
2.4216
2.1583
1.9477
1.7754
1.6318
1.5103
1.4062
1.3159
1.2369
1.1€72
1.1053
1.0499
1.0000

0.50

2.2500
1.9375
1.7292
1.5804
1.4687
1.3819
1.3125
1. 2557
1.2083
1.1683
1.1339
1.1042
1.0781
1.0551
1.0347
1.0164
1.0000

0.95

4.9439
3.9579%
3.3006
2.8311
2.4790
2.2051
1.9860
1.8067

1.6573

1.5309
1.4226
1.3287
1.2465
1. 1740
1.1096
1.0519
1.0000

“0.55

2.5639
2.1729
1.9123
1.7261
1.5865
1.4779
1.3910
1.3199
1.2607
1.2105
1.1676
1.1303
1.0977
1.0690
1.0434
1.0206
1.0000

1.00

5.0000
4.0000
3.3333
2.8571
2.5000
2.2222
2.0000
1.8182
1.6667
1.5385
1.4286
1.3333
1.2500
1.1765
1.1111
1.0526
1.0000
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0.20
0.25
0.30
0.35
o.“o
o.us
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.50
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

TABLE C.5  VALUES OF
0.15 0.20 0.25
1.4381 1.7232 2.0469
1.3286 1.5424 1.7852
1.2555 1.4219 1.6107
1.2034 1.3358 1.4860
1.1643 1.2712 1.3926
1.1339 1.2210 1.3199
1.1095 1.1808 1.2617
1.0896 1.1479 1.2141
1.0730 1.1205 1.1745
1.0590 1.0974 1.1409
1.0469 1,0775 1.1122
1.0365 1.0603 1.0872
1.0274 11,0452 1.0654
1.0193 1.0319 1.0462
1.0122 1.0201 1.0291
1.0058 1.0095 1.0138
1.0000 1.0000 1.0000
0.60 0.65 0.70
4.2832 4.4941 4.6652
3.4624 3.6206 3.7u489
2.9152 3.0382 3.1380
2.5243 2.6222 2.7017
2.2312 2.3103 2.3745
2.0032 2.0676 2.1199
1.8208 1.8735 1.91€3
1.6716 1.7147 1.7497
1.5472 1.5823 1.6109
1.4420 1.4706 1.4934
1.3518 1.3744 11,3927
1.2736 1.2912 1.3054
1.2052 1.2184 1,2291
1.1448 1.1542 1.1617
1.0912 1.0971 1.1018
1.0432 1.0460 1.0u482
1.0000 1.0000 1.0000

CO-EFFICIENT s, IN EQUATION C.4

0.30

2.3932

2.04ua
1.8127
1.6468
1.5224
1.4257
1.3483
1.2850
1.2322
1.1875
1.1493
1.1161
1.0871
1.0615
1.0387
1.0183
1.0000

0.75

4.7969
3.8477
3.2148
2.7628
2.4238
2.1602
1.9492
1.7766
1.6328
1.5111
1.4068
1.3164
1.2373
1.1675
1.1055
1.0500
1.0000

0.35

2.7481
2.3111
2.vi97
1.8116
1.6555
1.5341
1.4370
1.3576
1.2913
1.2353
1.1873
1.1457
1.1093
1.0771
1.0486
1.0230
1.0000

0.80

4.8912

3.9184

3.2699
2.8066
2.4592
2.1890
1.9728
1.7959
1.6485
1.5238
1.4169
1.3243
1.2432
1.1717
1.1081
1.0512
1.0000

0.40

3.0992
2.5744
2.2245
1.9746
1.7872
1.6414
1.5248
1.4294
1.3499
1.2826
1.2249
1.1749
1.1312
1.0926
1.0583
1.0276
1.0000

0.85

4.9521
3.9641
3.3054
2.8349
2.4820
2.2076
1.9880
1.8084
1.6587
1.5320
1.4234
1.3293
1.2470
1.1704
1.1098
1.0520
1.0000

0.45

3.4361
2.8271
2.4210
2.1310
1.9135
1.7444
1.6090
1.4983
1.4060
1.3279
1.2610
1.2030
1.1523
1.1075
1.0677
1.0321
1.0000

0.90

4.9852
3.9889

3.3247 -

2.8503
2.4945
2.2177
1.9963
1.8152
1.6642
1.5365
1.4270
1.3321
1.2491
1.1758
1.1107
1.0524
1.0000

0.50

3.7500
3.0625
2.6042
2.2768
2.0313
1.8403
1.6875
1.5625
1.4583
1.3702
1.2946
1.2292
1.1719
1.1213
1.0764
1.0362
1.0000

0.55

4.0341
3.2756
2.7699
2.4087
2.1378
1.9271
1.7585
1.6206
1.5057
1.4084
1.3251
1.2528
1.1896
1.1339
1.0843
1.0399
1.0000

1.00

5.0000
4.0000
3.3333
2.8571
2.5000
2.2222
2.0000
1.8182
1.6667
1.5385
1.4286
1.3333
1.2500
1.1765
1.1111
1.0526
1.0000
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FIGURE C.1
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(a) SIGN CONVENTION

6pp (*) 8ga (-)

(b) END ROTATION

/*/J

(c) BENDING MOMENT DIAGRAM
I
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(d) STIFFNESS DIAGRAM
BASIS FOR SLOPE DEFLECTION EQUATIONS BETWEEN PLASTIC HINGES
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FIGURE C.2  BASIS FOR SLOPE DEFLECTION EQUATIONS BETWEEN SUPPORTS
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APPENDIX D

COMPUTER PROGRAM

D.1 Introduction

The following steps are required in the computations for
deformations and local flange buckling for a given load:
1. Compute moment-curvature relationships in positive and
negative moment regions. Moment-curvature relationships in positive
moment regions include the effect of slip.
2. Compute bending moments and bending deflection by employing
the finite difference method. Rotation and shear are computed from de-
flection and moment values respectively. Shear deformation is computed
by the virtual work method. In the inelastic region the bending deforma-

tion is obtained by an iterative procedure described in Section 3.9.

3. Check local flange buckling in the negative moment region.
4, Compute the maximum concrete strain in the positive moment
regions

The computer program was written in Fortran IV and computa-
tions were carried out on the IBM 360/67 computer at the University of
Alberta Computing Center. The flow chart in Figure D.1 outlines the se-
quence of the computations required for the analysis of the continuous

beams. The program consists of 24 subroutines and 3 functions.
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D.2 Description of Subroutines and Functions

READA
DEBU

MC

READB

DERM

LOCAL

MX
NAPB

FORCE

reads and writes the beam dimensions

computes and writes elastic properties and consists of sub-
routines NUE, MISB, MISC, SCF and QX2.

computes the moment-curvature relationships in positive and
in negative moment regions. The outline of MC is given in
Figure D.2.

reads and writes the beam length, number of spans, locations
of intermediate supports, loads and load Tocations.
computes bending moment, shear, deflection and rotation in-
cluding effects of shear and slip. The outline of the com-
putations is shown in Figure D.2.

computes local flange buckling values. If the first eigen-
value is greater than 1.0, buckling may occur. LOCAL con-
sists of subroutines YAMA, SHUKI, TOKYO and PORT. SHUKI
and TOKYO compute eigen values and were developed by M. Suko.
YAMA is the memory for the moment-curvature relationship
and location of neutral axis. PORT computes inelastic tan-
gent modulus and inelastic shear modulus.

computes maximum slab strain in each span.

computes moment for given curvature or curvature for given
moment. The outline of NAPB is illustrated in Figure D.3.
computes normal force and moment for a rectangular element
for a given material (i.e., steel or concrete), neutral
axis location and curvature. FORCE includes the functions
STRES and FOC which are the stress-strain relationships for

steel and concrete, respectively.



SLIP
REACT
MMI

DS
SHERG
SMA
CPRINT
FDM

236
computes slip deformation of shear connectors.
computes redundant forces. REACT includes FDM and SMA.
computes additional external moment for inelastic regions.
computes shear deformation and inc]udés SHERG
computes shear energy in a segment.
solves equations by Gauss elimination.
writes computational results of forces and deformations.
computes deflection, rotation, shear and moments by means

of the finite difference method.

D.3 Input Data

Input data required for this analysis is listed in the

following, and input format is illustrated in Figure D.4. Explanation

of the symbols for input data are listed as below.

B
T
D
W
SIGY

RSN
SIGU
K1
K2
KF
RA

Flange width for steel section

Flange thickness for steel section

Beam depth for steel section

Web thickness

Yield stress for steel section

Ratio of elastic modulus to strain hardening modulus for
steel beam

Ratio of the strain at strain hardening to yield strain
Ultimate strength for steel section

Number of segments of flange in thickness direction
Number of segments of web in depth direction

Number of segments of flange in width direction

Area of longitudinal slab reinforcement in negative-moment



YRA
DRS

HR
RSNR
RK

BC
BT
FC
EN
KT
AL

NM
NR(I)
NL
K(I)
A(1)
B(I)
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Yield stress for longitudinal reinforcement
Distance from centroid of longitudinal reinforcement to
top of steel section
H for reinforcement
RSN for reinforcement
Interaction factor of the strain in longitudinal reinforce-
ment
Concrete slab width
Slab thickness

Concrete strength

Ratio of elastic modulus for steel to that for concrete
Number of segments of slab in thickness direction

Beam length

Number of segments in length direction

Number of intermediate supports

Location of intermediate support

Number of load stages

Location of concentrated load

Concentrated load

Uniformly distributed load
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START

READ DIMENSIONS OF COMPOSITE BEAM  AND
PROPERTIES OF STEEL AND CONCRETE (READ A)

Il

COMPUTE SECTION PROPERTIES (DEBU, MP)
'AND MOMENT CURVATURE RELATIONSHIPS (MC)

|

READ BEAM LENGTH AND SPAN, LOAD, LOAD
LOCATION (READ B)

!

COMPUTE DEFORMATION INCLUDING SHEAR ‘
DEFORMATION (DERM)

|

COMPUTE LOCAL BUCKLING VALUES AND
MAXIMUM SLAB STRAIN (LOCAL, MX)

I

PRINT OUT COMPUTATIONAL
RESULTS (CPRINT)

LAST LOAD

( ): SUBROUTINE

FIGURE D.1  MAIN PROGRAM OUTLINE
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NUMBER OF

SPAN,
NM

'COMPUTE REDUNDANT, X; (REACT) |

v

REDUNDANT  X;=X;.1+{X;-X;-1)/30
CC=lX;-X;-1 I

CC<0.005

» COMPUTE BENDING MOMENT AND DEFORMATION

INCLUDING REDUNDANT (FDM)

!

COMPUTE ADDITIONAL EXTERNAL
* MOMENT (MMI)

Ly 'COMPUTE SHEAR DEFORMATION
[C5)

RETURN ,
( ):SUBROUTINE

FIGURE D.2  OUTLINE OF DEFORMATION PROGRAM (DERM)
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ENTER
—————7/ SET NEUTRAL AXIS /

COMPUTE Ns=[,,0dA, Ms=[, oydA
FOR STEEL SECTION (FORCE)

CURVATURE F

>0 l
T

_ COMPUTE Nr=f,, cdA Mr=[, ocdA
COMPUTE SLIP STRAIN FOR SLAB REINFORCEMENT
(SLIP) N =Ns+Nr, M= Ms +Mr

v

COMPUTE Nc=f, ocdA, Mc=[, . oydA

FOR CONCRETE SLAB (FORCE)
N=Ns+Nc, M=Ms+Mc

RETURN
( ) : SUBROUTINE

FIGURE D.3  OUTLINE OF PROGRAM FOR MOMENT-CURVATURE RELATIONSHIPS
(NAPB) IN (MC)



1 T
W / 4F6.0 )

SIGY H RSN

I T
SIG v j 4F6.0

\ 315

RA YRA DRS

HR RSNR RK

) 6F6.0

BC TC FC

I 1 1
EN KT

] 4F6.0, I5

AL N 'NM

I I |
NR(I), I=1 ,10

/F6.0, 1215 J

NL I5 (MAIN)

K(I) 1615 )

A(T) 16F5.0

B(T) \ S r (READ B)
K(I) J 1615

A(T) / 16F5.0

( ): SUBROUTINE

FIGURE D.4  INPUT DATA
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r(READ A)



D.4 List of Computer Programs

IMPLICIT REAL*8 (A-H,0-2)
COMMON/TEA2/SIGY,YS,AH ,RSN,RES,FYP EPM,SIGU
COMHON/BL1/N, N1, AL, Ni, NR(10)
COMMON /BL2/CIP,CIN,AKP,AKN,ATP,ATN,BYP,BYN
coMHoON/BL3/AS,SI,X,CI,AK,BY,EQI, AT
COMMON/BL5/SP (5) ,SCR(6,50,4) ,PRO (4,100)
COMHON/COS1/CU (6,61)
COMMON /BLU/XX (4,100) ,YY (3,100)
DIMENSION BN (100),R (100) ,SR(100),DEF (100) ,SD(100)
DIMENSION ©(100),SH(100),P (100) ,BL(10)
ELN=3.0%10.0%%4
9 CALL READA
Do 10 I=1,100
po 11 J=1,4
11 XX(J,I)=0.0
" po 12 J=1,3
12 YY(J,I)=0.0
10 CONTINUE
WRITE (6,5)
WRITE (6,4)
CALL DEBU (1)
CALL MP(1,BNU)
CIP=EQI*ELM
AKP=AK
ATP=AT
BYP=BY
WRITE (6,5)
WRITE (6, 3)
CALL DEBU(-1)
CALL MP(-1,BMU)
CIN=CI*ELM
AKN=AK
ATN=AT
BYN=BY
CALL MC
READ(5,2) NL
NNL=0
1 CALL READB (P,Q)
CALL DERM(Q,P,BM,SH,R,DEF,SR,SD)
CALL CPRINT (SH,BM,R,DEF, SR, SD)
PO 6 I=1,50
PO 6 J=1,3
JJ=J+3
IF(J.EQ.1.0R.J.EQ.2)CU(JJ,I)=-5CR(6,I,J)
IF (J.EQ.3) CU (JJ,TI)=SCR(6,1,J)
6 CONTINUE
CU1=CU (4, 1) *SIGY/ (CU (5, 1) *CU (6, 1) ¥ELH)
IF(NM.EQ.0) GO TO 14
CALL NLE (BM, BL)
po 13 I=1,NM
BS=BHM (FR(I))
BSS=DABS (BS)
IF (BSS.LT. (CU1%1.05)) GO TO 13
PS=BSS/BL (I)
CALL LOCAL (20,BL(I),CU1,PS,EIG1)
CALL MX(BM,PRO)
13 CONTINUE
14 NNL=NNL+1
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2
3
4
5
99

1
2

IF(NNL.LT.NL)GO TO 1

GO TO 9

FORMAT (10I5)

FORMAT (/5X, '$$$$ NEGATIVE MOMENT REGION $85%51)
FORMAT (/5X,'$$$$ POSITIVE MOMENT REGION $$8%Y)
FORMAT (/20X,'$$$$555555858888)

FORMAT (/5X,8E14.5)

STOP

END

SUBROUTINE CPRINT(SH,EBEM,R,DEF,SR,SD)

IMPLICIT REAL¥8 (A-H,0-2)

COMMON /BL1/N,N1,AL, Nt ,NR (10)

DIMENSION BHM(100),R(100),SR(100),DEF(100),SD(100),SH(100)
WRITE (6, 2)

po 1 I=1,N1

WRITE (6,3) I,SH(I),BM(I),R(I),DEF(I),SR(I),SD(I)

FORMAT (//5X, ' **%% BENDING NMOMENT AND DEFORMATION #i**!,
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1/7X,'I',10X,'SHEAR',1OX,'BM',13X,'R',13X,'DEF',13X,'SR',13X,'SD')

3

11
10

FORMAT (5X,I3,2X,6E15.6)
RETURN
ERD

SUBROUTINE MX (BM,PRO)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/BL1/N,N1,AL, N ,NR (10}
COMMON/TEAUL/BC,TC,FC,KT
DIMENSION BM (100) ,PRO (4,100)
NM1=NH+1
WRITE (6, 11)

BE=0.0

J2=1

J3=N1 '
IF(I.NE.1)J32=NR(I-1)
IF(I.NE.NM1) IJ3=NR(I)

DO 2 J=d2,J3

IF(BM(J) .GT.BE) MB=J

IF (BY (J).GT.BE) BE=BM(J)
CONTINUE

SNM=PRO (2, MB) * (TC+PRO (3, MB) ~PRO (4,HMB) )
WRITE(6,10) I,SNM,MB
CONTINUE

RETUKN
FORMAT (/5X, ! *%%%¥%x MAXIMNUM STRAIN ON CONCRETE SLAB #¥k#kik!)

FORMAT (/5X, ' *%**%¢ ,T12,'TH SPAN IS',F7.5,'AT THE LOCATION',I3)
END
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SUBROUTINE NLE(BM,BL)
IMPLICITREAL%S (A-H,0-2)
COHMON/BL1/N,N1,AL,NM,NR(10)
DIMENSION BL (10) ,BM (100)
H=AL/DFLOAT (N) .

Do 1 I=1,NN

J=0 -

4 NK=NR(I)-J-1
IF(¥K.LE.0)GO TO 3
IF(BM (NK))2,2,3

2 J=Jd+1
BL (I)=DFLOAT (J) *H
GO TO &4

3 Ja=o0

14 NL;NR(I)+JJ+1
IF (NL.GE.N1)GO TO 6
IF(BM(NL))S5,5,6

5 JJ=JJ+1
GO TO 14

6 IF(JJ.GT.J)BL(I)=DFLOAT(JJ)*H

1 CONTINUE
RETURN

98 FORMAT (/5X,615)

END

SUBROUTINE READB(P,Q)
IMPLICIT REAL*8 (A-H,0-Z)
CoMroN/BL1/N,N1,AL,NM,NR (10)
. DIMENSION P (100), K(16) A(16) ,B(10), 0 (100)
NMI=NM+1
READ (5,1) (K(I),I=1,16)
READ(5.2) (A(I) ,I=1,16)
READ (5,2) (B (I) ,1=1,10)
WRITE (6, 5)
Do 3 I=1,16
IF(A(T) . £0.0.0)GO TO 3
WRITE (6,4) K (I) ,A (I)
3 CONTINUE
WRITE (6,11)
po 10 I=1,8M1
10 WRITE (6,12)I,B(I)
po 7 1I=1,N1
7 P(1)=0.0
DO 6 I=1,16
6 P(K(T))=A(I)
po 8 I=1,NM1
Ja=1
JJI=N1
IF(I.NE.1) JJ=NR (I-1)
IF(I.NE.NM1)JII=NR(I)
DO 8 J=JJ,dJJ
Q(J)=B(I)
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CONTINUE

DO 9 I=1,NM

Q(NR(I))=Q(NR(I))/2.0

0(1)=0(1) /2.0

Q(E1)=Q(N1) /2.0

RETURN

FORMAT (1615)

FORMAT (16F5.0)

FORMAT (1H1, 5X, **%%% LOAD POINTS #¥*%!,/)
FORMAT (5X, 'LOAD POINT AT',I3,3X,F6.2,'KIPS.')
FORMAT (/5X, ' #¥%% DISTRIBUTED LOADS *#%*1)
FORMAT (/5X, ' #%%%* T3, 'TH SPAN',FB8.2,'KIPS/INCH #*%%%1)
END

SUBROUTINE WP (K,BMU)

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/TEA1/B,T,D,W,K1,K2,KF
COMMON/TEA2/SIGY,YS,H,RSN,RES,FYP, EPM,SIGU
COMMON/TEA3/RA,YRA,HR,RSNR,FYPR,DRS,RK
COMMON/TEARL/BC,TC, FC,KT

DH=D*W

DM=DW*1.1

BT=B*T

BH1=D/2.0+T

BA=DW+2.0*BT

BTC=BC*TC

IF(K )1,2,3

RAA=RA*YRA/SIGY

Y4=D/2.0+RAA/W/2.0

IF (Y4.GT.D)GO TO 4

2B=B*T* (T+D) + Wk (Y4*%2,/2,0+ (D-Y4) *%2/2.0) *1, 1+ (D-YU4+T+DRS) *RARA
BMU=ZB*SIGY

WRITE (6, 10) BMU

RETURN

X=(BA-KAA) /2.0/B

XX=T-X

2=(XX+D+T/2.0) *¥BT+ (XX+D/2.0) *DM+ (XX**2+X*%2) *B/2.0+RAA¥ (DRS+X)
BMU=Z*SIGY

WRITE (6, 10) BHU

RETURN

R3=B*T*(D+T) /2.

AL=WkD**2/4,

BMU=(A342.+A4) *SIGY

WRITE (6,10) BMU

RETURN

Y2=+BA*SIGY/ (BC*0.85%FC)

BMU=BA*SIGY* (BH1+TC-Y2/2.0)

IF(Y2.LT.TC) KRITE(6,10) BMU

IF(Y2.LT.TC) RETURN

RRS= (BA*SIGY-0.85%FC*BIC) /2.0

IF (RRS.GT.B*T)GO TO 20

Y 2=RRS/B

BHU=SIGY* (B¥T* (D+T+T/2.0~Y2) +D¥W*1.1%(D/2.0+T-Y2) +

1B (Y2%%2/2.0+ (T-Y2) *%2,2.0) ) +0.85%FC*BTC* (TC/2.0+Y2)

WRITE (6, 10) BMU
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RETURN

Yz (RRS-B*T)/W

BMU=SIGY* (BXT#* (D+T) +W*1. 1% (Y2%%2,/2 .0+ (D-Y2) ¥%¥2/2.0))
140.85%FC¥BTC* (TC/2.0+T+Y2)

WRITE (6,10) BMU

RETURN

FORMAT (10X, E15.7)

FORMAT (5X, ' #%%% IDEALIZED PLASTIC MOMENT IS',F9.1,' KIP-IN*k*x')
END )

SUBROUTINE DS (SH,PRO,SD)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/BL1/N,N1,AL,Nt,KR (10)
COMMON/BL2/CIP,CIN, AKP, AKN, ATP,ATN,BYP,BYN
DINENSION BM (100),SH(100),SD(100),S (10),SG (100) ,EM(100)
DIMENSION PRO (4,100)
NM1=NM+1
AH=AL/DFLOAT (N)
DO 1 I=2,N
FY=PRO (2, T)
YP=PRO (3,1)
YD=PRO (4, I)
IF (FY.LT.0.0)K=~1
IF(FY.GT.0.0)K=1
IF (FY.EQ.0.0)K=0
IF(FY.LT.0.0)CI=CIN
IF(FY.GE.0.0)CI=CIP
IF(SH(I) .NE.O.0)BS=DABS ({FY*CI-PRO (1,I))/SH(I) )
IF(SH(I).NE.0.0) FYM=FY*AH/BS
IF(SH(I).EQ.0.0)FYN=0.0
CALL SHERG(K,0.0,0.0,0.0,FYM,YP,YD,AH,SG (I))
IF (SH (I) .NE.0.0)SG (I)=SG(I) /SH(I)
DI=DFLOAT (I)
CONTINUE
SG (1) =SG (2)
SG (N1) =56 (N)
DO 18 I=1,N1
SD(I)=0.0
DO 19 I=1,NM1
J3J=2
Jag=N
IF(XI.NE.1)JJ=NR (I-1)+1
IF(I.NE.NM1)JII=NR (I)-1
DO 19 J=JJ,JdJ
A=DFLOAT (J3J-J) /DFLOAT (JJJ~-JJ)
DO 20 K=JJ,J
SD (J) =SD (J) +SG (K) *A
PO 21 K=J,3JJ
SD(J) =SD (J) +SG (K) * (A=1.0)
CONTINUE
RETURN
FORMAT (5X,515)
POPMAT(SX 8E15.5)

- END
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SUBROUTINE LOCAL (N,AL,BMC,PY,EIG1)
IMPLICIT REAL*8 (A-H,0-%)
COMMON/TEA1/B,T,D,¥%,K1,K2,KF

COMMON/TEA2/SIGY,YS,AH,RSN,RES,FYP,EPM,SIGU
DIMENSTON H1(20),H2(20),H3(20) ,H4 (20) ,H5 (20) ,WA (20,20) ,WAA (20,20)
ELM=3.0%10, %%y ,
EIW=ELN*B**3%T#%3/144,0
AFAC= (B*%2+T%%2) /12,0
G=ELK/2.6
GID=G*B*T*%3 /3.0
NO=K-1
NT=N=-2
N1=N+1
ITE=1
AMC=PY*AL-
BL=AL* (1.0-BMC/ANC)
IF (BL.LE.0.0)RETURN
H=BL/DFLOAT (N 1)
H10=H** (-2)
H20=H 10%%2
9 po 1 I=1,N
DIN=DFLOAT (I) /DFLOAT (N)
H1(I)=BMC+ (AMC-BMC) *DIN
HM=H1 (I) '
CALL YAMA (HM,AF,Y1)
01=~AF*Y1
02=STRES(01,SIGY,FYP,AH,SIGU)
CALL PORT (O1,ER,GR)
H2(I) =EIW*ER*H20
H3 (I)=GJID*GR*H10
H4 (I) =B*T*02%KFAC*H10
HS (I) =ELM*W*%3/3,0/Y1
1 CONTINUE
po 2 1=1,N
DO 2 J=1,N
WA (X,J)=0.0
WAA (I,J3)=0.0
2 CONTINUE
DO 3 I=1,N
I1=I-1
I2=1+1
IF(X.EQ.1)GO TO &4
IF(I.EQ.N)GO TO 5
Z1=H2 (I1)+4.0%H2 (1) +H2 (I2)
22=H3(I1)/2.0+H3(I)+H3(I2) /2.0
%3=~ (H4(I1) /2.0+04 (I) +HY4 (I12) /2.0)
GO TO 6
4 Z1=6.0%H2(1) +H2(2) +0.5%H3 (1)
Z2=1.5%H3 (1) +H3(2) /2.0
7 3=~ (HU (1) +HY (2)) /2.0
GO TO 6
5 21=+H2(NO) +6.0%H2 (N) +0.5%H3 (N)
Z2=H3 (NO) /2.04+1.5%H3 (N)
7.3=-2.0%H4 (N)
6 WA(I,I)=21+Z2+H5(1)*.666667
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WAR(I,X1)=23

CONTINUE

bo 7 1I=1,NO

12=T+1

21=-2,0% (H2 (I) +H2 (12) )~ (H3(T)+H3(12)) /2.0
Z22= (HU(T) +H4(12)) /2.0
WA(I2,1)=21+H5(I)*.1666667
WA(X,12)=WA(I2,1)
WAR(I2,1)=2Z2

WAA(I,12)=22

CONTINUE '

DO 8 I=1,NT

I2=T+1

I3=I+2

WA(I3,I)=R2(12)
WA(L,I3)=WA(I3,I)

CONTINUE

CALL SHUKI (WAA,®A,N,EIG1,4)
RETURN )

FORMAT (/5%X,515)

FORMAT (/5X,5E15.95)

END

SUBROUTINE YAMA (AM,AF,Y1)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/COS1/CU (6,61)

MT=-1

IF(MT.EQ. 1) MRI=1

IF (MT.FEQ.1) MO=2

IF(MT.EQ.1) MK=3

IF(MT.EQ.~1) MRI=4
IF(MT.EQ.-1) HO=5

IF (MT.FQ.~1) HK=6

HAM=CU (MRI, 1)

1F (DABS (AM) . LE. DABS (HAM)) GO TO 1
Mu=1

MW=KH+1

H1=CU (MRI,MH)

IF (DABS (AM) .GT.DABS (H1)) GO TO 2
MH1=MR~1

H2=AN¥-CU (MRI, MW 1)

H3=H1-CU (MRI, MW 1)

H4=CU (MO, MW) -CU (MO, MW 1)

AF=CU (MO,M¥) +H2%HU/H3

Y1=CU (HK,MW) +H2% (CU (MK, MW) -CU (MK, MW1) ) /H3
RETUKN

AF=CU (MO, 1) *AM/HAH

Y 1=CU (HK, 1)

RETURN

END
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40 DO 50 I=1,NA
CYY(I)=0.0

DO 60 J=1,NA
YY (I) =YY (I) +H (I,J) *Y (J)

60 CONTINUE
IF(I .EQ. 1) A=YY(I)

, 50 CONTINUE ,

IF(DABS(A) .GT. 10.0E-15) GO TO 56
DO 55 I=1,NA
Y (I) =Y (I) +DFLOAT (I)

55 CONTINUE
GO TO 40

56 DO 70 I=1,NA
Y(I)=YY(I)/A

70 CONTINUE
S=A/B
B=A
IF(S .GT. 1.00001) GO TO 40
IF(S .LT. .0.99999) GO TO 40
IF (KK .EQ. KA) GO TO 75

AA=A
DO 71 I=1,NA
2 (I) =Y (L)

71 CONTINUE
GO TO 10

75 IF(A .GE. AA) GO TO 80
A=AA
DO 76 I=1,NA
Y (I)=2(I)

76 CONTINUE
80 IF(KK .EQ. 2) GO TO 200
200 A1=A
GO TO 220
210 a=Dp(1,1)/C(1,1)
220 WRITE(6,230) A
230 FORMAT (/1X, 'THE FIRST EIGEN VALUE IS',E12.4)
RM1=A :
IF(N .EQ. 1) RETURN
WRITE (6,240) (Y (I),I=1,N)
240 FORMAT ( 3X,'CORRESPONDING MODE *%1/(3X,8E14.4))
RETURN
END
SUBROUTINE. TOKYO (NO,R)
IMPLICIT REAL*8 (A-H,0-32)
DINENSION AC(20),AB(20),A(20,20)
NO 1=NO-1
A(1,1)=1.0/A(1, 1)
IF(NO .EQ. 1) RETURN
DO 80 N=1, NO1
DO 50 I=1,N
AB(I)=0.0
AC(I)=0.0
DO 50 J=1,N
AB(I) =AB(I) +A (I,J) *A (J,N+1)
AC(I)=AC(I) +A(N+1,J) *A (J, I)
50 CONTINUE
ACB=0.0
DO 60 I=1,N
"ACB=ACB+AC (I) *A (I,N+1)
60 CONTINUE
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SUBROUTINE LOCAL (N,AL,BMC,PY,EIG1)
INPLICIT REAL*8 (A-H,0-Z)

COMMON/TEA1/B,T,D,¥%,K1,K2,KF

COMMON/TEA2/SIGY,YS,AH,RSN,RES,FYP,EPM,SIGU

DIMENSTON H1(20) ,H2(20) ,H3(20) ,H4 (20) ,H5 (20) ,¥WA (20,20) ,WAA (20, 20)

ELM=3.0%10, %%y .

EIW=ELMN*B*%3%T%%3/144,0

AFAC= (B%%2+T*%2) /12,0

G=ELN/2.6

GID=G*B¥T*%3,/3,0

NO=N—-1

NT=N-2

N1=N+1

ITE=1

ANC=PY*AL-

BL=AL* (1.0-BMC/AMNMC)

IF (BL.LE.0.0) RETURN

H=BL/DFLOAT (N 1)

H10=H%* (=2)

H20=H10%*%2

DO 1 I=1,N

DIM=DFLOAT (I) /DFLOAT (N)

H1(X)=BHUC+ (AMC—BMC) *DIM

HM=H1 (I) '

CALL YAMA (HM,AF,Y1)

O01=~AF*Y1

02=STRES(01,SIGY,FYP,AH,SIGU)

CALL PORT(O1,ER,GR)

H2 (XI) =EIW*ER*H20

H3 (1) =GJD*GR*1110

HU4 (1) =B*T*02%AFAC*H10

H5 (1) =ELM*W*%*3/3.0/Y1

CONTINUE

DO 2 I=1,N

DO 2 J=1,N

WA(1,J)=0.0

WAA(I,J)=0.0

CONTINUE

po 3 1=1,N

I1=1~1

I2=1+1

IF(I.EQ.1)GO TO 4

IF(I.EQ.N)GO TO 5

Z1=H2 (I1)+U4.0%H2 (I) +H2(I2)

Z2=H3(I1)/2.0+H3 (I)+H3(I2) /2.0

Z3=- (H4(I1) /2.0+H4 (I) +HY4 (T2) /2.0)

GO TO 6

Z1=6.0%H2(1) +H2(2) +0.5%H3 (1)

22=1.5%H3 (1) +H3 (2) /2.0

Z3=-(HU (1) +HU (2)) /2.0

GO TO 6

Z1=+H2(NO) +6.0%H2 (N)+0.5%H3 (N)

Z2=H3 (HO) /2.0+1.5%R3 (N)

Z3=-2.0%H4 (N)

WA(I,I)=Z1+Z2+H5(1)*.666667
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DO 50 I=1,NA

YY(I)=0.0

DO 60 J=1,NA

YY(I) =YY (I) +H (I,J) *Y (J)
COETINUE

IF(I .EQ. 1) A=YY(I)
CONTINUE

IF(DABS(R) .GT. 10.0E-15) GO TO 56
DO 55 I=1,NA

Y (I) =Y (I) +DFLOAT (I)
CONTINUE

GO TO 40

DO 70 I=1,NA

Y(I)=YY(I)/A

CONTINUE

S=h/B

B=A

IF(S .GT. 1.00001) GO TO 40
IF(S .LT. .0.99999) GO TO 40
IF (KK .EQ. KA) GO TO 75
AA=A

Do 71 I=1,NA

Z (1) =Y (1)

CONTINUE

GO TO 10

IF(A .GE. AR) GO TO 80

A=AA

DO 76 I=1,NA

Y(I)=2(I)

CONTINUE

IF(KK .EQ. 2) GO TO 200
A1=2

GO TO 220

A=D (1,1)/C (1,1)
WRITE(6,230) A

FORMAT (/1X, 'THE FIRST EIGEN VALUE IS',E12.4)
RM1=A

IF(N .EQ. 1) RETURN
WRITE(6,2080) (Y (I),I=1,N)
FORMAT ( 3X,'CORRESPONDING MODE %!/ (3X,8E14.4))
RETURN

END

SUBROUTINE TOKYO (NO,R)
IMPLICIT REAL*8 (A-H,0-32)
DIMENSION AC(20),AB(20),A (20,20)
NO1=NO~-1

A(1,1)=1.0/0(1,1)

IF(NO <EQ. 1) RETURW

DO 80 N=1, NO1

DO 50 I=1,N

AB(I)=0.0

AC(I) =0.0

Do 50 J=1,N

AB(I) =AB(I) +A (I,J) *A (J,N+1)
AC(I)=AC(I) +A(N+1,J) *A (J, I)
CONTINUE

ACB=0.0

DO 60 I=1,N

"ACB=ACB+AC (T) *A (I,N+1)

CONTINUE
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