University of Alberta

EIGENSPACE PROJECTION CLUSTERING METHOD FOR INEXACT MATCHING OF GRAPHS
AND GENERIC RELATIONAL STRUCTURES

by

Serhiy Kosinov

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2002

l*l National Library Bibliothéque nationale

of Canada du Canada
Acquisitions and Acquisitions et .
Bibliographic Services services bibliographiques
395 Wellington Street 385, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
i Your fle Votre rélérence
Our flp Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell ~ reproduire, préter, distribuer ou
* copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
: reproduction sur papier ou sur format
électronique. ‘

The author fetains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. ' : autorisation.

0-612-81423-8

- Canadi

University of Alberta

Library Release Form

Name of Author: Serhiy Kosinov

Title of Thesis: Eigenspace Projection Clustering Method for Inexact Matching of Graphs
and Generic Relational Structures

Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

»

7 P
Serhiy Kosinov
8913, 112th St., apt. 3A(D)
Edmonton, AB

Canada, T6G 2C5

Date: %ﬁ?é /igz J!Z[;Z;Z

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Eigenspace Projection Cluster-
ing Method for Inexact Matching of Graphs and Generic Relational Structures
submitted by Serhiy Kosinov in partial fulfillment of the requirements for the degree of
Master of Science.

Date:

Dr. Terry Caelli
Supervisor

P

Dr. Piq;ngugi?ulanger

s e,
,‘;ﬁ/ M’\

Dr. Donald Heth

External Examiner

iggaéfﬁ’l

Abstract

In this thesis we show how the inexact graph matching problem can be solved using methods
based on the projections of vertices (and their connections) into the eigenspaces of graphs
- and associated clustering methods. Our analysis points to deficiencies of recent eigen-
spectra methods though demonstrates just how powerful full eigenspace methods can be for
providing filters for such computationally intense problems.

The proposed eigenspace projection clustering (EPC) method for graph matching relies
on the adjacency matrix representation of graphs and deploys computationally efficient
mathematical procedure of eigendecomposition, which allows it to be practically useful for
large scale problems. An important feature of the EPC method is its ability to match
graphs with substantially different number of vertices, which obtains as a result of using
renormalization techniques. Also, a new correspondence clustering algorithm designed to
be an integral part of the matching procedure enables the EPC method to discover a richer
set of correspondence relationships, such as associations among structurally similar groups
of vertices and subgraphs, in addition to the one-to-one type of vertex correspondence.

The formulation of the EPC method is remarkably general, which allows it to be adapted
for a variety of practical applications that involve matching graphs and generic relational
structures. In the presented thesis, this property of the method is demonstrated by applying
it to two different problem settings that originate from the domains of text (information
retrieval) and image (shape matching) processing. Encouraging results achieved in both of
the applications confirm the properties of the EPC method of being general, easily adaptible

and practically useful.

To my parents

Acknowledgements

I would like to gratefully acknowledge the enthusiastic supervision of Dr. Terry Caelli during
this work. I also thank Dr. Dekang Lin for the valuable help and technical advice regarding
the use of his software (Minipar) for natural language text parsing, as well as acknowledge
my appreciation of the technical assistance, comments and suggestions received from all of
the members of AMMI laboratory.

Also, I am grateful to Dr. Sven Dickinson and his colleague Diego Macrini for providing
the shock graph shape database for testing purposes and helping me with the needed image
processing software. In addition to that, I want to thank the Department of Computer
Science for their support for me over the period of my studies.

Of course, this list would be utterly incomplete without me expressing my sincere grat-
itude to my parents who have been providing me with vitally important emotional support
during my studies thousands miles away from home.

Contents

1 Introduction 1
1.1 Graph-based methods for exact and inexact matching of relational structures 1
1.1.1 Exactmethods 2
1.1.2 Imexact methods 3
1.2 Feature- and clustering-based correspondence recovery approaches 6
1.3 The proposed method: integrating eigendecomposition, projection and clus-
tering techniques into a single algorithm 8
2 EPC: Eigenspace projection clustering 10
2.1 Eigenspectra and eigenvectors of graphs 0oL 10
2.2 Projections and Normalizations 12
2.3 Clustering of projections L e 16
3 Application one: matching of 2D shapes represented by shock graphs 23
3.1 Shock graph representation L oL 23
3.2 Experimentalresults 24
4 Application two: information retrieval with natural language processing
enhancements 30
4.1 General information retrieval problem setting 30
4.2 Enhancing information retrieval with syntactic relevance data 33
43 Experimentalresults 39
5 Conclusions and future work 43
Bibliography 46

A Aggregate relational lattice construction example 49

List of Figures

2.1
2.2
2.3

24

3.1

3.2
3.3

34

3.5

4.1

4.2

4.3

4.4
4.5

4.6

4.7

Examples of non-isomorphic graphs with identical eigenspectra
Example 1: graphs and their projections
Clustering of graph eigenspace projections located in separate hyperplanes.
The shown distances A and B provide an example of intra-graph and inter-
graph distances, respectively. L Lo oL
Example 2: Clustering of vertex projections of sample graphs Z and T.

Four schematic shape regions and their corresponding shock types (adapted
from [34])
A sample shape of a mallet and its shock graph representation
Shape similarity summary table as computed according to Equation 2.6a (a
box drawn around a similarity value corresponding to best matching pair)
An example of comparison of shapes within the same category (the calculated
similarity values are shown above each shape instance)
Two sample shapes BOXER-10 and BOXER-24, and their shock graph rep-
resentations L L L L L e

Graph representation of syntactic relations among the words in sample queries
grand ga e e e e e
Eigenspace projections of the parse trees of queries ¢; and g9 (the following
lines are drawn in order to visualize the distances between projections of the
matching index terms: a solid line for keyword dynamic, a dashed line for
keyword operating, and a dotted line for keyword system)
Distances between the eigenspace projections of matching keywords from the
two sample queries ¢y and g2 oL oL L
Parse trees of sample sentences from document 27 and query 13
Eigenspace projection of syntactic structure of query 13 and a sample sentence
from document 27 {(ADI collection)
Eigenspace projection of syntactic structure of query 13 and aggregated syn-
tactic relational lattice of document 27 from ADI collection {query keywords
are depicted as red diamonds, while document terms are shown as blue cir-
cles; connecting lines are drawn in order to visualize the distances between
projections of the matching index terms: ecriteria, evaluation, retrieval)
Performance of baseline (B.) and modified (M.) retrieval systems for the sub-
set of short queries from ADI and CISI text collections

List of Tables

1.1

2.1

3.1

4.1
4.2

4.3

4.4
4.5

Summary of important properties of various methods graph matching

Cluster decomposition obtained from correspondence clustering of the two
graphs Zand T L e

Cluster decomposition obtained from correspondence clustering of the two
shock graphs for shapes BOXER-10 and BOXER-24. Each cluster enumerates
the vertices from the two graphs that are grouped together and lists the part
of the body that the vertex approximately comes from, in brackets.

A mini-set of documents consisting of several book titles
Vector representation of documents from the book title dataset (each docu-
ment is a column vector) L
Similarity measures and the resulting ranking for a sample query and docu-
ments from the book title dataset oL
Parameters of the two text collections used in experiments
Performance of baseline (B.) and modified (M.) retrieval systems for the sub-
set of short queries from ADI and CISI text collections

Chapter 1

Introduction

There exist numerous practical application areas in which matching of complex relational
structures, i.e. the entities that consist of a number of inter-related components joined
together in a certain way, plays a key role. For instance, in chemistry, one such area is
an analysis of chemical structures{27], in machine learning, it is a study of common sub-
structures of different concepts[2], in computer vision and pattern recognition, matching
and analysis of relational structures are the core problems in such tasks as character recog-
nition, object identification, shape analysis[43, 15]. In all of these and many other areas
various methods have been developed for solving such problems. In this thesis we present
a method for matching graphs and generic relational structures, together with some of its
applications, that combines the advantages of eigendecomposition, clustering and projec-
tion techniques in an attempt to overcome several important shortcomings of the previously

developed solutions to be discussed in the following sections.

1.1 Graph-based methods for exact and inexact match-
ing of relational structures

In the majority of the above mentioned application areas the problem of complex relational
structure matching is approached with the aid of well-established graph theory formalisms,
which provide an abstract and very powerful representational framework.

Two concepts from graph theory that are of fundamental importance from the point of
view of the analysis and matching of relational structures are those of graph isomorphisms
and subgraph isomorphisms. When matching two graphs G; and G2 by means of graph

isomorphism one looks for a bijective mapping between vertices of G; and G5 such that the

structure of the edges is preserved by the sought mapping. When one of the graphs involved
in matching is larger than the other, e.g. graph G5 contains more vertices than G, then
the matching is performed by a subgraph isomorphism, which involves finding a subgraph S
of graph G2 such that graphs Gy and S are isomorphic.

Practically, an implementaion of a general exact graph matching algorithm based on
the notion of subgraph isomorphism leads to solving an NP-complete problem[12]. Conse-
quently, most research efforts in this area have been directed at improving performance of

the matching algorithms, both in terms of memory requirements and algorithms.

1.1.1 Exact methods

One of the earlier advances in the field of exact graph matching is due to Ullman’s procedure
[37] for graph and subgraph isomorphisms. The procedure is based on a standard combina-
torial search algorithm, such as one documented in [6], that operates as follows. For a pair
of graphs G; and G, the vertices of G; are mapped one by one onto the vertices of Ga.
At the same time, the algorithm has to check the obtained mapping at every iteration in
order to ensure that the edge structure is preserved by the mapping process, and backtrack
when necessary. The enhancement introduced by Ullman combines backtracking together
with a forward-checking procedure that allows to reduce the number of backtracking steps,
and thus the whole search space, significantly.

Among the more recent additions are, notably, the Nauty and VF[5] algorithms that
speed up the search process even more. The former algorithm, designed by McKay[21], is
based on trasformations that reduce the graphs being matched to a canonical form on which
the testing for the isomorphism is substantially faster, while the latter algorithm adopts a
depth-first strategy and uses a set of isomorphism-specific rules to prune the search tree.
There have also been developed methods that use decision trees[23], association graphs and
maximal cligue finding techniques|[26] for solving graph and subgraph isomorphism problems.
However, even with a significant improvement in performance, isomorphism-based methods
for exact graph matching may not be used in many practical tasks because of that very
property of being exact.

In most real-world applications we deal with somewhat noisy data, which typically in-

troduces distortions into graphical representations, and hence the need to have matching

methods that can handle such distortions gracefully. For this purpose, there exists a sub-
stantial body of research that aims to overcome the problem of noise, distortion and error in
graphical representation of relational structures by incorporating and relying on explicitly
modeled errors that are encountered during the process of matching. These approaches are
generally categorized as inezact matching techniques that provide a means of performing

error-tolerant, or error-correcting, graph matching.
1.1.2 Inexact methods

In the domain of inexact graph matching there also exist several groups of methods that
differ from each other in the way that errors are modeled and the problem of matching itself
is posed. A rather large family of methods capable of inexact graph matching is represented
by a set of approximate, or, continuous optimization algorithms. One of the essential ad-
vantages of the approximate algorithms is that they, in contrast to the optimal algorithms
discussed above, no longer require exponential time to solve the matching problem, but can
cope with the task in polynomial time. However, this property is not without cost: the
approximate algorithms may converge to local optima and thus are not always guaranteed
to find the correct solution[22].

Continuous optimization methods. Nevertheless, there have been a number of con-
tributions that demonstrate the value of the continuous optimization techniques with respect
to the problem of inexact graph and subgraph matching. In [7], the authors utilize Genetic
Algorithms (GA) to optimize the vertex to vertex mappings encoded as sequences of chro-
mosomes using the standard means provided by the GA framework, such as recombination
(or, crossover), mutation, and fitness function estimation (or, selection). Myers and Hancock
[25] make a step further and develop the actual GA operators of recombination, mutation
and selection that work on graphs themselves rather than on the encoded vertex mappings.
Feng et al.[11] propose to solve the inexact graph matching problem using Neural Networks
by representing each vertex to vertex mapping by a neuron in a Hopfield network whose
output is subsequently optimized. Kittler et al.[14] describe a method for inexact graph
matching based on probabilistic relaxation, in which the individual probabilities of each
vertex to vertex mapping are corrected until the probability for the whole set of vertex to

vertex mappings is maximized. Another approach that also situates the problem of inexact

graph matching in the probabilistic framework is due to Luo and Hancock [17}. The authors
adopt an explicit model of the correspondence errors encountered during graph maiching
with the aid of the Bernoulli probability distribution, and hence are able to devise a graph
matching likelihood function that allows one to estimate the conditional likelihood of one
graph given the other and determine the best possible vertex to vertex mapping by using
Expectation Maximization (EM) and Singular Value Decomposition (SVD) techniques.

Pattern recognition methods. Another important direction of research into inexact
graph matching emerged from the field of structural pattern recognition and is mainly
focused on developing a well-defined measure of structural similarity. In this area, Eshera
and Fu[9], Sanfeliu and Fu[28], as well as Bunke[3] have studied the matching problem using
graph edit distance, a concept that provides a measure of dissimilarity of two given entities
and has its origins in the domain of strings. The general idea of such an approach is to
compare a pair of graphs by finding a sequence of edit operations, such as edge/vertex
deletion, insertion or substitution, that transforms one graph into the other, whereas the
dissimilarity, or distance, of the two graphs is said to be the minimum possible cost of such
a transformation. Furthermore, Bunke[13] extends this work by developing other important
notions, such as the weighted mean and generalized median of a pair of graphs, which makes
it possible to apply clustering and self-organizing map techniques in the domain of graphs.
Similar to these contributions is the effort of Tirthapura et al.[36] in using the classical
Levenshtein distance for shock graph matching.

Spectral methods. There also exists a family of graph matching techniques, generally
known as spectral methods, that seek to represent and distinguish structural properties of
graphs using eigenvalues and eigenvectors of graph adjacency matrices. The most valuable
characteristics of such methods include being invariant to edge/vertex reordering, ability
to map a graph’s structural information into lower-dimensional spaces and stability under
minor perturbations. On top of that, the eigendecomposition technique itself is far less
computationally expensive as compared to the advanced combinatorial search procedures.
Among recent developments in this field is the Umeyama’s[38] formulation for same-size
graph matching. The method aims to obtain a matrix P that would minimize the structural
difference between two graphs G; and G defined as: J(P) = ||PAg, PT ~ Ag,||, where Ag,,

Ag, are the adjacency matrix representations of the two graphs being compared. The author

proves that the sought permutation matrix P can be derived from the eigendecomposition
of the graphs’ adjacency matrices, which can be used as an efficient and computatinally
robust technique for matching of graphs with the same number of vertices.

Dickinson et al.[32] considered indexing hierarchical structures, or directed acyclic graphs
(DAG), with topological signature vectors being obtained from the sums of adjacency matrix
eigenvalues. The method is especially suitable for image and shape matching applications
because of its valuable property of being able to deal with the problem of occlusion, which is

achieved by constructing the topological signature vectors incorporating eigenvalue metrics

derived from a broad range of subgraphs of a given DAG.

A brief summary of important properties of the above discussed methods is given in

Table 1.1

Table 1.1: Summary of important properties of various methods graph matching

Method / Procedure | Algorithm Model Optimal | Inexact
Ullman’s procedure | combinatorial search that combines | graphs yes no
backtracking and forward-checking
McKay’s “Nauty” Reduction of a graph to a canonical | graphs yes no
algorithm form to enhance search process
VF, VF-2 Use of isomorphism-specific rules graphs yes no
algorithms to prune search tree
Genetic algorithms, | Use of GA operators of mutation, sequences of no yes
Hancock et al. crossover and selection in search chromosomes
for isomorphic match
Neural networks, Optimization of output of a neural no yes
Feng et al. Hopfield neural net representing network
vertex to vertex mapping
Kittler’s method Probabilistic relaxation process probabilistic no yes
et al. applied to individual probabilities
of vertex to vertex mapping
Approaches of Fu, Use of structural similarity graphs yes yes
Eshera, Sanfeliu, measure based on the concept of
Bunke graph edit distance
Umeyama’'s method | Deriving an optimal permutation graph adjacency no yes
matrix via eigendecomposition matrices
Hierarchical Indexing graphs with topological graph and no yes
structure indexing signature vectors composed of sums | subgraph
method, of subgraph eigenvalues adjacency
Dickinson et al. matrices

1.2 Feature- and clustering-based correspondence re-
covery approaches

Although the previous list of approaches seems quite extensive and diverse, there also exists
a substantial body of research that neither explicitly adopts graph theoretical representation
and formalism nor poses the problem as the one of graph matching, but nevertheless can
be shown to be important in the analysis and matching of graphs and generic relational
structures. Indeed, one may consider the problem of graph matching as that of establishing
correspondence between structurally similar components, i.e. vertices, edges and subgraphs.
Hence, it may be beneficial to explore various other non-graph-based methods of correspon-
dence recovery with respect to their applicability to the problem of matching graphs.
Feature-based correspondence. One such method for solving correspondence recov-
ery problem was developed by Scott and Longuet-Higgins[30]. The authors’ approach aims
to find corresponding features between two related images with the aid of linear algebra
techniques®. First, a proximity matrix is formed such that each of its elements (i, j) repre-
sents a Gaussian-weighted distance between the i-th feature of one image and j-th feature
of the other image. Then, the obtained proximity matrix is transformed into a product of
three matrices using the singular value decomposition technique. Finally, the middle matrix
of singular values is modified, so that all of its diagonal elements are set to 1, and substi-
tuted back into the decomposition product rendering an “association matrix”. After that,
the corresponding features of two images can be determined using the following simple rule:
i-th feature in one image corresponds to j-th feature in the other image if the association
matrix element in position (¢,) is close to 1, and there is no correspondence otherwise.
The Scott and Longuet-Higgins’ approach created the foundation for further work on
feature-based correspondence using linear algebra techniques and, quite naturally, served as
a starting point for several important contributions in the area, such as the method proposed
by Shapiro and Brady[31]. Similarly to the approach taken by Scott and Longuet-Higgins’,
Shapiro and Brady focused on sets of features of two images used to create Gaussian-
weighted proximity matrices. In contrast to the Scott and Longuet-Higgins’ approach,

however, there are two matrices that the method needs to deal with, each of which records

Tassuming correspondence between the coordinate systems.

intra-image distances among the features of a given image?. Both proximity matrices are
then submitted to a linear algebra technique widely used in spectral methods for graph
matching, namely, - eigendecomposition. The components of the eigenvectors obtained via
the eigendecomposition procedure are subsequently combined to represent two sets of image
features with feature vectors that, in turn, are correlated to each other yielding the feature
association matrix. Having obtained the association matrix, the corresponding features of
two images can be determined using the following simple rule: i-th feature in one image
corresponds to j-th feature in the other image if the association matrix element in position
(3, 7) is close to 0, and there is no correspondence otherwise.

Taking into account the above discussion, one may notice that feature-based correspon-
dence recovery methods have a lot in common with the approaches directed at solving
graph matching problems. Indeed, all of the spectral graph matching methods adhere to
the same mathematical framework of matrix representation and deploy similar linear algebra
techniques, such as eigendecomposition. Also, there is a substantial resemblance between
certain graph matching methods and feature-based correspondence recovery techniques that
becomes obvious once the equivalence between graph vertices and image features, as well as
between graph edges and intra-image proximities, is considered. Therefore, it may be ben-
eficial to try to exploit the apparent computational advantages found in the feature-based
correspondence recovery methods for solving the graph matching problem.

Clustering-based correspondence. In addition to the above described methods for
feature-based correspondence, there are several other techniques that, on the one hand, are
even further away from the topic of graph matching, but, on the other, have a number of
important ideas that can be regarded quite relevant for the problem in question. Namely,
these are clustering-based methods for correspondence detection that originate from the
area of text processing[20, 19, 45]°. According to Marx et al.[19], the operation of a general
clustering-based correspondence recovery method may be described as follows. A method
takes two separate datasets as inputs, between subsets of which a correspondence relation
needs to be established. Then, as in the standard data clustering framework, each of the

two datasets is partitioned into disjoint subsets. Unlike the standard clustering case, each

2as opposed to inter-image distances, as it was specified in the Scott and Longuet-Higgins’ method.

3Unfortunately, there is no consistency in the literature as for how these methods should be called.
Various sources refer to the same idea as “bipartite clustering”, “coupled clustering” or “correspondence
clustering”

subset is coupled with a corresponding subset of the other dataset. Each such pair of
coupled subsets can be viewed as a unified coupled cluster, containing elements from the
two datasets. Subsequently, within any given cluster, the elements from one dataset are
said to correspond to those from the other dataset.

From the point of view of the graph matching problem, an apparent advantage of using
clustering-based correspondence recovery methods is the richness of correspondence relations
that can be found and the notion of proximity for inexactness. That is, if a prototype method
for detecting correspondence via clustering, such as the one outlined above, is applied to a
pair of datasets whose elements represent vertices of two graphs, then the resulting clusters
may help determine the correspondence relationships not only between individual vertices,
but also betwen larger vertex groups and, potentially, whole subgraphs. This property could
be useful when matching graphs of considerably different sizes, in which case no reasonable
one-to-one vertex matching may exist. Hence, it may prove advantageous to borrow some
valuable properties inherent to clustering-based correspondence approaches when solving

graph matching problems.

1.3 The proposed method: integrating eigendecompo-
sition, projection and clustering techniques into a
single algorithm

The above sections have presented some of the previously developed methods for graph
matching, and covered a number of approaches indirectly related to the problem of inexact
subgraph matching. In the following discussion, we will propose a new method designed
for the matching of graphs and generic relational structures that strives to combine the
advantages and relevant ideas mentioned earlier, while at the same time trying to avoid the
shortcomings of the above described solutions. Namely, our method aims to achieve the

following goals of being able to:

1. perform inexact graph matching necessary for dealing with approximations, distortions

and errors in relational data,

2. take advantage of computationally efficient linear algebra techniques, such as eigende-
composition, in order to make the process of matching both robust and computation-

ally tractable for large scale problems,

3. allow for a richer spectrum of correspondence relations to be discovered, which is

necessary for matching graphs with substantially different number of vertices,

4. maintain a sufficient level of flexibility and generality in order for the method to
be easily applied in various tasks that incorporate matching of graphs and generic

relational structures.

Details follow.

Chapter 2

EPC: Eigenspace projection
clustering

2.1 Eigenspectra and eigenvectors of graphs

As mentioned above, the basic technique deployed in the majority of spectral methods and
feature-based correspondence recovery approaches is eigendecomposition. In general, for

undirected graphs, it is expressed as follows:
A=VDVT (2.1)

where A is the square symmetric adjacency matrix of a graph, whose entry a;; at the place
(1,j) is equal to one if there exists an edge that connects vertex ¢ with vertex j, and zero
otherwise; V is an orthogonal matrix whose columns are normalized eigenvectors of A, and
D is a diagonal matrix containing the eigenvalues A; of matrix A. The set of the eigenvalues
found on the diagonal of matrix D is called the spectrum of A, and hence the common name
for the family of methods.

One of the most well-known properties of eigendecomposition, and the one that has
attracted researchers’ attention for the purpose of solving inexact graph matching task in
the first place, is that an eigenvalue spectrum of a matrix is invariant with respect to
similarity transformations, i.e. for any non-singular matrix P, the product matrix PAP™?!
has the same eigenvalues as A. From the view point of the graph matching problem, this
means that the derived spectrum of a graph represented by its adjacency matrix is not
affected by any arbitrary vertex reorderings, whose influence, or rather lack thereof, is in
essence captured by the above vertex permutation matrix P. In addition to that, it was

proven in [32] that small changes in the structure of a graph, and hence its adjacency

10

matrix, induce respectively small changes in the magnitudes of the calculated eigenvalues.
These two valuable properties of eigenspectrum of| firstly, being invariant with respect to
similarity transformations and, secondly, not being overly sensitive to small perturbations
in the adjacency matrix data made it look as a very promising candidate for a simple and
intuitive solution of inexact graph matching problem.

Still, regardless of however elegant the possible graph matching problem solutions seemed
at first in terms of graph eigenspectra, it was proven early on that the spectra of graphs
are not unique. An obvious example that dates back to as far as 1957 was discovered by

Collatz and Sinogowitz[4], and is shown in Figure 2.1 (the first pair of graphs, 8 vertices).

8 vertices
9 vertices
10 vertices

R SERTLIE S

Figure 2.1: Examples of non-isomorphic graphs with identical eigenspectra

The above figure depicts three pairs of non-isomorphic graphs on 8, 9 and 10 vertices,
that are nevertheless co-spectral, i.e. the sets of eigenvalues of adjacency matrices of graphs
from each pair are identical, and therefore the two graphs cannot be distinguished by relying
exclusively on their spectra. Furthermore, Schwenk[29] demonstrated that as the number of
vertices gets large, the probability of occurrence of a non-isomorphic co-spectral subgraph
pair in any two graphs being compared asymptotically approaches unity. This means that
pure spectral methods based solely on eigenvalues are generally not rich enough to fully

represent graph structure variability.

11

Naturally, the above arguments do not add support for spectral methods. However,
it is not so difficult to see that this lack of uniqueness can be easily overcome by using
graph spectra together with the set of associated eigenvectors, or even by relying on the
eigenvectors alone! (see Equation 2.1). Another drawback usually attributed to the spectral
methods is that they are not extendible to matching graphs of different sizes. For example,
the earlier mentioned method developed by Umeyama[38] applies only for graphs of the
same size. Nevertheless, these shortcomings can be eliminated by applying projection and

normalization operations - the topic of the following section.

2.2 Projections and Normalizations

We have seen from the above discussion that the attractive property of eigenspectra of
providing a compact representation of graphs’ structural information does not come at no
cost. There is an accompanying lack of uniqueness that renders a pure eigenspectrum
technique unusable for graph matching. But maybe there exist some other methods for
deriving a compact, lower-dimensional representation of the relational data expressed by a
graph adjacency matrix? For this purpose we might need to have a closer look at the tools
available in the field of principal component analysis.

Subspace projection methods, in the principal component analysis (PCA) literature, are
conventionally used to reduce the dimensionality of data, while minimizing the information
loss due to the decreased number of dimensions. It is performed in the following way. The
dataset covariance matrix X is first decomposed into the familiar eigenvalue and eigenvector
matrix product (see Equation 2.1):

¥ =UAUT (2.2)

where U is a matrix of eigenvectors (“principal components” of the data), and A is a diagonal
matrix of eigenvalues. The original data is then projected onto a smaller number of the most
important (i.e., associated with the largest eigenvalues) principal components as specified

in the below equation (and thus, the data’s dimensionality is reduced):

i=Ulz (2.3)

1For instance, recall the previously discussed method for feature-based correspondence recovery developed
by Shapiro and Brady{31], where, instead of relying on eigenspectra, the authors use eigenvector components
to represent image data by feature vectors.

12

Here, & is the computed projection, U ,? is the matrix of k principal components in a trans-
posed form, and z is an item from the original data.

Taking the very same approach, we can project vertex connectivity data from a graph
adjacency matrix onto a smaller set of its most important eigenvectors. The projection
coordinates obtained in this way would then represent the relational properties of individual
vertices relative to the others in the lower-dimensional eigenspace of a given graph. In this
eigenvector subspace, structurally similar vertices or vertex groups would be located close
to each other, which can be utilized for approximate comparison and matching of graphs.

However, in order to be able to use the above projection method for graph matching, it
is necessary to resolve the following issues: first, how many dimensions to choose for vertex
eigenspace projections? Second, how to ensure the comparability of the derived projections
for graphs with a different number of vertices?

The first question is answered by the relative sizes of the eigenvalues associated with
each dimension or eigenvector with non-zero eigenvalue signalling the redundancy of the
associated subspaces. That is, for a given pair of graphs one should choose the k& most
important eigenvectors as the projection components, where k is the smaller value of the
ranks of adjacency matrices of the two graphs being compared? , as expressed in Equation
24.

k = min(rank(Agrapn,), Tank(AGraphs) (2.4)

This value, however, may be safely decreased, or, more precisely, divided by two, due to the
fact that for undirected graphs the adjacency matrices are always symmetric, and so are the
opposite components of the derived eigendecomposition. In addition to that, as confirmed
by the later practical experiments, one can find an even more precise estimate of a proper
value of k by using Bartlett’s test for dimensionality[46].

As for the second question, the empirical evidence suggests that an extra step of renor-
malization of the projections may suflice. Here, the idea is that for the purpose of comparing
two arbitrary graphs we need not consider the values of the projections as such, but instead
should look at how they are positioned and oriented relative to each other in their eigen-

vector subspace. That is, if projections are themselves viewed as vectors, we disregard their

2However, in order to make the two following examples more illustrative, without a loss of generality in
the further discussion we will use only 2-dimensional projections, which can be easily depicted in the 2D
plane.

13

Graph X (’D
: GraphY A
o M. AT
(56,7 141720
0.6 L ; AQ e
0.4 oot :
S u
7 N :
Cas :
S I
0 SR M S—
2 1
17 ¢ ; . ‘. ; ;
Graph Y 0.4 0.2 0 0.2 0.4 06 0.8
(a) Graphs X, Y. (b) Projections of graphs X and Y into 2D eigenvector subspace.

Figure 2.2: Example 1: graphs and their projections

magnitudes, while only paying attention to their direction and orientation. And this is
exactly what projection coordinate renormalization helps us to do: in the end all of the
projections are unit-length vectors that can only be distinguished by their orienation, and
not by their length. In addition to that, we also carry out a dominant sign correction of
the projection coordinates of either of the two graphs being matched so as to align one set
of graph vertex projections against the other. The scheme of operation of the sign cor-
rection rule is fairly simple. For each eigenvector, the number of its positive and negative
components is counted. The eigenvector is then multiplied by —1 if the number of nega-
tive components is greater than the number of positive components, or left as is otherwise.
This caters for the non-uniqueness of signs of eigenvector components and, according to a
geometric interpretation, corresponds to setting the direction of the axes in such a way to
result in the most compatible alignment between the vertex data using the dominant sign
test.

Consider an example with two graphs X and Y depicted in Figure 2.2(a). Although
different in size, the two graphs are nevertheless quite similar to each other. In fact, one
may see graph Y as an enlarged version of graph X. The result of projecting the two
graphs into the normalized 2D eigenvector subspace shown in Figure 2.2(b) demonstrates

the following two important features of the proposed method: firstly, the projections of

14

vertices of both graphs follow a similar pattern, which means that it is possible to determine
overall structural similarity of graphs with different number of vertices, and secondly, one
may also see (by examining the juxtaposition of the projected vertices of both graphs) that
graph vertices with similar relational properties tend to get projected into the areas that are
close to each other. These properties are quite valuable, and, as such, have the potential to
prove useful in solving the graph matching problem. The latter conjecture is confirmed by
the experimental results which show that an overall graph similarity can be estimated by
comparing the vertex projection distributions with the aid of multi-dimensional extension
of Kolmogorov-Smirnov (K-S) statistical test[10}. However, the K-S test becomes a rather
computationally expensive procedure if applied to high-dimensional data. Also, it does not
help us much to resolve another important issue of the graph matching problem, namely,
the one of recovering structurally similar vertex correspondence in a pair of graphs being
compared. To this end, we use clustering methods as described in the following section.

However, before considering a detailed description of these clustering procedures, it could
be helpful to review the similarities and highlight important distinctions between the pro-
posed graph matching method and that of Shapiro and Brady[31], which, technically, is
the closest approach in terms of the underlying mathematical techniques used, in order to
have a more precise understanding of the main principles involved in the operation of the
proposed method. At this point, the striking resemblance between the Shapiro and Brady’s
feature-based correspondence approach and the proposed graph matching method can be
clearly seen. Indeed, the intra-image proximity matrices (Shapiro and Brady) may be re-
garded as next of kin for graph adjacency matrices (proposed method), if one observes the
similarity between intra~-image distances and edges in graphs connecting pairs of vertices.
Furthermore, there is a near-equivalence relationship between the mathematical representa-
tion of the feature vectors (Shapiro and Brady) and eigenspace vertex projections (proposed
method), as shown in Equations 2.5a and 2.5b (using the same notation as in Equation
2.3):

eigendecomposition: 1 =UDUT (2.5a)
projections : & = Uz =UJUDUT = D, UL. (2.5b)

So, as Equation 2.5b says, the projections, similarly to the feature vectors in the approach

of Shapiro and Brady, also consist of the components of the eigenvectors derived from the

15

adjacency matrix eigendecompositions.
Despite all of these common characteristics of the two approaches, there are several

distinguishing properties of the proposed method that need to be pointed out.

e First, in contrast to the approach of Shapiro and Brady, the eigenvector components in
the vertex projections are scaled by the corresponding eigenvalues (see Equation 2.5b),
which means that the more prominent structural qualities of a given graph encoded
in the more important “principal components” will be reflected by larger projection

magnitudes, and vice versa.

e Second, the proposed method uses an additional stage of projection normalization,
i.e. normalization after normalization, or, renormalization® , that essentially helps
overcome an important obstacle previously encountered in the majority of spectral
methods, namely, the inability of the technique to cope with the cases when the
number of graph vertices, image features, pixels, and so on, in the two relational

structures being matched was substantially different.

e Third, the proposed method uses a more computationally efficient dominant sign cor-
rection rule, that for N possible projection axes requires N orientation tests to be

carried out, instead of 2%V as it is done in conventional spectral methods.

e Fourth, the adopted PCA formalism of the proposed method allows a set of well-
established tools from the principal component analysis field, such as Bartlett’s test
for dimensionality[46], to be used for determining the best possible number of projec-
tion axes necessary for matching graphs that are dramatically different in size and/or

structure.

In addition to these, the proposed method deploys a new correspondence clustering
procedure for recovering vertex and subgraph associations, which is described in detail in

the following section.
2.3 Clustering of projections

The proposed eigenvector subspace method allows us to determine the overall similarity of

a pair of graphs by the positioning of the vertex projections of both graphs relative to each

3That is, although the individual eigenvectors are scaled, the projection vectors of these eigenvectors are
normalized.

16

other. The only remaining step for solving the graph matching problem is to find the corre-
spondence among the vertices that have similar relational properties. The main advantage
of using clustering to solve this problem is, as we have seen from an earlier discussion of the
clustering-based correspondence recovery methods in the introductory section, that it can
equally well discover correspondence relationships of various types. That is, a clustering-
based technique is no longer limited to finding the best one-to-one matches of vertices from
one graph to the other, but can also identify the whole sub-graphs and vertex groups that
possess similar structural properties. As such, this quality can be very important when the
two graphs being matched have substantially different number of vertices, in which case a
reasonable one-to-one vertex mapping may not exist.

In order to realize this, an appropriate clustering procedure has to be chosen considering
the following general adequacy requirements. As stated in [41}, the clustering method must
be stable under growth (i.e., a resulting cluster structure is unlikely to change drastically
when more objects are added), robust (i.e., small error in the description of objects lead to
small changes in the clustering decomposition) and independent of the initial ordering of the
objects to be clustered. According to [41], among the most popular clustering algorithms
that satisfy the above criteria, the agglomerative hierarchical clustering (AHC) methods
are suitable. On top of that, as we will demonstrate later in this section, a standard
implementation of an AHC algorithm is the one easily adapted for the task of correspondence
clustering that requires the procedure to be aware of two classes of objects being clustered.

Yet, before providing a detailed description of the clustering algorithm for graph match-
ing capable of correspondence recovery, let us briefly consider a typical implementation of
an AHC method in order to highlight several important stages of operation of the entire
family of the AHC techniques. A pseudocode sequence of one such algorithm is given in
Algorithm script 1.

As shown in the script, a standard AHC algorithm begins by placinig each of the data
objects into a separate cluster. Then, the procedure searches for a pair of clusters that are
most similar to each other, i.e. the distance between such objects is smallest, and groups
them into one cluster. At the same time, the distances between the remaining clusters and
the newly created one are updates according to the largest (for a complete linkage method),

smallest (for a single linkage method), or average (for average linkage method) distance to

17

Algorithm 1 A standard agglomerative hierarchical clustering (AHC) algorithm

N <= number of objects to be clustered
fori=1to N do
assign each object V; to a separate cluster C;
end for
repeat
[#,y] <= argminy; j;i; distance(C;, C;)
group clusters C; and Cy together
update distances
until stopping criteria are met

the objects within the newly created cluster. The routine repeats until certain stopping
criteria are met, such as, for instance, the desired number of clusters have been created, a
given intra-cluster distance threshold is reached, etc.

On one hand, the standard AHC algorithm seems quite appropriate for correspondence
clustering since it can operate directly on the vertex projections and distances between
them. On the other hand the conventional AHC procedure implementation is unable to
distinguish among projections of vertices that belong to different graphs, and thus cannot
be geared more towards forming clusters that group together vertex projections from both
graphs as opposed to clustering vertex projections belonging to the same graph. In order
to make the algorithm aware of the two classes of objects involved in the clustering we
introduce an extra dimension into the projection data. Depending on which graph the
vertex projection belongs to, this extra dimension is assigned either 0 or a certain constant
value H, which in effect positions vertex projections into two separate hyperplanes (see
the illustration provided in Figure 2.3). With this arrangement in place, the choice of a

Graph 1 projection hyperplane

D
A =
T\m

B
Graph 2 projection hyperplane

Figure 2.3: Clustering of graph eigenspace projections located in separate hyperplanes. The
shown distances A and B provide an example of intra-graph and inter-graph distances,
respectively.

18

sufficiently large value of H ensures that all of the inter-graph vertex projection distances
(i.e., the distances between vertex projections from different graphs) are much closer to H
than any of the intra-graph vertex projection distances (i.e., the distances between vertex
projections from the same graph). Numerically, when all of the vertex projections are placed
in their appropriate hyperplanes, a small distance (close to zero) between two projections
will indicate structural similarity of a pair of vertices that come from the same graph,
while a distance that is only slightly different from H will signal structural similarity of
a pair of vertices that belong to different graphs. Of course, one should be extremely
careful when choosing the magnitude of the hyperplane separation constant, H. This value
should always be larger than the maximum vertex projection distance for both graphs. This
requirement, however, is effortlessly met in the proposed method, since the use of projection
normalization procedures ensures that all of the projection coordinates lie within [—1,1]
range, and, therefore, the maximum intra-graph vertex projection distance cannot be larger
than 2. This leads to a conjecture that any value of H >> 2 can be considered valid*.
Taking into account the above discussion, we may modify the standard AHC algorithm

so as to make it suitable for graph matching as shown in Algorithm script 2. In this case, the

Algorithm 2 A modified AHC algorithm for correspondence recovery in graph matching
N < total number of vertices to be clustered
fori =1to N do

place vertex V; into an appropriate hyperplane
assign vertex V; to a separate cluster C;
end for
repeat
Dinter < miny; jii£4 |distance(Ci, C]) - H|
Dintra <= 8- MiTly; jii-£4 distance(C;, CJ)
if Dinter < Dintra then
[z,y] < argminy; jx; [distance(C;, C;) — H|
else
[z,y] <= argminy; j;i; distance(Cy, Cj)
end if
group clusters C; and O, together
update distances
until stopping criteria are met

clustering procedure begins by assigning each vertex to a separate cluster, much in the same

way is it was done in the algorithm’s original version. In addition to that, however, now

4The practical implementation of the algorithm, however, relies on squares of distances, rather than the
distances themselves, in order to avoid the “round-off”-like effect of the square root operation, which in
essence is just a numerical caveat that conceptually makes no difference with respect to the decribed above
hyperplane separation approach.

19

the routine adds an extra dimension to the graph vertex projection data, so that the two
sets of vertices are placed into two separate hyperplanes. Then, instead of searching only
for two objects, or vertices, that are most similar to each other, the procedure now looks
for two pairs of objects that represent the best match among the vertices belonging to the
same graph (the first pair) and among the vertices from different graphs (the second pair).
It should be noted that now the clustering procedure is able to differentiate between inter-
graph and intra-graph vertex projection distances judging by their magnitudes: the smallest
in the absolute value distance would correspond to the best matching between vertices from
the same graph, while the distance that differs least from the value of hyperplane separation
constant H would be the best match between vertices that come from different graphs (see
the symbolic calculations of Djpger and Djpgpe in Algorithm script 2).

At this point, any appropriate logic can be applied to make the clustering algorithm
treat selectively best inter-graph and intra-graph candidates for clustering. Currently, the
developed algorithm dynamically switches clustering regimes (i.e., intra-graph vs. inter-
graph vertex clustering) according to the type of the best match at hand, and proceeds as
specified in its standard version. One can also notice from the listing provided in Algorithm
script 2 that in the present implementation the intra-graph distance values are conditioned
by a certain preference factor 8. This parameter 3, if set to a value greater than 1, makes
the algorithm more inclined, or biased, towards clustering the vertices belonging to different
graphs, and thus, induces the procedure to grow clusters around the best inter-graph vertex
correspondences. For any particular application, an appropriate value 8 may be estimated
by training.

Finally, there is a necessary modification in the stopping criteria for the presented corre-
spondence clustering algorithm, since neither the desired number of clusters nor any reason-
able distance threshold are known for certain in advance. According to its present imple-
mentation, the algorithm stops as soon as all of the vertex projections have been associated
with a certain cluster and there are no more (if at all) “orphan clusters”® left.

In order to illustrate the above described correspondence clustering procedure, let us

consider the example depicted in Figure 2.4. As shown, Figure 2.4 demonstrates the result

5There are situations when several distant clusters are found to contain vertices that belong to one graph
only. Thus, for vertices in such clusters, there are no corresponding vertices from the other graph, which
is why the clustering procedure needs to keep running in order to find other suitable clusters to attach the
“orphans” to.

20

081

07

06 r

05

0.4

P s svsvew: 1y

03

a) Graphs Z, T. ustered projections of graphs 7 an the formed clusters o
Graphs Z, T b) Cl d jecti £ hs Z and T (the f d cl f
vertex correspondence are circled).

Figure 2.4: Example 2: Clustering of vertex projections of sample graphs Z and T.

of vertex projection clustering (Figure 2.4(b)) of two sample graphs Z and T with 18 and
6 vertices respectively, that recovers a natural correspondence among the groups of vertices
in these two graphs (Figure 2.4(a)). The linkages that were established between vertices
during the clustering phase are shown as straight lines connecting the projected graph
vertices and/or midpoints of other lines representing correspondence clusters (see Figure
2.4). The resulting cluster decomposition obtained from correspondence clustering of the

two graphs Z and T is summarized in Table 2.1.

Cluster | Clustered vertices from | Clustered vertices from
number graph T graph Z

1 1 1,2, 3,17, 18

2 2 4, 16

3 3 5,15

4 4 6, 14

5 5 7,13

6 6 8,9, 10,11, 12

Table 2.1: Cluster decomposition obtained from correspondence clustering of the two graphs
Zand T

Once the correspondence clustering decomposition has been obtained, the only remaining
task is to provide a numeric estimate, or a measure, of how similar the two graphs being
compared are to each other. For this pupose, a similarity metric based on the quality of

the performed correspondence clustering should be a well-grounded choice, since one may

21

generally judge how similar one graph is to another by looking at how well their projected
vertices cluster together. In addition to that, the sought similarity estimate should favour
greater number of balanced correspondence clusters, in order to have the property of reaching
a maximum when matching the same graphs. Taking these issues into consideration, the

proposed method uses a graph similarity measure defined as follows:

SimGreph = 01 - SImpp + 2 - SiMge (2.6a)
M
. 1 o; +0j

_ . - L N 6b
Simpg i 2 j:1r.l}1(a/1};(j¢i(d”)’ where d;j i) (2.6b)

. S (1 —py) V& — v

S — = h ;= 2 (2 26

MmSET rank(Ag,) + rank(Ag,)’ where P VO LV (2.6c)

As Equation 2.6a shows, the proposed similarity metric attempts to strike an appro-
priate balance by being essentially a combination of qualitative (Simppg) and quantitative
(SimgpT) correspondence clustering assessment measurements. The weighted sum format
of the formula allows for a larger degree of flexibility, since its actual parameters (@; and
o), may be adjusted in accordance with the requirements of a particular application using
training techniques.

The first component in the proposed graph similarity formula is the well-known Davies-
Bouldin (DB) cluster validity index, calculated as specified in Equation 2.6b. Here, M
is the number of vertex correspondence clusters, o; is the average distance of all vertex
projections in cluster ¢ to their cluster center ¢; and d(c;, ¢;) is the distance between cluster
centers ¢; and ¢;. The index values range within the interval of [0, oc] with smaller values
corresponding to a good clustering, which necessitates the value of a; to be negative.

The second component is an estimate (Equation 2.6¢) derived from the idea of the set
similarity formula (the “intersection-over-union” metric), that encourages greater number of
the discovered correspondence clusters, while at the same time introduces a penalty factor
p; dependent on the degree of how unbalanced cluster 7 is. In the presented formula, M
is the number of vertex correspondence clusters, V,°* and V,% are the number of vertices
from graph one and graph two, respectively, found in i-th correspondence cluster, and Ag,,

Ag, - the adjacency matrix representations of the two graphs to be matched.

22

Chapter 3

Application one: matching of
2D shapes represented by shock
graphs

3.1 Shock graph representation

The first application to be considered is the task of matching two-dimensional shapes rep-
resented by shock graphs. The technique used for deriving shock graph representations
originates from the singularity theory and is based on the idea of applying a curve evolution
process to a given shape which leads to formation of a number of entropy-satisfying singu-
larities, or shocks (for more details, please see [34, 8, 33]). The locus of the obtained shock
positions gives the so called Blum’s medial axis that represents a rough skeletal structure of
the shape in question and has the property of preserving the extent and connectivity of its
various regions. Then, the behavior of a radius function alongside the extracted medial axis
is examined in order to classify shocks into four different categories. A shock is said to be
of type 1 whenever the radius function varies monotonically (this corresponds to protruded
regions of the original shape), type 2 if the radius function achieves a strict local minimum
(shocks of this type occur in neck-shaped regions), type 3 when the radius function is con-
stant along an interval (for bend-like regions with parallel sides), and type 4 if the radius
function achieves a strict local maximum (for regions in the original shape that evolve into
isolated spots). Figure 3.1 gives an illustration of shocks of these four distinct categories.
Finally, the above 4-type classification combined with the temporal relational informa-
tion derived from shock formation time data provides a complete framework for representing

shapes as attributed DAG’s. It’s important to note that, as it has been shown in [34], any

23

Second-Order

) 3

Third=Order , Fpurth—Order

7

Figure 3.1: Four schematic shape regions and their corresponding shock types (adapted
from [34])

given two-dimensional shape has a unique shock graph corresponding to it, which is a valu-
able property of the representation for solving shape matching problem via graph matching.
An example of a two-dimensional shape and its shock tree representation is depicted in

Figure 3.2.

3.2 Experimental results

In order to evaluate the performance of the proposed method for the task of shape matching,
a medium-sized database of shock graphs derived with the above described technique from
a set of images was used. Every shape in the database served as a query and was compared
against all of the other images. For each such comparison, a similarity value was calculated as
specified in section 2.3. The results of these experiments have shown that for the majority of
shape prototypes the appropriate instances are retrieved within 5 top matches or better. The
summary of the similarity calculations among the first 23 two-dimensional shapes belonging
to various classes is provided in Figure 3.3!. The table that the figure shows has its topmost
row representing prototype images of various shape categories, and the leftmost column
depicting a number of shape instances belonging to some of the shown categories from
the topmost row. A number found at the intersection of a given category column and a
shape instance row is the measure of similarity between the corresponding shape instance
and category prototype. As it can be seen from the data provided in Figure 3.3, the

proposed method performs accurately by recovering the correct correspondence between

!The similarity values in this table are not normalized to a [0,1] interval. Also, most of the values marked
as 0.00 are different from zero, but not large enough to be represented within the first two decimal digits of
precision.

24

MALLET-0053

(a) A sample shape (b) Shock graph representation of a shape
(first two vertex numbers correspond to la-
bels in Figure 3.2(a))

Figure 3.2: A sample shape of a mallet and its shock graph representation

shape instances and prototypes of different categories.

In other experiments, in which the shapes belonging to the same category were compared
against a category prototype image, the method has also shown reasonable results. An
example of one such experiment is given in Figure 3.4, which depicts a prototype image of
a boxer dog category on the left and lists the shape instances of this category in the order
of the calculated similarity on the right.

Among the important features of the proposed shape matching method are its abilities
to discriminate well among objects from different categories, provide a partial ordering of
similar shapes, and deal with a certain degree of occlusion, distortion and noise. These prop-
erties, however, have already been attained in some of the previously developed solutions for
the shape matching problem. For instance, the procedure documented by Dickinson et al.
[32] uses topological signature vectors, derived from the eigendecompositions of subtrees un-
derlying any given vertex in a shock graph, together with an enhanced version of depth-first
search achieving comparable results. Also, Pelillo et al. [26] have developed a technigue for

shape matching via a method based on finding a maximum clique in an association graph

25

structure. The authors’ method takes into account specific properties of the shock graphs,
and thus is especially suitable for the application of shape matching. With respect to per-
formance, both of the above methods and the one proposed in this paper are similar in the
sense that they all demostrate encouraging results? of high accuracy when applied to the
task of matching shapes represented by shock graphs.

There is, however, an important distinction between the proposed method and what has
been done before. Namely, it is the valuable property of the proposed method of being able
to establish structural correspondence among groups of vertices and subgraphs, in addition
to the one-to-one vertex correspondence, with the aid of clustering. That is, not only does
the proposed method provide a numeric estimate of how similar two graphs are to each
other, but it also allows one to determine which vertices, subgraphs, and vertex groups of
one graph correspond to those of the other graph via the obtained cluster decomposition.
It is important to note that deriving this structural correspondence information does not
involve any additional computations. Indeed, as it was shown in section 2.3, clustering is
performed as a required step of graph similarity estimation, and therefore all of the structural
correspondence data obtained from the derived cluster configuration may be considered a
useful by-product of the procedure.

In order to illustrate this property of recovering correspondence through clustering, let
us consider two sample shapes together with their respective shock graph representations
depicted in Figure 3.5. The two shapes shown in Figures 3.5(a) and 3.5(b) belong to a com-
mon prototype of a boxer breed dog, and visually are quite similar to each other. Moreover,
one may conjecture that the first image is a copy of the second one which has undergone a
number of transformations, such as rotation, change in scale, occlusion (e.g., front leg, tail).
These transformations, in turn, are reflected in the shock graph representations of both
shapes (e.g., a more stretched “torso” subgraph in boxer-10 graph, a different attachment
positions of “back” and “hind legs” subgraphs in boxer-24 shock graph, distortions in “head”
subgraphs, etc.), which makes the two candidate shock graphs non-isomorphic and only ap-
proximately similar to each other. Nevertheless, the proposed method is able to identify and
group into clusters vertices and subgraphs according to their structural similarity, while the

obtained cluster decomposition, for the chosen example, is both intuitively understood and

2even though these results may not be strictly comparable, since some of the methods use vertex type
information in addition to the relational data provided by a graph’s structure.

26

easy to judge, since most of the derived correspondence clusters make sense from the point
of view of dog anatomy (i.e., the vertices that represent the head of one dog are clustered
together with those that correspond to the head of the other dog, etc.) The resulting cluster
decomposition obtained from correspondence clustering of the two shock graphs for shapes

boxer-10 and boxer-24 is summarized in Table 3.1. Given the data provided in table 3.1, one

Cluster | Clustered vertices from Clustered vertices from
number | shape BOXER-24 shape BOXER-10
1 2(back) 3(back), 11(back),
12(back)
2 27(torso), 29(head), 13(torso), 34(head),
30(head) 36(head), 37(head),
2(back)
3 28(head), 32(head) 33(head), 35(head)
4 5(hind legs), 12(hind legs) 7(hind legs), 8(hind legs)

5 15(front legs), 16(front legs), | 26{front legs), 31(front legs)
6(hind legs), 8(hind legs)
6 3(hind legs), 4(hind legs), 4(hind legs), 5(hind legs),
7(hind legs), 11(hind legs) 6(hind legs), 9(hind legs)

7 17(front legs), 18(front legs), | 28(front legs), 29(front legs),
19(front legs), 9(hind legs), | 30(front legs

10(hind legs)

8 1(torso), 34(back) 1(torso), 17(back)

9 13(torso), 14(front legs), 15(torso), 16(torso),
20(front legs), 21(front legs), | 22(neck), 23(neck),
22(front legs), 23(torso), 24(front legs), 25(front legs),
24(torso), 25(neck), 27(front legs), 32(front legs)
26(neck)

10 31(ears), 33(ears) 10(tail), 14(tail)

11 35(back), 36(back) 18(torso), 19(back),

20(back), 21(back)

Table 3.1: Cluster decomposition obtained from correspondence clustering of the two shock
graphs for shapes BOXER-10 and BOXER-24. Each cluster enumerates the vertices from
the two graphs that are grouped together and lists the part of the body that the vertex
approximately comes from, in brackets.

may notice that the correspondence relationships recovered from clustering decomposition
are of either one-to-many or many-to-many type. These correspondence types are generally
not discovered by the conventional graph matching techniques, which are mainly capable
of finding best one-to-one vertex associations only. It also should be mentioned, that all of
the reported above experiments were purely structural; that is, for the purpose of matching
shock graphs the proposed method relied exclusively on the shock graph relational data,

without taking into account any other information.

27

0.52 0.00 000 | 000 | 000 | 000 | 000 | 026 | 0.10 0.00 0.00

0.00 000 | 000 | 218 | 066 | 000 | 000 | 000 | 059 | 0.00

000 | 000 | 335 000 | 140 | 000 | 000 | 000 | 030 | 0.00

0.00 | 000 5001 | 333 006 | 063 | 000 | 000 | 000 2.93 0.00

0.00 139 000 | 020 |f2341, 087 | 000 | 008 0.00 0.22 0.00

0.47 0.99 0.00 | 024 141 2.61 0.00 | 000 | 062 0.20 0.00

0.52 0.67 0.63 140 040 0.00 | 000 | 000 0.54 0.00

BlE

000 | 000 | 000 | 0.00 | 000 | 000 020 | 000 | 0.00 | 003

0.00 0.00 | 000 | 0.00 000 | 000 | 000 |)037 0.00 0.00 0.00

046 | 002 | 000 | 000 | 004 | 020 | 000 | 001 0.00 | 000

000 | 059 | 293 | 030 | 013 | 054 | 000 | 000 | 000 0.00

K @ — | | 7 || — == oo

000 | 000 | 000 | 000 | 000 | 000 | 0.5 | 000 | 000 | 0.00

Figure 3.3: Shape similarity summary table as computed according to the formula in Equa-
tion 2.6a (a box drawn around a similarity value corresponding to best matching pair)

Category prototype: Category instances:

0.26

Figure 3.4: An example of comparison of shapes within the same category (the calculated
similarity values are shown above each shape instance)

28

(a) Shape: BOXER-10 (b) Shape: BOXER-24

BOXER-10

<>
[
T ZER I 3 Rl T
i @
G) (o) Cein)
G D @
> G

BOXER-24

(d) Shock graph representation of BOXER-24

Figure 3.5: Two sample shapes BOXER-10 and BOXER-24, and their shock graph repre-
sentations

29

Chapter 4

Application two: information
retrieval with natural language
processing enhancements

4.1 General information retrieval problem setting

For the subdiscipline of information retrieval that deals with textual data, the main concern
is to be able to establish the degree of relevance of a given document to a query. When a
set of documents and queries is considered, an information retrieval system is required to
rank the documents in accordance with their relevance to a particular query, presenting a
certain number of the best matching documents as an answer set.

Of course, in order to be able to render a numeric relevance estimate for documents and
queries, the ranking procedure must rely on a specific common representational model. One
such model, usually referred to as vector model representation, is used in the majority of
state of the art textual information retrieval systems. The model represents uniformly both
documents and queries as vectors of weights of a predetermined number of important words,
called keywords or index terms. The actual values of the index term weights are calculated
with respect to the occurence information of the corresponding keywords in a particular
document or query. Once all of the weights for documents and queries are computed, a
similarity measure is assigned to each document and query pair. It is the actual value of
this similarity measure that is used to determine whether a document is relevant to a query
and rank the entries in the answer set accordingly.

In order to illustrate the essential principles of functioning of a typical keyword-based

information retrieval system that uses vector model representation, as well as to provide a

30

more clear explanation of how it may be improved by incorporating several techniques that
the proposed graph matching method is capable of, let us consider a simple example of the

retrieval process for a mini-set of documents, shown in Table 4.1.

Number | Document

1 The UNIX Programming Environment
The C Programming Language
The Art of Computer Programming
Women in Art
History of Western Art

Y o WO DO

Table 4.1: A mini-set of documents consisting of several book titles

The above set of documents represents 5 book titles, some of which are about computer
programming, while others are more related to the subject of art. Suppose that the following
set of words occuring in the above documents is chosen to be index terms® : UNIX(1), Pro-
gramming(2), Environment(8), Language(4), Art(5), Compuier(6), Women(7), History(8),
Western(9) . Given these keywords, the documents in our small book title dataset can
now be cast into the vector representation framework, where each keyword corresponds to
a single vector component whose value is set according to a certain function of the index
term occurence frequency?. In the simplest case, the vector weights are set to a given index
term’s frequency, i.e. the number of times a certain keyword occurs in a document (or
query). For instance, the second document from the above mini-set contains one keyword
number 2 { “Programming”) and one keyword number 4 (“Language”), hence the vector
representation of this document will be dy + {0,1,0,1,0,0,0,0,0}. In the same way, the
rest of the documents in the dataset may be reprsentd as vectors, as summarized in Table
4.2. Similarly, a query can also be provided with a vector representation. For example,
a sample query such as “Find books about computer programming” will be represented as
vector ¢ + {0,1,0,0,0,1,0,0,0}.

Once the document and query vectors have been created based on whatever weighting

scheme is selected, they can be used to compute the degree of similarity between the cor-

'n general, the process of determining which words should be selected as index terms is quite complex,
since it usually needs to take into account the frequency of occurence of a certain word, eliminate a number
of specific low content words, known as stop words, etc. For the sake of the prsented example, this, however
is not an essential issue.

2The actual process of calculating term weights usually involves such operations as normalization over
the total number of index term occurences, smoothing, and weight adjustment according to a keyword’s
document discriminatory power introduced with the inverse document frequency (IDF) factor, but, again,
for the sake of the present simplified example, these details are not important.

31

Index term Documents
docy | docy | docg | docy | docs

UNIX 1 0 0 0 0
Programming 1 1 1 0 0
Environment 1 0 0 0 0
Language 0 1 0 0 0
Art 0 0 1 1 1
Computer 0 0 1 0 0
Women 0 0 0 1 0
History 0 0 0 0 1
Western 0 0 0 0 1

Table 4.2: Vector representation of documents from the book title dataset (each document
is a column vector)

responding documents and queries. This correlation is typically obtained by computing the
cosine of the angle between a document and a query vector, as expressed by Equations 4.1a

(in vector form) and 4.1b (in weight coefficient form):

Joc, x T
Vectors: Simgos{(doc;,q) = A S (4.1a)
|doc;| '!?|
doc; q
Weights: Simcos(doc;,q) = Z’“ 1% Uk (4.1b)
oc1 2
VI @iy’ /SN, i)

where N is the number of index terms used, wdoc‘

and wj are the weights of k-th index
term in an ¢-th document and a query, respectively. The possible values of the Cosine
similarity measure are confined to the [0, 1] range, which is a convenient property of the
metric that allows for a uniform document relevance ranking. For the above example of
a sample query (“Find books about computer programming”) and the set of five book title

documents, applying the Cosine similarity measure produces the foliowing results (see Table

4.3). As expected, the resulting ranking favours the first three book titles from the document

Number | Document Simeog(doci,q) | Rank
1 The UNIX Programming Environment 0.408 3
2 The C Programming Language 0.500 2
3 The Art of Computer Programming 0.817 1
4 Women in Art 0.000 4
5 History of Western Art 0.000 5

Table 4.3: Similarity measures and the resulting ranking for a sample query and documents
from the book title dataset

set that are indeed related to computer programming, hence the returned answer set can be

considered correct.

32

Although generally regarded as analytically elegant and practically useful, the keyword
vector representation model has an important disadvantage: once words are converted into
the index terms, all of the information about their context and syntactic relations to other
words in a document or query is completely lost®. In order to deal with this problem, various
methods have been developed, most of which focused on improving the retrieval performance
by taking into account an index term’s context information derived from various word co-
occurence statistics [1, 44]. There is, however, another alternative way to attempt to make
an information retrieval system more “intelligent” and boost its performance, as suggested
in [35, 42]. Namely, one may incorporate the information about syntactic relations among
keywords in the process of matching documents and queries in order to improve the retrieval
results. And this is exactly where the proposed method for matching graphs and generic

relational structures may be applied - as described in the following section.

4.2 Enhancing information retrieval with syntactic rel-
evance data

As it has been mentioned before, the standard vector model for information retrieval dis-
cards all of the relational information imposed by the syntactic structure of sentences that
constitute documents and queries. In order to illustrate this drawback, let us consider a
representative example as formulated in [24]. Suppose that a certain information retrieval
system operates only on three index terms £, £, t3 that correspond to the words operating,

system, dynamic, respectively. Assume, also, that two entirely different queries are submit-

ted as input for such a system: the first, ¢;, inquiring about dynamic resource allocation

in o real-time operating system and the second, gs, that is concerned with dynamic system

models of information agents operating on the internet. One can clearly see that all of the
index terms ty, to, t3 are present in ¢; and ¢o, which makes the two queries indistinguishable
for the information retrieval system in question. Intuitively, it appears reasonable to try
to improve the document-query matching process by adjusting a weight of a given index
term match with respect to its syntactic relevance, which requires that a certain procedure

capable of comparing the degree of syntactic similarity of a pair of matching keywords be

3In the above example, for instance, a query on the topic of art (single keyword) will produce the result
that implies that both book 3 (“The Art of Computer Programming”) and book 5 (“History of Westrn
Art”) are equally related to the subject of art, which is hardly true

33

designed.

Yor this pupose, the first task to be addressed is deriving a graph representation of queries
and documents in the form of term dependency trees. In the current implementation, the
Minipar syntactic parser developed by Lin[16] is used. Applying the parser to queries ¢
and ¢o from the above example, the following graph representations of syntactic relations

can be derived (see Figure 4.1).

34

ALLQCATION
[DYNAMIC J [RESOURCE J

{ REAL-TIME J [OPERATING J

(a) Parse tree of query q1

[informationj L operating]

(b) Parse tree of query g2

Figure 4.1: Graph representation of syntactic relations among the words in sample queries
1 and g2

35

This illustration of query parse trees provides some important information. First, it
confirms the fact that the syntactic roles that index term t3 (dynarmic) plays in both queries
is most similar. Indeed, one may see that in queries q; and ¢s index term dynamic is used to
modify the head noun of each query. Second, the syntactic roles of index term t; (operating)
in the two queries are also quite similar, since in both cases this keyword modifies a noun
attached to the query head noun via a preposition, even though there is a slight difference
in syntactic context?. Third, it is apparent that the syntactic function of index term ¢,
(system) in query g differs most from its functional purpose in query go: in the former
query the keyword is a content noun related to the head noun via a preposition, while in the
latter it is merely a head noun modifier. Summing up these findings, it can be stated that
the comparison of the roles of the selected index terms with respect to the syntactic relations
among the words in the two queries leads to a conclusion that the keyword match on index
term to (system) in queries ¢; and g, is far less syntactically relevant than those on index
terms t; (operating) and t3 (dynamic). This is about as much additional information as one
can get from the syntax alone, without considering the semantics, co-occurence statistics or
any other parameters of the words used. As little as it may seem to be, this additional piece
of knowledge may signal an irrelevant match for the vector model, which would otherwise
be unable to distiguish the two queries at all.

In order to be able to draw such conclusions automatically and, subsequently, incorporate
the feature in the operation of a typical keyword-based information retrieval system, we may
use the proposed graph matching method. Recall that an important property of the method
is such that structurally similar vertices are projected into the regions that are close to each
other. Therefore, by performing a matching between document and query term dependency
graphs, one can judge the degree of structural similarity and, hence, syntactic relevance of a
given pair of words by looking at how far or how close the corresponding vertices are in the
projected space. To provide an illustration to this perspective, let us again use queries ¢;
and ¢» from an earlier example. Figure 4.2 shows the result of projecting parse trees of these
two queries as performed by the proposed graph matching method. In this diagram, the
projections of the words from query ¢; are shown as filled blue circles, while the projected

terms of query go are depicted as red diamonds. Also, the projection space distances between

4Namely, in the parse tree of query q1 keyword operating is a terminal node, while in g2 it is linked to a
number of other modifying terms via preposition on.

36

Projections of queries g ; and a,

08 IN
é«:Df ®
éLLOCATION
RESOURCE
DYNAMIC
o6k ROOTHF model ot
dymamic ©
root sgr,ste?n’ i, $information
g, ey,
IIIIIII,ISxSTEM
04r ’aperaﬁng
! OPERATING
& REAL-TIME
00(3
oar ¢ ormet
he
1 1 1 J
-0.5 0 0.5 1

Figure 4.2: Eigenspace projections of the parse trees of queries g1 and g2 (the following lines
are drawn in order to visualize the distances between projections of the matching index
terms: a solid line for keyword dynamic, a dashed line for keyword operating, and a dotted
line for keyword system)

the corresponding pairs of keywords %1, t2 and t3 in the two queries are drawn as dashed,
dotted and solid lines respectively.

Let us consider the distances between the projections of matching keywords from the
two sample queries, which are graphed as a bar chart in Figure 4.3. Obviously, the dis-
tance between the projections of index term t2 {system) is much larger than those between
the remaining pairs of matching keywords, which, given the eigenspace projection distance
interpretation imposed by the graph matching method, confirms our earlier findings: this
result shows that the keyword match on word system has a far lower degree of syntactic
relevance than the other two. And this exactly reflects the logic used in the present imple-
mentation of the modified information retrieval systems that attempts to take into account
the syntactic relevance of every keyword match between a document and a query. It adheres
to the following simple principle: whenever a pair of matching index terms is found to be
syntactically relevant (i.e., it is projected into the regions that are close to each other), the

similarity estimate assigned to the corresponding document and query pair is awarded a

37

Structural distances between terms t plyty in queries q;,9,
1 T T -

0.8r

0.7y

0.6r

0.3r

0.2r

dynamic operating system

Figure 4.3: Distances between the eigenspace projections of matching keywords from the
two sample queries g1 and gs
bonus, otherwise, it is penalized for a syntactically irrelevant keyword match.

In order to implement this feature within the framework of the vector representaton
model, the similarity calculation formula (Equation 4.1b) has to be changed to accommodate
the additional knowledge about syntactic relevance of each keyword match, as shown in

Equation 4.2.

Zk 1wZ°C‘ -wi - ®p{doc;,)

\/Ek 1 doc’ \/Ek 1 (

This formula of similarity measure between a document and a query (expressed using the

Simcos+syNTax(doci,q) = (4.2)

same notation as in Equation 4.1b) introduces an adjustment factor & that follows the logic
of the mentioned above principle: reward a syntactically relevant keyword match, penalize
an irrelevant one. The mathematical representation of this adjustment factor ® is chosen

to be a simple thresholding function, as expressed in Equation 4.3:

Dy (doci,g)
1+ Bsynrax m’;i(‘;f,cq 7 < Tsynrax

®y(doc;, q) = o (4.3)
f kg OCm,lI)

1 - PsynTax Drec(docia) = LSYNTAX

where Dy (doe;,q) and Dy,qz(doc;, q) are the distance between projections of k-th keyword
and the maximum distance among the projections of all of the words from document doc; and
query ¢ respectively; BsynTax, PsyNTax are percentage reward and penalty factors, and

TsynTax is the syntactic relevance distance percentage threshold, which can be properly

estimated experimentally with training data.

38

4.3 Experimental results

In our experiments, we used two standard text collection ADI[39] and CISI[40]. The two

collections have the following parameters (see Table 4.4). For each text collection, we com-

ADI collection | CISI collection
Documents 82 1460
Number of terms 5491 189969
Number of unique terms 1693 19497
Queries 35 112
Number of terms 499 9679
Number of unique terms 42 2649

Table 4.4: Parameters of the two text collections used in experiments

pare the performance of the baseline information retrieval system with that of the modified
one. The baseline system operates according to the standard vector model using TF - IDF
index term weighting with low content stop word elimination[41], and a Porter stemming
technique[18]. The modified system works with the same data as does the baseline one, but
adds the syntactic relevance adjustment (factor @y, see Equation 4.2) of a keyword match to
the document/query similarity calculation. Additionally, since the majority of documents
and queries consist of several sentences, an aggregation technique is used to combine the
syntactic information of each sentence derived with Minipar parser into a common lattice
of keyword relations. This aggregate relational lattice is constructed as an adjacency ma-
trix of a weighted graph, in which more prominent relations among keywords are assigned
larger weights, and thus play a more important role during syntactic graph matching (for a
detailed example of aggregate relational lattice construction, please see the Appendix).

The overall performance of the modified system does not significatly differ from that of
the baseline system (for instance, modified average precision for ADI 49.6%, baseline 49.0%
and similar for CISI collection), which confirms the earlier documented results[24, 35, 42].
On the other hand, individual query analysis shows that the performance of the modified
information retrieval system is not uniform and is consistently better for a subclass of queries
with some specific properties. Namely, the retrieval results are improved in the majority of
cases when a query is short (8-16 words) and is presented as one or two sentences.

In order to illustrate a typical situation in which syntactic relevance relevance of a

keyword match constributes to the retrieval performance of short queries, let us consider an

39

example of matching query 13 and document 27 from ADI text collection (see Figures 4.45,

4.5, 4.6). Although both the query and the document have a substantial keyword overlap,

(relevance) (criterion)
l
Can) (adequate) (evaluation)

(criteria) (the)
(objective)

information

(a) from Document 27: “Is relevance an ode- (b) Query 13: “What criteria have been devel-
quate criterion in retrieval system evaluation” oped for the objective evaluation of information
retrieval and dissemination system?”

Figure 4.4: Parse trees of sample sentences from document 27 and query 13

the baseline retrieval system does not recognize this pair as the best match. The modified
information retrieval system, however, produces an improved ranking of document 27 with
respect to query 13. As one can see from Figures 4.5 and 4.6, the common keywords (criteria,
evaluation, retrieval) that the document and the query share are projected into regions that
are quite close to each other. Consequently, the system rewards the syntactic relevance
of the keyword match and promotes document 27 to a better rank, which results in an
improvement in retrieval performance. This is the case for both of the illustrated matching
technique variations: when syntatic relational information of the query is compared (a) with
the relational structure of the most contributing sentence (Figures 4.5), and (b) with the
whole aggregated relational lattice of document 27 that summarizes the syntactic relations
among all of the terms from all of the sentences in the document (Figures 4.6), from which
it may be inferred that for matching short, one sentence queries both aggregate lattice and
sentence-by-sentence approaches are nearly equivalentS.

The summary of the performance of the baseline and modified information retrieval
systems for the subset of short queries is given in Figure 4.7 and Table 4.5.

Taking into account the above discussion, it can be said the obtained results are quite

5Figure 4.4(b) shows the simplified parse tree after conjunction expansion and prepositional post-modifier
normalization.
Swhile the former, of course, would be much more computationally efficient than the latter.

40

SYSTEM EVALUATION
08 TOML) a4,
information " - e\éiléuanon “
objective OIN
i Ade veloped
Aroor
0.2 b OO ROE SO @15, e e
3 RELEVANCE - JROOT
CRITERION,
AN Qbeen
0 FDOCUMENT O e ADEQUATE. - dhave]
criteria
query A
i ; what
-0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 4.5: Eigenspace projection of syntactic structure of query 13 and a sample sentence
from document 27 (ADI collection)

Text collection 11-point Precision Average Relative
Baseline IR system | Modified IR system | % change

ADI 54.32 61.38 +12.98%
CISI 35.70 37.72 +5.64%

Table 4.5: Performance of baseline (B.) and modified (M.) retrieval systems for the subset
of short queries from ADI and CISI text collections

encouraging and generally confirm earlier findings[24]. While the overall improvement in
retrieval performance is not large, the application of the proposed graph matching method
was shown to be beneficial to a certain subclass of queries, for which the syntactic relational
data was deemed as important as the semantics of the matching keywords themselevs. When
judging the quantitative effect achieved by augmenting a standard IR system with syntactic
information, one needs to keep in mind that the discipline of general IR is mostly concerned
with the retrieval of relevant content that is in most cases unequivocally conveyed by the
appropriately selected index terms, hence the marginal magnitude of the obtained improve-
ment. On the other hand, one may expect that for the problem settings where relational
information is an essential and indispensable issue (such as question-answering systems,
natural language interfaces to relational databases, etc.), the potential for performance im-

provement, is more than adequate.

41

09 - - e e e

Q8 - e0
.
o e TR N
a

OB - - ’ Q13 eValuaﬂOn

DoC27: RITERION :
Q13 crlterla

P RO : . S 00027 RETRIEVAL

g . Q13: retrleval :

P T SRR e, U PR SO o .

@ : : . : : :

¢

: . : N Q

0.3 b e R P PN e e , S ;

i ¢

0.2 1 1 J i I J
06 —0.4 0.2 0 0.2 0.4 0.6

Figure 4.6: Eigenspace projection of syntactic structure of query 13 and aggregated syntactic
relational lattice of document 27 from ADI collection (query keywords are depicted as red
diamonds, while document terms are shown as blue circles; connecting lines are drawn in
order to visualize the distances between projections of the matching index terms: criteria,
evaluation, retrieval)

Average precision for short queries

~
=

P
=2
i

o
sl
il

44

(3
=
i

o
o
@
-
o
>
©
=
0
2
3
@
=
a
o,
=%
|
-
-

ADI : Glsf

Figure 4.7: Performance of baseline (B.) and modified (M.) retrieval systems for the subset
of short queries from ADI and CISI text collections

42

Chapter 5

Conclusions and future work

In this thesis we have described an approach for solving inexact graph matching problem us-
ing methods based on the projections of vertices, and their connections, into the eigenspaces
of graphs - and associated clustering methods. Our analysis points to deficiencies of re-
cent eigenspectra methods, such as the lack of uniqueness in purely spectral approaches
and difficulties in dealing with matching of graphs of substantially different sizes, though
demonstrates just how powerful full eigenspace methods can be for providing an alternative
solution or serving as filters for such computationally intense (NP-complete for subgraph
isomorphism matching) problems.

The proposed eigenspace projection clustering (EPC) method for graph matching relies
on the adjacency matrix representation of graphs and deploys computationally efficient
mathematical procedure of eigendecomposition, which allows it to be practically useful for
large scale problems. Moreover, since the eigenspace projection technique normally requires
only a small number of the most significant eigenvalues and their corresponding eigenvectors
to be calculated, the procedure can be further optimized by taking into account this property.
In comparison to the previously developed solutions from the spectral domain, the proposed
EPC method has an important advatage of being able to match graphs with substantially
different number of vertices, which obtains as a result of using two stages of normalization
operations. Furthermore, a new correspondence clustering algorithm that is designed to be
an integral part of the matching procedure enables the EPC method to discover a richer
set of correspondence relationships, such as associations among structurally similar groups
of vertices and subgraphs, in addition to the one-to-one type of vertex correspondence.

It should also be mentioned that the developed clustering algorithm itself can be used

43

separately from the EPC method for solving the problem of clustering objects from two
distinct datasets, between subsets of which a correspondence relation needs to be established.

The formulation of the EPC method is remarkably general, which allows it to be adapted
for a variety of practical applications that involve matching graphs and generic relational
structures that can be represented in the form of an adjacency matrix of a weighted graph.
In the thesis presented, this property of the method is demonstrated by applying it to two
different problem settings that originate from the domains of image and text processing.
In the first application, the shock graph representations of various two-dimensional shapes
were matched with EPC method. The obtained results compare favourably with those of
the previously developed solutions. In addition to the numeric measure of shape similarity
required for ranking different images, the proposed EPC method was shown to be able to
provide an extra benefit of establishing meaningful correspondence relationships between
the parts of the shapes being matched (as represented by subgraphs and groups of vertices
in their respective shock graphs). In the second application, the problem of textual informa-
tion retrieval was considered. The developed EPC method (or, more precisely, “EP” instead
of “EPC”, since the clustering facility of the method was not needed in this application)
was used to incorporate the information about syntactic relations among keywords into the
process of matching documents and queries in an attempt to improve retrieval results. For
the modified IR system, the experiments showed a non-uniform performance and a marginal
overall improvement. However, while lagging behind on mistakenly parsed, ungrammatical
and complex/large queries, the system demonstrated a consistently better performance for
a subclass of short queries, i.e. the cases where syntactic structure of the relations among
keywords was indeed important. All things considered, it can be concluded that the encour-
aging results achieved in both of the applications confirm the properties of the EPC method
of being general, easily adaptible and practically useful.

As for the extensions and future work, many areas obviously require improvement. First
of all, even though the adjacency matrix representation format allows for various families
of weighted graphs to be used with the EPC method, the procedure still remains a purely
structural one. That is, an appropriate framework for working in a uniform fashion with
both vertex and attributes, as opposed to dealing only with edge weights, has yet to be

developed. For the shape matching application, an additional research effort would be

44

needed in designing a common matching index that could be appropriate for working with
large shape databases. In the presented method implementation indexing is problematic,
since the matching operation is only pairwise hence not scalable for very large collections.
For the text-based IR applications, it may be considered to refine the method for a particular
class of queries shown to improve the retrieval results, and apply it selectively. And, of
course, the general nature of the proposed method’s formulation, suggests that various
other application areas should be explored, such as those in the fields of question-answering
systems, natural language interfaces to relational databases, structural image partitioning

and segmentation, handwritten character recognition, and others.

45

Bibliography

[1] M. Berry, S. Dumais, and G. O’Brien. Using linear algebra for intelligent information
retrieval. Technical Report UT-CS-94-270, 1994.

[2] B. Bhanu and J. Ming. TRIPLE: A multi-strategy machine learning approach to target
recognition. Morgan Kaufmann Publishers, 1988.

[3] H. Bunke. Recent advances in structural pattern recognition with application to visual
form analysis. IWVF4, LNCS, 2059:11-23, 2001.

[4] L. Collatz and U. Sinogowitz. Spektren endlicher grafen. Abh. Math. Sem. Univ.
Hamburg, 21:63-77, 1957.

[5] L. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance evaluation of the vf
graph matching algorithm. Proc. of the 10th ICIAP, pages 1172-1177, 1999.

[6] D. Corneil and C. Gotlieb. An efficient algorithm for graph isomorphism. Journal of
the ACM, 17:51-64, 1970.

[7] A. Cross, R. Wilson, and E. Hancock. Inexact graph matching using genetic search.
Pattern Recognition, 30(6), 1997.

[8] P. Dimitrov, C. Phillips, and K. Siddigi. Robust and efficient skeletal graphs. Confer-
ence on Computer Vision and Patiern Recognition, june 2000.

[9] M. Eshera and K. Fu. A graph distance measure for image analysis. IEEE Transactions
on Systems Man and Cybernetics, 14(3), 1984.

[10] G. Fasano and Franceschini. A multidimensional version of the Kolmogorov-Smirnov
test. Monthly Not. R. Astron. Soc., (225):155-170, 1987.

[11} J. Feng, M. Laumy, and M. Dhome. Inexact matching using neural networks. Pai-
tern Recognition in Practice I'V: Multiple Paradigms, Comparative Studies and Hybrid
Systems, 1994.

[12] M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman and Co.,
1979.

[13] X. Jiang, A. Munger, and H. Bunke. On median graphs: properties, algorithms, and
applications. IEEF Trans. PAMI, 23(10):1144-1151, October 2001.

[14] J. Kittler, W. Christmas, and M. Petrou. Probabilistic relaxation for matching of
symbolic structures. In H. Bunke, editor, Advances in Structural and Syntactic Pattern
Recognition, 1992.

[15] S. Lee and J. Kim. Attributed strokegraph matching for seal imprint verification.
Pattern Recognition Letters, 9:137-145, 1989.

[16] D. lin. Dependency-based evaluation of minipar. In Proceedings of the Workshop on the
Evaluation of Parsing Systems, First International Conference on Language Resources
and Fvaluation, 1998.

[17] B. Luo and E. Hancock. Structural graph matching using the em algorithm and singular
value decomposition. IEEE Trans. PAMI, 23(10):1120-1136, October 2001.

18] N. Maloy. Successor variety stemming: variations on a theme. 2000. project report
(unpublished).

46

[19] Z. Marx, 1. Dagan, and J. Buhmann. Coupled clustering: a method for detecting
structural correspondence. In: C. E. Brodley and A. P. Danyluk (eds.), Proceedings of
the 18th International Conference on Machine Learning (ICML 2001), 2001.

[20] Z. Marx, 1. Dagan, and E. Shamir. Detecting sub-topic correspondence through bipar-
tite term clustering, 1999.

[21} B. McKay. nauty user’s guide (version 1.5). Technical Report TR-CS90 -02, Computer
Science Department, Australian National University, 1990.

[22] B. Messmer. Efficient Graph Matching Algorithms for Preprocessed Model Graphs. PhD
thesis, University of Bern, CH, Institute for Applied Mathematics, November 1995.

[23] B. Messmer and H. Bunke. Subgraph isomorphism in polynomial time. Technical
Report TAM 95-003, 1995.

[24] M. Mittendorfer and W. Winiwarter. Experiments with the use of syntactic analysis in
information retrieval. LNI, Proceedings, Series of the German Informatics Society (GI),
Applications of Natural Language to Information Systems 6th International Workshop
NLDB’01, P-3, 2001.

[25] A. Myers and E. Hancock. Least commitment graph matching with genetic algorithms.
Pattern Recognition, 34, 2001.

[26] M. Pelillo, K. Siddiqi, and S. Zucker. Matching hierarchical structures using association
graphs. IEEE Trans. PAMI, 21(11), November 1999.

[27] D. Rouvray and A. Balaban. Chemical applications of graph theory. Academic Press,
1979.

[28] A. Sanfeliu and K. Fu. A distance measure between attributed relational graphs for
pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, 13(3), 1983.

[29] A. Schwenk. Almost all trees are cospectral. Academic Press, New York - London, 1973.

[30] G. Scott and H. Longuet-Higgins. An algorithm for associating the features of two
patterns. In Proc. Royal Society of London, B244, 1991.

[31] L. Shapiro and J. Brady. Feature-based correspondence - an eigenvector approach.
IVC, 10, 1992.

[32] A. Shokoufandeh and S. Dickinson. A unified framework for indexing matching hierar-
chical shape structures. IWVF4, LNCS, 2059:67-84, 2001.

[33] K. Siddiqi, S. Bouix, A. Tannebaum, and S. Zucker. Hamilton-jacobi skeletons. To
appear in International Journal of Computer Vision.

[34] K. Siddigi, A. Shokoufandeh, S. Dickinson, and S. Zucker. Shock graphs and shape
matching. International Journal of Computer Vision, 30:1-24, 1999.

[35] A. Smeaton. Using NLP or NLP resources for information retrieval tasks. In Tomek
Strzalkowski, editor, Natural language information retrieval, pages 99-111. Kluwer Aca-
demic Publishers, Dordrecht, N1, 1999.

[36] S. Tirthapura, D. Sharvit, P. Klein, and B. Kimia. Indexing based on edit-distance
matching of shape graphs. Multimedia Storage and Archiving Systems III, 3527(2):25—
36, 1998.

[37] J. Ullman. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1), 1976.

[38] S. Umeyama. An eigen decomposition approach to weighted graph matching problems.
IEEFE Trans. PAMI, 10:695-703, 1998.

[39] URL. Adi test collection.
ftp://ftp.cs.cornell. edu /pub/smart/adi.

[40] URL. Cisi test collection.
ftp://ftp.cs.cornell. edu/pub/smart/cisi.

[41] C. J. vanRijsbergen. Information Retrieval. 2nd ed., Butterworths, 1979.

47

[42] E. Voorhees. Natural language processing and information retrieval. In SCIE, pages
32-48, 1999.

[43] S. Wu, Y. Ren, and C. Suen. Hierarchical atributed graph representation and recogni-
tion of handwritten chineese characters. Pattern Recognition, 24:617-632, 1991.

[44] J. Xu and W. Croft. Corpus-based stemming using co-occurence of word variants. ACM
Transactions on Information Systems, 16(1):61-81, January 1998.

[45] H. Zha, X. He, C. Ding, M. Gu, and H. Simon. Bipartite graph partitioning and
data clustering. Proc. ACM 10th Int’l Conf. Information and Knowledge Management
(CIKM 2001), 2001.

[46] W. Zwick and W. Velicer. Comparison of five rules for determining the number of
components to retain. Psychological Bulletin, 99, 1986.

48

Appendix A

Aggregate relational lattice
construction example

For the sake of this example, we will consider document 45 from ADI collection that consists
of three parsable units; one title, and two sentences of text, as shown below.

ADI collection, Document 45

Title:
Graduate training in information science : definitions and
developments at the georgia institute of technology .

Text:
the graduate degree program in information science at georgia tech
is described . areas of specialization within the curriculum and

definitions of terms are given .

After being processed by the Minipar parser, all of the syntactic relations among the words
in the document are output as pairs in the format given in the example below.

Minipar output example

area N:mod:PREP of

of PREP:pcomp-n:N specialization
specialization N:mod:PREP within
within PREP:pcomp-n:N curriculum

The above Minipar output excerpt shows various examples of “noun-preposition” type of
syntactic relationships found by the parser. After the obtained stopwords are replaced by
their. part of speech (POS) tags, all of these pairs of relationships are then used to fill the
common syntactic relational matrix. The matrix is symmetric and has as many rows and
columns as there are unique keywords and POS tags in the whole document. For our ex-
ample this list will consist of the following 19 keywords and POS tags: { graduate, training,
PREP, N, information, definition, development, DET, georgia, technology, C, describe, de-
gree, BE, give, area, speciolization, curriculum, term}, and thus the matrix (which we refer
to as “aggregate relational lattice” in the earlier dicussion) will have the size of 19 by 19
elements. When all of the relational data is combined together, it looks as follows.

49

The aggregate syntactic realtional lattice for document 45

1.0 00.6 0 0 0 O 0 O O O O O O O O 0 O
1.0 006 0 0 0 0 O 0 O 0 O O O O O O O O
00.6 01.4 00606 O 006 0 0 0 0 00.61.20.60.6
0.6 01.4 01.2 0 00.41.2 0 01.20.6 0 O 0O O 0 O
o 0 0t2 0o o0 O o0 0 © O O O O O 0o 0o 0 o0
o 006 0 0 01.0 0 0 O 0 O O O O01.0 0 0 O
0 006 O 0t1t.0 0 O 0 O O O 0 0o O o0 o0 o0 o0
0 o 004 0 0 0 O 0 O 0 O O O O O O00.6 O
o 0 0t1t2 o0 0 0 O O 0 O O O O 0 o o0 0 o0
¢ 006 0 O 0 O O 0 o O o0 0 O o0 o o0 0 o0
¢ 0 o0 o o0 o 0 O 0 O©0 O00.8 0 00.6 0O O O O
o 0 012 0 0 0 O O 0606 0 00.6 O 0 0 0 O
6 o o006 0 0 0 0O 0 O 0 O O O O O O O O
o 0 o0 o0 o 0 0O O o0 O 006 0 006 O 0 O O
6o 0 0 0o 0 0 O 0 O 00.6 0 00.6 02.0 0 0 O
0 006 0 01t.O 0 O 0 ©O O O O 020 O O O ©
0 012 o 0o o 0 0 0 O O O O O O O 0 O0 o0
6O 006 0 O O 00.6 0 0 O 0 O O O O O 0 O
6 o006 0 0 O O O 0 O O o 0 O o 0o 0 0 o0

The shown above matrix of relations is now in the final form as it is used by the information
retrieval system to judge the degree of syntactic relevance between matching keywords in
various queries and document 45 by applying the EPC method. The assignment strategy
for its individual weights differentiates among syntactic relationships of various types, and
sets these values as specified below.

(1 if word; and word, are stopwords/POS tags
2 if either word, or words is a stopword/POS tag
weight(wordy, wordy) = \ I3 if neither word; nor word, are stopwords/POS tags
L such that p; < ps < ug

In the shown example the relation weights are set as follows: y; = 0.2, us = 0.6, u3 = 1.0

50

