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ABSTRACT

 The Caribbean region is particularly important to understanding global climate 

change and feedback systems because the tropics are the primary source of heat 

and water vapor for the atmosphere.  The Caribbean region, however, is a relatively 

understudied area in terms of tracking climate change through time.  The Cayman 

Islands, specifi cally, have little documentation of climate change before the 1980’s, apart 

from anecdotal records of past storms.  Climate change has been increasingly studied in 

recent years due to the current and proposed future impacts of such changes on global 

environments.  Numerous proxies (δ18O, δ13C, Sr/Ca, Mg/Ca, U/Ca, Sr-U, Li/Ca, Li/Mg, 

Mg/Li, Ba/Ca, B11/Ca, trace and rare earth elements) for past environmental conditions 

(sea surface temperature (SST), salinity, photosynthetic light activity, water depth, 

upwelling, riverine run-off , atmospheric moisture variability) have been developed for 

use with coral skeletons and sediment cores.  The application of these proxies, however, 

is complicated as many factors that may control the incorporation of these proxies into 

the geologic records (vital eff ects, geographic location, sampling analytics) are still 

debated.  Interpretations based on geochemical proxies (stable isotope, element/Ca ratios, 

and elemental concentrations) derived from sediment cores and modern and fossil corals 

(Orbicella annularis and Montastrea cavernosa) from the Cayman Islands over the last 

500,000 years record alternating cool (SST < 28.5°C; current average water temperature 

for Grand Cayman) and warm (SST >28.5°C) periods in the Caribbean Sea.  

 Coral skeletons from Grand Cayman and Cayman Brac are the baseline for 

the development of an oxygen isotope geothermometer that accurately reconstructs 

SST within the range of measured Caribbean water temperatures.  Using this δ18O-

geothermometer, these coral skeletons record two cool periods, one warm period, and 

one mild period over the last ~540 years around the Cayman Islands.  These temperature 

periods correlate with climate change in the wider Caribbean region.  Oxygen isotopes 

compositions and elemental concentrations from sediment cores in North Sound, 
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Grand Cayman’s largest lagoon, record fi ve periods of climate (SST and atmospheric 

moisture variability) change over the last ~6000 years.  These climate periods correlate 

to phases of climatic variability in the Caribbean and at higher latitudes in the Northern 

Hemisphere.  The global nature of these climate periods can be related to the movements 

of the Intertropical Convergence Zone and the phase of the North Atlantic Oscillation.  

 Although it has been shown that modern corals can reliably reconstruct SST, 

application to older corals is more complicated.  Determination of SST from older 

corals is only possible if their aragonitic skeletons have undergone little to no diagenetic 

alteration.  For corals from the Pleistocene Ironshore Formation (Units A-F; 80 to 500 

ka), SST calculations are only viable if the coral skeleton has >95wt% aragonite, no 

cements, Mg/Ca ratios <12.0 mmol/mol, Sr/Ca ratios >8.0 mmol/mol, δ18OVSMOW values 

>25.1‰, and δ13CVPDB values >–3.0‰.  Based on these criteria the corals from Units A-C 

(229 to 500 ka) cannot be used, whereas those from Units D-F (125 to 80 ka) produce 

reliable SST records.  The temperature profi les developed from U nits D-F correlate 

with temperature reconstructions from other localities during the Pleistocene (e.g., the 

Caribbean, North Atlantic, Coral Sea, South China Sea, and Antarctica).   This work is 

signifi cant as tracking changes in climate from the past may provide indicators for future 

climate trends.  
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of Dr. Brian Jones.  The overall theme of this thesis was initially outlined by Dr. Jones 
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temperatures from the Cayman Islands from corals over the last ~540 years. Sedimentary 
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 The samples and measured water temperature data for this paper came from 

the Department of Environment, Cayman Islands.  For this paper, I undertook the data 

analysis and produced the initial drafts of the manuscript, which were extensively edited 

by Dr. Jones. Co-authors provided valuable feed-back throughout the preparation of this 

manuscript.

 Booker, S., Jones, B., Li, L., 2020. Diagenesis in Pleistocene corals (80 to 500 

ka) corals from the Ironshore Formation: implications for paleoclimate reconstructions. 
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 This paper was based on samples collected by Dr. Jones over the last 30 years.  I 
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 The samples and measured water temperature data used in this chapter came from 

the Department of Environment, Cayman Islands.  For this paper, I undertook the data 

analysis and produced the initial drafts of the manuscript, which were extensively edited 

by Dr. Jones.



 Chapter four: A 6000 year record of chnage from stable isotopes and rare earth 

elements from sediment cores from North Sound lagoon, Grand Cayman, B.W.I.
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CHAPTER 1

 INTRODUCTION

1. Introduction 

 Climate change has been the focus of considerable research in recent years due to 

the current and proposed impacts of these changes on global environments.  The last three 

decades have been successively warmer at the Earth’s surface than during any preceding 

decade since 1850 (Fig. 1.1; Intergovernmental Panel on Climate Change (IPCC), 2014).  

Recently, numerous locations globally have experienced extreme climate phenomenon 

such as heat waves (western/central Europe, India, and Pakistan 2019), droughts 

(Zimbabwe, Somaliland 2019), fl oods (Midwestern USA, India 2019), cyclones (North 

India 2019, Bay of Bengal and Australia 2018, Central America, Eastern USA, Eastern 

Canada 2018), and wildfi res (Northern Alberta 2019, 2016, California 2018, Australia 

2018, 2019, 2020).  With the IPCC Fifth Assessment Report concluding that, since the 

1950’s, many of the observed changes in the climate system have been unprecedented 

over decadal to millennial time scales, with the atmosphere and oceans having warmed, 

the amount of snow and ice diminished, and a global rise in sea level.  The oceans 

are particularly vulnerable to increased warming, as 90% of global energy storage 

accumulates in these environments (IPCC, 2014). There is, therefore, increased focus 

from the scientifi c community on the impact of climate change, the causes, and possible 

remediation tools (Hasen et al., 2018; IPCC, 2018).  

 In order to better understand the future impacts of climate change, known 

intervals of climatic instability over the last 200,000 years have been investigated using 

environmental proxies derived from sediment cores (e.g., Hodell et al., 1991; Gregory et 

al., 2015), speleothems (e.g., Fensterer et al., 2012; Arienzo et al., 2015a), ice cores (e.g., 

Fegyveresi et al., 2016), and modern and fossil corals (e.g., Winter et al., 2003; Kuff ner et 

al., 2017; Flannery et al., 2018).  Such data have, for example, provided information 
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Fig. 1.1. (A) Land surface and (B) sea surface temperature anomalies from 1850 to 2010.     

    Anomalies are relative to the period 1986-2005. Blue lines were taken from    

    IPCC (2014).

on past Sea Surface Temperature (SST), sea surface salinity (SSS), sea level rise or 

upwelling, amounts of precipitation/evaporation, the occurrence of El Nino/Southern 

Oscillation events, and the movement of regional water-air masses (i.e., Western Pacifi c 

Warm Pool, Intertropical Convergence Zone, the North American Oscillation; Kilbourne 

et al., 2007; Flannery et al., 2018).  

 Geochemical proxies within coral skeletons have become a powerful tool for 

paleoclimate determinations with the potential to provide a decadal to centennial scale 

high-resolution record of many aspects of climate.  These samples, however, can only 

be used if their skeletons have not been altered by diagenesis.  As such, few studies have 

analyzed corals that grew more than 20,000 years ago (e.g., Guilderson et al., 1994; 
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McCulloch et al., 1999; Gagan et al., 2000; Winter et al., 2003; Felis et al., 2015; Brocas 

et al., 2016).  Nevertheless, isotopic and elemental proxies (δ18O, δ13C, Sr/Ca, Mg/Ca, U/

Ca, Sr-U, Ba/Ca, Li/Ca, Li/Mg, Mg/Li, B11/Ca) from coral skeletons have been used to 

gain insight into past SST, SSS, photosynthetic activity of the symbiotic zooxanthellae 

that live in the coral tissues, sun light availability, nutrient level, water depth, metabolic 

processes, precipitation, riverine input, and upwelling. 

 In this study, corals and sediment cores from the Cayman Islands have been 

used to establish changes in SST over the last 125,000 years.  The Caribbean is a 

relatively understudied region, especially when compared to the tropical Pacifi c (e.g., 

Gagan et al., 2000) or higher latitude locations.  Given that paleoclimate research in 

the Caribbean has primarily focused on the northern Caribbean-Gulf of Mexico area 

and the west-southwestern regions of the Caribbean Sea (Fig. 1.2),  there is a lack of 

paleoclimate information from the central part of the Caribbean Sea, where the Cayman 

Islands are located (Fig. 1.3).  Even though there are few Caribbean studies, the climatic 

interpretations from this region are highly variable (Goreau et al., 1992; Frich et al., 2002; 

Black et al., 2004; Hetzinger et al., 2010; Kuff ner et al., 2015), therefore, highlighting 

the need for more high resolution climate reconstructions in the Caribbean.  As such the 

Cayman Islands provide a unique opportunity for paleoclimate reconstructions because 

they are (1) located in the central Caribbean, a relatively understudied region where little 

paleoclimate work has been produced, (2) are not aff ected by riverine input, and (3) have 

prolifi c coral growth, both today and during the Pleistocene.  

 The general theme of this thesis is climate, specifi cally how has SST and 

atmospheric moisture around the Cayman Islands changed through time as recorded 

in coral skeletons and sediment cores.  In order to answer this question, the methods 

commonly used for paleoclimate research in corals need to be thoroughly assessed.  The 

calibrations used to determine past SST (i.e., the geothermometric equations that convert 

geochemical proxies such as isotopic and element/Ca ratios to temperature), and the 



4

20

80

20

90

10

30
70 60

USVI

N
United States

The Bahamas

Cuba DR

Jamacia Haiti

Columbia

Belize

Cayman
Islands

Panama

Gulf of Mexico

Atlantic Ocean

Pacific Ocean

Bonaire Grenada

Guadeloupe

Barbados

PR
Mexico

Nicaragua

Venezuela

Caribbean Sea

Saint Martin

500 km

Guatamala

Coral

Sclerosponge

Sediment core

Weather station

Speleothem

Fig. 1.2. Map of the Caribbean-Gulf of Mexico region showing the distribution of temperature   

   related studies using proxies and instrument measured data.

procedure for determining the presence of diagenetic alteration are evaluated.  This study 

is unique in terms of paleoclimate research using corals and sediment cores because it:

 Utilizes numerous well-preserved coral specimens, which is rare as many coral 

reefs are currently experiencing elevated levels of bleaching due to increased 

stress from high SST, ocean acidifi cation, and pollutioned.  As such, many 

locations that have coral reefs, like the Cayman Islands, are highly protected, and 

sampling of corals has become extremely regulated. 

 Examines an extended time period (modern to Pleistocene), in order to determine 

a baseline temperature for the Cayman Islands today that can be compared to mid 

to late Holocene and Pleistocene climate.

 A diagenetic framework is developed for determining if a fossil coral can be used 

for paleoclimate reconstruction.    
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Fig. 1.3. Map of the study area. (A) Map of the Caribbean Sea, showing the location of the 

Cayman Islands. (B) Tectonic and bathymetric setting of the Cayman Islands (Grand 

Cayman (GC), Cayman Brac (CB), Little Cayman (LC)) on the Cayman Ridge. MB- 

Mysteriosa Bank, RB- Rosario Bank (modifi ed from Jones, 1994 and based on maps 

from MacDonald and Holcombe, 1978 and Perfi t and Heezen, 1978). (C) Map of Grand 

Cayman showing the location of coral specimens, sediment cores, surface sediment and 

foraminifera samples, and water samples used in this study. (D) Map of Cayman Brac 

showing the location of coral and water samples used in this study. (E) Map of Little 

Cayman showing the location of coral samples used in this study. 
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2. Study area and methods

2.1. Study area

The Cayman Islands, which includes Grand Cayman, Cayman Brac, and Little 

Cayman, are located in the Caribbean Sea, 240 km south of Cuba and 280 km northwest 

of Jamaica (Fig. 1.3A).  These islands are high points on the Cayman Ridge, a submarine 

mountain range that extends from the Sierra Maestra Range of Cuba to the base of the 

British Honduras Continental Slope (Fahlquist and Davies, 1971; Perfi t and Heezen, 

1978; Fig. 1.3B).  The Cayman Ridge marks the southern boundary of the North 

American Plate and the northern boundary of the Cayman Trench.  The Cayman Trench 

and the associated left lateral Oriente and Swan Island Transform Faults, which began 

developing during the Early Tertiary, were formed by the eastward movement of the 

Caribbean Plate relative to the North American Plate (Perfi t and Heezen, 1978).

Grand Cayman, the largest of the Cayman Islands, is ~35 km long and 6 to 14 km 

wide with an area of 196 km2 and an elevation of up to 24 m above sea level (m asl), but 

most of Grand Cayman is less then 3 m asl (Fig. 1.3C).  Cayman Brac, ~145 km north-

east of Grand Cayman, is ~19 km long and 2 km wide with an area of 32 km2 and an 
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elevation of up to 43 m asl (Fig. 1.3D).  Little Cayman, ~8 km west of Cayman Brac, 

is ~16 km long and 1.6 km wide with an area of ~28 km2 and an elevation of up to 40 

m asl (Fig. 1.3E).  Today, the Cayman Islands experiences a humid sub-tropical climate 

that is dominated by the moisture-laden air masses of the North-East Trade Wind System 

(Blanchon, 1995).  Today, Grand Cayman has air temperatures ranging from 21° to 

33°C and the ocean temperatures (0–14.5 m depth) range from 25.3° to 30.8°C, with an 

average of 28.5°C (Goreau et al., 1992; NOAA, 2018; Fig. 1.4A and B).  The average 

rainfall is 1,220 mm/year with the wet season from May to October and the dry season 

from November to April (Fig. 1.4D) with rainfall being the heaviest on the western part 

of the island (Ng, 1990).  Cayman Brac has air temperatures of 26.6° to 30.6°C (2007 to 

2015), with an average of 28.7°C (Fig. 1.4C) and receives an average of 860 mm/year 

rainfall (NOAA, 2018).  

The Cayman Islands are composed of a dolostone and limestone core that belongs 

to the Oligocene-Pliocene Bluff  Group (Brac Formation, Cayman Formation, Pedro 

Castel Formation), which are uncomformably overlain and onlapped by limestones 

that belong to the Pleistocene Ironshore Formation (Fig. 1.5; Matley, 1926; Rigby and 

Roberts, 1976; Jones, 1994; Vezina et al., 1999; Coyne et al., 2007).  The Ironshore 

Formation, found in outcrop and subsurface, is up to 19 m thick, encompasses six 

depositional units (A-F) that are separated from each other by unconformities (Fig. 1.6; 

Hunter and Jones, 1988; 1995; Vezina et al., 1999; Coyne et al., 2007; Li and Jones, 

2013a; 2013b).  U/Th dating of the well-preserved corals and conches in this formation, 

which developed during successive highstands of the Pleistocene, indicate that Unit A 

formed >500 ka, Unit B ~346 ka, Unit C ~229 ka, Unit D ~125 ka, Unit E ~101 ka, and 

Unit F ~80 ka (Vezina, 1997; Coyne, 2003; Li and Jones, 2014).  Units A to F of the 

Ironshore Formation can be correlated to Marine Isotope Stages 11, 9, 7, 5e, 5c, and 5a, 

respectively (Vezina et al., 1999; Coyne et al., 2007).  
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Fig. 1.4.  Climatic conditions for Grand Cayman and Cayman Brac between 1981 to 2015. (A) 

Atmospheric and water temperatures (11.3-14.5 m water depth) between 1991 and 

2008 from off shore George Town, Grand Cayman. (B) Water temperatures (surface) 

for Grand Cayman between 1981 and 2010 (temperature derived from NOAA daily 

records). (C) Water temperatures (surface) for Cayman Brac between 2007 and 2015 

(temperature derived from NOAA daily records). (D) Yearly rainfall for Grand Cayman 

between 2000 and 2012. (http://www.worldweatheronline.com/george-town-weather-

averages/ky.aspx).
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2.2. Samples

 The samples used in this study came from (1) whole corals collected at Magic 

Reef, southwest coast of Grand Cayman, (2) cores drilled through the reefs at Gary’s Wall 

and Dan’s Dive, southwest coast of Grand Cayman, (3) cores drilled through the reefs at 

Tarpon Alley, North Sound fringing reef, Grand Cayman, (4) a whole coral from a storm 

rubble ridge, southeast coast of Cayman Brac, (5) sediment cores from the central part of 

North Sound lagoon, Grand Cayman, containing marine and marginal-marine material (6) 

cores from Rogers Wreck Point (RWP), east coast of Grand Cayman, (7) a whole coral 

from Unit D outcrop (IS1), northeast coast of Grand Cayman, (8) cores from George 

Town Harbor (GTH), off shore west coast of Grand Cayman, and (9) whole corals from 

Little Cayman Quarry, central Little Cayman (Fig. 1.3C-E).  Water samples from Magic 

Reef, Spotts Bay, central North Sound, and the southeast coast of Cayman Brac were also 

collected for this study (Fig. 1.3C-E).  

2.3. Methodology 

2.3.1. Coral samples

All the coral samples analyzed in this study were subject to the same set of analyses 

to (1) image the bi-annual growth bands and produce a density map of the coral skeletal 

structure, (2) determine the degree of diagenetic alteration, and (3) analyze the elemental 

and isotopic compositions of the coral skeletons with the aims of producing paleoclimate 

reconstructions for each specimen.  Detailed information about the methods used can be 

found in chapters 2, 3, and 5.

The ages of the corals were determined using; (1) 14C dating, (2) U/Th dating, (3) 

growth band counting, and (4) calculations based on average growth rates.  The Cayman 

corals were imaged using a portable SY-31-100P X-ray machine and/or using an Aquilion 

ONE helical computer tomographic (CT) scanner at InnoTech Alberta (Edmonton, 

Alberta).  These images highlight the corals bi-annual growth bands and were used to 
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measure and map the individual growth bands for elemental and isotopic analyses and to 

determine the lifespan of the corals by counting growth band couplets.  

 Mineralogy was confi rmed by (1) X-Ray Diff raction (XRD) analyses, (2) thin 

section analyses, and (3) Scanning Electron Microscopy (SEM).  XRD analyses were 

produced using a Rigaku Geigerfl ex Powder Diff ractometer, the percentages of aragonite 

and calcite were determined by the method used by Li and Jones (2013b).  Standard 

(27 x 46 mm) thin sections from the samples were used to verify the mineralogy of 

the corals, examine the growth banding, and the degree of diagenetic alteration.  SEM 

photomicrographs of the samples were produced using a Zeiss Sigma Field Emission 

SEM.  The SEM photomicrographs were used for assessment of the micro-scale fabrics 

and determination of any diagenetic alteration. 

 Elemental concentrations were determined in the Radiogenic Isotope Facility 

at the University of Alberta using two methods.  Concentrations of Mg, Sr, and Ca 

were produced from powdered samples of the coral growth bands using a Thermo 

Fisher iCAP-Q Inductively Coupled Plasma Mass Spectrometer (ICP-MS).  Additional 

elemental analysis of Ca, Sr, Mg, Li, Ba, B11, and U for a coral from Magic Reef were 

obtained using a New Wave UP-213 laser ablation system linked to a Thermo Fisher 

iCAP-Q ICP-MS.  Numerous samples from individual growth bands from all corals were 

collected using a Dremel 8200 drill from the central part of each coral parallel to the 

maximum growth direction along the thecal walls of the coral skeleton.  δ13C and δ18O 

values were determined using a Gasbench II system coupled with a Thermo MAT 253 

Isotope Ratio Mass Spectrometer (IRMS).  

2.3.2. Sediment cores

 All of the samples from the sediment cores obtained from North Sound were 

subject to the same analyses to determine (1) mineralogy, (2) age, and (3) elemental and 

isotopic compositions with the aim of evaluating paleoclimate during deposition of the 
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North Sound sediments.  Detailed information about the methods used can be found in 

chapter 4.

 Radiocarbon dating analyses on material from the base and throughout the 

sediment cores were derived using conventional radiocarbon dating analysis at thr 

Isotrace Laboratory, Toronto, Ontario (MacKinnon and Jones, 2001).  Additional samples 

were analyzed by the A.E. Lalonde AMS Laboratory at the University of Ottawa in 2017.  

The radiocarbon ages were converted to calendar years using Calib 7.10.  All marine 

samples were calibrated against the MARINE13 calibration curve and a local (Caribbean) 

reservoir eff ect (ΔR) of -28, as calculated within the program OxCal was applied.  All 

non-marine samples were calibrated using the INTCAL13 calibration curve (Reimer et 

al., 2013).

 The mineralogy of these samples was determined by XRD analyses using 

a Rigaku Geigerfl ex Powder Diff ractometer at the University of Alberta.  Element 

concentrations (Mg, Ca, Sr, Li, Be, B, Na, Al, P, K, Ti, V, Cr, Fe, Mn, Co, Ni, Zn, Ga, Ge, 

As, Se, Rb, Zr, Nb, Mo, Ru, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, Hf, W, Re, Ir, Pt, Tl, Pb, Th, 

U and REE, including yttrium (Y)) were determined using a Thermo Fisher iCAP-Q ICP-

MS.   δ13C and δ18O values were determined using a Finnigan MAT, DeltaPlus XL IRMS 

at Isotope Tracer Technologies Inc, Waterloo, Ontario.  

2.3.3. Water samples

The Department of Environment and the Water Authority Cayman Islands 

monitored the surface seawater temperature around Grand Cayman between 1991 to 

2007.  These records and satellite data from 1980 to 2015 (Goreau et al., 1992; NOAA, 

2018) are combined and used to establish a baseline temperature record for comparison 

with the temperatures determined from the Cayman samples.  Water samples from 

Grand Cayman and Cayman Brac (Fig. 1.2C, D) were analyzed for the oxygen isotope 

compositions by Isotope Tracer Technologies Ltd., Ontario, Canada, using a Thermo 
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Delta Plus Advantage linked to a Gasbench I via a GC PAL autosampler.  Two seawater 

samples from Grand Cayman and one from Cayman Brac were analyzed for the metal 

concentrations using an Inductively Coupled Plasma- tandem Mass Spectrometer (ICP-

MS/MS) at the University of Alberta.  Detailed information about the methods used can 

be found in chapters 3 and 4.     

3. Previous work

3.1. Geochemical proxies

Carbonate samples (i.e., corals and sediment cores) are useful tools for 

geochemical analyses because climate proxies can be recorded in their skeletal material 

(Leder et al., 1996; Bryan et al., 2008), they are easily dated, and varying scales of high-

resolution paleoenvironmental information can be determined (McCulloch et al., 1999; 

Kilbourne et al., 2007, Flannery et al., 2018).  Geochemical proxies for determining 

paleoclimate conditions from carbonates have been used for many decades.  This 

technique was fi rst developed by Urey (1947), who showed that there is a detectable 

isotopic fractionation based on the relative abundances of two stable isotopes of oxygen 

(16O and 18O) in a body of water that is related to formation water temperatures of 

carbonates.  Since that discovery numerous geochemical proxies have been applied to 

coral skeletons and sediment cores in order to determine past environmental conditions.  

These include (1) δ18O, clumped isotopes, Sr/Ca, Mg/Ca, U/Ca, Sr-U, Ba/Ca, Li/Ca, 

Li/Mg, and B11/Ca for temperature determination (e.g., Watanabe et al., 2001; Quinn 

and Sampson, 2002; Alibert and Kinsley, 2008; Felis et al., 2009), (2) δ18O, Ba/Ca, 

Fe, Ti concentrations, and rare earth elements (REE) for salinity and/or precipitation/

evaporation determinations (e.g., Haug et al., 2001; Allison and Finch, 2007; Kilbourne et 

al., 2007; Doherty et al., 2012), (3) δ13C for photosynthetic light activity of the symbiotic 

zooxanthellae that live in the coral tissues, sun light availability, water depth, nutrient 

levels, and metabolic processes (e.g., Erez, 1977; 1978), and (4) REE concentrations 
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of fi ne grained carbonate sediments to facilitate provenance studies (Muhs et al., 2007; 

Muhs and Budahn, 2009).  

Although oxygen isotope geothermometry has been widely used for paleoclimate 

reconstructions, it is complicated by the infl uence of both the carbonate oxygen isotope 

composition, which is a function of temperature, and the oxygen isotopes composition 

of seawater, which is a function of salinity.   In order to separate the infl uence of salinity 

on temperature, many oxygen isotope geothermometers incorporate a δ18Owater factor into 

the equation.  The δ18Owater value, however, is commonly diffi  cult to determine, especially 

for ancient samples.  This issue can be circumvented by (1) using a value of  0‰ (value 

for modern seawater) as the residence time of oxygen in the world’s oceans is thought 

to have remained relatively uniform throughout geological time (Muehlenbachs and 

Clayton, 1976), (2) applying a value derived from the SPECMAP curve of Imbrie and 

McIntyre (2006), or (3) using other elements in the skeleton to determine the δ18Owater 

value (e.g., Beck et al., 1992; Fallon et al., 2003; Kilbourne et al., 2010; Flannery et al., 

2018).  Other geothermometers have been developed using element/Ca ratios (Sr, Mg, 

U, Li, Ba, B11), which are believed to be unaff ected by salinity.  These geothermometers 

are a function of the element/Ca activity ratio of seawater and the distribution coeffi  cient 

between aragonite and water for the specifi c element, which is dependent on temperature 

(e.g., Beck et al., 1992; Dietzel et al., 2004; Gaetani and Cohen, 2006).  

3.2. Corals

 Two species of coral are used in this study, Orbicella annularis and Montastrea 

cavernosa.  Recently, Budd et al. (2012) reclassifi ed Montastraeidae based on 

morphological criteria and molecular analysis (DNA, cellular defi nition, aggression, and 

protein sequestration).  On this basis, Budd et al. (2012; their Table 2) transferred the M. 

annularis complex into Merulinidae and assigned it to the genus Orbicella Dana (1846).  

M. cavernosa, however, remains in Montastraeidae.  Budd et al. (2012) then divided the 
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M. annularis complex, into O. annularis, O. faveolata, and O. franksi, which follows the 

names used by Vaughan (1918).

Modern scleractinian corals, that live in tropical environments and contain 

symbiotic zooxanthella, require a specifi c set of environmental conditions in order 

to grow, namely (1) water temperatures between 18° to 36°C, but preferably 25° to 

29°C, (2) salinity between 22 to 40‰, but preferably 25 to 35‰, (3) low amounts of 

nutrients and suspended sediments, and (4) shallow water depths to remain within the 

photic zone (James and Jones, 2015; NOAA, 2016).  Based on these specifi c growth 

parameters, corals are commonly used to assess past environmental conditions such as 

(1) depositional environment and water depth (e.g., Hunter and Jones, 1988; 1995; Jones 

and Hunter, 1990), (2) SST and SSS (e.g., Watanabe et al., 2001; Kilbourne et al., 2007; 

2010), and (3) sea level change (e.g., Blanchon et al., 2009; Webb et al., 2016).  

In order for coral skeletons to be used for paleoclimate interpretations, the growth 

bands in the skeletons are commonly analyzed and related to specifi c time periods.  As 

such, Knutson et al. (1972), and Moore and Krishnaswami (1974), showed that coral 

skeletons are composed of layers of diff erent densities that refl ect seasonal growth.  

The density bands are visible on X-Ray or CT images, with the densest material being 

lighter in color (white) than the less dense material (Buddermeier et al., 1974; Moore 

and Krishnaswami, 1974).  These growth bands refl ect diff erent periods of time and 

have been linked to yearly, monthly and daily growth (Knutson et al., 1972; Winter and 

Sammarco, 2010).  In turn, these growth bands have been used to answer questions about 

the length of the day, year and lunar month in the geological record (e.g., Wells, 1963; 

Runcorn, 1966; Weber et al., 1975a, 1975b).  

3.3. Sediment cores

 Carbonate sediments that accumulate at the base of bodies of water are archives of 

the environmental changes that have taken place since the depositional systems were fi rst 
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established and can provide a wealth of information about the environmental conditions.  

As such, large time scales (thousands of years) can be investigated.  Geochemical proxies 

such as δ18O, δ13C, element/Ca ratios, and elemental concentrations (Fe, Ti, REE) have 

the potential of providing detailed insights into the manner in which the lagoon responded 

to short-term sea level oscillations and climate change (Haug et al., 2001; Black et al., 

2004; Muhs et al., 2007; Gregory et al., 2015).  Sediment cores have also been used to 

provide evidence for Milankovitch cycles (Hays et al., 1976) and to establish Pleistocene 

(Imbrie and McIntyre, 2006) and Tertiary δ18O sea level curves (Shackleton and Kennett, 

1975a; 1975b).

3.4. Ironshore Formation

The Ironshore Formation has been thoroughly studied in terms of its fossil 

assemblages, stratigraphy, lithology, relation to relative sea level changes during the 

Pleistocene, depositional history, paleogeography, and diagenetic alteration (Matley, 

1926; Rehder, 1962; Burnt et al., 1973; Woodroff e et al., 1980; Hunter and Jones, 1988; 

1995; Jones and Hunter, 1990; 1995; Rehman et al., 1994; Vezina et al., 1999; Coyne 

et al., 2007; Li and Jones, 2013a; 2013b; 2014).  The depositional environments of 

the Ironshore Formation were fi rst determined by Burnt et al. (1973), who divided the 

Ironshore Formation into the (1) reef facies dominated by Acropora and Porites, (2) 

back-reef facies with massive corals, (3) lagoonal facies or marl with diverse molluscan 

fauna, (4) a shoal facies characterized by cross-bedded oolitic sands, and (5) subaerial 

beach facies.  Jones and Hunter (1990; 1995) established the paleogeographic framework 

of Grand Cayman ~125 ka based on rock type, sedimentary structures, fossil content, 

and trace fossil assemblages.  Unit D of the Ironshore Formation was deposited in a large 

lagoon (Ironshore Lagoon) that covered the central and western part of Grand Cayman.  

The lagoonal sediments are overlain by limestones that were deposited in a high-energy, 

prograding beach-like environment (Jones and Hunter, 1990).  
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Subsurface drilling on the east coast of Grand Cayman showed that the Ironshore 

Formation is comprised of four unconformity-bound units (Units A-D) composed of 

rudstones, grainstones, and packstones-wackestones-mudstones (Vezina et al., 1999).  

These units were deposited on a high-energy narrow shelf, which was developed by 

marine erosion of the underlying Cayman Formations (Vezina et al., 1999).  Additional 

off shore drilling in the western part of Grand Cayman showed two previously 

unrecognized younger units of the Ironshore Formation (Units E and F), as well as Unit 

D (Coyne et al., 2007).  The off shore west coast cores contain head coral fl oatstones, 

branching coral fl oatstones, mixed coral fl oatstones, Halimeda fl oatstone-rudstones, and 

skeletal grainstone-packstone-wackestones, which were deposited in a marine setting 

below fair-weather wave base (Coyne et al., 2007).  Surface exposures of the Ironshore 

Formation in the western part of Grand Cayman are formed of skeletal packstone-

grainstones, coral fl oatstone-rudstones, and ooid grainstones (Coyne et al., 2007).  Unit F 

is formed of sediments that were either deposited in tidal channels (Jones and Pemberton, 

1989) or under hurricane conditions (Coyne et al., 2007).  Diagenetic research on the 

Ironshore Formation has focused on the inversion of aragonite to calcite in the fossil 

components, borings, isotopic and trace metal concentrations, and the development of the 

calcrete crusts in terms of diagenetic fabric evolution, fl uid fl ow, and relation to intervals 

of subaerial exposure (Jones and Pemberton, 1989; Jones and Hunter, 1990; Rehman et 

al., 1994; Li and Jones, 2013a; 2013b; 2014).  

4. Objectives

 The main objective of this thesis is to track climate change, specifi cally SST 

and atmospheric moisture in the Caribbean through time (0 to 125 ka) from multiple 

coral skeletons and sediment cores.  This thesis provides a better understanding of 

climate dynamics in the central Caribbean, an understudied area in the tropical Atlantic 

Ocean, over an extended time period when compared to other coral based paleoclimate 
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reconstructions (Buddermeier et al., 1974; Weber et al., 1975a; Guilderson et al., 1994; 

Gagan et al., 2000; Watanabe et al., 2001; Winter et al., 2003; Kilbourne, 2007; 2010; 

Hetzinger et al., 2010; Winter and Sammarco, 2010; Felis et al., 2015; Brocas et al., 

2016).  

 This thesis is ‘paper based’. Collectively, these papers examine SST and moisture 

changes through time (0 to 125 ka) in the central Caribbean and examine the applicability 

of using geochemical proxies for paleoclimate reconstruction.  These papers are 

incorporated into this thesis as Chapters 2, 3, 4 and 5.

Chapter 2- Review of element/Ca proxies for deriving paleotemperatures from modern 

tropical corals: insights into the future of element/Ca geothermometry.

Chapter 3- Insights into sea surface temperatures from the Cayman Islands from corals 

over the last ~540 years. A version of this chapter has been published. 

Chapter 4- A 6000-year record of climate change from stable isotope and rare earth 

element analyses of sediment cores from North Sound lagoon, Grand Cayman, British 

West Indies

Chapter 5- Diagenesis in Pleistocene (80 to 500 ka) corals from the Ironshore 

Formation: implications for paleoclimate reconstruction. A version of this paper has been 

published. 

Chapter 6- Conclusion. This chapter summarized the entire thesis.
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  CHAPTER 2

REVIEW OF ELEMENT/CA PROXIES FOR DERIVING 

PALEOTEMPERATURES FROM MODERN TROPICAL CORALS: 

INSIGHTS INTO THE FUTURE OF ELEMENT/CA GEOTHERMOMETRY

1. Introduction

 Paleoclimate models pertaining to the last 800,000 years are commonly based on 

environmental proxies from modern and fossil corals (e.g.,Weber, 1977; Winter et al., 

2003; Kuff ner et al., 2017; Flannery et al., 2018; Booker et al., 2019; 2020), sediment 

cores (e.g., Hodell et al., 1991; Gregory et al., 2015), speleothems (e.g., Fensterer et al., 

2012; Arienzo et al., 2015), and ice cores (e.g., Fegyveresi et al., 2016; Yu et al., 2016) 

from many diff erent locations throughout the world.  Much of this work has focused on 

past seawater temperature because that is considered a good measure of climate change 

(Gagan et al., 2000; Felis et al., 2015; Brocas et al., 2016).  The calcium carbonate 

skeletons of many marine organisms, including corals, have commonly been used for 

determining climate change because various chemical proxies in their skeletons can be 

used to detect changes in environmental conditions through time.  

 Tropical corals have become one of the primary tools for determining climate 

change in low latitude regions because the chemical proxies (e.g., δ18O, δ13C, Sr/Ca, 

Mg/Ca, U/Ca, Sr-U, Ba/Ca, Li/Ca, Li/Mg, B11/Ca) in their skeletons can provide high 

resolution climatic information over decadal to centennial time scales.  These proxies 

have, for example, been used to reconstruct past seawater temperature, sea surface 

salinity, photosynthetic activity, nutrient level, water depth, metabolic processes, 

precipitation, riverine input, and upwelling throughout geological time (e.g., Evans et al., 

1999; Marshall and McCulloch, 2001; Watanabe et al., 2001; Quinn and Sampson, 2002; 

McCulloch et al., 2003; Montaggioni et al., 2006; Kilbourne et al., 2007; Alibert and 

Kinsley, 2008; Felis et al., 2009; Horta-Puga and Carriquiry, 2012; Booker et al., 2019; 
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2020).  There is, however, considerable debate regarding the results obtained from the 

chemical proxies because the processes that govern incorporation of those proxies into 

the coral skeleton are poorly understood. 

 Oxygen isotope geothermomeyry has commonly been used to determine 

paleotemperatures.  Nevertheless, it is diffi  cult to use this geothermometer in fossil corals 

because both the δ18O of the carbonate material and δ18O of the surrounding seawater are 

required.   δ18Owater, however, is diffi  cult to determine for fossil samples (Hart and Cohen, 

1996).  The use of element/Ca ratios arose because they were deemed to be controlled 

solely by water temperature.  The use of these temperature proxies, however, is not 

straightforward because the incorporation of these elements into the coral skeletons is 

commonly infl uenced by vital eff ects and/or other external environmental factors (e.g., 

Alibert and McCulloch, 1997; Boiseau et al., 1997; Sinclair et al., 1998; Marshall and 

McCulloch, 2002; Fallon et al., 2003; Goodkin et al., 2005; Yu et al., 2005; Correge, 

2006; Allison and Finch, 2007; Case et al., 2010; Kilbourne et al., 2010; DeLong et al., 

2011; DeCarlo et al., 2015; Xu et al., 2015; von Reumont et al., 2016; Gonneea et al., 

2017; Flannery et al., 2018).  

 There are at least 302 published element/Ca equations that have been developed 

for modern tropical corals.  This paper reviews the theory behind the development and 

use of nine element/Ca geothermometers (e.g., Sr/Ca, Mg/Ca, U/Ca, Sr-U, Ba/Ca, Li/

Ca, Li/Mg, Mg/Li, B11/Ca), highlights the causes of variability between the diff erent 

equations that have been developed, and evaluates these equations in terms of their ability 

to produce ‘realistic’ temperatures.  In most cases, the temperature derived from the coral 

skeletons are deemed acceptable if they fall in the range of local water temperatures 

in the area where they grew or the temperatures recorded during growth of the corals 

under controlled aquarium conditions.  For the purpose of this review, the temperature 

range defi ned by the modern tropical coral growth window is used because it provides a 

global temperature range.  The multifaceted growth window for modern tropical corals is 
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defi ned by clear waters with low turbidity that allows maximum light penetration, low-

nutrient conditions, temperatures of 18° to 36°C with an ideal range of 25° to 29°C, and 

salinity between 22‰ and 40‰ but preferably 25‰ to 35‰ (James and Jones, 2015; 

NOAA, 2016).  

 The applicability of element/Ca temperature calibrations is herein examined and 

assessed by using (1) a dataset that is based on the full range of element/Ca ratios that 

have been reported from various tropical corals in the literature, and (2) a dataset derived 

from a specimen of Orbicella annularis from Grand Cayman (central Caribbean).  Use of 

these datasets allows a thorough evaluation of the element/Ca equations that have been 

used to determine seawater temperatures.  This information provides an assessment of the 

usefulness and applicability of each of the element/Ca geothermometers.  By examining 

the current state of coral based element/Ca geothermometry recommendations about the 

direction of future research are established.

2. Datasets

 Two sets of data (I and II) were used to test the applicability of the 302 published 

element/Ca equations.  The results of the application of dataset I are used  to determine 

which of the published equations produce seawater temperatures in the temperature range 

of the modern tropical coral growth window (18° to 36°C).  Using the element/Ca ratios 

from a coral from Grand Cayman, Dataset II tests the ‘best’ equations, as determined by 

dataset I, against local instrument measured water temperatures (25° to 31°C) to assess 

the applicability of those calibrations.

• Dataset I was generated from published element/Ca ratios for 12 species of 

modern warm water hermatypic corals (Porites, Siderastrea, Acropora, Orbicella, 

Diploastrea, Diploria, Montipora, Pollicipora, Panova, Goniopora, Astrangia, 

Favia) from various locations throughout the world.  This dataset includes: (1) 

28 Sr/Ca ratios from 7.3 to 10.0 millimole/mole (mmol/mol; Shen et al., 1996; 
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Sinclair et al., 1998; Quinn and Sampson, 2002; Fallon et al., 2003; Ourbak et 

al., 2006; Kilbourne et al., 2010; Flannery et al., 2018; Booker et al., 2018), (2) 

38 Mg/Ca ratios from 2.5 to 6.3 mmol/mol (Sinclair et al., 1998; Watanabe et al., 

2001; Quinn and Sampson, 2002; Fallon et al., 2003; Ourbak et al., 2006; Booker 

et al., 2018, (3) 8 U/Ca ratios from 0.7 to 1.4 micromole/mole (μmol/mol; Sinclair 

et al., 1998; Quinn and Sampson, 2002; Fallon et al., 2003; Ourbak et al., 2006;), 

(4) 7 Sr-U values from 8.8 to 9.4 (DeCarlo et al., 2016; Alpert et al., 2017), (5) 

63 Li/Ca ratios from 6.0 to 12.2 μmol/mol (Marriott et al., 2004; Hathorne et al., 

2013), (6) 6 Mg/Li ratios from 0.4 to 0.9 mol/mmol (Hathorne et al., 2013; Fowell 

et al., 2016), (7) 13 Li/Mg ratios from 1.0 to 2.2 for mmol/mol (Hathorne et al., 

2013; Fowell et al., 2016), (8) 90 Ba/Ca ratios from 3 to 12 μmol/mol (Gonneea et 

al., 2017), and (9) 31 B11/Ca ratios from 0.3 to 0.6 mmol/mol (Sinclair et al., 1998; 

Fallon et al., 2003).  For each ratio, artifi cial increases between the minimum 

and maximum values of 0.1 mmol/mol for Sr/Ca, Mg/Ca, Li/Mg, and B11/Ca, 0.1 

μmol/mol for U/Ca and Ba/Ca, 0.1 for Sr-U, and 0.1 mol/mmol for Mg/Li were 

generated so a complete range of values could be used.  

• Dataset II is from a modern specimen of O. annularis that came from Magic 

Reef, which is located off shore George Town, on the southwest corner of Grand 

Cayman at a water depth of 20 m.  This coral, 40 cm high with three broad (6 to 

9 cm wide) branches, was selected because its aragonitic skeleton has not been 

altered and the younger part of the coral grew during a period (1996 to 2002) 

for which instrument measured water temperatures are available (NOAA, 2018; 

Booker et al., 2019).  Three thin sections (one from each branch; Fig. 2.1) were 

made so that they corresponded to the growth period for which the instrument 

measured water temperatures are available.  Analyses obtained using a New Wave 

UP-213 laser ablation and analyzed with an Inductively Coupled Plasma Mass 

Spectrometer (University of Alberta) yielded (1) Sr/Ca ratios from 7.1 to 11.7 
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Fig. 2.1.  Cayman coral, O. annularis, showing the three branches (A, B, C) and the location 

where the three thin sections (TS) were taken from (black rectangles).  The element/Ca 

ratios in Dataset II were generated from these thin sections.  

 mmol/mol, (2) Mg/Ca ratios from 4.4 to 13.7 mmol/mol, (3) U/Ca ratios from 0.6 

to 1.3 μmol/mol, (4) Sr-U values from 8.8 to 10.0, (5) Ba/Ca ratios from 5 to 13 

μmol/mol, and (6) B11/Ca ratios from 0.3 to 0.6 mmol/mol.  Analytical uncertainty 

(2σ), based on the standard deviations of two internal standards (NIST612 and 

MACS) run every 10 samples, is ± 0.4 ppm for Mg and B11, ± 0.8 ppm for Sr and 

Ba, and ± 1.9 ppm for U.  Li concentrations were below detection limits.  

3. Element/Ca geothermometers

 The use of element/Ca ratios for determining seawater temperature is based on 

the premise that the quantity of an element incorporated into the coral skeleton is directly 

related to the ambient water temperature.  Following the successful application of the Sr/
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Ca geothermometer (Weber, 1973; Houck et al., 1977; Smith et al., 1979; Beck et al., 

1992), other element/Ca proxies, including Mg/Ca, U/Ca, Sr-U, Li/Ca, Li/Mg, Mg/Li, 

Ba/Ca, and B11/Ca, were used to determine seawater temperatures from coral skeletons 

(e.g., Marshall and McCulloch, 2001; Watanabe et al., 2001; Quinn and Sampson, 

2002; McCulloch et al., 2003; Kilbourne et al., 2007; Alibert and Kinsley, 2008; Felis 

et al., 2009).  Although much of this information has been derived from corals grown in 

aquariums under carefully monitored environmental conditions (e.g., Houck et al., 1977; 

Smith et al., 1979; Inoue et al., 2007; Reynaud et al., 2007; Armid et al., 2011; Montagna 

et al., 2014; Gonneea et al., 2017), additional information came from natural corals that 

grew in areas where seawater temperature had been recorded (e.g., Fallon et al., 2003; 

Kilbourne et al., 2010; Gagan et al., 2012; Fowell et al., 2016; Alpert et al., 2017).  

3.1.  Sr/Ca ratio

 Kinsman and Holland (1969) proposed that the incorporation of Sr and Ca into 

inorganically precipitated aragonite is a function of water temperature.  Subsequently, 

Weber (1973) highlighted the paleoclimate applications of the Sr/Ca ratio in corals when 

he showed that there was an inverse relationship between the skeletal Sr/Ca ratio and 

water temperature.  Although the processes responsible for the incorporation of Sr into 

the coral skeleton are poorly understood (Allison et al., 2011), it may be related to the (1) 

Sr/Ca activity ratio of seawater, and (2) Sr/Ca distribution coeffi  cient between aragonite 

and seawater, which is dependent on water temperature (McIntire, 1963; Smith et al., 

1979; Beck et al., 1992).  

 Temporal variations in the Sr/Ca ratio of seawater can generally be ignored 

because the residence times of Sr and Ca in the oceans are long (Broecker and Peng, 

1982), with the Sr/Ca ratio being relatively constant over the last 100,000 years (Beck et 

al., 1992; Marshall and McCulloch, 2002).  The use of Sr/Ca geothermometry is therefore 

based on the assumption that the Sr/Ca ratio of seawater has remained constant through 

35



time.  de Villiers et al. (1994, 1995), however, showed that seawater Sr/Ca ratios can vary 

locally in response to upwelling, remineralization of organic matter, and the production 

and dissolution of biogenic CaCO3 and celestite.  Salinity, however, does not seem to 

infl uence the Sr/Ca ratios in coral skeletons (Moreau et al., 2015).  

 The Sr/Ca geothermometer is based on the notion that during periods of low 

water temperature, Sr is incorporated into the coral skeleton in preference to Mg (Weber, 

1973; Marshall and McCulloch, 2002; Storz et al., 2013).  Other studies, however, have 

argued that the incorporation of Sr into the aragonitic skeleton can also be infl uenced 

by photosynthetic activity of the symbionts (Cohen et al., 2001; 2002) and/or the rate of 

calcifi cation (Ferrier-Pages et al., 2002) that causes changes in the Sr/Ca ratios during a 

day-night cycle that are not related to water temperature (Meibom et al., 2004).  Thus, it 

has been argued that the calcifi cation/growth rate is a primary factor in the incorporation 

of Sr into the coral skeleton and must therefore be factored into thermometric 

calibrations (e.g., Goodkin et al., 2005; 2007; Saenger et al., 2008; Kilbourne et al., 

2010).  Nevertheless, Sr/Ca geothermometry remains one of the most commonly used 

paleotemperature proxies. 

3.2. Mg/Ca ratio

 Chave (1954) suggested that the Mg/Ca ratios in the skeletons of many 

marine organisms, including corals, are positively correlated with water temperature.  

Subsequently, Oomori et al. (1982) showed that the Mg/Ca ratios along the maximum 

growth axis of Porites showed systematic variations that refl ect seasonal changes.  This 

was later confi rmed by Hart and Cohen (1996), Mitsuguchi et al. (1996), and Watanabe et 

al. (2001), for various species of coral, by showing that the Mg/Ca ratios are not aff ected 

by other parameters such as salinity and water chemistry. 

 The factors that control Mg incorporation into coral skeletons are poorly 

understood (Allison et al., 2011; Gaetani et al., 2011; Fowell et al., 2016).  Politi et al. 
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(2010) and Montagna et al. (2014) suggested that Mg substitutes for Ca, whereas Finch 

and Allison (2008) argued that an organic binding agent or amorphous calcium carbonate 

infl uences Mg incorporation.  Although water temperature seems to infl uence Mg/Ca 

incorporation into the coral skeleton, the Mg/Ca ratio is strongly infl uenced by microscale 

skeletal heterogeneity (Meibom et al., 2004).  Ion microprobe imaging has shown that the 

distribution of Mg varies over scales of <10 μm, which corresponds to the layering/build-

up of the skeletal fi bers (Meibom et al., 2004; 2008).  This has, in turn, been attributed 

to the rate of calcifi cation that is indirectly controlled by water temperature (Reynaud 

et al., 2007).  It has also been argued that Mg is required by the coral to control skeletal 

growth processes (Cuiff  and Dauphin, 2004; Meibom et al., 2004; Inoue et al., 2007).  

This indicates that Mg incorporation is not a passive process driven simply by changes in 

the thermodynamic equilibrium between the coral skeleton and the surrounding seawater 

(Reynaud et al., 2007).  Subsequently, Allison and Finch (2007) showed that the Mg/Ca 

ratio in the coral skeletal is controlled primarily by biological processes that may not be 

correlated with water temperature.  Thus, the use of the Mg/Ca ratio in paleotemperature 

applications remains questionable (Armid et al., 2011; Siriananskul et al., 2012; Hathorne 

et al., 2013). 

3.3. U/Ca ratio

 Min et al. (1995) demonstrated that the mechanism of U incorporation into the 

coral skeleton is similar to inorganically precipitated marine aragonite, which is known to 

incorporate U and Ca as a function of water temperature.  Accordingly, Min et al. (1995) 

developed a U/Ca equation, based on Porites collected from New Caledonia, that is based 

on the inverse relationship between U/Ca and water temperature.  Subsequently, Shen and 

Dunbar (1995) strengthened the application of this geothermometer by demonstrating that 

U/Ca ratios in multiple hermatypic coral skeletons from Pacifi c and Caribbean locations 

displayed annual cyclicity.
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 Uranium substitution for Ca in the coral skeleton is diffi  cult because of the large 

diff erences in ionic radii and valence states between U and Ca (Quinn and Sampson, 

2002).  Accordingly, it has been argued that U enters the coral skeleton as a complex 

anion, potentially UO2(CO3)2
2- (Swart and Hubbard, 1982; Min et al., 1995; Shen and 

Dunbar, 1995) or UO2(CO3)3
4- (Reeder et al., 2000).  The diff erences in U speciation 

and crystalographic  location in the aragonitic coral skeleton may result in the U/Ca 

geothermometer being sensitive to water temperature, pH, diff erences in coral species, 

extension rates, seawater carbonate concentration/chemistry (CO3
2-, CO2, U/Ca ratio, U 

concentration), and/or salinity (Min et al., 1995; Shen and Dunbar, 1995; Cardinal et al., 

2001; DeCarlo et al., 2015).  Nevertheless, the use of U/Ca ratios from coral skeletons 

has, in some cases, produced ‘good’ paleotemperature reconstructions (Ourbak et al., 

2006; Felis et al., 2009). 

3.4. Sr-U

   Sr-U geothermometry, developed by DeCarlo et al. (2016), is a relatively new 

method of determining paleotemperatures from coral skeletons.  They showed that the 

combination of Sr/Ca and U/Ca ratios from 14 specimens of Porites from the Pacifi c 

Ocean produced accurate temperature reconstructions.  This is based on the positive 

correlations that have been reported between Sr/Ca and U/Ca ratios from various 

coral species (Cardinal et al., 2001; Quinn and Sampson, 2002; Sinclair et al., 2006; 

Jones et al., 2015).  This correlation, however, has not been reported in experimentally 

precipitated abiogenic aragonite.  For inorganically precipitated aragonite, the Sr/Ca ratio 

is controlled by temperature and is unaff ected by the fl uid carbonate ion concentration, 

whereas the U/Ca ratio is controlled by the fl uid carbonate ion concentration and not 

temperature (DeCarlo et al., 2015).  Therefore, biomineralization processes, such as 

Rayleigh fractionation and modifi cation of the calcifying fl uid concentrations, are deemed 

responsible for the correlations between Sr/Ca and U/Ca ratios found in coral skeletons 
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at a given temperature (DeCarlo et al., 2016).  The application of Sr-U geothermometry 

is believed to reduce the impact of vital eff ects (specifi cally Rayleigh fractionation) on 

the temperature dependence of the Sr/Ca and U/Ca ratios (DeCarlo et al., 2016; Alpert 

et al., 2017).  The eff ects of interspecies variability in reconstructing water temperature 

also seems to be reduced by using Sr-U geothermometry (Alpert et al., 2017).  Applying 

Sr-U geothermometry to fi ve species of Pacifi c and Atlantic corals, Alpert et al. (2017) 

produced a Sr-U equation that resulted in identical temperature reconstructions to that of 

the Porites based Sr-U equation from DeCarlo et al. (2016).  Given that this proxy has 

only recently been proposed, more research is needed to fully verify the applicability of 

this geothermometer. 

3.5. Li/Ca ratio

 Delaney et al. (1985) suggested that Li/Ca geothermometry could be applied to 

calcitic foraminifera because the biogenic Li/Ca ratio is negatively correlated with water 

temperature.  The application of this geothermometer has since been expanded to other 

marine organisms, including corals and brachiopods (e.g., Delaney et al., 1989; Hall and 

Chan, 2004; Marriott et al., 2004a; 2004b; Hathorne et al., 2013).  The fact that Li is 

conservative in seawater with a residence time of ~1 million years (Edmond et al., 1979; 

Stoff yn-Egli and Mackenzie, 1984) and is generally not involved in biological activity or 

particle scavenging (Stoff yn-Egli and Mackenzie, 1984) strengthens its potential use in 

paleothermometry.  

 The mechanisms that control Li incorporation into the coral skeleton are poorly 

understood (Montagna et al., 2014; Fowell et al., 2016).  Inorganic aragonite precipitation 

experiments have shown that Li+ is incorporated by heterovalent substitution of Ca2+ into 

the CaCO3 structure (Okumura and Kitano, 1986; Marriott et al., 2004b), which may also 

be the case for the aragonite in coral skeletons.  The incorporation of Li/Ca into coral 

skeletons has been related to water temperature, the internal pH of the calcifying fl uid 
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(Adkins et al., 2003; McCulloch et al., 2012; Hathorne et al., 2013), calcifi cation/growth 

rates (Thebault et al., 2009), and seawater carbonate ion concentration (Marriott et al., 

2004a; 2004b; Thebault et al., 2009; Hathorne et al., 2013; Fowell et al., 2016).  Salinity 

does not seem to aff ect the Li/Ca ratio (Marriott et al., 2004b).  Li/Ca calibrations based 

on corals have, however, produced reliable paleotemperature reconstructions (Marriott et 

al., 2004a; Hathorne et al., 2013).

3.6. Li/Mg and Mg/Li ratios

 Li/Mg and Mg/Li geothermometry was originally developed from foraminifera 

and ahermatypic corals because these ratios appeared to have a better correlation with 

water temperature then either the Mg/Ca or Li/Ca ratios (Bryan and Marchitto, 2008; 

Case et al., 2010; Raddatz et al., 2013).  Bryan and Marchitto (2008) suggested that 

the use of Li/Mg and Mg/Li ratios can account for some of the infl uences that the 

physiological and/or saturation states have on the Mg/Ca and Li/Ca ratios in foraminifera.  

The seawater temperature dependence of the Li/Mg and Mg/Li ratios has been further 

tested and confi rmed in various coral species (Case et al., 2010; Hathorne et al., 2013; 

Raddatz et al., 2013; Montagna et al., 2014; Fowell et al., 2016).

 The mechanisms that control the incorporation of Li and Mg into the coral 

skeleton are poorly understood (Montagna et al., 2014; Fowell et al., 2016).  Given that 

Li and Mg have similar ionic radii and partitioning coeffi  cients, it is possible that these 

elements may be incorporated into coral skeletal aragonite in a similar manner (Hathorne 

et al., 2013; Montagna et al., 2014; Fowell et al., 2016).  Despite some problems, these 

equations have been used to reconstruct seawater temperatures from corals (Hathorne et 

al., 2013; Fowell et al., 2016).

3.7. Ba/Ca ratio

 Hart and Cohen (1996) were the fi rst to investigate the application of the Ba/
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Ca ratio for coral geothermometry.  In their analysis of Porites from South Africa, 

however, they found that the seasonal variability in the Ba/Ca ratio was amplifi ed, when 

compared to other proxies, and that the summer samples recorded large spikes in the Ba/

Ca ratio.  Erroneous Ba/Ca ratios, such as those recorded by Hart and Cohen (1996), 

have been attributed to non-skeletally bound Ba (Hart and Cohen, 1996), Ba-rich organic 

matter in the coral skeleton (Pingitore et al., 1988; Tudhope et al., 1996; Quinn and 

Sampson, 2002), periods of intense upwelling (Lea et al., 1989; Tudhope et al., 1996; 

Alibert and Kinsley, 2008), river fl ood plumes (McCulloch et al., 2003), and/or plankton 

eff ects driven by summer nutrient infl ux (Saha et al., 2019).  In order to use the Ba/Ca 

ratios from coral skeletons for paleotemperature reconstructions, the Ba composition 

of seawater (Cohen and Gaetani, 2010; Gonneea et al., 2017) and all additional sources 

of Ba must be known (Dietzel et al., 2004).  Accounting for the primary solution Ba 

composition, Dietzel et al. (2004) and Gaetani and Cohen (2006) demonstrated that 

the Ba/Ca distribution coeffi  cient of inorganic aragonite is negatively correlated with 

water temperature, and therefore argued that this ratio could be used for coral-based 

paleothermometry.  

 The mechanism of Ba2+ incorporation into aragonite is poorly understood (Kitano 

et al., 1971; Bath et al., 2000; Dietzel et al., 2004; Gaetani and Cohen, 2006; Gonneea 

et al., 2017; Mavromatis et al., 2018).  Ourbak et al. (2006), Horta-Puga and Carriquiry 

(2012), and Gonneea et al. (2017) argued for a simple Ca-substitution mechanism based 

on the similar ionic radii of Ba and Ca.  Other studies, however, have shown that the Ba/

Ca ratio may also be infl uenced by the coral growth rate, aragonite saturation state of 

the calcifying fl uid, and partial pressure of CO2 (Al-Horani et al., 2003; Gaetani et al., 

2011; Venn et al., 2013; Gonneea et al., 2017; Allison et al., 2018; Mavromatis et al., 

2018).  Although the incorporation of Ba/Ca in the coral skeleton can be infl uenced by 

many natural factors, this proxy has still been used for paleotemperature determinations 

(Gonneea et al., 2017). 



3.8. B11/Ca ratio

 Hart and Cohen (1996) demonstrated the presence of seasonal cycles in the B11/

Ca ratios in coral skeletons that seemed to be related to water temperature fl uctuations.  

This was later confi rmed by Sinclair et al. (1998) who identifi ed an inverse relationship 

between coral B11/Ca ratios and water temperature that they then used to develop B11/Ca 

calibrations that produced good agreements between measured water temperature and 

seasonal variations.  The use of this ratio was strengthened by Fallon et al. (1999, 2003) 

when they demonstrated that the B11/Ca ratio was unaff ected by microscale variability in 

the skeletal structure of Porites. 

 Boron may be incorporated into the coral skeleton as boric acid (B(OH)3) due to 

its electrostatic attraction to CaCO3 (Ichikuni and Kikuchi, 1972; Lahann, 1978; Given 

and Wilkinson, 1985).  The speciation of boron in seawater, however, is infl uenced 

by water temperature, alkalinity, salinity, coral biology, and/or various kinetic factors 

(Vengosh et al., 1991; Hemming and Hanson, 1992; Gaillardet and Allegre, 1995; Fallon 

et al., 2003).  Elevated water temperature and/or pH can increase the proportion of boric 

acid to borate in the seawater, which in turn aff ects the borate to carbonate ratio (Hershey 

et al., 1986; Hemming and Hanson, 1992).  Altering the borate to carbonate ratio in 

seawater can aff ect the incorporation of B11/Ca in the coral skeleton and, therefore, 

the resulting calibration.  Regardless of the potential eff ect of the boron species on the 

incorporation of B11/Ca in the coral skeleton, this proxy has been shown to produce 

‘good’ reconstructions of water temperature (Fallon et al., 2003). 

4. Vital eff ects

 Vital eff ects are commonly invoked to explain the diff erences between many 

element/Ca equations that utilize the same proxies (Siegel, 1960; Weber, 1973; Marshall 

and McCulloch, 2002; Swart et al., 2002; Meibom et al., 2003; Gallup et al., 2006; Sadler 

et al., 2016a).  This issue becomes increasingly prevalent when the same coral species 
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from similar environments have given rise to diff erent calibrations (e.g., Quinn and 

Sampson, 2002; Fallon et al., 2003).  Many studies have tried to accommodate the impact 

that vital eff ects have on the temperature dependence of element incorporation into the 

coral skeleton by (1) using multiple coral species and/or multiple specimens of the same 

species (Siegel, 1960; Cohen et al., 2002; Gallup et al., 2006; Alpert et al., 2016; 2017), 

(2) determining the most applicable skeletal structure to sample (de Villiers et al., 1994; 

Alibert and McCulloch, 1997; Allison and Finch, 2004; Gallup et al., 2006; Sinclair et 

al., 2006; DeLong et al., 2007; Saenger et al., 2008; Cohen and Gaetani, 2010; Brahmi 

et al., 2012; Sadler et al., 2016a), (3) empirically regressing temperature to a variety of 

elements to reduce coral-element specifi c modifi cations (Quinn and Sampson, 2002; 

DeCarlo et al., 2016; Alpert et al., 2017), (4) factoring in the eff ects of coral growth rate 

(Goodkin et al., 2005; Saenger et al., 2008; Kilbourne et al., 2010), (5) replicating time 

series with multiple corals from similar and/or the same environment (Cahyarini et al., 

2009; Pfeiff er et al., 2009; DeLong et al., 2013; Grove et al., 2013; Flannery et al., 2018), 

and (6) conducting aquarium studies with corals grown under controlled conditions 

(Houck et al., 1977; Smith et al., 1979; Inoue et al., 2007; Reynaud et al., 2007; Armid 

et al., 2011; Montagna et al., 2014; Gonneea et al., 2017).  There are, however, still 

many uncertainties regarding the controls on element uptake in coral skeletons and more 

research is needed to determine if temperature is truly the primary signal being recorded.

4.1. Interspecies and intraspecies diff erences

 Interspecies diff erences between corals have been the primary driving force 

behind the development of species-specifi c equations (Table 2.1; e.g., Siegel, 1960; 

Cohen et al., 2002; Gallup et al., 2006; Alpert et al., 2016).  Most calibrations (300/302) 

are developed as simple linear equations (y = mx + b) where the gradient value (m) is 

a function of the rate of change between the element/Ca ratio and water temperature 

and the intercept value (b) represents coral specifi c conditions (i.e., vital eff ects, 
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Table 2.1. Number of papers using each coral species to develop the 302 element/Ca 

geothermometers. 

Sample type Sr/Ca Sr-U Mg/Ca U/Ca Li/Ca Li/Mg Mg/Li Ba/Ca B11/Ca

Porites 148 2 21 21 5 2 3 3

Siderastrea 12 1

Acropora 11 1

Orbicella/

Montastrea

13 1

Diploastrea 4

Diploria 38

Montipora 1

Pollicipora 2

Panova 4

Goniopora 1

Astrangia 1

Favia 1

Lophelia 1 1 1

Multiple coral 

species 

2 1 3 3



environmental variability).  Other calibrations (2/302), however, have been developed 

in exponential form (y = bemx) with the gradient and intercept values representing the 

same parameters as in a linear equation.  The fact that there are so few calibrations 

in the exponential form strengthens the idea that water temperature and element/Ca 

concentrations in the coral skeleton are linearly correlated.       

 As might be expected, linear equations developed for diff erent species commonly 

have diff erent gradients.  Diff erent calibrations have also been produced from element/Ca 

proxies from coral skeletons of the same species (i.e., the >140 Porites Sr/Ca equations), 

which commonly have gradients with similar values but diff erent intercepts (Rosenthal 

and Linsley, 2006).  In these cases, diff erences in the intercepts have been variously 

attributed to diff erences in the age of the coral, size, growth rate, the exact location where 

the coral grew in the reef, and/or unknown vital eff ects (Marshall and McCulloch, 2002; 

Quinn and Sampson, 2002; Fallon et al., 2003; Ourbak et al., 2006; Kilbourne et al., 

2010; Grove et al., 2013).

4.2. Size, age, and growth rate

 Marshall and McCulloch (2002) suggested that the size of a coral used for 

paleotemperature calibration is a critical issue because geochemical samples obtained 

from a small (<20 cm high) coral may result in a diff erent Sr/Ca equation than when 

a larger coral of the same species is used.  Ourbak et al. (2008) illustrated this notion, 

using two Porites specimens from the Republic of Vanuatu that were collected 34 km 

apart, when they showed that the smaller (~22 cm high) Porites had elevated Sr/Ca ratios 

(indicating cooler water temperatures) relative to the larger (~140 cm high) counterpart.  

They argued that the geochemistry of the skeleton of the smaller coral was diff erent than 

the larger specimen due to ‘unknown’ biological processes, possibly related to the age 

when sexual maturity is reached.  Potentially, this issue has signifi cant ramifi cations for 

iphering paleotemperatures from fossil corals (Ourbak et al., 2008).

 The infl uence of growth rates on element incorporation into a coral skeleton has 
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long been debated (Weber, 1973; Houck et al., 1977; Smith et al., 1979).  Many studies 

have argued that there is a clear linear relationship between water temperature and the 

element/Ca content of coral skeletons that is independent of growth rate (Houck et al., 

1977; Smith et al., 1979; Shen et al., 1996; Alibert and McCulloch, 1997).  Other studies, 

however, have recognized that the growth rate is an important parameter given that 

faster growth rates are commonly associated with higher element/Ca ratios and therefore 

contributes to the variability between equations (Swart, 1981; de Villiers et al., 1994; 

Mitsuguchi et al., 1996; Ferrier-Pages et al., 2002; Reynaud et al., 2007; Kuff ner et al., 

2012; Grove et al., 2013).  The growth rate of corals has also been linked to the rate of 

aragonite precipitation (Allison and Finch, 2007), symbiont activity as a function of 

photosynthesis (Cohen et al., 2001; 2002), modifi cation of the calcifying fl uid (Allison 

and Finch, 2007), and/or ‘bio-smoothing’ (i.e., the progressive thickening of the coral 

skeleton throughout the tissue layer (Barnes and Lough, 1993; Gagan et al., 2012), and/

or the incorporation of multiple skeletal elements due to shingle-style deposition (Sadler 

et al., 2015; 2016a)).  These factors can aff ect the incorporation of elements in the coral 

skeleton, which in turn will impact the geothermometric calibration.  Some studies 

have included a growth rate parameter in their calibrations in order to account for this 

variability (e.g., Goodkin et al., 2005; Saenger et al., 2008; Kilbourne et al., 2010).  

4.3. Coral microstructure 

 The sampling path and the type of coral skeletal microstructure used for 

geothermometric analysis can greatly aff ect the calculated paleotemperatures (de Villiers 

et al., 1994; Alibert and McCulloch, 1997; Allison and Finch, 2004; Gallup et al., 2006; 

Sinclair et al., 2006; DeLong et al., 2007; Nothdurth and Webb, 2007;  Saenger et al., 

2008; Case et al., 2010; Cohen and Gaetani, 2010; Giry et al., 2010; Brahmi et al., 2012; 

Raddatz et al., 2013; Sadler et al., 2016a).  Microscale compositional variability in trace 

element content has been documented in many diff erent corals (Allison, 1996; Hart and 

 The infl uence of growth rates on element incorporation into a coral skeleton has
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Cohen, 1996; Sinclair et al., 1998; Cohen et al., 2001; Meibom et al., 2006; Case et al., 

2010; Raddatz et al., 2013; Jones et al., 2015).  This variability is commonly related to 

the type of coral microstructure sampled, for example, centers of calcifi cation have been 

shown to be signifi cantly enriched in Mg, Ba, and Sr relative to the surrounding skeletal 

material (Allison and Tudhope, 1992; Allison, 1996; Allison et al., 2001; 2005; Allison 

and Finch, 2004; Meibom et al., 2004; 2008; Gaetani and Cohen, 2006; Gagnon et al., 

2007; Holcomb et al., 2009).  Variability has also been attributed to the presence of non-

aragonitic mineral phases (i.e., strontianite, barite, witherite) in the coral skeleton that are 

enriched in trace elements and/or organic materials that contain elevated Sr (Nothdurft et 

al., 2007), U (Amiel et al., 1973; Min et al., 1995), Ba (Pingitore et al., 1988; Allison and 

Tudhope, 1992; Hart and Cohen, 1996; Tudhope et al., 1996; Quinn and Sampson, 2002; 

Sinclair et al., 2006), and/or Mg (Buddemeier et al., 1981).  

 Sinclair et al. (1998) and Meibom et al. (2004) showed that there is considerable 

heterogeneity in the coral skeleton due to the shape of the coral calyx.  This heterogeneity 

is exacerbated by the eff ects of ‘bio-smoothing’, which can result in diff erent material 

being deposited in the same location but at diff erent times (Cuiff  and Dauphin, 2005; 

Sadler et al., 2015; 2016a).  Temporal off sets between the instrument measured water 

temperatures used for geothermometric calibrations and the deposition of the skeletal 

material (‘bio-smoothing’) can produce erroneous water temperature reconstructions.  

It has therefore been argued that samples must be taken from a single type of skeletal 

material (thecal walls) along the major growth axis of the coral skeleton (Mitsuguchi et 

al., 1996; Shen et al., 1996; Alibert and McCulloch, 1997; DeLong et al., 2013; Sadler et 

al., 2015; 2016a).

4.4. Rayleigh fractionation 

 Rayleigh fractionation is the discrimination against or preferential incorporation 

of trace elements into the coral skeleton relative to calcium (Elderfi eld et al., 1996).  In 
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coral skeletons, this process occurs during the precipitation of aragonite in the calcifying 

fl uid and aff ects the elements as a function of their partition coeffi  cients (Cohen and 

McConnaughey, 2003; Gaetani and Cohen, 2006; Allison and Finch, 2007; Gagnon et 

al., 2007; Case et al., 2010; Cohen and Gaetani, 2010; Hathorne et al., 2013; Raddatz et 

al., 2013; Fowell et al., 2016; Marchitto et al., 2018) that are, in turn, a function of water 

temperature (Marriott et al., 2004a; 2004b; 2006; Gaetani et al., 2011).  The physiological 

processes that control the modifi cation of the calcifying fl uid are unknown.  Gattuso et 

al. (1998) suggested that enzymes (Ca-ATPase) and ion channels in the basal epithelium 

signifi cantly alter the composition of the calcifying fl uid by actively selecting or rejecting 

diff erent elements from entering the coral tissue.  Elements with comparable ionic radii 

to Ca may be similar enough for the Ca-ATPase or ion channels to allow those elements 

into the cell membrane, whereas elements with large ionic radii may be precluded (Cohen 

et al., 2001; Yu et al., 2004; Gaetani and Cohen, 2006).  Conversely, Al-Horani et al. 

(2003) argued that protein-controlled proton pumping is responsible for modifying the 

composition of the calcifying fl uid.  Modifi cation of the elemental composition in the 

calcifying fl uid from that of seawater can potentially aff ect the element/Ca proxies’ ability 

to refl ect external seawater temperatures (Ferrier-Pages et al., 2002).

4.5. Temporal changes in the vital eff ects

 Temporal changes (daily to seasonal) in the vital eff ects (Sinclair, 2005; 2006; 

Alpert et al., 2017), such as changes in symbiont activity (Cohen et al., 2002), coral 

behaviour (i.e., metabolism and sexual reproduction (Meibom et al., 2003; Reynaud et al., 

2007)), or stress (Marshall and McCulloch, 2001) can alter the element/Ca ratios in coral 

skeletons.  Variations in the vital eff ects themselves have been identifi ed in symbiotic 

and asymbiotic corals in shallow and deep waters (Sinclair, 2005; 2006).  These temporal 

anges may aff ect the relationship between the element/Ca ratios and water temperature.

5. Geographic variability

 Calibrations based on the same proxy and developed for the same coral species 
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on diff erent reefs have commonly produced diff erent equations that refl ect diff erent 

environmental conditions (e.g., Quinn and Sampson, 2002; Fallon et al., 2003; Zinke 

et al., 2004; Goodkin et al., 2005; Linsley et al., 2006; Saenger et al., 2008; Cahyarini 

et al., 2009; Pfeiff er et al., 2009).  Water temperatures calculated using the same coral 

skeletal element/Ca proxies from the same reef have also produced contradictory results 

between corals (Grove et al., 2013) and/or to instrument measured water temperatures 

(Nurhati et al., 2011; Carilli et al., 2014).  This inconsistency is commonly attributed to 

environmental variability due to the complex array of micro-environments that exist in 

reef systems (Linsley et al., 2004; Xu et al., 2015; Alpert et al., 2016; Fowell et al., 2016).

 The geographic location of the coral used to develop the geothermometric 

calibrations is critical because the element/Ca ratios are not only aff ected by water 

temperature but also by (1) pH/salinity  (Min et al., 1995; Shen and Dunbar, 1995; 

Tanaka et al., 2015), (2) element concentrations in the seawater (de Villiers et al., 1994; 

Shen and Dunbar, 1995; Swart et al., 2002; Fallon et al., 2003; Sun et al., 2005; Yu et al., 

2005; Xu et al., 2015), (3) nutrient levels/water clarity/light availability (Marshall and 

McCulloch, 2002; Sun et al., 2005; Reynaud et al., 2007), (4) upwelling/tidal pumping 

(Smith et al., 2006), (5) precipitation/river run-off  (Smith et al., 2006; Mitsuguchi et 

al., 2008; Gonneea et al., 2017), (6) local reef ecology (Quinn and Sampson, 2002; 

Reynaud et al., 2007), and/or (7) trace element vital eff ects (Sinclair, 2005; 2006).  These 

parameters should be incorporated into the equation (Dietzel et al., 2004; Gaetani and 

Cohen, 2006), ruled as insignifi cant in altering the temperature signal (Watanabe et al., 

2001; Marriott et al., 2004b; Moreau et al., 2015), and/or identifi ed as possible causes of 

extreme element/Ca ratios that must be removed from the dataset before developing the 

calibration (Shen and Dunbar, 1995; Tudhope et al., 1996; Shaw et al., 1998; Sinclair and 

McCulloch, 2004; Prouty et al., 2010; Gonneea et al., 2017).  Accordingly, the production 

5. Geographic variability

 Calibrations based on the same proxy and developed for the same coral species 



of a ‘good’ calibration requires a detailed characterization of all aspects of the geographic 

variability as close to the coral as possible.  This will ensure that any variability recorded 

by the element/Ca proxies can be directly correlated to seawater temperature and will not 

be infl uenced by other environmental factors that could aff ect the resultant equation.  

6. Sampling analytics

 Diff erent analytical procedures have commonly been cited as the underlying 

reason for variability between coral calibrations that used the same proxy, especially  

when the calibrations are developed for the same coral species from similar 

environments.  Variations in analytical procedures such as instrument measured water 

temperatures, coral sampling, and/or methods used to process the data, can also cause 

substantial diff erences between the resultant equations.  

6.1. Instrument measured water temperatures

 The method used to obtain instrument measured water temperatures and the scale 

of measurement can cause substantial discrepancies between measured water temperature 

and coral derived water temperature (e.g., Scott et al., 2010, for a review).  Water 

temperature measurements used for calibrations are commonly at a coarse resolution 

(e.g., satellite 1° x 1° gridded data, near-by monitoring/weather stations >1 km away), at 

extended time intervals (e.g., ship based monitoring >1 month between observation), and/

or are unavailable at remote reef sites (Casey and Cornillon, 1999).  Satellite, ship based, 

and/or near-by weather station data with a coarse resolution, may not represent the water 

temperatures where the coral actually grew (Pfeiff er et al., 2009; Alpert et al., 2016).  

6.2. Methodology 

 Diff erent studies commonly result in diff erent equations because of the methods 

used to develop them (Quinn and Sampson, 2002; Swart et al., 2002; Goodkin et al., 
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2005; Yu et al., 2005; Correge, 2006; Ourbak et al., 2006; Smith et al., 2006; Reynaud et 

al., 2007; Saenger et al., 2008; Hathorne et al., 2013).  These diff erences have been 

related to any of the following issues:

• Sample pre-treatment, where certain cleaning procedures have been shown to 

cause leaching of specifi c elements that, in turn, leads to erroneous temperature 

derivations (Mitsuguchi et al., 2001; Watanabe et al., 2001; Quinn and Sampson, 

2002; Elderfi eld et al., 2006). 

• Diff erent methods used to collect the samples, which may vary from 

micromilling, freezing microtome techniques, to laser aided drilling (e.g., 

Alibert and McCulloch, 1997; Watanabe et al., 2001; Cohen and Gaetani, 2010b) 

can signifi cantly impact the resultant equation.  Each collection method has 

advantages and disadvantages depending on the desired sampling resolution, time, 

and costs involved.  Micromilling is typically the most cost-eff ective technique, 

as only an automated drill with a computer-controlled positioning system is 

required to sample the coral skeleton at fi xed increments.  The freezing microtome 

technique is less commonly used as it requires a cold room and relies on the coral 

samples being frozen numerous times during the sampling process.  Although 

laser aided drilling is the most expensive method the fact that the samples can be 

generated and measured for elemental concentrations at the same time with very 

high precision makes it the most time effi  cient.  

• The size of the sample varies depending on the width of the coral growth bands  

 and the desired sampling resolution.  Typically, studies that use the micromilling 

or freezing microtome techniques generate samples that are 2 to 5 mm in diameter 

and 1 to 2 mm deep.  Studies that use laser aided drilling typically generate 

samples with much smaller diameters (<80 μm) and a higher frequency based 

on beam size.  Sampling at fi xed increments is a common practice in element/

Ca proxy studies, where samples are usually taken at 0.5 to 2 mm intervals, in 
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accordance with the desired sampling resolution.  This type of fi xed sampling, 

however, can result in growth rate biases (summer vs winter growth) that can 

lead to over/under sampling specifi c growth bands.  Discrepancies between the 

size and spacing between samples can result in skewed geochemical signals (de 

Villiers et al., 1994; Mitsuguchi et al., 1996; Allison and Finch, 2004; Goodkin et 

al., 2005; Smith et al., 2006; Giry et al., 2010; Sadler et al., 2016a).  

• Sample frequency in diff erent studies have varied from fortnightly to yearly.  A 

reduced number of samples used to develop an equation can cause smoothing of 

the geochemical signal so that it can no longer refl ect the fl uctuations in yearly 

seawater temperature (Swart et al., 2002; Sadler et al., 2015).  Therefore, Swart et 

al. (2002) and Sadler et al. (2015) argued that increasing the number of samples 

per year can reduce the eff ects of signal smoothing.  

• The sampling path and the type of skeletal element used to generate the 

element/Ca ratios are the most critical aspects of sampling a coral skeleton for 

geothermometry.  These samples should be taken along the maximum growth axis 

from a single type of skeletal material.  Deviation from the major growth axis can 

lead to the incorporation of diff erent types of skeletal material that do not have 

element/Ca ratios consistent with the ambient water temperature.  Thecal walls are 

the best skeletal structure to sample for geochemical analysis (Barnes and Lough, 

1993; Watanabe et al., 2001) because the element/Ca ratios from these structures 

most accurately refl ects seawater temperature (Mitsuguchi et al., 1996; Shen et 

al., 1996; Alibert and McCulloch, 1997; DeLong et al., 2013; Sadler et al., 2015; 

2016a). 

• The type of correlation and regression (i.e., correlation of extremes, correlation 

between known dates, linear interpolation, exponential interpolation) used to fi t 

the element/Ca proxy data to the measured water temperatures can impact the 

resulting equation (Sinclair et al., 1998; Cardinal et al., 2001; Swart et al., 2002; 
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Lough, 2004; Cahyarini et al., 2009; Nurhati et al., 2011; Xu et al., 2015).  The 

most reliable type of correlation is one that pairs known dates from the instrument 

measured water temperatures and the element/Ca data based on the location of the 

samples throughout each of the coral growth bands.  This method ensures that the 

measured water temperatures are being correlated with an element/Ca ratio from 

the same time period.  Correlation of extremes relies on the assumption that the 

extreme values recorded from the measured temperatures relate to those from the 

element/Ca ratios.  This, however, is not always the case (e.g., Hart and Cohen, 

1996; Sinclair et al., 1998; 2005) and can lead to asynchronous element/Ca-

temperature signals.  Linear interpolation is the most common type of regression 

used, as it has been shown that the incorporation of elements into the coral 

skeleton may be primarily a function of water temperature (Chave, 1954; Weber, 

1973; Min et al., 1995; Hart and Cohen, 1996; Fowell et al., 2016).

• The analytical techniques, such as ICP-MS, ICP-AES, TIMS, SIMS, LA-ICPMS 

will infl uence the generation and precision of the geochemical data (Correge, 

2006; Ourbak et al., 2006; Alibert and Kinsley, 2008).  ICP-MS analyses, for 

example, show more variability in the element/Ca ratios then the analyses 

obtained from ICP-AES, and data from TIMS and SIMS off er higher precision 

than data from LA-ICPMS (Correge, 2006; Ourbak et al., 2006; Alibert and 

Kinsley, 2008; Giry et al., 2010).  In order to use coral skeletal element/Ca proxies 

for paleotemperature reconstructions, high-precision analytical instruments (i.e., 

SIMS, TIMS, LA-ICPMS) with the ability to target specifi c regions of the coral 

microstructure and produce accurate measurements of the elements with small 

associated errors (<0.1 wt%) should be used (Beck et al., 1992; de Villiers et al., 

1994; McCulloch et al., 1994; Alibert and McCulloch, 1997).  

• The interlaboratory standards used for various element analyses of coral skeletons 

can impede direct comparisons between diff erent studies.  Some studies have used 
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the Davies Reef Coral Standard (DRCS) developed from Porites mayeri (Sinclair 

et al., 1998), the Amedee Island Coral Standard (AICS) developed from Porites 

lutea (Quinn and Sampson, 2002), the New Caledonia Coral Standard (NC20) 

developed from Porites (Correge et al., 2000), and/or an inorganic in-house 

standard.  As there are no universally applied well-characterized interlaboratory 

coral standards for elemental analysis, discrepancies have resulted from the use of 

diff erent standard material (Quinn and Sampson, 2002; Ourbak et al., 2006).

 Many studies have tried to mitigate the problems that arise from the variability 

that can be incorporated into the coral based calibration by sampling analytics.  Well 

developed element/Ca equations generally result from analytical protocols, such as laser 

aided drilling along the maximum growth axis of the thecal walls at fi xed increments.  

This allows for the highest possible resolution (smallest distance between samples) 

using a high-precision analytical instrument (i.e., SIMS, TIMS, LA-ICPMS) to generate 

the elemental concentrations from the coral skeleton.  Once the element/Ca ratios are 

generated, they should be correlated to measured temperature based on known dates 

and then linearly regressed to produce the equation.  Additionally, comparisons with 

other proxy types, multiple corals, and/or replicate time series can reduce coral/location 

specifi c variability and result in a more robust equation (Smith et al., 1979; Alibert and 

McCulloch, 1997; Crowley et al., 1999; Quinn and Sampson, 2002; Stephans et al., 

2004; Goodkin et al., 2007; Cahyarini et al., 2009; Pfeiff er et al., 2009; DeLong et al., 

2011; 2013; Grove et al., 2013; DeCarlo et al., 2016; Alpert et al., 2017; Flannery et al., 

2018).  Consistency between studies should be maintained in terms of the (1) sample 

pre-treatment, resolution, and protocols (Swart et al., 2002; Goodkin et al., 2005; Yu et 

al., 2005; Smith et al., 2006; Reynaud et al., 2007; Saenger et al., 2008), (2) analytical 

techniques used (Beck et al., 1992; de Villiers et al., 1994; McCulloch et al., 1994; 

Alibert and McCulloch, 1997; Correge, 2006; Ourbak et al., 2006; Alibert and Kinsley, 

2008), and (3) method of calibration/regression (Sinclair et al., 1998; Cardinal et al., 

2001; Swart et al., 2002; Lough, 2004; Cahyarini et al., 2009; Nurhati et al., 2011; Xu 
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et al., 2015).  Using consistent sampling analytics will negate the variability imposed by 

diff erent methodologies.          

   

7. Calculated water temperatures

 Three hundred and two published equations, based on the nine most commonly 

used element/Ca proxies (Supplementary Table 2.1-2.8), were applied to dataset I in 

order to assess the calculated temperature (Tcal) generated by each of those equations.  

Assessment was based on comparisons of the range of Tcal relative to the 18° to 36°C 

temperature range that is favored by modern corals.  An equation is considered applicable 

if it generates Tcal values that are within the coral growth window temperature (CGT) 

range and/or if less then 10% of the Tcal values are ±1°C outside of the CGT range (i.e., 

17° to 37°C).

7.1. Sr/Ca geothermometry 

 Sr/Ca geothermometry has been widely applied to corals, with at least 228 Sr/Ca 

equations being proposed (Supplementary Table 2.1).  Although based on various coral 

species, most were derived from Porites (148/228).  Application of these equations to the 

Sr/Ca ratios in dataset I yielded Tcal from -507° to +860°C (Figs. 2.2. 2.3A) with many 

values signifi cantly outside of the CGT range.  The equations of Weber (1973; K(Sr/Ca)

(distribution coeffi  cient)= 1.0732 + 0.0024 * SST – 0.0175 * growth rate (mm/yr)) with 

Tcal from 29° to 31°C developed from Acropora, Boiseau et al. (1997; Sr/Ca= 18.20 – 

0.330 * SST) with Tcal from 25° to 33°C developed from Acropora, and Cahyarini et al. 

(2009; Sr/Ca= 12.82 – 0.150 * SST) with Tcal from 19° to 37°C developed from Porites 

produced temperatures in the CGT range (Fig. 2.2).  

7.2. Mg/Ca geothermometry

 Application of twenty-two Mg/Ca equations, developed from Porites, Acropora, 
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Fig. 2.2.  Comparison between the calculated temperatures from Dataset I derived from the 

published Sr/Ca equations and the modern coral growth window temperature range 

(CGT; shown in grey). Numbers with more than one reference indicate that these 

equations yielded the same calculated temperature range. Equations from 1- Weber 

(1973); 2 to 4- Houck et al. (1977); 5 to 7- Smith et al. (1979); 8- Beck et al. (1992); 

(1994); DeLong et al. (2010); 9- de Villiers et al. (1994); Fallon et al. (1999); Nurhati 

et al. (2009); 10 and 11- de Villiers et al. (1994); 12- de Villiers et al. (1995); 13- Min 
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et al.  (1995); 14- Mitsuguchi et al. (1996); Shen et al. (1996); Alibert and McCulloch 

(1997); Bessat (1997); Heiss et al. (1997); Gagan et al. (1998); Sinclair et al. (1998); 

McCulloch et al. (1999); Correge et al. (2000); Linsley et al. (2000); McCulloch and 

Esat (2000); Marshall and McCulloch (2001); Correge et al. (2001); Marshall and 

McCulloch (2002); DeLong et al. (2007); Inoue et al. (2007); Felis et al. (2012); Gagan 

et al. (2012); Bolton et al. (2014); 15- Boiseau et al. (1997); 16- Schrag (1999); Linsley 

et al. (2000); Ramos et al. (2017); 17- Wei et al. (2000); Nurhati et al. (2011); Carilli 

et al. (2014); 18- Cardinal et al. (2001); 19- Quinn and Sampson (2002); Swart et al. 

(2002); Felis et al. (2004); Stephans et al. (2004); Sun et al. (2005); Correge (2006); 

Pfeiff er et al. (2006); Mitsuguchi et al. (2008); Flannery et al. (2018); 20- Cohen et 

al. (2002); Giry et al. (2012); Alpert et  al. (2016); 21- Fallon et al. (2003); Calvo et 

al. (2007); DeLong et al. (2014); Kuff ner et al. (2017); 22- Allison and Finch (2004); 

23- Bagnato et al. (2004); 24- Correge et al. (2004); 25- Kilbourne et al. (2004); 26- 

Linsley et al. (2004); 27- Yu et al. (2004); 28- Zinke et al. (2004); 29- Goodkin et al. 

(2005); Seo et al. (2013); 30- Yu et al. (2005); Cahyarini et al. (2008); Deng et al. 

(2009); Hetzinger et al. (2006); 31- Ourbak et al. (2006); 32- Gallup et al. (2006); 33- 

Smith et al. (2006); Flannery and Poore (2013); 35- Goodkin et al. (2007); 36- Saenger 

et al. (2008); 37- Cahyarini et al. (2009); 38- Pfeiff er et al. (2009); 39- Armid et al. 

(2011); 40 and 41- DeLong et al. (2011); 42- Siriananskul et al. (2012); Siriananskul 

and Pumijumnong (2014); Alpert et al. (2016); 43- Grove et al. (2013); von Reumont 

et al. (2016); 44- Xu et al. (2015); 45- Sadler et al. (2016a); 46- Murty et al. (2018). 

Arrows indicate values that extend off  the scale. All equations are available in 

Supplementary Table 2.1.
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Fig. 2.3.  Histograms of the average calculated temperatures produced by the 302 published 

element/Ca equations using Dataset I. (A) Sr/Ca equations. (B) Mg/Ca equations. (C) 

U/Ca and Sr-U equations. (D) Li/Ca, Li/Mg, and Mg/Li equations. (E) Ba/Ca and B11/

Ca equations. 

and Orbicella (Supplementary Table 2.2) to dataset I yielded Tcal from -13° to +69°C 

(Figs. 2.3B, 2.4A).  Only the equation proposed by Watanabe et al. (2001; Mg/Ca= -3.24 

+ 0.280 * SST), developed from Orbicella, produced Tcal in the CGT range with values

from 21° to 34°C (Fig. 2.4A).   

7.3. U/Ca geothermometry

 Application of the twenty-one U/Ca equations developed from Porites 

(Supplementary Table 2.3) to dataset I yielded Tcal from 2° to 141°C (Figs. 2.3C, 2.4B).  

Eight equations resulted in Tcal in the CGT range, including four equations from Min et al. 

(1995; U/Ca= 2.23 – 0.047 * SST; U/Ca= 2.27 – 0.047 * SST; U/Ca= 2.45 – 0.054 * SST; 

U/Ca= 2.11 – 0.043 * SST) with Tcal from 17° to 36°C, one equation from Sinclair et al. 

(1998; U/Ca= 2.24 – 0.046 * SST) with Tcal from 18° to 33°C, one equation from Fallon 

et al. (1999; U/Ca= 2.26 – 0.044 * SST) with Tcal from 20° to 35°C, and two equations 

from Quinn and Sampson (2002; U/Ca= 2.19 – 0.044 * SST; U/Ca= 2.31 – 0.046 * SST) 

with Tcal from 18° to 35°C (Fig. 2.4B).

7.4. Sr-U geothermometry

 Three Sr-U equations, developed for Porites and various other coral species 

(Supplementary Table 2.4), when applied to dataset I yielded Tcal from 23° to 40°C (Figs. 

2.3C, 2.4C).  Although most calculated temperatures are in the CGT range, one equation 

from DeCarlo et al. (2016; T=-11*(Sr-U-9) + 28.1), developed from Porites, and the   
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Fig. 2.4.  Comparison between the calculated temperatures from Dataset I derived from the 

published element/Ca equations and the modern coral growth window temperature 

range (CGT; shown in grey). (A) Mg/Ca equations: 1- Mitsuguchi et al. (1996); 2- 

Mitsuguchi et al. (2001); 3- Sinclair et al. (1998); 4- Fallon et al. (1999); 5- Wei et al. 

(2000); 6- Watanabe et al. (2001); 7 to 10- Quinn and Sampson (2002); 11 to 16- Fallon 

et al. (2003); 17- Yu et al. (2005); 18- Ourbak et al. (2006); 19- Reynaud et al. (2007); 

20-Armid et al. (2011); 21- Siriananskul et al. (2012); 22- Hathorne et al. (2013). (B) 

U/Ca equations: 1 to 4- Min et al. (1995); 5- Sinclair et al. (1998); 6- Fallon et al. 

(1999); 7- Wei et al. (2000); 8 to 11- Quinn and Sampson (2002); 12 to 18- Fallon et 

al. (2003); 19- Ourbak et al. (2006); 20- Felis et al. (2009); 21- Armid et al. (2011). (C) 



Sr-U equations; 1 and 2- DeCarlo et al. (2016); 3- Alpert et al. (2017); Li/Ca equations: 

4 to 7- Hathorne et al. (2013); Li/Mg equations: 8 and 9- Hathorne et al. (2013); 10 

to 12- Fowell et al. (2016); Mg/Li equations: 13 to 15- Hathorne et al. (2013); Ba/Ca 

equation: 16- Gonneea et al. (2017); B11/Ca equations: 18- Sinclair et al. (1998); 19- 

Fallon et al. (1999); 20 to 25- Fallon et al. (2003). Arrows indicate values that extend 

off  the scale. All equations are available in Supplementary Tables 2.2 to 2.8.
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equation from Alpert et al. (2017; T= -11*(Sr-U) + 126.98), developed from 5 species of 

Pacifi c and Atlantic corals, produced Tcal from 24° to 30°C (Fig. 2.4C). 

            

7.5. Li/Ca geothermometry

 Application of fi ve Li/Ca equations, developed using Porites (Supplementary 

Table 2.5), to dataset I resulted in Tcal from -79° to +155°C (Figs. 2.3D, 2.4C).  Given that 

all of these equations produced Tcal outside of the CGT range, this geothermometer is not 

considered further.  

7.6. Li/Mg and Mg/Li geothermometry

 The eight equations that use Li and Mg ratios to determine SST were developed 

from Porites, Siderastrea, and various other coral species (Supplementary Table 2.6).  

Application to dataset I yielded Tcal of 9° to 49°C for Li/Mg and 1° to 33°C for Mg/Li 

(Figs. 2.3D, 2.4C).  Two of the Li/Mg equations from Fowell et al. (2016; Li/Mg = -0.10 

* SST + 3.962; Li/Mg = 5.405e-0.05SST) developed from various coral species produced 

Tcal from 18° to 34°C.  One of the Mg/Li equations from Hathorne et al. (2013; Mg/Li = 

-0.40 + 0.04 * SST) developed from Porites produced Tcal from 20° to 33°C (Fig. 2.4C).

            



 

7.7. Ba/Ca geothermometry

 The only Ba/Ca equation, developed from laboratory grown Favia 

(Supplementary Table 2.7), when applied to dataset I yielded Tcal of 23° to 71°C (Figs. 

2.3E, 2.4C), values that are at the upper end or above the CGT range (Fig. 2.4C).  Given  

that this equation produced Tcal outside of the CGT range, this geothermometer is not 

considered further. 

7.8. B11/Ca geothermometry

 Six B11/Ca equations have been developed from Porites (Supplementary Table 

2.8) when applied to dataset I yielded Tcal from -15° to +56°C (Figs. 2.3E, 2.4C).  Three 

equations resulted in Tcal in the CGT range, including one equation from Sinclair et al. 

(1998; B11/Ca = 1000 – 20.60 * SST) with Tcal from 19° to 34°C and two equations from 

Fallon et al. (2003; B11/Ca = 9093 – 17.07 * SST, B11/Ca = 8952 – 16.50 * SST) with Tcal 

from 18° to 36°C (Fig. 2.4C).         

8. Cayman coral temperature reconstruction

 Of the 302 element/Ca equations listed in the Supplementary fi les, the 17 that 

resulted in temperatures in the CGT range (17° to 37°C) for dataset I were then applied 

to dataset II (Fig. 2.2).  Dataset II consists of element/Ca ratios from one specimen of 

O. annularis that was collected from off shore George Town, Grand Cayman, at a water 

depth of 20 m.  This coral, 42 cm high and 28 cm in diameter, is characterized by three 

branches that are 6 to 9 cm wide and up to 18 cm long.  Based on growth band counting 

from the known death year, this coral grew between 1962 and 2014 (Booker et al., 2019).  

One thin section from each branch of the coral (Fig. 2.1), included the skeleton that grew 

between 1996 and 2002 and therefore corresponds to the time span for which instrument 

measured water temperatures are available (NOAA, 2018; Booker et al., 2019).  During 
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this period T varied from 25° to 31°C with an average of 28°C. 

8.1. Sr/Ca geothermometry

 Application of the three viable Sr/Ca equations (i.e., Weber, 1973; Boiseau et 

al., 1997; Cahyarini et al., 2009) to dataset II yielded Tcal of 8° to 33°C (Fig. 2.6).  The 

equation from Cahyarini et al. (2009) produced Tcal (8° to 33°C) that extended below the 

CGT range and the measured SST from Grand Cayman.  Although the equation from 

Weber (1973) produced Tcal from 28° to 31°C, these temperatures do not include values 

that corresponded to the full SST range for the area where the coral grew.  The equation 

of Boiseau et al. (1997) yielded Tcal from 20° to 31°C with an average of 27°C, which are 

consistent with the measured SST for the area (Fig. 2.7).

8.2. Mg/Ca geothermometry

 Applying the one viable Mg/Ca equation (i.e., Watanabe et al., 2001) to dataset 

II yielded Tcal of 27° to 61°C, with most temperatures at the upper end or above the 

CGT range and the measured Tcal from Grand Cayman.  This equation also resulted in 

the highest degree of variability between the three coral branches when compared to 

the other element/Ca proxies (Fig. 2.6).  It is not surprising that the Mg/Ca calibration 

did not produce realistic Tcal, as it has been shown that the incorporation of the Mg into 

the coral skeleton is biologically mediated and not solely related to SST (Sinclair et al., 

2006; Allison and Finch, 2007; Montagna et al., 2014).  Accordingly, this equation is not 

considered any further.  

8.3. U/Ca geothermometry

 Application of the eight viable U/Ca equations (i.e., Min et al., 1995; Sinclair et 

al., 1998; Fallon et al., 1999; Quinn and Sampson, 2002) to dataset II yielded Tcal of 19° 

to 37°C, values which are consistent with the CGT range.  The Tcal derived from the three   
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Fig. 2.6.  Comparison between the calculated temperatures from Dataset II (Cayman coral 

branches A, B, and  C) using the 17 ‘best’ equations as determined from Dataset I.  

Equations from: 1-Weber (1973); 2- Boiseau et al. (1997); 3- Cahyarini et al. (2009); 

4- Watanabe et al. (2001); 5- Min et al. (1995); 6- Sinclair et al. (1998); 7- Fallon et 

al. (1999); 8- Quinn and Sampson (2002); 9- DeCarlo et al. (2016); 10- Alpert et al. 

(2017); 11- Sinclair et al. (1998); 12- Fallon et al. (2003). Dark grey shading  represents 

the measured SST from Grand Cayman and the light grey shading represents the coral 

growth window temperature range (CGT). Arrows indicate values that extend off  the 

scale.
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Fig. 2.7.  (A) Measured water temperatures (1 m water depth) from off shore George Town, near 

Magic Reef. (B) Calculated temperatures for Cayman coral branch A. (C) Calculated 

temperatures for Cayman coral branch B. (D) Calculated temperatures for Cayman 

coral branch C. The coral branches show broadly seasonal cycles, with those from 

brach A displaying the most condidtent cyclistty. Red line indicates the temperatures 

calculated using the Sr/Ca equation of Boiseau (1997). Green line indicates the 

temperatures calculated using the U/Ca equation of Min et al. (1995). Black line 

indicates the temperatures calculated using the B11/Ca equation of Sinclair et al. (1998). 

Blue line indicates the temperatures calculated using the Sr-U equations of DeCarlo et 

al. (2016) and Alpert et al. (2017).  
 

coral branches were consistent with each other (Fig. 2.6).  The equations from Sinclair et 

al. (1998), Fallon et al. (1999), and Quinn and Sampson (2002) resulted in slightly higher 

Tcal (20° to 37°C), whereas three equations from Min et al. (1995) produced slightly lower 

Tcal (19° to 34°C).  The other equation from Min et al. (1995; U/Ca= 2.45 – 0.054 * SST) 

resulted in Tcal from 21° and 33°C with an average of 29°C, values that are consistent 

with the measured SST from Grand Cayman (Fig. 2.7).

8.4. Sr-U geothermometry

 The two viable Sr-U equations (i.e., DeCarlo et al., 2016; Alpert et al., 2017) 

yielded Tcal of 17° to 31°C (average of 27°C), with similar values between the two 

equations for each coral branch (Fig. 2.6).  Both equations produced temperatures that are 

consistent with the measured SST from Grand Cayman and the CGT range (Fig. 2.7).

             

8.5. Li based geothermometry 

 The three Li based equations could not be tested with the Cayman coral data 



because Li was below detection limits.

           

8.6. B11/Ca geothermometry

 Applying the three B11/Ca equations (i.e., Sinclair et al., 1998; Fallon et al., 2003) 

to dataset II yielded Tcal of 18° to 38°C (Fig. 2.6).  The two equations from Fallon et al. 

(2003) resulted in Tcal that extended beyond the CGT range, whereas the equation of 

Sinclair et al. (1998) yielded Tcal from 19° to 35°C with an average of 27°C.  The B11/

Ca temperature profi les derived from the three branches of the Cayman coral, are highly 

variable when compared to the measured SST from Grand Cayman (Fig. 2.7).  This 

discrepancy may be due to the fact that the B11/Ca ratio is not only responsive to the SST 

but also to the alkalinity and salinity of the surrounding seawater (Sinclair et al., 1998).

8.7. The ‘best’ equations

 Application of 302 published element/Ca equations to dataset I and then applying 

the 17 viable equations to dataset II indicates that the equations from Boiseau et al. 

(1997) for Sr/Ca, Min et al. (1995) for U/Ca, DeCarlo et al. (2016) and Alpert et al. 

(2017) for Sr-U, and Sinclair et al. (1998) for B11/Ca produced temperatures that were in 

the CGT range (17° to 37°C) and measured SST (25° to 31°C) from Grand Cayman.  The 

temperature profi les from each of the coral branches display somewhat seasonal cycles 

similar to the measured SST from Grand Cayman.  There are, however, some diff erences 

between the Tcal calculated from the three coral branches.  The Sr/Ca and Sr-U equations 

record generally cool Tcal (20° to 31°C and 17° to 31°C, respectively) whereas the B11/Ca 

equation records generally warm Tcal (19° to 35°C) when compared to the other equations 

(Figs. 2.6, 2.7).  The U/Ca equation, however, yielded Tcal (21° to 33°C) that are not only 

in the CGT range and measured SST from Grand Cayman, but also resulted in the most 

consistent Tcal profi les between the three coral branches and the measured SST in terms of 

seasonal fl uctuations (Fig. 2.7).  Slight variations in Tcal between the three coral branches 
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may be related to (1) diff erences in growth rates and/or tissue thickness of the three 

branches (Weber, 1973; de Villiers et al., 1994; Gallup et al., 2006; Alibert and Kinsley, 

2008; Cohen and Gaetani, 2010; Sadler et al., 2016a), (2) use of diff erent element-

coral standards (Quinn and Sampson, 2002; Ourbak et al., 2006), (3) under sampling 

of the elemental data (Swart et al., 2002; Goodkin et al., 2005; Smith et al., 2006), (4) 

diff erences between the water temperature the coral experienced and the measured SST 

(Marshall and McCulloch, 2002; Goodkin et al., 2005; Cahyarini et al., 2009; Pfeiff er et 

al., 2009), and/or (5) uncertainties associated with the element data that contributes to an 

overestimation of Tcal (Alpert et al., 2017).    

 Underpinning the studies by Min et al. (1995), Boiseau et al. (1997), Sinclair et al. 

(1998), DeCarlo et al. (2016), and Alpert et al. (2017) that produced the ‘best’ equations 

was a thorough characterization of the environmental conditions that infl uenced the 

coral growth.  These parameters included local daily SST and salinity measurements, 

analyses of the seawater elemental and isotopic concentrations at the reef site, and the 

infl uence of tidal/fresh-water exchange.  These studies also used similar methodologies 

with continuous sampling along the maximum growth axis of the coral, similar sampling 

resolutions (by-monthly to monthly), comparison of the elemental proxy to at least one 

other temperature proxy and coral specimen, and use of similar high precision analytical 

techniques (TIMS and/or LA-ICP-MS).

9. Discussion

 Long term monitoring of the temperature regimes in the tropical oceans is critical 

to understanding how these oceans will respond to global warming.  Such long-term 

records, however, are sparse, at low resolution, and/or semi-continuous in temporal 

coverage (Barnett et al., 1992).  The development of element/Ca geothermometry from 

coral skeletons, as opposed to the traditional method of oxygen isotope geothermometry, 

has produced a suite of geothermometers that are generally regarded as being reliable 
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for determining past SST in tropical regions.  Many studies have used element/Ca 

geothermometry in conjunction with δ18O geothermometry to calculate δ18Owater values, 

which can be used as a measure of sea surface salinity, from modern and fossil corals 

(e.g., Kilbourne et al., 2004; 2007; 2010; Ayling et al., 2006; Correge, 2006; Booker 

et al., 2019; 2020).  Geochemical analyses of corals have commonly been used to 

reconstruct SST because of the large array of elements that are incorporated in their 

aragonitic skeletons.  Corals are ideal for this purpose because they can grow for up 

to 1000 years and therefore have the potential of yielding long-term high-resolution 

SST records.  In contrast, other organisms such as foraminifera, brachiopods, and fi sh, 

that have also been used for this purpose, are limited by their short life spans, mobile 

lifestyles, and their skeletal structures that are highly susceptible to diagenetic alteration.  

Corals have therefore become one of the most valuable archives for paleoclimate 

information in remote tropical locations where instrument measured temperatures are rare 

or non-existent (Gagan et al., 2000; Correge, 2006; Felis et al., 2015; Brocas et al., 2016; 

Alpert et al., 2017).  Accordingly, coral-based element/Ca geothermometry has been 

widely used to reconstruct past SST records (Guilderson et al., 1994; Beck et al., 1997; 

Sinclair et al., 1998; McCulloch et al., 1999; 2000; Correge et al., 2001; Watanabe et al., 

2001; Hendy et al., 2002; Quinn and Sampson, 2002; Fallon et al., 2003; Correge et al., 

2004; Felis et al., 2004; 2009; Ourbak et al., 2006; Kilbourne et al., 2007; Hathorne et al., 

2013).     

 Numerous element/Ca equations have been developed for modern tropical corals.  

The excessively high number of equations, however, brings into question the validity 

of element/Ca geothermometry for corals.  This is especially true for fossil corals that 

have no modern analogs.  Without reference to modern counterparts, it becomes diffi  cult 

to determine if the calculated temperatures are truly representative of ‘real’ temperature 

fl uctuations (Gaetani and Cohen, 2006).  Equations used with fossil coral data, however, 

require an equation produced from a modern coral that is considered to be essentially 
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the same as the fossil coral (i.e., same species and similar environmental settings; 

DeLong et al., 2010).  Many studies, however, have successfully reconstructed SST 

using modern corals (e.g., Sinclair et al., 1998; Fallon et al., 1999; 2003; Cardinal et al., 

2001; Quinn and Sampson, 2002; Swart et al., 2002; DeLong et al., 2007; Goodkin et 

al., 2007; Sadler et al., 2016a; Alpert et al., 2017).  These well developed modern coral 

element/Ca calibrations have also been successfully applied to fossil corals as far back 

as the Pleistocene (e.g., Gagan et al., 1998; McCulloch et al., 1999; Correge et al., 2000; 

2001; 2004; Felis et al., 2004; 2015; Kilbourne et al., 2004; Yu et al., 2004; Goodkin 

et al., 2005; Deng et al., 2009; DeLong et al., 2010; 2012; 2013; Flannery and Poore, 

2013; Brocas et al., 2016; Sadler et al., 2016b; 2017; Booker et al., 2020).  That only 17 

of the 302 element/Ca equations produced Tcal in the CGT range may, in part, refl ects 

the fact that the total range of element/Ca ratios used in Dataset I exceeds the range of 

values for which specifi c equations were developed.  In many cases use of a narrower 

range of element/Ca ratios to calculate temperatures leads to the production of ‘realistic’ 

temperature (Figs. 2.4, 2.5).  Many of the published equations, therefore, should only 

be used to reconstruct SST from corals that have similar element/Ca ratios to those used 

in the original calibration.  Well developed element/Ca equations for a specifi c modern 

coral specimen and/or location are underpinned by (1) a thorough assessment of the 

environmental conditions, (2) a high sampling frequency of the coral growth bands, 

(3) samples from multiple coral specimens, use of replicate time series, and multiple 

temperature proxies (δ18O and/or element/Ca ratios) from the same sampling transect, and 

(4) high precision analytical techniques that generate accurate element/Ca ratios. 

 Although it has been suggested that a ‘universal geothermometer’ cannot be 

produced due to the innumerable factors that infl uence the element/Ca signal (Yu et 

al., 2005), analysis of the data used in this study indicates that some of the published 

element/Ca equations have the potential of being widely applied.  Application of the 302 

published element/Ca equations to Dataset I and the 17 viable equations to Dataset II 



identifi ed fi ve published element/Ca equations (Boiseau et al. (1997) for Sr/Ca, Min et 

al. (1995) for U/Ca, DeCarlo et al. (2016) and Alpert et al. (2017) for Sr-U, Sinclair et al. 

(1998) for B11/Ca) that can produce ‘realistic’ temperatures for various species of corals.  

Therefore, it seems appropriate that future paleoclimate studies that are based on coral 

skeleton element/Ca geothermometry should attempt to utilize one of these fi ve published 

element/Ca equations for calculating the SST.         

 

10. Conclusions 

 Modern tropical corals are one of the most valuable paleoclimate archives due 

to the extensive range of geothermometers that can be used to determine past SST 

from the element/Ca ratios in their aragonitic skeletons.  Given that the tropical oceans 

are the primary contributor to global climate variability over various time scales, it is 

critical to understand how the climate in these dynamic regions changes in response 

to global climate variability.  A review of the theory used to develop the element/

Ca geothermometers, the causes of variability between the published equations, and 

an assessment of the calculated temperatures relative to the coral growth window has 

produced the following important conclusions:

• The results produced from applying the element/Ca ratios derived from published 

values from 12 species of modern tropical coral (Dataset I) indicate that 17 of 

the 302 published equations yield temperatures within the coral growth window 

range.  

• Application of the 17 ‘best’ equations to the element/Ca ratios from a modern O. 

annularis from Grand Cayman (Dataset II) identifi ed fi ve equations (Boiseau et 

al. (1997) for Sr/Ca, Min et al. (1995) for U/Ca, DeCarlo et al. (2016) and Alpert 

et al. (2017) for Sr-U, Sinclair et al. (1998) for B11/Ca) that yielded Tcal that were 

consistent with measured SST.

• Some of the published element/Ca equations can be widely applied to various 
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coral species and it is recommended that priority should be given to these 

element/Ca equations for calculating the SST in future paleoclimate studies based 

on coral skeleton element/Ca geothermometry.  

 In an ideal situation, the only element/Ca equation that should be used for 

calculating SST is one that utilizes an element/Ca ratio that is solely a function of 

water temperature.  There are, however, still numerous unanswered questions with 

respect to element/Ca geothermometry.  In many cases it is diffi  cult to prove that the 

variability in the element/Ca ratios is dependent solely on temperature.  The most critical 

questions in this respect are those that relate to the mechanisms that control the uptake 

of elements into the coral skeleton and how that aff ects the element/Ca ratio that is used 

to calculate temperature.  Future research should therefore focus on (1) the factors that 

control element incorporation into the coral skeleton, (2) the reasons why elements are 

not uniformly incorporated into diff erent skeletal structures, and (3) what causes the 

diff erences between corals of the same species (i.e., the eff ect of coral size, age, and 

growth rate) and diff erent species. 
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CHAPTER 3

INSIGHTS INTO SEA SURFACE TEMPERATURES FROM THE CAYMAN 

ISLANDS FROM CORALS OVER THE LAST ~540 YEARS

1. Introduction

 Long-term global temperature reconstructions, based on data from speleothems, 

corals, ice cores, and/or sediment cores, have pointed to an overall global warming since 

1850 (e.g., Trenberth et al., 2007; Chollett et al., 2012a; Tiernery et al., 2017).  Other 

studies, however, have suggested global cooling (0.1 to 0.9°C/century) between 1950 and 

1989 or periods with little or no change in temperature between 1854 and 1950 (Atwood 

et al., 1992; Glynn, 1992).  Similarly, it has been suggested that the Caribbean region 

experienced signifi cant climatic changes over this time period that included, for example, 

an increase in rainfall and the number of high-temperature days since the 1950’s (Frich 

et al., 2002; Peterson et al., 2002), rapid warming (0.1°C/year) since the early 1980’s 

(Strong, 1989; McWilliams et al., 2005), warming of ~0.51°C/decade in Guadeloupe 

(Hetzinger et al., 2010), warming of ~0.8°C in the Florida Keys since the 1800’s (Kuff ner 

et al., 2015), cooling in the Western Atlantic from 1825-1834 and warming from 1995 to 

2004 (Tierney et al., 2015), and warming in the Cayman Islands (~0.5°C) between 1980 

and 1990 (Goreau et al., 1992).  In contrast, cooling has been highlighted in the Cariaco 

Basin from 1-1990 A.D. (Black et al., 2004) and no change in temperature since 1914 in 

the Gulf of Mexico and the Caribbean region (Atwood et al., 1992).

 Geochemical data from growth bands in corals have long been used as 

environmental proxies (Buddermeier et al., 1974; Moore and Krishnaswami, 1974; Baker 

and Weber, 1975; Dunbar et al., 1994; McCulloch et al., 1994; Linsley et al., 2008).  

Oxygen isotope compositions of corals have, for example, been used to trace temperature 
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and salinity variations (Epstein et al., 1953; Weber and Woodhead, 1972; Cole et al., 

1993; Abram et al., 2007; Peros et al., 2007; Linsley et al., 2008; Bolton et al., 2014), 

whereas carbon isotope compositions have been used to gain insight into nutrient levels, 

photosynthetic activity, water depth, and metabolic processes (Fairbanks and Dodge, 

1979; Swart, 1983; Gagan et al., 2000; Grottoli and Eakin, 2007).   

 The present study focuses on decadal-scale Surface Seawater Temperature (SST) 

changes from 1470 CE to present as derived from oxygen and carbon isotope data from 

corals from Grand Cayman and Cayman Brac (Fig. 3.1).  These data indicate that the 

central Caribbean has experienced four periods of temperature change and an overall 

~3°C temperature increase since 1815.  These temperature trends are consistent with 

other Caribbean records.  The conclusions derived from this study provide important 

constraints on the historical SST changes for a part of the Caribbean that has, up to now, 

been largely ignored in terms of its temperature record.

2. Terminology  

 The terminology used to denote and describe periods of time that are characterized 

by diff erent seawater temperatures and/or trends in temperature change is prodigious and 

commonly invoked without clear defi nitions of how such terms are derived and applied.  

In many cases, confusion arises simply because of the poor usage of terms that have not 

been clearly defi ned or that are used interchangeably with words of varying meanings.  

Accordingly, the terms used in this paper are defi ned as follows.

Cool Period: The majority of the calculated temperatures (Tcal) are lower than the present-

day average seawater temperature at the location of study.  This follows the 

defi nition of Chenoweth (1998).

Warm Period: The majority of the Tcal are higher than the present-day average seawater 

temperature at the location of study.  This follows the defi nition of Chenoweth 

(1998).
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Fig. 3.1. Location maps. (A) Map showing location of Grand Cayman and Cayman Brac. (B) 

Location of Magic Reef, Gary’s Wall, Dans Dive, and Tarpon Alley on Grand Cayman 

(red stars). (C) Location of storm rubble ridge on Cayman Brac (red star). 
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Mild Period: The majority of the Tcal are consistent with the present-day average seawater 

temperature in the location of study, allowing for seasonal fl uctuations of ±1°C.  

This usage is akin to that proposed by Saenger et al. (2009).

Cool Interval: This denotes an interval of time during which the Tcal is lower than the 

preceding time interval, but remains within the range of temperatures that defi ne 

either the encompassing Cool Period or Warm Period.

Warm Interval: This denotes an interval of time during which the Tcal is higher than the 

preceding time interval, but remains within the range of temperatures that defi ne 

either the encompassing Cool Period or Warm Period.  
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Trend: This term is used as an indicator of the direction of temperature (T) change, e.g., 

a warming trend signifi es an increase in T, whereas a cooling trend signifi es a 

decrease in T.  This usage of ‘trend’ is similar to that of Goreau et al. (1992), 

Corderio et al. (2014), and Alpert et al. (2017). 

 With this terminological scheme, the cool and warm periods represent a longer 

time duration than the cool and warm intervals.

3. Geographic Setting

 The Cayman Islands, which includes Grand Cayman, Cayman Brac, and Little 

Cayman (Fig. 3.1A), are high points on the Cayman Ridge, which extends from the Sierra 

Maestra Range of Cuba to the base of the British Honduras Continental Slope (Fahlquist 

and Davies, 1971; Perfi t and Heezen, 1978).  The Caribbean Sea around the Cayman 

Islands is characterized by warm, clear waters with normal salinity (Chollett et al., 

2012b).  These islands are characterized by narrow shelves and numerous lagoons with 

thriving coral growth.  Among the 44 species of corals identifi ed from the waters around 

Grand Cayman (Hunter, 1994), various species of Orbicella and Montastrea dominate. 

 The Cayman Islands enjoy a humid sub-tropical climate, dominated by the 

moisture-laden air masses of the North-East Trade Wind System (Blanchon, 1995).  For 

Grand Cayman, air temperature ranges from 21°W–33°C, and the ocean temperatures 

(0–14.5 m depth) range from 25.3°–30.8°C, with an average of 28.5°C (Goreau et al., 

1992; Chollett et al., 2012b; NOAA, 2018; Fig. 3.2).  The average rainfall is 1,220 mm/

year with the wet season from May to October and the dry season from November to 

April (Fig. 3.2D).  From 2007 to 2015, Cayman Brac experienced air temperatures of 

26.6°–30.6°C, with an average of 28.7°C (Fig. 3.2C) and received an average of 860 mm/

year rainfall (NOAA, 2018).  The wet season is characterized by high cloud cover, which 

results in a lower number of sunlight hours than during the dry season. 
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Fig. 3.2. Climatic conditions for Grand Cayman and Cayman Brac between 1981 and 2015. 

(A) Atmospheric and water temperatures (11.3-14.5 m depth) on Grand Cayman 

between 1991 and 2008. Data from the Department of Environment and the Water 

Authority, Cayman Islands. (B) Water temperatures (surface) for Grand Cayman 

between 1981 and 2010 (T derived from NOAA daily records).  (C) Water temperatures 

(surface) for Cayman Brac between 2007 and 2015 (T derived from NOAA daily 

records).  (D) Yearly rainfall for Grand Cayman between 2000 and 2012. (http://www.

worldweatheronline.com/george-town-weather-averages/ky.aspx).  
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4. Samples

 The coral reefs around the Cayman Islands are highly protected with the 

collection of corals prohibited.  The samples used in this research were obtained with the 

help and permission of the Department of Environment, Cayman Islands.  Five specimens 

of Orbicella annularis (formally Montastrea annularis, four from Grand Cayman, one 

from Cayman Brac) and two specimens of Montastrea cavernosa (from Grand Cayman) 

were used in this study.  Three corals came from Magic Reef (Fig. 3.1B), with a reef top 

depth of 20 m, that is located off  the southwest coast of Grand Cayman.  A cruise ship 

dragged its anchor across the reef in December 2014 and uprooted many corals.  The 

samples used in this study, collected in 2015, came from those uprooted corals.  Sample 

ER#30-C is a 19.5 cm high hemispherical M. cavernosa.  ER#31-A is a 48 cm high 

hemispherical O. annularis.  ER#32-A is a 40 cm high O. annularis with three broad 

branches.  

 Cores (9.5 cm diameter) were obtained from three corals on the fringing reef 

around Grand Cayman (Fig. 3.1B) in 1987 during the installation of boat moorings by 

the Department of Environment (Blanchon, 1995; Blanchon and Jones, 1995; Blanchon 

et al., 1997).  These corals came from: Gary’s Wall (GW-A) a 57 cm long O. annularis 

collected at 25 m water deep, Dan’s Dive (DD-A) a 54 cm long O. annularis collected at 

19.8 m water depth, Tarpon Alley (TA-C) a 35 cm long M. cavernosa collected at 15.8 

m water depth from the forereef of the fringing reef on the north margin of North Sound 

(Fig. 3.1B).

 The coral from Cayman Brac (CB1-A) is a 49.8 cm O. annularis that was 

collected from the coral rubble ridge (~1.5 m high, ~ 10 m wide) that stretches along the 

south coast of the island (Fig. 3.1C).  This ridge was created in 1932 by Hurricane Cuba 

(Rigby and Roberts, 1976), a category 5 hurricane with wind speeds up to 320 km/h, 16 

m high waves, and a storm surge up to 10 m (Sauer, 1982; Fenner, 1993; Markoff , 2012).  

No other hurricanes of this magnitude have aff ected Cayman Brac since 1932 (Markoff , 
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2015).  Eye-witnesses reported large boulders and ships being thrown on-shore and 

into buildings (Sauer, 1982; Markoff , 2012; 2015).  Importantly, the Oxford Expedition 

photographed the existence of this ridge in 1934 (sourced from the National Archives, 

Cayman Islands), shortly after it formed.  Thus, the death date of the Cayman Brac ridge 

coral is well established as 1932. 

5. Methodology

5.1.  Mineralogy determination 

5.1.1. X-Ray Diff raction (XRD)

 Mineralogy was confi rmed by XRD analyses using a Rigaku Geigerfl ex Powder 

Diff ractometer.  Seven samples, each weighing ~1 g, were taken from the base and bored 

margins of each coral, and ground into a fi ne powder using a mortar and pestle.  Thirty-

fi ve micro-samples, each ~300 mg, came from diff erent growth bands in each coral.  The 

percentages of aragonite and calcite were determined by the method used by Li and Jones 

(2013).

5.1.2. Thin section analysis

 Standard (27 x 46 mm) thin sections (1 from ER#30-C, 2 from ER#31-A, 4 from 

ER#32-A, 3 from CB1-A, 6 from TA-C), made from each coral, were used to verify the 

mineralogy of the corals and to examine the growth banding. 

5.1.3. Scanning Electron Microscopy (SEM)

 SEM photomicrographs of the corals were produced using a Zeiss Sigma 

Field Emission SEM with an accelerating voltage of 10 kV.  Two samples from each 

coral were taken from the base and top of corals ER#31-A, ER#32-A, CB1-A, GW-A, 

DD-A, and TA-C and from the right and left sides of ER#30-C.  These samples were 

mounted on SEM stubs with conductive glue and sputter coated with carbon.  The SEM 
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photomicrographs were used to determine if the corals had been altered in any way.   

5.2. Age determination

 Given that the death year of the corals from Magic Reef (2014) and Cayman Brac 

(1932) are known, the basal ages of each coral were determined by (1) 14C dating, (2) U/

Th dating, (3) growth band counting, and (4) calculations based on average growth rates.

 Carbon-14 dating of the base of the corals from Magic Reef, CB1-A, and DD-A 

was done at the A.E. Lalonde AMS Laboratory, University of Ottawa.  Pre-treatment 

following Crann et al. (2017) involved physical cleaning by manual abrasion and etching 

with 0.2N HCl.  Graphite targets for accelerator mass spectrometry were prepared from 

CO2 liberated by sample dissolution in anhydrous H3PO4 overnight at room temperature.  

Carbon-14 dating of the base of corals GW-A and TA-C, was performed using 

conventional gas-proportional counting as outlined by Blanchon (1995).  

 U/Th dating for samples from the base of corals ER#31-A, GW-A, DD-A, 

and TA-C, and the base and top of coral CB1-A were done at the GEOTOP-UQAM 

Laboratory, University of Quebec in Montreal.  These samples were powdered and 

dissolved in nitric acid, a 233U-236U-239Th calibration spike was added, and the mixture 

was evaporated to dryness before being dissolved once again in 7N HNO3 and ~10 mg of 

an iron carrier and left overnight for spike-sample equilibrium.  U and Th measurements 

were performed using a multicollector inductively coupled plasma mass spectrometer 

(MC-ICP-MS). 

5.3. X-Ray images

 X-Ray images were produced at the University of Alberta using a portable 

SY-31-100P X-Ray machine with scans generated at 70kV for 0.8 to 1.2 second scan 

times, depending on slab thickness.  On these images, the light-colored bands (white) 

represent the densest material whereas the dark bands represent less dense material (cf., 

Buddermeier et al., 1974; Moore and Krishnaswami, 1974; Hudson et al., 1976).  Growth 

band thickness was measured from the X-Ray images.
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5.4. Computer Tomography (CT) scan production and analysis

 CT scans, produced on an Aquilion ONE helical CT scanner at InnoTech Alberta 

(Edmonton, Alberta), were used to produce high-resolution density maps of each coral 

(cf., Bosscher, 1992; Chan et al., 2017).  Each CT scan, which has a 0.5 mm voxel depth 

and 0.47 mm pixel width, is a compilation of numerous slices through the coral that 

are perpendicular to the maximum growth axis (763 slices for ER#30-C; 883 slices for 

ER#31-A; 758 slices for ER#32-A; 1064 slices for CB1-A; 1277 slices for GW-A; 1085 

slices for DD-A; 548 slices for TA-C).  ImageJ was used to map and determine the grey 

values along the growth axis of each coral.  This calibration was performed using an 8-bit 

grey value step table, with 20 steps (changes in grey values); black was assigned a grey 

value of 0 and white a value of 252.  

 For each coral, a greyscale curve was produced using ERDAS Imagine.  The 

greyscale values range from 0–252, with each coral having its own minimum and 

maximum value, to allow direct comparison between the corals.  The original ERDAS 

Imagine graphs were smoothed using a 6-point moving average (or 3 years of coral 

growth).

5.5. Elemental analysis

 Powdered samples, weighing 19-68 mg (3 from ER#30-C, 32 from ER#31-A, 

6 from ER#32-A, 10 from CB1-A, 11 from GW-A, 12 from DD-A, 6 from TA-C) were 

analyzed for their Mg, Ca, and Sr concentrations (Table 3.1).  A section of coral ER#31-A 

was analyzed for elemental concentration corresponding to the instrument measured 

water temperatures (1991-2004).  All other coral samples were taken at random positions 

along the maximum growth axis of the coral skeletons.  A Thermo Fisher iCAP-Q ICP-

MS at the University of Alberta was used for these analyses.  The samples were dissolved 

in 2 mL 50% HNO3.  Then, 0.1 mL of this solution was added to 0.1 mL HNO3, 0.1 mL 
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Table 3.1. Elemental concentrations from the Cayman coral growth bands.

Coral Sample location       
(cm from coral base)

Sample 
age (CE)1

Mg 
(ppm)

Sr 
(ppm)

Ca 
(ppm)

Sr/Ca        
(mmol/mol)

ER#30-C

(N = 3)

4.5

10.1

15.2

1990

2000

2008

1084

1065

1035

7302

7041

7423

373544

365475

385664

8.9

8.8

8.8

ER#31-A

(N = 32)

2.5

6.0

10.2

16.9

21.5

23.3

23.6

24.6

24.7

25.4

26.0

26.4

26.6

27.1

27.5

28.0

28.8

29.4

30.0

20.8

1962

1968

1973

1980

1987

1991

1991

1992

1992

1993

1993

1994

1994

1995

1995

1996

1997

1997

1998

1998

1687

1391

1682

1338

1360

1346

1526

1626

1402

1413

1859

1725

2001

1509

1772

1623

1577

1679

1637

1589

7213

7007

6935

7117

7141

7261

7145

7666

7272

7247

7536

7400

6890

7044

7085

6862

7069

6992

7413

7210

364055

367997

364399

361410

366165

386462

374267

404089

379847

389790

391112

392564

353680

372074

366523

367415

352708

370061

394635

388592

9.1

8.7

8.7

9.0

8.8

8.6

8.7

8.7

8.8

8.5

8.8

8.6

8.9

8.5

8.8

8.5

9.2

8.6

8.6

8.5
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Coral Sample location       
(cm from coral base)

Sample 
age (CE)1

Mg 
(ppm)

Sr 
(ppm)

Ca 
(ppm)

Sr/Ca        
(mmol/mol)

ER#31-A 31.4

31.8

32.1

1999

1999

2000

2025

1830

1578

6953

7446

6750

381159

395201

362234

8.3

8.6

8.5

32.4

32.8

33.1

33.9

34.5

34.9

35.2

35.6

35.9

2000

2001

2001

2002

2002

2003

2003

2004

2004

1961

2164

1618

1628

1925

1700

2120

1590

2238

7595

7347

6799

7151

7878

6963

7048

7056

7265

407722

385997

364127

382482

415544

357940

373134

380725

387160

8.5

8.7

8.5

8.6

8.7

8.9

8.6

8.5

8.6

ER#32-A

(N = 6)

6.2 (left branch)

13.0 (left branch)

18.1 (left branch)

23.5 (left branch)

21.9 (right branch)

46.9 (right branch)

1974

1985

1993

2006

1989

2001

2505

1932

1382

1230

1225

1520

6792

7184

7076

7172

7132

6298

355053

376921

367249

372040

372626

331656

8.7

8.7

8.8

8.8

8.8

8.7

CB1-A

(N = 10)

4.9

10.0

15.3

20.2

24.8

1877

1884

1890

1896

1902

1505

1151

1218

1202

1146

7157

6749

6947

6944

6942

371591

351313

363351

361027

355073

8.8

8.8

8.7

8.8

8.9
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Coral Sample location       
(cm from coral base)

Sample 
age (CE)1

Mg 
(ppm)

Sr 
(ppm)

Ca 
(ppm)

Sr/Ca        
(mmol/mol)

CB1-A 32.8

36.8

41.1

45.5

49.3

1911

1916

1921

1925

1930

1259

1093

1216

1271

1207

7294

7134

7379

7003

7173

380029 

362542

372207

362149

368704

8.8

9.0

9.1

8.8

8.9
GW-A

(N = 11)

3.6

7.1

11.5

4.1

12.7

1822

1828

1834

1841

1857

1575

1219

1508

1394

1374

7160

5848

5672

5884

5359

378489

300472

277656

295664

348303

8.7*

8.9

9.3

9.1

8.8

18.4

4.4

8.0

12.8

15.5

19.4

1864

1872

1877

1887

1893

1900

1637

1560

1342

1639

1898

1472

7103

5672

6990

7071

5732

6766

359973

297273

347238

354788

284033

352765

9.0

9.1

9.2

9.1

9.2

8.8*

DD-A

(N = 12)

5.8

10.0

14.4

25.2

29.4

32.5

36.5

37.8

1824

1829

1835

1849

1854

1859

1865

1866

1850

1466

1862

1480

1756

1706

1710

1853

7361

7220

5943

7269

6016

7175

6973

5996

353807

343987

286649

351795

297765

356850

352952

293650

9.5

9.6

9.5

9.5

9.2

9.2

9.0

9.3
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Coral Sample location       
(cm from coral base)

Sample 
age (CE)1

Mg 
(ppm)

Sr 
(ppm)

Ca 
(ppm)

Sr/Ca        
(mmol/mol)

DD-A 41.7

49.3

50.0

51.9

1872

1883

1884

1887

1536

1516

1850

1406

6875

6754

7361

6305

346018

340681

353807

311996

9.1

9.1

9.5

9.2

TA-C

(N = 7)

1.4

6.8

8.9

13.4

16.5

19.8

23.0

1476

1487

1490

1497

1501

1506

1507

1875

1743

1478

1844

1876

1367

1447

6683

5885

6802

7399

5865

7086

6958

339153

299595

33537

380149

300959

353661

369003

9.0

9.0

9.3

8.9*

8.9*

9.2

8.6*
1. Ages based on growth band counting 
* These values have been removed from the data set, as outliers, due to inconsistent (low) 
Sr concentrations relative to the proportion of Ca in the coral skeletons.



100 ppb internal standards (Sc, In, and Bi), and 9.7 mL deionized water.  The samples 

were analyzed using a 4-point calibration curve (0, 0.001, 0.002, and 0.004 ppm for Sr, 

0, 0.05, 0.1, and 0.2 ppm for Mg and Ca), with typical count rates for 1 ppb between 

300000 to 400000 cps.  Detection limits were 0.52, 10.41, and 0.005 ppb for Mg, Ca, and 

Sr, respectively.   

5.6. Stable C and O isotope analysis

 Each sample came from a diff erent growth band that was accurately delineated by 

placing the CT scan on a 2–4 cm thick slab that had been cut from the central part of each 

coral parallel to the maximum growth direction.  Samples were taken from the thecal 

walls of the coral skeleton (cf., Leder et al., 1996; Watanabe et al., 2001; Kilbourne et al., 

2010).  A Dremel 8200 drill with a 0.89 to 1.6 mm round bit (inner diameter) was used 

for sample collection depending on growth band thickness.  Only samples with >95 wt% 

aragonite (as confi rmed by XRD) with no evidence of cement/alteration and/or borings 

were used for analyses (cf., McGregor and Gagan, 2003; Quinn and Taylor, 2006; Hendy 

et al., 2007; Sadler et al., 2014).  The basal and upper 0.5 to 5 cm (or 1 to 10 years) of 

each coral were not analyzed because they had been altered by boring organisms.  The 

following samples were collected:

 •  Coral ER#30-C: 63 samples (33 light and 30 dark bands) at 2 to 4 mm spacing.

 •  Coral ER#31-A: 78 samples (40 light and 38 dark bands) at 2 to 7 mm spacing.

 •  Coral ER#32-A: 114 samples (57 light and 57 dark bands) at 2 to 4 mm spacing. 

     Two branches from this coral were analyzed.  

 •  Coral CB1-A: 120 samples (61 light and 59 dark bands) at 2 to 7 mm spacing. 

 •  Coral GW-A: 186 samples (91 light and 95 dark bands) at 1 to 8 mm spacing

 •  Coral DD-A: 134 samples (67 light and 67 dark bands) at 3 to 8 mm spacing

 •  Coral TA-C: 77 samples (39 light and 38 dark bands) at 1 to 4 mm spacing

 The δ13C and δ18O values were determined using a Gasbench II system coupled 
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with a Thermo MAT 253 Isotope Ratio Mass Spectrometer (IRMS) at the University 

of Alberta.  Powdered samples, each weighing 0.23 ± 0.06 mg, were held at a constant 

temperature of 72°C over the course of the analyses.  A high purity helium stream 

was introduced to each vial to fl ush for 10 minutes to remove air.  Subsequently, 0.1 

mL of 100% phosphoric acid at 72°C was reacted with a sample for at least 1 hour.  

Produced CO2 was then carried by a helium stream to the IRMS for 18O/16O and 13C/12C 

measurements.  During every run sequence, calcite international standard NBS-18 (δ13C 

= –5.0‰, δ18OVPDB  = –23.0‰) and two in-house calcite lab standards (LSC-1: δ13C = 

–51.3‰, δ18OVPDB  = –16.1‰ and LSC-2: δ13C = –22.0‰, δ18OVPDB = –34.6‰) were 

measured throughout the sequence to establish a calibration curve, monitor data quality, 

and long-term instrument performance.  Analytical uncertainties (2σ) are ± 0.16‰ for 

δ18O and ± 0.15‰ for δ13C.  The C and O isotope compositions are reported using the δ 

notation relative to VPDB (Vienna Pee Dee Belemnite) and VSMOW (Vienna Standard 

Mean Ocean Water) standards, respectively.  The δ18O values were converted from VPDB 

to VSMOW using Equation 2.21 (δ18OVSMOW = 1.0309[δ18OVPDB] + 30.91) from Sharp 

(2007).

 Given that the samples are composed of aragonite whereas the laboratory 

standards used for the calibration curve are calcite, a correction factor of –0.38‰ (from 

Kim et al., 2007; 2015) was made to the δ18O values to account for the diff erence in the 

phosphoric acid fractionation of these two minerals at the temperature used for carbonate 

dissolution (72°C).  It should be noted, however, that not all published δ18O values 

for corals (e.g., Weber, 1977; Leder et al., 1996; Watanabe et al., 2001) have had this 

correction applied.

5.7. Water temperature and isotopic composition

 From 1991 to 2007, the Department of Environment and the Water Authority 

Cayman Islands monitored seawater temperature at various locations around Grand 
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Cayman at the sea surface (0.9–1.2 m depth) and at depth (11.3–14.5 m).  This included 

George Town, which is close to Magic Reef (Fig. 1B, 2A).  These records and satellite 

data from 1980 to 1990 (Goreau et al., 1992), 1993 to 2008 (Chollett et al., 2012b), and 

1981 to 2015 (NOAA, 2018), are combined and used herein.

 Two samples of seawater, one from the surface above Magic Reef and the 

other from beside the reef at a depth of 18.3 m, were collected by the Department of 

Environment in May 2016.  A seawater sample from the east end of Cayman Brac was 

collected in October 2018.  Their oxygen isotope compositions were determined by 

Isotope Tracer Technologies Ltd., Ontario, Canada, using a Thermo Delta Plus Advantage 

linked to a Gasbench I via a GC PAL autosampler.  δ18Owater values are reported relative to 

the VSMOW standard. 

6. Results

6.1. Mineralogy 

 Samples from the base of the corals and their bored margins contain <95 wt% 

aragonite, whereas samples from individual growth bands in the rest of the coral 

contained >95 wt% aragonite.  Thin section and SEM analyses confi rmed that the 

aragonite skeletons had not been altered (Figs. 3.3, 3.4).  Only very minor amounts of 

cement were found in isolated pores in ER#32-A and CB1-A.

6.2. Growth patterns - grey values

 The growth bands evident in the CT scans are largely characterized by uniform 

and consistent grey levels within each light and dark band.  Some growth bands in corals 

ER#31-A, ER#32-A, and DD-A, however, are characterized by 4 to 12 thin (0.2 to 1.1 

mm), alternating light and dark microbands.  Designation of these heterogeneous growth 

bands as light or dark refl ects the dominant shade that is present. 

 Corals ER#30-C, CB1-A, GW-A, and TA-C are characterized by homogeneous 
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Fig. 3.3. SEM images from the Cayman corals. (A) Intersection of three corallites in ER#30-C, 

displaying well-developed coensteum and septal structures. (B) Theca structure from 

ER#30-C, displaying thecal walls and endothecal dissepiments. (C) Close up image of 

costae from ER#30-C, showing well-developed aragonite needle bundles. (D) Oblique 

view of a corallite from ER#31-A, displaying open pore spaces. (E) Theca structure 

from ER#31-A, displaying thecal walls and endothecal dissepiments. (F) Close up 

image of thecal wall from ER#31-A, showing well-developed aragonite needle bundles. 

(G) Corallite from ER#32-A, showing open pore spaces and well-developed septa. (H) 

Theca structure from ER#32-A, displaying thecal walls and endothecal dissepiments. 

(I) Close up image of endothecal dissepiment from ER#32-A, showing well-developed 

sclerodermites formed of aragonite needle bundles. (J) Corallite from CB1-A, showing 

open pore spaces and well-developed septa. (K) Theca structure from CB1-A, 

displaying thecal walls and endothecal dissepiments. (L) Aragonite needles from 

CB1-A. All images display open pore spaces and are devoid of cements. 
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growth bands that are 1 to 8 mm thick (Fig. 3.5).  In coral CB1-A, however, there are four 

light growth bands that are signifi cantly thicker (>7 mm) than the other growth bands.  

The grey level curves range from 3 to 211, with a smooth curve characterized by regular 

fl uctuations that correspond to the growth bands (Fig. 3.6). 

 Corals ER#31-A, ER#32-A, and DD-A are characterized by homogenous and 

heterogenous growth bands that are 1 to 9.5 mm thick (Fig. 3.7).  Coral ER#31-A 

contains fi ve light and one dark growth band that are >8 mm thick and ER#32-A contains 

one light and one dark growth bands that are >6 mm thick.  The grey level curves range 

from 12 to 219, with small-scale variations that are superimposed on the large-scale 

fl uctuations (Fig. 3.6).
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Fig. 3.4. SEM images from the Cayman corals. (A) Intersection of three corallites in GW-A, 

displaying well-developed coensteum and septal structures. (B) Close up of septal 

sides and margin from GW-A. (C) Aragonite needle bundles from GW-A. (D) Theca 

structure from GW-A, displaying thecal walls and endothecal dissepiments. (E) 

Intersection of four corallites in DD-A, displaying well-developed coensteum and 

septal structures. (F) Close up image of septal margin and fl oor from ER#31-A, 

showing well-developed aragonite needle bundles. (G) Aragonite needle bundles 

from DD-A. (H) Theca structure from DD-A, displaying thecal walls and endothecal 

dissepiments. (I) Oblique view of a corallite from TA-C, showing open pore spaces and 

well-developed structures. (J) Close up image of a dentate septal from TA-C, showing 

well-developed aragonite needle bundles. (K) Aragonite needle bundles from TA-C. 

(L) Oblique view of theca structure from TA-C, displaying thecal walls, endothecal 

dissepiments, and corallites. All images display open pore spaces and are devoid of 

cements. 
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6.3. Coral ages

6.3.1. Carbon-14 dating and U/Th dating

 The 14C and U/Th date for the basal parts of the corals and the upper part of 

CB1-A are variable and open to debate (Tables 3.2, 3.3).  The basal ages as determined 

by U/Th dating are used in preference to the 14C ages for corals GW-A and DD-A because 

the (1) 14C ages are unreliable because the corals are too young and error margins are too 

large for reliable age determination, (2) 14C probability distribution for DD-A is multi-

modal, (3) U/Th dates have smaller uncertainties, (4) samples contain no evidence of 

internal 230Th (e.g., Cobb et al., 2003), and (5) U/Th dates do not require the application 

of a reservoir correction.  For coral TA-C, no U/Th age was produced because the 



CB1-A CT

0

12

10

8

2

6

4

1 32 94 65 1087

14

16

18

Band thickness (mm)

N= 121

D CB1-A X-Ray

0

12

10

8

2

6

4

14

N= 73

0

8

2

6

4

ER#30-C CT

N
um

be
r o

f b
an

ds

N= 63

ER#30-C X-Ray

0

2

6

4
N= 35

A

GW-A X-Ray

0

12

10

8

2

6

4 N= 118

GW-A CT

0

12

10

8

2

6

4

14

16

N= 186

N
um

be
r o

f b
an

ds

18

Band thickness (mm)
1 32 94 65 1087

0

8

2

6

4

TA -C CT

N= 77

TA -C X-Ray

0

2

6

4 N= 40

10

B

C

10

14

Dark Band

Light Band
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concentration of 230Th could not be measured accurately and it had a uranium isotopic 

composition that is higher than sea water.  Accordingly, the 14C date is used for this coral.

6.3.2. Correlation to calendar years 

 The basal ages for corals GW-A, DD-A, and TA-C were converted into 

approximate calendar years using Calib 7.10 for the 14C dates and by subtracting the U/

Th ages from 2018.  Given the uncertainties associated with these dates, comparisons 

between the Tcal records from the diff erent corals were also used to substantiate their ages.  

For example, corals GW-A and DD-A, which both came from the southwest coast of 

Grand Cayman, have similar basal ages, and Tcal records characterized by three high Tcal 

peaks that are separated by intervals with lower Tcal.

6.3.3. Growth bands

 Given that each light and dark growth couplet represents one year of growth (cf., 

Knutson et al., 1972; Buddermeier et al., 1974; Dodge and Thomason, 1974; Hudson et 

al., 1976; Winter and Sammarco, 2010) the duration of coral growth can be determined 

from the high-resolution CT scans (Table 3.4).  

6.3.4. Growth rates

 Using average growth rates of 6.0 mm/year for Orbicella (ER#31-A, ER#32-A, 

CB1-A, GW-A, DD-A; Baker and Weber, 1975; Hudson 1981; Carricart-Ganivet et al., 

1994; Carricart-Ganivet and Merino, 2001; Carricart-Ganivet, 2004) and 4.4 mm/year for 

M. cavernosa (ER#30-C, TA-C; Highsmith et al., 1983), the lifespans of the corals can be 

determined (Table 3.4).  The fact that these ages are higher than those based on growth 

band counts probably refl ects the fact that growth rate calculations are based on average 

growth rates from elsewhere in the Caribbean and may not be the same for the Cayman 

corals.   
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6.4. Water isotope compositions

 Water samples from Magic Reef yielded δ18Owater values of +0.75 ± 0.18‰ 

(surface) and +0.79 ± 0.06‰ (depth 18.3 m) that are consistent with the oxygen isotope 

compositions obtained from numerous seawater samples collected from Spotts Bay, 

Grand Cayman (Fig. 3.1B) over the last 20 years (Ren and Jones, 2017).  Herein, the 

δ18Owater value from beside Magic Reef at a depth of 18.3 m (+0.8‰) is used in the 

paleotemperature calculations for the corals from the southwest corner of Grand Cayman.  

The water sample from the east end of Cayman Brac yielded a δ18Owater value of –0.09 ± 

0.1‰.

6.5. Derivation of δ18Owater  from elemental concentrations 

6.5.1. Elemental analyses

 Eighty samples from the Cayman corals yielded Ca concentrations of 277656 to 

415544 ppm, Sr concentrations of 5672 to 7878 ppm, Mg concentrations of 1035 to 2505 

ppm, and Sr/Ca ratios of 8.3 to 9.6 mmol/mol (Table 3.1).  The Sr/Ca ratios are similar 

to those reported for modern corals, including 8.9 – 9.2 mmol/mol for Diploria strigosa 

from Little Cayman (von Reumont et al., 2016), 8.5 – 9.5 mmol/mol for O. faveolata 

from St. Croix (Saenger et al., 2008), 9.1 – 9.3 mmol/mol for A. danai and A. formosa 

(Ribaud-Laurenti et al., 2001) from Reunion Island (Western Indian Ocean) and the Great 

Barrier Reef (Australia), and 8.9 – 9.5 mmol/mol for Porites lutea from New Caledonia 

(DeLong et al., 2007).

6.5.2. Sr/Ca equation

 There are more than 80 coral Sr/Ca geothermometer calibrations that are based 

on the negative correlation that exists between water temperature and the Sr/Ca ratio 

(e.g., Weber, 1973; Storz et al., 2013).  Some incorporate the coral growth rate into the 

temperature formulation (e.g., Goodkin et al., 2005; Saenger et al., 2008, Kilbourne et 



al., 2010), whereas others do not (e.g., Smith et al., 1979; Beck et al., 1992; de Villiers 

et al., 1994; Shen et al., 1996; Albert and McCulloch, 1997; Heiss et al., 1997; Gagan et 

al., 1998; Fallon et al., 1999; Correge et al., 2000; Swart et al., 2002; Smith et al., 2006; 

DeLong et al., 2007; Maupin et al., 2008; DeLong et al., 2011; Flannery and Poore, 2013; 

von Reumont et al., 2016; Kuff ner et al., 2017).  

 In order to determine an appropriate Sr/Ca seawater temperature equation for 

the Cayman corals, the Sr/Ca data from the corals from Magic Reef were applied to all 

equations that have been developed for Orbicella (e.g., Swart et al., 2002; Smith et al., 

2006; Saenger et al., 2008; Kilbourne et al., 2010; DeLong et al., 2011; Flannery and 

Poore, 2013; Flannery et al., 2018).  Given that no Sr/Ca equation has been developed 

specifi cally for M. cavernosa, the equation developed from Orbicella is used.  For 

the Magic Reef corals, the calculated water temperatures range from 14.9° to 57.4°C.  

For equations that incorporate growth rate, average values of 5.7, 8.7, and 8.1 mm/

year (values derived by comparing the height of the coral with its age) were used for 

ER#30-C, ER#31-A, and ER#32-A, respectively.  The Kilbourne et al. (2010) equation, 

which incorporates growth rate, yielded the lowest Tcal (16.0° to 23.8°C), with most Tcal 

being at the lower end of temperature spectrum preferred by Orbicella (15° to 32°C; 

Hunter, 1994).  In contrast, Tcal derived from the Swart et al. (2002), Smith et al. (2006), 

Kilbourne et al. (2010; no growth rate), DeLong et al. (2011), Flannery and Poore (2013), 

and Flannery et al. (2018) equations yielded Tcal values at or above the upper end of the 

growth temperature spectrum.  Herein, the equation from Saenger et al. (2008) (Sr/Ca 

= 11.82 – 0.058 * extension rate (mm/yr) – 0.092 * SST) is used because the Tcal values 

obtained from the Magic Reef corals, from 23.3° to 32.3°C ± 0.1°C (average of 28.4°C) 

are within the T spectrum of Orbicella and are close to the measured water temperatures 

(T-test: p<0.05).  Using this equation with the Sr/Ca ratios from corals CB1-A, GW-A, 

DD-A, and TA-C yielded Tcal of 19.0° to 30.6°C ± 0.1°C.
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6.5.3. δ18Owater determination 

 Oxygen isotope geothermometry requires knowledge of the δ18O value of both 

the coral and the water from which that coral precipitated.  The δ18Owater value during 

coral growth can be determined from the Sr/Ca ratios of the coral skeleton and the 

corresponding δ18Ocarbonate values.  Although the current δ18Owater value for Magic Reef is 

known, the values for the coral from Cayman Brac and the older corals (GW-A, DD-A, 

TA-C) are unknown.  The Sr/Ca ratios from the Magic Reef corals yielded temperatures 

of 19° to 32°C ± 0.1°C that, in turn, yielded δ18Owater values of –0.9 to +1.7‰ (Standard 

Deviation SD: 0.6‰), with an average of +0.8‰, the same as the present-day δ18Owater 

value from Magic Reef (T-test: p<0.05).

 Coral CB1-A yielded δ18Owater values of –0.7 to +0.6‰ (SD: 0.4‰), with an 

average value of –0.04‰, which is similar to the current δ18Owater value from the east end 

of Cayman Brac (–0.09‰, T-test: p<0.05).  Corals GW-A and DD-A yielded δ18Owater 

values of –0.9 to +2.3‰ (SD: 0.8‰), with an average of +1.0‰.  Coral TA-C yielded 

δ18Owater values of +0.7 to +1.7‰ (SD: 0.5‰), with an average of +1.4‰.  For the corals 

from Magic Reef (ER#30-C, ER#31-A, ER#32-A), GW-A, and DD-A, the average 

calculated δ18Owater value (+0.8‰) is in accordance with the current measured water 

value from Magic Reef.  The southwest corner of Grand Cayman is characterized as the 

leeward coast with minimal mixing, resulting in a more enriched δ18O value than the 

global seawater (0.0‰).  The coral from Cayman Brac, however, was collected on the 

exposed windward coast of the island, which is a well mixed environment, resulting in a 

measured and calculated δ18Owater value that is very similar to the global average.  Herein, 

average δ18Owater value of +0.8, will be used for the corals from Magic Reef (ER#30-C, 

ER#31-A, ER#32-A), GW-A, and DD-A, and 0.0‰ for CB1-A for temperature 

calculations (1σ ± 0.3‰ for all corals).

 Coral TA-C was collected from North Sounds exposed fringing reef at a water 

depth of 15.8 m, the calculated δ18Owater value, however, does not support a well mixed 
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environment.  The calculated δ18Owater (+1.4‰) is enriched, which may, in part, be related 

to the age of this coral (1474-1512), which grew during the Little Ice Age (LIA).  The 

LIA may have caused more seasonal variability in the Caribbean (Watanabe et al., 2001), 

potentially contributing to a more enriched δ18Owater.  Since the δ18Owater value of the 

Caribbean is unknown during this time, the average value calculated from TA-C (+1.4‰ 

± 0.3‰) will be used in the temperature calculations.   

6.6. Stable isotope compositions

 The isotopic compositions of the Cayman corals, with δ13CVPDB values of –4.9 to 

+2.0‰ and δ18Ocoral values of +25.4 to +29.5‰ (Table 3.5, Supplementary Tables 3.1-

3.7), are similar (slightly enriched) to the ranges reported for other corals globally (e.g., 

Keith and Weber, 1965; Weber and Woodhead, 1970; Swart, 1983; Fig. 3.8).  The isotopic 

compositions of the corals from Grand Cayman are enriched in δ18O when compared to 

those from Cayman Brac (Fig. 3.8), corresponding to the more 18O-enriched seawater 

from Grand Cayman.  

7. Interpretations 

7.1. Coral age 

 The four methods used to determine the ages of the corals from Magic Reef and 

Cayman Brac produced diff erent dates (Table 3.4).  Growth band couplet counting gives 

a minimum age because it cannot account for periods of no growth (Carricart-Ganivet, 

2011), and errors may arise from bands that are not evident or are artifacts of the X-Ray 

or CT images (Barnes et al., 1989; Barnes and Taylor, 1993).  The Cayman corals, 

however, do not display any evidence of stress banding (cf., Worum et al., 2007) or 

internal abrasion resulting from periods of no growth.  

 Age calculations based on average growth rate assume that growth was 

continuous and the growth rate constant (cf., Hudson et al., 1981; Carricart-Ganivet, 

2004; DeLong et al., 2010).  For the Cayman corals, this yielded lifespan estimates that 
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Table 3.5. Range and average isotope compositions of successive growth bands from 

Cayman corals. 

Sample δ13CVPDB (‰) δ18OVSMOW (‰) δ18OVPDB (‰)

ER#30-C –3.0 to 0.0, 
–1.5

26.7 to 28.0, 
27.3

–4.5 to –2.8, 
–3.5

CB1-A –4.9 to +2.0, 
–0.1

25.8 to 27.8, 
26.7

–4.9 to –3.1, 
–4.1

Homogeneous light band –1.5 to +1.7, 
–0.2

26.0 to 26.7, 
26.2

–4.1 to –3.4, 
–4.4

Homogeneous dark band +0.3 to +0.9, 
+0.6

26.3 to 26.9, 
26.5

–4.5 to –3.9, 
–4.3

GW-A –4.4 to +0.1, 
–0.6

26.7 to 29.1, 
28.2

–5.1 to –1.8, 
–2.6

TA-C –4.5 to +0.6, 
–0.7

25.4 to 29.4, 
28.3

–5.3 to –1.5, 
–2.3

ER#31-A –2.6 to +0.3, 
–1.2

26.6 to 28.4, 
27.6

–4.2 to –2.4, 
–3.2

Heterogenous light band

Vertical sampling

Horizontal sampling

–2.0 to +0.1, 
–1.4

–0.3 to –1.3, 
–1.0

26.9 to 27.9, 
27.3

26.1 to 28.1, 
27.1

–3.9 to –2.9, 
–3.5

–4.7 to –2.7, 
–3.7

Heterogeneous dark band

Vertical sampling

Horizontal sampling

–2.1 to -0.1, 
–1.4

–0.5 to +1.9, 
–1.2

27.2 to 28.1, 
27.6

26.8 to 27.8, 
27.2

–3.6 to –2.7, 
–3.2

–4.0 to –3.0, 
3.6

ER#32-A –0.5 to –3.8, 
–2.3

25.8 to 28.5, 
26.8

–4.9 to –2.3, 
–3.6

DD-A –4.9 to +0.8, 
–0.2

25.8 to 29.5, 
28.6

–5.0 to –1.4, 
–2.3
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Fig. 3.8. Carbon and oxygen isotope compositions of the Cayman corals compared with those 
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between the Cayman values and previously reported coral values.
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are 10 to 25 years longer than those based on growth band counts.  This discrepancy may 

be a function of the average growth rate that was used. 

 The ages obtained from radiocarbon dating for the corals from Magic Reef and 

Cayman Brac are questionable because of the large propagated uncertainties when the 

measured radiocarbon years are converted to calendar years using the CALIB marine 

calibration curve (Stuiver et al., 2018) for corals less than 200 years old.  The marine 

reservoir correction for the Cayman Islands is unknown, and ΔR values from Cuba (ΔR 

= –46 to +222, Diaz et al., 2017), Florida (ΔR = –11 to +207, Druff el, 1997; Hadden and 

Cherkinsky, 2015), Venezuela (ΔR = +13 to +33, Hughen et al., 2004), Puerto Rico (Δ 
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R= –27, Kilbourne, 2007), and the Florida Keys (ΔR = – 54 to – 64, Toth et al., 2017) are 

highly variable.  

 For young corals, U/Th dating can, in principle, provide more precise ages 

than 14C dating (Cobb et al., 2003).  For the corals from Magic Reef and Cayman Brac, 

however, the derived ages are inconsistent with those obtained from other methods.  The 

U/Th age of 198 ± 9 years for the base of coral ER#31-A, for example, is more than 

three times the age determined from growth band counting (55 years) and twice that 

determined from growth rates (80 years).  The U/Th age for the base of coral CB1-A (217 

± 14 years) is also much older than that obtained by band counting (167 year diff erence) 

and growth rate calculation (165 year diff erence).  For the top of coral CB1-A, however, 

the U/Th age of 175 ± 8 years, implies that the lifespan of this coral was 42 ± 16 years, 

which is much less than the lifespan based on growth band counting (67 years) and 

growth rate (83 years).  These age discrepancies may be due to the presence of variable 

amounts of non-radiogenic 230Th in the corals (e.g., Cobb et al., 2003; Shen et al., 2008).  

This initial 230Th may have been brought into the Caribbean Basin as wind blown African 

dust (Trapp et al., 2010; Prospero and Mayol-Bracero, 2013) and incorporated into the 

coral skeleton during growth.  Herein, the growth band counting (± 5 years) method 

based on the high-resolution CT scans is used for the corals from Magic Reef and 

Cayman Brac because it gives the most accurate delineation of the growth bands, and 

hence the corals’ age (Table 3.4).

7.2. Growth band thickness

 The Cayman corals are characterized by growth bands that are 0.8 to 9.5 ± 0.05 

mm thick (Figs. 3.5, 3.7, 3.9).  The light growth bands, indicative of growth during the 

dry season when the Cayman Islands experience warmer temperatures and increased 

solar radiation (cf., Buddemeier et al., 1975; Fairbanks and Dodge, 1979; Winter and 

Sammarco, 2010), are generally thicker than the dark bands that grew during the wet 



season when increased cloud cover led to a reduction in sunlight, increased precipitation, 

and cooler temperatures (cf., Buddemeier et al., 1974; Fairbanks and Dodge, 1979; 

Winter and Sammarco, 2010).  Unusually thick (>6 mm) light growth bands in corals 

ER#31-A, ER#32-A, and CB1-A may refl ect prolonged dry seasons.  Similar dry versus 

wet seasonal growth patterns have been reported for corals from the Pacifi c Ocean and 

the Atlantic Ocean (cf., Buddermeier et al., 1974; Moore and Krishnaswami, 1974; 

Buddemeier and Kinzie, 1976; Fairbanks and Dodge, 1979; Knowlton et al., 1992; 

Delong et al., 2011; Flannery and Poore, 2013; Sadler et al., 2016; Fig. 3.9).

 The growth band thicknesses for O. annularis and M. cavernosa from the Cayman 

Islands are similar to those found in other Caribbean corals (Fairbanks and Dodge, 1979; 

Hudson, 1981; Knowlton et al., 1992; Delong et al., 2011; Flannery and Poore, 2013; Fig. 

3.9).  The greater ranges of thicknesses found in the Cayman corals may be a refl ection 

of the methods used because CT scans provide higher resolution than the X-Ray images 

(Figs. 3.5, 3.7, 3.9) that have been used in many studies (e.g., Buddermeier et al., 1974; 

Hudson, 1981; Knowlton et al., 1992; DeLong et al., 2011; Sadler et al., 2016).  For the 

Cayman coral, the higher resolution CT scans allow identifi cation of the thinner growth 

bands that are not evident on the X-Ray images (cf., Saenger et al., 2009).   

7.3. Geothermometry

7.3.1. Rates of growth

 Comparison of the thick (>6 mm) homogeneous and heterogeneous light and dark 

growth bands in ER#31-A and CB1-A (both O. annularis) shows variations in the stable 

isotope compositions and densities that refl ect diff erences in their growth histories (Figs. 

3.6, 3.10).  In ER#31-A, the δ18Ocoral values from sampling horizontally along light and 

dark heterogenous growth bands (26.9 to 28.1‰) are relatively constant (SD = 0.4‰), 

whereas those from sampling vertically across the growth bands are more variable (SD = 

0.7‰; Fig. 3.10. Table 3.5).  In contrast, the light and dark thick homogeneous bands in 
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CB1-A are characterized by vertical and horizontal δ18Ocoral values (26.0 to 26.7‰, SD = 

0.3‰) that are more consistent (Fig. 3.10. Table 3.5).  On the basis of meso- and micro-

scale structures in skeletal growth bands, Winter and Sammarco (2010) suggested that 

corals may record yearly, monthly, and daily growth patterns.  For the Cayman corals, 

the homogenous growth bands represent seasonal (~6 months) growth, whereas, the 

heterogenous thick growth bands represent seasonal growth and the microbands represent 

shorter, possibly monthly growth periods (Fig. 3.6).  This suggestion is supported by the 

fact that there are, on average, six microbands per larger growth band.

 The fact that multiple rates of growth are evident in the Orbicella samples but 

not in the M. cavernosa suggests that the diff erent growth scales may be species-specifi c.  

This, however, does not explain why the multiple growth scales are not evident in O. 

annularis from Cayman Brac or GW-A.  The diff erences evident between these corals 

maybe related to the overall growth rate.  Corals ER#31-A, ER#32-A, and DD-A have 

faster average growth rates than ER#30-C, CB1-A, GW-A, and TA-C, which resulted 



in increased skeletogenesis that may account for the smaller scales of growth and the 

associated changes in microstructure and isotope compositions.  Rapid skeletogenesis 

causes a strong kinetic disequilibrium that can alter the isotopic fractionation of the 

coral that may potentially enhance the sub-seasonal variations, as is apparent in corals 

ER#31-A, ER#32-A, and DD-A (cf., Land et al., 1975; Erez, 1977, 1978; Weil et al., 

1981; McConnaughey, 1988).

7.3.2. Conversion of δ18Ocoral values to temperature

 There are many diff erent equations for calculating water temperature from the 

oxygen isotope compositions of calcium carbonate minerals.  For corals, the critical 

calibrations involve the aragonite-water fractionations, which includes those known 

from biogenic and abiogenic aragonite (Fig. 3.11).  The biogenic group includes those 

derived for corals (Weber, 1977; Dunbar and Wellington, 1981; Weil et al., 1981; 

McConnaughey, 1988; Chakraborty and Ramesh, 1993; Leder et al., 1996; Wellington 

et al., 1996; Cardinal et al., 2001; Watanabe et al., 2001; Felis et al., 2004; Smith et 

al., 2006; Kilbourne et al., 2010; Supplementary Table 3.8) and those derived for other 

organisms (Aharon and Chappell, 1983; Grossman and Ku, 1986; Hudson and Anderson, 

1989; Patterson et al., 1993; Thorrold et al., 1997; White et al., 1999; Bohm et al., 2000).  

The abiogenic aragonite-water calibrations are based either on laboratory experiments 

(Kim et al., 2007) or theoretical calculations (Chacko and Deines, 2008).  These two 

independent methods give similar results, which suggests that both methods refl ect the 

true equilibrium oxygen isotope fractionation between aragonite and water (Fig. 3.11).  

The general similarity between these abiogenic fractionations and many of the biogenic 

aragonite-water fractionation curves (Fig. 3.11) suggest that many marine organisms form 

their skeletons in near isotopic equilibrium with the parent water (cf., Kim et al., 2007; 

Grossman, 2012).  In stark contrast, corals yield aragonite-water fractionations that, at a 

given temperature, are typically 1.5 to 2‰ lower than those of abiogenic or 
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Fig. 3.11. Comparison of oxygen isotope geothermometer equations, showing coral-based, 

biogenic aragonite-based, and abiogenic aragonite-based geothermometers relative 

to the Cayman geothermometer used in this study, which is based on δ18O values 

that are equivalent to calcite, as used in previous studies. The length of each line 

represents the range of temperature covered by each equation. The red dashed line 

shows the projection of the Cayman coral equation to a wider temperature range. The  

geothermometers for biogenic (non-coral) and abiogenic aragonite were developed for 

temperatures from 0 to 40°C.
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non-coral biogenic aragonite (cf., McConnaughey, 1988; Cardinal et al., 2001; Kilbourne 

et al., 2010; Fig. 3.11).  Clearly, coral biology has a profound infl uence on the isotope 

fractionation (e.g., Grossman, 2012).  The aragonite-water geothermometers developed 

specifi cally for corals have been derived from diff erent coral species throughout the 

world (Fig. 3.11; Supplementary Table 3.8). 

 Applying each coral equation, temperatures were calculated using the δ18Ocoral 

values from the upper part (23.3 to 35.6 cm) of Cayman coral ER#31-A, which represents 

the 25-year span (1990-2014) for which measured water temperatures are available (Fig. 

3.2A).  A δ18Owater value of +0.8‰ was used because that is the value obtained from the 

water sample collected beside Magic Reef in 2016.  Temperatures calculated (Tcal) from 

various equations ranged from ~10° to 39°C with many being outside the range of the 

measured water temperatures.  Given that these equations are based on diff erent coral 

species, their slope and intercepts are infl uenced by diff erent ‘vital eff ects’, such as 

growth rates (e.g., McConaughey, 1988; Crowley et al., 1999; Felis et al., 2003), water 

depth (e.g., Weber and Woodhead, 1970; Erez, 1978; Fairbanks and Dodge, 1979), and/

or local eff ects such as seasonal rainfall (Dunbar and Wellington, 1981), upwelling (e.g., 

Weil et al., 1981; Smith et al., 2006), and reef ecology (Marshall and McCulloch, 2002; 
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Meibom et al., 2003).  Although the slopes (0.16 to 0.32) are similar, the intercepts vary 

from 30.5° to 34.2°C and a wide range of Tcal.  Additional factors, such as the method 

used to derive the equation, sampling errors, analytical uncertainties, diff erences in the 

sampling procedures, and the number of samples can also aff ect the calibration of these 

equations (Weil et al., 1981; Swart et al., 1996; Cardinal et al., 2001; Swart et al., 2002; 

Smith et al., 2006; Reynaud et al., 2007).

 If meaningful temperatures are to be derived from the isotopic data for the 

Cayman corals, the geothermometric equation must be adjusted to refl ect Cayman 

conditions (Fig. 3.11).  The range of measured Cayman seawater temperatures is too 

narrow to allow accurate derivation of the relationship between temperature and isotope 

fractionation.  Thus, an average temperature dependence (slope) for the coral-water 

fractionations derived from all of the published coral equations was used with the 

assumption that the equation must pass through the point defi ned by mean measured 

seawater temperature for Grand Cayman and the mean Δ18O (δ18Ocoral – δ18Owater) values 

for the last 25 years of growth of ER#31-A.  

 For the Cayman corals, two temperature equations based on δ18Ocoral and δ18Owater 

values (both at VSMOW scale), were derived with equation (1) based on coral δ18O 

values that have been corrected by –0.38‰ to account for the diff erence between the 

aragonite and calcite acid fractionation factors (Kim et al., 2007; 2015), and equation (2) 

based on coral δ18O values that assume that the aragonite and calcite acid fractionation 

factors are identical.

 Δ18Ocoral-water (δ
18Ocoral–δ

18Owater) = –0.21(±0.05)*T(°C) + 32.40   (1)

 Δ18Ocoral-water (δ
18Ocoral–δ

18Owater) = –0.21(±0.05)*T(°C) + 32.78   (2)

 Using equation (1) and the analytical and biological uncertainties on the oxygen 

isotope composition from the corals (1σ = ± 0.25‰) results in a propagated standard 

error of ± 0.49°C for Tcal for any single analysis.  In the temperature profi les produced 

from the Cayman corals, with a 6-point moving average, the 95% confi dence level on the 



standard error is ± 0.95°C.  For the upper part of coral ER#31-A, equation (1) yielded Tcal 

of 26.3° to 31.3°C and an average of 28.6°C, which is similar to the current average water 

temperature (28.5°C; T-test: p<0.05) for Grand Cayman (Goreau et al., 1992; Chollett et 

al., 2012b; NOAA, 2018).  

7.3.3. Calculated temperatures and trends through time

 The Tcal from the Cayman corals (1474 to 2014) ranged from 19° to 35°C and 

show a T increase of ~3°C from 1815 to 2014 (Fig. 3.12).  Overall, the Tcal record 

between 1474 to 1512 (Fig. 3.13) and 1815 to 2014 (Fig. 3.14) embodies two cool 

periods, one warm period, and one mild period.  Warm and cool intervals occurred within 

these periods.  For the Cayman corals, the overall temperature trends recorded by each 

coral are consistent with one another, the absolute temperatures, however, may not be 

the same (Fig. 3.14).  Individual corals may have been infl uenced by factors such as 

biological/metabolic diff erences, water depth, sunlight availability, and/or micro-scale 

reef ecology diff erences (cf., Weber and Woodhead, 1970; Weber and Woodhead, 1972; 

Land et al., 1975; Erez, 1978; Fairbanks and Dodge, 1979; Aharon and Chappell, 1983; 

McConaughey, 1988; Marshall and McCulloch, 2002; Meibom et al., 2003; Lough, 

2004; Flannery et al., 2018) that may have been responsible for the discrepancies in the 

absolute Tcal.  Since multiple corals were used in this study (cf., Flannery et al., 2018) and 

the overall trends recorded by these corals show correlated fl uctuations in temperature, 

decadal-scale changes in SST for the Cayman Islands can be confi dently assessed. 

•  Cool Period 1 (1474-1512), was characterized by Tcal of 21° to 29°C (average 

25.1° ± 0.95°C), which is signifi cantly lower (T-test: p<0.01) than the current 

average seawater T (Fig. 3.13).

 •  Cool Period 2 (1815-1924), was characterized by Tcal of 18° to 31°C (average 

23.9 ± 0.95°C), which is signifi cantly lower (T-test: p<0.01) than the current 

average seawater T (Fig. 3.14).  During that period there were two cool intervals 
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   (CI 1: 1815-1861, CI 2: 1896-1924) that were separated by a warm interval (WI 

1: 1861-1896).  The cool intervals are characterized by an overall decrease of  

~4°C, when comparing the beginning Tcal of this interval with the end, whereas 

the warm interval was characterized by an overall increase of ~5°C.  

 •  Warm Period 1 (1924-2006), was characterized by Tcal from 23° to 35°C 

(average 28.3° ± 0.95°C), which is similar to the current seawater T for Grand 

Cayman and signifi cantly warmer than CP 2 (T-test: p<0.01; Fig. 3.14).  During 

this period there were two warm intervals (WI 2: 1924-1932, WI 3: 1972-1993) 

and two cool intervals (CI 3: 1960-1972, CI 4: 1993-2006).  The warm intervals 
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are characterized by an increase in Tcal of ~5°-7°C.  The cool intervals are 

characterized by a decrease of ~4°-5°C.

 •  Mild Period 1 (2006-2014), was characterized by Tcal of 25° to 33°C (average 

27.5° ± 0.95°C) which is similar to the current average seawater T for Grand 

Cayman (T-test: p<0.01; Fig. 3.14).  

 Over the last 35 years, coral bleaching events around Grand Cayman, which 

were triggered by high temperature anomalies occurred in 1982, 1987-1988, 1990, 

1995, 1998, and 2009 (Bruckner, 2010).  On the Tcal profi les, these events coincide with 

a slightly elevated Tcal, these values, however, are not extremes (Fig. 3.14).  During 

bleaching events, high temperatures result in the loss of zooxanthellae (Swart, 1983) 

that causes reduced vertical growth and lateral thickening of the coral skeleton, which 

in turn may cause a 18O enrichment (Gagan et al., 1994).  The ‘true’ high-temperature 

signal, therefore, is not reliably captured by the corals due to the lag time caused by 

their reduced vertical growth during the bleaching events (Arthur, 2000; Rodrigues and 

Grottoli, 2006; Grottoli and Eakin, 2007; Bruckner, 2010; Carricart-Ganivet, 2011).  

The temperature recorded by the subsequent growth band, may represent re-established 

vertical growth when temperatures were more conducive to coral growth but still high 

relative to the norm for that period (Porter et al., 1989; Webster et al., 1999; Rodrigues 

and Grottoli, 2006; Ahmed et al., 2011).  

8. Discussion 

 Calculated and measured T from other areas in the Caribbean (14° to 34°C; 

e.g., Atwood et al., 1992; Goreau et al., 1992; Chenoweth, 1998; Winter et al., 1998; 

Haase-Schramm et al., 2003; Maupin et al., 2008; Hetzinger et al., 2010; Giry et al., 

2012; Corderio et al., 2014; Alpert et al., 2017; Flannery et al., 2017) are similar to those 

derived from the Cayman corals.  Direct comparison of those T records, however, is 

complicated by inconsistent terminology, with terms such as “cool period” or “warm 
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period” being used without precise defi nitions (e.g., Hetzinger et al., 2008; Maupin et 

al., 2008; Saenger et al., 2009; Alpert et al., 2017).  Atwood et al. (1992), Chenoweth 

(1993), and Flannery et al. (2017), for example, used diff erent boundary T of 29°, 24°, 

and 30°C, respectively, as the boundaries between their warm and cool periods.  This 

ambiguity is exacerbated when the terms such as “warming” and “cooling” refer to 

diff erent magnitudes of T change (0.3 to 2.1°C; e.g., Gagan et al., 2000; Black et al., 

2004; Saenger et al., 2009; Hetzinger et al., 2010, Corderio et al., 2014).  In other cases, 

a value of 0 has been assigned to the average annual T with anomalies defi ned relative to 

that baseline (e.g., Goreau et al., 1992; Maupin et al., 2008; Hetzinger et al., 2010).  In 

many cases, however, the temperature used to defi ne the baseline is not specifi ed (e.g., 

Haase-Schramm et al., 2003; Hetzinger et al., 2008; Giry et al., 2012).  

 Temperature changes from 1815 to 2014, indicated by the Cayman corals are 

similar to those derived from other parts of the Caribbean (Florida to Brazil) with a 

cooling trend evident from 1815-1924 (Fig. 3.15) that may be related to the end of the 

LIA (cf., Dunbar et al., 1994; Trenberth et al., 2007; Abahazi, 2009; Cronin et al., 2010; 

Chollett et al., 2012a; Carlson, 2017).  During that time span, however, there were two 

mild periods (Jamaica; Haase-Schramm et al., 2003 and Florida; Flannery et al., 2017) 

and one warm period (Brazil; Corderio et al., 2014), that may have been related to local 

climate factors.  The warming trend from 1965 to 2014 recorded by the Cayman corals 

and evident throughout the Caribbean (Fig. 3.15), is consistent with global T increases 

since the 1970’s (Strong et al., 1989; Goreau et al., 1992; McWilliams et al., 2005; 

Hansen et al., 2006; Trenberth et al., 2007; Hetzinger et al., 2010; Chollett et al., 2012a; 

Kuff ner et al., 2015; Tierney et al., 2015).  In the Bahamian records, however, there are 

exceptions (cool periods) to this overall warming trend (Chenoweth, 1998; Saenger et al., 

2009) that refl ect local factors.

 Over the last 155 years there has been an increase of 1°– 3°C in global SST that 

resulted from an increase of ~0.04°C/decade between 1850 and 2005, and an increase of 
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Fig. 3.15. Comparison of temperature profi les derived from the Cayman corals with those 

developed from other parts of the Caribbean. Warm, cool, and mild periods and warm 

and cool intervals for the other Caribbean profi les were determined based on the 

terminology outlined in this study. 1- Haase-Schramm et al., 2003. 2- Aplert et al., 

2017. 3- Winter et al., 1998. 4- Goreau et al., 1992. 5- Hetzinger et al., 2010. 6- Giry 

et al., 2012. 7- Chenoweth, 1998. 8- Saenger et al., 2009. 9- Maupin et al., 2008. 10- 

Flannery et al., 2017. 11- Atwood et al., 1992. 12- Hetzinger et al., 2008. 13- Black et 

al., 2004. 14- Corderio et al., 2014.
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0.13° – 0.51°C/decade since 1970 (Hansen et al., 2006; Trenberth et al., 2007; Hetzinger 

et al., 2010; Chollett et al., 2012a; Tierney et al., 2015).  The Caribbean region has 

experienced an air T increase of 0.6°C over the last 150 years and an increase of 0.1°C/

decade over recent decades (Nurse and Sem, 2001; Day, 2010).  The increase in SST of 

~3°C from 1815 to 2014, as determined from the Cayman corals, is consistent with global 

trends. 

 Diff erences in the SST records between the Cayman Islands and other areas of 

the Caribbean may be due to the fact that rates of T change commonly vary due to local 

conditions (Trenberth et al., 2007; Chollett et al., 2012a; Gregory et al., 2015; Tierney 

et al., 2015).  Changes in the local SST can, for example, be caused by increased cloud 

cover due to high storm frequency (Swart, 1983), the infl uence of intense and frequent 

cold-air fronts from North America (Roberts et al., 1982; Chenoweth, 1998; Melo-

Gonzalez et al., 2000; Chollett et al., 2012a), a reduction in the size and/or the intensity 

of the Atlantic Warm Pool (Enfi eld et al., 2001; Flannery et al., 2017), shifts in the 

phase of the Atlantic Multidecadal Oscillation (Enfi eld et al., 2001; Kilbourne et al., 

2007; Flannery et al., 2017; Toth et al., 2017), weakening of the Cayman Basin current 

(Centurioni and Niiler, 2003), micro-scale reef variability (Marshall and McCulloch, 
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2002; Meibom et al., 2003; Lough, 2004; Flannery et al., 2018), and/or volcanism 

(Chenoweth, 1998; Gagan et al., 2000).  Further problems can arise from the methods 

used to calculate the SST, the type of physical record and geochemical proxy used, 

measurement resolution, and the incorporation of site-specifi c climatic parameters 

(e.g., Weil et al., 1981; Atwood et al., 1992; Cardinal et al., 2001).  Identifying which 

temperature changes are caused by local factors, as opposed to global-scale events, is 

diffi  cult due to the lack of available long-term climate data for the Cayman Islands and 

Caribbean region, as well as the superimposition of global events on the local signal.  

The record from the Cayman corals, however, are consistent with other Caribbean T 

reconstructions, capturing a general trend of lower T from 1815-1924 and higher T from 

1965-2014.  

9. Conclusions

 This study has produced the fi rst surface seawater temperature profi le from 

the Cayman Islands from 1474 to 2014, and thereby increases our knowledge of 

temperature changes in the Caribbean region during this time.  Detailed analyses of the 

growth patterns and oxygen isotope compositions of seven corals (O. annularis and M. 

cavernosa) from the Cayman Islands, have yielded the following important conclusions:

 •  The Cayman corals are characterized by clearly defi ned seasonal growth 

banding and, in some cases, possibly monthly growth.  

 •  The oxygen isotope geothermometer calibration determined using the Cayman 

coral data and published geothermometers can be applied to various coral 

species that grow within the temperature range typical of the central Caribbean.

 •  Oxygen isotope temperatures calculated from the Cayman corals, show 

that there have been two cool periods, one warm period, and one mild period 

in surface seawater temperatures between 1474 to 2014.  These trends are 

consistent with other Caribbean temperature records. 



 •  For the Cayman Islands, the ~3°C increase in the SST from 1815 to 2014 is 

consistent with general global increases in SST.

 •  Variations between the SST determined from the Cayman Islands and other 

areas may be due to local diff erences in factors such as changing atmospheric 

circulation patterns, evaporation/precipitation, increased cloud cover, and/

or micro-scale reef habitats.  Determining the exact cause of these variations, 

however, is diffi  cult because of the paucity of long-term climate monitoring in 

this region.  
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CHAPTER 4

A 6000-YEAR RECORD OF CLIMATE CHANGE FROM STABLE ISOTOPE 

AND RARE EARTH ELEMENT ANALYSES OF SEDIMENT CORES FROM 

NORTH SOUND LAGOON, GRAND CAYMAN, BRITISH WEST INDIES    

1. Introduction 

Vertical successions of sediments in tropical lagoons are archives of 

environmental changes that have been laid down in these dynamic depositional 

environments.  As such, they provide records of temporal changes in depositional 

architecture that may refl ect sea level oscillations and/or climate changes (Bracco et 

al., 2005; Switzer and Jones, 2008; Marco-Barba et al., 2013).  At a smaller and more 

detailed scale, analyses of the carbonate components in lagoonal facies may refl ect 

temporal changes in ecology (Lane et al., 2009; 2011) and/or water conditions such as 

salinity and water depth (Culver, 1990; Debenay et al., 1998; Anthony et al., 2009), 

whereas geochemical proxies such as δ18O, δ13C, Sr/Ca and Mg/Ca ratios, and rare earth 

elements (REE) can be used to track short-term changes (100-1000s of years) in sea level 

oscillations and/or climate (Haug et al., 2001; Black et al., 2004; Muhs et al., 2007; Lane 

et al., 2009; Gregory et al., 2015).  

Barnett et al. (1992) argued that climate between 30 °S and 30 °N latitudes 

has a primary control on global atmospheric circulation and sea surface temperatures 

(SST).  The sparse record of pre-industrial climate variability for low resolution, semi-

continuous, and poor spatial coverage in these low latitudes, however, makes correlations 

to regional and global-scale climates diffi  cult (Holmgren et al., 1999).  For the Caribbean 

region, examples of climatological studies include Hodell et al. (1991) who used oxygen 

isotope compositions of ostracod shells in sediment cores from a brackish-water lake 

in Haiti to ascertain tropical climate changes since the late Pleistocene (last 10 ka).  

Similarly, Hodell et al. (1995) used sediment composition (gypsum/calcite ratios) and 
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δ18O values from ostracod and gastropod shells in a carbonate sediment core from a 

brackish-water lake in Mexico to reconstruct precipitation/evaporation cycles over 

the last ~3000 years.  Nyberg et al. (2001) used three sediment cores from off shore 

Puerto Rico to determine climate changes over the last ~2000 years using a multi-

proxy approach that included geochemical and magnetic susceptibility measurements 

of the sediment.  Lane et al. (2009) used sediment cores from two freshwater lakes in 

the Dominican Republic to decipher paleoenvironmental changes over the last ~3000 

years using a multi-proxy approach that involved sediment characteristics and the 

isotopic composition of the shells and sediment.  Similarly, Gregory et al. (2015) used 

foraminifera assemblages and element analyses of foraminifera and carbonate sediment 

from cores in fully marine coastal lagoons in Cuba to determine regional climate change 

over the last ~4000 years.

This study, based on three sediment cores from North Sound, Grand Cayman (Fig. 

1), uses a multi-proxy approach that includes analysis of facies, carbonate components, 

elemental concentrations, and stable isotope compositions to reconstruct centennial-

scale climate changes over the last ~6000 years.  The reconstruction of climate change 

around Grand Cayman is based on element concentrations (REE, Ti, Fe) for atmospheric 

variability (dry and wet periods) and oxygen isotope compositions for paleotemperatures 

(cool, mild, and warm periods).  Together, these parameters are used to assess the 

behaviour of atmospheric pressure regimes that aff ect the tropics such as the ITCZ and 

the phase of the NAO.  This Grand Cayman record is compared to regional and global 

climate fl uctuations, such comparisons are essential to deciphering the timing, eff ects, 

and causes of large-scale climate change in the Caribbean region and globally over the 

last ~6000 years.

2. Geological setting

Grand Cayman (Fig. 4.1) is located on the Cayman Ridge, which is an uplifted   
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fault block that extends from the Sierra Maestra Range (Cuba) to the base of the British 

Honduras Continental Slope (Fahlquist and Davies, 1971; Perfi t and Heezen, 1978).  

Although located in a tectonically active area, this island does not appear to have 

undergone any vertical movement during the last 125 ka (Emery, 1981; Jones and Hunter, 

1990; Jones, 1994).  

The coastal areas of the island are characterized by narrow shelves and lagoons 

formed by fringing reefs that stretch from headland to headland.  Present-day ocean 

temperatures off  the west coast of Grand Cayman range from 25° to 31°C, with an 
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average of 28.5°C (Goreau et al., 1992; Department of Environment and the Water 

Authority, Cayman Islands, 1991 and 2008; Chollett et al., 2012; NOAA, 2018; Fig. 

4.2A).  North Sound, the largest lagoon on Grand Cayman (Fig. 4.1B), is 9 km long and 

7 km wide with water up to 6 m deep (MacKinnon, 2000; MacKinnon and Jones, 2001).  

A fringing reef on its north margin separates North Sounds from the open ocean.  Water 

temperatures in this lagoon, measured from 1991-2008, have a seasonal range from 22° 

to 32°C, with an average of 28°C (Fig. 4.2B; Department of Environment and the Water 
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Authority, Cayman Islands, 1991 and 2008).

3. Samples

 This study is based on three 4 cm diameter sediment cores (B10, B15, B16) 

from North Sound that provide a record of sedimentation over the last ~6000 years 

(MacKinnon, 2000; MacKinnon and Jones, 2001).  All cores terminate at bedrock, and 

thus represent sedimentation prior to and during the last transgressive cycle 

(MacKinnon and Jones, 2001).  Core B10 is 2.23 m long, core B15 is 2.4 m long, and 

core B16 is 1.65 m long (Fig. 4.1B).  MacKinnon (2000) and MacKinnon and Jones 

(2001) divided the surface and subsurface sediments of North Sound into the Composite 

Grain, Gastropod, Bivalve, and Peat Facies that developed in fresh to brackish waters, 

and the Halimeda, Halimeda-Benthic Foraminifera-Bivalve, and Bivalve-Halimeda 

Facies that formed in fully marine conditions (Fig. 4.3).  

 In addition to the samples from the cores, three bulk surface sediment samples 

(~1 g) from North Sound, collected in the center (samples F77 and 93.5) and northeast 

corner of the lagoon (sample 93.3; Fig. 4.1B) were analyzed for elemental and isotopic 

composition.  The foraminifera, Archaias angulatus and Amphistegina gibbossa were 

picked out of the surface samples in three sediment-based size classes (6, 16, 26 mm 

diameter).  Two 10 ml samples of seawater from the center of North Sound (Fig. 4.1B) 

at surface and depth (4 m water depth), collected by the Department of Environment 

(Cayman Islands) in August 2019, were analyzed for their elemental and isotopic 

composition. 

4. Methodology

4.1.  X-ray diff raction

Sediment mineralogy was determined by X-ray diff raction (XRD) using a Rigaku 

Geigerfl ex Powder Diff ractometer at the University of Alberta.  Twenty-one bulk samples 
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(~1 g) at 10 cm intervals were analyzed from core B10, 23 bulk samples (10 cm intervals) 

from core B15, and 16 bulk samples (10 cm intervals) from core B16.  The mineralogy of 

the foraminifera samples was also determined.  The percentage of aragonite and calcite in 

each sample was determined following the approach of Li and Jones (2013).

4.2. Age dating

4.2.1. 14C dating

 Previously published 14C dates from cores B10, B15, and B16 were obtained by 

conventional radiocarbon dating analysis (MacKinnon, 2000; MacKinnon and Jones, 

2001) using the following technique.  The shell material was pretreated by leaching with 

HCl to remove the outer 20-40% before hydrolysis and the basal peat samples were 

treated three times with hot HCl extraction prior to radiocarbon analysis.  Two additional 

14C dates were obtained from core B15 in order to maximum the dating resolution as 

dictated by the availability of large well-preserved shells.  The additional 14C dates from 

core B15 were produced by the A.E. Lalonde AMS Laboratory at the University of 

Ottawa in 2017.   These samples were pretreated following the method of Crann et al. 

(2017).  Briefl y, samples were physically cleaned by manual abrasion and etched with 

0.2N HCl.  Graphite targets for accelerator mass spectrometry were prepared from CO2 

liberated by sample dissolution in anhydrous H3PO4 overnight at room temperature.

4.2.2. Age-depth model

 The radiocarbon ages were converted to calendar years using CALIB 7.10 (Stuiver 

et al., 2020).  All marine samples were calibrated using the MARINE13 calibration curve 

(Reimer et al., 2013) and a local (Caribbean) reservoir eff ect (ΔR) of -28 (Table 4.1).  

Non-marine samples were calibrated using the INTCAL13 calibration curve (Table 4.1).  

The age-depth model for core B15 was developed using the BACON package (‘rbacon’; 

Blaauw and Christen, 2011) in R (R Core Team, 2013).  BACON reconstructs age-
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Table 4.1.  14C dating information. Calibration was performed with CALIB 7.10 

(Stuiver et al., 2020), using the MARINE13 calibration curve (Reimer et al., 2013) and 

a local reservoir correction (R) of -28 for all marine samples.  Non-marine samples 

are calibrated using the INTCAL13 calibration curve.  Calendar years are given as the 

median probability and 2σ of calibrated ages, rounded to the nearest tenth year.

Sample
(Lab ID)

Core
Depth

Sample 
type

14C 
year 
BP

Fraction of
14C in 

sample

Calendar year
(2σ calibrated 

range)
Peat

(TO-8948)
B10

2.23 m
Non-marine 5060 ± 

80
n.d. 3850 BCE

(4030-3660 BCE)

Mytilopsis 
domingensis
 (TO-7501)

B10
1.65 m

Marine 4160 ± 
40

n.d. 2750 BCE
(2880-2620 BCE)

 Mytilopsis 
domingensis
(TO-7502)

B15
2.39 m

Non-marine 3770 ± 
40

n.d. 2190 BCE
(2330 to 2040 

BCE)

Peat
(TO-8949)

B15
2.37 m

Non-marine 4140 ± 
80

n.d. 2720 BCE
(2900 to 2490 

BCE)
Anodontina alba

(TO-7503)
B15

1.96 m
Marine 2520 ± 

30
n.d. 280 BCE

(360 to 180 BCE)

Anadara fl oridana?
(UOC-2672)

B15
1.4 m

Marine 1948 ± 
22

0.7846 ± 
0.0022

410 CE
(340 to 510 CE)

Cerithium 
eburneum

(UOC-2673)

B15
0.6 m

Marine 1584 ± 
22

0.8211 ± 
0.0023

760 CE
(700 to 850 CE)

Bivalve fragments
(TO-7504)

B16
1.15 m

Marine 2600 ± 
40

n.d. 370 BCE
(480 to 220 BCE)
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depth relationships using a Bayesian approach with prior assumptions about sediment 

accumulation rates and their variability together with Markov Chain Monte Carlo 

analysis.  Default values for section thickness, the shape and mean parameters for the 

accumulation rate gamma distribution, and the accumulation rate autocorrelation between 

sections were used.  The calendar age for the top of the core was set to 1980 CE, the year 

the core was collected.   Since North Sound is a small lagoon characterized by laterally 

continuous facies and the three cores were collected close to olected close to one another, the age-depth 

model from core B15 was extrapolated to cores B10 and B16. 

4.3. Elemental analyses

 Sixty-seven powdered samples (< 200 mg) of the sediments from core B10 

and B15 were analyzed for 45 elements (Mg, Ca, Sr, Li, Be, B, Na, Al, P, K, Ti, V, Cr, 

Fe, Mn, Cu, Co, Ni, Zn, Ga, Ge, As, Se, Rb, Zr, Nb, Mo, Ru, Pd, Ag, Cd, Sn, Sb, Te, 

Cs, Ba, Hf, W, Re, Ir, Pt, Tl, Pb, Th, U) and 15 REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, 

Dy, Ho, Er, Tm, Yb, Lu, including yttrium (Y)).  Determination limits (DL) ranged 

from 0.02 to 62 ppm, elements that are below DL are not considered further.  For the 

remaining 30 elements that are above DL, only the major element (>10000 ppm) Ca, 

the minor elements (1000 to 10000 ppm) Mg, Sr, Fe, Al, and the trace elements (<100 

ppm) Ti and REE+Y are utilized because these elements are (1) commonly used for 

paleotemperature determination (e.g., Ca, Mg, Sr), (2) display contrasts in concentrations 

that refl ect the change from coastal pond to marine facies (e.g., Mg, Sr, Fe, Al, Ti), and 

(3) can be used to assess climatic variability (e.g., Fe, Ti, REE+Y).  Only the Mg, Ca, 

and Sr concentrations were determined for the three surface sediment samples and the six 

foraminifera samples, as these elements are typically used to calculate SST.  Analytical 

uncertainties (2σ) are ±4000 ppm for Ca, ±40 ppm for Mg and Sr, ±20 ppm for Al, ±5 

ppm for Fe, ±2 ppm for Ti, and ±0.05 ppm for the REE+Y.

  A Thermo Fisher iCAP-Q inductively coupled plasma mass spectrometer 



(ICP-MS) at the University of Alberta was used for elemental analysis.  The samples 

were dissolved in 2 mL 50% HNO3, from this 0.1 mL was added to 9.7 mL deionized 

water, 0.1 mL HNO3, and 0.1 mL of internal standard solution at 100 ppb concentration 

for Sc, In, and Bi.  Typical count rates for 1 ppm were 300000 to 400000 cps.  REE 

concentrations were normalized to chondrite (CN; McLennan, 1989) and plotted on 

logarithmic scales against atomic number (cf., McLennan, 1989).  The REE are divided 

into light REE (LREE; La, Ce, Pr, Nd, Pm), middle REE (MREE; Sm, Eu, Gd, Dy), 

and heavy REE (HREE; Ho, Er, Tm, Yb, Lu) following standard conventions (Kuss et 

al., 2001; Muhs and Budahn, 2009).  The scale of the Eu anomaly is given by Eu(CN)/

Eu*, where Eu* is (Sm(CN)*Gd(CN))
0.5 (Muhs et al., 2007).  Diff erences in the abundances 

of LREE relative to HREE are given by La(CN)/Yb(CN), where high La(CN)/Yb(CN) values 

indicate LREE enrichment, and Gd(CN)/Yb(CN), where high Gd(CN)/Yb(CN) indicates 

signifi cant HREE depletion (Muhs et al., 2007). 

4.4. Seawater analyses

 The seawater samples from the center of North Sound (Fig. 4.1B) were analysed 

for metal concentrations at the University of Alberta using an inductively coupled 

plasma-tandem mass spectrometer (ICP-MS/MS).  For all elements, except Na, the 

samples and standards were prepared in a matrix of 2% HNO3 with 2000 ppm NaCl and 

then diluted to 1:15 sample to matrix.  For Na, samples were diluted to 1:200 sample to 

matrix.  The standards covered a range of 0.0005-120 ppm in three tiers to accommodate 

varying concentrations.  Various collision/reaction gases (He, H2, and O2) were used for 

ICP-MS/MS analysis, with In as an internal standard to account for instrument drift.  

The oxygen isotope compositions of these water samples were determined by 

Isotope Tracer Technologies Ltd., Ontario, Canada,  using a Thermo Delta Plus Advantage 

linked to a Gasbench I via a GC PAL autosampler.  δ18Owater values are reported relative to 

the VSMOW standard and have an analytical uncertainty (2σ) of ±0.2‰.    
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4.5. Sediment and foraminifera stable isotope analyses

 δ13C and δ18O values of the bulk sediment and foraminifera samples were 

determined using a Finnigan MAT DeltaPlus XL isotope ratio mass spectrometer (IRMS) 

at Isotope Tracer Technologies Inc, Waterloo, Ontario.  Twenty-one 5 g samples collected 

at 10 cm spacing were taken from core B10, 46 samples collected at 5 cm spacing 

were taken from core B15, and 16 samples collected at 10 cm spacing were taken from 

core B16.  The three surface sediment samples and six foraminifera samples (6-26 mm 

size fractions) were also analyzed.  Powdered samples, each weighing <100 mg, were 

evacuated with ultrapure helium and held at a constant temperature of 50°C over the 

course of the analysis.  Samples were digested with 100% phosphoric acid and allowed 

to react for 2 hours.  During each run sequence, two international calcite standards NBS-

18 and NBS-19 and an in-house calcite lab standard were measured repeatedly.  The C 

and O isotope compositions are reported using the δ notation relative to VPDB (Vienna 

Pee Dee Belemnite) and VSMOW (Vienna Standard Mean Ocean Water) standards, 

respectively.  The δ18O values were converted from VPDB to VSMOW using Equation 

2.21 (δ18OVSMOW = 1.0309[δ18OVPDB] + 30.91) from Sharp (2007).  Analytical uncertainties 

(2σ) are ±0.2‰ for δ18O and δ13C. 

Given that the cores are composed mostly of aragonite and the laboratory 

standards are calcite, a correction factor was applied to all the δ18O values to account 

for the diff erence in the acid fractionations between these two minerals at 50°C (from 

Kim et al., 2007; 2015).  Due to the fact that the sediments in the North Sound cores 

are not composed entirely of aragonite, the correction factor was modifi ed to refl ect 

the proportion of aragonite and calcite in the samples.  Specifi cally, correction factors 

varied from –0.20 in samples with nearly 50% calcite to –0.38‰ in samples with 100% 

aragonite. 
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5. Results

5.1. Facies

 Although MacKinnon (2000) and MacKinnon and Jones (2001) divided the 

sediments in North Sound into seven facies, only the (1) Bivalve, (2) Peat, (3) Halimeda, 

and (4) Halimeda-Benthic Foraminifera-Bivalve Facies are found in the cores used in this 

study.  

 Bivalve Facies: This facies is formed of disarticulated and fragmented Mytilopsis 

domigensis shells (~90%) that are intermixed with fi ne-grained organic material 

(~10%).

 Peat Facies: This facies consists largely of dark brown to black organic-rich 

sediment that contains scattered wood fragments and rare bivalve shells.  

 Halimeda Facies: This facies is dominated by Halimeda plates (~40-50%), 

micritized grains (~30%), scattered benthic foraminifera (~5-10%) and rare 

bivalve, gastropod, coral fragments, and composite grains (~10-25%).  

 Halimeda-Benthic Foraminifera-Bivalve Facies: This facies consists of Halimeda 

plates (~30-65%), benthic foraminifera (~5-35%), bivalves (~5-10%), and 

rare composite grains, gastropods, red algae, coral fragments, and fragmentary 

echinoderms (<~5%). 

5.2. Mineralogy

 The North Sound cores are formed primarily of aragonite, with the samples from 

core B10 containing 53 to 100 wt% aragonite, core B15 from 71 to 97 wt% aragonite, 

and core B16 from 83 to 98 wt% aragonite (Table 4.2).  These samples also contain 

calcite and trace amounts of quartz and gypsum.  There is a marked decrease in the 

percentages of aragonite towards the top of core B10 (Fig. 4.4).  For cores B15 (Fig. 4.5) 

and B16, apart from minor deviations there is only a slight decrease in the percentages of 

aragonite towards the top of cores.  The foraminifera samples are composed primarily of 
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 Table 4.2. Cores B10, B15, and B16 aragonite weight percentages and stable isotopic 
compositions. 

Core Distance 

(m)

Aragonite 

wt%

δ13CVPDB (‰) δ18OVPDB (‰) δ18OVSMOW (‰)

B10-A 2.2 96 -7.0 +0.2 31.1

B10-B 2.1 100 -7.9 -0.1 30.8

B10-C 2.0 97 -7.3 +0.3 31.2

B10-D 1.9 93 -7.3 0.0 31.0

B10-E 1.8 92 -7.6 +0.5 31.4

B10-F 1.7 97 -6.9 +1.3 32.2

B10-G 1.6 92 -6.8 +1.0 32.0

B10-H 1.5 92 -6.1 +1.6 32.6

B10-I 1.4 95 -6.4 +0.9 31.9

B10-J 1.3 86 -5.8 +0.6 31.6

B10-K 1.2 59 -2.1 -1.8 29.0

B10-L 1.1 65 0.0 -1.0 29.9

B10-M 1.0 70 +0.8 -1.0 29.9

B10-N 0.9 80 +1.8 -1.8 29.1

B10-O 0.8 84 +2.1 -1.2 29.6

B10-P 0.7 61 +2.5 +0.3 31.2

B10-Q 0.6 78 +3.0 +0.3 31.2

B10-R 0.5 53 +3.3 -1.1 29.8

B10-S 0.4 77 +2.9 -0.3 30.6

B10-T 0.3 53 +3.1 +1.0 32.0

B10-U 0.2 55 +2.8 -0.9 30.0

B15-A 2.35 97 -7.4 0.0 30.9
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Core Distance 

(m)

Aragonite 

wt%

δ13CVPDB (‰) δ18OVPDB (‰) δ18OVSMOW (‰)

B15-01 2.30 87 -7.6 -0.1 30.8

B15-B 2.25 77 -4.8 +0.1 31.0

B15-02 2.20 86 -1.0 -1.8 29.0

B15-C 2.15 95 -0.5 -1.2 29.7

B15-03 2.10 84 +0.9 -1.5 29.4

B15-D 2.05 73 +0.7 -1.2 29.7

B15-04 2.00 82 +1.1 -1.1 29.8

B15-05 1.95 82 +1.0 -1.0 29.9

B15-E 1.90 91 +1.2 -0.9 30.0

B15-06 1.85 91 +1.8 -1.2 29.7

B15-F 1.80 90 +1.9 -0.6 30.2

B15-07 1.75 88 +2.0 -1.3 29.6

B15-G 1.70 85 +2.5 -1.4 29.5

B15-08 1.65 87 +3.1 -1.5 29.3

B15-H 1.60 89 +3.3 -1.6 29.2

B15-09 1.55 89 +3.2 -1.3 29.5

B15-I 1.50 89 +3.1 -1.8 29.1

B15-10 1.45 88 +3.1 -1.5 29.3

B15-J 1.40 88 +2.9 -1.7 29.1

B15-11 1.35 89 +2.8 -1.5 29.4

B15-K 1.30 89 +3.5 -1.7 29.2

B15-12 1.25 89 +2.8 -1.2 29.6

B15-L 1.20 88 +3.4 -1.1 29.7

B15-13 1.15 89 +3.1 -1.4 29.4

B15-M 1.10 90 +3.3 -1.2 29.7
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Core Distance 

(m)

Aragonite 

wt%

δ13CVPDB (‰) δ18OVPDB (‰) δ18OVSMOW (‰)

B15-14 1.05 90 +2.9 -1.1 29.8

B15-N 1.00 89 +3.1 -1.2 29.6

B15-15 0.95 89 +3.2 -1.6 29.3

B15-O 0.90 88 +3.2 -1.2 29.7

B15-16 0.85 87 +3.2 -1.2 29.7

B15-P 0.80 85 +3.5 -1.2 29.6

B15-17 0.75 85 +3.4 -1.4 29.4

B15-Q 0.70 85 +3.3 -1.3 29.6

B15-18 0.65 82 +3.4 -1.4 29.5

B15-R 0.60 79 +3.3 -1.1 29.7

B15-19 0.55 79 +3.3 -1.3 29.5

B15-S 0.50 78 +3.3 -1.0 29.9

B15-20 0.45 77 +3.4 -1.1 29.7

B15-T 0.40 76 +3.3 -0.9 30.0

B15-21 0.35 75 +3.1 -0.7 30.2

B15-U 0.30 73 +2.6 -0.9 30.0

B15-22 0.25 77 +2.9 -1.2 29.7

B15-V 0.20 81 +3.2 -1.2 29.7

B15-23 0.15 77 +2.2 -0.6 30.3

B15-W 0.10 74 +3.0 -1.2 29.7

B16-A 1.6 97 +1.7 -0.9 29.6

B16-B 1.5 98 +1.5 -2.0 28.8

B16-C 1.4 96 +2.0 -2.2 28.6

B16-D 1.3 95 +1.6 -1.9 29.0



Core Distance 

(m)

Aragonite 

wt%

δ13CVPDB (‰) δ18OVPDB (‰) δ18OVSMOW (‰)

B16-E 1.2 97 +1.5 -1.2 29.3

B16-F 1.1 98 +1.3 -1.9 28.9

B16-G 1.0 92 +0.8 -1.4 29.4

B16-H 0.9 95 +1.6 -1.4 29.4

B16-I 0.8 90 +2.0 -1.7 29.2

B16-J 0.7 93 +2.4 -0.6 30.2

B16-K 0.6 89 +2.7 -1.0 29.9

B16-L 0.5 89 +2.8 -1.4 29.5

B16-M 0.4 88 +2.6 -1.3 29.6

B16-N 0.3 83 +3.0 -1.7 29.2

B16-O 0.2 86 +2.8 -1.9 29.0

B16-P 0.1 88 +2.9 -1.2 29.7
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Fig. 4.4.  Sedimentological and chemical components of core B10. (A) Facies distribution 

from MacKinnon, (2000) and MacKinnon and Jones, (2001). (B) Aragonite weight 

percentages, black circles indicate samples analyzed for XRD, letters correspond to 

sample ID, at 10 cm spacing. (C) Rare earth element group divisions, yellow circles 

indicate REE+Y for the sediments from the Bivalve, Halimeda, Halimeda- Benthic 

Foraminifera- Bivalve (B, H, HBFB) facies, the purple circles indicate REE for the 

sediment from the lower Mangrove peat (LM) facies, and the green indicate circles 

REE for the sediment from the upper Mangrove peat (UM) facies. (D) Elemental 

concentrations of selected minor elements. (E) Stable isotopic (δ13C and δ18O) 

concentrations.
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high Mg-calcite, with trace amounts of aragonite. 

5.3. 14C Dating

 14C dating of samples from the sediment cores yielded radiocarbon ages from 

1584 ± 40 to 5060 ± 80 14C years BP (Table 4.1).  The associated calibrated “calendar” 

ages for these samples, as determined using the radiocarbon calibration software 

CALIB 7.10, range between ~4000 BCE to 500 CE (Table 4.1).  The accuracy and 

precision of the age-depth model is infl uenced by the uncertainties associated with 

(1) 14C date analytical uncertainty (± 22-80 14C years), (2) choice of the 14C marine 

reservoir correction value (ΔR), which is poorly known for the Caribbean and unknown 

for Grand Cayman (Booker et al., 2019), (3) uncertainties in the calibration curve, and 

(4) assumptions in the BACON age-depth modeling software.  The BACON age-depth 

modeling routine calculates 1 and 2σ confi dence intervals from millions of age model 

iterations (Fig. 4.6) and suggests a general ± 200 years uncertainty in the age model.  
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Fig. 4.5.  Sedimentological and chemical components of core B15. (A) Facies distribution from 

MacKinnon, 2000 and MacKinnon and Jones, 2001. (B) Aragonite weight percentages, 

black circles indicate samples analyzed by XRD, letters correspond to sample ID, at 10 

cm spacing. (C) Rare earth element group divisions, yellow circles indicate REE+Y for 

the sediments from the Bivalve, Halimeda, Halimeda- Benthic Foraminifera- Bivalve 

(B, H, HBFB) facies, the purple circles indicate REE for the sediment from the lower 

Mangrove peat (LM) facies, and the green circles indicate REE for the sediment from 

the upper Mangrove peat (UM) facies.  (D) Elemental concentrations of selected minor 

element. (E) Stable isotopic (δ13C and δ18O) concentrations. 
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5.4. Elemental concentrations

 Analyses of 67 bulk sediment samples from core B10 and B15 yielded 

concentrations of major (Ca), minor (Mg, Sr, Fe, Al), and trace (Ti, RRE+Y) elements 

(Tables 4.3, 4.4. Figs. 4.4, 4.5, 4.7) that are linked, to varying degrees, to the sedimentary 

facies. 

 Bivalve Facies: The elemental concentrations in this facies (10 samples from core 

B10; 2 from core B15) range from 170221 to 322118 ppm Ca, 300 to 5516  

ppm minor elements, 5.8 to 27.0 ppm Ti, and 0.1 to 5.6 ppm REE+Y (Tables 4.3, 

4.4).  Plotted against depth, the Ca, Mg, Sr, Fe, Al, Ti, and REE+Y concentrations 

display generally uniform curves apart from minor fl uctuations (Figs. 4.4, 

4.5).  None of these samples have detectible concentrations of Tb, Tm, or Lu, 

8 samples do not have detectable levels of Eu, Ho, or Yb, and 5 samples do not 

have detectable levels of Er (Fig. 4.7).  These samples do not display Eu or Gd 

anomalies (Fig. 4.7).

 Peat Facies: Based on the elemental concentrations (4 samples from core B10; 11 

from core B15), this facies is divided into the Lower Peat Facies and the Upper 
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Fig. 4.6.   Age-depth model for core B15, produced using BACON (Blaauw and Christen, 2011). 

14C dates for individual samples calibrated with Calib 7.10 (Stuiver et al., 2020).  All 

marine samples calibrated using the MARINE13 calibration curve (Reimer et al., 

2013) with local reservoir correction of -28.  Non-marine samples calibrated using the 

INTCAL13 calibration curve. 
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Peat Facies.  The four Lower Peat Facies contains 21795 to 280481 ppm Ca, 460 

to 11783 ppm minor elements, 57.9 to 70.9 ppm Ti, and 0.1 to 14.3 ppm REE+Y 

(Tables 4.3, 4.4).  The Ca, Sr, Mg, Al, Fe, Ti, and REE+Y contents increase up 

core (Figs. 4.4, 4.5).  The four samples in the Lower Peat Facies contain all the 
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Table 4.3. Major and minor element concentrations. All concentrations in ppm. 

B10-A 217495 4543 1287 6123 944 1051

B10-B 261813 2227 1489 1232 310 631

B10-C 244016 3278 1268 2588 741 839

B10-D 250641 3038 1356 2264 774 605

B10-E 194814 5516 1106 5294 2013 1118

B10-F 264617 2209 1383 884 303 413

B10-G 259296 2667 1323 1196 351 441

B10-H 264654 2844 1188 1531 484 344

B10-I 267821 2263 1447 2714 741 332

B10-J 260860 3800 1549 1870 1272 480

B10-K 162378 8925 1658 11783 4604 1157

B10-L 213841 7406 2141 8352 2343 863

B10-M 201072 9766 2623 9641 2667 920

B10-N 212217 8980 2732 9193 2297 877

B10-O 247893 8602 2920 3959 1088 468

B10-P 263817 7136 2663 2291 479 334

B10-Q 256448 9102 3200 3055 576 535

B10-R 255421 9451 3276 2793 609 333

B10-S 238170 10040 3006 2371 698 513

B10-T 227947 10352 2802 2339 631 773

B10-U 231305 12381 2786 2497 840 917

B15-A 327395 1827 1939 1728 542 300

B15-01 322118 2471 2067 1503 555 485

B15-B 195281 11013 1733 6134 3743 1350

Core Ca Mg Sr Fe Al K
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Core Ca Mg Sr Fe Al K

B15-02 170221 9402 2014 8415 5185 1234

B15-C 190940 9497 2343 7804 4698 1148

B15-03 217954 9758 3377 5374 3686 922

B15-D 252328 8123 3785 7757 2162 728

B15-04 275290 5818 4415 5071 1867 608

B15-05 280481 5637 3988 4349 1393 628

B15-E 312473 3465 2926 1780 710 460

B15-06 306937 4535 5153 2447 780 623

B15-F 296947 5538 5955 3672 1590 618

B15-07 298412 5312 5379 2471 1308 747

B15-G 298738 4523 5784 2184 1050 615

B15-08 291432 5033 5762 2452 1156 749

B15-H 316668 4453 6650 2513 1605 470

B15-09 293239 6420 5330 1778 1041 637

B15-I 296494 4885 5966 2509 1204 697

B15-10 300963 4774 5993 2084 1047 700

B15-J 290601 5801 5661 3199 1714 442

B15-11 300772 5165 6149 2099 1187 741

B15-K 297139 4501 6326 2112 1004 617

B15-12 303669 5036 5877 2181 1291 654

B15-L 315380 4307 5757 2552 1332 561

B15-13 300799 5073 6008 2659 1385 643

B15-M 315093 3818 6438 2271 801 510

B15-14 312723 5169 6311 2226 981 564

B15-N 321176 4928 6724 2662 1082 418
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Core Ca Mg Sr Fe Al K

B15-15 312955 5291 6277 1923 924 532

B15-O 315793 5160 5801 1523 708 436

B15-16 305577 5675 6037 2657 1378 584

B15-P 328716 5448 6182 1984 872 405

B15-17 315488 5335 6017 1888 931 488

B15-Q 318513 5165 6388 1932 995 490

B15-18 310475 5698 5746 1537 773 532

B15-R 331670 4883 6359 1872 804 386

B15-19 312728 4189 6210 2153 622 473

B15-S 326986 6107 5805 1363 656 342

B15-20 316424 5668 5678 2094 769 418

B15-T 330551 7600 5527 1217 591 378

B15-21 323261 7096 4688 1212 553 381

B15-U 324428 6486 3885 613 335 394

B15-22 314592 7130 5236 829 320 468

B15-V 321834 7401 5902 1536 333 388

B15-23 325099 5111 3804 284 287 345

B15-W 315505 8799 5123 552 375 501
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rare earth elements.  All of the REE(CN) profi les exhibit negative Eu anomalies and 

displays positive Gd anomalies (Fig. 4.7).  The Upper Peat Facies contains 1623 

to 303669 ppm Ca, 615 to 5955 ppm minor elements, 11.4 to 48.5 ppm Ti, and 

0.1 to 4.5 ppm REE+Y (Tables 4.3, 4.4).  The Mg, Al, Fe, Ti, and REE+Y values 

decrease up core, whereas the Ca and Sr content increases up core (Figs. 4.4, 4.5).  

The REE(CN) profi les exhibit negative Eu anomalies and positive Gd anomalies 

(Fig. 4.7).  None of these samples have detectable concentrations of Tm and Lu, 

and one sample does not have detectible Tb.  
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 Halimeda Facies: This facies (7 samples from core B10, 31 from core B15) 

contains 190940 to 330551 ppm Ca, 287 to 12381 ppm minor elements, 6.1 

to 40.3 ppm Ti, and 0.1 to 3.8 ppm REE+Y (Tables 4.3, 4.4).  The Ca content 

initially increases before decreasing up core, whereas the Mg content increases up 

core, and the other elements (Sr, Fe, Al, Ti, REE+Y) remain relatively constant 

throughout the core (Figs. 4.4, 4.5).  None of these samples contain detectible 

concentrations of Tb, Ho, Tm, or Lu, most (36) of the samples do not have 

detectible Eu or Yb, and two samples do not contain detectible Er (Fig. 4.7).  The 

two samples that contain Eu display a negative Eu anomaly and a positive Gd 

anomaly (Fig. 4.7).

 Halimeda-Benthic Foraminifera-Bivalve Facies: This facies (2 samples from 

core B15) contains 326486 to 331670 ppm Ca, 381 to 7096 ppm minor elements, 

8.4 to 10.0 ppm Ti, and 0.1 to 1.7 ppm REE+Y (Tables 4.3, 4.4).  All element 

concentrations decrease slightly up core (Figs. 4.4, 4.5).  None of the samples 

contain detectible concentrations of Eu, Tb, Ho, Er, Tm, Yb, or Lu (Fig. 4.7).  

These samples do not display Eu or Gd anomalies (Fig. 4.7). 

 The three surface sediment samples yielded 325396 to 352356 ppm Ca, 4063 

to 6548 ppm Sr, 5284 to 7120 ppm Mg, Sr/Ca ratios of 5.7 to 8.6 mmol/mol, and Mg/

Ca ratios of 2.5 to 3.3 mmol/mol (Table 4.5).  The foraminifera samples yielded 309494 

to 352356 ppm Ca, 1415 to 2640 ppm Sr, 11121 to 28078 ppm Mg, Sr/Ca ratios of 2.3 

to 4.6 mmol/mol, and Mg/Ca ratios of 10.2 to 14.6 mmol/mol (Table 4.5).  The surface 

sediment samples contain consistently higher Mg and Ca, and lower Sr concentrations 

than the foraminifera samples (Fig. 4.8A-C).

5.4. Seawater analyses

 The two seawater samples (surface and 4 m water depth) from the center of North 

Sound yielded similar elemental concentrations (Table 4.6).  The B, Mg, K, Br, Sr, Mo, 
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and U concentrations are, within error, the same for the two samples.  In contrast, the S 

and Ca concentrations diff er by 18 and 60 ppm, respectively, between samples, with these 

elements being elevated in the 4 m water sample.  The Na concentrations in the surface 

sample is 500 ppm higher than that of the 4 m water depth sample.  Li, Al, Si, P, Ti, Cr, 

Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Ba, and Pb were all below DL.  

 These samples yielded δ18Owater values of +0.30 and +0.37‰ for the surface and 

4 m depth samples, respectively.  Additionally, two water samples that were collected 

from the northwest corner of North Sound in 1987, yielded δ18Owater values of +1.20 and 

+1.21‰ (Ng, 1990).  

5.5. Stable isotopes 

 The carbonate sediments in core B10 yielded δ13CVPDB values from –7.9 to +3.3‰ 

and δ18OVSMOW values from 29.1 to 32.6‰ (Table 4.2. Fig. 4.4).  Sediments in core B15 

yielded δ13C values from –7.6 to +3.5‰ and δ18O values from 29.1 to 31.0‰ (Table 

4.2. Fig. 4.5).  Core B16 yielded δ13C values from +0.5 to +3.0‰ and δ18O values from 

28.6 to 30.3‰ (Table 4.2).  The stable isotopes display minor fl uctuations throughout 

the cores, with the exception of the Peat Facies, which are diff erent (~1 to 2‰ for δ18O 

and ~2 to 7‰ for  δ13C) from the other facies.  The three surface sediment samples 

yielded δ13C values from +1.4 to +5.2‰ and δ18O values from 29.5 to 31.8 ‰.  The six 

foraminifera samples yielded δ13C values from +2.7 to +4.6‰ and δ18O values from 

27.6 to 31.5‰.  There appears to be no pattern in the isotopic compositions between the 

surface sediment samples and the foraminifera samples (Fig. 4.8D, E).  

6. Interpretations 

6.1. Facies

 MacKinnon (2000) and MacKinnon and Jones (2001) divided the sediment  

succession in North Sound into fresh to brackish water coastal ponds and marine facies  
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the surface sediment and foraminifera samples from North Sound.

 

that were related to sea level rise and creation of North Sound.  For the three cores 

used in this study the Bivalve and Peat Facies formed in the fresh to brackish water 

coastal ponds, whereas the Halimeda and Halimeda-Benthic Foraminifera-Bivalve 

Facies developed in marine environments (Fig. 4.3).  The Peat Facies overlies bedrock 

throughout most of the lagoon, with the exception of core B15 where there is a thin layer 

of the Bivalve Facies between the bedrock and the Peat Facies.  The Halimeda Facies, 
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with interlayers of the Halimeda-Benthic Foraminifera-Bivalve Facies, commonly 

overlies the Peat Facies.  The division between the Peat and Halimeda Facies marks the 

transition from the coastal pond to marine environment, which based on 14C dating in 

core B15, is congruent with sea level rise ~3000 years ago (Fig. 4.3). 

6.2. Element distributions

 Given that most sediments in North Sound accumulated in shallow marine waters, 

their REE(CN)  profi les are compared to a seawater REE(CN) profi le (Fig. 4.7) for a sample 

from 10 m below sea level on the Mysteriosa Bank, which is located ~400 km west of 

Grand Cayman on the Cayman Ridge (Osborne et al., 2015, their Supplementary Data 

Table 2, station 164-1).  Although the REE(CN) profi le for the Peat Facies is similar to 

the REE(CN) seawater profi le from Mysteriosa Bank (Fig. 4.7) the negative Ce anomaly 

evident in most marine carbonates (Taylor and McLennan, 1985) is not present in the 

Peat Facies samples.  For the marine facies in North Sound, only the LREE segment of 

the REE(CN) profi le is similar to the seawater profi le from Mysteriosa Bank, apart from 

the negative Ce anomaly seen in the seawater profi le that is lacking in the marine facies.  

Diff erences between the North Sound REE(CN) profi les and the seawater profi le from 

Mysteriosa Bank may be related to the organic matter found in those facies given that 

organic particles in seawater can preferentially absorb elements, including REE, onto 

their surfaces (Byrne and Kim, 1990; Sholkovitz et al., 1994; Byrne and Sholkovitz, 

1996; Alibo and Nozaki, 1999; Kuss et al., 2001; Osborne et al., 2015).  It has been 

shown, experimentally, that LREE are more readily incorporated into carbonate minerals 

as metal oxides (iron oxyhydroxide) or onto the surfaces of marine particulates (Fe(III) 

complexes with organic ligands), when compared to HREE that form strong complexes 

with carbonate anions and remain in seawater (Cantrell and Byrne, 1987; Koeppenkastrop 

et al., 1991; Nozaki et al., 1997; Moraetis and Mouslopoulou, 2013).  The preferential 

incorporation of Mg, Sr, Fe, Al, Ti, and REE+Y in the Peat Facies of North Sound was 
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probably related to the organic matter in that facies (Figs. 4.4, 4.5, 4.7).  The elevated 

concentrations of Fe in the Peat Facies are critical to understanding the increased 

concentrations of the other elements.  In seawater, 99% of the dissolved Fe(III) forms 

complexes with organic ligands, like those found in the leaf litter of mangrove trees 

(Hinokidani and Nakanishi, 2019), which facilitate the sorption of elements (especially 

LREE) onto these surfaces, and may be responsible for the diff erent elemental patterns in 

the North Sound sediments relative to the seawater from Mysteriosa Bank.   

 Comparison of the North Sound sediment REE(CN) profi les against the average 

carbonate rock REE(CN) values of Turekian and Wedepohl (1961) shows that the REE(CN) 

profi les for the sediment are more consistent with the carbonate rock profi le than the 

seawater profi le from the Mysteriosa Bank (Fig. 4.7).  Both the North Sound sediment 

and the carbonate rock REE(CN) profi les are LREE dominated, display similar shapes 

and elemental concentrations, and have a positive Ce anomaly.  Additional fractionation 

between the LREE and HREE that may have taken place at the sediment-water interface 

in the restricted lagoon caused the relatively fl at REE(CN) pattern and the positive Ce 

anomaly that characterizes the North Sound sediments (cf., Lerche and Nozaki, 1998; 

Alibo and Nozaki, 1999).  This supports the notion that the diff erences between the 

REE(CN) profi les from the North Sound sediment and the seawater profi le from Mysteriosa 

Bank may refl ect diff erences in the behaviour of the REE in open ocean water as opposed 

to a restricted lagoon.  

 The four possible sources for the REE+Y found in Caribbean carbonate sediments 

are (1) weathering of insoluble material from the underlying carbonate bedrock, (2) 

fl uvial transport of detrital materials from surrounding highlands, (3) wind-blown 

volcanic ash, and/or (4) wind-blown aerosols from distant regions (Muhs et al., 1987; 

2007; Muhs and Budahn, 2009).  For the North Sound sediments, derivation from the 

underlying bedrock, which may be part of the Pedro Castle Formation based on drill 

cores from the west coast of North Sound (Wignall, 1995), is unlikely due to the paucity 
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of clays and other insoluble residues in those limestones.  A detrital origin is impossible 

due to the lack of rivers and siliciclastic material on Grand Cayman (Jones, 2019).  

Therefore, the most probably origin of these REE+Y is from fi ne grained wind-blown 

aerosols and/or volcanic ash that came from other localities distant from the Cayman 

Islands (cf., Jones, 2019).  

 Comparison of the North Sound sediment REE(CN) profi les with those derived 

from African dust and Dominica/St. Lucia tephra from Muhs et al. (2007), suggests that 

most of the REE probably came from the Sahara Desert, as the North Sound sediment 

REE(CN) profi les are more consistent in terms of shape to the African dust REE(CN) profi les 

then the tephra profi le (Fig. 4.7).  Conversely, the Eu(CN)/Eu* vs La(CN)/Yb(CN) plots (Fig. 

4.9A) indicate that the REE in North Sound may have been derived from Sahara Desert 

dust and/or Dominica/St. Lucia volcanic ash.  In contrast, a plot of Eu(CN)/Eu* vs Gd(CN)/

Yb(CN)  (Fig. 4.9B; cf., Muhs et al., 2007; Muhs and Budahn, 2009) indicates that the REE 

originated from the Saharan Desert dust.  

6.3. Geothermometers for calculating SST 

 Past seawater temperatures have commonly been calculated from the Sr/Ca ratios, 

Mg/Ca ratios, or δ18O values of carbonate material (e.g., Shackleton, 1974; Black et al., 

2007; Cleroux et al., 2008; Abahazi, 2009) using geothermometers derived from (1) 

abiogenic carbonates, (2) biogenic calcite, and/or (3) biogenic aragonite.  Given that at 

least 132 diff erent equations (Supplementary Tables 4.1-4.3) have been developed for this 

purpose, their viability was fi rst tested by comparing the calculated temperatures (Tcal) 

derived from the surface sediment and the foraminifera samples from North Sound that 

have accumulated over recent years for which measured water temperatures of 22° to 

32°C (1991 to 2008) are known.  Tcal derived from those modern samples are considered 

viable if they are within the 22° to 32°C temperature range.  Those equations are then 

used to derive Tcal for the sediments in core B15, the Tcal are deemed suitable if they are 
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within ±5°C of the 22° to 32°C temperature range to account for temperature variability 

over the last ~6000 years. 

6.3.1. Sr/Ca equations

 Application of the 9 published Sr/Ca geothermometers (Supplementary Table 

4.1) to the Sr/Ca ratios derived from the surface sediment and foraminifera samples 

produced Tcal of +127° to +441°C and +31° to +206°C, respectively (Fig. 4.10).  These 

temperatures are signifi cantly higher than the measured range of 22° to 32°C for North 

Sound.  In some cases, it has been shown that the Sr/Ca ratios from foraminifera are 

independent of temperature (Delaney et al., 1985) and controlled primarily by past 

seawater Sr/Ca ratios and/or CO3
2- concentrations in the seawater (Graham et al., 1982; 

Stoll et al., 1999; Rosenthal et al., 2006), calcifi cation rates, and/or changes in pH and 

salinity (Elderfi eld et al., 2000; Mortyn et al., 2005; Cleroux et al., 2008).  Herein, these 

equations are not used because of these issues.  

6.3.2. Mg/Ca equations

 The 82 published Mg/Ca geothermometers (Supplementary Table 4.2) yielded 

Tcal of –130° to +77°C and –85° to +465°C from the surface sediment and foraminifera 

samples, respectively (Fig. 4.10).  Although most equations produced Tcal values that are 

signifi cantly outside the temperature range for North Sound, the equations developed 

by Rosenthal and Lohman (2002), Anand et al. (2003), Mekik et al. (2007), Bryan and 

Marchitto (2008), Cleroux et al. (2008), and two equations from Elderfi eld et al. (2006), 

yielded Tcal from 23° to 33°C when applied to the surface sediment and foraminifera 

samples.  Use of these seven Mg/Ca equations for the sediments in core B15 yielded 

Tcal from –24° to +112°C (Figs. 4.11, 4.12A).  The Tcal, that are outside the 17° to 37°C 

range may be due to the mixture of carbonate components in the sediment samples 

(c.f.,Rosenthal and Linsley, 2006; Wejnert et al., 2013; Evans et al., 2015; Reghellin et   
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al., 2015) and/or eff ects of the seawater CO3
2- concentration on the Mg/Ca ratios (Bryan  

and Marchitto, 2008).  Given these uncertainties, these equations are not considered 

further for deriving temperatures from the sediment cores. 

6.3.3. δ18O equations

 The δ18O of carbonate components is a function of the ambient seawater 

temperature at the time of calcifi cation and the δ18Owater value (Craig, 1965).  Herein, 

a δ18Owater value of +0.4‰ is used in applying these O-isotope geothermometers because 

that value came from a water sample that was collected from the center of North Sound 

at a depth of 4 m, where the water is well-mixed.  It was chosen in preference to the 

δ18Owater value of +1.2‰ that Ng (1990) reported from the NW corner of North Sound 
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because that sample came from a sheltered, shallow water environment that is prone 

to elevated water temperatures and enhanced evaporation.  Use of the 41 published 

δ18O-geothermometers (Supplementary Table 4.3) with the δ18O values derived from 

the surface sediment and foraminifera samples produced Tcal of +5° to +36°C and +6° 

to +45°C, respectively (Fig. 4.10).  Although many of these Tcal values are within the 

measured range of water temperatures from North Sound, most (39) equations produced 

some Tcal values that are outside of this range.  The equations proposed by Hudson and 

Anderson (1989), based on various species of foraminifera, gastropods, and scaphopods, 

and Thorrold et al. (1997), based on aragonitic marine otoliths, yielded Tcal from 19° to 

30°C, values that are consistent with the modern range of water temperatures in North 

Sound.  Use of these two thermometer equations for the sediments in core B15 yielded 

Tcal from +21° to +32°C (Fig. 4.11), the geothermometer of Hudson and Anderson (1989; 

T= 19.7- (4.34*(δ18Ocarbonate - δ
18Owater))) is used in preference to that of Thorrold et al. 

(1997) because it was derived from organisms that are akin to those found in the North 

Sound sediment.   

 

7. Discussion

 7.1. Climate change over the last ~6000 years

 Facies changes, facies components, and/or their geochemical (Ca, Mg, Sr, Al, Fe, 

Ti, REE+Y, δ18O, δ13C) composition have the potential of providing critical information 

about past environmental and climatic variability that underpinned their evolution.  

Sediments in North Sound on Grand Cayman, for example, refl ect climate changes over 

the past ~6000 years that included the transgression that began ~3000 years ago when 

the environmental setting changed from coastal ponds and mangrove swamps to a marine 

lagoon (Fig. 4.3).  The inundation of North Sound with seawater was associated with 

global sea level rise (cf., Fleming et al., 1998; Milne et al., 2005) and increased SST at 

that time.  Subsequent sedimentation in North Sound remained relatively constant as 
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various types of carbonate sediments continued to accumulate.  

 The concentrations of minor elements (Mg, Sr, Fe, Al) and trace elements (Ti, 

REE+Y) in carbonate sediments have been related to periods of atmospheric moisture 

variability (Prospero and Lamb, 2003; Doherty et al., 2012; Prospero and Mayol-Bracero, 

2013).  The concentrations of Fe and Ti in carbonate sediments in the Caribbean have, 

for example, been used to indicate changes in precipitation and the position of the 

Intertropical Convergence Zone (ITCZ).  Low metal concentrations have been associated 

with reduced rainfall and a southward displacement of the ITCZ, whereas high metal 

concentrations point to enhanced rainfall and a northward displacement of the ITCZ 

(Haug et al., 2001; Black et al., 2004; 2007).  Additionally, increasing REE+Y levels in 

the atmosphere of the Caribbean region have been linked to dry atmospheric conditions, 

enhanced trade wind speeds, southward displacement of the ITCZ, and increased African 

dust transportation (Nyberg et al., 2001; Prospero and Lamb, 2003; Mahowald et al., 

2006; Muhs et al., 2007; Doherty et al., 2012; Prospero and Mayol-Bracero, 2013).  

Conversely, decreasing REE+Y concentrations have been linked to periods characterized 

by wet atmospheric conditions, diminished trade wind speeds, northward displacement of 

the ITCZ, and reduced African dust transportation.  Today in the Caribbean, large plumes 

of African dust typically move through the region during the dry season (Prospero et al., 

1970; Doherty et al., 2012; Donegan, 2019).

 The possibility that the distribution of the minor and trace elements in carbonate 

sediments may refl ect climate conditions must be treated with caution because 

depositional processes may modify those signals.  The elevated minor (710 to 11783 

ppm; Mg, Sr, Al, Fe) and trace element concentrations (8 to 71 ppm; Ti, REE) in the Peat 

Facies (Figs. 4.4, 4.5), for example, may refl ect (1) the preferential absorption of the Fe 

and REE+Y by the organic matter in that facies (cf., Cantrell and Byrne, 1987; Byrne 

and Kim, 1990; Byrne and Sholkovitz, 1996; Osborne et al., 2015), (2) climate change 

that led to increased precipitation over Grand Cayman, and/or (3) climate change that 
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increased the frequency of dust storms that originated from the Sahara Desert.  Relative   

to the Peat Facies, the carbonate facies with their lower organic matter content also 

have lower concentrations of the minor (303 to 3959 ppm) and trace elements (4 to 40 

ppm).   Thus, changes in the trends in the Fe, Ti, and ∑REE+Y depth profi les may refl ect 

regional atmospheric moisture variability (Mahowald et al., 2006; Doherty et al., 2012).  

Increasing ∑REE+Y values and low Fe and Ti concentrations in the depth profi les, may 

correlate to enhanced mobilization and export of African dust to the Caribbean region 

during periods of reduced atmospheric moisture (cf., Haug et al., 2001; Nyberg et al., 

2001).  In contrast, decreasing ∑REE+Y values and elevated Fe and Ti concentrations 

in the depth profi les, may be related to periods of increased atmospheric moisture and 

reduced infl uxes of African dust (cf., Haug et al., 2001; Nyberg et al., 2001).  Given this, 

changes in the relative concentrations of Fe and Ti, and the shape of the ∑REE+Y depth 

profi les may provide evidence for dry and wet conditions over the last ~6000 years in 

North Sound (Fig. 4.13).

 The stable isotope depth profi les in the North Sound sediments are characterized 

by fl uctuations in the  δ13C and  δ18O values.  The Peat Facies is characterized by elevated 

δ13C values (2 to 7‰) and reduced δ18O values (1 to 2‰) when compared to the Bivalve 

Facies.  The high δ13C values are probably related to the enhanced proportion of organic 

carbon that accumulated when the mangroves were thriving (cf., Gonneea et al., 2004; 

Bouillon et al., 2008).  The δ18O values, however, are not aff ected by organic matter 

accumulation or facies changes as shown by the small diff erences in δ18O values (< 5‰) 

between all the facies.  Thus, the diff erences in the δ18O values may refl ect variability 

in the SST (Oppo et al., 1998; Richey, 2007; Cronin et al., 2010) that aff ected North 

Sound during the deposition of the carbonate components.  Both temperature and 

salinity infl uence the δ18O values of carbonate material (Black et al., 2004; 2007; Lane 

et al., 2009; 2011), therefore, it is important to stress that discussions involving the 

temperatures fl uctuations derived from these δ18O values are established in relation  
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to the current average water temperature (28°C) for North Sound and refl ect relative 

temperature fl uctuations as opposed to absolute values (cf., Black et al., 2007).  As such, 

the δ18O values can be correlated to warm, mild, and cool periods that have aff ected 

North Sound over the last ~6000 years (Fig. 4.14).

 Herein, periods are considered dry if the ∑REE+Y depth profi les display 

increasing values and reduced Fe and Ti concentrations relative to the preceding data 

points and wet if opposite trends are evident.  Additionally, warm periods are defi ned by 

O-isotope temperatures that are elevated relative to the modern average SST of North 

Sound (28°C; Fig. 4.2), mild periods are defi ned by O-isotope temperatures consistent 

with the present-day average seawater temperature in North Sound, allowing for seasonal 

fl uctuations of ±1°C, and cool periods are defi ned by the O-isotope temperatures lower 

than the current average water temperature for North Sound (cf., Booker et al., 2019).  

7.2. Atmospheric moisture and SST in North Sound

 Based on the trends displayed in the Fe, Ti, and ∑REE+Y depth profi les and 

changes in the δ18O derived temperatures relative to the modern average SST value, 

the record from the North Sound cores indicates that North Sound has experienced the 

following changes in climatic conditions over the last ~6000 years (Figs. 4.13, 4.14). 

Fig. 4.13. Comparison between the trace element (∑REE+Y and Ti) and Fe concentration depth 

profi les of core (A) B10 and (B) B15. Orange shaded regions represent dry periods and 

grey shaded regions represents wet periods. Dashed lines separate periods. Time scale 

in calendar years (±200 years) based on the conversion of 14C dates. BAC- Bronze Age 

Collapse, GADP- Greek Age Dark Period, RWP- Rowman Warm Period, DACP- Dark 

Ages Cool Period, MCA- Medieval Climate Anomaly, LIA- Little Ice Age, MWP- 

Modern Warm Period.
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 Cool-Dry period 1 (CD1: ~3850 to 1280 BCE): Deposition of the Bivalve Facies   

during this period was associated with ∑REE+Y depth profi les with two trends of 

generally increasing values through time, the fi rst between ~3850 to 2400 BCE 

when the ∑REE+Y increased from 4 to 14 ppm and the second between ~2400 

to 1280 BCE when the ∑REE+Y increased from 4 to 45 ppm (Fig. 4.13).  These 

increases may be indicative of dry conditions.  The Fe and Ti concentrations also 

record two trends, with generally low concentrations (884 to 6123 ppm and 6 to 

27 ppm, respectively) between ~3850 to 2100 BCE and elevated concentrations 

(1196 to 8415 ppm and 6 to 67 ppm, respectively) between ~2100 to 1280 BCE 

(Fig. 4.13).  This suggests initially dry conditions that transitioned to a wetter 

climate.  The O-isotope temperatures, which are up to 13°C cooler than the 

current average water temperature for North Sound, decreased between ~3850 to 

1600 BCE.  Between ~1600 to 1280 BCE the temperatures increased by up to 2°C 

relative to the previous temperature (Fig. 4.14). 

 Mild-Wet period 1 (MW1: ~1280 to 200 BCE): The Bivalve and Lower and 

Fig. 4..14. Calculated temperature profi les for North Sound cores (A) B10, (B) B15, and (C) 

B16. Calculated temperatures determined using the δ18O-geothermometer of Hudson 

and Anderson (1989) with a δ18Owater value of +0.4‰. Grey bars indicate ±1°C error 

in SST. Red shaded regions represent warm  periods, purple shaded regions represent 

mild periods, blue shaded regions represent cool periods. Dashed lines separate 

periods. Time scale in calendar years (±200 years) based on the conversion of 14C dates. 

BAC- Bronze Age Collapse, GADP- Greek Age Dark Period, RWP- Rowman Warm      

Period, DACP- Dark Ages Cool Period, MCA- Medieval Climate Anomaly, LIA- Little 

Ice Age, MWP- Modern Warm Period.
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Upper Peat Facies, which accumulated during this period, have ∑REE+Y depth 

profi les characterized by decreasing values (42 to 8 ppm) and elevated Fe and 

Ti concentrations (1780 to 11783 ppm and 11 to 71 ppm, respectively; Fig. 

4.13).  This may indicate that wet conditions were the norm.  These sediments 

developed when there was an initial increase in Tcal of ~6°C relative to CD1.  The 

temperatures then remained ~28°C, values that are consistent with the current 

water temperatures in North Sound, for the next ~800 years (Fig. 4.14).  

 Warm-Dry period 1 (WD1: ~200 BCE to 480 CE): The Upper Peat and Halimeda 

Facies accumulated during this period was characterized by ∑REE+Y values 

that decreased from 23 to 9 ppm and low Fe and Ti concentrations (1178 to 9193 

ppm and 14 to 40 ppm, respectively; Fig. 4.13), which may indicate a dry but 

variable climate.  The temperatures during this period are up to 3°C warmer than 

the current average water temperature for North Sound (Fig. 4.14).  Although 

temperatures during this period were higher than the current average water 

temperature for North Sound, there was an overall decrease in Tcal.  

 Cool-Wet period 1 (CW1: ~480 to 1850 CE): The deposition of the Halimeda and 

Halimeda-Benthic Foraminifera-Bivalve Facies was accompanied by ∑REE+Y 

values that decreased from 11 to 4 ppm, Fe and Ti concentrations that increased 

from 284 to 3055 ppm and 6 to 18 ppm, respectively, and temperatures that 

fl uctuated by up to 12°C relative to the current average water temperate for 

North Sound (Figs. 4.13, 4.14).  This period is divided into: (1) CW1A: ~480 to 

800 CE that was characterized by low Tcal (–12° to +1°C relative to the current 

average water temperature for North Sound), ∑REE+Y that increased from 7 to 

10 ppm, and Fe and Ti that increased from 1523 to 3199 ppm and 12 to 24 ppm, 

respectively, which collectively may indicate dry conditions, (2) CW1B: ~800 

to 1350 CE that was characterized by an overall increasing trend in Tcal that was 

up to 1°C warmer than the current average water temperature in North Sound, 
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∑REE+Y values that decreased slightly from 9 to 7 ppm, and Fe and Ti that 

increased from 1217 to 3055 ppm and 10 to 14 ppm, respectively, which may   

indicate wet conditions, and (3) CW1C: ~1350 to 1850 CE that was characterized 

by generally low temperatures as much as 10°C cooler than the current average 

water temperature for North Sound, apart from a 100-year period at ~1600 CE 

with increasing Tcal of  up to 2°C relative to the current average water temperature 

for North Sound, ∑REE+Y that slightly decreased from 9 to 4 ppm, and Fe and 

Ti that increased from 284 to 2339 ppm and 6 to 18 ppm, respectively, which may 

indicate wet conditions.  

 Mild-Wet period 2 (MW2: ~1850 to 1980 CE): Deposition of the Halimeda  

 Facies with ∑REE+Y that decreased slightly from 9 to 6 ppm and Fe and Ti that 

increased from 552 to 2497 ppm and 8 to 23 ppm, respectively (Fig. 4.13).  This 

may suggest wet conditions during this period.  The temperature fl uctuations 

varied by 1°C relative to the current average water temperature for North Sound, 

values that are consistent with mild conditions (Fig. 4.14).  

7.3. Caribbean correlations 

 The climate periods derived from the cores from North Sound on Grand Cayman 

are broadly consistent with those evident in other climate records from the Cayman 

Islands and elsewhere in the Caribbean-Gulf of Mexico region (Figs. 4.15, 4.16).  Coral 

skeletons collected from open ocean reefs from Grand Cayman and Cayman Brac, which 

grew between ~1474 to 1512 CE and ~1815 to 2014 CE, provided evidence of systematic 

climate changes over the last ~540 years (Booker et al., 2019).  The Grand Cayman corals 

came from a reef on the southwest corner of the island and from North Sound’s fringing 

reef that are 9.5 km and 6 km from the North Sound cores, respectively.  The Cayman 

Brac coral came from a locality that is 170 km from the North Sound cores.  Although the 

SST records derived from the corals and North Sound cores are broadly in agreement,   
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there are minor diff erences with respect to the upper part of cool period 2 (~1896 to 1924 

CE), as derived from the Cayman corals (low and decreasing temperatures of 29° to 

21°C), and the North Sound cores (mild temperatures around 28°C) over the same time 

period.  This discrepancy may be a function of (1) the fact that today, the water in North 

Sound is generally 1° to 2°C warmer than in the open ocean around the Cayman Islands 

due to diff erences in circulation patterns, and (2) the smaller scale sampling resolution for 

the corals relative to the sediment core.  Although the North Sound cores provide records 

of climate variability on the centennial scale, decadal scale changes like those obtained 

from the corals cannot be resolved from the sediment cores.  Nevertheless, the Cayman 

coral-based SST records show similar trends in warming and cooling to those from the 

North Sound cores.  

 Climatic cycles in the tropics have generally been attributed to changes in the 

positions of the Intertropical Convergence Zone (ITCZ) and North Atlantic Oscillation 

(NAO) that both infl uence the temperature and precipitation regimes (Haug et al., 2001; 

Nyberg et al., 2001; Lane et al., 2009; Gregory et al., 2015).  Inferences about the   

Fig. 4.15.  Comparison between atmospheric moisture reconstructions from Grand Cayman 

and other localities: (A) δ13CTOC of bulk sediments from a core in Laguna Castilla, 

Dominican Republic (Lane et al., 2009, their Fig. 8), (B) CaCO3 content from a 

sediment core in Lake Chichancanba, Gulf of Mexico (Hodell et al., 1995, their Fig. 

2), (C) 5 point running mean of Ti content from sediments in a core from Playa Bilen, 

Cuba (Gregory et al., 2015, their Fig. 10), (D) bulk Ti content of sediments from ODP 

Site 1002 in the Cariaco Basin (Haug et al., 2001, their Fig. 3), and (E) Ti and ∑REE+Y 

concentrations from core B10 in North Sound, Grand Cayman (this study). Grey shaded 

regions represent wet periods and orange shaded regions represent dry periods (±200 

years). 
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past movements and positions of these atmospheric pressure regimes are commonly  

developed based on records of atmospheric moisture variability (Hodell et al., 1991; 

1995; Haug et al., 2001; Nyberg et al., 2001; Lane et al., 2009; 2011; Stansell et al., 

2013; Gregory et al., 2015).  If true, the climate regimes deduced from the North Sound 

cores (Figs. 4.13, 4.14) should correlate with the atmospheric moisture and temperature 

variability that have been established for other areas in the Caribbean.  

 The dry conditions during CD1 (~3850 to 1280 BCE), WD1 (~200 BCE to 

480 CE), and CW1A (~480 to 800 CE) detected from the North Sound cores can be 

correlated (Fig. 4.15) with similar periods recognized in Cuba (Fensterer et al., 2012; 

Gregory et al., 2015), the Cariaco Basin (Hodell et al., 1991; Haug et al., 2001), the 

Dominican Republic (Lane et al., 2009; 2011), and the Gulf of Mexico (Hodell et al., 

Fig. 4.16.  Comparison between temperature reconstructions from Grand Cayman and other 

localities: (A) abundance of benthic chilled Atlantic foraminifera from the East 

Greenland Shelf  (Kolling et al., 2017, their Fig. 2), (B) reconstructed water table depth 

from Temple Hill Moss, Scotland (Langdon et al., 2003, their Fig. 8), (C) δ18O values 

from a stalagmite in northeastern Italy (Finne et al., 2011, their Fig. 3, after Frisia et 

al., 2005 ), (D) chironomid cold (black) and warm-preferring (red) taxa abundances 

from Gonghai Lake, Northern China (Wang et al., 2018, their Fig. 4), (E) δ18O derived 

temperatures from sediment cores in Chesapeake Bay (Cronin et al., 2010, their Fig. 

4), and (F) δ18O derived temperatures from core B10 North Sound, Grand Cayman (this 

study). Red shaded regions represent warm periods, purple shaded regions represent 

mild periods, and blue shaded regions represent cool periods (±200 years). BAC- 

Bronze Age Collapse, GADP- Greek Age Dark Period, RWP- Rowman Warm Period, 

DACP- Dark Ages Cool Period, MCA- Medieval Climate Anomaly, LIA- Little Ice 

Age, MWP- Modern Warm Period.
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1991).  Similarly, the wet conditions that characterized MW1 (~1280 to 200 BCE), 

CW1B (~800 to 1350 CE), CW1C (~1350 to 1850 CE), and MW2 (~1850 to 1980 CE) 

in North Sound (Fig. 4.15) can be linked to wet phases interpreted from records from the 

Cariaco Basin (Haug et al., 2001; 2003), the Gulf of Mexico/Yucatan Peninsula (Hodell 

et al., 1991; 1995; 2005; Bernal et al., 2011), Florida (Wang et al., 2013), Cuba (Gregory 

et al., 2015), the Dominican Republic (Lane et al., 2009; 2011), and Puerto Rico (Nyberg 

et al., 2001).  Slight discrepancies in the timing and/or duration between the record from 

North Sound and elsewhere in the Caribbean region can be attributed to the (1) type of 

samples (sediment core, speleothem, coral), proxies (REE, Ti, Fe, CaCO3 content, δ18O), 

and methods used by diff erent studies, (2) diff erences in data resolution between diff erent 

studies and age depth models used to develop the chronologies, (3) diff erential deposition 

rates or caompaction, and/or (4) the position of the ITCZ relative to the study area (Haug 

et al., 2001; Gregory et al., 2015).  

 The warm, mild, and cool periods recognized in the North Sound cores can be 

correlated to temperature changes throughout the Caribbean-Gulf of Mexico region 

(Fig. 4.16).  The decrease in temperatures that characterized CD1, CW1A, and CW1C 

have also been identifi ed in Bonaire (Felis et al., 2015), Puerto Rico (Kilbourne, 2006), 

Bermuda (van Hengstum et al., 2015), and the Cariaco Basin (Wurtzel et al., 2013).  

Elevated temperatures, like those during periods WD1 and CW1B, have been recognized 

in the Cariaco Basin (Black et al., 2004), and Nicaragua (Stansell et al., 2013).  The mild 

temperatures during MW1 and MW2, are akin to those from Puerto Rico (Winter et al., 

1998; Alpert et al., 2017), Jamaica (Haase-Schramm et al., 2003), and the Cariaco Basin 

(Abahazi, 2009).   

7.4. Global correlations 

 The climate periods derived from the North Sound cores correlate to various 

climate records from the Caribbean region and higher latitudes (Figs. 4.15, 4.16).  The 
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cool, dry conditions of CD1 (~3850 to 1280 BCE) and CW1A (~480 to 800 CE) in North 

Sound are akin to those evident in records from the North Atlantic (Bond et al., 1997), 

Scotland (Anderson, 1998; Tipping et al., 2008), and Greenland (Kolling et al., 2017).  

The warm, wet climates of CW1B (~800 to 1350 CE) in North Sound also correlate 

with similar climate phases derived from Chesapeake Bay (Cronin et al., 2010), eastern 

Canada (Finkenbinder et al., 2016), the Mediterranean (Finne et al., 2011), and China 

(Deng et al., 2017; Wang et al., 2018).  The mild and wet conditions of MW1 (~1280 

to 200 BCE) and MW2 (~1850 to 1980 CE) correspond to temperature and moisture 

variability in the Galapagos (Dunbar et al., 1994), Chesapeake Bay (Cronin et al., 2010), 

the Mediterranean (Finne et al., 2011), northern China (Wang et al., 2018), and Scotland 

(Wang et al., 2012).  The warm and dry conditions of WD1 (~200 BCE to 480 CE) are 

similar to those identifi ed in the Mediterranean (Finne et al., 2011), Scotland (Wang 

et al., 2012), and Greenland (Kolling et al., 2017).  The cool and wet conditions that 

characterized CW1C (~1350 to 1850 CE) in North Sound are similar to those noted for 

North America (Trouet et al., 2013) and Greenland (Kolling et al., 2017) and the slight 

warming during this interval (~1600 to 1700 CE) is similar to that detected elsewhere 

(Saenger et al., 2009; Wanner et al., 2011; Jaume-Santero et al., 2016).

 Major changes in temperature and atmospheric moisture regimes on a global 

scale over the last ~6000 years may have resulted in the climate variability documented 

in North Sound in terms of the timing, duration, and type of climate change (Figs. 4.14, 

4.15, 4.16, 4.17).   Variance between the timing and duration of the North Sound climate 

periods and those from other locations (Fig. 4.17) could be attributed to (1) latitudinal 

diff erences/local variability (Bengtsson et al., 2006; Cronin et al., 2010; Marcott et 

al., 2013; IPCC, 2014), (2) the position of the ITCZ relative to the study area (Haug et 

al., 2001; Gregory et al., 2015), with an associated temporal lag between low and high 

latitude locations, (3) volcanic activity (Mayewski et al., 2004; Wanner et al., 2011; 

Helama et al., 2017), (4) errors associated with age determinations (deMenocal et al.,   
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2000; Charman et al., 2006; Finne et al., 2011), and/or (5) the methods and proxies used   

for climate reconstructions (Kemp et al., 2011; Trouet et al., 2013).     

 Varying amounts of solar output (Abahazi, 2009; Finne et al., 2011; Wanner et al., 

2011; Helama et al., 2017; Kolling et al., 2017) and the movements of the ITCZ (Haug 

et al., 2001; Nyberg et al., 2001; Lane et al., 2009; Stansell et al., 2013) are commonly 

Fig. 4.17. Comparison of “known” climate period to those identifi ed in the North Sound cores. 

(A) Roman Warm Period; East Greenland Shelf (Kolling et al., 2017), Scotland 

(Wang et al., 2012), eastern Mediterranean, southwest Europe, and southeast Asia 

(Finne et al., 2011), Florida (Wang et al., 2013), and globally (Ljungqvist, 2009). (B) 

Dark Ages Cool Period; East Greenland Shelf (Kolling et al., 2017), temperate North 

America (Trouet et al., 2013), Bermuda Rise (Keigwin and Pickart, 1999), Florida 

(Wang et al., 2013), and globally (Ljungqvist, 2009; Wanner et al., 2011; Helama 

et al., 2017). (C) Medieval Climate Anomaly; East Greenland Shelf (Kolling et al., 

2017), Norway (Nesje et al., 1991), Alaska (Rothlisberger, 1986), Scotland (Wang et 

al., 2012), Canada (Osborn and Luckman, 1988), temperate North America (Trouet et 

al., 2013), Wisconsin (Wahl et al., 2012), Morocco (Wassenburg et al., 2013), Gulf of 

Mexico (Richey, 2007), Cuba (Fensterer et al., 2012), South China Sea (SCS; Deng et 

al., 2017), Dominican Republic (Lane et al., 2009), and globally  (Ljungqvist, 2009). 

(D) Little Ice Age; East Greenland Shelf (Kolling et al., 2017), Norway (Nesje et al., 

1991), Alaska (Rothlisberger, 1986), Scotland (Wang et al., 2012), temperate North 

America (Trouet et al., 2013), Wisconsin (Wahl et al., 2012), Bermuda Rise (Keigwin 

and Pickart, 1999), Morocco (Wassenburg et al., 2013), Gulf of Mexico (Richey, 2007), 

Cuba (Fensterer et al., 2012), South China Sea (SCS; Deng et al., 2017), Dominican 

Republic (Lane et al., 2009), and globally (Ljungqvist, 2009; Wanner et al., 2011; 

Marcott et al., 2013).
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invoked as the underlying driving forces of climate variability on a global scale.  It has 

been suggested that changes in solar activity aff ect the tropical hydrological cycles by 

infl uencing salinity balances, thermocline circulation, and ocean heat transport in the 

North Atlantic, which eff ects trade wind variability and the movements of the ITCZ and 

NAO (Broecker, 1991; Rind and Overpeck, 1993; Black et al., 1999; Nyberg et al., 2001).  

A more northerly position of the ITCZ and/or a negative phase of the NAO facilitates 

the movement of warm air masses, increases precipitation, and reduces the transport of 

African dust to the Caribbean region (Nyberg et al., 2001; Lane et al., 2009; Doherty 

et al., 2012).  This confi guration of the atmospheric pressure regimes may have caused 

the elevated Tcal, decreasing  ∑REE+Y values, and increasing Fe and Ti concentrations 

evident in the North Sound cores during MW1, CW1B, and MW2.  In contrast, cooler 

SST, dry atmospheric conditions, and increased transport of African dust to the Caribbean 

region would occur when the ITCZ was displaced to the south, was in a stationary 

position, and/or when NAO was in a positive phase (Nyberg et al., 2001; Lachniet et al., 

2009; Lane et al., 2009; 2011).  This may have produced the low Tcal, increasing ∑REE+Y 

concentrations, and decreasing Fe and Ti concentrations recorded in North Sound during 

CD1, WD1, and CW1A.  The confi guration of these atmospheric pressure regimes is 

diffi  cult to determine during CW1C, as this interval does not correspond to the general 

SST and atmospheric moisture patterns.  It has been shown, however, that disturbances 

in the northeastern trade winds can cause climate states to be out of phase with the 

general patterns of precipitation in the Caribbean region (Broecker, 1991; Nyberg et al., 

2001).  More records, therefore, from the early-mid Holocene in the Caribbean region are 

necessary to fully verify the movements of the ITCZ and the phase of the NAO, in order 

to determine their role in global climate change. 

           

8. Conclusions

Integration of data from three sediment cores from North Sound, Grand Cayman, 
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has provided a detailed atmospheric moisture and SST record for the central Caribbean 

over the last ~6000 years.  Examination of the moisture and temperature profi les from 

these sediments resulted in the following important conclusions.

 The transition from a coastal pond to a marine lagoon is accompanied by a distinct 

change in sediment type from the Bivalve and Peat Facies to the Halimeda 

and Halimeda-Benthic Foraminifera-Bivalve Facies, a decrease in elemental 

concentrations and organic material, and changes in the isotopic compositions. 

 The North Sound cores recorded fi ve periods of climate change, including one 

cool-dry period (~3850 and 1280 BCE), two mild-wet periods (~1280 to 200 BCE 

and ~1850 to 1980 CE), one warm-dry period (~200 BCE to 480 CE), and one 

cool-wet period (~480 and 1850 CE) that correlate to global climate phases.  

 The movements of the Intertropical Convergence Zone (ITCZ) and the phase 

of the North Atlantic Oscillation (NAO) have been determined from the Fe, 

Ti, ∑REE+Y, and isotopic depth profi les of the North Sound cores.  During 

MW1, CW1B, and MW2 the ITCZ was in a northerly position and/or the NAO 

in a negative phase, resulting in increased atmospheric moisture and elevated 

temperatures.  In contrast, CD1, WD1, and CW1A, resulted from a southerly 

position of the ITCZ and/or a positive phase of the NAO, resulting in low 

temperatures and decreased atmospheric moisture. 

 The pronounced climatic periods, as evidenced from the North Sound cores, over 

the last ~6000 years around Grand Cayman correlate with climate changes recognized 

elsewhere in the Caribbean and higher latitude locations.  Such correlations indicate the 

global nature of these changes.
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CHAPTER 5

DIAGENESIS IN PLEISTOCENE (80 TO 500 KA) CORALS FROM THE 

IRONSHORE FORMATION: IMPLICATIONS FOR PALEOCLIMATE 

RECONSTRUCTIONS

1. Introduction

 Corals incorporate numerous isotopes and various elements from the surrounding 

seawater into their aragonite skeletons during growth.  These chemical signatures can be 

used for dating through U-series techniques and for tracking climate change through time 

using temperature sensitive parameters (e.g., δ18O, element/Ca ratios).  These techniques, 

however, can only be used if the coral skeletons have not undergone diagenesis, which 

can occur rapidly upon coral death and becomes increasingly more likely as the age of 

the coral increases (Hendy et al., 2007; Webb et al., 2009).  Applying such techniques 

to older corals is therefore limited by the fact that the skeletal aragonite of the coral 

is extremely susceptible to diagenesis that will commonly alter the mineralogy and 

chemistry of the skeletons (Muller et al., 2001; McGregor and Gagan, 2003; Allison et 

al., 2007; Nothdurft et al., 2007; Nothdurft and Webb, 2009; Cochran et al., 2010).  

 X-ray diff raction (XRD), thin section analysis, and/or scanning electron 

microscopy (SEM) are commonly used to demonstrate that coral skeletons have 

undergone little or no diagenetic change (e.g., Hendy et al., 2007; Nothdurft and Webb, 

2007; McGregor and Abram, 2008).  These techniques, however, cannot identify 

subtle chemical changes in the coral skeletons that may have taken place with little 

or no physical alteration of the aragonite (Cross and Cross, 1983; Bar-Matthews et 

al., 1993).  As such, analysis of the elemental (Sr, Mg, Ca) and/or oxygen and carbon 

isotope composition of the coral skeleton should be used in conjunction with physical 

assessments to identify possible indicators of diagenetic alteration.  Cross and Cross 

(1983) analyzed numerous Montastrea annularis and Acropora palmata skeletons from 

the modern, Holocene, and Pleistocene strata on Barbados and showed that there was a 
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progressive decrease in Mg and an increase in Sr as the pristine aragonitic skeletons were 

progressively altered under normal marine conditions.  A similar trend was also evident 

in modern Porites from the Great Barrier Reef, where early marine diagenesis caused 

dissolution through incongruent leaching of the otherwise pristine aragonitic skeletons, 

resulting in elevated Sr/Ca ratios and reduced Mg/Ca ratios (Hendy et al., 2007).  Hendy 

et al. (2007) also investigated the eff ects of early marine secondary aragonite cement in 

the skeletal voids of the corals, which also resulted in elevated Sr/Ca ratios and reduced 

Mg/Ca ratios.  Pingitore (1978) and Martin et al. (1985), however, reported opposite 

trends in the proportion of Mg and Sr in Pleistocene M. annularis from Florida, such that 

late meteoric diagenesis caused the neomorphic calcitic skeletons to become enriched in 

Mg and depleted in Sr relative to their modern aragonitic counterparts.  The mechanisms 

controlling the diagenetic trends (e.g., the degree of system openness; the volume and 

type of water fl ushed through the rock body) recorded in those studies can provide 

insights into the specifi c type of diagenetic alteration (meteoric vs marine) in corals. 

 Corals are common components of the biota in the Pleistocene Ironshore 

Formation (Units A-F) on the Cayman Islands (Fig. 5.1; Hunter and Jones, 1988, 1995; 

Hunter, 1994; Vezina et al., 1999; Coyne et al., 2007; Li and Jones, 2013a, 2013b).  These 

corals grew during successive highstands (Fig. 5.2) at >400 ka (Unit A), 346 ka (Unit 

B), 229 ka (Unit C), 125 ka (Unit D), 101 ka (Unit E), and 80 ka (Unit F) based on U/Th 

radiometric dating of pristine coral skeletons and conches from each unit (Vezina et al., 

1999; Coyne et al., 2007).  The limestones in this formation have undergone diff erential 

diagenesis that is both geographically and temporally variable (Li and Jones, 2013a, 

2013b).  Coral skeletons from Units A to C in the Ironshore Formation have experienced 

moderate to extensive meteoric and/or marine diagenetic alteration, whereas corals 

in Units D to F underwent minimal diagenetic change.  The reasons for this variable 

diagenesis have not been well established.  Corals from this formation provide an ideal 

sample set for determining the impact of diagenesis on the mineralogy and isotopic   



243

Fig. 5.1. Location maps. (A) Map showing location of the Cayman Islands. (B) Location of 

Pleistocene corals from Roger’s Wreck Point (RWP), IS1, and George Town Harbor 

(BJC) shown by red star, and Magic Reef (modern corals) shown by yellow star on 

Grand Cayman. (C) Location of Little Cayman Quarry shown by red star on Little 

Cayman.
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and elemental compositions of coral skeletons because well-preserved and altered corals 

from the same succession can be directly compared.  Accordingly, this study assesses 

the diagenesis of the corals by using a combination of mineralogical (XRD, SEM, thin 

section) and elemental/isotopic (Sr, Mg, Ca, δ18O, δ13C) analyses to examine the type and 
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Fig. 5.2. SPECMAP- seawater oxygen isotopic composition of the Equatorial Atlantic Ocean 

through time (Imbrie and McIntyre, 2006). Ironshore Formation unit ages and period of 

non-deposition superimposed on curve.
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controlling mechanisms of the diagenetic alteration.  This process is calibrated against 

similar data obtained from modern corals collected from the west coast of Grand Cayman 

(Booker et al., 2019).  This paper aims to illustrate how diff erent types of meteoric 

and/or marine diagenesis (open or closed system) can alter coral skeletons, provides 

guidelines for assessing the degree of physical and chemical diagenetic change in corals, 

and highlights that with detailed diagenetic assessment of older fossil corals, reliable 

paleoclimate reconstructions can be developed. 

2. Geological Setting

Grand Cayman and Little Cayman, the largest and smallest of the three Cayman 

Islands, respectively, are located in the Caribbean Sea (Fig. 5.1).  Today, Grand Cayman 

experiences a humid sub-tropical climate, with ocean water temperatures from 25.3° to 

30.5°C (average 28.5°C; Booker et al., 2019) and rainfall that is heaviest on the western 

parts of the islands (Ng, 1990).

On each of the Cayman Islands, Middle to Late Pleistocene limestones of the 

Ironshore Formation unconformably overlie Neogene limestones and dolostones of the 

Bluff  Group (Jones and Hunter, 1990).  The Ironshore Formation is divided into Units 

A-F based on their lithology and biota with the bounding unconformities commonly 

being highlighted by calcrete crusts (Vezina, 1997; Coyne, 2003).  The stratigraphic 

framework used herein was established by Hunter and Jones (1988, 1995), Hunter (1994), 

Vezina (1997), Vezina et al. (1999), Coyne (2003), Coyne et al. (2007), and Li and 

Jones (2013b).  Among the 33 coral species found in the Ironshore Formation, Orbicella 

annularis, Montastrea cavernosa, Acropora palmata, A. cervicornis, and Porites porites 

dominate (Table 5.1; Hunter and Jones, 1988, 1995; Hunter, 1994; Vezina, 1997; Coyne, 

2003).
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Table 5.1. Coral species of the Ironshore Formation. 

Coral species Unit A Unit B Unit C Unit D Unit E Unit F

Orbicella annularis ○ ● ○ ● ●  ○

Montastrea cavernosa ● ○ ●

Acropora sp. ○ ○ ○

Acropora palmata ● ● ○ ○

Acropora cervicornis ○ ○ ● ○ ○

Porites sp. ○ ○ ○ ○ ○

Porites porites ○ ● ○

Porites astreoides ○ ○

Siderastrea sp. ○ ○ ○ ● ○

Siderastrea sidera ○

Diploria sp. ○ ○ ○ ○

Diploria strigosa ○ ○ ○ ○

Diploria clivosa ○ ○ ○

Diploria labyrinthiformis ○ ○

Agaricia sp ○ ○

Agaricia fragilis (?) ○

Manicina sp. ○ ○

Manicina areolata ○

Dendrogyra cylindrus ○ ○

Dichocoenia stokesi (?) ○ ○

Favia fragrum ○

Goniopora (?) ○ ○

Isophyllastrea rigada ○

Eusmilia fastigata ○

Myceptophillia ferox ○

Closed circles indicate the dominant species and open circles indicate that the species is 
present.
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3. Samples 

The distribution of the samples used in this study was controlled largely by coral 

availability.  These samples included (1) a 16.4 cm high colony of O. annularis (IS1), 

from Unit D on the northwest corner of Grand Cayman (Fig. 5.1B), (2) two small (<10 

cm high) O. annularis (LCQ2, LCQ5) from Unit D (Jones, 2019) in Little Cayman 

Quarry on the south-central part of Little Cayman (Fig. 5.1C), (3) four corals from cores 

from Rogers Wreck Point (4 cm diameter) on the northeast corner of Grand Cayman (Fig. 

5.1B; RWP#13 (21 m long), RWP#14 (18.6 m long)) that included specimens from Units 

A to D, and (4) three corals from core BJC#1 (6 cm diameter, 10.8 m long) that came 

from a well drilled in water that was 14.5 m deep off shore George Town (west coast, 

Grand Cayman; Fig. 5.1B),  that included specimens from Units D to F (Table 5.2).  

4. Methodology

4.1. X-ray and computer tomography scan production and analysis

 Corals from Units C, D (west coast of Grand Cayman and Little Cayman), E, and 

F were imaged using a portable SY-31-100P X-ray machine with scans generated at 70kV 

for 0.8 second scan times.  Corals from Units A, B, and D (east coast of Grand Cayman) 

were imaged using an Aquilion ONE helical computer tomographic (CT) scanner at 

InnoTech Alberta (Edmonton, Alberta).  On those images, light-colored bands represent 

the densest material and the dark bands represent less dense material (Buddermeier et al., 

1974; Moore and Krishnaswami, 1974).  These images were used to determine the life 

span of the corals by counting growth band couplets, which have been shown to represent 

one year of coral growth (Knutson et al., 1972; Buddermeier et al., 1974).  Grayscale 

curves from these images were produced using ERDAS Imagine, with values ranging 

from 0 – 252.  The images and the corresponding gray level curves were used to produce 

maps of the coral growth bands for isotopic and elemental analysis.    
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4.2. Mineralogy determination

4.2.1. X-ray diff raction

 The mineralogy of 50 samples was determined by XRD analysis performed at 

the University of Alberta using a Rigaku Geigerfl ex Powder Diff ractometer.  Powdered 

microsamples (~300 μg) from corals in Units A (5 samples), B (17 samples), C (6 

samples), D (15 samples), E (4 samples), and F (5 samples), taken from individual growth 

bands along the maximum growth axis of the corals were analyzed.  The percentages of 

aragonite and calcite in each sample were determined following Li and Jones (2013a).

4.2.2 Thin section analyses

 Twenty-fi ve standard (27 x 46 mm) thin sections were made from the matrix, 

well-preserved corals, and diagenetically altered corals found in cores from wells 

RWP#13, RWP#14, and BJC#1 (Coyne, 2003; Li and Jones, 2013a, 2013b).  These thin 

sections were used to verify the mineralogy of the corals, examine the growth banding, 

and assess diagenetic alteration and cementation. 

4.2.3 Scanning Electron Microscopy

  Fracture samples from selected corals from each unit were mounted on SEM stubs 

with conductive glue and sputter coated with carbon before being examined on a Zeiss 

Sigma Field Emission SEM with an accelerating voltage of 10 kV.  Examination of the 

samples in this manner allowed microscale assessment of the fabrics and determination 

of any diagenesis that had aff ected the corals.  Photoshop software was used to adjust the 

contrast of the SEM images used herein.         

4.3. Elemental analysis

 Powdered samples (15-168 mg) of the individual coral growth bands, along 

the maximum growth axis (pristine and recrystallized), and the matrices of each unit 
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were analyzed for Mg, Ca, and Sr concentrations.  The matrices surrounding the coral 

skeletons in the Ironshore Formation consists of low Mg-calcite (<4 wt% Mg; LMC) 

with Halimeda, foraminifera, and fragmentary mollusk and gastropod shells embedded 

in micrite (Li and Jones, 2013a, 2013b).  Ten samples from Unit A included seven from 

individual coral growth bands and three from the matrices.  Twenty samples from Unit 

B included 17 from individual coral growth bands and three from the matrices.  Eight 

samples from Unit C included six from specifi c coral growth bands and two from the 

matrices.  Eighteen samples from Unit D included 18 from specifi c coral growth bands 

and three from the matrices.  Four samples from Unit E and fi ve samples from Unit F 

were all from specifi c coral growth bands. 

 A Thermo Fisher iCAP-Q Inductively Coupled Plasma Mass Spectrometer (ICP-

MS) in the Department of Earth and Atmospheric Science at the University of Alberta 

was used for elemental analysis.  The samples were dissolved in 2 mL 50% HNO3, 

from which a 0.1 mL aliquot was added with 0.1 mL HNO3 and 0.1 mL 100 ppb internal 

standards (Sc, In, and Bi) into 9.7 mL deionized water.  The samples were analyzed using 

a 4-point calibration curve (0, 0.001, 0.002, and 0.004 ppm for Sr, and 0, 0.05, 0.1, and 

0.2 ppm for Mg and Ca) with typical count rates of 300000 to 400000 cps for a 1 ppb 

concentration.  Detection limits were 0.52, 10.41, and 0.005 ppb for Mg, Ca, and Sr, 

respectively.   

4.4. Isotope analysis

 A Dremel 8200 drill with a 0.5 to 0.9 mm round (inner diamerter) bit was used to 

obtain samples from the thecal walls along the maximum growth axis of the individual 

coral growth bands (Leder et al., 1996; Watanabe et al., 2001; Swart et al., 2002; 

Kilbourne et al., 2010; DeLong et al., 2011; Flannery et al., 2018) with spacing between 

each sample determined by the thicknesses of the growth bands.  The following samples 

were collected:



• RWP-A: 5 samples

• RWP-B: 17 samples

• RWP-C: 6 samples

• RWP-D: 84 samples (42 light and dark bands) at 1 – 5 mm spacing

• IS1: 57 samples (29 light bands and 28 dark) at 1 – 5 mm spacing

• LCQ2: 3 samples

• LCQ5: 3 samples

• GTH-D: 46 samples (23 light and dark bands) at 1 – 5 mm spacing

• GTH-E: 88 samples (44 light and dark bands) at 1 – 5 mm spacing

• GTH-F: 166 samples (83 light and dark bands) at 1 – 6 mm spacing

The δ13C and δ18O values of each sample were determined using a Gasbench II 

system coupled with a Thermo MAT 253 Isotope Ratio Mass Spectrometer (IRMS) at the 

University of Alberta.  Powdered samples, weighing 100-500 μg, were put into a glass 

vial with a septum cap and held at a constant temperature of 72°C.  A small amount (0.1 

mL) of 100% phosphoric acid (72°C) was added to each sample to react for at least 1 

hour.  The resultant CO2 was then carried by a helium stream to the IRMS for 18O/16O and 

13C/12C measurements.  During each sequence, two in-house calcite lab standards (LSC-

1: δ13C= –51.3‰, δ18O= –16.1‰ and LSC-2: δ13C= –22.0‰, δ18O= –34.6‰) and an 

international standard (NBS-18: δ13C= –5.0‰, δ18O= –23.0‰) were measured repeatedly.  

The C and O isotope compositions are reported using the δ notation relative to VPDB 

(Vienna Pee Dee Belemnite) and VSMOW (Vienna Standard Mean Ocean Water) 

standards, respectively.  The δ18O values were converted from VPDB to VSMOW using 

Equation 2.21 (δ18OVSMOW = 1.0309[δ18OVPDB] + 30.91) from Sharp (2007).  Analytical 

uncertainties (2σ), relative to the standards are ±0.2‰ for both δ18O and δ13C.  Given 

that the samples used in this study are composed largely of aragonite and the laboratory 

standards are calcite, a correction of – 0.38‰ was made to the δ18O values following Kim 

et al. (2007; 2015). 
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5. Results

5.1. Indicators of diagenetic change

5.1.1. Mineral composition

 Coral growth bands from Units A, D (Grand Cayman and Little Cayman), E, and 

F generally contain >90 wt% aragonite, with most having >96 wt% aragonite, whereas 

corals from Unit C contain 54 to 98 wt% aragonite.  Apart from one sample at the base 

of GTH-E that contained high-Mg calcite (HMC; 4-18 wt% Mg), all of the calcite is low 

Mg calcite (LMC: <4 wt% Mg).  Samples from the base of Unit A contain LMC (<1 

wt%) and dolomite (<3 wt%).  Sample LCQ2 contains trace amounts of witherite.  These 

analytical results are consistent with those provided by Li and Jones (2013a, 2013b).  

 Based on XRD analyses, Li and Jones (2013a, 2013b) showed that the matrices 

in the limestones from Units A-F of the Ironshore Formation contained 0-15 wt% 

aragonite in unit A, 0-10 wt% aragonite in unit B, 0-12 wt% aragonite in unit C, 0-30 

wt% aragonite in unit D, 0-60 wt% aragonite in unit E, and 0-60 wt% aragonite in unit 

F (Table 5.3). The LMC and HMC in these units refl ect the types of allochems that are 

present (Li and Jones, 2013a, 2013b).  

5.1.2. Petrographic analyses

 The corals from Units A, C, D, E, and F exhibit varying degrees of skeletal 

preservation (Figs. 5.3, 5.4).  Although largely devoid of cements, some corals from Units 

A, C, and D contain minor amounts of fi brous and/or fi nely crystalline cement in some 

of their pores.  No cement was found in the corals from Units E and F.  Isolated pores in 

some corals from Units E and F contain some biofragments of unknown origin.  Overall, 

cements, biofragments, and/or borings are rare.  

 Many corals from Unit B with well-preserved external skeletons have been 

extensively replaced and their sclerodermite structures have been lost (Fig. 5.3).  

Although these corals have been recrystallized, most pores are open and contain only 
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Fig. 5.3. SEM images from the Ironshore Formation corals. (A) Oblique view of theca structure 

in a coral from Unit A, displaying well developed thecal walls. (B) Aragonite needles 

along the thecal wall of a coral from Unit A. (C) Theca structure from a Unit B coral, 

displaying recrystallized thecal walls and endothecal dissepiments. (D) Close up image 

of replacive calcite rhombs from a coral in Unit B. (E) Sclerodermite structures in a 

coral from Unit C. (F) Close up of the sclerodermite structures showing  aragonite 

needle bundles in a coral from Unit C.
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minor amounts of fi nely crystalline cements.  

5.2. Elemental concentrations 

 Analyses of 56 samples from summer and winter growth bands in 10 corals from 

Units A-F, yielded 93261 to 738999 ppm Ca, 1805 to 7252 ppm Sr, 512 to 8130 ppm Mg, 
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Fig. 5.4. SEM images from the Ironshore Formation corals. (A) Theca structure from a coral in 

Unit D (GTH),  displaying well-preserved thecal walls, endothecal dissepiments, and 

open pore spaces. (B) Close up of thecal wall and endothecal dissepiment, displaying 

aragonite needle bundles from a coral in Unit D (GTH). (C) Close up of the endothecal 

dissepiment from (B) showing primary aragonite needles. (D) Corallite in a coral 

from Unit D (IS1), displaying well-developed coensteum, septal structures, and open 

pores spaces. (E) Corallite from a coral in Unit D (RWP), displaying well-developed 

coensteum, septal structures, and open pore spaces. (F) Close up of septa from (E) 

showing aragonite needles. (G) Theca structure from a coral in Unit E, displaying 

thecal walls, endothecal dissepiments, and open pore spaces. (H) Close up image 

of thecal wall from a coral in Unit E, displaying aragonite needle bundles. (I) Close 

up image of endothecal dissepiment from a coral in Unit E, displaying aragonite 

needle bundles. (J) Theca structure from a coral in Unit F, displaying thecal walls and 

endothecal dissepiments, some pores contain biofragments; of unknown origin. (K) 

Aragonite needle bundles from the thecal wall of a coral in Unit F. (K) Close up image 

of the aragonite needle bundles from (K), displaying bladed crystal shape. All images 

display open pore spaces and are devoid of cements.
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Mg/Ca ratios of 3.2 to 47.0 mmol/mol, and Sr/Ca ratios of 2.6 to 9.5 mmol/mol (Fig. 5.5, 

Table 5.2).  The highest Mg/Ca values (>15 mmol/mol) are from corals in Units 

A and B, whereas the lowest values (<6 mmol/mol) are from Unit D.  The highest Sr/Ca 

values (>8 mmol/mol) are from Units D, E, and F, whereas the lowest values (<5 mmol/

mol) are in Unit B (Fig. 5.5B). 

 The range of Mg/Ca ratios in corals from the Ironshore Formation (3.2 to 47.0 

mmol/mol) is greater than that of the modern Cayman corals (4.4-11.6 mmol/mol; Booker 

et al., 2019; Fig. 5.5B).  If the highest ratios from Units A and B (<50 wt% aragonite) are 



Fig. 5.5. (A) Comparison of the elemental concentrations (Mg (black), Sr (red), Ca (blue)) from 

the Ironshore Formation corals, separated by unit. Elevated Mg and lower Sr values 

in Units A and B, whereas the corals from Units C to E have lower Mg and higher Sr 

concentrations. (B) Comparison of the Mg/Ca ratios (black) and Sr/Ca ratios (red) 

from the Ironshore Formation corals, separated by unit. Elevated Mg/Ca and lowered 

Sr/Ca ratios in the corals from Unit A to C, whereas the corals from Units D to F have 

Sr/Ca and Mg/Ca ratios that are consistent with those of modern corals. Dashed line 

represents values that extend off  the graph, 40.7 mmol/mol Mg/Ca for samples from 

Unit A.
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removed from the data set, then the range of 3.2 to 15.5 mmol/mol for the corals from 

Units C, D, E, and F is more consistent with that of the modern corals.  The same is true 

for the Sr/Ca ratios.  Removing the samples from Units A and B (<50 wt% aragonite), 

results in values between 5.1 and 9.5 mmol/mol, which is consistent with modern 

Cayman corals (8.3-9.2 mmol/mol).  

 The matrices in Units A, B, C, and D yielded 338751 to 363705 ppm Ca, 914 

to 4182 Sr, 4989 to 13941 ppm Mg, Mg/Ca ratios of 24.2 to 65.6 mmol/mol, and Sr/Ca 

ratios of 1.2 to 5.5 mmol/mol (Table 5.3).  The Mg/Ca ratios from the matrices (>24.0 

mmol/mol Mg/Ca) are signifi cantly higher than those from the primary skeletal material 

(3.2 to 15.5 mmol/mol Mg/Ca).  The Sr/Ca values for the matrices (<5.5 mmol/mol Sr/

Ca) are lower than those from the primary skeletal material (5.1 to 9.5 mmol/mol Sr/Ca).

5.3. Stable isotopes 

 The δ13C values of the corals from the Ironshore Formation range from –6.9 to 

+3.0‰.  Corals with <85 wt% aragonite (e.g., Units B and C) have more negative δ13C 

values (–6.9 to –1.9‰) than those corals with higher percentages of aragonite (–1.8 to 

+2.0‰; Fig. 5.6A. Supplementary Tables 5.1-5.3).  The δ18O values of corals from the 

Ironshore Formation range from 24.1 to 29.5‰.  Corals with <85 wt% aragonite have 

lower δ18O values than those corals with higher aragonite content (<26.0‰; Fig. 5.6B 

Supplementary Tables 5.1-5.3). 

6. Discussion

6.1. Diagenesis

 Units A to D of the Ironshore Formation are separated from each other by 

uncomformities that developed during sea level lowstands, which led to exposure of the 

older strata to diagenesis by meteoric waters for long periods of time (Fig. 5.2).  Reliable 

paleoclimate reconstructions can only be obtained from the corals in these units if their 
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Fig. 5.6. Graphs showing the amount of aragonite in the corals from the Ironshore Formation 

relative to (A) δ13C values and (B) δ18O values.
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aragonitic skeletons have retained their original isotopic and elemental compositions.  

Most coral skeletons in Units A, C, D, E, and F of the Ironshore Formation display 

minimal evidence of physical diagenetic alteration, whereas the coral skeletons from Unit 

B have clearly undergone extensive diagenetic alteration (Figs. 5.3, 5.4).  For some coral 

skeletons from Units A and C, however, various geochemical parameters indicate that 

they have experienced some diagenetic alteration even though their aragonitic skeletons 

appear physically intact.

 The mechanisms responsible for diff erential diagenesis in the coral skeletons 

from each unit of the Ironshore Formation can be assessed by considering the constituent 

units in terms of how open their systems were to diagenetic fl uids.  An open system has 

a high water/rock ratio, whereas a closed system has a low water/rock ratio (Kinsman, 

1969; Pingitore, 1978; Veizer, 1983).  In the context of carbonate successions, a system 

is considered open if (1) the δ18O values of the altered coral skeletons are consistent with 



the δ18O values of the diagenetic fl uid (e.g., meteoric water or seawater), (2) δ13C values 

of the coral skeletons are highly variable (Fig. 5.7), (3) distribution coeffi  cients of Mg 

(KMg) and Sr (KSr) in the coral skeletons relative to the formation fl uids are < 1, and (4) 

altered coral skeletons have a higher Mg content relative to the original aragonite (occurs 

as a result of meteoric alteration, Fig. 5.8; Kinsman, 1969; Pingitore, 1978; Brand and 

Veizer, 1983; Meyers and Lohman, 1983; Veizer, 1983; Martin et al., 1985).  In this 

context, Pingitore (1978) defi ned alloenrichment as the precipitation of a diagenetic 

mineral from a liquid enriched in trace elements or isotopes from an external or in situ 

source before entering the diagenetic site.  Conversely, he defi ned autodepletion as the 

preferential loss of trace elements at the diagenetic site due to high water fl ow rates 

relative to reaction rates.

 Coral skeletons in Unit B are characterized by obvious diagenetic changes with 

most displaying clear evidence of recrystallization and various types of prismatic/blocky 

calcite cements in their pores (Li and Jones, 2013a, 2013b).  The δ18O values of the 

individual growth bands in the coral skeletons range from 24.1 to 27.6‰, which indicates 

alteration by meteoric waters, which is depleted in 18O relatve to ocean water (modern 

meteoric water on Grand Cayman: –1.6 to –7.3‰, average –4.3‰; Ng, 1990).  The δ13C 

values vary by ~6‰ (–6.1 to –0.6‰), the KMg and KSr are < 1, and the Mg content of the 

altered coral skeletons (2374 to 6304 ppm, Fig. 5.8) is high relative to unaltered modern 

coral skeletons (1035 to 2505 ppm; Booker et al., 2019).  These parameters clearly 

indicate that the coral skeletons in Unit B were altered in an open system where meteoric 

water was probably the primary diagenetic fl uid (Fig. 5.9).  Such diagenesis is consistent 

with the fact that Unit B is capped by an unconformity that developed over a period of 

~67,000 years (Fig. 5.2).

 Although coral skeletons in Units A and C have largely retained their primary 

aragonite (90-100 wt%), their elemental and isotopic compositions indicate that subtle 

chemical diagenetic changes have taken place.  The δ18O values of the coral skeletons 
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Fig. 5.7. Graph of the δ18O vs δ13C values showing the J-Shaped trend of Meyers and Lohman 

(1983) for the Ironshore Formation corals. The lower portion of the graph indicates an 

open system where diagenetic alteration was controlled by meteoric waters (narrow 

range of δ18O and variable δ13C values), whereas the top of the graph indicates a closed 

system (constant δ13C and varied δ18O values). This highlights the alteration styles in 

the Ironshore Formation corals, with Unit B being altered in an open system infl uenced 

by meteoric waters, Units A and C in a semi-open system infl uenced by seawater 

diluted by meteoric water, and Units D to F in closed systems.
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(27.3 to 28.6‰ for Unit A, 26.6 to 28.0‰ for Unit C) indicate that the system was at least 

semi-closed relative to rainwater and seawater given that the δ18O seawater values 

for the equatorial Atlantic Ocean during the Pleistocene, as derived from the SPECMAP 

curve of Imbrie and McIntyre (2006), were –0.4 to +1.8‰ while the sediments of Unit 

A accumulated, and –1.0 to +0.3‰ when the sediments of Unit C accumulated (Fig. 

5.2).  The δ13C values of the coral skeletons from Unit A vary by ~3‰ (–0.8 to +2.0‰), 

whereas those from Unit C vary by ~5‰ (–5.1 to –0.5‰, Fig. 5.7).  The KMg and KSr 



Fig. 5.8. Ternary diagram showing the relationship between the amount of aragonite and the 

elemental concentrations of the Ironshore Formation corals.  Lower proportions of 

aragonite correspond to an increase in Mg and a reduction in Sr. Close up of corals with 

>75 wt% aragonite showing a clear division between the minimally altered corals from 

Units D to F and the modern Cayman corals, and the chemically altered corals of Units 

A and C. Sr and Mg concentrations are normalized to Ca concentration.
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provide contradictory results, with Unit A having KMg and KSr values >1 and Unit C 

having KMg and KSr values <1.  The Mg content of the coral skeletons (2648 to 4522 

ppm for Unit A, 1129 to 3727 ppm for Unit C) from these units is higher than that from 

pristine modern coral skeletons (Fig. 5.8).  Collectively, these parameters indicate that 

diagenesis of the coral skeletons in Units A and C was probably mediated by seawater 

diluted by meteoric waters in a semi-open system, with Unit C having a more open 

system than Unit A (Fig. 5.9).  

 Evidence that the composition of the diagenetic fl uids was modifi ed 

(alloenrichment) comes from alteration of the matrix components found around the coral 

skeletons in Units A and C, which consist primarily of Halimeda, foraminifera, and 

fragmentary mollusk and gastropod shells.  Originally composed of aragonite and HMC, 

these allochems are now largely dissolved and/or recrystallized to LMC (Li and Jones, 

2013a, 2013b).  The matrix components underwent more diagenesis relative to the corals 

because their higher surface area and roughness facilitated higher dissolution rates (Li 

and Jones, 2013a).  Comparison of the elemental concentrations in the altered matrix to 

those of the original allochems (data from Martin et al. (1985) for mollusks, Delaney et 

al. (1996) for Halimeda, Toler et al. (2001) for foraminifera) shows that the aragonitic 

biofragments (mollusk, gastropod, Halimeda) replaced by calcite have higher Mg and 

lower Sr contents than the original aragonite.  The foraminifera tests, however, have lost 

Mg, which led to an increase in the Mg content in the diagenetic fl uid (e.g., Pingitore, 

1976).  Movement of the diagenetic fl uids through the porous coral skeletons resulted in 

the loss of Sr from this material (autodepletion; Kinsman, 1969; Pingitore, 1976; Farfan

et al., 2018).  This refl ects the fact that Mg ions are easily incorporated into the calcite 

crystal structure, whereas Sr is less compatible (Siegel, 1960; Finch and Allison, 2003; 

Sayani et al., 2011).  Collectively, these processes altered the Mg/Ca (elevated) and Sr/Ca 

(reduced) ratios of the coral skeletons in Unit A and C without causing a change in their 

mineralogy.
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Fig. 5.9. Idealized cross-sections of the west (left) and east (right) coasts of Grand Cayman 

showing the types of diagenesis that aff ected the Ironshore Formation.
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 The coral skeletons in Units D, E, and F, which include the best preserved 

corals in the Ironshore Formation, are characterized by minimal physical and chemical 

alteration.  The δ18O values for the coral skeletons in Units D (25.8 to 29.5‰), E (27.1 to 

29.2‰), and F (27.1 to 29.1‰) have ranges that are generally higher than those of Units 

A-C, are diff erent from those of modern meteoric water (–1.6 to –7.3‰, average –4.3‰; 

Ng, 1990), and the seawater that existed during their growth (Units D: –1.8 to +1.4‰, 

E: –0.6 to –0.4‰, F: –0.6 to +1.0‰ values from SPECMAP of Imbrie and McIntyre 

(2006)).  The δ13C values vary by <1‰ (Fig. 5.7) and the KMg and KSr are >1 for Units D, 

E, and F.  The coral skeletons in these units have Mg concentrations (512 to 2559 ppm) 

similar to those in pristine modern coral skeletons (Fig. 5.8).  These lines of evidence 

indicate that these coral skeletons have not undergone signifi cant diagenetic change (Fig. 

5.9).

 The progressive change from aragonite to calcite in the coral skeletons in the 
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Ironshore Formation is accompanied by an increase in the Mg content and a decrease in 

the Sr content (Fig. 5.8).  Similar changes have been documented in Pleistocene corals 

from the Florida Keys (Siegel, 1960; Martin et al., 1985), Barbados (Pingitore, 1978), 

and mid-Holocene corals from the Huon Peninsula (McGregor and Gagan, 2003).  The 

extensively altered coral skeletons in Unit B (<85 wt% aragonite), for example, have the 

highest Mg/Ca (up to 30.8 mmol/mol) and lowest Sr/Ca ratios (as low as 2.6 mmol/mol; 

Fig. 5.5B).  This agrees with Pingitore (1978), Martin et al. (1985), McGregor and Gagan 

(2003), and Sayani et al. (2011) who showed that replacive calcite in coral skeletons 

typically has lower Sr/Ca ratios than the primary aragonite.  

 Pleistocene corals from Barbados (Cross and Cross, 1983) and modern corals 

from the Great Barrier Reef (Hendy et al., 2007) are characterized by an increase in Sr 

and a reduction in Mg as the aragonitic coral skeletons were altered by leaching and/or 

aragonite cements, which is a trend opposite to that found in other corals.  Although Cross 

and Cross (1983) suggested that their study provided a baseline for assessing chemical 

diagenesis, this is only applicable for specimens that have undergone leaching.  Pingitore 

(1976), however, suggested that the observed trends from a set of Pleistocene corals 

from Barbados were caused by closed system diagenesis in the vadose zone.  Diagenetic 

changes, such as those documented by Pingitore (1976), Cross and Cross (1983), and 

Hendy et al. (2007), are not evident in the coral skeletons from Units A and C of the 

Ironshore Formation.

 Given that diagenesis is more obvious and easier to discern from the elemental 

concentrations in coral skeletons than their isotopic concentrations (McGregor and 

Gagan, 2003; Sayani et al., 2011), the Mg/Ca and Sr/Ca ratios can be used to detect subtle 

diagenetic changes.  Low Mg/Ca ratios and high Sr/Ca ratios in coral skeletons with >95 

wt% aragonite, like those from Units D, E, and F, indicate that little or no diagenetic 

alteration has taken place (Fig. 5.8).  Available information from multiple species of 

pristine modern coral skeletons (Fig. 5.10) indicates that a coral can be considered 
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viable for paleoclimatic studies providing that (1) the coral skeleton contains >95 wt% 

primary aragonite, (2) skeletal pores are devoid of cements, (3) Mg/Ca ratio is <12.0 

mmol/mol, (4) Sr/Ca ratio is >8.0 mmol/mol, (5) δ18O values >25.1‰ , and (6) δ13C 

values >–3.0‰ (Fig. 5.10).  Although the above criteria act as guidelines for assessing 

the presence of physical and chemical diagenesis, it should be noted that coral skeletons 

are highly heterogeneous.  Therefore, minimally altered portions of an otherwise well-

preserved coral can skew the results and caution should always be used when interpreting 

geochemical proxy data from coral skeletons.  Applying the suggested criteria to older 

fossil corals will ensure that the coral samples have been thoroughly checked for both 

physical and chemical diagenetic alteration.  Based on these criteria, the Pleistocene 

corals from Units A, B, and C cannot be used for paleoclimate reconstruction, whereas 

the corals from Units D, E, and F have the potential of producing reliable paleoclimatic 

information. 

6.2. Paleoclimate applications 

 Coral derived temperature calculations (Tcal) using elemental (Sr/Ca and Mg/

Ca ratios) and isotopic (δ18O) concentrations are only viable if the coral has not been 

physically and chemically altered.  Sr/Ca ratios derived from coral skeletons with 

secondary aragonite cements can lead to spuriously high temperature anomalies (Muller 

et al., 2001; Quinn and Taylor, 2006).  In contrast, the use of Mg/Ca, Sr/Ca, and δ18O-

geothermometers can lead to spuriously low temperature anomalies when secondary 

aragonite cements and/or dissolution of the primary aragonite skeleton has occurred 

(Enmar et al., 2000; Quinn and Taylor, 2006; Hendy et al., 2007).

 For the coral skeletons from the Ironshore Formation, the eff ect that diagenesis 

had on the calculated paleotemperatures was tested by comparing the results derived from 

the Sr/Ca ratio (Swart et al., 2002; Smith et al., 2006; Saenger et al., 2008; Kilbourne et 

al., 2010; DeLong et al., 2011; Flannery and Poore, 2013; Alpert et al., 2017; Flannery et 
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Fig. 5.10. Comparison of (A) Mg/Ca ratios, (B) Sr/Ca ratios, (C) δ13C values, and (D) δ18O values 

from the Ironshore Formation corals and others; Modern Cayman corals- Booker et al. 

(2019), 1- Mitsuguchi et al. (1996), 2- Sinclair et al. (1998), 3- Fallon et al. (2003), 4- 

Armid et al. (2011), 5- Sayani et al.(2011), 6- McCulloch et al. (1999), 7- Watanabe et 

al. (2001), 8- Saenger et al. (2008), 9- DeLong et al. (2007), 10- Reynaud et al. (2007), 

11- von Reumont et al. (2016), 12- Swart (1983). Vertical blue lines indicate the cut off  

(DCF) values for corals that have been diagenetically altered.

al., 2018), the Mg/Ca ratio (Watanabe et al., 2001), and the δ18O-geothermometers (Leder 

et al., 1996; Watanabe et al., 2001; Smith et al., 2006; Kilbourne et al., 2010; Booker et 

al., 2019) that have been developed specifi cally for Orbicella.  These Tcal were assessed 

relative to modern Orbicella that thrive in water temperatures of 15° to 32°C (Hunter, 

1994), but prefer temperatures between 23° and 29°C (NOAA, 2016).  Anomalously 

high temperatures are considered as Tcal higher than the max (29°C) value, whereas 

anomalously low temperatures are lower than the minimum (23°C) value.  The 

extensively recrystallized coral skeletons in Unit B yielded Tcal from 52.7° to 271.5°C 

for Sr/Ca, 57.2° to 121.6°C for Mg/Ca, and 18.7° to 55.4°C for δ18O (Fig. 5.11).  The 

Sr/Ca and Mg/Ca ratios produced anomalously high Tcal anomalies, whereas the δ18O-

based Tcal yielded a wide range of values, which included temperatures within the coral 

growth window.  These anomalous temperatures clearly refl ect the extensive diagenesis 

that has taken place.  The coral skeletons in Units A and C, which show subtle chemical 

diagenesis, yielded Tcal of 26.1° to 176.6°C for Sr/Ca, 27.0° to 179.3°C for Mg/Ca, and 

10.5° to 32.1°C for δ18O (Fig. 5.11).  The Sr/Ca and Mg/Ca thermometers generally 

produced anomalously high Tcal, whereas the δ18O-based Tcal are within to slightly below 

the modern coral growth window (15° to 32°C; Hunter, 1994).  

 The coral skeletons from Units D to F of the Ironshore Formation, which have 
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experienced minimal diagenesis, have Tcal ranging from 12.6° to 49.7°C for Sr/Ca, 22.9° 

to 67.0°C for Mg/Ca, and 11.4° to 34.0°C for δ18O (Fig. 5.11).  Most of the Tcal generated 

from the Sr/Ca and δ18O-geothermometers fall within the temperature range of Orbicella 

(15° to 32°C; Hunter, 1994).  The Tcal generated from the Mg/Ca-geothermometers 

produced generally overestimated Tcal, which is probably because Mg/Ca ratios may 

not accurately refl ect SST due to various biological processes, including the active 

incorporation of the biologically essential Mg ions into the coral skeleton (Allison and 

Finch, 2007; Inoue et al., 2007; Reynaud et al., 2007).  This may be true for all Mg/Ca 

ratios.  Although the Sr/Ca ratios and the δ18O values derived from the coral skeletons in 

these units generally produced Tcal within the Orbicella temperature range, there are also 

some abnormally high or low Tcal.  These unusual Tcal may be attributed to diff erences 

between ‘vital eff ects’, coral growth rates, water depth, reef ecology, methods used to 

derive the equation, sampling errors, analytical uncertainties, diff erences in sampling 

procedures, and the number of samples used for calibration of these geothermometers 

used in these calculations (Booker et al., 2019). 

 

6.2.1. Pleistocene paleotemperatures

 Applying the oxygen isotope geothermometer developed by  Booker et al. (2019) 

developed from modern O. annularis and M. cavernosa corals from the Cayman Islands, 

with the δ18Ocoral values from the corals in Units D to F, paleotemperatures during growth 

of the Pleistocene Ironshore Formation corals were calculated.  δ18Owater values of +0.1, 

–0.4, and +0.9‰ for Units D, E, and F, respectively, derived from the SPECMAP curve 

for the equatorial Atlantic Ocean during the Pleistocene (Imbrie and McIntyre, 2006) 

were used in the temperature calculations.  These δ18Owater values are best estimates of 

the true δ18Owater values for the seawater that existed during deposition of those units, and 

it is important to stress that any modifi cation of those values will result in temperatures 

that diff er from those reported herein.  The corals found in Unit D, which grew during 
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the ~12,000 year long Marine Isotope Stage (MIS) 5e ~125 ka (Siddall et al., 2007), gave 

Tcal of 17°  to 32°C (average 25°C), which are consistent with the temperatures in which 

these corals live today.  Specifi cally, the corals from the east coast of Grand Cayman 

(RWP-D) yielded Tcal of 21° to 31°C (average 27°C; Fig. 5.12A), whereas those from the 

west coast, yielded Tcal of 17° to 26°C (average 22°C; Fig. 5.12B) for GTH-D and Tcal 

of 24 to 32°C (average 28°C; Fig. 5.12C) for IS1.  The record from the 6-point moving 

average of these corals displays overall warming in corals RWP-D and GTH-D, whereas 

coral IS1 displays overall cooling during coral growth.  Diff erences in the Tcal between the 

west and the east coasts may refl ect (1) species specifi c diff erences between O. annularis 

and M. cavernosa, (2) diff erences in the age of the corals, and/or (3) microenvironmental 

variations (Smith et al., 1979; de Villiers et al., 1995, de Villiers, 1999; Lear et al., 2003; 

Allison and Finch, 2007; Armid et al., 2011; Balter et al., 2011; Xu et al., 2015).  

 The coral in Unit E, which grew during the ~15,000 year long highstand of MIS 

5c ~101 ka (Coyne et al., 2007), yielded Tcal of 14° to 23°C (average 18°C; Fig. 5.13A).  

The record from the 6-point moving average of this coral shows an overall decrease in Tcal 

(~3°C) during the 44 years of coral growth.  The coral from Unit F, which grew during 

the~14,000 year long highstand of MIS 5a ~80 ka (Coyne et al., 2007), yielded Tcal from 

20° to 30°C (average 25°C; Fig. 5.13B).  The 6-point moving average temperature profi le 

for Unit F displays cycles of warming (1° – 4°C) and cooling (1° – 4°C), 5 to 45 years 

in length, superimposed on an overall decrease in Tcal of ~4°C during the 83 years of 

coral growth.  Similar small-scale cycles superimposed on a larger trend have also been 

recorded from modern Cayman corals (Booker et al., 2019).  

 The corals from Units D and F record Tcal in the modern coral growth window.  In 

contrast, the coral from Unit E yielded Tcal that are lower than those from Units D and 

F, and generally at the lower end of the modern growth window.  This suggests that the 

climate during the deposition of Units D and F was similar to today’s climate (Kukla et 

al., 1997).  Similar conditions to those recorded by the corals in Unit D have also been 



Fig. 5.12. Temperature profi le of the Unit D corals of the Ironshore Formation; (A) RWP-D, 

(B) IS1, and (C) GTH-D.  Temperatures determined using the oxygen isotope 

geothermometer of Booker et al. (2019) with a δ18Owater value of +0.1‰ as derived from 

the SPECMAP of Imbrie and McIntyre (2006) for the equatorial Atlantic.

19 2315 3127
Temperature ( C)°

IS1

0

25

5

10

15

20

30

0

25

5

10

15

20G
ro

w
th

 Y
ea

rs

30

40

35

45
RWP-D

6-point moving average 
Average Water Temperature

Temperature (±0.96°C error) 

A

B

C

19 2315 3127
Temperature ( C)°

GTH-D

0

25

5

10

15

20

19 2315 27
Temperature ( C)°

31

275



276

Fig. 5.13. Temperature profi le of Ironshore Formation corals from (A) Unit E and (B) Unit F. 

Temperature determined using the oxygen isotope geothermometer of Booker et al. 

(2019) with a δ18Owater value of  –0.4‰ for Unit E and +0.9‰ for Unit F as derived 

from the SPECMAP of Imbrie and McIntyre (2006) for the equatorial Atlantic.  
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recorded from Isla de Mona, Northern Caribbean (Winter et al., 2003), Bonaire (Brocas et 

al., 2016), Death Valley, California (Lowenstein et al., 1999), the Timor Sea (Kawamura 

et al., 2006), and Antarctica (Rohling et al., 2009).  From 125 to 132 ka, Crowley and 

Kim (1994) suggested an increase in summer temperatures of at least 1°C on all land 

masses, which is consistent with the slight Tcal increase recorded in RWP-D and GTH-D 

(Fig. 5.12).  

 Decreasing temperatures, such as that deduced from the coral in Units E, have 

been recognized in the North Atlantic, Arabian Sea, and Timor Sea (McManus et 

al., 1999; Prabhu et al., 2004; Kawamura et al., 2006).  Cooling trends of up to 4°C, 

such as that recorded from the coral in Unit F, have also been identifi ed in the North 

Atlantic, Arabian Sea, Timor Sea, Coral Sea, southern South China Sea, California, and 

Antarctica (Lowenstein et al., 1999; McManus et al., 1999; Chen et al., 2000; Prabhu 

et al., 2004; Kawamura et al., 2006; Rohling et al., 2009; Tachikawa et al., 2009).  As 

cooling has been recorded in multiple locations globally during the deposition of both 

Unit E and F, these cooling trends may refl ect global-scale events, such as a decrease in 

temperature following the peaks of interglacial MIS 5c and 5a, respectively.  The records 

from the corals from Units D to F of the Ironshore Formation are consistent with global 

temperature trends during their growth.

7. Conclusions

 Analysis of the corals in the Pleistocene Ironshore Formation (Units A-F) on 

Grand Cayman has produced the following important conclusions;

 Obvious (mineralogical change or cementation) diagenetic alteration of coral 

skeletons can be recognized in thin section, SEM imaging, and/or XRD analysis, 

but subtle chemical (elemental or isotopic) change may not be identifi ed.  

Therefore, the proposed screening methods (the coral skeleton contains >95 

wt% primary aragonite, skeletal pores are devoid of cements, Mg/Ca ratio is 
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<12.0 mmol/mol, Sr/Ca ratio is >8.0 mmol/mol, δ18O values >25.1‰ , and δ13C 

values >–3.0‰) can be used to thoroughly assess the suitability of corals for 

paleoclimatic interpretations.

 The progressive change from aragonite to calcite in the coral skeletons in the 

Ironshore Formation is accompanied by an increase in the Mg content and a 

decrease in the Sr content.

 The coral skeletons from Units A and C in the Ironshore Formation have retained 

their primary aragonitic skeletons, but have undergone chemical diagenesis 

resulting in altered Mg/Ca and Sr/Ca ratios.  These corals were diagenetically 

altered in a semi-open system by seawater diluted with meteoric water.  These 

corals cannot be used to calculate paleotemperatures.  

 The coral skeletons in Unit B in the Ironshore Formation have been pervasively 

recrystallized, as these corals were altered in an open diagenetic system 

dominated by meteoric groundwaters.  These corals cannot be used to reconstruct 

paleoclimate.  

 The coral skeletons in Units D, E, and F in the Ironshore Formation have 

retained their primary aragonitic skeletons and isotopic/elemental compositions.  

These corals remained in a closed system, and therefore, experienced minimal 

physical and chemical alteration.  These corals can be used to determine 

paleotemperatures.

 The unaltered corals from Unit D and F in the Ironshore Formation record 

temperatures that are consistent with today’s climate.  The coral from Unit E 

records low temperatures and overall cooling.  These temperature reconstructions 

are consistent with regional and global paleoclimate interpretations during the 

deposition of these units.  
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CHAPTER 6

CONCLUSIONS

 The impact of climate change has become increasingly prevalent around the 

world, with the last three decades being successively warmer than any preceding 

decade since 1850 (IPCC, 2014).  This has sparked considerable research into the topic 

of climate change, with researchers looking to the past for insights on what the future 

may hold (Hasen et al., 2018; IPCC, 2018).  To better understand the future impacts 

of climate change, known intervals of climatic instability, over the last 200,000 years 

have been investigated using geochemical proxies (e.g., Hodell et al., 1991; Fensterer 

et al., 2012; Arienzo et al., 2015; Kuff ner et al., 2017; Flannery et al., 2018).  These 

paleoclimate reconstructions have shown fl uctuations in sea surface temperature (SST) 

and atmospheric moisture globally.  Additionally, these studies have identifi ed similar 

trends in diverse regions that highlight the importance of global climate dynamics.

 Element-based proxies have become a promising avenue for reconstructing 

past climate changes, this is especially true for modern tropical corals where long-term 

instrument monitoring of the climate is rare.  Numerous proxies have been developed 

(δ18O, δ13C, Sr/Ca, Mg/Ca, U/Ca, Sr-U, Li/Ca, Li/Mg, Mg/Li, Ba/Ca, B11/Ca, trace and 

rare earth elements) that provide insights into many aspects of environmental variability 

worldwide.  A review of the theory used to develop the nine most commonly used 

elemental SST proxies and a comparison of the 302 published element-based equations to 

two datasets resulted in the following key conclusions.

 More research is required to better understand the factors controlling 

elemental uptake into the coral skeleton, specifi cally the mechanisms 

responsible for element incorporation, the role of the vital eff ects, the eff ect 

of diff erent environmental parameters, and the infl uence of diff erent sampling 

techniques.  It is critical to understand if temperature is the truly the primary 



288

control on the element/Ca signals used to interpret paleoclimate.

 This study suggests using (1) multiple coral species and/or multiple specimens 

of the same species, (2) replicating time series with multiple corals from 

similar and/or the same environment, (3) empirically regressing temperature 

to a variety of elements to reduce coral-element specifi c modifi cations, (4) 

detailed characterization of all aspects of geographic variability as close to the 

coral as possible, (5) laser aided drilling along the maximum growth axis of 

the thecal walls of the coral skeleton at fi xed increments, (6) a high precision 

analytical instrument to generate the elemental concentrations from the coral 

skeleton, (7) correlation of the element/Ca ratios to temperature based on 

known dates, and (8) linear regression to produce the resultant equation.  

 Five published equations produced calculated temperatures within the modern 

coral growth window temperature range (18° to 36°C) and the measured SST 

from Grand Cayman (25° to 31°C).  The Sr/Ca equation of Boiseau et al. 

(1997), a U/Ca equation of Min et al. (1995), the Sr-U equations of DeCarlo 

et al. (2016) and Alpert et al. (2017), and the B11/Ca equation of Sinclair et al. 

(1998) yielded the most ‘realistic’ calculated temperatures for various species 

of corals.  This suggests that future paleoclimate research dealing with coral-

based element proxies should utilize one of these published equations for 

calculating temperature.  

The fi rst coral and sediment core-based SST profi les over the last ~540 years, 

~6000 years, and 80,000 to 125,000 years from the Cayman Islands were developed 

in this study, thereby vastly increasing our knowledge of temperature changes in the 

Caribbean.  The development of these SST profi les over the investigated time periods 

provides better constraints on past temperature variability in an understudied area.  

These windows in time record SST changes that are consistent with other recorded 

intervals of global climate change.  Comparison of the SST profi les associated with the 
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Cayman coral skeletons (O. annularis and M. cavernosa; modern and Pleistocene) and 

sediment cores (~6000 year record) produced the following important conclusions.

 Temperatures calculated using oxygen isotopes from modern Cayman corals, 

indicate that there have been two cool periods (C1: 1474 to 1512 CE and C2: 

1824 to 1924), one warm period (W1: 1924 to 2006), and one mild period 

(M1: 2006 to 2014 CE) in SST between ~1474 to 1512 CE and ~1815 to 2014 

CE.  These trends are consistent with other Caribbean temperature records.  

Global increases in SST since the Industrial Revolution, are highlighted by the 

~3°C increase in SST from ~1815 to 2014 CE.

 Various types of data (facies, carbonate composition, stable isotope and 

elemental compositions) from the North Sound cores indicate that there have 

been fi ve periods of climate change (temperature and atmospheric moisture), 

including one cool-dry period from ~3850 to 1280 BCE, two mild-wet periods 

from ~1280 to 200 BCE and ~1850 to 1980 CE, one warm-dry period from 

~200 BCE to 480 CE, and one cool-wet period from ~480 to 1850 CE.  These 

climate periods are consistent with records from the Caribbean and higher 

latitude locations.  The global nature of these climate periods can be related to 

the movements of the Intertropical Convergence Zone (ITCZ) and the phase 

of the North Atlantic Oscillation (NAO).  During MW1, MW2, and CW1B 

the ITCZ was in a northerly position and/or the NAO in a negative phase.  In 

contrast, CD1, WD1, and CW1A, resulted from a southerly position of the 

ITCZ and/or a positive phase of the NAO.

 Corals from Units D (125 ka) and F (80 ka) of the Ironshore Formation 

(Pleistocene) record SST that are consistent with today’s climate, whereas 

the coral from Unit E (101 ka) records low SST and overall cooling.  These 

SST reconstructions are consistent with other paleoclimate records that were 

developed from samples deposited at the same time as these units.  
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The use of coral skeletons for paleoclimate reconstructions hinges on the 

preservation of the corals, where any diagenetic alteration to the coral’s skeleton can 

skew the original geochemical conditions and therefore the environmental signals.  The 

comparative study of mineralogical and geochemical changes in the coral skeletons 

from units A to F of the Ironshore Formation (Pleistocene) yielded the following critical 

conclusions.

 Visual determination of coral preservation (mineralogical change or 

cementation) using thin section, SEM imaging, and XRD analysis may not 

identify subtle (elemental or isotopic) changes.  

 Coral samples that contain >95 wt% primary aragonite, lack cementation, Mg/

Ca ratios <12.0 mmol/mol, Sr/Ca ratios >8.0 mmol/mol, δ18O values >25.1‰ , 

and δ13C values >–3.0‰  will result in reliable temperature reconstructions for 

paleoclimate interpretations, as both obvious and subtle diagenesis has been 

assessed.  Applying this set of criteria to fossil corals will reduce the potential 

inaccuracies in coral based SST reconstructions.  

 The coral skeletons from Units A and C in the Ironshore Formation have retained 

their primary aragonitic skeletons but have undergone chemical diagenesis 

in a semi-open system by seawater diluted with meteoric water.  The coral 

skeletons in Unit B have been pervasively recrystallized due to alteration in an 

open diagenetic system dominated by meteoric groundwaters.  These corals 

(A-C) cannot be used to reconstruct paleoclimate.  The coral skeletons in Units 

D, E, and F in the Ironshore Formation have retained their primary aragonitic 

skeletons and isotopic/elemental compositions and can be used for paleoclimate 

reconstructions. 

In summary, the fi ndings obtained from this study are important because (1) 

they provide insights into the future of element/Ca geothermometry, (2) include the 

fi rst SST records from the Cayman Islands over a variety of time periods (modern to 



291

Pleistocene), which are consistent with those from other studies globally and reinforce 

the implications of global climate dynamics as the driving force for climate change, (3) 

understanding mid to late Holocene and Pleistocene SST is critical to understanding 

how future climates will respond to global warming, (4) integration of the Cayman SST 

profi les to computer models may help to improve the predictive capabilities for future 

Caribbean climate change, and (5) they provide a criteria for assessing whether older 

fossil corals are viable candidates for paleoclimate reconstruction.
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Table 3.1. Subsamples collected from ER#30-C. Distance measured from the base 

of the coral upwards.  Calculated temperatures are determined from the Cayman 

geothermometer, δ18Owater value of +0.8‰.

Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

ER#30 a 0.4 –0.85  –3.83 +27.0 29.8

ER#30 b 0.6 –1.85 –2.96 +27.5 27.3

ER#30 c 0.8 –1.54 –2.79 +27.6 26.5

ER#30 d 1.0 –1.46 –3.59 +27.2 28.6

ER#30 e 1.2 –1.53 –3.00 +27.8 25.7

ER#30 f 1.4 –0.70 –3.60 +27.2 28.6

ER#30 g 1.6 –0.44 –3.17 +27.3 28.4

ER#30 h 1.8 –0.31 –3.65 +26.8 30.7

ER#30 i 2.0 –0.89 –3.64 +26.8 30.7

ER#30 j 2.3 –0.72 –3.72 +26.7 31.1

ER#30 k 2.5 –0.46 –3.69 +26.7 30.9

ER#30 l 2.7 –0.14 –3.58 +26.8 30.4

ER#30 m 3.0 –0.65 –3.63 +26.8 30.6

ER#30 n 3.3 –0.36 –3.45 +27.0 29.7

ER#30 o 3.6 –0.51 –3.48 +26.9 \29.9

ER#30 p 3.9 –0.60 –3.66 +26.8 30.8

ER#30 q 4.1 –0.01 –3.58 +26.8 30.4

ER#30 r 4.5 –0.27 –3.56 +26.8 30.3

ER#30 s 4.8 –0.50 –3.38 +27.0 29.4

ER#30 t 5.0 –0.66 –4.05 +26.3 32.7

ER#30 u 5.3 –0.77 –3.85 +26.6 31.7

ER#30 v 5.5 –1.34 –3.74 +26.7 31.2
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Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

ER#30 w 5.7 –0.63 –3.54 +26.9 30.2

ER#30 x 6.0 –0.35 –3.23 +27.2 28.6

ER#30 y 6.2 –1.38 –4.49 +26.3 33.0

ER#30 z 6.5 –0.96 –2.94 +27.5 27.2

ER#30 aa 6.9 –1.35 –3.11 +27.3 28.1

ER#30 ab 7.2 –1.59 –3.05 +27.4 27.8

ER#30 ac 7.5 –0.95 –3.46 +27.0 29.8

ER#30 ad 7.7 –1.02 –2.94 +27.5 27.2

ER#30 ae 7.9 –1.14 –3.14 +27.3 28.2

ER#30 af 8.1 –1.87 –3.26 +27.2 28.8

ER#30 ag 8.4 –1.69 –3.25 +27.2 28.8

ER#30 ah 8.6 –1.64 –2.66 +27.8 25.9

ER#30 ai 9.0 –1.68 –2.94 +27.5 27.2

ER#30 aj 9.4 –1.86 –3.12 +27.3 28.1

ER#30 ak 9.7 –2.44 –3.41 +27.0 29.5

ER#30 al 10.1 –2.56 –3.04 +27.4 27.7

ER#30 am 10.5 –1.83 –3.22 +27.2 28.6

ER#30 an 10.8 –1.59 –2.83 +27.6 26.7

ER#30 ao 11.2 –1.51 –2.55 +27.9 25.3

ER#30 ap 11.5 –1.96 –2.89 +27.5 27.0

ER#30 aq 11.9 –2.19 –2.68 +27.8 26.0

ER#30 ar 12.2 –2.41 –2.66 +27.8 25.9

ER#30 as 12.4 –2.42 –2.81 +27.6 26.6

ER#30 at 12.6 –2.47 –3.75 +26.7 31.2

ER#30 au 12.9 –2.10 –2.77 +27.7 26.4
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Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

ER#30 av 13.2 –2.67 –3.24 +27.2 28.7

ER#30 aw 13.4 –2.29 –2.82 +27.6 26.6

ER#30 ax 13.6 –2.64 –3.51 +26.9 30.1

ER#30 ay 14.1 –2.13 –3.02 +27.4 27.6

ER#30 az 14.5 –1.86 –2.80 +27.6 26.5

ER#30 bb 14.8 –1.90 –2.59 +27.9 25.5

ER#30 bc 15.2 –1.11 –3.32 +27.1 29.1

ER#30 bd 15.6 –1.36 –2.93 +27.5 27.2

ER#30 be 15.9 –1.90 –2.48 +28.0 25.0

ER#30 bf 16.1 –1.93 –2.79 +27.6 26.5

ER#30 bg 16.5 –1.86 –2.54 +27.9 25.3

ER#30 bh 17.0 –1.92 –2.59 +27.9 25.5

ER#30 bi 17.5 –2.65 –3.17 +27.3 28.3

ER#30 bj  17.9 –2.29 –2.47 +28.0 24.9

ER#30 bk 18.1 –2.63 –2.69 +27.7 26.0

ER#30 bl 18.4 –3.00 –3.00 +27.4 27.6
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Table 3.2. Subsamples collected from CB1-A. Distance measured from the base 

of the coral upwards.  Calculated temperatures are determined from the Cayman 

geothermometer, δ18Owater value of 0.0‰.

Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperature (°C)

CB1 a 0.5 +0.13 –3.44 +27.0 25.8

CB1 b 1.0 –0.22 –4.05 +26.3 28.8

CB1 c 1.3 +0.16 –3.75 +26.7 27.3

CB1 d 1.9 +0.40 –3.50 +26.9 26.1

CB1 e 2.2 –1.27 –3.75 +26.7 27.3

CB1 f 2.4 –0.10 –3.47 +26.9 26.0

CB1 g 2.8 –0.30 –3.64 +26.8 26.8

CB1 h 3.2 –1.41 –3.57 +26.8 26.5

CB1 i 3.5 –0.34 –3.55 +26.9 26.4

CB1 j 4.1 –0.42 –4.01 +26.4 28.7

CB1 k 4.5 –0.22 –3.42 +27.0 25.7

CB1 l 4.9 –1.23 –4.18 +26.2 29.5

CB1 m 5.5 –0.43 –3.83 +26.6 27.7

CB1 n 5.9 +0.47 –3.86 +26.5 27.9

CB1 o 6.3 –0.80 –3.93 +26.5 28.3

CB1 p 6.7 –0.77 –-4.21 +26.2 29.6

CB1 q 7.0 –0.79 –4.15 +26.2 29.3

CB1 r 7.3 –1.42 –3.97 +26.4 28.4

CB1 s 7.7 +0.58 –3.62 +26.8 26.7

CB1 t 8.0 –0.28 –3.67 +26.7 27.0

CB1 u 8.4 +0.17 –3.68 +26.7 27.0

CB1 v 9.0 –0.13 –3.72 +26.7 27.2
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Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

CB1 w 9.4 –1.00 –3.96 +26.4 28.4

CB1 x 9.8 +0.05 –3.70 +26.7 27.1

CB1 y 10.0 +0.25 –3.36 +27.1 25.4

CB1 z 10.3 +0.44 –3.30 +27.1 25.1

CB1 aa 10.9 –1.03 –3.62 +26.8 26.7

CB1 ab 11.5 +0.60 –3.16 +27.3 24.5

CB1 ac 12.0 –1.20 –3.91 +26.5 28.1

CB1 ad 12.3 –0.69 –3.49 +26.9 26.1

CB1 ae 12.6 –0.83 –4.23 +26.2 29.7

CB1 af 12.9 –0.18 –3.69 +26.7 27.1

CB1 ag 13.4 –0.60 –3.86 +26.5 27.9

CB1 ah 13.9 –0.14 –3.82 +26.6 27.7

CB1 ai 14.25 –0.28 –3.51 +26.9 26.2

CB1 aj 14.6 +0.46 –4.19 +26.2 29.5

CB1 ak 14.9 –0.83 –4.10 +26.3 29.1

CB1 al 15.3 –0.68 –4.03 +26.4 28.7

CB1 am 15.75 –1.25 –4.15 +26.2 29.3

CB1 an 16.2 –0.33 –3.92 +26.5 28.2

CB1 ao 16.7 0.00 –3.35 +27.1 25.4

CB1 ap 17.2 –0.27 –4.13 +26.3 29.2

CB1 aq 17.7 –1.20 –4.18 +26.2 29.5

CB1 ar 18.0 –0.05 –3.30 +27.1 25.2

CB1 as 18.3 –1.60 –4.43 +26.0 30.7

CB1 at 18.7 –1.60 –4.04 +26.4 28.8

CB1 au 19.0 –0.27 –3.73 +26.7 27.2
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Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

CB1 av 19.3 –0.58 –3.85 +26.6 27.9

CB1 aw 19.7 –0.55 –4.17 +26.2 29.4

CB1 ax 20.2 –0.89 –3.92 +26.5 28.2

CB1 ay 20.6 –0.35 –3.61 +26.8 26.7

CB1 az 20.8 +0.18 –3.59 +26.8 26.6

CB1 ba 21.2 +0.14 –3.40 +27.0 25.6

CB1 bb 21.4 +0.36 –3.47 +26.9 26.0

CB1 bc 21.8 +0.02 –3.36 +27.1 25.4

CB1 bd 22.5 +0.82 –3.35 +27.1 25.4

CB1 be 23.0 +0.47 –3.25 +27.2 24.9

CB1 bf 23.5 –0.18 –3.67 +26.7 27.0

CB1 bg 23.8 –0.37 –3.63 +26.8 26.8

CB1 bh 24.0 –0.37 –4.20 +26.2 29.6

CB1 bi 24.3 +0.83 –3.24 +27.2 24.9

CB1 bj 24.8 +0.98 –3.17 +27.3 24.5

CB1 bk 25.3 +0.80 –3.27 +27.2 25.0

CB1 bl 25.8 –0.04 –3.53 +26.9 26.3

CB1 bm 26.4 +0.74 –3.21 +27.2 24.7

CB1 bn 27.0 –0.37 –3.51 +26.9 26.2

CB1 bo 27.5 –0.25 –3.84 +26.6 27.8

CB1 bp 28.1 –0.01 –3.36 +27.1 25.4

CB1 bq 28.6 +0.35 –3.43 +27.0 25.8

CB1 br 29.1 +0.22 –3.42 +27.0 25.7

CB1 bs 29.5 –1.28 –4.33 +26.1 30.2

CB1 bt 29.9 +0.77 –3.56 +26.8 26.4
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Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

CB1 bu 30.5 –0.06 –3.84 +26.6 27.8

CB1 bv 30.9 +0.57 –3.98 +26.4 28.5

CB1 bw 31.2 +0.33 –3.65 +26.8 26.9

CB1 bx 31.4 –0.31 –3.87 +26.5 28.0

CB1 by 31.7 –0.07 –4.07 +26.3 28.9

CB1 bz 32.0 –0.05 –3.97 +26.4 28.4

CB1 ca 32.3 +0.64 –3.78 +26.6 27.5

CB1 cb 32.8 +0.52 –3.57 +26.8 26.4

CB1 cc 33.3 –0.24 –4.06 +26.3 28.9

CB1 cd 33.8 +0.60 –3.35 +27.1 25.4

CB1 ce 34.5 +0.71 –3.47 +26.9 26.0

CB1 cf 34.9 +0.60 –3.47 +26.9 26.0

CB1 cg 35.3 +0.17 –3.69 +26.7 27.0

CB1 ch 35.6 +0.23 –3.81 +26.6 27.6

CB1 ci 35.9 +0.31 –3.34 +27.1 25.3

CB1 cj 36.4 +0.58 –3.41 +27.0 25.7

CB1 ck 36.8 –0.16 –3.58 +26.8 26.5

CB1 cl 37.4 +0.12 –3.49 +26.9 26.1

CB1 cm 38.1 –0.34 –4.06 +26.3 28.9

CB1 cn 38.6 +0.57 –3.22 +27.2 24.8

CB1 co 39.0 +0.17 –3.46 +27.0 25.9

CB1 cp 39.4 –0.36 –4.05 +26.3 28.8

CB1 cq 39.7 +0.89 –3.26 +27.2 24.9

CB1 cr 40.1 +1.99 –2.65 +27.8 22.0
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Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperature (°C)

CB1 cs 40.4 –0.38 –3.76 +26.6 27.4

CB1 ct 40.8 +0.74 –3.18 +27.2 24.5

CB1 cu 41.1 +0.56 –3.46 +27.0 25.9

CB1 cv 41.4 +1.00 –3.31 +27.1 25.2

CB1 cw 41.8 –0.64 –3.91 +26.5 28.1

CB1 cx 42.2 +0.76 –3.02 +27.4 23.8

CB1 cy 42.7 –0.38 –3.48 +26.9 26.1

CB1 cz 43.3 –0.30 –3.69 +26.7 27.1

CB1 da 44.4 –1.46 –3.70 +26.7 27.1

CB1 db 45.2 –0.41 –4.36 +26.0 30.4

CB1 dc 45.5 +0.20 –4.53 +25.8 31.2

CB1 de 46.2 +0.66 –-4.14 +26.3 29.2

CB1 df 46.6 +0.54 –4.40 +26.0 30.6

CB1 dg 47.2 +1.00 –4.25 +26.1 29.8

CB1 dh 47.7 +1.32 –4.29 +26.1 30.0

CB1 di 47.9 +0.68 –4.39 +26.0 30.5

CB1 dj 48.2 +0.45 –4.15 +26.2 29.3

CB1 dk 48.7 +0.37 –4.48 +25.9 30.9

CB1 dl 49.0 –0.27 –4.33 +26.1 30.2

CB1 dm 49.3 –0.10 –4.40 +26.0 30.5

CB1 dn 49.6 –0.14 –4.51 +25.9 31.1

CB1 do 49.9 –0.82 –4.59 +25.8 31.5
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Table 3.3. Subsamples collected from ER#32-A. Distance measured from the base 

of the coral upwards.  Calculated temperatures are determined from the Cayman 

geothermometer, δ18Owater value of +0.8‰.

Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperature (°C)

Left branch

ER#32 a 5.1 –0.52 –4.22 +26.6 31.7

ER#32 b 5.5 –1.14 –2.93 +27.5 27.2

ER#32 c 5.7 –1.15 –3.39 +27.0 29.5

ER#32 D1 6.0 –1.36 –3.16 +27.3 28.3

ER#32 1 6.2 –2.06 –3.69 +26.7 30.9

ER#32 d 7.0 –1.99 –3.80 +26.6 31.5

ER#32 e 7.2 –1.47 –3.66 +26.7 30.8

ER#32 f 7.5 –1.50 –3.74 +26.7 31.2

ER#32 g 7.7 –1.26 –3.47 +26.9 29.8

ER#32 D2 8.2 –1.85 –3.33 +27.1 29.1

ER#32 h 8.5 –1.49 –3.52 +26.9 30.1

ER#32 i 9.0 –1.58 –4.14 +26.3 33.1

ER#32 j 9.4 –1.69 –3.71 +26.7 31.0

ER#32 2 9.7 –1.88 –3.58 +26.8 30.4

ER#32 k 10.1 –2.10 –3.81 +26.6 31.5

ER#32 l 10.3 –1.74 –3.80 +26.6 31.4

ER#32 m 10.6 –2.44 –3.95 +26.4 32.2

ER#32 n 10.9 –1.71 –3.60 +26.8 30.5

ER#32 D3 11.5 –0.85 –3.02 +27.4 27.6

ER#32 o 11.6 –2.04 –3.75 +26.7 31.2

ER#32 p 12.0 –2.17 –3.81 +26.6 31.5
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Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

ER#32 3 12.3 –1.72 –3.46 +27.0 29.8

ER#32 q 12.8 –1.80 –3.71 +26.7 31.0

ER#32 r 13.0 –1.61 –3.24 +27.2 28.7

ER#32 s 13.4 –2.59 –3.94 +26.5 32.2

ER#32 t 13.6 –2.72 –3.68 +26.7 30.9

ER#32 u 13.8 –1.78 –3.03 +27.4 27.7

ER#32 v 14.3 –1.78 –3.32 +27.1 29.1

ER#32 w 14.6 –1.45 –3.72 +26.7 31.1

ER#32 x 14.8 –2.32 –4.54 +26.2 33.2

ER#32 y 15.0 –2.69 –4.92 +25.8 35.1

ER#32 z 15.3 –2.10 –4.06 +26.3 32.7

ER#32 aa 15.6 –1.77 –3.90 +26.5 32.0

ER#32 ab 15.9 –2.59 –4.50 +25.9 34.9

ER#32 ac 16.1 –2.71 –4.40 +26.0 34.4

ER#32 ad 16.4 –1.77 –4.03 +26.4 32.6

ER#32 ae 16.8 –2.37 –3.57 +26.8 30.3

ER#32 af 17.1 –1.35 –3.60 +26.8 30.5

ER#32 ag 17.3 –1.74 –3.52 +26.9 30.1

ER#32 4 17.7 –2.20 –3.73 +26.7 31.1

ER#32 ah 18.1 –2.00 –3.68 +26.7 30.9

ER#32 ai 18.5 –2.57 –3.91 +26.5 32.0

ER#32 aj 18.8 –2.09 –3.48 +26.9 29.9

ER#32 ak 19.1 –3.29 –4.20 +26.2 33.4

ER#32 D4 19.5 –1.35 –2.91 +27.5 27.1

ER#32 al 19.9 –2.64 –3.19 +27.2 28.5
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Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

ER#32 am 20.2 –2.35 –2.83 +27.6 26.7

ER#32 an 20.5 –2.47 –3.60 +26.8 30.5

ER#32 ao 20.7 –2.45 –4.09 +26.3 32.9

ER#32 ap 21.1 –2.20 –3.25 +27.2 28.8

ER#32 aq 21.3 –2.31 –3.29 +27.1 28.9

ER#32 ar 21.6 –3.10 –3.36 +27.1 29.3

ER#32 as 21.8 –2.34 –3.90 +26.5 31.9

ER#32 at 22.3 –3.26 –3.88 +26.5 31.8

ER#32 D5 22.8 –1.65 –3.13 +27.3 28.2

ER#32 au 22.7 –2.46 –3.46 +27.0 29.8

ER#32 av 23.0 –2.98 –3.02 +27.4 27.6

ER#32 aw 23.3 –3.00 –3.29 +27.1 29.0

ER#32 ax 23.5 –1.13 –2.72 +27.7 26.1

ER#32 ay 24.0 –1.97 –3.04 +27.4 27.7

ER#32 az 24.3 –2.39 –3.30 +27.1 29.0

ER#32 bb 247 –2.88 –3.82 +26.6 31.5

ER#32 bc 25.0 –2.85 –3.29 +27.1 29.0

ER#32 bd 25.4 –2.77 –3.22 +27.2 28.6

ER#32 5 25.9 –2.12 –3.47 +26.9 29.9

ER#32 be 26.2 –2.56 –2.97 +27.5 27.4

ER#32 bf 26.6 –2.28 –3.24 +27.2 28.7

ER#32 bg 26.9 –3.33 –3.42 +27.0 29.6

Right branch

ER#32 Ra 14.9 –1.91 –2.91 +27.9 25.2

ER#32 Rb 15.2 –1.35 –3.06 +27.8 26.0
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Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

ER#32 Rc 15.4 –2.15 –3.26 +27.6 26.9

ER#32 Rd 15.7 –2.20 –3.36 +27.4 27.4

ER#32 Re 15.9 –1.87 –3.21 +27.6 26.7

ER#32 Rf 16.9 –2.46 –3.19 +27.6 26.6

ER#32 Rg 17.9 –2.03 –3.32 +27.5 27.3

ER#32 Rh 18.9 –1.95 –3.15 +27.7 26.4

ER#32 Ri 19.9 –1.45 –3.13 +27.7 26.3

ER#32 Rj 20.9 –1.57 –3.07 +27.7 26.0

ER#32 Rk 21.9 –1.92 –3.06 +27.8 26.0

ER#32 Rl 22.9 –2.70 –3.12 +27.7 26.3

ER#32 Rm 23.9 –1.80 –3.14 +27.7 26.4

ER#32 Rn 24.9 –2.00 –3.05 +27.8 25.9

ER#32 Ro 25.9 –2.88 –3.79 +27.0 29.6

ER#32 Rp 26.9 –2.20 –3.11 +27.7 26.2

ER#32 Rq 27.9 –2.35 –3.51 +27.3 28.2

ER#32 Rr 28.9 –2.95 –3.67 +27.1 28.9

ER#32 Rs 29.9 –1.88 –2.88 +27.9 25.1

ER#32 Rt 30.9 –1.89 –3.18 +27.6 26.6

ER#32 Ru 31.9 –1.83 –3.11 +27.7 26.2

ER#32 Rv 32.9 –3.16 –3.51 +27.3 28.2

ER#32 Rw 33.9 –2.05 –2.87 +27.9 25.1

ER#32 Rx 34.9 –2.03 –2.56 +28.3 23.5

ER#32 Ry 35.9 –3.68 –3.40 +27.4 27.6

ER#32 Rz 36.9 –1.79 –2.71 +28.1 24.3

ER#32 Raa 37.9 –1.59 –2.64 +28.2 23.9
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Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

ER#32 Rab 38.9 –2.37 –2.95 +27.9 25.4

ER#32 Rac 39.9 –2.80 –3.08 +27.7 26.1

ER#32 Rad 40.9 –1.92 –2.83 +28.0 24.8

ER#32 Rae 41.9 –0.41 –2.31 +28.5 22.3

ER#32 Raf 42.9 –2.45 –2.98 +27.8 25.6

ER#32 Rag 43.9 –2.75 –3.29 +27.5 27.1

ER#32 Rah 44.9 –3.36 –3.50 +27.3 28.2

ER#32 Rai 45.9 –2.78 –3.26 +27.6 26.9

ER#32 Raj 46.9 –3.69 –3.56 +27.2 28.4

ER#32 Rak 47.9 –3.03 –3.43 +27.4 27.8

 ER#32 Ral 48.9 –3.45 –3.42 +27.4 27.7

ER#32 Ram 49.9 –3.04 –3.19 +27.6 26.6

ER#32 Ran 50.9 –3.79 –3.35 +27.5 27.4

ER#32 Rao 51.9 –2.00 –3.07 +27.7 26.0

ER#32 Rap 52.9 –3.15 –3.84 +27.0 29.8

ER#32 Raq 53.9 –3.00 –3.22 +27.6 26.8

ER#32 Rar 54.9 –2.57 –3.41 +27.4 27.7

ER#32 Ras 55.9 –3.24 –3.45 +27.4 27.9

ER#32 Rat 56.9 –2.46 –3.09 +27.7 26.1

387



Table 3.4. Subsamples collected from ER#31-A. Distance measured from the base 

of the coral upwards.  Calculated temperatures are determined from the Cayman 

geothermometer, δ18Owater value of +0.8‰.

Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW
 

(‰)

Calculated 

temperature (°C)

ER#31 a 1.7 –0.52 –3.26 +27.5 27.0

ER#31 b 2.0 –2.01 –3.47 +26.9 29.8

ER#31 c 2.5 –2.17 –3.19 +27.2 28.4

ER#31 d 2.8 –2.07 –3.12 +27.3 28.1

ER#31 e 3.3 –1.86 –3.45 +27.0 29.8

ER#31 f 3.9 –0.79 –3.26 +27.2 28.8

ER#31 1 4.3 –0.37 –2.87 +27.6 26.9

ER#31 g 4.7 –0.70 –2.66 +27.8 25.9

ER#31 h 5.0 –0.68 –3.22 +27.2 28.6

ER#31 i 5.4 –0.13 –2.52 +27.9 25.2

ER#31 j 5.6 –1.10 –3.60 +26.8 30.5

ER#31 k 6.0 –2.12 –3.64 +26.8 30.6

ER#31 l 6.5 –0.70 –2.47 +28.0 24.9

ER#31 m 6.9 –1.15 –3.16 +27.3 28.3

ER#31 n 7.3 –1.00 –2.47 +28.0 24.9

ER#31 o 7.7 –1.39 –3.01 +27.4 27.6

ER#31 p 8.2 –1.11 –2.68 +27.8 26.0

ER#31 D1 8.6 –0.91 –2.74 +27.7 26.3

ER#31 q 9.1 –1.12 –2.60 +27.8 25.6

ER#31 r 9.6 –1.06 –2.70 +27.7 26.1

ER#31 s 10.2 –1.10 –3.30 +27.1 29.0

ER#31 t 10.9 –1.17 –2.93 +27.5 27.2
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Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

ER#31 u 11.4 –1.70 –2.83 +27.6 26.7

ER#31 v 12.0 –1.12 –2.78 +27.7 26.4

ER#31 w 12.3 –0.81 –3.11 +27.3 28.1

ER#31 x 12.8 –0.70 –2.51 +27.9 25.1

ER#31 y 13.4 –1.06 –3.22 +27.2 28.6

ER# 31 2 13.9 –0.23 –2.61 +27.8 25.6

ER#31 z 14.4 –0.66 –2.15 +28.3 23.4

ER#31 aa 14.7 –1.08 –2.24 +28.2 23.8

ER#31 ab 14.9 –0.21 –2.22 +28.2 23.7

ER#31 ac 15.2 –1.57 –2.70 +27.7 26.1

ER#31 ad 15.6 –1.46 –2.26 +28.2 23.9

ER#31 ae 16.1 –1.32 –2.39 +28.1 24.5

ER#31 af 16.6 –0.47 –2.40 +28.4 22.7

ER#31 ag 16.9 –0.51 –2.16 +28.3 23.4

ER#31 ah 17.1 –0.76 –2.92 +27.5 27.1

ER#31 ai 17.2 –0.02 –2.12 +28.3 23.2

ER#31 aj 17.5 –1.77 –3.59 +26.8 30.4

ER#31 D2 18.1 +0.09 –2.25 +28.2 23.8

ER#31 ak 18.9 –2.40 –3.07 +27.4 27.9

ER#31 al 19.5 +0.29 –2.08 +28.4 23.0

ER#31 am 20.2 –1.24 –2.36 +28.1 24.4

ER#31 an 20.7 –1.14 –2.21 +28.2 23.6

ER#31 ao 21.5 –0.82 –2.42 +28.0 24.7

ER#31 ap 22.1 –2.20 –2.53 +27.9 25.2

ER#31 3 22.9 +0.12 –2.50 +27.9 25.1



Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

ER#31 aq 23.3 –2.22 –3.07 +27.4 27.9

ER#31 ar 23.6 –0.86 –2.45 +28.0 24.8

ER#31 D3 24.6 –0.15 –2.36 +28.1 24.4

ER#31 as 24.7 –1.38 –2.57 +27.9 25.4

ER#31 4 25.4 –0.47 –2.80 +27.6 26.6

ER#31 at 26.0 –1.65 –2.77 +27.7 26.4

ER#31 au 26.4 –1.03 –2.70 +27.7 26.1

ER#31 av 26.6 –1.07 –3.71 +26.7 31.0

ER#31 D4 27.1 –1.18 –2.76 +27.7 26.3

ER#31 aw 27.5 –0.58 –3.24 +27.2 28.7

ER#31 ax 28.0 –1.65 –3.46 +26.9 29.8

ER#31 5 28.8 –1.29 –2.91 +27.5 27.1

ER#31 ay 29.4 –1.86 –3.79 +26.6 31.4

ER#31 az 30.0 –1.65 –3.16 +27.3 28.3

ER#31 D5 30.8 –1.62 –2.78 +27.7 26.4

ER#31 bb 31.4 –1.17 –3.14 +27.3 28.2

ER#31 bc 31.8 –1.61 –3.61 +26.8 30.5

ER#31 bd 32.1 –1.12 –3.38 +27.0 29.4

ER#31 be 32.4 –2.54 –3.35 +27.1 29.3

ER#31 bf 32.8 –0.98 –3.08 +27.4 27.9

ER#31 bg 33.1 –2.64 –3.61 +26.8 30.5

ER#31 6 33.9 –1.42 –3.13 +27.3 28.2

ER#31 bh 34.5 –1.23 –3.07 +27.4 27.9

ER#31 bi 34.9 –1.89 –3.49 +26.9 29.9

ER#31 bj 35.2 –2.25 –2.88 +27.5 27.0
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Subsample Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

 Temperature (°C)

ER#31 bk 35.6 –1.57 –2.84 +27.6 26.8

391



Table 3.5. Subsamples collected from GW-A. Distance measured from the base 

of the coral upwards.  Calculated temperatures are determined from the Cayman 

geothermometer, δ18Owater value of +0.8‰.

Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

GW co 0.1 –0.68 –2.49 +28.3 23.1

GW cp 0.3 –0.59 –2.60 +28.2 23.7

GW cq 0.5 –0.65 –2.48 +28.4 23.1

GW cr 0.7 –1.08 –2.83 +28.0 24.8

GW cs 0.8 –1.03 –2.28 +28.6 22.1

GW ct 1.0 –0.49 –2.21 +28.6 21.7

GW cu 1.2 –0.36 –2.49 +28.3 23.1

GW cv 1.4 –0.67 –2.42 +28.4 22.8

GW cw 1.6 –0.98 –2.37 +28.5 22.5

GW cx 1.9 –0.49 –2.24 +28.6 21.9

GW cy 2.2 –0.51 –2.69 +28.1 24.1

GW cz 2.5 –0.56 –2.03 +28.8 20.9

GW da 2.8 –0.28 –2.41 +28.4 22.7

GW db 3.2 –0.62 –2.48 +28.4 23.1

GW dc 3.6 –0.26 –2.51 +28.3 23.2

GW dd 3.9 –0.86 –2.60 +28.2 23.7

GW de 4.1 –0.85 –2.89 +27.9 25.1

GW df 4.3 –1.16 –2.85 +28.0 24.9

GW dg 4.5 –0.76 –2.49 +28.3 23.1

GW dh 4.7 –0.60 –2.57 +28.3 23.5

GW di 4.9 –0.89 –2.74 +28.1 24.3

GW dj 5.2 –0.99 –2.75 +28.1 24.4
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

GW dk 5.6 –0.39 –2.33 +28.5 22.4

GW dl 6.0 –0.78 –2.42 +28.4 22.8

GW dm 6.2 –0.37 –2.17 +28.7 21.6

GW dn 6.5 –0.58 –2.89 +27.9 25.1

GW do 6.8 –0.73 –2.36 +28.5 22.5

GW dp 7.1 –0.15 –2.22 +28.6 21.8

GW dq 7.5 –0.27 –2.51 +28.3 23.2

GW dr 8.0 –0.22 –2.48 +28.4 23.1

GW ds 8.6 –0.76 –2.38 +28.5 22.6

GW dt 9.1 –0.63 –2.60 +28.2 23.7

GW du 9.5 –0.51 –2.22 +28.6 21.8

GW dv 9.7 –0.67 –2.65 +28.2 23.9

GW dw 10.0 –0.94 –2.25 +28.6 22.0

GW dx 10.2 –0.69 –2.28 +28.6 22.1

GW dy 10.6 –0.13 –2.34 +28.5 22.4

GW dz 11.2 –0.69 –2.26 +28.6 22.0

GW ea 11.5 –0.78 –2.38 +28.5 22.6

GW eb 11.8 –0.28 –2.10 +28.7 21.2

GW ec 12.2 –0.04 –2.52 +28.3 23.3

GW ed 12.7 –0.51 –2.24 +28.6 21.9

GW ee 13.3 –0.91 –2.77 +28.1 24.5

GW ef 14.1 –0.59 –2.54 +28.3 23.3

GW eg 0.3 –0.63 –1.95 +28.9 20.5

GW eh 0.7 –0.80 –2.54 +28.3 23.4

GW ei 1.0 –0.83 –2.15 +28.7 21.5
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

GW ej 1.5 –0.02 –1.99 +28.9 20.7

GW ek 1.9 –1.00 –2.70 +28.1 24.1

GW el 2.2 –0.64 –2.30 +28.5 22.2

GW em 2.5 –1.10 –2.26 +28.6 22.0

GW en 2.8 –0.49 –2.06 +28.8 21.0

GW eo 3.4 –0.54 –2.11 +28.7 21.3

GW ep 4.1 –0.51 –2.22 +28.6 21.8

GW eq 4.6 –0.98 –2.15 +28.7 21.5

GW er 5.2 –0.65 –2.78 +28.0 24.5

GW es 5.7 –0.46 –2.28 +28.6 22.1

GW et 6.0 –0.93 –2.10 +28.7 21.2

GW eu 6.3 –0.20 –2.33 +28.5 22.3

GW ev 6.5 –1.00 –2.28 +28.6 22.1

GW ew 6.8 –1.16 –2.34 +28.5 22.4

GW ex 7.0 –0.80 –1.99 +28.9 20.7

GW ey 7.3 –0.50 –2.79 +28.0 24.6

GW ez 7.5 –0.84 –2.42 +28.4 22.8

GW fa 7.8 –0.33 –2.39 +28.4 22.6

GW fb 8.1 –0.44 –2.74 +28.1 24.3

GW fc 8.3 –1.28 –3.50 +27.3 28.1

GW fd 8.6 –0.14 –2.64 +28.2 23.9

GW fg 8.9 –0.57 –2.71 +28.1 24.2

GW fh 9.2 –0.83 –2.54 +28.3 23.4

GW fi 9.6 –0.28 –2.46 +28.4 23.0

GW fj 9.9 –0.63 –2.26 +28.6 22.0
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

GW fk 10.4 –0.76 –2.13 +28.7 21.3

GW fl 10.9 –0.55 –2.81 +28.0 24.7

GW fm 11.2 –0.31 –2.10 +28.7 21.2

GW fn 11.4 –0.57 –2.47 +28.4 23.0

GW fo 11.8 –0.52 –2.04 +28.8 20.9

GW fp 12.3 –0.18 –2.08 +28.8 21.1

GW fq 12.7 –0.43 –1.95 +28.9 20.5

GW fr 13.0 –0.87 –2.75 +28.1 24.4

GW fs 13.4 –0.91 –2.10 +28.7 21.2

GW ft 13.9 –0.49 –2.09 +28.8 21.2

GW fu 14.7 +0.01 –2.82 +28.0 24.8

GW fv 15.3 –0.17 –2.47 +28.4 23.0

GW fw 15.7 –0.60 –2.65 +28.2 23.9

GW fx 16.0 –0.04 –2.80 +28.0 24.6

GW fy 16.4 –0.18 –2.67 +28.2 24.0

GW fz 16.7 –0.45 –2.93 +27.9 25.3

GW ga 17.0 –0.39 –2.17 +28.7 21.6

GW gb 17.2 –0.24 –2.31 +28.5 22.3

GW gc 17.4 –0.54 –2.06 +28.8 21.0

GW gd 17.8 –0.46 –1.99 +28.9 20.7

GW ge 18.4 –0.98 –2.07 +28.8 21.0

GW gf 18.8 –0.79 –1.99 +28.9 20.7

GW gg 19.1 –0.84 –2.33 +28.5 22.3

GW gh 19.3 –0.69 –1.78 +29.1 19.6

GW gi 19.6 –0.49 –2.36 +28.5 22.5
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

GW gj 19.9 –1.08 –2.29 +28.5 22.2

GW gk 20.1 –0.53 –1.96 +28.9 20.5

GW gl 20.5 –0.24 –2.30 +28.5 22.2

GW gm 20.7 –0.88 –2.19 +28.7 21.7

GW a 0.2 –0.61 –2.52 +28.3 23.3

GW b 0.6 –1.15 –2.78 +28.0 24.6

GW c 1.0 –0.69 –2.47 +28.4 23.0

GW d 1.2 –0.58 –2.68 +28.2 24.1

GW e 1.5 –0.85 –2.50 +28.3 23.2

GW f 1.7 –0.46 –2.84 +28.0 24.9

GW g 2.1 –0.90 –2.80 +28.0 24.7

GW h 2.3 –0.26 –2.62 +28.2 23.8

GW i 2.7 –0.84 –2.96 +27.9 25.4

GW j 3.0 –0.31 –2.55 +28.3 23.4

GW k 3.3 –0.98 –3.21 +27.6 26.6

GW l 3.6 –0.63 –2.54 +28.3 23.4

GW m 4.0 –0.73 –3.42 +27.4 27.7

GW n 4.4 –0.39 –2.73 +28.1 24.3

GW o 4.7 –1.03 –2.82 +28.0 24.8

GW p 5.0 –0.28 –2.67 +28.2 24.0

GW q 5.2 –0.80 –3.29 +27.5 27.1

GW r 5.4 –0.61 –2.80 +28.0 24.7

GW s 5.7 –0.50 –2.86 +28.0 24.9

GW t 6.1 –0.22 –3.05 +27.8 25.9

GW u 6.5 –0.67 –2.90 +27.9 25.1
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

GW v 6.9 –0.85 –2.98 +27.8 25.5

GW w 7.2 –0.50 –2.98 +27.8 25.5

GW x 7.5 –0.50 –3.05 +27.8 25.9

GW y 8.0 –0.61 –2.95 +27.9 25.4

GW z 8.4 –0.49 –2.49 +28.3 23.1

GW aa 8.6 –0.81 –2.88 +28.0 25.0

GW ab 9.0 –0.06 –2.61 +28.2 23.7

GW ac 9.2 –0.91 –2.84 +28.0 24.8

GW ad 9.5 –0.31 –2.71 +28.1 24.2

GW ae 9.8 –0.88 –2.91 +27.9 25.2

GW af 10.0 –0.33 –3.17 +27.7 26.4

GW ag 10.2 –0.81 –3.12 +27.7 26.2

GW ai 10.6 –1.05 –3.43 +27.4 27.7

GW aj 10.9 –0.54 –2.40 +28.4 22.7

GW ak 11.1 –0.97 –2.69 +28.1 24.1

GW al 11.3 –0.80 –3.00 +27.8 25.6

GW am 11.5 +0.10 –2.62 +28.2 23.8

GW an 11.7 –1.36 –2.86 +28.0 24.9

GW ao 12.1 0.00 –2.79 +28.0 24.6

GW ap 12.3 –0.50 –3.68 +27.1 29.0

GW aq 12.6 –0.13 –3.51 +27.3 28.1

GW ar 12.8 –0.38 –4.00 +26.8 30.5

GW as 13.0 –0.45 –3.11 +27.7 26.2

GW at 13.2 –0.31 –3.08 +27.7 26.0

GW au 13.5 –0.82 –3.27 +27.5 26.9
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

GW av 13.7 –0.17 –3.03 +27.8 25.8

GW aw 13.9 –0.52 –3.18 +27.6 26.5

GW ax 14.2 –0.20 –2.89 +27.9 25.1

GW ay 14.4 –0.91 –3.03 +27.8 25.8

GW az 14.6 –0.36 –3.83 +27.0 29.7

GW ba 14.8 –0.66 –3.31 +27.5 27.1

GW bb 15.0 –0.26 –2.87 +28.0 25.0

GW bc 15.2 –0.07 –3.26 +27.6 26.9

GW bd 15.5 –0.53 –3.18 +27.6 26.5

GW be 15.8 0.08 –3.02 +27.8 25.7

GW bf 16.2 –0.42 –2.63 +28.2 23.8

GW bg 16.4 –0.79 –2.61 +28.2 23.7

GW bh 16.6 –0.38 –2.06 +28.8 21.0

GW bi 16.8 –1.11 –2.58 +28.3 23.6

GW bj 17.1 –0.25 –1.96 +28.9 20.5

GW bk 17.3 –0.61 –2.20 +28.6 21.7

GW bl 17.6 –0.34 –2.46 +28.4 23.0

GW bm 17.8 –0.62 –2.13 +28.7 21.4

GW bn 18.2 –0.38 –2.53 +28.3 23.3

GW bo 18.4 –0.26 –2.24 +28.6 21.9

GW bp 18.6 –1.01 –2.56 +28.3 23.5

GW bq 18.9 –0.31 –2.45 +28.4 22.9

GW br 19.2 –0.59 –2.46 +28.4 23.0

GW bs 19.4 –1.20 –3.56 +27.2 28.4

GW bt 19.7 –0.58 –2.73 +28.1 24.3
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

GW bu 20.0 –0.28 –2.50 +28.3 23.2

GW bv 20.1 –0.07 –2.17 +28.7 21.6

GW bw 20.4 –0.53 –2.76 +28.1 24.5

GW bx 20.6 –0.21 –2.27 +28.6 22.1

GW by 20.8 –1.02 –2.35 +28.5 22.5

GW bz 21.0 –0.21 –2.95 +27.9 25.4

GW ca 21.1 –0.97 –3.00 +27.8 257

GW cb 21.3 –0.74 –2.49 +28.3 23.1

GW cc 21.5 –0.06 –2.39 +28.4 22.6

GW cd 21.7 –0.65 –2.53 +28.3 23.3

GW ce 22.0 –0.56 –2.38 +28.5 22.6

GW cf 22.2 –1.02 –2.68 +28.1 24.1

GW cg 22.5 –0.28 –2.13 +28.7 21.4

GW ch 22.7 –0.29 –2.54 +28.3 23.4

GW ci 23.0 –0.58 –2.81 +28.0 24.7

GW cj 23.2 –0.21 –2.23 +28.6 21.8

GW ck 23.4 –0.98 –2.47 +28.4 23.0

GW cl 23.6 –0.53 –2.12 +28.7 21.3

GW cm 23.7 0.00 –1.99 +28.9 20.7

GW cn 24.0 –0.87 –2.30 +28.5 22.2
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400

Table 3.6. Subsamples collected from coral DD-A. Distance measured from the base 

of the coral upwards.  Calculated temperatures are determined from the Cayman 

geothermometer, δ18Owater value of +0.8‰.

Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated      

Temperatures (⁰C)

DD a 4.1 +0.78 –2.86 +28.0 24.9

DD b 4.4 +0.54 –2.99 +27.8 25.6

DD c 4.7 –0.10 –2.65 +28.2 23.9

DD d 5.2 +0.46 –2.59 +28.2 23.6

DD e 5.8 +0.27 –3.31 +27.5 27.2

DD f 6.5 –0.09 –2.52 +28.3 23.3

DD g 7.0 +0.30 –2.56 +28.3 23.5

DD h 7.4 +0.30 –2.44 +28.4 22.9

DD i 7.9 –0.48 –2.42 +28.4 22.8

DD j 8.2 –0.44 –1.71 +29.2 19.3

DD k 8.5 –0.51 –2.07 +28.8 21.1

DD l 8.8 –0.51 –2.11 +28.7 21.2

DD m 9.2 –0.19 –1.80 +29.1 19.7

DD n 9.6 –0.58 –2.32 +28.5 22.3

DD o 10.0 –0.35 –2.18 +28.7 21.6

DD p 10.5 –0.04 –2.00 +29.9 20.2

DD q 11.0 –0.21 –2.30 +28.5 22.2

DD r 11.4 –0.30 –192 +28.9 20.3

DD s 11.9 –0.04 –2.75 +28.1 24.4

DD t 12.2 –0.03 –2.32 +28.5 22.3

DD u 12.5 +0.03 –2.64 +28.2 23.9

DD v 12.8 +0.21 –2.71 +28.1 24.2



Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

DD w 13.1 –0.24 –2.34 +28.5 22.4

DD x 13.4 +0.26 –2.82 +28.0 24.8

DD y 13.8 +0.18 –2.15 +28.7 21.5

DD z 14.1 +0.19 –2.25 +28.6 22.0

DD aa 14.4 +0.20 –2.23 +28.6 21.9

DD ab 15.1 –0.19 –2.38 +28.5 22.6

DD ac 15.4 +0.06 –2.49 +28.3 23.1

DD ad 15.8 +0.27 –2.67 +28.2 24.0

DD ae 16.2 +0.26 –2.04 +28.8 20.9

DD af 16.7 +0.15 –2.45 +28.4 22.9

DD ag 17.0 –0.03 –2.07 +28.8 21.1

DD ah 17.4 –0.09 –2.60 +28.2 23.7

DD ai 17.9 –0.16 –2.35 +28.5 22.5

DD aj 18.2 +0.34 –2.11 +28.7 21.3

DD ak 18.5 +0.11 –2.43 +28.4 22.8

DD al 18.8 +0.16 –2.26 +28.6 22.0

DD am 19.1 –0.04 –2.03 +28.8 20.9

DD an 19.7 –0.10 –2.03 +28.8 20.9

DD ao 20.1 –0.91 –2.04 +28.8 20.9

DD ap 20.4 –0.19 –2.01 +28.8 20.7

DD aq 20.8 –0.33 –2.39 +28.5 22.6

DD ar 21.2 +0.34 –2.43 +28.4 22.8

DD as 21.6 –0.27 –2.49 +28.4 23.1

DD at 22.1 +0.28 –2.73 +28.1 24.3

DD au 22.8 +0.23 –2.62 +28.2 23.8
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

DD av 23.1 +0.12 –3.35 +27.5 27.4

DD aw 23.3 –0.54 –1.87 +29.0 20.1

DD ax 23.5 –0.23 –1.58 +29.3 18.6

DD ay 23.7 –0.26 –2.34 +28.5 22.4

DD az 23.9 –0.91 –2.24 +28.6 21.9

DD ba 24.2 +0.16 –2.39 +28.4 22.6

DD bb 24.6 –0.50 –2.73 +28.1 24.3

DD bc 24.9 –0.21 –1.89 +29.0 20.2

DD bd 25.2 –0.41 –2.08 +28.8 21.1

DD be 26.0 –0.47 –1.90 +29.0 20.2

DD bf 26.9 –0.16 –2.05 +28.8 21.0

DD bg 27.2 –0.58 –2.12 +28.7 21.3

DD bh 27.5 –0.08 –2.51 +28.3 23.2

DD bi 27.8 –0.35 –1.77 +29.1 19.6

DD bj 28.1 –0.43 –2.45 +28.4 22.9

DD bk 28.3 –0.31 –1.79 +29.1 19.7

DD bl 28.6 –0.12 –2.13 +28.7 21.4

DD bm 29.0 –0.53 –1.96 +28.9 20.5

DD bn 29.4 –0.33 –2.15 +28.7 21.4

DD bo 29.7 +0.15 –1.86 +29.0 20.1

DD bp 30.0 –0.73 –1.92 +28.9 20.3

DD bq 30.3 –0.29 –1.97 +28.9 20.6

DD br 30.8 –0.08 –2.11 +28.7 21.3

DD bs 31.2 –0.22 –1.93 +28.9 20.4

DD bt 31.5 –0.58 –2.26 +28.6 22.0
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

DD bu 31.8 –0.21 –1.96 +28.9 20.5

DD bv 32.1 +0.08 –2.47 +28.4 23.0

DD bw 32.5 –0.39 –2.05 +28.8 20.9

DD bx 33.0 –0.68 –2.00 +28.8 20.7

DD by 33.3 –1.17 –2.26 +28.6 22.0

DD bz 33.5 –1.03 –1.79 +29.1 19.7

DD ca 33.7 +0.36 –2.47 +28.4 23.0

DD cb 34.1 –0.31 –2.59 +28.2 23.6

DD cc 34.4 +0.50 –2.68 +28.2 24.1

DD cd 34.7 +0.19 –2.53 +28.3 23.3

DD ce 35.1 +0.48 –2.47 +28.4 23.0

DD cf 35.3 +0.60 –2.54 +28.3 23.4

DD cg 35.7 –0.45 –2.57 +28.2 23.5

DD ch 36.1 –0.08 –2.88 +27.9 25.0

DD ci 36.5 –0.45 –1.48 +29.4 18.2

DD cj 37.0 –0.21 –2.68 +28.2 24.0

DD ck 37.5 +0.38 –2.62 +28.2 23.7

DD cl 37.8 +0.26 –3.02 +27.8 25.7

DD cm 38.2 –0.05 –2.43 +28.4 22.8

DD cn 38.5 +0.11 –2.75 +28.1 24.4

DD co 38.8 +0.14 –2.31 +28.5 22.2

DD cp 39.0 +0.60 –2.37 +28.5 22.6

DD cq 39.3 –0.06 –2.62 +28.2 23.8

DD cr 39.5 –0.14 –2.32 +28.5 22.3

DD cs 39.8 –0.08 –2.78 +28.0 24.6
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

DD ct 40.1 0.00 –2.59 +28.2 23.6

DD cu 40.5 –1.04 –1.60 +29.3 18.8

DD cv 41.0 –0.43 –1.67 +29.2 19.1

DD cw 41.4 –0.02 –1.89 +29.0 20.2

DD cx 41.7 –0.54 –1.84 +29.0 19.9

DD cy 42.1 +0.19 –1.36 +29.5 17.6

DD da 42.6 +0.19 –1.52 +29.3 18.4

DD db 42.8 –0.38 –1.92 +28.9 20.3

DD dc 43.2 –0.45 –2.45 +28.8 22.9

DD dd 43.4 –0.23 –1.84 +29.0 20.0

DD de 43.8 +0.14 –1.87 +29.0 20.1

DD df 44.2 –0.52 –1.95 +28.9 20.5

DD dg 44.5 +0.28 –1.90 +29.0 20.3

DD dh 45.0 –0.28 –1.97 +28.9 20.6

DD di 45.4 +0.26 –1.75 +29.1 19.5

DD dj 45.8 –0.55 –1.89 +29.0 20.2

DD dk 46.2 +0.26 –1.77 +29.1 19.6

DD dl 46.6 –0.39 –1.76 +29.1 19.6

DD dm 47.0 –0.38 –1.85 +29.0 20.0

DD dn 47.3 –0.27 –1.69 +29.2 19.2

DD do 47.8 +0.23 –2.18 +28.7 21.6

DD dp 48.0 –0.87 –2.15 +28.7 21.5

DD dq 48.4 –0.08 –1.89 +29.0 20.2

DD dr 48.8 –0.31 –2.28 +28.6 22.1

DD ds 49.3 –0.39 –2.40 +28.4 22.7
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

DD dt 49.7 –0.17 –2.17 +28.7 21.6

DD du 50.0 –0.05 –1.96 +28.9 20.5

DD dv 50.3 –0.41 –2.18 +28.7 21.6

DD dw 50.7 –0.28 –2.12 +28.7 21.3

DD dx 51.1 +0.13 –1.95 +28.9 20.5

DD dy 51.5 +0.06 –2.07 +28.8 21.0

DD dz 51.9 –0.52 –2.28 +28.6 22.1

DD ea 52.2 –0.86 –2.44 +28.4 22.9

DD eb 52.5 –0.66 –2.05 +28.8 21.0

DD ec 52.9 –0.09 –2.11 +28.7 21.3

DD ed 53.1 +0.04 –1.77 +29.1 19.6
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Table 3.7. Subsamples collected from coral TA-C. Distance measured from the base 

of the coral upwards.  Calculated temperatures are determined from the Cayman 

geothermometer, δ18Owater value of +1.4‰.

Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated     

Temperatures (⁰C)

TA a 0.2 –1.43 –2.77 +28.1 27.4

TA b 0.6 –1.82 –2.38 +28.5 25.4

TA c 0.8 –0.94 –2.59 +28.2 26.5

TA d 1.1 –0.97 –2.16 +28.7 24.4

TA e 1.4 –0.83 –2.44 +28.4 25.8

TA f 1.7 –0.47 –1.74 +29.1 22.3

TA g 2.0 –1.43 –2.13 +28.7 24.2

TA h 2.2 –1.83 –2.54 +28.3 26.2

TA i 2.4 –0.91 –2.26 +28.6 24.8

TA j 2.5 –0.66 –2.26 +28.6 24.9

TA k 2.8 –0.84 –2.36 +28.5 25.4

TA l 3.1 –0.76 –2.53 +28.3 26.2

TA m 3.3 –0.30 –1.86 +29.0 22.9

TA n 3.5 –0.42 –1.58 +29.3 21.5

TA o 3.7 –1.04 –2.04 +28.8 23.8

TA p 4.0 –0.24 –2.44 +28.4 25.7

TA q 4.3 +0.05 –2.53 +28.3 26.2

TA r 4.8 –0.36 –2.82 +28.0 27.6

TA s 5.1 +0.04 –2.15 +28.7 24.3

TA t 5.5 –1.30 –2.79 +28.0 27.5

TA u 5.6 –0.51 –2.45 +28.4 25.8

TA v 5.8 –0.14 –2.68 +28.1 26.9
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

TA w 6.0 –0.47 –2.80 +28.0 27.5

TA x 6.1 –0.24 –2.83 +28.0 27.6

TA y 6.4 –0.20 –2.35 +28.5 25.3

TA z 6.6 +0.22 –2.52 +28.3 26.1

TA aa 6.8 –0.31 –2.31 +28.5 25.1

TA ab 7.2 –0.09 –2.47 +28.4 25.9

TA ac 7.5 –0.12 –2.54 +28.3 26.2

TA ad 7.8 +0.62 –2.39 +28.4 25.5

TA ae 8.0 –0.23 –2.49 +28.4 26.0

TA af 8.4 –0.07 –2.58 +28.3 26.4

TA ag 8.6 –0.51 –2.78 +28.1 27.4

TA ah 8.9 –0.11 –2.64 +28.2 26.7

TA ai 9.2 –0.09 –2.43 +28.4 25.7

TA aj 9.6 +0.16 –1.96 +28.9 23.4

TA ak 9.9 –0.65 –2.18 +28.7 24.5

TA al 10.2 –0.39 –2.55 +28.3 26.3

TA am 10.5 –0.87 –2.01 +28.8 23.6

TA an 10.9 –0.16 –2.18 +28.7 24.4

TA ao 11.2 –0.33 –2.83 +28.0 27.6

TA ap 11.5 –1.45 –2.08 +28.8 24.0

TA aq 11.8 –0.91 –2.18 +28.7 24.5

TA ar 12.1 –0.91 –2.23 +28.6 24.7

TA as 12.4 –1.31 –2.29 +28.6 25.0

TA at 12.9 –1.30 –2.10 +28.7 24.1

TA au 13.4 –0.52 –2.06 +28.8 23.9
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

TA av 13.9 +0.29 –1.48 +29.4 21.0

TA aw 14.3 –0.41 –1.63 +29.3 21.8

TA ax 14.6 –2.20 –2.03 +28.8 23.7

TA ay 15.0 –1.29 –2.35 +28.5 25.3

TA az 15.3 –1.74 –2.39 +28.4 25.5

TA ba 15.6 –1.12 –2.07 +28.8 23.9

TA bb 16.1 –0.59 –2.32 +28.5 25.2

TA bc 16.5 –0.84 –1.95 +28.9 23.3

TA bd 17.0 –0.53 –2.48 +28.4 25.9

TA be 17.2 –0.22 –2.60 +28.2 26.5

TA bf 17.4 –0.83 –2.39 +28.4 25.5

TA bg 17.7 –0.91 –2.45 +28.4 25.8

TA bh 18.0 –0.28 –2.01 +28.8 23.7

TA bi 18.3 +0.12 –2.49 +28.4 26.0

TA bj 18.6 –0.28 –2.23 +28.6 24.7

TA bl 19.1 –0.47 –2.12 +28.7 24.2

TA bm 19.4 –0.55 –2.23 +28.6 24.7

TA bn 19.8 –0.11 –1.94 +28.9 23.3

TA bo 20.3 –0.21 –2.16 +28.7 24.4

TA bp 20.8 –0.82 –2.39 +28.4 25.5

TA bq 21.0 –0.56 –2.06 +28.8 23.9

TA br 21.4 –0.32 –1.83 +29.0 22.7

TA bs 21.6 –0.37 –2.52 +28.3 26.1

TA bt 21.8 –0.71 –1.97 +28.9 23.4

TA bu 22.3 –0.56 –1.79 +29.1 22.5
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Subsamples Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

TA bv 22.6 –0.74 –2.30 +28.5 25.1

TA bw 23.0 –0.73 –1.85 +29.0 22.9

TA bx 23.4 –1.12 –3.09 +27.7 28.9

TA by 23.9 0.00 –2.59 +28.2 26.5
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Table 3.8. Published coral δ18O geothermometers 

Reference Coral type Location Temperature 
range (°C)

Equation

Weber, 1977 79 colonies of 
Galaxea spp.

Australian 
continental 

shelf

23.9 to 29.3, 
26.6

T=((δ18Oc– δ18Ow)–0.3348)–0.1732

Dunbar and 

Wellington, 
1981

2 colonies of 
Pocillopora 
damicornis

Gulf of 
Panama

21.5 to 28.8, 
25.2

T=7.0–3.6*(δ18Oc– δ18Ow)

Weil et al., 1981 3 colonies of 
Pocillopora 
damicornis

Hawaii 

Gulf of 
Panama

21.8 to 28.3, 
25.1

T=3.76–4.29*(δ18Oc– δ18Ow)

McConnaughey, 
1988

1 colony of 
Porites lobata

Ecuador 21.5 to 25.3, 
23.3

T=((δ18Oc–δ
18Ow)+0.594)–0.209

Chakraborty and 
Ramesh, 1993

1 colony of 
Porites

Lakshadweep 
Archipelago

26.5 to 32.0, 
28.0

T=3.0–4.68*(δ18Oc– δ18Ow)

Leder et al., 
1996

4 colonies of 
O. annularis

Florida 22.5 to 30.7, 
26.6

T= 5.33–4.51*(δ18Oc– δ18Ow)

Wellington et 
al., 1996

1 colony of 
Porites lobata

Ecuador 20.5 to 28.0, 
23.6

T=3.97–4.48*(δ18Oc– δ18Ow)

Cardinal et al., 
2001

2 colonies 
of Diploria 

labyrinthiformis

Bermuda 19.3 to 27.5, 
21.9

T=-8.6–7.4*(δ18Oc– δ18Ow)

Watanabe et al., 
2001

1 colony of 
O. faveolata

Puerto Rico 24.7 to 31.1, 
27.9

T=((δ18Oc– δ18Ow)+0.75)–0.19

Felis et al., 2004 1 colony of 
Porites

Gulf of 
Aqaba, Red 

Sea

18.5 to 33.0, 
27.7

T=((δ18Oc–δ
18Ow)–0.801)–0.1514

Smith et al., 
2006

2 colonies of
 O. faveolata

Florida 23.1 to 30.0, 
26.6

T=((δ18Oc– δ18Ow)+1.24)–0.101

Kilbourne et al., 
2010

2 colonies of 
O. faveolata

Puerto Rico 24.7 to 31.1, 
27.9

T=((δ18Oc–δ
18Ow)–0.85)–0.18
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Supplementary Table 4.1. Published Sr/Ca geothermometers.  

Reference Sample type Equation 

Elderfield et al. (2000) Foraminifera- G. hirsuta = 1.000.04  

 G. truncatulinoides = 0.980.03  

 G. inflata = 1.200.02  

Mortyn et al. (2005) Foraminifera- Globorotaliids = 1.100.03  

Cleroux et al. (2008) Foraminifera- Globorotalia 

 
= 1.100.02  

 G. Turncatulinoides + G. Inflata = 1.050.02  

 G. Inflata = 1.120.02  

 G. Turncatulinoides (dextral) = 0.810.04  

 G. Turncatulinoides (sinistral) = 1.010.04  

 

REFERENCES 

Cleroux, C., Cortijo, E., Anand, P., Labeyrie, L., Bassinot, F., Caillon, N., Duplessy, J.C., 2008. 

Mg/Ca and Sr/Ca ratios in planktonic foraminifera: proxies for upper water column tem-

perature reconstruction. Paleoceanography 23. doi:10.1029/2007PA001505.

Elderfi eld, H., Cooper, M., Ganssen, G., 2000. Sr/Ca in multiple species of planktonic foramin-

ifera: implications for reconstructions of seawater Sr/Ca. Geochemistry Geophysics 

Geosystems 1. doi: 10.1029/1999GC000031.

Mortyn, P.G., Elderfi eld, H., Anand, P., Greavea, M., 2005. An evaluation of controls on plank-

tonic foraminiferal Sr/Ca: comparison of water column and core-top data from a North 

Atlantic transect. Geochemistry Geophysics Geosystems 6. doi: 10.1029/2005GC001047.
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Supplementary Table 4.2. Published Mg/Ca geothermometers.  

Reference Sample type Equation 

Rathburn and De Deckker 

(1997) 

Foraminifera- C. 

wuellerstorfi 
 

 C. wuellerstorfi/C. 

refulgens 
 

Rosenthal et al. (1997) Foraminifera- C. 

pachyderma  

Lea (1999) Foraminifer- O. universa 

 

 G. bulloides 

 

Elderfield and Ganssen 

(2000) 

Foraminifera- 8 species 

 

Toyofuku et al. (2000) Foraminifera- P. 

opercularis 

 

Q. yabi 

 

 

 

 

Toler et al. (2001) Foraminifera- A. angulatus 
 

Billups and Schrag (2002) Foraminifera- C. 

wuellerstorfi 
 

Elderfield et al. (2002) Foraminifera- 16 species 

 

 

Lear et al. (2002) Foraminifera- 

Cibiciodoide  

 Uvigerina 
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 Planulina 

 

 P. ariminensis 

 

 O. umbonta 

 

 

 M. barleeanus/M. 

pompilioides  

Martin et al. (2002) Foraminifera- C. 

pachyderma  

 C. wuellerstorfi 

 

 Uvigerina spp 

  

Rosenthal and Lohman 

(2002) 

Foraminifera- G. ruber 

  

 G. sacculifer 

 

Anand et al. (2003) Foraminifera- Average 

  

 G. ruber (pink) 

 

 G. ruber (white) 

 

Reference Sample type Equation 
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 G. sacculifer (with sac) 

 

 N. duterteri 

 

 P. obliquilocilata 

 

 G. conglobatus 

 

 G. inflata 

 

 G. truncatulinoides 

  

 G. hisuta 

  

 G. crassaformis 

 

Marchitto and deMenocal 

(2003) 

Foraminifera- C. 

pachyderma 
 

Skinner et al. (2003) Foraminifera- G. affinis 

 

 

Rathmann et al. (2004) Foraminifera- O. umbonta 

 

Russell et al. (2004) Foraminifera- O. universa 

 

Raja et al. (2005) Foraminifera- M. 

kudakajimaensis  

 

Reference Sample type Equation 
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Toyofuku and Kitazato 

(2005) 

Foraminifera- P. 

opercularis 
 

von Langen et al. (2005) Foraminifera- N. 

pachyderma  

Elderfield et al. (2006) Foraminifera- Cibiciodoide 

 

 C. kullenbergi 

 
 

 C. wuellerstorfi 
 

 

 

 

 Uvigerina 
 

 U. peregrina 
 

 M. barleeanus 
 

Hintz et al. (2006) Foraminifera- B. aculeata 

 

Rosenthal et al. (2006) Foraminifers- H. elegans 
 

Black et al. (2007) Foraminifera- G. 

bulloides 

 

Kristjansdottir et al. (2007) Foraminifer- M. 

barleeanus 

Reference Sample type Equation 
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 I. norcrossi/I. helenae 

 

 C. neoteretis 

 

Marchitto et al. (2007) Foraminifera- C. 

pachyderma 
 

Mekik et al. (2007) Foraminifera- G. 

bulloides 

P. obliquiloculata 

G. tumida 

N. dutertrei 

 

 

 

 

Bryan and Marchitto 

(2008) 

Foraminifera- U. 

peregrina 
 

 P. ariminensis 
 

 P. foveleolata 
 

 H. elegans 
 

 C. pachyderma 
 

Evans et al. (2015) Foraminifera- O. 

ammonoides 
 

 

Titelboim et al. (2017) Foraminifera- P. 

calcariformata 
 

 Lachlanella 
 

Maeda et al. (2018) Foraminifera- Average 
 

 N. calcar 
 

 B. sphaerulata 
 

 C. gaudichaudii 
 

Reference Sample type Equation 
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Table 5.1. Subsamples collected from Unit D of the Ironshore Formation, corals RWP-D, 

IS1, and GTH-D. Distance measured from the base of the coral upwards.  Calculated 

temperatures are determined from the geothermometer of Booker et al. (2019), δ18Owater 

value of +0.1‰.

Unit D Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated     

Temperatures (⁰C)

RWP-D Piece 1

a 0.2 +1.23 –2.89 +27.9 21.6

b 0.3 +0.99 –3.09 +27.7 22.6

c 0.5 +1.59 –2.79 +28.0 21.1

d 0.7 +1.87 –2.66 +28.2 20.4

e 0.8 +1.62 –2.66 +28.2 20.4

f 1.0 +0.03 –3.31 +27.5 23.6

g 1.2 +0.55 –3.41 +27.4 24.1

h 1.4 –0.01 –3.76 +27.0 25.8

i 1.5 +0.79 –3.36 +27.4 23.9

j 1.7 –0.10 –3.53 +27.3 24.7

k 1.9 +0.26 –3.54 +27.3 24.8

l 2.1 0.00 –3.65 +27.1 25.3

m 2.3 +0.68 –3.96 +26.8 26.8

n 2.5 +0.52 –4.07 +26.7 27.4

o 2.6 +1.86 –3.19 +27.6 23.1

p 2.7 +1.37 –3.63 +27.2 25.2

q 2.9 +1.70 –3.91 +26.9 26.6

r 3.1 +0.09 –3.48 +27.3 24.5

s 3.2 +0.83 –4.35 +26.4 28.8

t 3.4 +1.41 –4.14 +26.6 27.7
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Unit D Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated     

Temperatures (⁰C)

u 3.5 +1.23 –4.13 +26.7 27.7

v 3.7 +0.62 –3.99 +26.8 27.0

w 3.9 +0.22 –4.10 +26.7 27.5

x 4.1 +0.22 –4.16 +26.6 27.8

y 4.3 –0.12 –4.10 +26.7 27.5

z 4.4 –0.52 –4.18 +26.6 27.9

aa 4.6 –0.02 –4.07 +26.7 27.4

ab 4.8 +0.10 –3.92 +26.9 26.6

ac 4.9 –0.10 –4.05 +26.7 27.3

ad 5.1 –0.78 –4.19 +26.6 28.0

ae 5.2 –0.05 –3.91 +26.9 26.6

af 5.5 –0.04 –3.70 +27.1 25.6

ag 5.7 +0.23 –3.66 +27.1 25.3

ah 5.9 –0.24 –4.03 +26.8 27.2

ai 6.0 –0.42 –4.17 +26.6 27.9

aj 6.2 –0.15 –3.52 +27.3 24.7

ak 6.3 –0.07 –3.49 +27.3 24.5

al 6.4 –0.41 –3.70 +27.1 25.5

am 6.5 –0.41 –3.90 +26.9 26.5

an 6.6. –0.77 –3.89 +26.9 26.5

ao 6.8 –0.34 –3.57 +27.2 24.9

ap 6.9 –0.28 –3.71 +27.1 25.6

aq 7.1 –0.90 –3.82 +27.0 26.1

ar 7.3 +0.12 –3.42 +27.4 24.2

as 7.6 +0.24 –3.35 +27.5 23.8
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Unit D Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated     

Temperatures (⁰C)

Piece 2

at 0.2 +0.41 –3.68 +27.1 25.4

au 0.4 +0.33 –3.60 +27.2 25.1

av 0.5 +0.25 –3.54 +27.3 24.8

aw 0.7 +0.56 –3.55 +27.2 24.8

ax 0.9 +0.28 –3.98 +26.8 26.9

ay 1.1 –0.62 –3.74 +27.1 25.8

az 1.3 –0.31 –3.81 +27.0 26.1

ba 1.5 –0.24 –4.63 +26.1 30.1

bb 1.8 +0.39 –4.01 +26.8 27.1

bc 2.0 –0.11 –4.18 +26.6 27.9

bd 2.3 +0.29 –4.01 +26.8 27.0

be 2.6 +0.39 –4.32 +26.5 28.6

bf 2.8 –0.41 –3.94 +26.8 26.7

bg 3.1 +0.01 –4.15 +26.6 27.8

bh 3.3 +0.39 –4.02 +26.8 27.1

bi 3.5 –0.36 –4.24 +26.5 28.2

bj 3.7 +0.32 –3.84 +26.9 26.3

bk 3.9 –1.67 –4.97 +25.8 31.8

bl 4.2 –0.68 –3.92 +26.9 26.6

bm 4.5 +0.40 –3.60 +27.2 25.1

bn 4.8 +0.39 –4.23 +26.5 28.2

bo 5.0 –0.74 –4.80 +26.0 31.0

bp 5.2 –0.58 –4.23 +26.6 28.1

bq 5.5 +0.04 –4.40 +26.4 29.0
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Unit D Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated     

Temperatures (⁰C)

br 5.7 –0.54 –4.33 +26.4 28.6

bs 6.0 +0.54 –4.09 +26.7 27.4

bt 6.3 –0.53 –4.53 +26.2 29.6

bu 6.5 +0.27 –4.06 +26.7 27.3

bv 6.7 +0.46 –4.54 +26.2 29.7

bw 7.1 –0.31 –4.48 +26.3 29.4

bx 7.3 +1.10 –4.19 +26.6 28.0

by 7.5 +0.04 –4.62 +26.2 30.0

bz 7.7 +0.41 –3.92 +26.9 26.6

ca 8.0 +0.65 –4.38 +26.4 28.9

cb 8.2 –0.77 –4.51 +26.3 29.5

cc 8.4 +0.55 –4.22 +26.6 28.1

cd 8.7 –0.65 –4.45 +26.3 29.3

ce 8.9 +0.29 –3.93 +26.9 26.7

cf 9.1 –0.74 –4.03 +26.8 27.2

IS1

a 1.0 +0.25 –3.84 +26.9 26.2

b 1.2 +0.45 –4.32 +26.5 28.6

c 1.5 0.00 –4.38 +26.4 28.9

d 1.8 –0.48 –4.33 +26.4 28.7

e 2.3 –0.10 –3.91 +26.9 26.6

f 2. –0.50 –5.04 +25.7 32.1

g 2.9 –0.03 –4.74 +26.0 30.6

h 3.1 –0.18 –4.19 +26.6 28.0

i 3.3 –0.90 –4.63 +26.1 30.1
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Unit D Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated     

Temperatures (⁰C)

j 3.6 –0.24 –3.79 +27.0 26.0

k 3.8 –0.24 –4.11 +26.7 27.6

l 3.9 +0.34 –3.96 +26.8 26.8

m 4.1 –0.35 –4.70 +26.1 30.5

n 4.3 –1.08 –4.41 +26.4 29.0

o 4.6 –0.31 –4.02 +26.8 27.1

p 4.8 +0.02 –3.89 +26.9 26.5

q 5.2 –0.73 –4.34 +26.4 28.7

r 5.5 –0.66 –3.65 +27.1 25.3

s 5.8 –0.87 –4.17 +26.6 27.9

t 6.0 –0.69 –4.28 +26.5 28.4

u 6.2 –0.24 –3.81 +27.0 26.1

v 6.4 –1.06 –4.34 +26.4 28.7

w 6.6 –0.20 –4.45 +26.3 29.2

x 6.8 +0.49 –3.63 +27.2 25.2

y 7.0 +0.28 –3.94 +26.8 26.7

z 7.4 –0.56 –4.26 +26.5 28.3

aa 7.7 –0.07 –3.84 +26.9 26.3

ab 7.9 –0.27 –4.05 +26.7 27.3

ac 8.1 –1.17 –4.38 +26.4 28.9

ad 8.3 –0.18 –3.67 +27.1 25.4

ae 8.6 –0.94 –4.17 +26.6 27.9

af 8.8 –0.02 –3.56 +27.2 24.9

ag 9.0 +0.06 –3.88 +26.9 26.4

ah 9.1 +0.05 –3.98 +26.8 26.9
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Unit D Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated     

Temperatures (⁰C)

ai 9.4 –0.30 –3.86 +26.9 26.3

aj 9.6 +0.37 –3.71 +27.1 25.6

ak 9.9 –1.12 –4.80 +26.0 30.9

al 10.1 –0.86 –3.96 +26.8 26.8

am 10.3 –0.25 –3.87 +26.9 26.4

an 10.5 –0.71 –4.24 +26.5 28.2

ao 10.8 –0.15 –3.86 +26.9 26.3

ap 11.1 +0.22 –3.75 +27.0 25.8

aq 11.3 –0.34 –3.92 +26.9 26.6

ar 11.6 +0.27 –3.59 +27.2 25.0

as 11.8 –0.29 –3.95 +26.8 26.8

at 12.1 –0.68 –3.86 +26.9 26.3

au 12.3 +0.43 –4.31 +26.5 28.6

av 12.5 –0.27 –4.63 +26.1 30.1

aw 12.7 +0.97 –3.76 +27.0 25.8

ax 13.0 +0.16 –3.66 +27.1 25.3

ay 13.4 +0.86 –3.80 +27.0 26.0

az 13.6 +1.08 –4.06 +26.7 27.3

ba 13.8 –0.94 –4.43 +26.3 29.1

bb 14.1 –0.45 –3.98 +26.8 26.9

bc 14.3 –0.59 –3.80 +27.0 26.0

bd 14.5 –0.75 –4.01 +26.8 27.1

be 14.8 –0.40 –3.41 +27.4 24.1

GTH-D
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Unit D Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated     

Temperatures (⁰C)

a 0.9 –0.52 –2.69 +28.1 20.6

b 1.1 –0.88 –2.56 +28.3 19.9

c 1.3 –0.03 –3.21 +27.6 23.1

d 1.6 –0.66 –2.89 +27.9 21.6

e 1.9 –0.60 –2.63 +28.2 20.3

f 2.1 –0.64 –2.94 +27.9 21.8

g 2.3 –0.49 –2.89 +27.9 21.6

h 2.8 –0.51 –3.23 +27.6 23.2

i 3.3 –0.64 –2.81 +28.0 21.2

j 3.7 –0.34 –2.65 +28.2 20.4

k 3.8 –0.30 –3.07 +27.7 22.4

l 4.0 +0.61 –2.76 +28.1 20.9

m 4.4 +0.34 –2.93 +27.9 21.8

n 4.9 +1.05 –2.60 +28.2 20.1

o 5.3 +0.22 –2.83 +28.0 21.3

p 5.7 –0.49 –3.45 +27.4 24.3

q 5.9 +0.09 –2.96 +27.9 21.9

r 6.2 +0.57 –2.56 +28.3 20.0

s 6.8 +0.19 –2.61 +28.2 20.2

t 7.2 +0.46 –2.72 +28.1 20.7

u 7.5 +0.61 –2.80 +28.0 21.1

v 7.8 +0.86 –2.72 +28.1 20.8

w 8.3 +0.23 –2.68 +28.2 20.5

x 8.8 +0.23 –3.04 +27.8 22.3

y 9.5 +0.11 –3.00 +27.8 22.1
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Unit D Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated     

Temperatures (⁰C)

z 9.8 –0.67 –3.35 +27.5 23.8

aa 10.1 +0.17 –2.52 +28.3 19.7

ab 10.3 +0.09 –2.48 +28.4 19.6

ac 10.6 –0.36 –3.13 +27.7 22.7

ad 11.1 –0.24 –1.92 +28.9 16.8

ae 11.4 –0.09 –2.46 +28.4 19.5

af 11.7 0.00 –2.85 +28.0 21.4

ag 12.0 –0.36 –3.06 +27.8 22.4

ah 12.2 +0.64 –2.86 +28.0 21.4

ai 12.7 –0.04 –3.61 +27.2 25.1

aj 13.0 +1.00 –2.74 +28.1 20.9

ak 13.4 +0.96 –2.90 +27.9 21.6

al 13.7 +0.32 –3.33 +27.5 23.7

am 14.1 +0.05 –3.37 +27.4 23.9

an 14.6 –0.03 –3.74 +27.1 25.7

ao 14.8 –0.39 –2.57 +28.3 20.0

ap 15.2 +0.34 –2.53 +28.3 19.8

aq 15.7 –0.29 –2.68 +28.2 20.5

ar 16.3 +0.52 –3.02 +27.8 22.2

as 17.5 –0.12 –1.90 +29.0 16.7
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Table 5.2. Subsamples collected from Unit E of the Ironshore Formation, coral GTH-E. 

Distance measured from the base of the coral upwards.  Calculated temperatures are 

determined from the geothermometer of Booker et al. (2019), δ18Owater value of –0.4‰.

GTH-E Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

a 0.4 –1.69 –2.45 +28.4 17.3

b 0.8 –0.73 –2.69 +28.1 18.4

c 1.1 –0.84 –2.85 +28.0 19.2

d 1.3 –0.95 –2.55 +28.3 17.8

e 1.6 –1.25 –2.99 +27.8 19.9

f 1.8 –0.82 –3.13 +27.7 20.6

g 2.1 –0.45 –2.82 +28.0 19.1

h 2.4 –1.56 –3.48 +27.3 22.3

i 2.7 –0.62 –2.83 +28.0 19.1

j 2.9 –1.03 –3.40 +27.4 21.9

k 3.1 –0.20 –2.64 +28.2 18.2

l 3.3 –1.09 –2.85 +28.0 19.2

m 3.5 –1.06 –3.36 +27.4 21.7

n 3.7 –1.24 –2.80 +28.0 19.0

o 3.9 –1.55 –3.28 +27.5 21.3

p 4.1 –1.18 –2.57 +28.3 17.8

q 4.3 –1.25 –2.09 +28.8 15.5

r 4.5 –1.58 –2.72 +28.1 18.6

s 4.8 –0.80 –2.56 +28.3 17.8

t 5.0 –0.78 –2.09 +28.8 15.5

u 5.2 –1.57 –2.82 +28.0 19.1

v 5.4 –0.83 –2.57 +28.3 17.9



GTH-E Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

w 5.6 –1.01 –3.56 +27.2 22.7

x 5.8 –0.44 –2.22 +28.6 16.1

y 6.1 –0.88 –2.91 +27.9 19.5

z 6.3 –0.35 –2.33 +28.5 16.7

aa 6.5 –1.01 –2.61 +28.2 18.0

ab 6.7 –1.23 –2.70 +28.1 18.5

ac 6.9 –0.50 –2.20 +28.6 16.0

ad 7.1 –0.50 –2.16 +28.7 15.9

ae 7.3 –0.99 –2.55 +28.3 17.7

af 7.6 –0.22 –2.57 +28.3 17.9

ag 7.8 –0.68 –2.67 +28.2 18.3

ah 8.0 –0.42 –2.27 +28.6 16.4

ai 8.2 –1.27 –2.08 +28.8 15.4

aj 8.3 –1.23 –1.93 +28.9 14.7

ak 8.5 –0.93 –1.97 +28.9 14.9

al 8.8 –1.57 –2.82 +28.0 19.1

am 9.0 –1.88 –2.58 +28.3 17.9

an 9.2 –1.82 –2.57 +28.3 17.9

ao 9.4 –0.42 –2.37 +28.5 16.9

ap 9.6 –0.61 –2.01 +28.8 15.1

aq 9.8 –1.34 –2.68 +28.1 18.4

ar 10.1 –1.29 –3.09 +27.7 20.4

as 10.4 –0.45 –1.98 +28.9 15.0

at 10.7 –0.59 –3.07 +27.7 20.3

au 10.9 –0.13 –2.22 +28.6 16.1
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GTH-E Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

av 11.2 +0.09 –2.45 +28.4 17.3

aw 11.4 –0.56 –2.79 +28.0 18.9

ax 11.6 +0.10 –1.99 +28.9 15.0

ay 11.8 –0.45 –2.43 +28.4 17.2

az 12.1 –0.59 –2.65 +28.2 18.2

ba 12.4 –0.85 –2.14 +28.7 15.7

bb 12.6 –0.66 –2.24 +28.6 16.2

bc 12.8 +0.03 –1.73 +29.1 13.7

bd 13.1 –0.02 –2.11 +28.7 15.6

be 13.3 –0.03 –2.45 +28.4 17.2

bf 13.6 –0.77 –2.32 +28.5 16.6

bg 13.8 –0.61 –2.24 +28.6 16.2

bh 14.0 –0.64 –2.15 +28.7 15.8

bi 14.3 –1.12 –2.39 +28.4 17.0

bj 14.5 –0.58 –2.37 +28.5 16.9

bk 14.7 +0.16 –2.31 +28.5 16.6

bl 14.9 –0.67 –2.85 +28.0 19.3

bm 15.1 –0.43 –2.81 +28.0 19.1

bn 15.3 –0.53 –2.69 +28.1 18.4

bo 15.5 –0.47 –2.47 +28.4 17.4

bp 15.6 –0.35 –2.36 +28.5 16.8

bq 15.8 –1.44 –2.26 +28.6 16.4

br 16.1 –1.18 –2.54 +28.3 17.7

bs 16.4 –0.40 –2.27 +28.6 16.4

bt 16.6 –0.14 –2.38 +28.5 16.9
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GTH-E Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated        

Temperatures (⁰C)

bu 16.8 –0.64 –2.35 +28.5 16.8

bv 17.1 –0.52 –2.49 +28.3 17.4

bw 17.3 –0.03 –1.93 +28.9 14.7

bx 17.6 –1.00 –2.36 +28.5 16.8

by 18.0 –0.36 –2.27 +28.6 16.4

bz 18.3 –0.63 –2.44 +28.4 17.2

ca 18.7 –0.93 –2.68 +28.1 18.4

cb 19.0 –0.58 –2.30 +28.5 16.5

cc 19.3 –0.62 –2.51 +28.3 17.6

cd 19.6 –0.84 –2.09 +28.8 15.5

ce 20.3 –1.03 –2.62 +28.2 18.1

cf 20.5 –0.33 –2.59 +28.2 18.0

cg 20.7 –0.36 –2.23 +28.6 16.2

ch 20.9 –0.53 –2.74 +28.1 18.7

ci 21.2 –0.56 –2.47 +28.4 17.3

cj 21.4 +0.15 –2.17 +28.7 15.9
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Table 5.3. Subsamples collected from Unit F of the Ironshore Formation, coral GTH-F. 

Distance measured from the base of the coral upwards.  Calculated temperatures are 

determined from the geothermometer of Booker et al. (2019), δ18Owater value of +0.9‰.

GTH-F Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated 

Temperatures (⁰C)

a 1.5 +0.36 –2.74 +28.1 24.7

b 1.7 +0.24 –3.07 +27.7 26.3

c 2.1 +0.18 –3.13 +27.7 26.6

d 2.5 –0.52 –3.32 +27.5 27.5

e 2.7 +0.24 –1.79 +29.1 20.0

f 2.9 –0.91 –3.30 +27.5 27.4

g 3.1 –0.14 –2.81 +28.0 25.0

h 3.3 +0.22 –3.24 +27.6 27.1

i 3.7 +0.12 –2.90 +27.9 25.5

j 4.0 –0.27 –3.06 +27.8 26.2

k 4.3 –0.92 –3.16 +27.6 26.8

l 4.6 –0.20 –2.91 +27.9 25.5

m 5.0 –0.61 –3.46 +27.3 28.2

n 5.4 +0.31 –2.83 +28.0 25.1

o 5.6 –1.16 –3.01 +27.8 26.0

p 5.9 +0.31 –2.42 +28.4 23.1

q 6.2 –0.02 –2.68 +28.1 24.4

r 6.5 –0.68 –2.83 +28.0 25.1

S 6.9 –0.71 –2.42 +28.4 23.1

t 7.2 –0.69 –2.58 +28.3 23.9

u 7.4 –0.37 –2.16 +28.7 21.8
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GTH-F Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated 

Temperatures (⁰C)

v 7.7 –0.46 –2.81 +28.0 25.0

w 7.9 –0.37 –2.30 +28.5 22.6

x 8.4 –0.90 –2.94 +27.9 25.7

y 9.0 –0.67 –3.21 +27.6 27.0

z 9.4 –0.32 –2.98 +27.8 25.8

aa 9.7 –0.15 –2.68 +28.1 24.4

ab 10.0 –0.54 –3.56 +27.2 28.7

ac 10.3 –0.14 –2.93 +27.9 25.6

ad 10.5 –0.57 –3.10 +27.7 26.5

ae 10.7 –1.29 –3.61 +27.2 29.0

af 11.1 +0.02 –3.73 +27.1 29.5

ag 11.3 –1.53 –3.30 +27.5 27.5

ah 11.5 +0.07 –2.00 +28.8 21.1

ai 11.7 –1.73 –3.13 +27.7 26.6

aj 12.0 –1.59 –2.99 +27.8 25.9

ak 12.3 –0.20 –2.62 +28.2 24.1

al 12.7 +0.25 –2.39 +28.4 23.0

am 13.0 –0.72 –2.62 +28.2 24.1

an 13.2 +0.27 –2.63 +28.2 24.2

ao 13.4 –0.72 –3.56 +27.2 28.7

ap 13.7 +0.45 –2.53 +28.3 23.7

aq 14.0 –0.44 –3.36 +27.4 27.7

ar 14.1 –0.74 –2.53 +28.3 23.6

as 14.4 –0.74 –2.71 +28.1 24.5

at 14.8 +0.18 –2.83 +28.0 25.2
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GTH-F Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated 

Temperatures (⁰C)

au 15.3 +0.23 –2.47 +28.4 23.4

av 15.5 –0.23 –2.64 +28.2 24.2

aw 15.7 –0.14 –2.58 +28.3 23.9

ax 16.0 +0.36 –2.77 +28.1 24.8

ay 16.3 –0.71 –2.95 +27.9 25.7

az 16.5 –0.01 –2.89 +27.9 25.4

ba 16.8 –0.34 –2.60 +28.2 24.0

bb 17.1 –0.63 –2.40 +28.4 23.0

bc 17.3 –1.05 –2.66 +28.2 24.3

bd 17.5 +0.25 –2.72 +28.1 24.6

be 17.7 –0.77 –2.57 +28.3 23.8

bf 18.0 +0.20 –2.58 +28.2 23.9

bg 18.3 –0.54 –2.56 +28.3 23.8

bh 18.6 +0.35 –2.46 +28.4 23.3

bi 18.8 –1.03 –3.06 +27.8 26.2

bj 19.0 +0.16 –2.72 +28.1 24.6

bk 19.2 –0.08 –2.52 +28.3 23.6

bl 19.6 –0.19 –2.50 +28.3 23.5

bm 19.9 –0.36 –2.74 +28.1 24.7

bn 20.2 –0.98 –2.66 +28.2 24.3

bo 20.5 –0.44 –2.66 +28.2 24.3

bp 20.7 +0.31 –2.47 +28.4 23.4

bq 21.0 –0.08 –2.44 +28.4 23.2

br 21.5 +0.02 –2.83 +28.0 25.2

bs 21.8 +0.21 –2.36 +28.5 22.8

440



441

GTH-F Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated 

Temperatures (⁰C)

bt 22.0 –0.95 –2.93 +27.9 25.6

bu 22.3 +0.47 –2.79 +28.0 24.9

bv 22.5 –0.89 –2.89 +27.9 25.4

bw 22.8 –0.65 –2.72 +28.1 24.6

bx 23.2 +0.28 –2.70 +28.1 24.5

by 23.5 –0.50 –2.51 +28.3 23.6

bz 23.8 –0.53 –2.46 +28.4 23.3

ca 24.0 +0.21 –2.30 +28.5 22.5

cb 24.2 –0.55 –2.59 +28.2 24.0

cc 24.5 +0.03 –2.26 +28.6 22.3

cd 24.7 +0.42 –2.67 +28.2 24.3

ce 25.0 –0.45 –2.43 +28.4 23.2

cf 25.7 +0.12 –2.80 +28.0 25.0

cg 25.5 –0.24 –2.69 +28.1 24.4

ch 25.7 –0.24 –3.12 +27.7 26.6

ci 25.9 –0.27 –2.55 +28.3 23.7

cj 26.1 +0.62 –2.62 +28.2 24.1

ck 26.2 –0.74 –2.94 +27.9 25.7

cl 26.3 +0.03 –2.26 +28.6 22.3

cm 26.4 –1.13 –3.04 +27.8 26.2

cn 26.5 –0.21 –2.61 +28.2 24.0

co 26.7 –0.71 –2.88 +27.9 25.4

cp 27.0 –1.08 –2.80 +28.0 25.0

cq 27.4 –0.03 –2.63 +28.2 24.1



GTH-F Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated 

Temperatures (⁰C)

cr 27.6 +0.21 –2.51 +28.3 23.5

cs 28.0 –0.60 –2.69 +28.1 24.4

ct 28.5 +0.15 –2.98 +27.8 25.9

cu 28.6 +0.42 –2.76 +28.1 24.8

cv 28.8 –0.20 –2.79 +28.0 24.9

cw 29.1 –0.35 –2.57 +28.3 23.8

cx 29.3 +0.37 –2.86 +28.0 25.3

cy 29.5 +0.07 –3.10 +27.7 26.5

cz 29.7 –0.52 –3.01 +27.8 26.0

da 29.8 –0.23 –2.76 +28.1 24.8

db 30.1 +0.14 –2.72 +28.1 24.6

dc 30.6 –0.19 –2.54 +28.3 23.7

dd 31.1 +0.05 –2.57 +28.3 23.9

de 31.4 +0.50 –3.01 +27.8 26.0

df 31.6 –1.08 –3.13 +27.7 26.6

dg 31.8 –0.05 –2.64 +28.2 24.2

dh 32.1 +0.08 –2.65 +28.2 24.2

di 32.3 +0.02 –2.64 +28.2 24.2

dj 32.6 +0.33 –2.74 +28.1 24.7

dk 32.9 –0.24 –2.64 +28.2 24.2

dl 33.1 –0.10 –3.19 +27.6 26.9

dm 33.5 –0.37 –2.64 +28.2 24.2

dn 33.6 +0.12 –2.55 +28.3 23.8

do 33.8 +0.20 –2.62 +28.2 24.1

dp 34.3 +0.31 –2.76 +28.1 24.8
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GTH-F Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated 

Temperatures (⁰C)

dq 34.9 –0.04 –2.97 +27.9 25.8

dr 35.5 –0.02 –2.92 +27.9 25.6

ds 36.0 +0.50 –2.92 +27.9 25.6

dt 36.4 –0.09 –3.18 +27.6 26.9

du 36.8 +0.23 –2.82 +28.0 25.1

dv 37.1 +0.09 –2.98 +27.8 25.9

dw 37.3 +0.44 –3.24 +27.6 27.1

dx 37.5 +0.07 –3.03 +27.8 26.1

dy 37.7 +0.69 –3.15 +27.7 26.7

dz 37.9 –0.66 –3.23 +27.6 27.1

ea 38.1 +0.61 –3.28 +27.5 27.4

eb 38.4 +0.65 –2.75 +28.1 24.8

ec 38.6 –0.21 –3.06 +27.8 26.2

ed 38.9 +0.16 –2.71 +28.1 24.5

ee 39.4 +0.06 –2.86 +28.0 25.3

ef 39.8 –0.95 –2.84 +28.0 25.2

eg 40.2 –0.62 –3.38 +27.4 27.8

eh 40.4 –0.18 –3.02 +27.8 26.0

ei 40.7 –0.16 –3.04 +27.8 26.1

ej 41.2 –0.57 –3.29 +27.5 27.4

ek 41.6 +0.02 –3.20 +27.6 26.9

el 42.0 –0.23 –3.08 +27.7 26.3

em 42.3 +0.18 –3.29 +27.5 27.4

en 42.6 –0.73 –3.41 +27.4 28.0
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GTH-F Distance 

(cm)

δ13CVPDB 

(‰)

δ18OVPDB 

(‰)

δ18OVSMOW 

(‰)

Calculated 

Temperatures (⁰C)

eo 42.8 +0.18 –2.59 +28.2 23.9

ep 43.0 –0.05 –3.03 +27.8 26.1

eq 43.2 –0.06 –2.62 +28.2 24.1

er 43.4 –0.16 –2.52 +28.3 23.6

es 43.7 –0.19 –2.56 +28.3 23.8

et 44.2 –0.33 –2.52 +28.3 23.6

eu 44.6 +0.05 –2.56 +28.3 23.8

ev 44.9 –0.25 –2.53 +28.3 23.7

ew 45.2 –0.24 –2.56 +28.3 23.8

ex 45.5 +0.23 –2.49 +28.3 23.5

ey 45.7 –0.48 –2.71 +28.1 24.5

ez 46.1 –0.37 –2.38 +28.5 22.9

fa 46.4 +0.09 –2.31 +28.5 22.6

fb 46.7 –0.20 –2.27 +28.6 22.4

fc 47.1 –0.28 –2.21 +28.6 22.1

fd 47.4 –0.28 –2.42 +28.4 23.1

fe 48.5 –0.40 –2.42 +28.4 23.1

ff 48.7 –0.41 –2.35 +28.5 22.8

fg 49.3 –0.39 –2.29 +28.5 22.5

fh 49.6 –0.59 –1.96 +28.9 20.9

fi 49.9 –0.36 –2.28 +28.6 22.5

fj 50.1 –0.44 –2.28 +28.6 22.4
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