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Abstract

Long duration dehydration-melting experiments were conducted on two
amphibolites with compositions similar to mid-ocean-ridge basalts. The experiments
were done using a piston cylinder apparatus in the pressure-temperature range 775-
1050°C and 7-22.5 kbar. The amphibolites underwent dehydration melting at
temperatures above 800°C through hornblende breakdown reactions: Hornblende +
Plagioclase + Quartz = Clinopyroxene + Orthopyroxene + Melt and Hornblende +
Plagioclase + Quartz = Garnet + Clinopyroxene + Melt. The onset of melting in both
amphibolites is at temperatures above the water-saturated solidus of basaltic rocks. The
residual assemblage produced by these melting reactions corresponds to a low-P (7-10
kbar) orthopyroxene-bearing granulite and a high-P (>10 kbar) orthopyroxene-free garnet
granulite. Tight experimental brackets and phase reversal experiments indicate that the
low-P amphibolite-granulite transition occurs at temperatures >850°C whereas the high-P
garnet-granulite assemblage forms at temperatures >825°C. At pressures above 17.5
kbar, plagioclase disappears from the assemblage and the residue becomes eclogitic. The
transformation from garnet granulite to eclogite is characterized by decreases in the
abundance of hornblende and plagioclase and an increase in the garnet/clinopyroxene
ratio. Between 10-22.5 kbar the proportion of garnet in the residue is linearly correlated
with pressure and the amount of garnet controls the density of the residue.

The melts produced in the experiments are felsic (SiO; 58-73 wt%; Al,O3 ~15-23
wt.%; KO 1-5 wt.%, Na,O/K;0 >1) and similar in composition to the Tonalite-
Trondhjemite-Granodiorite (TTG) rocks that dominate many Archean cratons. Trace-

element modelling using La and Yb as representative rare-carth-elements indicate that



characteristic early Archean TTG signatures (<1 ppm Yb, La/Yb >15) requires the
presence of ~ 20 wt. % garnet in the melt residue, which is only achieved at pressures
above 15 kbar (>48 km depth). This depth constraint is inconsistent with early crust
evolution models that posit melting at the base of oceanic plateaus or oceanic crust to
produce TTGs. Models involving melting of subducted oceanic crust are more consistent
with the depth constraint. However, operation of subduction process in the Archean is
considered problematic. A new model of subduction initiation by lateral compositional
contrasts between converging oceanic plateau and normal thickness oceanic lithosphere is
developed to explain the origin of early Archean TTG and by inference that of the first

continental nuclei.
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CHAPTER 1: Introduction and scope of this study

Earth is unique among rocky planets in having a bimodal-composition crust; a
basalt dominated oceanic crust and a more compositionally varied and evolved
continental crust. Whereas basaltic crust is known to occur in other planetary bodies, the
existence of a felsic crust similar to Earth’s continental crust has not yet been discovered
in other planets. Continental crust, despite constituting <1 % of the mass of the Earth, is
a major geochemical reservoir accounting for a substantial proportion of many
incompatible elements, including K, U, Th and La. Unlike oceanic crust, continental
crust is heterogeneous in composition at many scales of observation. The origin and
evolution of continental crust is fundamental to understanding the evolution of the Earth
system. Two aspects of continental crust evolution have been actively debated since the
advent of plate tectonic theory: (1) the process and the tectonic setting of its formation
and, (2) the timing and growth (evolution) of this crust to its present state (Moorbath,
1977; McLennan and Taylor, 1983; Armstrong, 1981; 1991). Our understanding of the
evolution of Earth and other planetary bodies hinge on how well we understand these

aspects of continental crust formation.

The origin of continental crust

It is well known that Earth’s silicate mantle represents the ultimate reservoir from
which all of its crust was derived. Direct formation of juvenile crust from this reservoir
occurs by partial melting of mantle peridotite, primarily through pressure release

(decompression) melting. This is manifested today at specific settings on Earth; basaltic



magmatism at mid-ocean ridges, formation of basalts and its differentiates in subduction
zones and, predominantly basaltic and rare komatiitic magmatism in hotspot/plume
settings. Thus, the net addition of juvenile material to the crust has been in the form of
basaltic magmas throughout Earth’s history. Although additions to the crust in the form
of Mg-rich komatiitic basaltic and komatiitic magmas may have been important in the
early Earth, the existing Archean rock record suggests that such magmas were
volumetrically subordinate to basaltic magmas. Except for a relatively minor volume of
differentiation products of basaltic magmas in subduction zones and hot spot/plume
settings, large volumes of felsic igneous rocks characteristic of continental crust are not
generated in any of the settings in which basaltic magmas are formed. However, exposed
sections of continental crust in Arch_ean cratons are composed of predominantly (up to 70
%) felsic; crust, belonging to Tonalite-Trondhjemite-Granodiorite (TTG) group of igneous
rocks (Moyen and Stevens, 2006). TTGs, representing the earliest coherent fragments of
continental crust (Bowring and Williams, 1999) and a significant proportion of juvenile
material added to continental crust between 4.0 and 2.5 Ga (Martin et al., 2005), mark a
fundamental step in the formation and evolution of continental crust. Experimental
“studies of mantle peridotite compositions have shown that TTG magmas could not be
direct partial melts from peridotitic source rocks. Two fundamental observations indicate
that large volumes of TTG-type rocks in Archean cratons are not the direct differentiation
products of mantle-derived magmas: (1) the paucity of a significant proportion of
intermediate composition rocks in the Archean record that would be expected to result
from a normal differentiation process and, (2) the absence of complimentary cumulate

rocks to TTGs in the Archean rock record (Smithies, 2000; Condie, 2005). The origin of



TTGs through partial melting of basaltic crust was proposed in order to explain the large
volumes of TTGs in the Archean record (e.g. Barker and Arth, 1976; Martin, 1987).
Subsequently, experimental studies demonstrated that melts, comparable in major
element chemistry to TTGs, can be generated by melting rocks of basaltic composition
(e.g. Johnston, 1986; Beard and Lofgren, 1991; Rapp et al., 1991; Rushmer, 1991;
Winther and Newton, 1991; Springer and Seck, 1997). Two aspects of the partial melting
process are important in understanding the origin of Archean TTGs: (1) the pressure-
temperature conditions at which partial melting occurs and, (2) the tectonic settings at
which these conditions might be acheived. Despite the wide range of conditions and
starting materials studied, discrepancy in some major-and minor-element compositions
(e.g. Mg, Ni, Cr) between TTGs and experimentally generated melts exists (Sen and
Dunn, 1994; Springer and Seck, 1997). Modification of pristine TTG melts through
interaction with the overlying mantle wedge in subduction zones has been proposed to
resolve these differences (Rapp et al., 1999; Martin and Moyen, 2002). Such a process
requires a subduction zone tectonic setting for TTG formation. However, the occurrence
of plate tectonics and subduction processes in the Archean is not accepted by some
(Hamilton, 1998; Bleeker, 2002; Bedard, 2006) and a direct connection between TTG
magmas and slab melts (adakites) is questioned by others (Smithies, 2000; Condie,
2005). Accurate knowledge of the metamérphic evolution of basaltic rocks and their
phase relations during partial melting may help better define the conditions of TTG
formation and place constraints on the tectonic settings of their formation and by
implication that of continental crust. Further, in a plate tectonic regime, recycling of

oceanic crust in subduction zones is an integral part of the crustal evolution process.



Knowledge of the pressure-temperature conditions at which metamorphic facies
transformations occur in basaltic crust is important to understand the material evolution
in subduction zones. Basaltic composition rocks are also thought to be common in the
lower parts of continental crust (Rushmer, 1991) and are reworked during continental
collision or subduction events. Thus knowledge of the phase relations of metabasalts is
important to improve our understanding of crustal evolutionary processes in different

tectonic settings.

Basaltic protoliths

Because phase relations in metamorphosed basalts are in part controlled by the
bulk composition of the basaltic protolith, it is important to address the chemical
variability in basaltic rocks. Six major types of basalts have been recognized based on
tectonic setting: (a) mid-ocean ridge basalts (MORB), (b) back-arc basin basalt (BARB),
(c) oceanic-plateau basalt (OPB), (d) ocean-island basalt (OIB), (e) island-
arc/continental-arc basalts (IAB), and (f) continental-flood basalt (CFB). The chemical
and mineralogical variability in these basalts are interpreted as reflecting the differing
degrees of partial melting of a homogenous mantle source followed by variable degree of
differentiation (Grove and Kinzler, 1992).

Mid-ocean ridges have a global strike length of approximately 65,000 km and
represent the most voluminous site of basalt magma production in modern day Earth (~5
to 20 km® of magma produced per year) (BVTP, p. 133). Arguably, mid-ocean ridge type
settings were also the sites of basalt magma production in the early Earth, although the

evidence for their existence remains fragmentary (Furnes et al., 2007) given the transient



nature of oceanic crust through geologic time. Nevertheless, MORBs represent the most
abundant rock type constituting the oceanic crust today and are likely to have dominated
oceanic crust in the early Earth as well. The maximum age of oceanic crust today is only
180 Ma, reflecting the continuous recycling of MORB crust into the mantle by
subduction processes. If MORB production has occurred through most of Earth’s
history, recycling processes have continuously modified this primary crustal entity and
have played an important part in the evolution of the planet’s crust, especially its
continental crust. Therefore, knowledge of metamorphic phase equilibria in MORB-type
bulk compositions is important for understanding the material evolution of Earth’s crust.
MORBs are typically olivine tholeiites with remarkably uniform major-element
composition (Table 1.1) although minor variations are observed in the abundance of
incompatible major elements like K and Ti. Tholeiitic basalts also represent the most
abundant volcanic rock type in the Archean (Amdt et al., 1997). Arndt et al. (1997)
showed that Archean tholeiites overlap modern MORB’s in major-element chemistry but
exhibit higher SiO,, FeO and lower TiO; contents than the MORB range (Figure 1.1).
Thus, olivine tholeiitic bulk compositions are ideal protolith material to study the

metamorphic evolution of oceanic crust.

Metabasaltic phase equilibria and scope of present study

On the basis of his work in the Orijarvi region of Southern Finland, Eskola (1914,
1915) noted a predictable relationship between mineral assemblage and bulk rock

composition and thereby developed the concept of metamorphic facies. Eskola (1920)



recognized five original metamorphic facies (greenschist, amphibolite, hornfels,
sanidinite, and eclogite) in mafic rocks to which he later added three more facies
(granulite, epidote-amphibolite, glaucophane schist) (Eskola, 1939). Since then the
usefulness of characteristic facies assemblages in mafic rocks in defining the relative
physical conditions (especially temperature and pressure) of metamorphism has been
widely recognized (e.g., Glassley and Sorenson, 1980; Harley, 1985; Harley, 1998).
With the advent of internally consistent thermodynamic data sets (e.g., Powell and
Holland, 1988; Berman, 1988) it has been possible to model phase equilibria in mafic
rocks and place constraints on the temperature and pressure of equilibration. However,
key reactions involving amphibole and melt are inadequately modelled by internally
consistent thermodynamic data sets due to the complex nature of amphibole solid
solutions and uncertainties in the thermodynamic data for felsic melts (e.g. Pattison,
2003). Direct determination of the location of key reactions and documentation of
mineral compositional variations across these reaction boundaries through targeted
experiments on specific bulk compositions is an important step towards quantifying the
P-T conditions of metamorphism as well as for refining the thermodynamic data set for
- complex phases.

Phase relations of metabasalts under both H,O-saturated and H,O-deficient
conditions have been investigated in experimental studies. Many of these studies
investigated subsolidus phase relations in metabasaltic compositions at H,O saturated
conditions (Spear, 1981; Moody et al., 1983; Poli, 1993; Emst and Liu, 1998). The focus
of these subsolidus experimental investigations varied from determining amphibole

stability (Spear, 1981) to characterization of greenschist- to amphibolite (Moody et al.,



1983) and amphibolite- to eclogite-facies (Poli, 1993) transitions. These studies provide
important information for understanding the low-medium grade metamorphic evolution
of basaltic rocks. At higher temperatures mafic rocks develop granulite-facies mineral
assemblages. High-grade metabasaltic rocks have recently received considerable
attention due to the extreme conditions of crustal metamorphism recorded by these rocks
(e.g. Indares and Martignole, 2003; O’Brien and Rotzler, 2003; Pattison, 2003). At
granulite-facies conditions, rocks are well above the water-saturated solidus for basalts
and undergo partial melting if water is available. In crust lacking a free fluid phase, this
is generally achieved by the breakdown of hydrous phases like hornblende. This process,
variably referred to as dehydration-melting (Brown and Fyfe, 1970; Thompson, 1982),
fluid-absent melting (Vielzeuf and Montel, 1994), or vapor-absent melting (Rutter and
Wiyllie, -1988), is a dominant intra-crustal differentiation process fractionating source
rocks into a fusible granitic (sensu lato) melt and a refractory residual assemblage.
Dehydration melting processes have been invoked to explain migmatitization at upper
amphibolite to granulite facies conditions (e.g. Waters, 1988; Percival, 1983; Harley,
1985; Hartel and Pattison, 1996). Understanding the phase relations during dehydration
melting is important for understanding the metamorphic facies transitions and conditions
of partial melting in metabasaltic rocks. Unlike subsolidus phase relations that can be
modelled with some accuracy by internally consistent thermodynamic data sets, targeted

dehydration melting experiments on relevant bulk compositions remain the most accurate

means of studying specific metabasalt equilibria.
A number of studies have investigated the dehydration melting phase equilibria of

metabasalts using amphibolites of varying compositions (see Table 1.2 for summary).



The starting materials for these experiments varied in their bulk composition, amphibole
compositions and relative proportions of amphibole and plagioclase. Whereas many
studies sought to provide constraints on the fluid-absent (dehydration-melting) solidus
(Wolf and Wyllie, 1994; Lopez and Castro, 2001), others investigated the viability of
producing TTG or adakitic melts from amphibolitic sources (Rapp et al., 1991; Sen and
Dunn, 1994, Springer and Seck, 1997). Despite the wide range of bulk compositions and
experimental conditions studied, there is considerable uncertainty in the position of key
phase boundaries during dehydration melting of metabasalts. In particular, there is a
paucity of experirﬁental data at temperatures close to the dehydration melting solidus.
The position of key metamorphic facies transitions in metabasalts at conditions close to
the solidus are commonly deduced by extrapolation of higher temperature experimental
data. The use of such extrapolated phase boundary constraints may yield erroneous
results and ultimately lead to unrealistic petrological models. The present study reports
the findings of dehydration melting experiments on two basaltic bulk compositions in the
P-T range 775-1050 °C, 7-22.5 kbar.

The primary objective of the present study is to provide better constraints on the
dehydration melting phase equilibria of metabasalts at high temperatures and pressures
characteristic of subducted oceanic crust and of the middle and lower crust in collisional
orogens. In particular, the study aims to resolve uncertainties in our understanding of
metabasaltic phase equilibria in MORB-type bulk compositions including the position
and topology of the dehydration-melting solidus, conditions of garnet and plagioclase
stability, the amphibolite to granulite transition, and the amphibolite/granulite to eclogite

transition. The study provides data on phase relations of two MORB-type amphibolites



over a wider range of P-T conditions than previously determined on any one starting
composition. More specifically, the study provides critical experimental data at
conditions close to the initiation of dehydration melting in metabasalts. The study,
therefore, compliments many previous dehydration melting studies on amphibolitic bulk
compositions that were largely conducted at temperatures >950 °C. The results of the
present experiments provide important information on the phase transitions that occur at
temperatures corresponding to the initial stages of dehydration melting of MORB-type

metabasalts and on the nature of melts generated at these conditions.

The results of this study are presented in the following three chapters:

Chapter 2 outlines the details of the starting materials, experimental and analytical
procedures and also presents the new phase equilibrium results. The data are discussed in
conjunction with those from previous studies to place better constraints on the
dehydration melting solidus. The results are also applied to understand the pressure
dependent metamorphic facies transitions in metabasalts.

Chapter 3 provides details of gamet growth during dehydration melting of
metabasalts. The growth of garnet in metabasaltic bulk compositions is a key petrologic
constraint in that garnet significantly influences the HREE budget of magmas (Barker
and Arth, 1976; Martin, 1986) and also strongly influences the density of the residual
assemblage (Green and Ringwood, 1967; Wolf, 1992; Wolf and Wyllie, 1993; Komiya et
al., 2002). Garnet compositional data, textural and growth characteristics in metabasalts
are used to place constraints on the conditions required for forming HREE-depleted,

TTG-type magmas and in turn to evaluate the viability of tectonic models that have been



proposed for early Earth (Zegers and van Keken, 2001; van Thienen et al., 2004;
Lustrino, 2005; Bedard, 2006).

Chapter 4 outlines a new tectonic model for the origin of Archean TTG magmas.
TTG magma suites have been variably interpreted as products of basalt melting in
subduction zones (Martin, 1986; Foley et al., 2002), or in the root zones of thick oceanic
or oceanic plateau crust (Atherton and Petford, 1993; Zegers and van Keken, 2001;
Condie, 2005; Bedard, 2006). There is also considerable ambiguity in the P-T conditions
of melting and the residual phase assemblage that equilibrated with a TTG melt (Foley et
al., 2002; 2003; Rapp et al., 2003). I show how equilibrium constraints derived from
experiments are inconsistent with previously proposed lower crustal melting models
(Zegers and van Keken, 2001, Bedard, 2006) for the origin of TTGs. I then propose a
model for how subduction processes may have initiated in a hotter Archean Earth and
produced widespread TTG magmatism. The model is compatible with many observations
in the Archean rock record including the temporal and spatial association between TTGs
and abundant mafic/ultramafic magmatism, the roughly coeval origin of Archean cratonic
crust and its associated mantle lithosphere, and the crustal oxygen isotope signatures of
Archean TTG magmas.

Chapter 5 is a summary of the key petrological and geodynamic constraints

derived from the results of this study and also outline the scope of future research.
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Tablel.1: Average composition of unaltered Mid-Ocean Ridge Basalts (MORB). Data from PETDB database.

MORB-IR MORB-EPR MORB-MAR AVERAGE MORB
n 6562 1o 3816 10 3090 1o 10

Wt.%

SiO2 50.77 074 5059 0.96 50.77 0.85 50.58 0.62
TiO, 159 047 180 0.39 1.39 033 145 0.30
ALO; 1564 091 1457 0.86 15.36 0.65 15.45 0.75
FeQ' 941 127 10.83 1.33 9.62 0.81 9.98 1.02
MnO 017 0.05 020 0.04 0.17 0.04 - -
MgO 746 092 717 127 7.76 0.81 7.95 0.71
Ca0 1099 0.83 1142 091 11.70 078 11.56 0.60
Na,O 302 046 280 0.30 2.55 0.38 27 0.38
K0 021 022 016 012 0.19 0.19 0.18 0.15
P;0s 018 008 018 0.06 0.15 0.06 0.15 0.05
Total 99.45 99.73 99.66 99.86
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CHAPTER 2: Dehydration melting of MORB-type amphibolites:
constraints on the solidus and high-grade metamorphic facies

transitions

INTRODUCTION

At any stage in Earth’s history the net flux of material from mantle to crust
occurred through the production and eruption of basaltic magmas. Basaltic rocks, formed
at such diverse settings as mid-ocean ridges, subduction zones, oceanic plateaus, and
within-plate settings, are subjected to tectono-metamorphic processes that ultimately
control the material evolution of Earth’s crust. Basaltic magmas, their differentiates and
metamorphosed equivalents, are the ultimate protoliths from which continental crust was
derived. Understanding the evolution of metabasaltic rocks is therefore fundamental to
understanding the evolution of continental crust.

Large volumes of basalt magma erupt in modern-day mid-ocean ridge settings
and this may have been true for much of Earth’s history. These settings also serve to
hydrate the basalt protoliths through interactions between the erupted basalts and sea
water. Hydrated mid-ocean ridge basalts (MORB), therefore, represent a common
protolith involved in the petrological evolution of Earth’s crust. Knowledge of the phases
and phase compositional relationships in these metabasalts is necessary for understanding
the growth of continental crust as well as material balance during crust-mantle recycling
processes. MORB composition basalts are subjected to progressive metamorphism

during tectonic burial, in zones of continent-continent collision or more commonly
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through subduction processes. Mineralogical changes in basaltic rocks accompanying
changes in temperature and pressure led to the formulation of the metamorphic facies
concept (Eskola, 1920). Although facies boundaries and names are based on
mineralogical changes in mafic (basaltic) bulk composition, mafic rocks have proved less
definitive in terms of defining facies transitions at moderate-to high-temperature
conditions due to the presence of high variance assemblages when compared to rocks of
pelitic and semi-pelitic bulk composition. Quantitative evaluation of intensive
parameters of metamorphism require‘s information about the changes in phase
assemblage, and in the case of solid solution minerals, changes in the phase composition.
At high grades of metamorphism, the behavior of complex solid solutions like
hornblende and silicate melt, which are at present inadequately modelled by available
thermodynamic data, require phase relations in representative bulk compositions be
studied directly using an experimental approach. Study of phase compositional
relationships from such experiments is also critical for improving the thermodynamic
data available for these phases.

This paper presents results of new dehydration melting experiments conducted on
two MORB-type amphibolites. One of the main objectives of the present study was to
understand phase relations of typical MORB-type amphibolites at a wider range of
conditions than has been investigated on any single bulk composition previously.
Experimental conditions investigated in this study spanned from subsolidus temperatures
to temperatures above hornblende stability and from pressures below the stability of
garnet to pressures above the stability limit of plagioclase. The results provide important

constraints on the dehydration melting solidus as well as on the pressure dependent
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metamorphic facies transitions in these bulk compositions at supersolidus conditions.
Finally, melt compositional data along with phase relations of the melt residue are used to
place constraints on the conditions of formation of tonalite-trondhjemite-granodiorite

(TTG) type magmas derived by partial melting of metabasaltic bulk compositions.

Previous studies and scope of present study

The phase relations of metabasites have been investigated in many studies (Green
and Ringwood, 1967; Essene et al.,, 1970; Hansen, 1981; Ellis and Thompson, 1986;
Beard and Lofgren, 1991; Rushmer, 1991; Rapp et al., 1991; Winther and Newton, 1991;
Wolf and Wyllie, 1994; Sen and Dunn, 1994; Patino Douce and Beard, 1995; Rapp and
Watson, 1995; Liu et al., 1996; Springer and Seck, 1997; Emst and Liu, 1998; Lopez and
Castro, 2001). Starting materials used in these studies include synthetic oxide powder
mixtures (Hansen, 1981), mechanically mixed natural minerals (Patino Douce and Beard,
1995), glasses prepared from natural basaltic rocks (Green and Ringwood, 1967), and
natural rock powders (Rushmer, 1991; Sen and Dunn, 1994; Wolf and Wyllie, 1994;
Lopez and Castro, 2001). Experimental investigations on natural rock powders
predominantly used amphibolites, thought to be representative of metamorphosed
fragments of ancient oceanic crust. Many experimental studies investigating basaltic
phase equilibria were conducted in the presence of varying amounts of H,O (Essene et
al., 1970; Ellis and Thompson, 1986; Winther and Newton, 1991; Liu et al., 1996;
Springer and Seck, 1997; Emst and Liu, 1998). Although phase relations observed in
H,O-present experiments may be applicable to the uppermost part of oceanic crust during

subduction or during fluid influx during metamorphism and useful in defining minimum
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conditions of crustal anatexis, fluid-absent conditions are thought to prevail in the lower
crust (Clemens and Vielzeuf, 1987). Under such conditions melting occurs at
temperatures corresponding to the breakdown of hydrous phases considerably above the
water-saturated solidus, a process variably referred to as fluid-absent melting, vapour-
absent melting or dehydration melting (Brown and Fyfe, 1970; Thompson, 1982).
Dehydration-melting equilibria are thought to reflect more accurately phase relations in
mafic rocks when they are incorporated into active tectonic regimes such as continent-
continent collision or subduction zones. A dehydration-melting process has been invoked
in many studies to explain migmatites commonly observed in high-grade terranes (e.g.
Hartel and Pattison, 1996; Kar et al., 2003).

A number of studies invest_igated the dehydration melting phase equilibria of
metabasalts that varied in bulk composition, amphibole composition and in relative
proportions of amphibole and plagioclase (summarized in Table 1.2). Some of these
experimental studies had quartz in the starting material (Beard and Lofgren, 1991;
Rushmer, 1991; 1993; Sen and Dunn, 1994; Patino Douce and Beard, 1995) whereas
others did nqt (Wolf and Wyllie, 1991; Springer and Seck, 1997; Lopez and Castro,
2001). Many studies sought to provide constraints on the fluid-absent (dehydration-
melting) solidus (Wolf and Wyllie, 1994; Lopez and Castro, 2001), whereas others
investigated the viability of producing TTG or adakitic melts from amphibolitic sources
(Rapp et al., 1991; Sen and Dunn, 1994, Springer and Seck, 1997). Winther and Newton
(1991) investigated partial melting behavior of low-K metabasalts, but the experiments
were not fluid-absent. Given below is a summary of the experimental constraints

provided by previous studies.
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Beard and Lofgren (1991) investigated the dehydration melting behavior of
natural metabasaltic rocks previously metamorphosed at greenschist to hornblende-
hornfels facies conditions at 1, 3 and 6.9 kbar at temperatures between 850-1000 °C. The
dehydration melting solidus was not bracketed in any of the starting compositions as melt
was present even in the lowest temperature experiments. The restite assemblage in these
experiments consisted of plagioclase + orthopyroxene + clinopyroxene + magnetite +
ilmenite. The melt compositions ranged from granodioritic to tonalitic.

Rushmer’s (1991) dehydration melting experiments on a tholeiitic and an alkali
basalt composition at 8 kbar showed that the dehydration melting solidus temperature for
tholeiitic basalt is lower than that of alkali basalt. Rushmer (1991) attributed this to the
presence of hydrous phases like biotite and cummingtonite in the starting tholeiitic
composition. Rushmer’s (1993) subsequent experiments on the alkali basalt composition
at 12-18 kbar showed that garnet appeared in this bulk composition above 12 kbar and
that the restite assemblage at high pressures (garnet-granulite) resembles many lower
crustal xenoliths.

Wolf and Wyllie (1994) conducted a series of dehydration melting experiments
on a natural high Ca-amphibolite (14.3 wt. % CaO) at 10 kbar in the temperature range
750-1000 °C. They reported the presence of melt at 750 °C, the lowest temperature
experiment in their study. Garnet appeared as a phase between 850 and 1000 °C. Garnet
was absent above and below this temperature window and garnet abundance was reported
to decrease between 875 and 900 °C. Wolf and Wyllie (1994) attributed the absence of
garnet in their experiments at temperatures below 850 °C to nucleation difficulties and

argued that garnet is in fact stable at these conditions. Melt compositions generated
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correspond to tonalites but with much higher A1,03; and CaQ contents when compared to
natural tonalites, reflecting the Ca-and Al-rich bulk composition of the starting material.

Sen and Dunn (1994) presented dehydration melting data on a natural amphibolite
at 15 and 20 kbar in the temperature range 850-1150 °C. The solidus reaction was not
bracketed in this study, but was inferred to have a negative slope and to liec on the low
temperature side of the lowest temperature experiments (850 and 800 °C at 15 and 20
kbar, respectively) between 15 and 20 kbar in order for the observed phase relations to be
consistent with that of Wolf and Wyllie (1994) at 10 kbar (Figures 2.1 and 2.2). The
residual assemblage was garnet bearing at all conditions and plagioclase was present in
all 15 kbar experiments up to 975 °C and only present in the 800 °C experiment at 20
kbar. Amphibole was absent at temperatures above 900 °C at 20 kbar. Partial melts
generated in the experiments were similar in composition to adakitic magmas but for
lower MgO and CaO contents of the experimental melts.

Springer and Seck (1997) reported dehydration melting systematics of a
metabasalt of quartz tholeiite composition at temperatures above 1000 °C. Their reported
solidus above 1000 °C is inconsistent with the lower temperature solidus reported in other
studies. Details of the experimental phase relations near 1000 °C were not given and
hence cannot be evaluated.

Lopez and Castro (2001) provided constraints on the fluid-absent solidus for a
MORB-type amphibolite between 4 and 14 kbar. They showed that below pressures
where garnet is stable, the fluid-absent solidus is located at a higher temperature than at
pressures above gamet stability. The lower temperature solidus at higher pressures was

influenced by the breakdown of hydrous phases like epidote. Importantly, however, they
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argued that the solidus is located at a temperature 150 °C higher than the water-saturated
solidus.

The minimum conditions required for dehydration melting of amphibolites were
outlined by Wolf and Wyllie (1994). They argued that dehydration melting at pressures
above garnet stability could begin at temperatures as low as those of the water-saturated
solidus. The reasoning behind this argument was that the amphibole breakdown process
responsible for garnet production would also release some water, which in turn would
cause melting at temperatures above the water-saturated solidus. While this reasoning
appears sound, there is no clear evidence experimentally for melting at such low
temperatures. Wolf and Wyllie’s (1994) reported solidus is characterized by three
segments with distinct P-T slopes (Figure 2.1): a lower pressure near-vertical segment
where garnet is not a stable phase, a near-horizontal positively sloped segment where
garnet joins the residual phase assemblage and, a higher pressure steeply sloped segment
above garnet-in that is coincident with the water-saturated solidus. The solidus,
therefore, has an ‘S’ shape that has never been mapped in experimental studies (Moyen
and Stevens, 2006). Vielzeuf and Schmidt (2001) argued against the positive slope for
the middle segment of ‘S’-shaped solidus based on thermodynamic considerations. As
pointed out by Vielzeuf and Schmidt (2001) the arguments for a positive slope of this
segment is based on one experiment with large uncertainties in the estimated melt
proportion. Thus, despite the wide range of bulk compositions and P-T conditions that
has been investigated, there is considerable uncertainty regarding the position of
dehydration melting solidus of metabasalts. This is partly due to the lack of adequate

experimental data at low (<900 °C) temperatures. Even when experimental brackets for
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solidus reactions are available, the data were obtained over a limited pressure range
requiring inference of the position of solidus by connecting data points from multiple
studies conducted on different bulk compositions (e.g. Wolf and Wyllie, 1994; Sen and
Dunn, 1994). Despite these limitations, Wolf and Wyllie’s (1994) solidus is widely used
in petrological models (e.g. Rapp, 1997; Zegers and van Keken, 2001).

There is also considerable uncertainty in the position of key phase boundaries
such as the garnet-in and plagioclase-out boundaries. The importance of these phase
boundaries is that they also represent facies boundaries in mafic rocks. The lowest
pressure at which garnet becomes stable during dehydration melting demarcates a (sub)-
facies transition in metabasaltic rocks (de Waard, 1965; Hansen, 1981; Pattison, 2003).
Specifically, it demarcates orthopyroxene-bearing intermediate-P granulites from high-P
orthopyroxene-free garnet-clinopyroxene granulites (Green and Ringwood, 1966; 1967;
O’Brien and Rotzler, 2003; Pattison, 2003) (Figure 2.2). Green and Ringwood (1967)
provided experimental constraints on the location of this boundary through crystallization
experiments on different basalt composition glasses. Phase identification in Green and
Ringwood’s (1967) study was done by optical microscopy of grain mounts and x-ray
diffraction which may have introduced some uncertainties in constraining phase
equilibrium boundaries. Despite the general agreement between the different studies,
none of the studies were specifically designed to constrain this boundary in natural
metabasaltic rocks. Green and Ringwood’s (1967) experimental data are also limited to
temperatures above 1000 °C requiring extrapolation to lower temperature region near the

solidus of common amphibolitic rocks.
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At higher pressures (and moderate to high temperatures), the disappearance of
plagioclase defines the granulite to eclogite transition in metabasalts (Carswell, 1990; Oh
and Liou, 1998; O’Brien and Rotzler, 2003). Thus, opx-free garnet-cpx granulite
assemblages form a paragenetic link between intermediate-P granulites and higher-P
eclogites (Pattison, 2003; Indares and Martignole, 2003). Eclogite formation in
metabasaltic rocks is proposed to play a key role in a number of processes including slab
pull during subduction (Cloos, 1993), subduction zone seismicity (Peacock and Wang,
1999), lower crustal delamination (Kay and Kay, 1991; Zegers and van Keken, 2001;
Lustrino, 2005) and the genesis of TTG magmas (Zegers and van Keken, 2001; Rapp et
al., 2003). Accordingly, accurate knowledge of the P-T conditions of eclogite stability is
central to a better understanding of these processes. Green and Ringwood’s (1967) glass
crystallization experimental results remain the most commonly used constraint for the
granulite-eclogite boundary and is widely used in many tectonic models (Cloos, 1993;
Zegers and van Keken, 2001) and in proposed petrogenetic grids (Oh and Liou, 1998).
As with the garnet-in boundary at lower pressure, Green and Ringwood’s (1967) data on
plagioclase stability is limited to temperatures >1000 °C and requires relatively long
extrapolation to lower temperatures.

Knowledge of the P-T conditions of garnet and plagioclase stability in
metabasalts is also important for modelling the trace-element composition of melts that
can be generated from metabasaltic source rocks. It has been shown that melts
comparable to TTGs in major-element composition can be produced by partial melting of
metabasaltic rocks under fluid-absent conditions (Johnston, 1986; Rapp et al., 1991;

Springer and Seck, 1997). However, the rare-earth-element (REE) compositions of

30



Archean TTGs, characterized by highly fractionated REE patterns with strong depletion
in Heavy Rare Earth Elements (HREE), is thought to reflect a garnet-bearing residuum.
The HREE content of melt is primarily controlled by the proportion of garnet in the
partial melting residue (Nair and Chacko, 2005; Moyen and Stevens, 2006).
Documenting variations in the modal proportions of restite phases, in particular garnet,
with changing pressure and temperature is therefore critical for placing constraints on
conditions of generation of Archean TTG’s.

This chapter discusses the results of new dehydration melting experiments
conducted on two high-grade metabasaltic rocks and addresses the existing uncertainties
in (a) the dehydration melting solidus in MORB-type metabasalts, (b) the stability fields
of garnet and plagioclase in MORB-type metabasalts and, (c) the conditions for

generating HREE depleted Archean TTG magmas.

Starting materials

The starting materials for the experiments were two natural high-metamorphic-
grade amphibolites from Three Valley Gap, British Columbia and the Kapuskasing
Structural Zone, Ontario. In both these terranes prograde transition from amphibolite to
granulite is documented in bulk compositions similar to the starting materials or in
interlayered lithologies of different bulk composition (Nyman et al., 1995; Hartel and
Pattison, 1996). The mineral assemblages in the starting materials equilibrated at P-T
conditions close to those of the amphibolite-granulite transition. Published P-T estimates
from Kapuskasing and Three Valley Gap indicate metamorphic conditions of 9 kbar and

685-735 °C (Percival, 1983) and 7.5-9 kbar and 720-820°C (Nyman et al., 1995),
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respectively. These temperature estimates are also corroborated by widespread
migmatisation in both areas indicating temperatures above the water-saturated solidus for
amphibolites (e.g. Nyman et al., 1995; Hartel and Pattison, 1996). Hartel and Pattison
(1996) argued on the basis of experimental data that Percival’s (1983) P-T estimate for
the Kapuskasing rocks significantly underestimated peak metamorphic conditions. They
suggested that peak conditions were 10-11 kbar, 800-850 °C. Regardless of the exact P-T
conditions of equilibration, field relationships indicate that the rocks experienced near
granulite-facies temperatures. Nair and Chacko (2002) argued that use of starting
materials that were metamorphosed to near solidus temperatures are ideal for
investigating dehydration melting processes in that mineral compositions in such rocks
closely approximate those of natural samples undergoing incipient melting. Reaction
boundaries determined using these starting materials provide more accurate constraints
than those obtained from chemically simple end-member systems or natural rocks that
have equilibrated at conditions far from the reactions of interest. Use of latter starting
materials may result in spurious phase relations that have limited petrological
- applicability.

The bulk rock and mineralogical composition of the starting materials are given in
Table 2.1. Both starting materials contain the mineral assemblage homblende-
plagioclase-quartz-clinopyroxene-gamet, with hornblende and plagioclase constituting
>85 vol. % of the rock. Accessory titanite and ilmenite were also present in these
samples. The major-element compositions of the starting materials are very similar to
average MORB glass except for the slightly lower TiO, and Al,O; and significantly

higher K;O content. The Al,O; content of the KAP starting material is within one
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standard deviation of the MORB average whereas that of the 3VG starting material is 1.3
wt. % lower. The TiO; contents of both starting materials are within 2 standard deviations
of average mid-ocean ridge basaltic glass (Table 2.2). The major-element compositions
of the starting materials are also similar to the MORB-derived amphibolites reported by
Castro et al. (1996). Many of these amphibolites also show TiO, depletion and KO
enrichment relative to fresh MORB glass.

Average MORB is olivine normative. CIPW norm calculations assuming
Fe’*/XFe = 0.15 (Christic et al., 1986) indicate both starting materials to be slightly
olivine normative (Table 2.2). Oceanic crust becomes oxidized through seawater and
hydrothermal alteration and within the first 10-20 Ma of its evolution attains an average
Fe**/SFe of 0.45+0.15 (Bach and Edwards, 2003). Norm calculations performed at this
post-alteration Fe’'/SFe value would characterize the starting materials as quartz

normative.

Experimental Procedure

All experiments were conducted on powdered starting materials under norﬂinally
fluid-absent conditions in an end-loaded piston-cylinder apparatus in the C.M. Scarfe
Experimental Petrology Laboratory at the University of Alberta. Small (~2cm’) pieces of
the starting amphibolites were crushed in a tungsten carbide shatter box. The resulting
powder was then hand ground in acetone to an average grain size of 5-10 um using an
agate mortar. The powdered material was stored in an oven at 110 °C for several days
before loading into the experimental capsules. Gold tubings (2 mm outer diameter) was

used to make the capsules. The open end of the loaded capsule was crimped and kept in
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an oven at 110 °C for at least 10 hours before it was welded shut. The sealed capsules
were placed inside a pressure cell consisting of a tapered graphite furnace (Kushiro,
1976) sheathed on the outside by a Pyrex glass sleeve which in turn was enclosed within
an outer NaCl pressure sleeve. Space between the ceramic inner parts of the furnace and
the capsule was filled with very finely ground Pyrex powder. The NaCl outer sleeve was
fired at 300-350 °C for ~1 hr before use in the experiments. The 1.91 cm (3/4 inch)
sample assembly was jacketed with Pb foil to minimize friction between the assembly
and pressure vessel.

The pressures reported are nominal hydraulic pressures measured with a Heise
bourdon tube gauge and converted to sample pressure using a theoretically calculated
amplification factor. The P-T position of the reaction grossular + quartz = wollastonite +
anorthite (Windom and Boettcher, 1976; Mattioli and Bishop, 1984) was used to evaluate
the correspondence of calculated pressure with true sample pressure. These calibration
experiments indicated that no pressure correction is required and the reported pressures
are considered to be accurate within 0.5 kbar. Temperatures were measured using W5Re-
W26Re thermocouples relative to an Omega electronic ice point. Temperature during the
- experiments was controlled by a Eurotherm 818 digital temperature controller which
regulated the temperature to within £10 °C of the desired set point.

Two different pressure ramping procedures were used for the experiments. For
experiments up to 12.5 kbar, the samples were cold pressurized to 2-3 kbar above the
desired pressure, and the temperature then manually increased to the target experimental
temperature over a 10-15 min period. The final experimental conditions were always

attained by a release of pressure (hot, piston-out technique). At pressures >15 kbar, it
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was found advantageous to use a ‘hot piston-in’ technique whereby samples after initial
cold pressurization (to a value <3-5 kbar of the desired pressure) were first heated to
temperature high enough to soften the sample assembly before advancing the piston to
achieve the target pressure. Temperature was then manually adjusted to the desired set
point and set to be controlled by the Eurotherm controller. The heating step usually
lasted about 10 minutes.

Phase reversal experiments were attempted by conducting two-stage experiments
in which stage 1 corresponds to conditions at which a phase was previously documented
to be stable and stage 2 to conditions at which the phase is believed to be unstable. A
successful reversal experiment involves the disappearance of phases grown in at the first
stage and growth of phases that indicate a reversal in the direction of reaction. Phase
reversal experiments were attempted for bracketing phase appearances as a function of
both temperature and pressure. Successful phase reversal temperature brackets were
obtained for opx-in and garnet-in boundaries. The large volume of the furnace assembly
permitted the use of two capsules in each experiment, one containing KAP and the other
the 3VG starting material. The capsules were weighed before and after each experiment
and those with any tear and/or weight loss >0.1 mg were discarded. Further details of the

experimental procedures are given in Nair (2000) and Nair and Chacko (2002).

Analytical Techniques

Successful experimental run products were mounted in epoxy and analyzed using
energy-dispersive (EDS) and wavelength-dispersive (WDS) modes using a JEOL 8900

electron microprobe at the University of Alberta. WDS analyses on crystalline phases
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were performed at an accelerating voltage of 15 kV, a beam current of 15 nA, and a beam
diameter between 1 and 3 pm. Natural mineral standards were used for all WDS
measurements. X-ray counts were converted to concentrations by means of the ZAF
correction routine using JEOL software.

A slightly different analytical procedure was used for WDS analyses of quenched
melt pockets (glass). Glass was analyzed with an accelerating voltage of 15 kV, a beam
current of 5 nA, and beam diameter varying from <1 pm (fully focused beam) to 15 pm.
Whenever possible a large beam size was used to minimize alkali volatilization but this
was precluded in some cases by the small size of the melt pockets. Na and K were
analyzed first during WDS analyses and counting time for Na was limited to 10 s. The
count rate decay of Na at these analytical conditions was found to be a function of the
beam diameter. The melt analyses were corrected for Na-loss using a correction factor
that was determined based on the observed variations in Na as a function of beam size

(see appendix B for details).

Attainment of equilibrium

The ubiquitous presence of relict minerals from the starting materials in the run
products warranted a careful assessment of degree of equilibration in the present

experiments.
Experimental duration

Duration of the present experiments varied from 2 days at temperatures >1000 °C

and up to 5 weeks at lower temperatures. To the best of my knowledge, these are the
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longest duration experiments that have been conducted on metabasaltic starting materials

at fluid-absent conditions.

Homogeneity of crystal growths and systematic variations in phase compositions

Many experimental studies have shown that equilibrium is generally not achieved
on the scale of the entire experimental charge in experiments with natural rock powders
(Skjerlie and Johnston, 1996; Skjerlie and Patino Douce, 2002). There were several
indications of non-equilibrium between the seeds in the starting materials and the phase
components that grew during the experiments. This is clearly evident for garnets in KAP
experiments, which showed distinct cores whose compositions were indistinguishable
from thg gamnet seeds in the starting material. However, the composition of the garnet
overgrowths is remarkably uniform both within and between the newly formed grains.
This suggests that while intra-crystalline diffusion was slow, the growth of phases was
not limited by this process. Growth occurred relatively fast, perhaps promoted by
diffusion of components through intergranular melt channels. The homogeneity of
overgrowths along with their regular compositional variation with pressure and
temperature suggest that growth of new garnet took place under near equilibrium
conditions. Systematic mineral and melt compositional variations (see below) indicates
that the system was reactive and that phase compositions were approaching equilibrium

at the conditions of the experiment.
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Application of geothermometers

Partitioning of Fe** and Mg between co-existing garnet and clinopyroxene is a
function of temperature and to a lesser extent pressure. The temperature dependence of
Fe’** and Mg between gamet and clinopyroxene has been calibrated into a
geothermometer (e.g. Raheim and Green, 1974; Ellis and Green, 1979; Pattison and
Newton 1989; Ai, 1994; Krogh, 1988; Krogh-Ravna, 2000; Nakamura, 2006). Although,
these calibrations yield somewhat different temperatures (Green and Adam, 1991;
Nakamura and Hirajima, 2005) when applied to natural rocks or ex;;erimental data, they
are nonetheless useful for assessing the extent of equilibration in experimental run
products in which garnet and clinopyroxene co-exist. I used compositional data of co-
existing garnet and clinopyroxene from the run products to calculate temperatures using
the calibrations by Ellis and Green (1979), Krogh (1988), Krogh-Ravna (2000),
Nakamura (2006), and using TWQ software v.2.34 (Berman, 1991). Temperatures were
calculated using the average analyzed composition of garnet and clinopyroxene from the
run products and assuming that Fe is entirely in the ferrous state in both phases. In the
experimental products in which garnet and/or cpx were zoned, the average rim
compositions of the zoned phase were used in the calculation.

The calculated temperatures (Figure 2.3) deviate somewhat from the experimental
temperatures indicating either that compositional equilibrium was not fully achieved in
my experiments or that one or more of the thermometer calibrations are in error. The
error bars in the calculated temperatures (Figure 2.3) correspond to 1o compositional
uncertainty in Fe/Mg ratio of clinopyroxene. The discrepancy between calculated and

experimental temperatures is not surprising as the presence of zoning (in the form of
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relict cores in some garnet and cpx) is suggestive of a solution-precipitation mechanism
which does not necessarily produce equilibrium compositions (Pattison, 1994). There are
indications, however, that the measured compositions were close to equilibrium
compositions.  Firstly, the calculated temperatures are mostly within 50° C of
experimental temperatures. In particular, there is excellent agreement between calculated
temperatures using TWQ and experimental temperatures at low temperatures. The
correspondence of calculated temperatures using recent calibrations of Krogh-Ravna
(2000) and Nakamura (2006) is also satisfactory. Secondly, there is a clear positive
correlation between calculated temperatures and experimental temperature (Figure 2.3).
This indicates that the phases were reactive during the experiments and that the Ky for

Fe-Mg partitioning changes systematically with temperature.

Phase reversal experiments

Successful phase reversal is regarded as a rigorous demonstration of equilibrium
in phase equilibrium experiments (Holloway and Wood, 1988; Pattison, 1994; Aranovich
and Newton, 1998). In the present study phase reversal brackets were achieved at 7 kbar
for orthopyroxene and at 12.5 kbar for garnet. This involved performing two-stage
experiments, initially at P-T conditions where opx/garnet was deemed stable from
previous experiments and then lowering the temperatures (while keeping the pressure
constant). The criterion for successful reversal is the absence of opx/garnet in the run
product after the two-stage experiment. At 7 kbar, the first appearance of opx was
reversed between 900 and 850 °C and between 900 and 825 °C in the KAP and 3VG bulk

compositions, respectively. In both starting materials the presence of garnet was reversed
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between 850 and 775 °C at 12.5 kbar. As far as I am aware, this is the first
documentation of successful phase reversals in dehydration melting experiments in
amphibolites. I argue, based on these successful phase reversals, that equilibrium was

achieved in my experiments in terms of phase stability relations.

Redox Conditions

No external oxygen fugacity (fO;) buffers were used in these experiments. It is
well known that the stability of Fe-bearing minerals is affected by the prevailing fO,
conditions (e.g. Moody et al., 1983). The following discussion outlines the constraints

that I have on the prevailing fO, conditions in the present experiments.

Comparative oxygen barometry

It has been argued that in piston-cylinder experiments, the nature of the pressure
cell assembly imposes a certain fO, on the sample (Patino Douce and Beard, 1995).
Some previous experimental studies suggest that NaCl-graphite pressure cells impose a
SO, that is one to two log units below the quartz-fayalite-magnetite (QFM) buffer (Patino
Douce and Beard 1995, 1996; Nair and Chacko 2002). However, Liu et al. (1996)
reported fO, conditions 0.2-0.3 log units higher than QFM. in their experiments
employing a NaCl pressure medium. In general, however, fO, during experiments using
similar cell assemblies are close to that defined by the QFM buffer which is somewhat
lower than the fO, conditions in the upper part of a subducting oceanic crust.

Qualitative estimates of fO, during the experiments can also be obtained from the

stability relations of minor Fe-, Ti-bearing phases (Spear, 1981; Moody et al., 1983;
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Schmidt and Thompson, 1996). Moody et al. (1983) argued that in mafic systems, titanite
(sphene), ilmenite and magnetite are characteristic of fO, conditions near that of the
QFM and Ni-NiO buffers. In the present study the minor Fe-Ti phases observed were
titanite, ilmenite, magnetite (ulvospinel), rutile and pyrrhotite. In general titanite was
observed at lower temperatures and ilmenite/magnetite at higher temperatures, although
the latter two minerals do not coesist in any of the experimental charges (Table 2.3).
Rutile is only present in trace amounts and is restricted to pressures above 17.5 kbar and
pyrrhotite at pressures above 20 kbar. It is interesting to note that the relative stability
fields of the minor Fe-Ti phases except pyrrhotite in this study are similar to those
observed from hydrous experiments with basalt similar to the present starting materials
(Ernst apd Liu, 1998). The latter experiments were externally buffered at QFM
conditions. Despite the anhydrous nature of the present experiments, these comparable

results may indicate fO, conditions near the QFM buffer.

Calculated oxygen fugacity

A quantitative estimate of fO, was obtained using the equilibrium:

2Fe;304+ 6510, = 3F¢,Si;0¢ +0;
in five experimental charges (3VG3, 3VGl4, 3VG26, 3VG27 and KAP 22) that
contained co-existing magnetite and orthopyroxene. Of these, the 3VG experiments were
conducted at 7 kbar and the KAP experiment at 10 kbar. None of the other experiments
contained phase assemblages amenable to the calculation of fO,. Because quartz was not
a stable phase in the experiments from which oxygen fugacity estimates were made,

calculations were done for SiO; activity values of 1 and 0.8. Calculations were
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performed using the QUIIF program (Anderson et al., 1993). The calculated fO, values
are plotted in Figure 2.4 in relation to some common petrologic buffer reactions
(hematite-magnetite (HM), quartz-fayalite-magnetite (QFM) and nickel-bunsenite (Ni-
NiO)). The calculated fO, values range between QFM + 1.3 and QFM + 1.9 log units for
calculations done assuming aSiO, =1 (Figure 2.4). This represents a maximum value for
fO5 in these experiments. The fO, values determined using aSiO, =0.8 are about 0.6 log
units below the estimates using aSiO, =1 (Figure 2.4). These estimates are very similar to
SO, values reported from the dehydration melting experiments on amphibolites by Beard
and Lofgren (1991). Sen and Dunn (1994) calculated fO, from the Fe**/Fe?* ratio of
quenched melt from an experiment in which their starting amphibolite was completely
molten. Their reported fO, value (QFM -0.5 log units) is ~ 2-2.5 log units below that
estimated in the present experiments. The experiment from which Sen and Dunn (1994)
calculated the fO, value was done using a Pt-C capsule and may have imposed lower fO;
conditions during the experiment (Holloway et al., 1992). The oxygen fugacity values
reported by most previous dehydration melting studies on amphibolite bulk compositions
using Au capsules were between HM and QFM buffers (e.g. Beard and Lofgren, 1991;
Rushmer, 1991; Wolf and Wyllie, 1994), consistent with the fO, estimates from the
present experiments. Beard and Patino Douce (1995) argued that fO, values during
experiments tend to be buffered by the experimental assembly due the small volume of
the sample used in experiments. Interestingly, however, the fO, estimates from
amphibolite dehydration-melting experiments are 2-3 log units higher than fO, estimates
from dehydration melting experiments on pelitic and semi-pelitic bulk compositions

conducted using Au capsules (e.g. Patino Douce and Beard, 1995; Nair and Chacko,
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2002). The reason for this difference is unclear, but may be related to the higher total Fe
content and higher Fe**/Fe?* of the starting mafic compositions relative to the pelitic
starting materials used in experiments. It is also possible that minor amounts of graphite
that may have been present in the semi-pelitic starting materials (e.g. Nair, 2000; Nair
and Chacko, 2002) limited the maximum fO, conditions in those experiments to below

that of the QFM buffer.

RESULTS

A summary of the experimental conditions and the observed phase assemblage in

both bulk compositions studied is presented in Table 2.3 and Figure 2.5.

Description of run products
7 kbar

A melt phase could not be identified in the lowest temperature experiments (825
°C) in KAP, but a trace amount of melt was observed in the 3VG bulk composition. A
trace amount of clinopyroxene was, however, present in both KAP and 3VG
compositions at 825 °C. 1 consider these to be relict cpx seeds from the starting material
as microprobe analyses showed them to have compositions indistinguishable from the
starting cpx. Quenched melt was positively identified at 850 °C in both KAP and 3VG
experiments. Garnet was absent in the 7 kbar experiments and none of the garnet seeds
survived the duration of the experiments. Phase relations in both starting materials are
characterized by two distinct temperature dependent mineral assemblages, hbl-plag-cpx-

melt and hbl-plag-cpx-opx-melt, the former representing the lower temperature
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assemblage. Relict quartz was observed at temperatures below 875 °C. The proportions
of hbl and plag decrease with temperature and those of cpx and opx increase with

temperature. Hornblende is stable to 950 °C in both compositions.

10 kbar
The phase relations of the 10 kbar 3VG experiments are very similar to those at 7
kbar, except for the presence of garnet at 850 °C. At temperatures above 850 °C, opx is
stable in this bulk composition. Quartz is present as a relict phase up to 900 °C. Modal
variation patterns of all other phases remain the same. Trace amounts of hornblende
persisted to 1000 °C.
| Ip the KAP experiments, gamnet was positively identified in the temperature range
800-900 °C. Garnets in the 800 °C experiments ‘are, however, compositionally similar to
the garnet seeds and lack neoblastic growth textures. Thus, I consider this experiment to
be outside the garnet stability field. Garnet disappeared from the assemblage at
temperatures above 900 °C. Unlike 3VG, garnets do not co-exist with orthopyroxene in

this bulk composition. Relict quartz was observed at temperatures below 850 °C.

12.5 kbar
Opx is absent from the KAP experiments but is present in 3VG experiments at
900 and 950 °C. The abundance of garnet and cpx in the Hbl-Plag-Grt-Cpx+Opx

assemblage is greater than at 10 kbar.
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15 kbar

Opx is absent from both starting compositions in the temperature range
investigated. A marked increase in the abundance of garnet is observed at temperatures
above 900 °C. The individual garnet crystals are also significantly larger and exhibit well
developed poikilitic habit at temperatures >850 °C. Significantly larger melt pockets can

be observed randomly distributed between the garnet crystals at these conditions.

17.5 kbar

Garnet becomes a dominant residual phase in both bulk compositions. The
abundance of plagioclase is markedly lower than in the lower pressure experiments.
Rutile rather than ilmenite becomes the titaniferous phase compared to lower pressure

experiments.

20 kbar
Plagioclase is significantly less abundant than in lower P experiments and is in
fact absent from the 3VG composition at 900 °C. Garnet is more abundant than in the

lower pressure runs. Hornblende only occurs in trace amounts and was absent from the

900 °C experiment in both the KAP and 3VG experiments..

22.5 kbar
The residual assemblage is truly eclogitic, except in the 850 °C experiment with
KAP which contains trace amounts of plagioclase. Phengite was observed at 850 °C in

both bulk compositions. Hornblende is absent from all 22.5 kbar experiments.
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Phase stability and compositions

Hornblende

Hornblende is a residual phase in the experimental run products and, when
present, coexists with plagioclase. Above the solidus, the modal abundance of
hornblende decreases with temperature. Hornblende has both an upper temperature and
an upper pressure stability limit in the bulk compositions studied. At 7 kbar it disappears
from both bulk compositions between 950 and 1000 °C and also disappears from both
bulk compositions at pressures greater than 20 kbar.

Amphibole compositions are given in Table 2.4. Amphibole structural formulae
were calculated following Leake et al. (1997) assuming 23 O atoms per formula unit and
having the general form Ay.;B,CsTsO022(OH),, where A, B, C and T refer to the 10-12
fold coordinated site, six to eight fold coordinated sites, octahedral sites, and tetrahedral
sites, respectively. Even though minor amounts of Cl and possibly F were present in the
amphiboles, these were ignored during structural formula calculations. Cation site
assignment followed the scheme of Leake et al. (1997) and in the order T, C, B and A so
that the following criteria were met: Tetrahedral occupancy = 8.00, octahedral occupancy
= 5.00, B-site occupancy = 2.00, and A-site occupancy = 0-1.00. Fe**/Fe*" ratios were
calculated by normalizing to 13 total cations (excluding Ca, Na, and K). The differences
in amphibole composition between the KAP and 3VG experiments reflect bulk
compositional differences of the starting materials. In 3VG experiments, amphiboles are
pargasitic in composition whereas in KAP experiments they range in composition from

ferro-pargasite to pargasite (Figure 2.6). At the same experimental conditions, 3VG
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hornblende has a higher Mg-number than that of KAP. Stoichiometric constraints result
in covariance of Mg-number with Si in both bulk compositions with Mg-number
generally increasing with decreasing Si (Figure 2.6). Although the variation is irregular,
Mg-number in amphibole increases with temperature (Figure 2.7). Al" increases with

Mg, whereas Al1"!

decreases marginally with increasing Mg. The incorporation of Al in
the tetrahedral site involves coupled substitutions of Al, Fe3+, and Ti on the octahedral
site and Na on the A-site. This is evident in a plot of Al" versus Na (A-site) + 2Ti(VI) +
AI(VI) + Fe**(VI), which exhibits a reasonably good correlation (Figure 2.8). However,
lack of correlation between these cations (Na, Fe**, Ti) and Al'Y(not shown) and the
variation of A-site occupancy at relatively constant Al'Y indicate that the substitution
involves complex permutations of edenite (J(A) + Si = Na(A) + Al(IV)), Tschermakite
(2Si(IV) + 2Mg(VI) = 2AI(IV) + 2 Al(VI)), ferri-tschermakite (2Si(IV) + 2Mg(VI) =
2AI(IV) + 2Fe**(VI)) and Ti-tschermakite (2Si(IV) + Mg(VI) = 2 AI(IV) + Ti (V)
substitution mechanisms, with increasing edenite-type substitution and decreasing

tschermakite-type substitution at higher temperatures.

Clinopyroxene.

Clinopyroxene (cpx) is a product phase in all the experiments that exceeded the
fluid-absent solidus of the starting materials. In some of the sub-solidus experiments it
occurred as a relict phase. In the super-solidus experiments, relict and neoblastic cpx
could be distinguished on the basis of its chemical composition and textural relationship
with other phases. Newly grown cpx occurs as prismatic crystals, commonly with small

inclusions of quenched melt and/or amphibole. During the experiments, Cpx
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preferentially nucleated and grew along the margins of hornblende. Cpx in 17.5 and 20
kbar experiments exhibits distinct zoning with Ca-rich and Al-poor cores. Cpx also
occurs as inclusions in garnet in experiments that produced abundant garnet. These cpx
inclusions have compositions similar to the cpx crystals in the matrix and are, therefore,
interpreted as products of fluid-absent melting reactions that were poikilitically enclosed
by the faster growing garnet crystals.

Cpx exhibits distinct compositional changes with pressure and temperature (Table
2.5). The starting cpx, which is diopsidic in composition, becomes more augitic with
increasing temperature/degree of partial melting at pressures <17.5 kbar (Figure 2.9). At
pressures >17.5 kbar, the pyroxenes become distinctly more omphacitic in composition
(Figure 2.10). This transition from quadrilateral augitic to omphacitic cpx in 3VG
coincides with the disappearance of plagioclase from the residue and hence also marks
the transition from garnet-cpx granulite to eclogite. In the KAP composition, the
transition to omphacitic pyroxene is accompanied by a significant decrease in abundance
of plagioclase in the residue. The jadeite component in cpx ranges from 3 to 31 mole
percent. Cpx with >20% jadeite component (omphacite) only occurs at pressures >20
kbar. The Ca-Tschermak component remains relatively constant or marginally increases
with pressure. The most distinct compositional variation with temperature is an increase
in AlLO; content, which corresponds to an increase in Ca-Tschermak component.

Increasing temperature also produces a decrease in jadeite component of the omphacitic

pyroxenes at pressures above 17.5 kbar.
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Orthopyroxene

Orthopyroxene is a product phase at pressures <12.5 kbar. It occurs as long
prismatic crystals, commonly with a spongy or skeletal habit. In the 7 kbar experiments
opx coexists with cpx in both the 3VG and KAP compositions. In the 3VG experiments,
opx coexist with garnet at 12.5 kbar at 950 and 1000 °C and at 850 °C at 10 kbar. Opx is
absent from all KAP experiments done at pressures above 7 kbar.

Orthopyroxene compositions are presented in Table 2.6. In 3VG, the enstatite
mole fraction in orthopyroxene ranges from 0.51- 0.57 with enstatite component
increasing with temperature. In the KAP experiments, the enstatite component ranges
from 0.54-0.64 and increases with pressure. In both bulk compositions, the enstatite
component marginally decreases wjth pressure. Mg-number in opx is less than that in
hombleﬁde in all experiments where they coexist. Mg-number in opx is less than the
coexisting cpx except in the 1000 °C experiment at 7 kbar on KAP where both phases
have an Xu, of 0.64. The Al;O; content of opx increases with temperature and pressure

(Figure 2.11).

Garnet

Garnet is present both as a relict and as a neoblastic phase in experimental run
products that equilibrated at pressures above 10 kbar. Neoblastic garnets occur in two
textural modes: as overgrowths on pre-existing gamet seeds and as homogeneously
nucleated garnets. The former can easily be distinguished in backscattered electron
images due to compositional differences between the seeds (outlining the core of the

garnet crystals) and overgrowths. This compositional/textural feature was used as a
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criterion for establishing the stability field of garnet in these bulk compositions. In run
products that were interpreted to have equilibrated in the stability field of garnet, the
grains showed unequivocal presence of overgrowths. Further, garnet seeds that persisted
in some of the experiments outside of the garnet stability field exhibited resorbed margins
and lacked euhedral grain outlines that characterize overgrowths and neoblastic garnets.

Garnet compositions are given in Table 2.8. Garnet in both bulk compositions are
almandine rich (44-56 mole %) with pyrope content varying from 10-32 mole % (Figure
2.12). Grossular content ranges from 20-31 mole %. The garnets are also characterized
by high Ti contents (0.65-1.58 wt. %). The compositions of garnets are discussed in more

detail in chapter 3.

Plagioclase

Plagioclase is a residual phase in many experiments. It is a reactant during
dehydration melting and its abundance decreases with temperature and pressure.
Plagioclase abundance decreases significantly at temperatures above 1000 °C. Plagioclase
disappears from the residual assemblage at pressures > 17.5 kbar. Plagioclase
compositions are given in Table 2.8. The plagioclase crystals generally exhibit
homogenous chemical compositions and reflect the composition of the starting
plagioclase in KAP and 3VG. Plagioclase in KAP is more albitic than those in 3VG at
comparable experimental conditions. The composition of plagioclase does not show
simple correlations with pressure or temperature in both bulk compositions, which is
likely due to the complex relationship between plagioclase compositions and the
abundance of other Ca- or Na-bearing phases in the experimental charges. In general,

however, there is a tendency for the anorthite content to decrease with pressure and
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increase with temperature (see Table 2.8). The orthoclase component in plag is always

less than the 0.5 mole percent.

Oxides

Oxide phases were observed in only a few experimental charges. The abundance
and stability of these phases in the present experiments were likely reduced by the low
TiO; content of the starting materials. Magnetite (ulvospinel solid solution) and traces of
ilmenite and rutile were the phases observed in the experimental run products. None of
these oxide phases were found together in the same experiment. Magnetite was the most
common oxide phase present in the experiments and occurred in some lower pressure
experiments. Table 2.10 shows the composition of magnetites analyzed. Rutile and
ilmenite crystals occurred as trace phases in some experiments and their small grain size
precluded quantitative chemical analyses of these phases. Rutile was only observed at P

>17.5 kbar.

Phengite
Phengite was observed at 22.5 kbar and 850 °C in both KAP and 3VG. This is
consistent with the stability field of phengite reported by Skejerlie and Patino Douce

(2002). Phengite was not analyzed quantitatively.

Titanite

Titanite was observed in a few experiments with both KAP and 3VG. Titanite in

general is restricted to low temperatures (<900 °C) and low-moderate pressures. This is
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consistent with the observation that titanite replaces rutile in eclogites retrograded to

amphibolite-facies conditions (e.g. Storey et al., 2003)

Melt

Varying amounts of glass (quenched melt) is present in experimental run products
in which P-T conditions exceeded the fluid-absent melting solidus. Glass is difficult to
distinguish from plagioclase on BSE images because the two phases have similar mean
atomic numbers. However, melt pools generally exhibit a negative polishing relief and
commonly impinge on the grain boundaries of crystalline phases with a low re-entrant
angle. At low degrees of melting, melt occurs as thin isolated pockets at grain boundary
intersections. In run products that have undergone moderate degrees of melting, melt
forms a network of grain boundary films. In many run products quenched melt was
found segregated along the edges of the capsule material. In run products that contain
high proportions of garnet, melt pockets preferentially occur near garnet crystals, likely
reflecting a strain shadow effect of the garnet crystals.

Table 2.9 shows the major element composition of melt pockets that were large
enough to permit WDS analyses. The reported melt compositions are given on an
anhydrous basis and were corrected for Na loss as a function of the electron beam
diameter used during the analysis (details of correction procedure given in Appendix B).
Figure 2.13 shows Harker-type variation diagrams of the measured melt compositions,
which show similar patterns for melts produced from both 3VG and KAP bulk
compositions. In a normative feldspar classification diagram melts span the

compositional range granite-tonalite-trondhjemite-granodiorite for both starting materials
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(Figure 2.14). Most of the melts fall near the triple junction between the fields of
trondhjemite-granodiorite-granite.  In a K;0-CaO-Na,O ternary plot the melt
compositions mainly fall in the tonalite-granodiorite fields with two analyses from the
3VG experiments falling in the quartz-monzonite field (Figure 2.15). The melt
compositions are predominantly peraluminous but a few are metaluminous (Figure 2.16).

The silica content of the melt ranges from 58-73 wt. % on an H,O-free basis. The least
siliceous melts (<60 wt.% SiO;) occur in the lower pressure experiments. This is
consistent with melts coexisting with a SiO,-rich residual assemblage containing
abundant plagioclase + orthopyroxene below 12.5 kbar. The decrease in plagioclase and
increase in garnet in the residual assemblage at higher pressures buffer the SiO; content
of the coexiting melt to high SiO, vglues. In general, the SiO, contents of melts decrease
with increasing temperature (Figure 2.17) with the decrease more pronounced above 950
°C, when quartz is not a stable phase in the residue. The higher silica content of melts
produced at temperatures below 950 °C reflects progress of melting reactions in which
quartz is a dominant reactant. At temperatures above 950 °C, the melting reaction
involves hornblende + plagioclase, which produces melts with lower SiO, contents. The
ALO; content of melt does not vary systematically with temperature but generally
decreases with increasing pressure (Figure 2.17). ALOj; contents of melts range 14.8-
22.9 wt.% and 14.7-20 wt. % in the KAP and 3VG experiments, respectively, with the
majority of the melt analyses showing more than 15 wt.% Al;0;. TiO, and FeO contents
of the melts are positively correlated with temperature at all pressures (Figure 2.17).
However, there is no distinct variation of melt TiO; content with pressure, whereas FeO

contents of the melts decreases with pressure. MgO contents of melt also vary positively
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with temperature, although the variations are more subtle than in the case of Ti and Fe.
The total ferromagnesian component (FeO+MgO+TiO;) of melt is positively correlated
with temperature and negatively correlated with pressure (Figure 2.18). CaO in general
seems to increase with temperature, but a few experiments deviates from this general
trend (Figure 2.17). K;O content of melt ranges between 1.1-5.4 wt. % in 3VG and
between 1.9 and 4.3 wt. % in KAP. K;O content generally decreases with temperature
although some experiments deviate from this trend in both bulk compositions. The high
K;0 content of low-temperature melts indicates the strongly incompatible behavior of K
during dehydration melting. The generally higher K,O content of the melts in this study
compared to many previous metabasalt melting experiments reflects the K-rich nature of

the starting materials compared to N-MORB composition.

Phase Proportions

Knowledge of phase proportions provides information on the nature of reactions
operative during dehydration melting and also on the evolution of residual assemblage.
Phase proportions were determined in this study using a combination of mass balance
involving analyzed mineral compositions and grayscale thresholding of backscattered
electron (BSE) images using the software ImageJ (Rasband, 1997-2005). Compositional
X-ray maps of selected elements were used in some cases to help distinguish between
phases that were sometimes difficult to differentiate by grayscale thresholding of BSE
images only. The calculated phase proportions are given in Table 2.11. The
uncertainties on the modal proportions vary for different phases but are typically <5%

(absolute error) for phases other than garnet and melt. For garnet proportions, the
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uncertainty is typically <2% (absolute error) because grayscale values for garnet in the
experiments do not overlap with other phases reducing the uncertainty in its modal
estimate. The uncertainty in the reported proportions of the melt phase is likely larger
than those for other phases as the proportion of melt was largely determined by mass
balance. In general, the uncertainties in the modal proportions of phases at high pressures
are much less than stated above because of the limited number of phases observed in the

high-pressure run products.

Melting Reactions

Fluid-absent solidus

A key petrological constraint in understanding magma generation and the
evolution of metamorphic assemblages is the onset of melting. Only a few of the many
dehydration melting experimental studies have sought to provide constraints on the fluid-
absent solidus (Beard and Lofgren, 1991; Rushmer, 1991; Wolf and Wyllie, 1994; Sen
and Dunn, 1994; Lopez and Castro, 2001) and still fewer studies provide experimental
brackets for the solidus reaction at more than one pressure (Lopez and Castro, 2001).

Solidus conditions compiled by Wolf and Wyllie (1993; 1994) (Figure 2.1) are
widely used in petrological models involving metabasaltic lithologies (e.g. Rapp, 1998;
Wyllie et al., 1998; Zegers and van Keken, 2001). Wolf and Wyllie (1994) assumed that
water is available for melting at pressures above 10 kbar through hornblende breakdown
and that this breakdown process allows melting to occur at temperatures as low as the
water-saturated solidus of metabasalts. Wolf and Wyllie (1994) argued that temperature

conditions near the solidus are not accessible to experimental investigations due to
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nucleation difficulties of phases such as garnet. They suggested that even though garnet
did not nucleate in dehydration melting experiments at temperatures below 850 °C, it was
in fact stable to temperatures as low as those of the water-saturated solidus.  This
resulted in the proposal of an ‘S-shaped’ solidus (Figure 2.1) that is widely used for
petrological modelling of the evolution of metabasalts. However, as recently pointed out

by Martin and Moyen (2006), this S-shaped solidus has not been mapped experimentally.

In the present study, experimental brackets for the fluid-absent solidus were
obtained in the pressure range 7-15 kbar for both starting materials. The position of the
solidus inferred from these experiments is shown in Figure 2.19. At 7 kbar, the solidus is
located between 825 and 850 °C in the KAP experiments, whereas the lowest temperature
experiment with the 3VG composition yielded a trace amount of melt at 825 °C. At
pressures above garnet stability (~10 kbar) the solidus has a negative dP/dT slope for
both starting materials. At pressures >12 kbar, the solidus of the KAP composition is
slightly lower than that of 3VG. In general, the solidus is located at a higher temperature
between 10 and 15 kbar in the present experiments, compared to that of Lopez and Castro
(2001).

My results indicate a backbend in the solidus to lower temperatures when garnet
joins the residual assemblage, generally consistent with the findings of previous workers
(Wolf and Wyllie, 1994; Lopez and Castro, 2001). However, the positively sloped
segment of the solidus inferred by Wolf and Wyllie at the transition from the opx to the
garnet stability field in metabasalts is not corroborated by the new experimental results.

The results are consistent with a negative slope for the solidus within the garnet stability
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field as reported by Lopez and Castro (2001). The present results also do not support the
argument by Wolf and Wyllie (1994) that the fluid-absent solidus should bend back to
intersect the water-saturated basalt solidus at pressures where garnet is a stable residual
phase. Instead, fluid-absent melting involving hornblende-bearing assemblages occurs at
temperatures 100-150 °C above the water-saturated solidus in the pressure range 10-15
kbar. Melting at temperatures between these two solidi would only occur if water is
made available through breakdown of hydrous phases other than hornblende or of
hornblende with a chemical composition significantly different than that present in the
starting materials of my experiments.

Phase proportions in the experiments are consistent with solidus reactions of the
form
Below 10 kbar,
Hornblende + Plagioclase + Quartz = Orthopyroxene + Clinopyroxene + Melt -------- (1)

and above 10 kbar,

Hornblende + Plagioclase + Quartz = Garnet + Clinopyroxene + Melt (2)
The inferred reactions are similar to those deduced in many previous dehydration melting

studies on amphibolites.

Reaction Modelling

Precise information regarding melting reactions is important in understanding
many aspects of amphibolite melting including the controls on the melting process and
the evolution of the restitic assemblage. Variations in the modal abundance of phases in

the experimental products are commonly used to infer the melting reactions involved.
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Quantification of these melting reactions requires mass balance analysis of experimental
charges. I attempted to quantify the melting reactions by modelling initial stages of
partial melting by constructing a mass balance between phases present in the starting
materials and the experimental run products. Melt compositional data were generally not
available for low temperatures (<900°C) because of the small dimensions of the melt
pools. Modelling of reactions was done for the experimental products at 900 °C between
10-22.5 kbar. Due to the lack of adequate phase compositional data (particularly of melt)
at 900 °C, melting reactions at 7 kbar were modelled using phase compositional data
from the 950 °C experiment. I used a singular valued decomposition (SVD) method
(Fisher, 1989) for mass balancing and determination of the reaction space. The technique
involves analyzing the null (reaction) space of a rank deficient ‘model’ matrix of the
original phase compositions to examine possible reaction relationships between the
phases considered. More details of the matrix analyses are provided in Appendix C.
Computations were done using the software C-space®, which allows algebraic analyses
of compositional relations in multi-component chemical systems (Torres-Roldan et al.,
2000).

Mass balance analyses were done in the chemical system Si-Ti-Al-Fe-Mg-Mn-
Ca-Na-K which accounts for over 98 % of the oxygen-free composition of the rock. All
the components were given equal weights in the SVD analyses. H was not included in the
mass balance due to lack of precise information on the H,O contents of the melt and
hornblende. Fe was considered to be in the ferrous state for all the phases, including melt.
Other elements (e.g. Cr, F, Cl ) are present in negligible amounts in some of the phases

but were ignored for the mass balance procedure. The mineral phases considered for mass
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balance are hornblende, plagioclase, orthopyroxene, clinopyroxene, garnet, quartz and
quenched melt. Together these phases account for >98 % of the experimental run
products. Phases that were present in trace quantities in some experimental products (e.g.
titanite, ilmenite, and magnetite) were not considered for mass balance. Measured oxide
compositions of the phases were recast into cations, normalized to the total oxygen in one
formula unit of the phase. For the melt phase, compositions were recast assuming 10
oxygens per formula unit following the method of Hartel and Pattison (1996). Quartz
was assumed to be pure. Homblende and plagioclase compositions in the starting
materials were used for SVD analyses rather than the composition of these phases in the
experiment. This was done with the aim of understanding the melting systematics at the
beginning of melting when metabasaltic protoliths undergo dehydration melting. Thus
the reactions presented represent mass balance between the starting assemblage (of the
starting materials) and the observed product phases in the experiments. The
stoichiometric coefficients of reactions determined by mass balance are given in Table
2.12. It should be noted, however, that the modelled mass balance may not accurately
represent the stoichiometry of solidus reaction, as modelling was not done using phase
compositions at the solidus. The conditions at which reactions are modelled are 100 °C or
more above the dehydration melting solidus for the bulk compositions studied. The
modelled mass balances, therefore likely represent a time integrated model of
dehydration melting reactions in the bulk compositions studied. Nevertheless, the
determined reaction coefficients are useful for evaluating the nature of melting reactions
and control on melt reactions at the initial stages of dehydration melting of the bulk

compositions studied.
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The model reactions presented in Table 2.12 are in agreement with the reactions 1
and 2 (see above) determined from variations in phase proportions in the experimental
products. It is important to note, however, that the modelled reaction coefficients are not
equivalent to the modal proportions of phases in the respective experimental run
products. Reaction coefficients and modes will only converge to the same value if all the
reactants are available in the starting materials in the exact proportions in which they
participate in the melting reaction. In all other cases, observed modes represent a
measure of the reaction progress and are controlled by the availability of (one or more)
reactant phases.

At all pressures investigated, quartz is the reactant with the largest stoichiometric
coefficient. The relatively low abundance of quartz in metabasaltic rocks at high grades,
therefore, means that reaction progress and melt productivity at near solidus conditions is
limited by the availability of quartz. This appears to be a general feature during high-
grade metamorphism and anatexis of amphibolites (e.g. Hartel and Pattison, 1996).
Hartel and Pattison identified the abundance of quartz as the primary control on reaction
progress in their modelling of dehydration-melting of granulites in Kapuskasing Structure
Zone, Ontario. Once quartz reacts out of the assemblage the melt reaction may switch to
one involving hornblende and plagioclase. I am unable to evaluate the stoichiometry of
this higher temperature reaction (hbl + plag = cpx + opx + garnet +melt) from the
available data.

The reaction stoichiometries given in Table 2.12 in general, account well for the
observed modal variation of phases observed in experiments in which partial melting

occurred. Although relatively large stoichiometric coefficients for melt among product
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phases imply high melt productivity during amphibolite melting, the actual amount of
melt produced in the 900°C experiments is considerably smaller due to the presence of
residual hornblende and plagioclase. This may be attributed to a number of factors
including, deviation of modal abundance of reactants in protoliths from the modelled
reactions resulting in insufficient reaction progress or due to non-modal melting. Clearly,
the stoichiometric coefficients of reactants in the modelled reactions differ from qual
abundance of these phases in the starting materials. Therefore, reaction progress in the
present experiments is limited by the relative proportion of the reactant phases present in
the starting materials. As reaction progress appears to be controlled at initial stages of
amphibolite melting by the availability of quartz, it is convenient to normalize the
reaction coefficients to unit mole vof reacting quartz (see Table 2.12). As pressure
increases, the mole fraction of hornblende and plagioclase that reacts with quartz
increases. This corresponds with an increase in mole fraction of garnet and cpx produced
by melting at higher pressures. Table 2.13 shows the mass balance converted to modal
proportions of phases using molar volumes of phases calculated using formulations for
compressibilities and thermal expansivities given by Berman and Aranovich (1996). For
solid solutions molar volume was calculated using linear interpolation between the end
members. The ratio of hornblende to quartz consumed by the melting reactions increases
from 1.5-2 at pressures below 15 kbar to ~5 at pressures above 17.5 kbar. This is
consistent with decreasing proportions of hornblende and plagioclase with increasing
pressure (at constant temperature) in the residue. The similarity in the modal
mineralogical composition of the two starting materials enables us to make inferences

about the relative melt productivity as a function of bulk compositional differences of the

61



starting materials. Modal mass balance suggests that at the initial stages of melting
(when quartz is present), the melt productivity of the KAP composition is greater than
that of the 3VG composition. I attribute this observation to the higher Fe/Mg of the KAP
starting material and in turn the KAP amphibole, which likely breaks down at lower
temperature than the more magnesian 3VG amphibole. Therefore, for a given amount of
quartz, melt production would be greater in Fe-rich amphibolites. Hartel and Pattison
(1996) arrived at the same conclusion from studying the modal and compositional
variations in the migmatitic mafic granulites of Kapuskasing Structural Zone. However,
once quartz is exhausted or in quartz-absent amphibolites other compositional factors
such as the composition of the feldspars may play a role in the melt productivity of

amphibolites at initial stages of dehydration melting.

DISCUSSION

Petrological Applications

High-grade metamorphism of mafic rocks

A major goal of metamorphic petrology is to generate internally consistent
databases for minerals, which can then be used to model the metamorphic evolution of
different rock types. Accurate knowledge of mineralogical and compositional changes
that can be related to changes in intensive variables of metamorphic systems is
fundamental to achieving this goal. In mafic rocks, this is hampered by some inherent
difficulties arising from (a) the presence of a complex solid solution phase, amphibole,

which has proved to be difficult to model thermodynamically and, (b) lack of
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mineralogical changes over a sufficiently narrow temperature interval that can be
compared with mineralogical zones in other bulk compositions (Yardley, 1989). A
common practice to overcome these difficulties is to study experimentally representative
mafic compositions and apply the results directly to natural occurrences. A few studies
have thus shed information on subsolidus evolution of metabasic rocks (e.g. Moody et al.,
1983; Poli, 1993). The present experimental results are directly applicable to the high-
grade metamorphic evolution of hydrated MORB-type basaltic rocks under fluid-absent
conditions. The experimental phase relations are discussed below in the context of

important facies transitions that occur in mafic rocks during high grade metamorphism.

Amphibolite - Intermediate-P granulite transition

The co-existence of orthopyroxene + clinopyroxene in metabasaltic bulk
compositions is considered to be the diagnostic assemblage of the granulite-facies (e.g.
Eskola, 1914; Pattison, 2003).  Orthopyroxene + clinopyroxene + plagioclase
assemblages have been documented in many regional granulite-facies terranes and have
been variously described as mafic granulite, two-pyroxene granulite or pyroxene
granulite (Srikantappa, 1996; Yamamoto and Yoshino, 1998; Kar et al., 2003). The
assemblage has also been noted in some lower crustal xenoliths (Rushmer, 1993). It has
been inferred from thermobarometric studies in spatially associated metapelitic rocks that
opx-cpx-plag assemblage is stabilized at low to moderate pressures (3-10 kbar).

Previous studies have shown that orthopyroxene becomes stable in metabasaltic
bulk compositions at temperatures slightly above the dehydration melting solidus at low

to moderate pressures. Beard and Lofgren (1989) provided experimental brackets for the
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appearance of opx in the pressure range 1-7 kbar. Lopez and Castro (2000) bracketed
opx-in at 6 kbar between 850 and 900 °C. Lopez and Castro (2000) also documented the
occurrence of opx at temperature >900 °C at 10 kbar, although no low temperature
bracket was provided. Experiments on quartz-rich amphibolites gave different results
with opx appearing as a product of dehydration melting at the solidus between 3-15 kbar
(Patino Douce and Beard, 1995). In these experiments, opx coexist with garnet at 12 and
15 kbar at temperatures above the solidus (Patino Douce and Beard, 1995).

In my experiments, Opx-in was bracketed between 825 and 850 °C in 3VG and
between 875 and 900 °C in KAP at 7 kbar. The appearance of opx was reversed at 7 kbar
in two-stage experiments in both the 3VG and KAP compositions. Specifically, the two-
stage reversal experiments were conducted between 960 and 825 °C in 3VG and between
900 and 850 °C in KAP. In both cases, opx that had grown in the high-temperature stage
of the experiment was completely consumed in the low-temperature stage. At 10 kbar,
opx did not form in any of the experiments with the KAP composition, but was stable at
temperatures >850 °C in the 3VG experiments. The 3VG composition also has a narrow
pressure interval between ~10-12.5 kbar where opx and garnet occur together.

These present results are consistent with previous experiments and indicate that
temperatures >850 °C are required to stabilize opx in metabasaltic rocks under fluid-
absent conditions. My experiments, hdwever, tightly constrain the position of this
reaction with tight experimental brackets and reversals. Also, my results suggest that opx
forms at slightly lower temperatures in Mg-rich bulk compositions (3VG). These
compositions also expand opx stability to higher pressures, allowing for the coexistence

of garnet and opx. This pressure interval in which garnet-opx-cpx granulites are stable is
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transitional between lower pressure, gamet-free two-pyroxene granulites and higher
pressure, opx-free garnet-cpx granulites. The range of pressures over which this
transitional assemblage will be stable is determined by bulk compositional factors, being
larger in Mg- and Si-rich metabasalts. In typical MORB-type metabasaltic rocks (olivine
tholeiites), the occurrence of coexisting garnet and opx would be limited to a narrow
pressure interval and, therefore, if occurring would be diagnostic of P-T conditions of

metamorphism.

Amphibolite/Granulite - Garnet-granulite transition

While a coexisting opx + cpx + plag in metabasaltic rocks is definitive of
granulite facies, the status of opx-free garnet + cpx assemblages has been debated in
recent sfﬁdies (Pattison, 2003). De Waard (1965) classified the former assemblage as
‘orthopyroxene-plagioclase subfacies’ and the latter as ‘clinopyroxene-almandine
subfacies’ of granulite facies. The two assemblages were linked through the pressure
sensitive equilibrium orthopyroxene + plagioclase = garnet + clinopyroxene + quartz with
orthopyroxene stable on the low pressure side and garnet on the high pressure side.
Accurate determination of the conditions at which these assemblages become stable is
important to understand the tectono-metamorphic history of high-grade terranes. Early
experimental investigation by Green and Ringwood (1967) confirmed that garnet-
clinopyroxene assemblages form a paragenetic link between lower pressure granulite and
higher pressure eclogite facies. An experimental study by Hansen (1981) on the end-
member system CaO-MgO-Al,03-Si0, bracketed the garnet-in boundary between 13.4

and 14 kbar at 900 °C with the garnet-in curve having a positive P-T slope of 8.5 bar/K.
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Green and Ringwood (1967) conducted experiments on different basaltic composition
glasses at temperatures >1000 °C and addressed the role of bulk composition in the
appearance of gamet. The Green and Ringwood results (1967) remain the most widely
applied experimental data for metabasaltic phase equilibria, particularly for garnet-
granulite and eclogite formation. However, their experiments were conducted at
temperatures of > 1000 °C and therefore require long down-temperature extrapolation to
be generally applicable to naturally occurring garnet-cpx assemblages, which mostly
form at temperatures <900 °C (O’Brien and Rotzler, 2003). Another problematic aspect
of the Green and Ringwood (1967) experiments is that they involved crystallization of
basaltic glasses. Glasses crystallize rapidly but do not necessarily produce mineral
assemblages that reflect the true equilibrium assemblage for that P-T condition (e.g.
Pattison, 1994). In addition to the glass crystallization experiments, many amphibolite
dehydration melting experiments using natural or synthetic rock powders have
documented the occurrence of garnet at 10 kbar and higher pressures (Rushmer, 1993;
Wolf and Wyllie, 1994; Sen and Dunn, 1994 etc.). However, none of these studies
systematically investigated the stability of garnet during amphibolite melting. In
particular, these experimental studies did not provide low temperature brackets. The
present results, therefore, provide better constraints on the stability of garnet-bearing
assemblages during dehydration melting of amphibolites.

The lowest pressure at which garnet is stable in the present experiments is 10
kbar, which is consistent with the results of many previous studies. In the more Mg-rich
3VG starting material, garnet is stable at 10 kbar only at 850 °C and becomes a

significant part of the residual assemblage only at pressures > 12.5 kbar. In the KAP bulk
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composition, garnet is stable at temperatures above 800 °C at 10 kbar and in all
experiments conducted at higher pressures. An attempt to reverse the appearance of
garnet in two-stage experiments at different pressures was not successful. In a two-stage
isothermal experiment (950 °C and 15-10 kbar), first in the stability field of garnet and
subsequently quenched in the opx stability field, opx failed to nucleate and garnet
persisted as a metastable phase. I attribute this result to the lack of free quartz after the
completion of the initial reaction phase, which produces a quartz- and opx-free garnet +
cpx assemblage. Lack of quartz as a reactant inhibited the down-pressure reaction garnet
+ cpx + quartz = opx + plagioclase during the second stage of the attempted reversal
experiment. This reasoning is supported by the results of a two-stage experiment in
which the starting material was seeded with a layer of quartz on top. The run product
after the two stage experiment (initially held in the garnet stability field and subsequently
in opx stability field) showed the presence of opx crystals near the quartz layer. Away
from the quartz layer, the residual assemblage was dominated by garnet + cpx. This two-
stage experiment also demonstrates the effect of silica saturation on opx stability. Opx is
stabilized relative to garnet in silica-saturated bulk compositions compared to silica-
under-saturated basalts (Green and Ringwood, 1967). It has been suggested that a garnet-
cpx assemblage in silica-saturated rocks is diagnostic of high-pressure granulite facies
(Green and Ringwood, 1967). In silica-saturated metabasalts the lowest pressure at
which garnet is stabilized is a function of the Fe/Mg of the basaltic protolith (Green and
Ringwood, 1967). Garnet is stabilized at relatively lower pressures in Fe-rich bulk
compositions. The lowest pressure at which gamnet is stable in the Fe-rich KAP

composition (10 kbar) can be taken as the lower pressure limit for stabilizing garnet-cpx
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granulites in MORB-derived metabasalts. Thus the transition from medium-pressure
cpx-opx granulite to high-pressure garnet-cpx granulite occurs along a transitional
boundary that has a shallow positive P-T slope.

My experimental results also provide constraints on the loWest temperatures at
which garnet is stabilized in MORB-type amphibolites during dehydration melting.
Pattison (2003) evaluated the utility of opx-free garnet-cpx assemblages in defining a
minimum temperature of formation. He concluded that many experimental studies
indicated similar temperatures of formation (~850 °C) for opx-free garnet-granulite and
lower pressure opx-bearing granulites. Wolf and Wyllie (1994), however, argued that
near solidus portions of the amphibolite dehydration melting process are not amenable to
experimental investigations due to nucleation difficulties involving garnet. They
suggested that at temperatures <850 °C garnet fails to nucleate in experimental studies
and that if equilibrium were to be achieved garnet would be stable at temperatures as low
as the HyO-saturated solidus for metabasalts. Winther and Newton (1991), Sen and Dunn
(1994), and Lopez and Castro (2001) reported garnet-in at temperatures well above (>100
°C higher) the water-saturated solidus of basalt. Sen and Dunn had garnet seeds in the
starting materials, which would have avoided nucleation difficulties. Their lowest
temperature experiments (800 and 850 °C at 20 and 15 kbar, respectively) had garnet but
no low temperature brackets for the appearance of garnet were provided. They reported a
negative slope for the garnet-in curve in order to be consistent with the results of Wolf
and Wyllie (1994) at 10 kbar.

Results of the present study are useful in addressing the low-temperature stability

of gamet in metabasalts for two reasons. First, the long duration of my experiments
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compared to previous studies have facilitated a closer approach to phase equilibrium.
Second, the presence of gamet in the starting material (hereafter called seeds) have
avoided nucleation difficulties involving this phase. The phase relations observed in the
present experiments indicate that a minimum temperature of ~800-825 °C is required to
stabilize garnet (Figure 2.19) during dehydration inelting of amphibolites of MORB
composition. These results are consistent with the 800-850 °C bracket for garnet
appearance obtained in previous studies at 12 kbar (Lopez and Castro, 2001), and at 10
kbar (Wolf and Wyllie, 1994). However, the results of the present study are better
constrained by successful phase reversal experiments in which the appearance of garnet
was reversed. The lack of garnet (even seeds) in the reversal experiments and the lowest
temperature experiments conducted at 10 and 15 kbar suggests that the absence of garnet
is not due to nucleation difficulties, but the result of its instability at these condii:ions.
Importantly a lowest temperature limit of 800 °C for garnet stability in metabasalts
compares favorably with temperature estimates in the range of 750-850 °C obtained from
high-pressure granulite-facies assemblages using Fe-Mg exchange thermometers
(Pattison, 2003; O’Brien and Rotzler, 2003). The lowest temperature estimates from
natural high-pressure granulites are, however, about 50 °C lower than the experimental
constraint, which may reflect post-peak Fe-Mg resetting of the Fe-Mg exchange
equilibria used in calculating the temperature. Importantly, the low temperature
constraint is similar to, but slightly less than, the temperature required for stabilizing opx
at intermediate pressures during dehydration melting of metabasalts. The present results

do not support the hypothesis that garnet forms through dehydration melting of
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amphibolites at temperatures as low as the H,O saturated basalt solidus (Wolf and

Wyllie, 1994).

Problem of lower temperature garnet-cpx amphibolites

The present experimental data indicate that, in MORB-type metabasalts, opx-free
gamet + cpx assemblages develop at temperatures > 800 °C between 10 and 15 kbar.
This is only slightly less than the temperatures required to stabilize intermediate pressure
(< 10 kbar) two-pyroxene granulites and is consistent with thermobarometric data from
natural high pressure granulites (Pattison, 2003; O’Brien and Rotzler, 2003). However,
the use of opx-free garnet + cpx assemblages as low temperature indicators of
metamorphism is complicated by ‘the occurrence of the same assemblage at lower
température (620-700°C) amphibolite facies conditions (Pattison, 2003). Two such
documented occurrences are Pelona Schist in southern California (Graham and Powell,
1984) and Mica Creek in British Columbia (Ghent et al, 1983). Pattison (2003)
considered the possibility that the discrepancy between experimental predicted
temperatures and that recorded in these terranes arise from (a) Fe-Mg resetting of the
exchange reactions, (b) influx of low auzo fluids during metamorphism, or (c) possible
temperature overstepping of the relevant reaction in dehydration melting experiments.
Significant Fe-Mg resetting was ruled out for these amphibolite facies occurrences.
Thermodynamic modelling suggests that low ayo imposed by influx of fluids may result
in the development of the assemblage at low temperatures (Pattison, 2003). However, a
source for the low amo fluids is not apparent in these terranes (Pattison, 2003). The third

possibility that experimental results overstep the relevant reaction cannot be fully tested
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given the dependence of reactions on bulk compositional differences. The lowest
temperature at which opx-free garnet + cpx assemblages are stable in the present study
(800-825 °C) is slightly lower than previously reported experimental brackets (>850 °C).
Given the long duration of the present experiments and tight experimental brackets, I
argue that these temperatures represent the minimum temperatures at which opx-free
garnet + cpx assemblages are stabilized in MORB-type bulk compositions during
dehydration melting.

Pattison (2003) argued that development of opx-free gamet + cpx assemblages at
amphibolite-facies conditions is controlled by mineral compositional factors. He
suggested that Fe-rich mineral compositions, Ca-rich gamet and, Ti-poor homblende lead
to subsolidus breakdown of amphibple to form garmet + cpx assemblages. The higher
temperagure estimate for stabilizing garnet + cpx derived from the experiments may be
the result of using pargastic amphiboles in the starting materials. Pattison (2003) also
used pargasitic end member amphiboles in calculating the phase equilibria. In Fe- and
Ca-rich bulk compositions, pargasitic amphibole may be an inappropriate model for
understanding phase equilibria involving amphiboles at lower temperatures. I suggest
that the occurrence of opx- free garnet + cpx assemblages at P-T conditions equivalent to
amphibolite facies may have been the result of breakdown of ferro-actinolitic hornblende
in relatively Fe- and Ca-rich metabasalts. This reaction can be written as
2(CayFesSig022(OH)2)in mot + 3(CaAlSizOg)in pleg = (CazAlbSizO12)in Gamet + 2
(Fe3A13S13012)in Gamet + 4 (CaFeSi206)in cpx + 5 Si02 + 2 (H20)in meltvapor =========-=====--= 3)
There have been very few studies done on the stability and thermodynamic properties of

actinolitic amphiboles and thus the exact location of the equilibrium (3) in P-T space is
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unknown. Therefore, it is unclear if reaction 3 is a subsolidus dehydration reaction or a
supersolidus dehydration melting reaction. A recent experimental investigation on the
stability of end member ferro-actinolite indicates that it is stable up to mid-amphibolite
facies (Jenkins and Bozhilov, 2003). Amphibole compositions from many low- to mid-
amphibolite facies terranes also suggest that actinolitic amphiboles are common (Raase,
1974; Begin and Carmichael, 1992). A first order conclusion that can be drawn from
these observations is that ferro-actinolitic hornblende is probably stable up to mid-
amphibolite facies conditions. If reaction 3 is responsible for the development of garnet
+ cpx assemblage in amphibolite-facies metabasalts, some constraints can be placed on
the P-T position of this reaction from mineral isograd relations in these localities. At
Mica Crgek, for example, the garnet + cpx isograd in mafic rocks occurs between the
sillimanite-in and K-feldspar-in isograds in interlayered metapelites (Ghent et al., 1983).
Whereas the interlayered metapelitic layers show migmatization, the mafic rocks show no
evidence of melting (Pattison, 2003). Therefore, reaction 3 must occur at a temperature
within the sillimanite stability field but below the water-saturated basalt solidus. So a
combination of the requirement of Fe-rich bulk compositions and a restricted P-T interval
at which the proposed ferro-actinolite break down reaction occurs may explain the rarity
of garnet + cpx assemblages at amphibolite-facies conditions. That these assemblages
develop at low temperatures only in Fe-rich bulk compositions are supported by the Fe-
rich nature of hornblende, garnet and clinopyroxene in Mica Creek and Pelona Schist
relative to those in granulite-facies occurrences (Pattison, 2003).

Importantly, the ferro-actinolite breakdown reaction occurs at lower temperatures

than the equivalent breakdown reaction for pargasitic amphiboles
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2 (NaCa;Mg4AlSisAl,O2(OH))in iy + (CaALS1Os)i piag + 5 S0 = 2 (Mg3AlSi3012)in Gamer T 2
(Ca3ALxS13012)in Gamet T 2 (CaMgSi;06)in cpx + 2 (NaAIS1308)in prag T 2 (H20 )in mett ~----—---------- “4)
Reaction (4) is analogous to reaction (2), which corresponds to the transition from
amphibolite to high-P garnet-granulite facies. One important difference between reaction
(3) and (4) is that quartz is a reactant in (4) while it is produced during reaction (3). This
might be important in the progress of dehydration melting and extent of migmatization in
metabasalts. The importance of quartz in the progress of dehydration melting of
amphibolite was discussed by Hartel and Pattison (1996) in the genesis of mafic
granulites in Kapuskasing Structural Zone, Ontario. These authors argued that the
primary control on the extent of dehydration melting in the mafic granulites was the
abundance of quartz in the protolith due to its low modal abundance in mafic rocks. In
MORB-;cype basalts (olivine tholeiites), quartz is produced during subsequent
metamorphic evolution. The amount of quartz available at the onset of dehydration
melting is dependent upon the progress of quartz-producing subsolidus reactions. In Fe-
rich metabasalts, operation of reaction 3 will make more quartz available for dehydration
melting solidus reaction 4 to progress. Metabasaltic rocks, whose bulk compositions
favor sequential progress of reaction 3 and 4, would experience a larger degree of melting
(or higher reaction progress) at the onset of melting than rocks in which reaction 3 is
inhibited. Bulk compositional factors that favor this outcome include high Fe/Mg and
Ca/Na ratios of basaltic protoliths. This is consistent with Hartel and Pattison’s (1996)
observation that in Kapuskasing Structure Zone, mafic granulites exhibiting the greatest
extent of (dehydration melting) reaction progress are those with the highest Fe/Mg ratio.
Hartel and Pattison inferred that the high Fe/Mg layers had higher modal quartz content,

as quartz is a limiting reactant during dehydration melting. I suggest that the larger

73



amount of quartz in the high Fe/Mg lithologies may have originated through reaction 3
during prograde evolution at amphibolite-facies conditions. Thus, in Fe-rich metbasaltic
rocks granulite-facies garnet + cpx assemblages may represent two stages of garnet
growth- an initial (subsolidus?) growth at amphibolite facies and a subsequent super-
solidus granulite facies overprint. Lack of experimental data on the stability of ferro-
actinolitic hornblende prohibits defining a lower temperature limit for amphibolite-facies
garnet + cpx assemblages. Careful examination of textural patterns and compositional
zoning in garnet may be required to elucidate the different stages of garnet growth in
high-P mafic granulites. At present, compositional differences of the constituent
minerals (along with P-T data if available) of gamnet + cpx assemblages and presence or
absence of migmatitic textures rema_in the only criterion to distinguish amphibolite-facies
occurrences from those at granulite-facies conditions. However, the position of reaction
2 determined in this study provides a lower temperature limit for formation of the garnet
+ cpx assemblage through dehydration melting. The similarity in the estimated
temperatures of reaction 2 to those required to form opx + cpx assemblages (‘classic’
granulites) at lower pressures, suggest that position of reaction 2 could be used to define

the high pressure amphibolite-granulite-facies boundary.

Garnet-granulite - Eclogite transition

At the highest pressures of metamorphism recorded in natural metabasaltic rocks,
the mineral assemblage consists dominantly of garnet and cpx and is characterized by the
absence of plagioclase. This assemblage sensu stricto defines the eclogite facies in

metabasalts (Green and Ringwood, 1967). At high-temperature conditions the
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transformation of metabasaltic rocks to eclogite-facies assemblages occurs through the
high-pressure granulite facies described in the previous section. Specifically, the
transition to eclogite facies is defined by the disappearance of plagioclase and is
accompanied by physicochemical changes that affect the density of the rock. This
transition has, therefore, been proposed to play key role in a number of geodynamic
processes including subduction (Cloos, 1993), lower crustal delamination (Zegers and
van Keken, 2001), and magma genesis (Rapp et al., 2003). The density increase
accompanying transformation of basaltic rocks to eclogite is believed to be the origin of
slab pull forces and delamination processes require eclogite formation to produce
gravitational instabilities. Knowledge of the depth at which the eclogite transformation
occurs is critical to understanding and evaluating these geological processes.

Green and Ringwood’s (1967) glass crystallization experiments on two quartz-
tholeiite compositions is the first study to investigate in detail the basalt-eclogite
transition in mafic rocks. They bracketed plagioclase-out between 17 and 18 kbar and
between 19 and 20 kbar at 1000 and 1100 °C, respectively. Due to lack of experimental
data at lower temperatures, Green and Ringwood (1967) extrapolated their high
temperature plagioclase-out curve to lower temperatures using the average P-T gradient
determined for this curve in their study on two quartz tholeiite bulk compositions. From
this they concluded that eclogite or high-P granulite rather than gabbro is stable
throughout large regions of continental crust. Extrapolation of their experimental data to
near (dehydration-melting) solidus conditions (~800 °C) indicate that eclogite can be

stabilized in metabasaltic rocks at pressures as low as 12.5 kbar.
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The results of the present experiments at 800 °C and 12.5 kbar indicate that
amphibolite rather than eclogite is the stable form of metabasalt. A true eclogitic phase
assemblage was not observed in any of the 800 °C experiments in the present study.
Plagioclase-out was bracketed between 850 and 950°C in the present study. At 850°C,
plagioclase out was bracketed between 20 and 22.5 kbar in the KAP composition. At
850°C, in the 3VG composition, trace amounts of plagioclase were observed at 22.5 kbar
complicating the trajectory of the plagioclase-out curve. There is no indication, however,
that this experiment is unreliable. In the 3VG bulk composition, plagioclase is stable up
to 17.5 and 20 kbar at 900 and 950°C respectively. In the KAP composition, plagioclase
is stable up to 20 kbar at 900 and 950°C. The apparent higher pressure stability of
plagioclgse in KAP may be due to the slightly higher Na;O content of the KAP starting
material and the consequent higher albite content of KAP plagioclase. The present
results indicate that the slope of plagioclase-out boundary has a much shallower P-T
slope than suggested by Green and Ringwood (1967). Extrapolation of Green and
Ringwood’s (1967) plagioclase-out curve to near-solidus conditions results in significant
underestimation of the pressure necessary to form eclogite. Using such extrapolations in
constructing petrogenetic grids (e.g. Oh and Liou, 1998) leads to the erroneous inference
that eclogite is stable throughout large regions of continental crust. The present results
show that a minimum pressure of 18 kbar is required to stabilize eclogite in MORB-type
bulk compositions during dehydration melting (Figure 2.19). This limits eclogite
formation to the base of tectonically thickened continental crust or subduction zones.

The new constraints are more consistent with thermobarometric data from high-

pressure mafic granulite occurrences (O’Brien and Rotzler, 2003). Many of these high-
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pressure rocks would be expected to have eclogite-facies assemblages if previously
reported constraints on gabbro-eclogite transition in quartz-tholeiite compositions (Green
and Ringwood, 1967) are used to infer the facies boundary. This inconsistency is
avoided if the present results are used to constrain the granulite-eclogite transition

boundary in metabasalts.

Partial melt compositions and conditions of TTG genesis

Silica-rich partial melts generated during experimental melting of mafic rocks are
important in understanding not only the conditions of magma genesis at lower crustal to
upper mantle depths, but also in understanding the geochemical signatures of magmas
generated at these conditions. The _results of present experiments can be used to refine
our understanding of mineral/melt equilibria during partial melting of MORB-type
metabasalts under fluid-absent conditions, a commonly envisaged physical environment
at lower crustal/upper mantle depths. Precambrian continental felsic magmas exhibit a
secular trend from a low-K tonalite-trondhjemite series characteristic of early- to mid-
Archean to a relatively K-rich granodiorite-granite magma series that is more common in
the late-Archean and Proterozoic time.

Metaluminous to peraluminous silica-rich melts produced in this study are
broadly similar to those reported in previous dehydration melting studies on basaltic bulk
compositions. The major-element systematics of the melts generated share many
characteristics of Archean TTG rocks. Melt compositions produced are rhyolitic to
trachyandesitic in composition, with relatively silica-poor andesitic melts restricted to the

lower pressure, higher temperature experiments (<12.5 kbar). The higher silica content of
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the melts above 12.5 kbar reflects the increasing abundance of garnet and decreasing
abundance of plagioclase in the residual assemblage that is in equilibrium with the melt.
Melts are predominantly alkalic-calc to calc-alkalic in a Na,O+K,0-CaO vs SiO; plot,
with some analyses falling in the alkalic field (Figure 2.20). The CaO content of melts is
at the lower end of the range reported for TTGs.

Melt compositions range from ferroan to magnesian and have FeO/(FeO+MgO)
values that overlap with Archean tonalites for melts with SiO; content >65 wt. % (Figure
2.21). Archean TTG compositions, however, extend to much lower FeO/(FeO+ MgO)
values than shown by experimental melts. This difference appears to be typical for
experimental melts with >65 wt. % SiO; from metabasaltic rocks, which shows MgO
contents that are at the lower end of the range observed in TTGs (Figure 2.22). The
higher MgO content and Mg# of some Archean TTGs is attributed to the interaction of
TTG melts with peridotitic rocks during ascent from their source regions to emplacement
levels (Martin and Moyen, 2002). However, this interaction also results in a decrease in
the Si0, content of the melts (Rapp et al., 1999). The presence of some high silica TTGs
(>65 wt.% SiO;) with higher Mg# than partial melts generated in experimental studies
suggest that more Mg-rich protoliths (komatiitic basalts) than used in experimental
dehydration melting studies including the present study may have been important in the
generation of these granitoids.

The Al,O;3 content of the melts are somewhat higher than the range observed in
TTGs (Figure 2.23). This result is generally similar to the experimental melts with SiO,
>60 wt. % reported from previous dehydration melting studies on amphibolites (Rapp

and Watson, 1995; Sen & Dunn, 1994; Springer and Seck, 1997). Barker and Arth (1976)
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used a cut off value of 15 wt. % ALO; to distinguish two groups of TTG granitoids, a
high Al,O; type and low ALO; type. The melt compositions produced in the present
study are more comparable to the high Al,O; type (Figure 2.23). Martin (1994) argued
that most Archean TTGs belong to the high-Al;O; group. There has been some
discussion on the influence of residual assemblage on the Al,O; content of melts. Rapp et
al. (1991) attributed plagioclase abundance in the melt residue as the primary control on
ALOj; content of the melt. They argued that melts become progressively Al-rich with
increasing pressure because of decreasing plagioclase in the melt residue. In contrast,
the lowest Al,O; melts were observed in the higher pressure experiments of this study.
The critical factor controlling the Al,O3 content of the melt is the bulk Al,O; content of
the restite mineral assemblage, whigh is higher in the high-pressure experiments due to
the presence of abundant garnet and high-Al clinopyroxene in the residue. The Al,Os
contents of these high-pressure melts are more comparable to TTGs. The present results
indicate that if Archean high-Al,0; TTGs are pristine melts derived from hydrated
metabasalts, they must have formed at pressures >15 kbar as melts generated at lower
pressures have much higher Al,0; content than that reported for average Archean TTG.
Alternatively, lower-pressure melts may have been modified to lower Al,Os contents
through interaction with the surrounding rocks during ascent or by plagioclase
fractionation to produce TTGs. A lower-pressure origin for Archean (especially early
Archean) TTGs is also not supported by the highly fractionated REE pattern and
depletion in HREEs of these rocks, which suggest origin of the TTG magmas at greater

depths (where abundant garnet causes these REE signatures). The relatively high Sr

79



content and the lack of negative Eu anomalies in TTGs argue against significant
plagioclase fractionation after magma generation.

One notable difference in the composition of melts generated in this study
compared to Archean TTGs is in the relatively higher K,O content of the experimental
melts (Figure 2.24). The high potassium content of the present starting materials relative
to unaltered MORB and starting materials used in many previous studies resulted in
production of melts whose normative feldspar compositions straddle between the
trondhjemite, granodiorite and granite fields (Figure 2.14). The K;O content of melts
generated in this study are among the highest reported for partial melts generated from
metabasalts. This is reflected in a normative Qtz-Ab-Or plot of the experimental melts
(Figure 2.25). With the exception of two melt analyses from the 3VG bulk compositions,
theser melts have Na,O/K;O ratio >1, consistent with tonalitic-granodioritic melts
produced from previous metabasalt melting expeﬂmenté (Figure 2.26). The melts
produced in the present experiments, however, in general have lower Na,O/K;O ratio
than those produced in previous dehydration melting experiments. Na,O/K,O ratios of
melts produced during dehydration melting appear to be a function of K-content of the
s%arting basaltic source as well as the temperature of melting. High K-content of starting
materials and lower melt fractions (corresponding to lower melting temperatures) result
in lower melt Na,O/K,0 ratios. The K,O content of the starting materials (0.7 wt. % for
KAP and 0.8 wt. % for 3VG) correspond to K-enriched basalts. Although, fresh MORB
magmas typically have low K;O, the K;O content of basalts are commonly enriched
during hydrothermal alteration (Zhou and Fyfe, 1989; Alt and Teagle, 2003). Thus,

many MORB-derived amphibolites have elevated K;O contents similar to the starting
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materials used in this study. Moderate to high K,O content is also a common feature of
basalts produced in subduction-related magmatic arcs (Sisson et al., 2005). Partial
melting of amphibolites derived from these relatively K-rich lithologies result in the
production of magmas that are more potassic than tonalitic-trondhjemitic magmas
generated from low-K basaltic sources (Sisson et al., 2005). Thus the altered metbasaltic
source rocks for Archean TTG’s may have had lower K,O contents than the starting
materials used in my study. A K,;O vs K/(K+Ca) plot (Figure 2.27) shows that melts
generated from the KAP and 3VG compositions correspond to moderately potassic
granodiorites. Winther (1996) argued that partial melting of Archean tholeiites cannot
produce granodioritic melts. In contrast, the present results indicate that moderately K-
rich tholeiites can in fact generate magmas of this composition. Generation of large
granodiorite batholiths is commonly attributed to a hybridization process through
interaction of mafic magma with pre-existing felsic (tonalitic) crust (Moyen et al., 2001;
Lopez et al., 2005). The present results, however, suggests that granodiorite melts could
be generated directly from moderately K-rich tholeiitic basalts (Figure 2.28) without
resorting to melt interaction processes. Partial melting of moderate- to high-K
amphibolites derived from arc basalts could generate granodiorite to granitic magmas.
These processes may have been more common in the late Archean and Phanerozoic when
subduction systems were widespread and a significant volume of island arc materials

were incorporated during accretionary processes.
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Table 2.3: Experimental conditions and run products.

Run No. P T Duration Phase Assemblage
(kbar) (°C) (hours)

Three Valley Gap(3VG)
3VG-12 7 825 672 Hbl, Plag, (Cpx), Qtz, (Melt)
3vG-01 7 850 336 Hbl, Plag, Cpx, Opx, Qtz, Melt
3VG-27 7 875 336 Hbl, Plag, (Cpx),Opx, Melt, Mag
3vG-03 7 900 336 Hbl, Plag, Cpx, Opx, Melt, Mag
3VG-26 7 950 168 Hbl, Plag, Cpx, Opx, Melt, Mag
3VG-14 7 1000 72 Cpx, Opx, Plag, Melt, Mag
3VG-24* 7 900 192

825 144 Cpx, Hbi, Plag, Melt
3vG-32a* 7 900 288

850 624 Cpx, Hbl, Plag, Opx, Melt, Mag
3vG-32b* 7 900 288

850 624 Cpx, Hbl, Plag, Opx, Melt, Apat, Mag
3vG-11 10 775 720 Hbl, Plag, (Cpx), Qtz, Melt, Ttn
3vG-10 10 800 504 Hbl, Plag, (Cpx), Qtz, Melt
3vG-06 10 850 504 Hbl, Plag, Cpx, Opx, (Grt), Qtz, Melt
3VG-05 10 900 504 Hbl, Plag, Cpx, Opx, Qtz, Melt
3VG-04 10 950 168 Hbl, Plag, Cpx, Opx, Melt
3vG-22 10 1000 48 (Hbl), Plag, Cpx, Opx, Melt
3vG-19 12.5 800 1056 Hbl, Plag, (Cpx), Qtz
3vG-16 125 850 336 Hbl,Plag, Cpx, Grt, Qtz, Melt
3VG-15 12.5 900 336 Hbl, Plag, Cpx, (Grt), Melt
3vG-20 12.5 950 192 Hbl, Plag, Cpx, Grt, Opx, Melt
3VG-18 125 1000 96 Cpx, Grt, Opx, Plag, Melit
3vG-25* 12.5 850 168

775 504 Cpx,Hbl, Plag, Melt?
3VG-21 15 775 552 Hbl, Plag, Cpx, Qtz, Sph, Melt
3vG-28 15 800 240 Hbl, Plag, Cpx, Qtz, Melt, Ttn, Ap
3VG-29 15 825 720 Hbl, Plag, Cpx, Grt, Qtz, Melt
3vG-08 15 900 336 Hbl, Plag, Cpx, Grt, Qtz, Melt
3vG-07 15 950 240 Cpx, Plag, Grt, Qtz, Melt
3vG-09 15 1050 72 Cpx, (Plag), Grt, Melt
3VG-39 17.5 850 456 Cpx,Hbl, Grt, Plag, Qtz, Melt?
3VG-34 17.5 900 312 Cpx,Hbl, Grt, Plag, Melt, Rut
3VvG-35 17.5 950 264 Cpx,Hbl, Grt, Plag, Meit, Rut
3vG-40 175 950 192 Cpx,Hbl, Grt, Plag, Melt, Rut
3VG42 17.5 1050 48 Cpx, Hbl, Grt, Melt
3VG-36 20 850 480 Cpx, Hbl, Grt, Qtz, Plag, (Melt), Pyr
3VG-31 20 900 240 Cpx, Grt, Melt, Apat, Rut
3VG-44 20 900 48 Grt,Cpx, (Plag), (Qtz) Melt, Rut
3VG-41 20 950 168 Cpx, Grt, Plag, Melt, Pyr
3vG-43 22.5 850 1008 Grt, Cpx,Qtz,Plag, Pheng,Msit
3vG-38 225 900 336 Cpx, Grt,(Qtz), Melt, Pyr
3vG-45 225 950 144 Grt, Cpx,(Qtz),Melt,Rut
3VG-46 22.5 1000 72 Grt,Cpx,Melt, Pyr
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Run No. P T Duration Phase Assemblage
(kbar) (°C) (hours)

Kapuskasing(KAP)
KAP-12 7 825 672 Hbl, Plag, (Cpx), Qtz
KAP-01 7 850 336 Hbl, Plag, Cpx, Qtz, Melt
KAP-27 7 875 312 Hbl, Plag, Cpx, Melt, Mag, Ap,Py
KAP-03 7 900 336 Hbl, Plag, Cpx, Opx, Melt
KAP-02 7 950 168 Hbl, Plag, Cpx, Opx, Melt, Mag
KAP-14 7 1000 72 Cpx, Opx, Plag, Meit
KAP-24* 7 900 192

825 144 Hbl, Cpx, Plag,Qtz, Melt
KAP-30* 7 900 144

850 552 Hbl, Cpx, Plag, Qtz, Melt, Mag
KAP-11 10 775 720 Hbl, Plag, (Cpx), Plag, Qtz, (Melt)
KAP-10 10 800 504 Hbl, Plag, Cpx, Grt, Plag, Qtz, Melt
KAP-06 10 850 504 Hbl, Plag, Cpx, Grt, Plag, Melt
KAP-05 10 900 504 Hbl, Plag, Cpx, Grt, Plag, Melt
KAP-04 10 950 168 Hbl, Plag, Cpx, (Grt), Plag, Melt
KAP-22 10 1000 48 Hbl, Plag, Cpx, Plag, Melt,Mag
KAP-19 125 800 1056 Hbl, Plag, (Cpx), Grt, Qtz
KAP-16 125 850 336 Hbl, Plag, Cpx, Grt, Qtz, Melt
KAP-15 12.5 900 336 Hbl, Plag, Cpx, Grt, Melt
KAP-20 12.5 950 192 Hbl, Plag, Cpx, Grt, Apat, Melt
KAP-18 12.5 1000 96 Cpx, Grt, Plag, Melt
KAP-25* 12.5 850 168

775 504 Hbl, (cpx), Plag, Melt?
KAP-21 15 775 552 Hbl, Plag, Cpx, Ttn, Qtz
KAP-28 15 800 240 Hbl, Plag, Cpx, Grt, Melt,lim
KAP-29 15 825 720 Hbl, Plag, Cpx, Grt, Melt
KAP-08 15 900 336 Hbl, Plag, Cpx, Grt, Melt
KAP-07 15 950 240 Hbl, Plag, Cpx, Grt, Melt
KAP-09 15 1050 72 Hbl, Plag, Cpx, Grt, Melt
KAP-39 17.5 850 456 Hbl, Cpx, Plag, Grt, Qtz, Melt, Rut
KAP-34 175 900 312 Cpx, Hbl?, Grt, Plag, Melt, Pyr, Apat
KAP-35 17.5 950 264 Cpx, Plag, Grt, Melt, Pyr
KAP-40 175 950 192 Cpx, Plag, Grt, Melt, Rut
KAP-42 17.5 1050 48 Cpx, Plag, Grt, Melt
KAP-36 20 850 480 Hbl, Cpx, Grt, Plag, (Qtz), (Melt)
KAP-31 20 900 240 Grt,Cpx, Plag, Melt
KAP-44 20 900 48 Grt,Cpx, Plag, Melt,Rut, Pyr
KAP-41 20 950 168 Hbl, Cpx, Grt, Plag, Melt, Rut
KAP-43 22.5 850 1008 Grt, Cpx, (Qtz),Pheng, Melt, Rut
KAP-38 22.5 900 336 Grt, Cpx, (Qtz), Meit
KAP-45 22.5 950 144 Grt, Cpx,(Qtz), Melt
KAP-46 22.5 1000 72 Grt, Cpx, (Plag), Meit,Pyr

Abbreviations after Kretz (1983); Brackets indicate the presence of trace amount of an .
otherwise common phase in the experiments; ru, ilm, Ttn and pyr are present only in trace amounts.
*-indicates a two stage experiment.
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http://Run.No

Table 2.10: Magnetite compositions.

Run. No. 3VG-27 3VG-3 3VG-26 3VG-14 KAP30 KAP-22

P (kbar) 7 7 7 7 7 10

T(°C) 875 900 950 1000 900-850 1000

n 10 10 17 10 18 10 1 10 1 10 9 10
Oxide Wt.%

Sio, 153 145 094 092 081 098 0.60 - 097 - 367 284
TiO, 6.17 4.37 1017 024 7.79 048 7.28 - 3.68 - 1243 076
Al,O, 210 051 371 021 427 043 504 - 252 - 7.70  0.62
Cry0; 001 001 009 008 004 002 005 - 0.10 - 058 007
FeO 35.89 282 3854 092 3623 121 3344 - 3295 - 4419 325
Fe:O;  50.26 4155 46.30 47.94 55.66 25.54

MnO 038 0.13 026 002 025 002 028 - 045 - 029 0.03
MgO 146 032 171 031 192 020 333 - 1.41 - 208 024
Ca0 016 016 032 009 034 028 - - - 064 070
Total 97.97 97.28 97.93 97.94 97.75 97.12
Cations (40)

Si 0.058 0.036 0.030 0.022 0.037 0.134

Ti 0.176 0.289 0.220 0.202 0.105 0.342

Al 0.094 0.165 0.189 0.219 0.113 0.332

Cr 0.000 0.002 0.001 0.001 0.002 0.011

Fe¥ 1.437 1,182 1.310 1.332 1.599 0.700

Fe?* 1.139 1.220 1.135 1.032 1.048 1.353

Mn 0.012 0.008 0.008 0.009 0.015 0.009

Mg 0.083 0.096 0.107 0.183 0.080 0.114
Sum 3.000 2.999 3.000 3.000 2.999 2.994

Fe’* determined by stoichiometry.

108



y20 bzO 8Z0 0Z0 60 €10 ZEO B0 920 600 S0 YO 80 €20 60 90 0l0 020 €10 ¥LI0 SO0 220 20 HkO  p0'0 (W) uondeid N
000L OO0l 000L O0O00L 0O00L 000 000L 000L 0004 000, 000, 000L 000 000, 000L 000, 000L 000 000 000F 000, 000+ 000 000, 000k (enpsoy)EioL
0 0 0 0 0 0 0 0 1} 5’9 0 0 0 1} 0 0 g€ 0 0 0 8z 0 0 0 1] zpend
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ve 9F €L 0 xdo
0 0 0 8y 1} 0 0 [Ar AN A NN 74 0 I€Z V6L @9k P¥Ye 005 6iF TvZ 69 005 VS 1} ziZ 6 €S spusiquIoy
(a7 0 0 b Z%  ovL €8 pSL zSL 6L §Zh L2z 06 L€ 86 657 9§ 6% ZO0E 65T TN Vob 6.8 65 90E belq
119 789 089 IS 909 ZS L9 TS L€ V9Z €0L 92 @€ [0S Lz V0T viL 6Ty BT y0z L¥L 9LF €0E 61Z 96 xd9
6ee @l 0z 697 Lbe ¢OE 92 €L €8 ¥O0T L9 Lle ve 88 Lz e €S 0 0 e T 0 0 0 0 joures
(96 m) anpisay
000L  0S6 006 036 006 0S8 050, 0S6 006 0S8 O0S0L 0S6 006 000} 06 006 0S8 000} 056 006 0s8 ©O00L 0S6 006 0S8 [CREY
s s, e 02 0z 0z SV SLb §4 S4 S Sk S S S §TL s 0 oL oL oL L L L L (1eel) d
dv
gz0 970 20 [Z0 920 60 90 8Z0 S0 O0L0 2Z0 g0 §20 0Z0 800 OO0 §Z0 S00  ¥00 gz0 L0 800 0 () uogoeiilen
0oL 0OL 00 OO 0OF OO 0OL 0OL OO+ Q0L 0O 0OL OOL OOk 0OL 0OL 0Ob oOL  OOb 00r 00L 00L 00t  (enpsoy) fElolL
0 0 0 0 0 0 0 0 0 9y 0 00 00 ©00 00 &y 00 00 €S 00 00 00 §¥% 25eny
0 0 0 1} 0 0 0 0 0 0 0 00 Sy 9§ oo ©00 00 €8 29 Zg 96 €Ob 00 xdo
0 0 0 0 0 0 0 ge ©¢ 96y O06L ¢€6. 88 9/ 61€ T 90z L0y 6y 9IkZ 0L 9 6T apuajquioH
0 0 0 0 0 0 0 ee oz €€ z8L 97 T8 L0z 6VE 61T Vi€ L¥E LlZ €56 85 L8y ZT9E beid
6€9 99 669 659 z99 LS8 LW LIS ¥9S 0% L€ V€L 005 0T 62 9L Oy GO gLL @6¢ 9L TYL V9 xdD
l9e 9te  LOE LbE @€ Cyl £82 € €I g8 Vg i ve Ly €0 ST 00 00 o0 00 00 00 00 jowEg
(%) enpisoy
900L 0% 006 056 U006 0S8  0%0F 056 006 0S8  0s6 006 000k 0S6 006 0S8 000L 006 058 000L 0S6 006 S8 [ER
s ST T 0T 0z 0z SIS S s sk ¢l s ST ST sT oF otk oL L L L L (reqy) d
OAE

“30UE[EqQSSEW PuE s3SIl UOJOA[0 PAIPEdsYORq JO SUIpjoysaIy) 3[895AL13 JO UOHEUIqUIOD € SUISN PJEWINSd saseqd jo woodoid [BpON (11°T S1qBL

109



uswiiodxa O, 0OQT SY) WOL dUE[E SSBW 10J UONISOdI0d Jaw 4

“sjueadxe O, 056 10§ PosATBUE Sem 30UR[BQ SSEI AIYM ‘Teqy /£ e 1da0Xo sosed [[e ul juamuadxa ), 006 AU 10J PAjPLINSa 20UB[eq SSEWN

990 - 8y'| €0 = 001 S0’} 050 920 - 85°0 120 =  6€0 170 020
150 - ¥8°0 o = 00 65°0 LE0 120 - 50 910 = €50 LED 910
6v°0 - 6v'0 2o = 001 ) 2z0 0€0 - 0g0 €10 = 090 920 10
290 - $9°0 €0 = 00 050 SE0 €60 - S€0 80 =  #50 120 610
250 - ze0 €0 = 001 €0 91'0 $£0 - 120 800 = 990 Ay 010
Wo - 020 900 = 001 Ay 600 LE0 - S0 S00 = S0 810 100
89'0 €00 120 - = 001 Gv0 Lo 70 200 €10 - = $90 620 200
or'o - 8z'L €0 = 00} 650 0r'0 020 - ¥9°0 810 = 0S50 0€0 0z°0
W0 - 10 g0 = 00} a0 €20 SZ'0 - 9r'0 010 = 650 120 #L0
o - 2.0 610 = 001 9E0 92'0 9z0 - Sv0 210 = 190 €20 910
or'o - 620 00 = 001 220 zL0 0£0 - z20 S00 = ¥.0 10 60°0
6¥°0 - z90 910 = 001 ¥€0 SZ°0 Le'0 - 6€°0 00 = 290 ze0 910
620 510 920 - = 001 £0°0 €10 SZ°0 £L'0 FAA - = 980 £0°0 Lo
£r'0 80°0 980 - = 00} 810 510 z€0 90'0 120 - = 60 v10 110
WoN xdg xdg ) Zo Bejd \aH e xdg xdg PV3) 70 beld 19H

pajoeas zuenb jo jyblom 3iun aed

sjuejoead Jo ybiam yun Jod

Jeq) G'¢C
1egy 0C
ey sl
1egy Gl
egy sel
BP0l

dvi

By 52T
gy 02
gy gL
ey Gl
©eqy 621
Qo)
gy,

OAE

-uonisodwooap anyea re[n3uls Suisn soueeq SSEW Aq PIUTULISOP SUONOBI SUn[oW UoNEIPAYSp J0F SUSOIIFO00 U0NIRY :71°7 SqeL

110



oLt - JXA4 cle = 0oL 6V’ v c6’S Jeqy G'¢c

98z - er'e 65l = 00'L ¥5°2 LL'E 1eqy 0z
612 - er'L gL'l = 00'L 1871 592 gy s/l
Zr'e - 88'L 69°L = 00’} AN vLp legy Sl
98¢ - 1670 590 = 00'L 8g'L 181 1By G'ZL
9z - 850 €€°0 = 00'L N 80'} leqyol
9/¢ $0'0 09°0 - = 00’} S6°L YA leqy,

dv
122 - 69°E 8Ll = 00'L €52 AR leqy 62z
0€2 - zee 060 = 00'L 96'L 0.2 1egy 0Z
ve'eT - 0Lz 66°0 = 00’} 1S} 60°E 'egy G/l
€22 - ¥8°0 LE0 = 00’} 96°0 Sh'L 1egy G|
WAA - 18l - €80 = 00'L 6v'1 00°€ gy sl
85°L 120 ¥1°0 - = 00'L €10 1SL legyolL
Ve AN €01 - = 00’} 6170 9lL'L leQyi,
TET xdo xd) uo a0 beid IaH

IAE

(pejoras zZuenb jo awnjoa Jun Jad) asuejeq ssew |epoLu

"Z1°C 9Iqe . WOoIJ SJUSISNJ0 W00l FUNISAU0I Aq 85928 JouR[Rq SSEW [BPOIA (€1°T SIqBL

111



Apprx. Depth

I (km)
30 =1 100
Eclogite
o2 ]
%
o 20 =
=3 Gamet-Granulite
2 A
> AT 80
7]
n
2
Granulite
0 I
500 700 900 1100 1300

Temperature °C

Figure 2.1: P-T diagram showing experimental constraints on dehydration melting solidus
of metabasalts. The solid S-shaped curve labelled WW1 is considered the minimum
conditions of dehydration melting of metabasalts (after Wolf and Wyllie, 1993).

Other solidus curves shown are: R91- Rushmer(1991), ABA- alkali basalt, IAT- island-
arc tholeiite; WW94- Wolf and Wyllie (1994); SD94- Sen and Dunn (1994); SS97-
Springer and Seck (1997); LCO1- Lopez and Castro (2001). Other curves shown on the
figure are LW- water-saturated solidus of basalts (Lambert and Wyllie, 1972); WW2-
amphibole-out curve (Wolf and Wyllie, 1993); GR1, GR2 - garnet-in and plagioclase-out
on quartz-tholeiites, respectively (Green and Ringwood, 1967)
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Figure 2.2: Experimental constraints on the stability of granulite, garnet-granulte and eclogite
facies mineral assemblages during metamorphism of amphibolites (after Pattison, 2003).
GR-Green and Ringwood (1967); BL-Beard and Lofgren (1991); WN-Winther and Newton
(1991); R93- Rushmer (1993); WW-Wolf and Wyllie (1994); SD-Sen and Dunn (1994);

L96- wet basalt solidus, Liu et al. (1996). Fields for granulite, garet-granulite and eclogite
drawn after Green and Ringwood (1967). Generic reactions stabilizing granulite and garnet-
granulite during prograde metamorphism of amphibolites are also shown.
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Figure 2.3: Calculated temperatures using different Fe/Mg exchange calibrations between
garnet and clinopyroxene plotted against experimental temperatures for 3VG composition.
The error bars (not shown for TWQ results) represent the range in calculated temperatures
by propagating 1-sigma analytical uncertainty in the Fe/Mg composition of clinopyroxene.
The straight line indicates 1:1 correspondence between calculated and experimental

temperatures.
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Figure 2.3(contd..): Calculated temperatures using different Fe/Mg exchange calibrations
between garnet and clinopyroxene plotted against experimental temperatures for KAP
composition. The error bars (not shown for TWQ results) represent the range in calculated
temperatures by propagating 1-sigma analytical uncertainty in the Fe/Mg composition of
clinopyroxene. The straight line indicates 1:1 correspondence between calculated and

experimental temperatures.
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Figure 2.4: Calculated fO, values from coexisting magnetite and orthopyroxene
composition in the experiments using the equilibrium 2Fe,0,+ 6Si0, = 3Fe,Si,0, +0,
for two estimates of SiO, activity: closed symbols aSiO,=1 and open symbols aSiO,=0.8
Dashed curves shows the position of different buffer reactions. HM- hematite-magnetite
buffer; NiNiO- nickel-nickel oxide buffer; QFM- quartz-fayalite-magnetite buffer.
Buffer curves calculated from Lindsley (1976).
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Figure 2.5: Phase assemblage observed in the experimental run products. A filled

symbol indicates the presence of the phase and an open symbol indicate absence of the
phase. Lightly shaded symbols indicate the presence of trace amount of the phase.
Stability relations of quartz is not shown. Quartz is present in all experiments up to 850 °C
except at 20 kbar where only trace amounts of quartz was present. Trace amount of quartz
were also observed in 22.5 kbar experiments up to 950 °C.
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Figure 2.6: Experimental amphiboles plotted after the nomenclature of Leake (1997).

118



Mg #

0.80

T T T 1
¢ 3VG
0.75 | O kap -
0.70 |- _
0.65 |— * g : ‘ L 2 ]
L
060 - & ¢ . -
’ * ) z 7S . [m}
0.55 |- —
0 B o O
5 o g U * O
0.50 |— ] o O O o _
| O O
045 | o -
0.40 i | I | ]
750 850 950 1050

Temperature (°C)

Figure 2.7: Variation of Mg# (Mg/Mg+Fe) of experimental amphiboles.
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Figure 2..9: Wo-En-Fs ternary diagram showing clinopyroxene compositions.
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Figure 2.11: Variation of AL,O, with temperature in orthopyroxene.
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Figure 2.12: Garnet compositions plotted in an end member ternary diagram.
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MgO

TiO

126



An

A Granite

\ V) V) V) V)

An Or

Ab

Y] N

Winther & Newton (1991)
Rushmer (1991)
Beard & Lofgren (1991)

(C) Experimental Melts
from previous studies

Rushmer (1993)

Sen & Dunn (1994)
Wolf & Wyllie (1994)
Rapp & Watson (1995)
Springer & Seck (1997)

DreeO<>O0OnR+

Lopez & Castro (2001)

Ab Or

Figure 2.14: Composition of partial melts plotted on a normative feldspar diagram (Barker,1979).
(A) 3VG, (B) KAP, (C) previous dehydration melting experiments on metbasalts. WN91,
Winther and Newton (1991); R91, Rushmer (1991); BL91, Beard and Lofgren (1991), SD94,
Sen and Dunn (1994); WW94, Wolf and Wyllie; RW95, Rapp and Watson (1995); SS97,

Springer and Seck (1997); LCO01, Lopez and Castro (2001). 127



K,0

(A)

3VG

Granite

Quartz
Monzonite

Granodiorite

TDJ
Tonalite

Quartz
Monzonite

A

Granodiorite

TDJ
Tonalite
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Figure 2.18: Plot of TiO2+FeO + MgO (wt%) in melt vs experimental temperatue.
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from previous metabasalt melting experiments. The shaded field represents the range of values

for TTGs (from Sen and Dunn, 1994).

138



30

Winther & Newton (1991)
Rushmer (1991)

Beard & Lofgren (1991)
Rushmer (1983)

Sen & Dunn (1994)

Wolf & Wyllie (1994)

25 —

Rapp & Watson (1985)
Springer & Seck (1997}
Lopez & Castro (2001) !
3VG, this study
KAP, this study

avg. early Archean TTG

$EBPD>rexOcOR+

ALO, (Wt. %)
|

15

|LI|EIIIIJI|IIII|II

10 _ ] | 4 A
40 50 60 70 80

SiO, (Wt.%)
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Springer and Seck (1997); average early Archean TTG from Martin et. Al. (2005).
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granite (Jayananda et al., 1996). Average early Archean TTG from Martin et al. (2005);
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(Barker and Arth, 1976).
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Chapter 3: Garnet growth during dehydration melting of MORB-

composition amphibolites: implications for partial melts and restites

INTRODUCTION

The growth of garnet in metabasaltic bulk compositions plays a key role in
petrologic and geodynamic processes. In a petrological context, the presence of garnet in
the crystalline residue is considered a pre-requisite for the generation of felsic magmas
with strong heavy rare-earth-element (HREE) depletion (and highly fractionated REE
patterns) from basaltic protoliths (Barker and Arth, 1976; Jahn et al., 1981). Source
regions of Archean Tonalite-Trondhjemite-Granodiorite (TTG) and Phanerozoic adakitic
magmas are believed to have satisfied this requirement (Martin 1986; Drummond and
Defant, 1990). During metamorphism of basaltic rocks the appearance of garnet
demarcates low- and intermediate-pressure ‘two-pyroxene granulites’ from high-pressure
‘garnet-granulites’ (DeWaard 1965; Green and Ringwood, 1967; Pattison 2003). Garnet-
bearing, opx-absent assemblages form a paragenetic link between intermediate pressure
granulites and high-pressure eclogites (Hansen, 1981; Pattison, 2003). In a geodynamic
context, the high density of garnet-bearing assemblages is thought to play a key role in
crustal recycling processes. Subduction of oceanic crust at active continental margin or
island arc settings represents the primary mode of material transfer from crust to mantle
in a plate tectonic framework. Increase in density of oceanic crust through stabilization
of garnet-bearing assemblages contributes to the slab pull, which is considered an
important driving force for subduction (Forsyth and Uyeda, 1975). An alternative crustal

recycling process termed delamination (Kay and Kay, 1991) also requires stabilization of

145



dense metamorphic assemblages in the lower crust. In this process, the increase in
density of lower crust causes delamination of the lower crust along with the mantle
lithosphere (Kay and Kay, 1991) or foundering of lower crust through the mantle
lithosphere (Vlaar et al., 1994). Wolf and Wyllie (1993) argued that separation of melt
from a garnet-rich high-density residue during dehydration melting in amphibolites could
lead to the foundering of this residue through the underlying mantle. Such lower crustal
delamination processes have recently been invoked to explain the origin of continental
crust in the early Archean (Zegers and van Keken, 2001; Bedard, 2006). Wolf and
Wyllie (1993) suggested that foundering of metabasaltic lower crust may occur in crust
with thickness <40 km. This depth constraint is incorporated in many delamination
models (e.g. Zegers‘and van Keken, 2001). In these models the delaminating lower crust
is commonly considered to be in the eclogite facies. However, the results of many
dehydration melting experiments indicate that plagioclase is a stable phase in
metabasaltic rocks at these conditions and, therefore, the residual assemblage does not
strictly correspond to an eclogite. The new experimental results presented in Chapter 2
also indicate that the residue of dehydration melting in MORB-type compositions
become eclogitic only at depths >55 km. While this may appear to be a trivial semantic
difference, it is important to evaluate the depths at which the phase assemblage attains
sufficiently high density to effect delamination of lower crust. As will be shown in this
chapter, the density of a mafic metamorphic assemblage can be linearly correlated with
the abundance of garnet in the residue. Knowledge of garnet stability relations and its
growth during metamorphism of metabasaltic lithologies will help us better understand

lower crustal petrological and geodynamic processes.
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Under fluid-absent conditions, gamet formation in high-grade metabasites is
attributed to the following reactions (e.g. Pattison, 2003):

Hornblende + Plagioclase + Quartz =

Garnet + Clinopyroxene * Fe-Ti oxides + Melt----(1)

Orthopyroxene + Plagioclase =

Garnet + Clinopyroxene + Quartz (2)

Reaction 2 is pressure sensitive and marks the transition between ‘two-pyroxene’
granulites and garnet-cpx granulites. Reaction 1 marks the prograde break down of
hornblende at pressures above reaction 2. The location of reaction 1 in MORB-type bulk
compositions provides a temperature constraint for high-pressure amphibolite-granulite
transition under fluid absent conditions. However, practical applicability of reaction 1 as
a lower temperature indicator of amphibolite-granulite transition is hampered by the
occurrence of garnet + cpx assemblages at amphibolite-facies conditions (Bucher and
Frey, 1994; Pattison, 2003). At present, there are no accurate criteria with which to
distinguish amphibolite- and granulite-facies garnet + cpx assemblages. One possible
solution is to use widespread migmatitic fabric in conjunction with mineralogy as
indicative of granulite-facies (Pattison 2003). At amphibolite-facies conditions
migmatization requires excess water and, therefore, would be restricted to the vicinity of
shear zones that may act as conduits for the influx of HO-rich fluids. In contrast,
migmatization at granulite-facies conditions is widely believed to be a fluid-absent
process proceeding through melting reactions involving hydrous minerals. The origin of

leucosomes in many granulite-facies metabasites had been interpreted as resulting from
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dehydration melting involving hornblende breakdown reactions (e.g. Hartel and Pattison,
1996). Provided the above conditions apply, a temperature minimum for the
amphibolite-granulite transition can be determined by tightly constraining the position of
reaction 1.

The size, spatial distribution and compositional zoning in garnet has been used to
infer mechanisms of porphyroblasts growth in metamorphic rocks (Kretz, 1974; Carlson,
1989; Carlson et al., 1995; Daniel and Spear, 1999; Spiess et al., 2001). Such studies are
vital to our understanding of the kinetics of metamorphic reactions as well as the textural
evolution of metamorphic rocks. These studies have addressed the relative importance of
diffusion-controlled growth versus interface-controlled growth during porphyroblasts
formation in metamorphic rocks. The study of garnet growth textures under controlled
experimental conditions is a necessary complement to these studies on natural rocks in
order to understand the mechanisms of crystal growth during metamorphism. However,
very few experimental studies have described the textural aspects of gamet growth in
sufficient detail. Here, I use textural aspects of garnet growth in the experiments and
radius-rate calculations to show the importance of interface-controlled growth of garnet
porphyroblasts.

In this paper, I also assess the role of gamet in controlling the HREE budget
during dehydration melting and high-field-strength element (HFSE) depletion in the crust

and its implications for crust-mantle geodynamic processes in Archean.

Previous constraints on garnet stability in metabasalts
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Many studies have sought to provide broad constraints on the garnet stability field
in metabasites under varying pH,O conditions (Holloway and Burnham, 1972, Beard and
Lofgren, 1989; 1991; Rushmer, 1991; Rapp et al., 1991; Winther and Newton, 1991;
Wolf and Wyllie, 1994; Sen and Dunn, 1994; Lopez et al., 2001). My focus here is to
constrain garnet stability relations in tectonically buried or subducted MORB-type rocks
in a hot geothermal gradient that may have existed in the Archean. Under these
conditions, pore water from the rocks would be driven off at shallow depths (Bjornerud
and Austrheim, 2004) and the water available for high-grade metamorphic reactions
would be stored primarily in hydrous phases like hornblende. Melt production at
temperatures below the dry solidus for MORB will occur through dehydration-melting
reactions. In this paper, I investigate garnet stability relations during dehydration-melting
of hornblende-bearing MORB-type rocks. At fluid-absent conditions garnet is stabilized
through reactions analogous to reaction 1 above.

There is considerable ambiguity in the temperature location of reaction 1 reported
in different experimental studies (Pattison, 2003). While this partly reflects the varying
bulk compositions used in the experiments, tight experimental brackets over a range of
pressures are not available from these studies. However, these studies have confirmed
that in a variety of basaltic bulk compositions gamnet formation is restricted to pressures
above 10 kbar (Beard and Lofgren, 1991; Rushmer 1991; Wolf and Wyllie, 1994; Lopez
and Castro, 2001). This is consistent with phase relations in glass crystallization
experiments on different basaltic compositions (Green and Ringwood, 1967). Of the
dehydration melting studies, only Lopez and Castro (2001) provided pressure brackets for

the appearance of garnet near the solidus. Winther and Newton (1991) conducted
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experiments in the presence of varying amounts of H,O, with one set of experiments
containing 0.78% H,0, the results of which are used for the present discussion. They
reported a near isothermal topology for reaction 1 around 850 °C in the pressure interval
5-21 kbar in their experiments on an average Archean tholeiite. However, the position of
the reaction in P-T space was not tightly bracketed. Lopez and Castro (2001) bracketed
the appearance of garnet between 800 and 850 °C at 12 kbar. Sen and Dunn (1994)
conducted dehydration melting experiments on a natural amphibolite at 15 and 20 kbar.
They did not provide a bracket for garnet appearance, but reported a negative slope for
reaction 1 in order to be consistent with the phase relations of Wolf and Wyllie (1994) at
10 kbar. Patino Douce and Beard (1995) reported a positive slope for the garnet-
producing melting reaction in the pressure interval 12-15 kbar in experiments with a
synthetic quartz-amphibolite. Orthopyroxene was reported as a product of the garnet-
producing reaction in the entire pressure range investigated. However, the starting
composition of Patino Douce and Beard (1995) is not typical of MORB-derived
amphibolites.

Winther and Newton (1991), Sen and Dunn (1994), and Lopez and Castro (2001)
reported garnet-in at temperatures well above (>100 °C higher) the water-saturated
solidus of basalt. However, Wolf and Wyllie (1993) argued that garnet could be
stabilized in metabasaltic rocks at temperatures as low as the water-saturated solidus of
basalts. They argued that nucleation difficulties at temperatures below 850 °C prevented
the growth of garnet in many experimental investigations. Sen and Dunn (1994) had
garnet in their starting material, which should have avoided nucleation difficulties during

the experiments. Their lowest temperature experiment at 800 °C (20 kbar) contained
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garnet, but cannot be used to substantiate the argument of Wolf and Wyllie (1994) as no
experiments were done at temperatures close to the water-saturated solidus.

Here, I present results of dehydration melting experiments on two MORB-type
amphibolites at conditions that span most of the hornblende breakdown interval. The
present experiments were conducted for longer duration (see Table 2.3) than previous
studies and in the presence of minor amounts of garnet in the starting material, which
offsets possible nucleation difficulties involving garnet. When nucleation difficulties are
overcome, garnet grows rapidly relative to other crystalline phases during amphibolite
dehydration melting (Wolfe and Wyllie, 1993). The presence of garnet seeds in the
starting material should, therefore, enable growth of garnet at conditions where it is
thermodynamically stable. Thus, I argue that garnet stability relations presented here are

better constrained than in previous studies.

RESULTS

Criteria for phase stability

Due to the presence of minor amounts of some product phases (garnet, cpx) in the
starting materials, several criteria were used to assess phase stability at the experimental
conditions. These include, (a) an increase in modal abundance of a phase relative to the
starting proportions, (b) textural evidence indicating reaction relationship between
different phases (e.g. inclusion of clinopyroxene within garnet (both products of
amphibolite dehydration melting) due to relative differences in the growth kinetics), (c)

presence of overgrowths on phase seeds, and (d) distinct changes in the composition of a
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phase compared with the starting compositions. Applying these criteria, metastable
persistence of some seeds was noted in many low temperature experiments. The phase
stability relations discussed in this paper are based on mineral growth criteria discussed

above rather than mineral appearance.

Phase relationships

Experimental results indicate a lower pressure limit of 10 kbar for garnet stability
at the temperature range investigated (Figure 3.1). This result is consistent with the
findings of previous experimental studies (Sen and Dunn, 1994; Lopez and Castro, 2001).
Garnet appearance was bracketed in the 3VG experiments to between 800 and 850 'C in
the pressure range 10-15 kbar. Within this pressure interval garnet formation is attributed
to thé reaction Hbl + Plag + qtz = grt + cpx + opx + melt. This reaction has a steep
negative dP/dT slope. Garnet appearance was bracketed at 12.5 kbar between 850 and
775 °C. In the KAP experiment, garnet appearance was bracketed between 800 and 850
°C at 10 and 12.5 kbar and between 775 and 800 °C at 15 kbar. Orthopyroxene coexist
- with garnet in 3VG in the pressure interval 10-12.5 kbar. In experiments with the more
Fe-rich KAP composition, orthopyroxene and garnet do not coexist in any of the
experiments. Absence of garnet in the lowest temperature experiments on both KAP and
3VG cannot be attributed to nucleation difficulties, as many growth sites were available
in the form of garnet seeds in the starting materials. Accordingly, I attribute the lack of
garnet below 850 °C (and below 800 °C for KAP at 15 kbar) to its thermodynamic

instability. This is supported by the complete absence of garnet in the low temperature
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experiments, suggesting that the garnet seeds were consumed by reaction during the

experiments.

Garnet growth textures

Garnet occurs as two morphologic types in the experimental run products - as
overgrowths on garnet seeds and as discrete grains (neoblasts) that nucleated during the
experiments (Figure 3.2 A-D). The former type is easily recognized by the presence of a
rim that is compositionally distinguishable from that of the starting garnet core. Remnant
garnet seeds were present as cores in almost all the experiments with the KAP starting
material. Gamnet crystals are typically poikiloblastic, incorporating other phases during
its growth. These inclusions (most commonly clinopyroxene and hornblende) are distinct
textural features of neoblastic garnets and overgrowths. The cores, representing relict
garmet seeds, are devoid of any inclusions (Figure 3.2 A). The compositions of pyroxene
inclusions in garnets are identical to pyroxenes in the matrix that grew during the
experimental conditions. This indicates that the growth rate of pyroxene crystals was
slow relative to that of the adjacent garnet crystals, which grew at a faster rate to
poikilitically enclose the pyroxenes. The hornblende inclusions appear to be relics of the
starting hornblende.

Despite the anhedral nature of the garnet seeds, the overgrowths developed
euhedral, equant crystal boundaries. Melt pockets commonly fringe garnet crystals and
are easily identified by their distinctive dihedral angles with crystalline phases (Figure
3.2 C). At experimental conditions where less garnet is produced (<900 °C, <15 kbar),

melt is generally segregated around the capsule walls. In experiments where abundant
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garnet is present, quenched melt is disseminated in pockets around the garnets (Figure
3.2) suggesting that the presence of garnet crystals serve as collection sites for melt.
Another feature of garnet growth in these experiments is the apparent difference
in the number of gamet nuclei in the two starting materials. Although the amounts of
gamet produced were similar in both bulk compositions, growth occurred on a larger
number of nuclei in KAP than in 3VG. Interestingly, 3VG garnets are on average much
larger than the KAP garnets at the same experimental conditions (Figure 3.3). I attribute
this grain size difference to differences in availability of garnet seeds. More specifically,
the lower number of garnet nuclei in 3VG resulted in the growth of larger grains on those
fewer nuclei. Importantly, the proportions of garnet in both bulk compositions follow a

similar correlation with pressure (see below).

Controls on garnet growth

Growth of porphyroblasts in metamorphic rocks is believed to occur by diffusion
of components through an intergranular fluid phase (Carlson, 1989). In the present
experiments, at super-solidus conditions, a silica-rich melt is present as the intergranular
fluid phase and facilitates transport of ions to growth sites. Given homogenous melt
distribution within the charge, the growth of porphyroblasfs like garnet during the
experiments is controlled by the diffusion rate of elements through the melt (diffusion
control) and/or by the rate of incorporation of these materials at the garnet interface
(interface control). During diffusion controlled growth, individual garnet crystals tap
elements from a diffusional domain that may or may not overlap with diffusional

domains of other crystals (Figure 3.4). Overlap of diffusional domains will result in
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competition for materials and limited growth of crystals within that domain. Therefore,
during diffusion controlled crystal growth, isolated crystals are expected to grow larger
than crystals that are clustered together or closely spaced. Also, nucleation of new
crystals would be limited to areas outside the diffusional domain of pre-existing crystals.
This results in a non-random distribution of crystals (Daniel and Spear, 1999). During
interface controlled growth, pre-existing crystals do not inhibit nucleation of new crystals
in its vicinity. A more random distribution as well as clustering of crystals would be
expected in this case. Also, due to lack of competition for growth ingredients, crystal
sizes are not influenced by the distance to next nearest neighbor, which for interface
controlled growth is much less than that for diffusion-controlled growth (Figure 3.4).
Random distribution of garnet crystals in the current experiments (Figure 3.3
A&B) is suggestive of an interface-controlled growth mechanism. No correlation
between the size of the crystals and its distance to the next nearest neighbor was observed
in the experimental charges. Crystals that occurs in clusters were found to be as large as
isolated crystals indicating that diffusional processes were not rate limiting. In many
higher temperature experiments, growth domains of individual garnet crystals impinged
to form grain aggregates (Figure 3.2D). Grain aggregation has been documented to be a
common growth feature in natural garnet porphyroblasts (Daniel and Spear, 1998). A
higher degree of grain aggregation was observed in the 3VG than in the KAP
experiments. This could be the result of larger average size of garnet crystals and growth
addition to relatively fewer and closely spaced nuclei in 3VG. During diffusion-
controlled growth, inhibition of crystal nucleation within the diffusional domain of pre-

existing crystals would, in general, lead to less aggregation of these crystals with
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neoblasts (Figure 3.4). The common occurrence of growth impingement between
neoblasts and overgrowths (on seeds) in the present experiments indicate that nucleation
of new crystals was independent of the locations of pre-existing crystals, a feature of
interface-controlled growth.

The radius-rate method (Kretz, 1974; Daniel and Spear, 1999) has been applied to
understand the growth mechanisms in natural garnets. In this method, compositional
zoning profiles in garnets are utilized to calculate the relative growth rate. This is done
by calculating the radial distance between two compositional contours for a pair of
garnets and dividing this distance in the smaller garnet by the distance in the larger
garnet. This parameter, normalized Ar, is a measure of amount of material added to
garnet over a compqsitional interval. A plot of Ar vs. normalized radius (defined as the
ratio of the radius of the small garnet measured from the centre to the midpoint of the two
compositional contours to a similar measurement in the large garnet) is a radius-rate
curve, the shape of which varies for diffusion controlled growth and interface controlled
growth (Figure 3.5). Diffusion-controlled growth is characterized by a concave upward
profile signifying faster growth for smaller crystals. In contrast, interface-controlled
growth is characterized by a radius rate curve showing a normalized rate equal to unity
signifying identical radial increments for crystals, regardless of their size.

Although compositional zoning of garnet did not occur during the present
experiments, the lack of compositional equilibrium between the garnet seeds and
overgrowths provide us with two distinct compositional domains that can be used for
radius-rate calculations. Calculations were made by modifying the method employed by

Daniel and Spear (1999). Radius rate plots were calculated from BSE images for three
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KAP samples in the following manner. KAP samples were chosen because of the ease
with which compositional difference between the seed and overgrowths could be detected
on BSE images. From the BSE image the aréa of a garnet seed was measured by counting
the pixels by grayscale thresholding (using NIH Image software, Rasband, 1997-2005)
and a corresponding radius (r;) calculated from a circle with an area equal to the
measured area. A similar procedure was carried out for the garnet overgrowth on that
seed and a corresponding overgrowth radius calculated (r;). The difference between the
two measurements (r.-r;) is a function of the growth rate of garnet during the
experiments. The average of the sum of two measurements also gives the average radius
(R) for the garnet crystal. This procedure was repeated for five garnet crystals of varying
sizes from the same experiment. Only crystals without obvious growth impingement
were chosen for measurements. Radius-rate plots were then made by plotting normalized
Ar  ((t2-T1)small grain/(f2-T1)arge  grain) against normalized radius ((r2411)/2)small  grain/
((r2+11)/2)1arge grain) for a pair of garnets. The largest uncertainty in this method is
introduced by measuring crystals that are cut off-centre which could lead to a higher or
lower calculated Ar values if the concerned crystal is small or large, respectively.
Another uncertainty inv the calculated radius of the overgrowths is imposed by the
presence of mineral inclusions within the overgrown domain. The effect of this in radius
rate calculations was reduced by visually selecting crystals with similar inclusion density
for area measurements.

Radius rate plots for the different KAP samples reflect a similar trend (Figure
3.5). The radius rate data for these samples are relatively flat or show a slight linear

trend. The majority of the points have normalized Ar <1, suggesting that growth was
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either faster for the large crystal or that the measurements were done on large crystals
that were sectioned off-centre.  Although most of the radius rate values are less than
one, they are clos‘e to unity as would be expected for interface-controlled growth. In
general, the radius rate data do not exhibit any significant upward curvature as would be
expected with diffusion-controlled growth. Diffusion-controlled growth predicts higher
Ar for lower normalized radii (implying that smaller crystals grow proportionately faster),
which is not bome out by the radius rate measurements on gamets in the present

experiments.

Garnet mode

The estimated modal abundances of phases are given in Table 2.11. Figure 3.6
shows the variation in the modal abundance (as volume percent of the product phases) of
garnet as a function of pressure. The influence of experimental duration on the modal
abundance of garmet was assessed at 17.5 kbar and 20 kbar at 950 and 900 °C,
respectively. The largest discrepancy in gamet abundance is in the 20 kbar (900 °C)
experiments where gamnet is 7% more abundant in the 240 hour experiment than in the 48
hour experiment (Figure 3.7). This difference is outside the typical uncertainties in the
modal abundance estimate of garnet in these experiments. The difference in garnet
abundance in 192 and 264 hour experiments at 17.5 kbar is minor. I concur with the
observation of Wolfe and Wyllie (1993) that phase abundances approach equilibrium in
experiments over 4 days duration. On the basis of the longer duration of my experiments
compared to those of previous studies, I argue that the garnet abundances reported here

are likely closer to the equilibrium value. Garnet abundance is positively correlated with

158



pressure (at temperature >850 °C, r* = 0.88 and 0.93 for 3VG and KAP, respectively).
Above 850 °C, increase in garnet abundance with pressure follows a similar pattern for
both bulk compositions (1.7 vol.%/kbar for KAP and 1.6 vol.%/kbar for 3VG) (Figure
3.6). There seems to be a weak positive correlation between garnet abundance and

temperature (at constant pressure), but the variation is within the uncertainty of the garnet

mode estimate.

Garnet compositions

The average compositions of garnets from the experimental run products are
reported in Table 2.8. The garnet compositions reflect bulk compositional differences
between the two starting materials, with those from 3VG showing generally higher MgO
and lower FeO and CaO contents than the KAP gamets at the same experimental
conditions. Garnets are almandine rich (47- 56 mole % for KAP and 44 — 53 mol% for
3VG) with very low Cr;0; (< 0.06 wt.% Cr,0;). Pyrope content varies from 10 — 27
mole % in the KAP experiments and 16 - 32 mole % in 3VG experiments. Grossular
content of garnets is very similar in both bulk compositions generally varying between 20

and 31 mole %.

VG

The Mg-number of garnet varies between 0.24-0.42 and increases with
temperature and more subtly with pressure at the experimental conditions investigated.
Garnets in run products with textural evidence for growth are characterized by higher

Mg-number, MgO, TiO; and lower FeO and MnO contents than the starting garnet.
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These geochemical features were used as criteria for new garnet growth in the
experiments. In general, MnO content decreases with increasing temperature. The
grossular content varies between 20 and 31 mole % and decreases with increasing

temperature.

The Mg-number of garnet varies between 0.23-0.38 and increases with
temperature and subtly with pressure. As with 3VG, garnets have higher MgO, Ti0O; and
lower FeO and MnO contents than the starting garnets. In contrast to the 3VG
experiments, many garnets are zoned in the KAP experiments with the core having
compositions similar to the starting garnet. Grossular content ranges between 0.21 and

0.29 mole % and does not show any appreciable variation with pressure or temperature.

Ti in Garnet

Moderate to high Ti contents observed in the experimental garnets (0.65-1.57 wt.
% TiO, in KAP and 0.62-1.58 wt. % TiO; in 3VQ) is a characteristic of, but not unique
to, the present experiments. A compilation of experimental garnet compositions from
previous metabasalt melting experiments also reveals moderate to high Ti concentrations
in garnets (Figure 3.8). None of the garnets in the present study and only 5 of 78 garnet
analyses from previous experiments have TiO; contents < 0.5 wt. %. The compilation is
mostly from dehydration melting experiments but also include a few water-
undersaturated melting experiments (experiments with free water but in quantities

insufficient to saturate the melt phase at the P-T conditions investigated) on metabasalts.
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I suggest that in the temperature range 850-1200 °C, TiO, content >0.5 wt. % is a
characteristic feature of garnets produced by hornblende dehydration melting reactions.
This is true for metabasaltic rocks with a range of Fe/Mg ratios and bulk TiO; contents.
Although there is considerable scatter in the data, the TiO, content of garnet appears to be
weakly correlated with temperature and pressure in my experiments (Table 2.8). In
general, TiO, in garnet increases with temperature up to 1000 °C. Above this
temperature, Ti content drops marginally reflecting a change in the partitioning of Ti at
these conditions. At constant temperature, Ti in garnet increases marginally with
pressure.

Tetravalent Ti occupies the octahedral site in garnet, requiring charge
compensation in the structure (Meagher, 1980). A number of charge compensating
substitutions mechanisms have been proposed for incorporating Ti in the octahedral site
of garnet. These include substitution of monovalent cations in the dodecahedral site
(NaTi garnet), Fe** in the tetrahedral site (schorlomite) (Chakhmouradian & McCammon,
2005), Mg in the octahedral site (Mg-morimotoite), Al in the tetrahedral site (Al-
schorlomite), Fe** in the octahedral site (morimotoite), and Fe?* in both octahedral and
dodecahedral site (Fe-morimotoite) (Meagher, 1980; Petermann et al., 2003). The
relative importance of these substitution mechanisms was evaluated by recalculating the
garnet analyses into end members using the calculation scheme of Locock (2008)(Table
3.1). This scheme assumes 8 cations and 12 oxygens with no vacancies and uses charge
balance constraints to evaluate the proportions of ferric and ferrous iron in the garnet. It
also assigns Ti in garnet to six endmembers on the basis of charge balance, reflecting the

six substitution mechanisms listed above. All of the above mentioned substitution
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mechanisms, except Fe-morimotoite and schorlomite substitutions, can be invoked to
explain the high Ti content in the garnets from the present study. Na,O was not
measured for all the garnets from my experiments. However, available data indicate that
substitutions involving NaTi garnet and Mg-Morimotoite appear to be minimal. Al-
schorlomite and morimotoite components seem to be the main charge balancing
substitutions accompanying incorporation of Ti into the garnet structure in my
experiments.

Figure 3.9 is a plot of the distribution coefficient (K4) of TiO, between garnet and
liquid in experiments for which compositional data are available. At melt TiO, <1 wt. %,
K4 values are >1 indicating that Ti is preferentially partitioned into garnet during
dehydratjon melting of metabasaltic compositions. A review of available data indicate
that melt TiO, contents exceed 1 wt. % only at temperatures above 1000 °C. In the
present study only two of the measured melt compositions (both at 1050 °C) had TiO;
content >1 wt. %. The garnet-melt TiO, distribution coefficient is >1 for all available

garnet-melt compositions.

Restite Density

I calculated the density of the residue of partial melting using measured mineral
compositions and abundances and mineral molar volume, compressibilities and thermal
expansivities given by Berman and Aranovich (1996). For solid solutions like garnet,
plagioclase, clinopyroxene and orthopyroxene, mineral density was calculated as a linear
interpolation between those of the end members. The calculated restite density as a

function of pressure is shown in Figure 3.10. For a pressure increase from 10 to 22.5
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kbar, there is near-linear increase in density of the restite for both bulk compositions.
Within this pressure range density of the restite increases from 2.96 to 3.47 g/cm’ for the
3VG composition and 3.00 to 3.45 g/cm’ for the KAP composition. The increase in
density of the restitic assemblage with pressure is directly correlated with the proportion

of garnet in the residue (Figure 3.11).

DISCUSSION

Implications for slab melts

Experimental melt compositional data indicate that melt TiO, contents are below
1 wt. % at temperatures below 1000 °C (Figure 3.12). Experimental data on TiO»
solubility in silicate melts indicate that this is a function of temperature, melt composition
and, to a lesser extent, pressure (Ryerson and Watson, 1987). Above 1000 °C, melt TiO,
contents exceed 1 wt. %. Purported slab melts such as high-SiO, adakites and Archean
TTG’s are characterized by TiO;, content < 1 % (Martin et al, 2005). Many of these
magmas are characterized by a negative Ti anomaly in primitive-mantle normalized
trace-element diagrams. Garnet compositional data from our experiments indicate that
this mineral can sequester significant Ti in its structure and contribute to the low TiO;
contents and negative Ti anomalies of slab-derived magmas. If these magmas were

generated at temperatures above 1000 °C, they must have undergone fractionation of Ti-

rich phases during transport to their emplacement level.
The high TiO; content observed in garnets of dehydration melting experiments

have important geochemical and petrological implications. Continental crust and
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depleted mantle have subchondritic Nb/La, Nb/Ta and Ti/Zr ratios (Rudnick et al., 2000).
This mass imbalance in Nb, Ta and Ti between continental crust and depleted mantle, its
presumed complementary reservoir, has been attributed to the presence of rutile in
refractory eclogites that are sequestered within deeper levels of the Earth’s mantle
(Rudnick et al., 2000). The basis of this conclusion is the sporadic occurrence of rutile in
eclogite xenoliths, its high K4 values for Nb and Ta during partial melting, and a deficit in
the Ti budget of calculated bulk compositions using modal abundance and compositions
of garnet and omphacite in eclogite xenoliths (Rudnick et al., 2000). The Ti content of
"eclogitic garnets in these calculations was generally assumed to be <0.5 wt. %. The
observed deficit in Ti in the mass balance calculations was translated to an estimate of
rutile abundance assuming no preference of other phases for Ti. On the basis of higher
TiOzrcontent of gamnets presented here and reported in previous studies, I suggest that the
Ti deficiency and in turn the calculated rutile abundances may have been overestimated
in these computations. My results show that in low-Ti amphibolites, garnet can be an
important repository for Ti (and possibly other HFSE) during metamorphism of
metabasaltic rocks and that Ti behaves compatibly during partial melting of metabasalts
in the gamnet stability field.

Although experimental data suggest high TiO2 (>0.5 %) to be a common feature
of residual gamets during dehydration melting of amphibolites, available garnet
compositional data from natural high-pressure granulite and eclogite-facies rocks show
relatively low TiO; contents (Figure 3.8). The rarity of high Ti-garnets in natural high-
pressure granulite and eclogite samples may indicate that a Ti-rich phase is exsolved

from garnet during cooling or exhumation of these rocks. The presence of numerous
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rutile and ilmenite inclusions in garnet in many eclogite and other lower crustal mafic
xenoliths has been attributed to such an exsolution process (Hills and Haggerty, 1989;
Zhang et al., 2003). Many such inclusions in the form of crystallographically oriented
rutile needles have been noted in eclogite and clinopyroxenite xenoliths (Hills and
Haggerty, 1989; Figure 3.13) and in exhumed ultra-high pressure terranes (Zhang et al.,
2003). Other studies have reported randomly oriented rutile inclusions in garnets from
eclogite xenoliths (Usui et al., 2006). Avoidance of rutile inclusions and lamellae during
microprobe analyses of gamet (a routine spot selection criterion during microprobe work)
may have resulted in the measurement of garnet TiO; contents that are reflective of post-
exhumation rather than peak metamorphic conditions. If this is true, re-integration of
exsolved rutile lamellae with matrix gamet composition is required to obtain the TiO;
content of garnet at peak metamorphic conditions.

Gamnet-melt trace element partitioning data are used extensively in trace-element
modelling of partial melts generated from mafic and ultramafic source rocks (e.g.
Hirschman and Stolper, 1996; Moyen et al., 2006). The high TiO; content of garnet has
implications for partitioning of trace elements between garnet and co-existing melt
(Petermann et al., 2003; Dwarzski et al., 2006). Garnet-melt partitioning data indicate
that Ti behaves compatibly to at least 1000 °C. A number of charge compensating
substitutions accompany substitution of Ti into the garnet structure as described above.
Incorporation of highly charged trace elements (e.g. Th, U, HFSE, REE) in garnet during
melting is achieved through substitution schemes analogous to the Ti-substitution
mechanisms (Petermann et al., 2003). The presence of high Ti content in gamet may

limit the charge compensating mechanisms available for incorporating other highly
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charged trace elements. Garnet-melt partition coefficients for highly charged trace
elements are, therefore, lower for Ti-rich gamnets than for Ti-poor gamets (Petermann et
al., 2003). The Ti-effect may counteract the effect of other cations on the trace element
partitioning behavior of garnet. For example, van Westrenen et al. (2001) showed that
eclogitic garnets with more than 19 mol % Ca have higher partition coefficients for many
HFSE than garmnets with less Ca. The residual gamets of the present study have > 19 mol
% Ca, similar to garnets from many high pressure granulite and eclogitic assemblages.
However, the high Ti of garnet in the present study may offset the effect of Ca on HFSE
partitioning. Klimm et al. (2008) did not find any difference in the partitioning behavior
of highly charged cations in Ti-free and Ti-bearing gamet. The partitioning behavior
observed in the experiments of Klimm et al. (2008) may have been caused by the
relatively high grossular content of garnets in their study. A systematic study of the
contrasting effects of Ti and Ca on the trace-element partitioning behavior of garnets is
required to fully understand the garnet signatures that likely result from partial melting of

MORB-derived mafic rocks in the garnet stability field.

Implications for restite delamination

Kay and Kay (1991) advocated delamination of lower crust as a crustal recycling
mechanism. This process has been purported to take place in areas of thickened
continental crust (Bird, 1979; Ducea and Saleeby, 1996; Zandt et al., 2004) and oceanic
plateaus (Zegers and van Keken, 2001; Bedard, 2006). Delamination, as originally
proposed, involves the sinking of lower crust and mantle components of the lithosphere

into asthenosphere (Kay and Kay, 1991; Lustrino, 2005). More recently a different mode
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of delamination has been proposed in which the formation of high density assemblages in
mafic lower crust lead to Rayleigh-Taylor instabilities causing the lower crust to sink into
the mantle (Zegers and Van Keken, 2001). Such a delamination process has been
proposed to be the dominant mode of crustal recycling before the onset of modern-style
plate tectonic process in the late Archean (Vlaar et al., 1994; van Thienen et al., 2004a,
2004b; Bedard, 2006). Implicit in the delamination models is the requirement that restite
density exceeds 3.3 g/cm’, the density of the underlying mantle (Ringwood and Green,
1966). This density increase is largely attributed to the formation of a dense eclogite-
facies assemblage in the mafic lower crust (Zegers and van Keken, 2001; van Thienen et
al., 2004b).

My calculations show that restite density, which is directly proportional to the
amount of garnet in the residue, only exceeds the density of the underlying mantle at
pressures above ~17.5 kbar (Figure 3.9), which corresponds to a depth of ~55 km. This
depth corresponds to the transition of the restite assemblage from garnet-granulite to
eclogite-facies. For two reasons, this depth estimate is likely to represent a minimum
value. Firstly, the calculated restite density assumes complete segregation of melt from
‘the residue, which is likely never achieved in nature. Textural observations in the
experimental charges indicate that presence of abundant garnet provides pockets where
melt could collect without being removed. Unless active deformation forces melt out of
these pockets, the effective density of the restite would be lowered by the presence of
disseminated melt pockets. Secondly, the lower parts of oceanic crust would be
composed of cumulates with higher Mg/Fe than the differentiated rocks at upper levels of

the crust (Farnetani et al., 1996; Foley et al., 2003). If this were the case, the depth
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requirement for geherating the necessary amount of garnet would be > 55 km, given the
positive correlation between the lower pressure limit of garnet stability and the Mg-
number of the basalt protolith (Green and Ringwood, 1967; Foley et al., 2003). A 55 km
thickness estimate of crust required for effecting delamination is considerably greater
than the average thickness of continental or oceanic crust. It is important to note that this
thickness requirement is also larger than the thickness estimates for Archean oceanic
crust using parameterized mantle melting models (McKenzie and Bickle, 1988; Vlaar and
van den Berg; 1991). Thus crustal thickening by tectonic or magmatic processes is a
prerequisite to delamination. Oceanic Plateaus with crustal thickness larger than normal
oceanic crust have been suggested as possible locales for delamination of lower crust
(e.g. Zegers and van Keken, 2001). Modern-day oceanic plateau sequences are thought to
have been generated above anomalously hot mantle. The thickness of the crust in the
Ontong Java plateau, the world’s largest oceanic plateau is ~35 km (Gladczenko et al.,
1997), much less than the thickness required to stabilize an eclogitic mineral assemblage.
Delamination processes in the Archean as envisaged in the models of Zegers and van
Keken (2001) and Bedard (2006) could not have been a viable geodynamic process
unless unusually thick (>50 km thick) oceanic plateaus were produced in the Archean.
Without evidence for the existence of such anomalously thick plateaus, lower crustal
delamination models cannot be considered a viable alternative to plate tectonic processes
in the Archean. The minimum thickness (55 km) necessary to effect delamination of
lower crust thus appears to require a crustal thickening event, which is most easily
achieved in a plate tectonic setting at convergent plate margins. Some delamination

models for the Archean invoke multiple delamination events as a mechanism to generate
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the large volumes of felsic magmas observed in the Archean geologic record (Bedard,
2006). Multiple delamination of lower crust requires repeated thickening of the crust
(after initial and subsequent delamination events) to >50-55 km. The difficulty of
attaining the requisite thickness for even a single delamination event raises serious

questions about the viability of multiple delamination events in Archean.
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KAP 40,950°C, 17.5 kban

3VG 46,1000 °C,22.5 kbar

Figure 3.3: BSE images showing typical random distribution of garnet crystals in the

experiments. (A) KAP (B) 3VG. KAP gamets grew on a relatively larger number of nuclei
(seeds) than 3VG. Growth on a limited number of nuclei in 3VG resulted in the formation

of larger crystals.
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Figure 3.5: Radius rate plots for garnet growth in three KAP experiments. The
dashed curve corresponds to diffusion-controlled growth and the solid line to
endmember interface-controlled growth. The relatively linear pattern of the data
and normalized Ar values closer to unity (except for one garnet in KAP 45)
indicate an interface control on garnet growth during the experiments.
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Figure 3.7: Variation in the proportion of gamet as a function of duration of the experiment.
Diamonds-experiments at 20 kbar, 900°C; Squares- experiments at 17.5 kbar, 950°C;

closed symbols-3VG experiments; open symbol-KAP experiments. Error bars represent
2-sigma standard deviation of garnet modal estimates.
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Figure 3.8: Plot of TiO, vs FeO' in experimental garnets. Also shown are garnet compositions
from natural amphibolitesand granulites for comparison. The natural garnets have low TiO,
content and many from the amphibolite localities have high FeO" content. Previous experimental
data from: Winther and Newton (1991); Sen and Dunn (1994); Patino Douce and Beard (1995);
Rapp and Watson (1995); Springer and Seck (1997); Ernst and Liou (1998); Lopez and Castro
(2001). Natural garnet data from Ghent et al.(1993); Percival (1983); Graham and Powell (1984);

Carswell and O’Brien (1993); Stosch et al.(1995);Hartel and Pattison (1996); Clarke et al. (2000);
Cook et al. (2000); Holtta et al. (2000).
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same as in figure 3.8.
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Garnet

Figure 3.13: Photomicrographs (in plane polarized light) showing exsolved rutile lamellae

in garnets from lower crustal xenoliths of Diavik kimberlite pipe . Note the crystallographically
controlled orientation of rutile lamellae in figure A. Figure B shows the rod shape of rutile
lamellae. Such lamellae are common in garnets of eclogite xenoliths and exhumed high-pressure
terranes.
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Chapter 4: Constraints on the origin of early-Archean TTG magmas
and conjectures on Archean geodynamics and implications for the

origin of crust-mantle systems

(4 version of this chapter co-authored by Dr. Thomas Chacko has been published in

Geology, a reprint of which is attached in Appendix D)

INTRODUCTION

Archean Tonalite-Trondhjemite-Granodiorite (TTG) magma suites represent the
oldest coherent pieces of felsic continental crust (Bowring and Williams, 1999). Plutonic
rocks of TTG composition, together with tholeiitic and komatiitic volcanics, form the
dominant magmatic suite in Archean cratons. Understanding the origin of these magma
suites and their spatial and temporal relationship to each other is important in
understanding the origin of continental crust and in evaluating the geodynamic processes
that were operative in the early Archean.

Many petrologically diverse processes have been proposed for the origin of TTG
type rocks. These include (a) fractional crystallization of basaltic magmas (Arth et al.,
1978), (b) Sodium metasomatism of granitic precursors (Drummond et al., 1986;
Fiannacca et al., 2005), (c) direct melting of mantle (Moorbath, 1975) and, (d) partial
melting of diverse lithologies including greywackes (Arth and Hanson, 1975), eclogites
(Arth and Hanson, 1972; Rapp et al., 2003), amphibolites (Barker and Arth, 1976;
Martin, 1986; Foley et al., 2002), basalts (Johnston, 2986) and tonalites (Johnston and

Wyllie, 1988). Processes a-c are unlikely to have been responsible for the large volume
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of TTGs found in Archean terranes. The paucity of intermediate composition rocks and
cumulate rocks in the Archean plutonic record render fractional crystallization processes
in TTG formation less favourable. Metasomatic processes may have been locally
important but are unlikely to have affected large volumes of crust. Moreover, such
processes require the presence of granitic precursors (Fiannacca et al., 2005), and are
therefore, not viable as an explanation for earliest TTG formation. Partial melting of
unaltered mantle peridotites yield mafic magmas and not TTGs (e.g. Jaques and Green,
1980; Hirose and Kushiro, 1993; Walter, 1988). Only some late Archean high-Mg
diorites (sanukitoids) could feasibly be explained by direct partial melting of a
metasomatised mantle source (Evans and Hanson, 1997). The role of partial melting of
metabasaltic rocks in generating Archean TTGs have received considerable attention due
to the common spatial association of these two rock types, their geochemically
complementary nature (e.g. Rollinson, 1997) and abundance of metabasaltic protoliths in
Archean cratons.

Experimental and theoretical studies support the origin of TTG rocks through the
partial melting of hydrated metabasaltic rocks (e.g. Rapp et al., 1991; Sen and Dunn,
1994; Springer and Seck, 1997; Martin et al., 2005). Understanding the conditions at
which partial melting of metabasalt occurs has been the focus of many studies because of
the potential of linking the melting process to specific tectonic environments. Highly
fractionated REE patterns ((La/Yb)x = 15-100) and depletion in HREE (Yb < 1 ppm) of
TTGs require generation of these magmas at depths where garnet and/or amphibole
constitute a large proportion of the residue (Martin, 1986). A number of tectonic models

have been proposed to satisfy this requirement, including melting of subducted oceanic
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crust (Martin, 1986; Foley et al., 2002), melting in the root zones of oceanic plateaus, or
thick oceanic crust followed by delamination of eclogitized lower crust (Zegers and van
Keken 2001; Condie, 2005; Bedard, 2006). All of the above tectonic settings are capable
of generating magmas comparable to TTG in terms of their major-element compositions,
making interpretation of the specific tectonic setting of formation of the first continental
crust equivocal. Here, I consider some fundamental characteristics of Archean TTGs
including their spatial relationship in granite-greenstone terrains, HREE depletion and
oxygen isotope systematics and present new experimental data to argue that conditions
envisaged in lower crustal melting and delamination models are inadequate in explaining
early Archean TTG formation. I propose a modified subduction model for the origin of

TTG that formed the first continental nuclei.

Constraints on Archean TTG formation

Any model of TTG formation should (a) account for the high proportion of TTG
(up to > 60%) in many Archean cratons, (b) address the conditions required for
generating the observed HREE depletion in early Archean TTG, (c) satisfy the
requirement that hydrated basaltic rocks be present in the source region of TTG to
produce significant quantities of melt at reasonable crustal temperatures (<1100°C)
(Foley et al., 2002), and (d) explain the enriched 5'®0 signatures of Archean TTGs
indicative of low temperature hydrothermal alteration of basaltic protoliths (King et al.,
1998; 2000; Bindeman et al., 2005).

Experimental studies have produced TTG-type melts by ~ 20 % partial melting of

metabasaltic protoliths at temperatures >900'C (e.g. Rapp et al., 1991). The high
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proportion of TTG in many Archean cratons, therefore, requires a large volume of mafic
composition rocks in the magma source region. The HREE depletion in TTG is generally
attributed to the presence of garnet in the residue of TTG source rocks (Martin, 1986). I
evaluated the amount of residual garnet that must be left behind in the source region to
produce the observed HREE depletion in early Archean TTG by combining modal
abundance data from experiments with published mineral/melt partition coefficients for
REE (Springer and Seck, 1997; Klein et al., 1997; 2000). I used Yb as a representative
element to assess the degree of HREE depletion in the melt and the La/Yb of the melt
ratio as a monitor of the extent of REE fractionation during dehydration-melting of
metabasalts. For the calculations, average Yb and La contents of 3.0 and 6.8 ppm and
0.78 and 32 ppm were used for MORB and early Archean TTG, respectively. The values
for MORB are fromvthe PETDB database (http://www.petdb.org) and the values for early
Archean TTGs from Martin et al. (2005). Calculations indicate that for 20% partial
melting of a MORB-composition source rock, at least 20 weight per cent garnet is
required in the melt residue to generate the observed Yb depletion in average early
Archean TTG (Figure 4.1). As shown in Chapter 3, gamnet abundance in the residue
during dehydration melting of metabasaltic rocks can be correlated with equilibration
pressure. The equilibration pressure for stabilizing the required amount of garnet can
then be converted to the depth at which TTG magmas are generated. Here, I use my new
experimental constraints on garnet stability to address the depth requirements of source
regions of early Archean TTG magmas. The discussion below is based specifically on
the results of the 3VG experiments but essentially identical conclusions are reached with

data from the KAP experiments.
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DISCUSSION

Experimental constraints on garnet stability

In metabasaltic rocks, the appearance of garnet is in part controlled by the bulk
composition of the protolith (Green and Ringwood, 1967; Foley et al., 2003). There is no
consensus on the composition of Archean oceanic crust, which in most models is
considered to be the source of TTG. However, the broad similarity of Archean tholeiitic
sequences to normal modern-day MORB suggests that the two may not have been greatly
different, at least for the volcanic components of the crust. Recent reports of pillow
basalts and associated sheeted dykes from a proposed ophiolites sequence in the 3.8 Ga
Isua supracrustal belt in Greenland have a MORB-like composition (Furnes et al., 2007).
Although Archean basaltic volcanics may range to more Mg-rich compositions (Bickle et
al., 1994; Foley et al., 2003), a first-order constraint on the depth requirements for TTG
formation can be derived from garnet stability relations in MORB-type amphibolites.

My new experimental data indicate that garnet first becomes stable at ~10 kbar in
MORB-type metabasalts, consistent with the results of previous experimental studies
(e.g. Wolf and Wyllie, 1994). The proportion of gamet in the residue is directly
correlated with pressure at which melting occurs (Table 2.11). Importantly, pressures
greater than 15 kbar (> 48 km) are required to stabilize 20 wt.% garnet in the melt residue
(Figure 4.2: Table 2.11). Most Archean high-Al TTGs are believed to have formed with
little or no plagioclase in the residue (Martin et al., 2005) due to the high Sr/Y ratios

exhibited by these rocks. My experimental data indicate that pressures >18 kbar are
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needed to form a plagioclase-free eclogite mineral assemblage (Figure 4.2). This
corresponds to melting depths >58 km. Some petrologists (Bickle et al., 1994; Foley et
al., 2003) argue that the Archean oceanic crust would have been more Mg-rich than
typical MORBs. If this was the case, the depth requirement for granulite-eclogite
transition and for generating the necessary garnet to produce strong HREE depletion in
partial melts would further increase because of.the inverse dependence of garnet
stability/abundance on the Mg-number (Mg/(Mg+Fe)) of the protolith (Green and
Ringwood, 1967: Foley et al., 2003). The estimated depth of 48 km, to stabilize 20 wt. %
garnet in the melt residue in MORB-type compositions is, therefore, the minimum depth
at which melting must occur to produce early Archean TTGs. This requirement for
source regions of TTG magmas is consistent with conditions proposed for TTG formation
by some recent studies based on trace element modelling (Moyen and Stevens, 2006;
Xiong, 2006). The depth requirement is also consistent with the results of experimental
phase relations of trondhjemites, which shows that pressures >13 kbar are required to
stabilize garnet as a liquidus phase (Johnston and Wyllie, 1988; van der Laan and Wyllie,

1992).

Implications for tectonic models

The requirement of melt generation at depths >48 km has implications for all of
the proposed mechanisms for early Archean TTG generation. Proposed delamination
models are problematic due to the large crustal thickness necessary to transform mafic
rocks to eclogite in order to induce the delamination process. Eclogite formation is a

critical feature of all these models (Zegers and van Keken, 2001; Bedard, 2006).
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Parameterized modelling of mantle melting indicates that even with a mantle potential
temperature of 1500 'C, the resulting oceanic crust is unlikely to have been > 20 km thick
(Vlaar and van den Berg, 1991). The base of such crust would not be in the eclogite
stability field, or for that matter in the garnet stability field (~35 km or 10 kbar). As a
consequence, melts generated in the lower parts of this crust would not have the HREE
depletion observed in early Archean TTG. Some of the delamination models envisage
thickening of the crust (to eclogite stability limits) through underplating of basaltic
magma (Zegers and van Keken, 2001). Although such a process may help attain the
depth requirement for generating strongly HREE-depleted TTG magmas, melt production
in this case would occur in rocks that had never interacted with surface fluids. In
contrast, the oxygen isotope compositions of zircons crystallized from TTG magmas
suggest -derivation from rocks that had a prior history of surface fluid-rock interaction
(Bindeman et al., 2005).

Models invoking melting in the root zones of oceanic plateaus (e.g. Condie, 2005)
have the same inadequacies as above in that oceanic plateaus thicker than 35 km are not
known in the modern-day or ancient rock record. Moreover, root zones of oceanic
plateaus are likely dominated by cumulates and other high-Mg derivatives (Foley et al.,
2002) which would not be conducive to generating the required amount of garnet (at
depths suggested by lower crustal melting models) for effecting HREE depletion in the
melt. Indeed, the REE pattern of felsic magmas generated today in oceanic plateau
settings are unlike those of Archean TTG (Martin and Sigmarsson, 2007).

Another problem with lower crustal melting and crustal delamination models for

TTG formation is the limited melt productivity of lower crustal rocks at reasonable
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crustal temperatures (<1100 "C). Melt production in the basal sections of oceanic plateau
type crust would be significantly less due to the high Mg-content and generally
anhydrous nature of these rocks. Many Archean cratons, however, exhibit voluminous
TTG magmatism. Advocates of delamination and lower crustal melting models have
recognised this problem of low melt productivity and have invoked repeated
delamination events (Bedard, 2006), unusually thick oceanic plateaus or crustal
thickening post-dating TTG production (Zegers, 2004) in order to explain the discrepancy
between TTG magma volume produced by delamination models and the observed
volume of Archean TTG.

Models involving melting of subducted oceanic crust (Martin, 1986; Foley et al.,
2002) are more consistent with the depth requirements for generating TTG. However, the
role of subduction processes in the Archean has been disputed on physical grounds that
plates could not attain the negative buoyancy required to initiate the subduction process
(e.g. Vlaar et al., 1994). Below I present a modified subduction model that addresses

these concerns.

A modified subduction model

Existing subduction models for the Archean argue that subduction occurred along
a steeper geothermal gradient and that the average age of subducting lithosphere was
significantly younger than in post-Archean times (Martin, 1986). Although it is intuitive
that any subduction processes before the existence of continents would have to be intra-
oceanic, how and why such subduction processes initiate remains uncertain. Notably,

there is a problem involving subduction of thicker oceanic crust in the Archean. Here, I
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present a model that would account for the initiation of subduction and resultant TTG
magmatism in the Archean.

There is a general consensus that the Archean Earth was hotter than at present,
although the magnitude of the temperature difference is a matter of debate (Nisbet et al.,
1993; Abbot et al., 1994; Pollack, 1997). Today, Earth’s heat loss mechanisms involve
cooling of the mantle through the production of plates at ocean ridges and intermittent
plume activity (Davies, 1993). It is likely that the Archean Earth also supported both of
these cooling mechanisms. Early Archean oceanic crust would therefore have comprised
two entities; ‘normal’ oceanic crust, produced by mantle upwelling at divergent margins,
and oceanic plateaus, produced by upwelling mantle plumes (Figure 4.3A). Both of these
entities would have been positively buoyant relative to modern-day oceanic crust because
of their large crustal thickness. However, a slight buoyancy contrast is established due to
the greater thickness and slightly more Mg-rich nature of plateau crust, making it buoyant
relative to ‘normal’ oceanic crust of the same age. A relatively larger buoyancy/density
contrast exists between the plateau lithosphere and normal oceanic lithosphere owing to
differences in the composition of lithospheric mantle in these two entities. Normal
oceanic mantle lithosphere is less depleted than that of the plateau because of the smaller
degree of melting experienced by the mantle in producing oceanic crust. The mantle
source region of a plateau is highly depleted because of extraction of large volumes of
tholeiitic and komatiitic magmas that form the plateau sequences. Density differences
between the mantle residue after ‘normal’ oceanic crust and oceanic plateau formation
were calculated based on the residual mineral modes and compositions from peridotite

melting experiments (Walter, 1998). I calculated a minimum density contrast of 0.6%
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based on melt residuum data at 30 kbar for melt fractions of 14 % and 37 % (Walter,
1998). This corresponds well with the 0.7 % density contrast calculated based on the
differences in the composition of highly depleted fore-arc and less depleted abyssal
peridotites (Niu et al., 2003). The net effect of oceanic plateau creation is a less dense
residual mantle that rises buoyantly and underplates the plateau crust. Once underplated,
this strongly depleted mantle (which I term “proto-mantle lithosphere” or PML) cools
conductively to eventually become the plateau lithosphere. Cooling of the PML occurs at
slower rate compared to oceanic mantle lithosphere because of its much larger thickness.
The slower cooling of the PML is also affected by a decrease in thermal diffusivity due to
the high initial temperature of the residuum.

The net result of these compositional, thermal and density differences between
normal oceanic and oceanic plateau lithosphere is that a gravitational instability develops
when the two are juxtaposed. This gravitational instability is enhanced if the formation
age of the oceanic plateau is younger than the adjacent oceanic lithosphere. Convergence
of normal oceanic lithosphere and oceanic plateaus could have been a common
occurrence in the Archean because of the smaller size of the plates and the tendency for
oceanic plateaus to form near the margins of plates (King and Anderson, 1995). This
facilitates the subduction of relatively dense normal oceanic lithosphere under the plateau
crust, through the depleted residuum (Figure 4.3B). A similar model for initiation of
subduction was proposed recently for the Cenozoic-age Solomon arc (Niu et al., 2003).
My model differs from this previous model in the location of the subducting plate. The
Benioff plane in my model is located within the mantle residuum (PML) of the oceanic

plateau rather than below this layer (Figure 4.3B). This is consistent with seismic profiles
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showing shallow dipping reflectors within the shallow mantle beneath some Archean
cratons (Calvert et al., 1995). Analogue models of subduction zones have stressed the
importance of density contrast between converging lithospheric plates in the initiation of
the subduction process (Mart et al., 2005). Interestingly, these models also suggest that,
given appropriate boundary conditions, the down-going plate can subduct at relatively
shallow angle into the ductile lithospheric layer of the overriding plate (Mart et al., 2005).
The location and angle of the subduction plane in this experiment is determined by the
depth to the top of the ductile lithosphere. I propose that the depth at which PML of the
oceanic plateau supports ductile deformation determines the top of the subduction plane.
This depth is a function of the cooling history of the melt residuum after oceanic plateau
extraction and, therefore, determined by the time interval between formation of the
plateau and the initiation of subduction. Specifically, a short time interval leads to a
hotter PML and in turn a shallower subduction plane. Variations in the age of plateaus at
the onset of subduction, therefore, determine the thickness of lithospheric mantle wedge.
The zone of weakness for subduction initiation develops as ductile fault or shear
zone arising from compressive stresses sustained between PML and the converging
oceanic lithosphere. Despite the high initial viscosity of the PML, ductile deformation
and slab penetration is enabled by shear localization near the boundaries of subducting
lithosphere by viscous energy dissipation caused by shear heating (Costa et al., 2003;
Kaus and Podladchikov, 2006) and possible viscosity reduction by dewatering (Hirth and
Kohlstedt, 1996) of sediments at the top of the slab. Dewatering of sediments may also
cause melting near the top margins of the descending lithosphere, which in turn may

partition strain into these melt-rich zones (Holtzman et al., 2005; Regenauer-Lieb et al.,
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2001). This would lead to the development of localized shear zones, the formation of
which appears to a necessary condition to initialize subduction processes (Regnauer-Lieb
et al., 2001; Kaus and Podladchikov, 2006). The higher heat flow in the Archean,
combined with the relatively young age of oceanic crust and shear heating during
subduction would cause the hydrothermally altered portions of the subducting crust to
melt and produce TTG-type magmas. Because of a thicker pillow lava section in
Archean relative to present-day oceanic crust (Bickle et al., 1994; Kent et al., 1996)
(Figure 3a), a larger thickness of Archean oceanic crust likely experienced hydration
through interaction with seawater. In turn, this thick, hydrated pillow lava section would
be capable of producing a larger volume of TTG magma than is possible by slab melting
in the present day. Importantly, melting of the subducted slab under thick plateau crust
would enable melting to occur at sufficient depth to generate >20 % garnet in the residue
and strong HREE depletion in the TTG magma.

Archean TTGs, generally, have higher MgO/(FeO+MgO) (Mg#) than
experimental melts from amphibolites. Interaction of slab melts with the mantle wedge
has been proposed to account for the higher Mg-number of TTG relative to experimental
melts from metabasalts (Rapp et al., 1999; Martin et al., 2005). Variation in the Mg# of
TTG has been attributed to differing degrees of interaction with the mantle wedge
(Smithies, 2000; Martin and Moyen, 2002; Smithies et al., 2003). A secular trend in Mg#
of TTGs has been suggested, with increase in Mg# towards the late Archean (Martin and
Moyen, 2002: Smithies et al., 2003) (Figure 4.4). This secular trend has been attributed
to cooling of the Earth towards the end of Archean, where cooler geotherms results in

melting of the oceanic crust at progressively greater depths (Martin and Moyen, 2002)
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(Figure 4.5C). Thus, late Archean TTGs derived from subducted oceanic crust have to
travel through a thicker mantle wedge resulting in more interaction and consequently
higher Mg#. While this argument is petrologically sound, I offer another possible
explanation for varying degrees of TTG-mantle interaction using the framework of the
new proposed model. As argued above, the depth to the Benioff zone under an oceanic
plateau controls the thickness of the mantle wedge. In turm my model predicts that this
depth is a function of the age of oceanic plateau at the time of plateau-oceanic lithosphere
convergence and subduction initiation (Figure 4.4 A&B). When the plateau is relatively
young, localized shear zones that initiate the subduction process form at relatively
shallower depths, resulting in relatively flat subduction under the plateau. The thickness
of the lithospheric mantle wedge through which the slab melts have to be transported is
as a consequence smaller. When the plateau is older, subduction of oceanic lithosphere
occurs at a steeper angle which is determined by depth at which the thermal structure of
the plateau permits development of ductile shear zones. The slab melts in this case have
to travel through a much larger thickness of lithospheric mantle wedge. In the new
model, varying degrees of TTG melt-mantle interaction is caused by variations in the age
of oceanic plateau at the onset of subduction, as this determines the thickness of the
lithospheric wedge through which TTG melts are transported to their emplacement levels.
This might, in part, explain the relatively large spread in Mg# of TTGs of a given age that
presumably were generated from oceanic crust under similar geothermal gradients
(Figure 4.4). Alternatively, it is also possible that TTG production in the Archean may
have involved melting of metabasaltic protoliths with differing Mg#. During late Archean

times, however, the combined effect of lower geothermal gradient and older age of
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plateau lithosphere at the onset of subduction would have led to generally greater
interaction of slab melts with the mantle wedge.

Another implication of the proposed influence of plateau age on the location of
Benioff zones is that the slab dip in subduction zones is not only a function of the thermal
regime and thickness of the subducting slab alone, but also on the thermal structure of the
overriding plate. It is commonly believed that subduction of relatively thick and/or warm
oceanic crust results in flat subduction (e.g. Cloos, 1993; Gutscher et al., 2000). The
corollary to this argument is that thinner and older oceanic crust would subduct with a
larger dip angle. Both these generalizations are not universally valid. There are many
areas on Earth where relatively young oceanic crust undergoes deep subduction (e.g.
Westem Colombia‘(Pennington, 1981), South Central Chile (Gutscher et al., 2000),
Mexico (Suarez et al., 1990). On the contrary, subduction of relatively older oceanic
crust at the Peru trench (Gutscher et al., 1999) and under central Chile (Barazangi and
Isacks, 1976) occurs along flat trajectories. These subduction ‘anomalies’ may be
explained if the thermal structure of the hinterland plays a role in the location of Benioff
Zone during subduction as suggested here. I argue that flat slab subduction of old (and
cold) oceanic lithosphere can occur if the thermal structure of the hinterland facilitates
development of shallow shear zones and low angle thrust faults, the necessary weak
zones to initiate subduction. Similarly, flat subduction can also occur without having the

subducting crust attain a certain critical thickness as commonly thought.

Implications of the new model for crust-mantle evolution in Archean
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Although beyond the data presented in this thesis, the proposed subduction model
has implications for the evolution of crust-mantle systems in the Archean and is briefly
discussed in this section. It is now reasonably established that the origin and evolution of
crust-mantle systems were coupled in many Archean cratons (Richardson et al., 1984;
Moser et al., 2001; Davis et al., 2003). The oldest domains of continental crust are
represented by granite-greenstone belt association in Archean cratons. One of the
important features of the granite-greenstone architecture is the close spatial and temporal
association between the felsic plutonic rocks of TTG composition and mafic/ultramafic
lavas of tholeiitic-komatiitic compositions. While TTG rocks typically show arc
geochemical signatures (Weaver and Tarney, 1981; Martin, 1999), the associated
tholeiitic and komatiitic lavas have been shown to exhibit geochemical signatures
indicative of a plume or hot spot source (e.g. Wyman and Hollings, 1998; Kerrich and
Xie, 2002, Wyman and Kerrich, 2002, Sproule et al., 2002). Association of rock units in
Archean cratons with these complimentary tectonic signatures is considered an Archean
geodynamic paradox (Bedard, 2006). Whereas arcs are fingerprints of a plate tectonic
mode of mantle convection, plume related magmatism attests to a mode of mantle
convection that is considered independent of the plate framework (Campbell and Hill,
1988; Campbell and Griffiths, 1992; Davies, 1993). Attempts have, therefore, been made
to explain the architecture of Archean granite-greenstone associations as a result of a
single tectonic environment (Zegers and van Keken, 2001; Bedard, 2006). Models by
Zegers and van Keken (2001) and Bedard (2006) attempt to explain continental crust
formation in a plume setting through vertical tectonic processes. Bedard (2006) considers

the arc geochemical signatures in felsic plutonic rocks of Archean cratons as spurious. In
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the new proposed model, I show how products of plume and plate mode of mantle
convection could have interacted to produce the characteristic granite-greenstone
association in Archean cratons. I have shown that subduction zones are the favoured
sites for early Archean TTG formation and that subduction zones may have preferentially
nucleated along the margins of plume-derived oceanic plateaus. The interaction of plate
and plume modes of convection may have been more widespread in the Archean than
during Phanerozoic. Therefore, I argue that it is unnecessary to consider these to two
geodynamic regimes as mutually incompatible in the Archean.

Archean cratons are characterized by a thick sub-continental lithospheric mantle
(SCLM) root, the presence of which is believed to be the root cause of tectonic stability
of cratons through time (Abbot et al., 1997; O’Reilly et al., 2001). The process of SCLM
formation is actively debated (Wyman and Kerrich, 2002; Davis et al., 2003; Griffin et
al., 2003). Two end member models have been proposed for the origin of SCLM: (a)
plume models which equate the SCLM to the residue of mantle melting (e.g. Wyman and
Kerrich, 2002; Griffin et al., 2003) and (b) subduction-accretion models which attribute
the formation of SCLM to subcretion of subducted lithosphere (Helmstaedt and Schulze,
1989). Studies of cratonic SCLM, much like their overlying crustal components, show
evidence for the interaction of both plume and arc components during its evolution. The
highly depleted nature of peridotite xenoliths from Archean cratons (Boyd, 1989) is
consistent with it being the residuum of large degree mantle melting such as would be
expected during the ascent of a mantle plume (Griffin et al., 1999; Herzberg, 1999;
Wyman and Kerrich, 2002). In contrast many data from eclogitic xenoliths from cratonic

SCLM suggest that they are remnants of subducted oceanic crust (Jacob et al., 1994;
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Jacob and Foley, 1999). The proposed model adequately explains how cratonic SCLM
could have acquired the signatures of both plume melting and subduction processes. In
my model, the SCLM represents the residuum of oceanic plateau extraction (plume
component) that has been modified by subduction processes along the margin of the
oceanic plateau. The modification of the oceanic plateau residuum through subduction of
oceanic lithosphere through the residuum causes the composition of peridotite xenoliths
from SCLM to deviate from that of a modelled single stage plume melt residuum.
During subduction, ascending melts and volatiles from the slab modifiy the mantle
(wedge) under the cratons. Such slab-mantle interaction processes were proposed to
explain the high Si content of Archean SCLM (Kelemen et al., 1998). Further melting of
this re-epriched mantle may produce a residuum that is highly refractory. An important
feature of the new model is that the formation of the SCLM is intimately linked to the
formation and stabilization of the continental crust. This is consistent with the purported
broadly coeval origin of crust and SCLM in Archean cratons (Richardson et al., 1984;

Moser et al, 2000).

CONCLUSIONS

I have shown based on experimental data and REE modelling that depths >48 km
are required to generate early Archean TTG. This depth constraint is inconsistent with
early crust evolution models that posit melting at the base of oceanic plateaus or thick
oceanic crust (15-40 km thickness) to explain the origin of early Archean continental
crust. I argue that depths >45 km were likely not attained in the base of normal oceanic

crust or oceanic plateau crust in the Archean. Experimental data also suggests that
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delamination of lower crust may not have been a viable crustal recycling mechanism in

the Archean due to lack of sufficiently thick oceanic crust to form abundant eclogite.

Experimental constraints are consistent with a model of TTG formation by
melting of subducted oceanic crust. I propose that subduction zones initiated in the
Archean from gravitational instability of the oceanic lithosphere arising from chemical
differences between converging oceanic plateau and normal oceanic lithosphere. In the
Archean, buoyant oceanic plateau lithosphere may have provided the boundary
conditions for nucleating subduction zones. In my model, the spatial and temporal
association in Archean cratons of tholeiitic to komatiitic volcanics, thick lithospheric
mantle roots and TTG-composition magmatic rocks is the result of two separate but
linked processes, the formation of an oceanic plateau and its associated mantle root
followed by initiation of subduction beneath the plateau and the generation of TTG
magmas in the subducting oceanic crust. Oceanic plateaus served as the nuclei for
Archean cratons as they represent the substrate on which TTG composition magmas were
emplaced. This model successfully explains and contributes to the debate on many
petrological and geodynamic issues concerning early crustal evolution including the
origin of subduction systems, TTG magmas, TTG-mafic/ultramafic magma association,
stabilization of continental crust as well as the broadly coeval formation of cratons and

their lithospheric root.
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Figure 4.1: Variation in Yb and La/Yb ratio iexperimental melts during dehydration
melting of amphibolite as a function of garnet mode (wt.%) in the residue. The curve is
drawn for a melt fraction of 0.2. Average early Archean TTG from Martin et al. (2005)
and average MORB from PETDB database. Shaded regioh represents Yb contents and

the lower range of La/Yb ratios observed in Archean TTGs.
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Figure 4.2: P-Tdiagram showing garnet proportion contours (5 and 20 wt.%) in th

residue of metabasalt melting. Also shown are the garnet-in and plagioclase-out curves

representing the transition from intermediate granulite-high pressure granulite and high

pressure granulite-eclogite facies, respectively, in MORB compositions. The

horizontal lines (dash-dot) represent the thickness of oceanic crust as a function of

different mantle potential temperatures (Vlaar and van den Berg, 1991). Thickness of

the Cretaceous Ontong Java plateau shown for comparison (dashed line). Shaded area

represents minimum temperature conditions during amphibolite dehydration melting

interval where melt proportions reach 20% or more.
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Figure 4.5: Variation of Mg # of Archean TTGs as a function of age (after Martin and
Moyen, 2002). The upper and lower bounds of the TTG field in the figure are
asymptotes to data points of Martin and Moyen (2002) TTG magmas with maximum and
minimum Mg #, respectively. A secular trend towards increasing Mg# towards the end of
the Archean is noticeable. Note also the spread of Mg # for TTGs of similar age.
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Chapter 5: Conclusions and scope for future research

Dehydration melting equilibria of high-grade amphibolitic rocks of MORB-
type bulk compositions determined in this study provide important insights into many
unresolved aspects of metabasalt melting and crustal recycling processes involving
metabasalts. The main findings of the study and its petrological applications are

discussed below.

Dehydration melting of MORB-derived amphibolites

In the pressure range 7-22.5 kbar, the onset of dehydration melting in MORB-
type metabasalts is represented by two peritectic melting reactions whose relative
positioné are pressure dependent. Af lower P (<10 kbar), the solidus reaction is
Homblende + Plagioclase + Quartz = Clinopyroxene + Orthopyroxene + Melt. In the
relatively Fe-rich KAP composition, orthopyroxene is a product phase and occurs at
temperatures higher than the first appearance of clinopyroxene. In the 3VG
composition, orthopyroxene is stable at the dehydration melting solidus at pressures
<10 kbar.

At higher P (>10 kba\r), the solidus reaction is
Hornblende + Plagioclase + Quartz = Garnet + Clinopyroxene + Melt.
The higher P solidus reaction has a negative dP/dT from about 7 kbar to at least 15
kbar. The slope of the lower P (below 10 kbar) reaction was not constrained in this
study, but the combination of my results and those of previous studies (Wolf and
Wyllie, 1994; Lopez and Castro, 2001) suggest a steep positive slope. The location of

the solidus at 7 kbar is closer to that of Lopez and Castro (2001) than that reported by
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Wolf and Wyllie (1994).  The present results indicate that dehydration melting of
MORB-type amphibolites occurs at temperatures well above the water-saturated
basalt solidus between 7 and 10 kbar. Due to the negative P-T slope of the
dehydration melting solidus in the garnet stability field, metabasaltic lithologies
undergo melting at relatively lower temperatures at P >10 kbar. However, the
maximum temperature difference between onset of melting at high pressures (in the
garnet stability field) and at low pressures (gamet unstable) is likely less than that
suggested by some early studies (e.g. Wolf and Wyllie, 1994).

Melting of MORB-derived amphibolites is an important crustal recycling
process that may have contributed to the evolution of continental crust. Results of the
present ¢xperiments indicate that dehydration melting of MORB-type amphibolites
can occur at a range of crustal pressures if temperatures reach or exceed 800 °C. A
variety of settings such as collisional orogens and subduction zones may be
conducive to this mode of crustal differentiation. The process would have been more
important in the Archean when geothermal gradients were higher and deeply buried

metabasic rocks or subducted oceanic crust could routinely undergo melting.

Metamorphic facies transitions in MORB-derived metabasalts

At intermediate pressures, the coexistence of orthopyroxene and
clinopyroxene is diagnostic of granulite-facies metamorphism in metabasalts. The
stability of this assemblage is widely attributed to dehydration melting of
amphibolitic rocks and subsequent removal of a felsic melt phase resulting in a

granulite residue. The results of this study indicate that in typical MORB-type
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metabasalts this assemblage is stabilized during dehydration melting at P < 10 kbar
and at temperatures above 850 °C. Stabilization of granulite-facies assemblages
occurred at temperatures above the dehydration melting solidus for both bulk
compositions studied.

At high pressures, orthopyroxene-free garnet-clinopyroxene-plagioclase
assemblages are indicative of granulite-facies conditions (Pattison, 2003; O’Brien and
Rotzler, 2003). Such assemblages are important in understanding the limits of crustal
metamorphism (Indares and Martignole, 2003). In particular, these assemblage forms
a paragenetic link between the intermediate- pressure two-pyroxene granulites
discussed above and high-pressure eclogite-facies assemblages in metabasaltic bulk
compositjons (e.g. Green and Ringwood, 1967; Pattison, 2003). Relative to
intermediate-pressure granulites the high-pressure granulite assemblages are rare,
although recently there has been increasing documentation of their occurrence
worldwide (e.g. O’Brien and Rotzler, 2003; Indares, 2003). The present results
indicate that a temperature of at least ~ 825 °C is required to stabilize garnet + cpx
assemblages through dehydration melting in typical MORB-type compositions. This
delimits the amphibolite — high-pressure granulite transition in similar metabasaltic
compositions to T >825 °C. This low temperature constraint is at significantly higher
temperature than that deduced by Wolf and Wyllie (1994). Importantly, this new
constraint is consistent with P-T determinations from high-pressure granulite
assemblages which indicate temperatures > 750 °C (e.g. O’Brien and Rotzler, 2003;
Indares, 2003). The slightly lower temperatures recorded in natural assemblages may

again be due to down-temperature re-equilibration of the Fe-Mg exchange reactions
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used in geothermometric calculations. Alternatively, some of these temperature
estimates may be from terranes where the grt + cpx assemblage develops at lower T
by the breakdown of more actinolitic hornblende. The results of the present study
indicate that pressures greater than 10 kbar are required to stabilize the high-pressure
granulite assemblages at temperatures > 775 °C. This result is consistent with the
findings of previous experimental studies (e.g. Wolf and Wyllie, 1994; Lopez and
Castro, 2001). The formation of high-pressure granulite assemblages, therefore,
requires attainment of metamorphic conditions with pressures exceeding that at the
base of normal thickness continental crust (>35 km). In situ formation of garnet-
granulites of mafic composition may therefore be restricted to the base of thickened
continental crust or mature arc crust. Alternatively, tectonic burial of metabasaltic
protoliths to depths >35 km may most commonly occur through subduction
processes.

At higher pressures, the disappearance of plagioclase from garnet granulite
leads to the development of an eclogite-facies assemblage (Carswell, 1990). My
experiments indicate that' the transition to eclogite assemblages require P >17.5 kbar
at conditions exceeding the dehydration melting solidus, which in turn suggests that
metabasaltic rocks at the base of normal or even moderately thickened continental
crust (<45 km) will not transform to eclogite. This is contrary to the widely held
notion that eclogite is the stable form of dry basaltic rocks within the crust (e.g. Green
and Ringwood, 1967). The new results indicate that tectonic burial of basaltic rocks
to mantle depths are required to stabilize eclogite. This calls into question the

viability of many petrological/tectonic models that invoke eclogite formation at the
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base of oceanic plateau curst or moderately thick continental crust (Zegers and van

Keken, 2001; Bedard, 2006).

Generation of Archean TTG magmas

The major-element compositions of melts produced in the present experiments
are comparable to those of Archean TTG. In general, the melts have SiO, >60 wt. %,
Na,0/K;0 >1, TiO; < 1 wt. %, Al,O3 >15 wt. %, and geochemical signatures that
overlap with Archean TTGs. The major-element compositions of the melts are
similar to the high-Al TTG group rocks defined by Barker and Arth (1976). The
Al,O5 content of the melts at pressures >15kbar appear to be controlled by the amount
of residual garnet and clinopyroxene and not just by the amount of residual
plagioclase and amphibole as previously thought. The lowest Al,O; content
measured in this study are for melts generated above 15 kbar where the residue is
dominated by garnet and clinopyroxene.

There are some differences in the composition of melts produced in the
present experiments and those produced in previous dehydration melting experiments
on amphibolites. In general, the melts produced in this study have lower Na,O/K,;0
ratios than those in previous studies. I aﬁﬁbute this to the higher K;O content of the
present starting materials and the highly incompatible nature of K during dehydration
melting of amphibolites. The K>O content of the melts ranges from 1.1 to 4.4 wt. %,
the upper range being slightly higher than the observed K;O content in Archean
TTGs. The Mg-number of the experimental melts whilé showing a significant

overlap is generally lower than the Archean TTGs.
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The results show that TTG-type magmas can be produced during the
dehydration melting of MORB-derived amphibolites. TTGs may be produced at a
range of depths if temperature exceeds the dehydration melting solidus. In general,
significant melt production requires temperatures >900 °C. The major-element
composition of the melts is influenced by the bulk composition of the protolith and
the residual assemblage in equilibrium with the melt. The low TiO, compositions
used in the present study yield melts with TiO, contents that are similar to natural
TTGs. In contrast, the high K content of the starting materials of this study resulted
in the production of relatively K-rich melts. Moderately potassic granodiorites or
granites may, therefore, be directly produced by dehydration melting of K-rich
MORB-derived amphibolites. It is not necessary to invoke interaction of mafic
magmas with a tonalitic crust to account for the generation of some K-rich
granodiorites in the Archean as envisaged by Lopez et al. (2005). Formation of true
granites with K;O/Na,O >1 require metabasalts with more K than present in the
starting amphibolite used in this study. The low Mg# of the experimental melts
compared to some TTGs suggests that the MgO content of these magmas are
modified during ascent.

A characteristic signature of early Archean TTGs is their highly fractionated
REE pattern ((La/Yb)y >15 and depletion in HREE (Yb average 0.78 ppm) (e.g.
Barker and Arth, 1976; Martin et. al., 2005). This is commonly attributed to the
presence of residual garnet or hornblende in the residue of partial melting (Barker and
Arth, 1976; Martin, 1987). Calculated variations in the La/Yb ratio and Yb content

of melts derived from MORB-type basalt indicate that at least 20 wt % garnet is
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required in the residue to replicate the HREE depletion observed in early Archean
TTGs. Experimentally determined phase proportions in this study also show that this
requirement is met only if melting occurs at pressures >15 kbar (T>900 °C). True
Archean TTG melts can be produced by melting MORB—type bulk compositions at
garnet-granulite or eclogite-facies conditions. Although seemingly semantic, this is an
important point. Many previous studies attribute TTG formation to melting of garnet-
amphibolite (Rapp et al.,, 1991; Foley et al., 2002; Foley et al.,, 2003). At the
conditions required for generating TTG-type melts, the residual assemblage is either a

garnet granulite or an eclogite.

Tectonic setting of early Archean TTGs and origin of continental nuclei

Modelling of REE composition of experimental melts suggests that the
production of early Archean TTG-type melts requires magma generation to occur at P
>15 kbar. This fundamental requirement should be satisfied by any proposed
mechanism for the origin of early Archean TTGs. I argue that this requirement is not
met in many lower crustal melting models proposed for the origin of Archean TTGs
(e.g. Zegers and van Keken, 2001; Bedard, 2006). Specifically, these models
envisage melt generation at conditions much shallower than that required to stabilize
enough gamet in the residue to produce the characteristic HREE depletion in early
Archean TTGs. Subduction zone processes on the other hand can transport source
rocks to P >15 kbar where conditions are appropriate for TTG genesis with HREE
depeletion. I, therefore, favor a subduction model for the origin of early Archean

TTG and by implication that of the continental crust.
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The operation of subduction zone processes in the early Archean is not
universally accepted (Hamilton, 1998; Zegers and van Keken, 2001; Bedard 2006).
In particular, there is the question of how subduction could have initiated in a hotter
Archean Earth. A new tectonic model is presented here that outlines how subduction
might have initiated in the early Archean. I propose that Archean subduction process
initiated due to gravitational instabilities arising from chemical differences between a
converging oceanic plateau and a normal thickness oceanic lithosphere. The
chemical differences and the consequent gravitational instability between a plateau
and oceanic crust is the result of different degrees of mantle melting involved in the
generation of oceanic plateaus and normal oceanic crust. The residual mantle from
plateau derivation is less dense than that from oceanic crust generation due to the
larger degree of melting involved in the derivation of a plateau crust. In this model,
the residuum of mantle melting is envisaged forming a low-density chemical layer
(proto-mantle lithosphere) that underplates the plateau. This proto-mantle lithosphere
subsequently cools (from top to bottom) to become part of the mantle lithosphere
underneath the plateau. Juxtaposition or development of an oceanic plateau near or
within an oceanic lithosphere results in the development of deformation zones near
the base of the plateau crust and causes the subduction of denser oceanic lithosphere
through the proto-mantle lithosphere of the plateau. Owing to high geothermal
gradients in Archean, subducted oceanic crust melts resulting in the formation of
TTG type magmas.

The proposed model has many implications regarding early Earth processes,

including the development of first subduction zones, origin of modern-style plate
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tectonics, origin and growth of continental nuclei, granite-greenstone relations in
Archean cratons, formation and evolution of sub-continental lithospheric mantle etc.
I argue that in early Archean times, buoyant oceanic plateaus served as the backstop
for subduction initiation and kick-started plate tectonics. The higher geothermal
gradient in the Archean resulted in the melting of the subducted oceanic crust beneath
the plateau and the formation of TTG magmas which were emplaced in the plateau
crust, there by stabilizing a nucleus of continental crust. Addition to this and other
similar nucleii by tectonic processes including terrain accretion results in the growth
of continental crust. I interpret the spatial and temporal relationships observed in
Archean cratons between tholeiitic to komatiiic volcanic rocks and TTGs as reflecting
the operation of many linked processes as envisaged in the proposed model. I argue
that oceanic plateaus served as the nuclei for TTG formation in the early Archean and
for the formation of cratons. Archean cratons as we see them today are, therefore,
ancient oceanic plateaus modified by subsequent magmatic and tectonic processes.
Detailed geophysical, geochemical, isotopic, petrological and rheological studies of
components of granite-greenstone terrains should be used to test the predictions of

this model.

Future Work

While many aspects of amphibolite dehydration melting have been addressed
in the present study, there are a number of questions regarding melting of
metabasaltic rocks and their role in crustal evolution that still remains unclear. I

identify some of these questions in the following paragraphs.
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In my opinion, a major draw-back of the present and many previous
experimental studies has been the inability to do in situ trace-element analysis of the
melt compositions due to the small size of the quenched melt pockets. As a result, the
trace-element composition of the experimental melts were determined by combining
modal estimates of the abundance of restite phases in the éxperimental charges with
mineral/melt partition coefficient data from the literature. While this is a reasonable
approach, it is not ideal. In particular it is unclear, how uncertainties in the estimated
mode and partition coefficient data propagate to uncertainties in trace-element
concentrations. Melt traps using vitreous carbon spheres and diamond aggregates
were successfully employed previously to generate melt pools that are sufficiently
large for major- and trace-element analysis (Baker and Stolper, 1994; Hirose and
Kushiro, 1992; Schwab and Johnston, 2001). These peridotite melting experimental
studies claim that these melt traps help avoid quench modification of melt
composition (Baker and Stolper, 1994; Schwab and Johnston, 2001). In the present
study, attempts to obtain larger melt pockets using vitreous carbon spheres to create
pore spaces for melt accumulation were not successful. It is unclear if the success of
the melt trap technique depends critically on the viscosity: of melts produced during
experiments. Further studies are required to assess the viability of this technique in
basalt dehydration-melting experiments, which produces melts with higher viscosity
than produced in peridotite melting experiments. In situ analysis of trace-element
concentrations in quenched melts is critically important to our understanding of

magmatic processes within the crust. Improvements in the spatial resolution of ion
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probe analyses and in ion probe optics may make analysis of small melt pools feasible
in future.

The present study provides constraints on the dehydration melting behavior of
MORB-type amphibolites. Tholeiitic basalts of MORB composition is found in the
geological record and, therefore, may have represented the crust of open oceans
throughout much of Earth’s history. However, basaltic lavas with higher Mg-number
than average MORB are found in the Archean rock record. Although relatively rare
compared to tholeiitic basalts, these high Mg-number komatiitic-basalts and basaltic-
komatiites represent protolith compositions that may have contributed to crustal
recycling processes in the Archean. Some petrologists argue that the early Archean
oceanic crust would have been Mg-rich because of the higher heat production and
therefore larger degree of melting undergone by Archean mantle (Bickle et al., 1994;
Foley et al., 2003). To the best of my knowledge, phase relations in high-MgO
metabasalts have not been investigated to date. Foley et al. (2003) conducted a few
experiments on Gorgona komatiites and showed that the phase relations during
melting high MgO basalts significantly deviate from MORB-type metabasalts.
Although the effect of high Mg-number on the phase relations during melting can be
qualitatively predicted by comparing the phase relations obtained from basalt melting
experiments with those from the komatiite melting experiments of Foley et al. (2003),
accurate knowledge of phase relations of high-MgO metabasalts through targeted
experiments would significantly advance our understanding of crustal evolutionary

processes in the Archean.

242



I believe that the experimental constraints obtained in this study have
improved our understanding of the evolution of mafic composition rocks during
metamorphism and anatexis. However, the origin of garnet-clinopyroxene
amphibolites that presumably equilibrated at temperatures significantly lower than the
temperatures at which the garnet-clinopyroxene assemblage was stable in the present
experiments is puzzling. I hypothesized in Chapter 2 that the occurrence of these
assemblages at low temperatures might be related to the bulk composition of the
basaltic protolith and specifically to the composition of hornblende in the protolith.
Based on the composition of metamorphic phases observed in these low temperature
garnet-amphibolite assemblages, I speculate that these assemblages might have
developed through breakdown reactions involving a ferroactinolitic-hornblende. As
far as I know, there are no experimental data available on the stability of
ferroactinolite-bearing metabasalts. An experimental study of ferroactinolite stability
in metabasalts may provide useful information to answer this unresolved issue.

In Chapter 3, I drew attention to the high TiO; content of gamet produced in
dehydration melting experiments and its possible role in sequestering Ti and HFSE
duriné melting of metabasalts. A systematic study of garnet/tonalite melt partitioning
of Ti may provide important information regarding the magmas that are generated in
equilibrium with it. It is also of interest to investigate the Ti substitution mechanisms
in garnet and the effect of bulk rock TiO, content on Ti concentration in garnet. This
may lead to a better understanding of the observed mass imbalance in Ti between

continental crust and depleted mantle (e.g. Rudnick et al., 2000).
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The proposed subduction model for early Archean TTG genesis has many
geologic implications that can be evaluated through further research. Initiation of
subduction is a fundamental problem in geodynamics, especially in the Archean.
Further development of the proposed subduction initiation model requires a better
understanding of the deformation mechanisms involved in the nucleation of
subduction zones. In particular, we need to better understand the formation and
evolution of mantle lithosphere under the normal oceanic crust and oceanic plateaus.
Although the cooling and evolution of oceanic lithosphere has been described through
infinite half-space cooling models (Sclater and Parsons, 1981), the evolution of
lithosphere under plateau crust is not clearly understood. Knowledge of the cooling
history of oceanic crust and oceanic plateaus, viscosities of the depleted mantle under
these crustal entities and, how these parameters influence deformation processes
during oceanic crust-plateau convergence is fundamental to a better understanding of
subduction initiation mechanisms. My model provides possible explanations for
many aspects of the Archean rock record including TTG magmatism, TTG-
mafic/ultramafic magma association, the formation of sub-continental lithospheric
mantle, spatial association of rocks of plume and arc signatures etc. These aspects of
crust/lithosphere evolution are the focus of debate today and further research, perhaps
triggered by the subduction initiation hypotheéis presented here, would help us better

understand the geological history of the early Earth.
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Appendix A

APPENDIX A- Electron Microprobe Analyses of Experimental Phases

Hornblende Compositions

Si0, TiO, ALLO; Cr,0; FeO MnO MgO Ca0 Na,0 K,0 F cl Total Sample
43.95 146 12.98 0.02 15.60 0.22 10.05 11.46 1.48 1.27 na. na. 98.49 3VG12-1
44.01 1.52 12.78 0 15.15 0.25 10.34 11.28 1.60 1.25 n.a, na. 98.18 3VG12-2
43.71 1.45 13.24 0 15.65 0.20 10.14 11.33 1.47 1.31 na. na. 98.49 3VG12-3
43.32 1.51 12.99 0.01 15.50 0.22 9.78 11.27 1.53 1.31 n.a. na. 97.43 3VG124
43.48 1.54 12.82 0.02 15.41 0.19 10.56 11.25 1.62 1.27 na. na. 98.14 3VG12-5
44.16 1.57 12.68 0.03 15.86 0.21 10.16 11.40 1.40 1.23 na. na. 98.70 3VG12-6
44.00 1.57 12.66 0.02 15.62 0.25 10.33 11.39 1.59 1.27 na. n.a. 98.70 3VG12-7
44.47 1.61 12.66 0.01 15.42 0.20 10.09 11.17 1.52 1.23 n.a. n.a. 98.37 3VG12-8
43.57 1.54 13.30 0.01 15.88 0.20 9.83 11.30 1.54 1.28 n.a. n.a. 98.44 3VG129
43.68 1.58 12.79 0.01 15.87 0.21 9.94 11.33 1.54 1.30 n.a. n.a. 98.24 3VG12-10
43.16 1.36 12.65 0.01 16.31 0.26 9.96 11.48 1.44 1.30 n.a. n.a. 97.82 3vG12-11
46.67 1.41 14.15 0.02 14.14 0.20 9.93 11.04 1.99 1.1 n.a. n.a. 100.69 3vG12-12
43.26 1.48 12.71 0.03 15.82 0.21 10.12 11.57 1.40 1.32 n.a. n.a. 97.92 3VG12413
43.53 1.60 13.27 0 15.72 0.24 9.85 11.44 1.52 1.33 n.a. n.a. 98.49 3VG12-14
4366 1.48 13.02 0 16.07 0.20 9.90 11.32 1.46 1.31 n.a. na. 98.41 3VG12-15
43.91 151 12.98 0.01 156.60 0.22 10.06 11.33 1.54 1.28 n.d. n.d. 98.44 Average
0.84 0.07 040 0.01 0.49 0.02 0.22 0.13 0.14 0.05 nd. n.d. Std.Dev.
42.86 1.45 12.61 0 16.21 0.21 9.91 10.92 1.44 1.37 n.a 0.05 97.01 3VG11
42.85 1.46 12.69 0 16.16 0.19 10.06 11.24 1.36 1.33 na 0.06 97.38 3VG1-2
42.44 1.52 12.31 0.01 16.57 0.22 9.93 11.04 1.51 1.42 n.a 0.09 97.03 3VG1-3
43.05 1.35 12,11 0.02 16.27 0.20 10.54 11.08 147 1.38 n.a 0.07 97.52 3VG1-4
43.00 1.53 12.30 0.05 15.99 0.18 10.38 10.92 1.43 1.39 n.a 0.05 97.20 3VG1-5
43.11 1.45 12.21 0.02 16.15 0.23 10.41 11.21 1.40 1.33 n.a 0.05 97.56 3VG1-6
43.26 1.41 12.28 0 16.17 0.21 10.26 10.85 1.41 1.39 n.a 0.05 97.28 3VG1-7
42.82 1.61 11.77 0.02 16.43 0.17 10.36 11.28 1.31 1.41 na 0.05 97.22 3VG1-8
43.02 1.33 12.5 0 15.99 0.17 10.42 10.91 1.44 1.44 na 0.05 9727 3VG1-8
42.96 1.62 12.00 0 16.36 0.18 10.42 11.21 1.34 1.35 na 0.06 97.49  3VG1-10
43.22 1.37 12.25 0 16.31 018 1050 10.88 1.38 1.30 na 0.05 97.44  3VG1-11
43.00 1.42 12.52 0.04 16.22 0.19 10.30 10.88 1.41 1.35 na 0.07 97.39  3VG1-12
42.97 1.44 12.48 0 16.34 0.23 10.12 10.75 1.56 1.33 n.a 0.06 97.26 3VG1-13
43.02 1.49 12.44 0.01 16.39 0.24 10.01 10.82 1.53 1.37 n.a 0.06 97.35 3VG1-14
4347 1.41 11.93 0 16.42 0.19 10.74 10.80 1.50 1.21 n.a 0.06 97.71 3VG1-15
42.95 1.38 12.50 0.01 16.71 0.22 10.04 10.82 1.43 1.38 n.a 0.03 97.46 3VG1-16
42.84 1.76 11.88 0.01 15.83 0.19 10.65 11.19 1.39 1.27 n.a 0.09 97.06 3VG1-17
43.10 1.46 12.61 0 16.12 0.18 10.53 11.05 1.47 1.36 n.a 0.06 97.91 3VG1-18
42.51 153 12.64 0.02 16.27 0.24 10.22 10.88 1.51 1.35 n.a 0.07 97.21 3VG1-19
42.94 1.44 12.52 0 16.15 0.22 10.33 10.98 1.42 1.30 na 0.07 97.33 3VG1-20
42.74 1.43 12.79 0.02 16.26 0.21 10.28 10.93 1.53 1.35 na 0.05 97.58 3VG1-21
4293 1.47 12.58 0.02 16.00 0.16 10.29 11.01 1.48 1.37 na 0.07 97.35 3VG1-22
4312 1.36 12.66 0.02 16.04 0.19 10.40 10.91 1.41 1.28 na 0.07 97.44 3VG1-23
4277 1.41 1276 0.01 16.57 0.25 10.15 11.05 1.42 1.32 na 0.07 97.75 3VG1-24
4269 1.43 12.82 0.01 15.98 0.19 10.12 11.00 1.42 1.33 na 0.06 97.01 3vVG1-25
42.95 1.46 12.41 0.01 16.23 0.20 10.29 10.98 1.44 1.35 nd. 0.06 97.33  Average
0.23 0.10 0.30 0.01 0.22 0.02 0.20 0.15 0.06 0.05 nd. 0.01 Std. Dev.
43.69 1.58 12.89 0 16.34 0.27 10.51 10.63 1.76 1.29 na. na. 98.93 3VG27-1
44.53 1.14 10.79 0 15.78 0.21 10.89 11.19 2.7 1.04 na. na. 9827 3VG27-2
43.35 1.64 1243 0 15.87 0.19 10.40 10.61 313 1.27 n.a. n.a. 98.87 3VG27-3
43.48 1.54 12.96 0.01 15.75 0.23 10.46 10.99 2.66 1.33 n.a. na. 99.39 3VG27-4
43.24 1.57 12.83 0 15.74 0.22 10.20 10.55 3.37 1.20 na. n.a. 98.91 3VG27-5
44,12 2.07 10.25 0 16.49 0.21 10.92 10.02 3.85 0.81 n.a. na. 98.75 3VG27-6
43.40 151 12.81 0 15.82 0.22 10.71 10.84 2.37 1.29 n.a. na. 98.95 3VG27-7
43.49 1.47 12.23 0 15.55 0.17 10.27 10.65 3.34 1.25 na. na. 98.41 3VG27-8
4325 1.52 12.80 0.01 15.45 0.18 10.08 11.12 2.66 1.34 na. n.a. 98.41 3VG27-9
43.19 1.54 12.94 0 16.19 0.17 10.03 11.04 1.92 1.33 na. na. 98.34 3VG27-10
44.05 1.50 11.68 0 15.49 0.19 10.47 11.33 3.08 1.11 na. na. 98.88 3VG27-11
43.47 1.42 12.55 0.01 16.20 0.21 10.54 11.14 1.81 1.31 n.a. na. 98.67 3vG27-12
43.60 1.65 1271 0 15.67 0.20 10.28 11.08 2.88 1.32 na. na. 99.37 3VG27-13
43.66 1.49 12.84 0 15.42 0.18 10.33 11.12 3.10 1.35 na. n.a. 99.47 3VG27-14
43.40 1.52 10.99 0.01 1557 0.23 11.13 10.21 3.83 1.17 n.a. na. 98.06 3vG27-15
44.16 1.38 11.32 0.03 15.59 0.23 10.59 11.48 1.91 117 na. n.a. 97.84 3VG27-16
43.63 1.53 12.19 0.00 15.81 0.21 10.49 10.87 2.77 1.22 - - 98.72 Average
0.39 0.19 0.89 0.01 0.33 0.03 0.31 0.40 0.68 0.14 - - Std. Dev.
4320 1.43 12.70 0.01 16.27 0.20 10.67 11.01 1.42 1.34 n.a. 0.06 9828 3VG3-1
42.77 1.55 12,53 0 16.19 0.16 10.78 10.60 1.68 1.27 na. 0.05 97.56 3VG3-2
43.00 1.46 13.12 0 16.22 0.21 10.34 10.83 1.45 1.37 n.a. 0.07 98.04 3VG3-3
43.05 1.38 12.99 0.01 15.90 0.20 10.42 10.86 1.46 1.36 n.a. 0.05 97.67 3VG34
43.36 1.49 1277 0 16.16 0.22 10.82 10.81 1.55 1.28 na. 0.07 98.51 3VG3-5
42.83 1.36 13.24 0 16.34 0.22 10.28 10.85 1.42 1.34 n.a. 0.06 97.94 3VG36
42.89 1.53 12.93 0.02 16.40 0.22 10.50 10.88 1.47 1.32 na. 0.04 98.17 3VG37
4272 1.41 13.15 0 16.30 0.21 10.23 10.90 1.4 1.37 na. 0.04 97.77 3VG3-8
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Appendix A

Sio, TiO, ALO, Cr,0; FeO MnO MgO Ca0 Na,O K0 F cl Total Sample
42.82 1.53 13.20 0.01 16.34 0.20 10.30 10.92 1.42 1.36 na. 0.05 98.14 3VG3-9
43.01 1.38 13.06 0 15.93 0.20 10.53 11.09 1.51 1.37 n.a. 0.05 98.10 3VG3-10
42.92 145 13.00 0 16.46 0.21 10.35 10.87 1.47 1.33 n.a. 0.06 9809 3VG3-11
43.21 1.40 13.01 0 16.18 0.19 10.58 10.87 1.55 1.30 na. 0.03 98.32 3VG3-12
42.89 1.44 13.04 0 16.31 0.22 10.26 10.86 1.47 1.30 na. 0.07 97.86 3VG3-13
42.49 1.55 12.80 0 18,33 0.20 10.31 11.24 1.50 1.36 n.a. 0.06 97.81 3vG3-14
43.24 1.34 12.33 0 16.33 0.21 10.84 11.20 1.50 1.34 n.a. 0.06 9837 3VG3-15
43.26 1.50 12.57 0.01 15.67 0.18 10.60 10.69 1.47 1.31 n.a. 0.07 97.32 3vG3-16
42.98 1.60 12.72 0.02 15.51 0.19 10.68 10.48 1.64 1.34 n.a. 0.06 97.19 3VG3-17
42.80 1.50 12.31 0.01 16.11 0.21 10.51 11.01 1.52 1.30 na. 0.05 97.32 3vVG3-18
43.11 1.51 13.28 0 15.93 0.21 10.55 10.71 1.49 137 n.a. 0.06 98.20 3vG3-19
42,71 1.41 12.89 0.02 16.07 0.26 10.12 10.67 1.44 1.37 n.a. 0.07 97.00 3vG3-20
4295 1.39 1272 0.02 15.78 0.2 10.40 11.05 1.57 1.37 n.a. 0.05 97.50 3VG3-21
42.96 1.46 12.87 0.01 16.13 0.21 10.48 10.88 1.50 1.34 - 0.06 97.88 Average
0.22 0.07 0.28 0.01 0.25 0.02 0.20 0.19 0.07 0.03 - 0.01 Std. Dev.
41.88 2.25 14.05 0 14.96 0.22 9.96 11.19 3.38 1.19 na. n.a. 99,08 3vG2-1
43.73 1.56 11.75 0 15.09 0.22 1043 11.73 3.12 1.08 n.a. n.a. 98.69 3vG2-2
43.25 1.90 12.72 0.03 15.07 0.20 10.58 11.11 3.47 1.18 na. n.a. 99.50 3VG2-3
43.17 172 12.21 0 1478 0.18 10.67 11.28 3.30 1.24 na. na. 98,55 3VG24
42.85 3.29 12.37 0.03 13.27 0.14 11.27 10.76 3.67 0.67 n.a. n.a. 98.33 3vG2-5
43.63 1.59 12.75 0.02 15.84 0.24 10.19 11.06 235 1.26 n.a. n.a. 98.92 3vG2-8
43.05 297 12.16 0.02 14.10 0.19 11.20 10.54 3.92 0.61 n.a. n.a. 98.76 3VG2-7
43.11 2.52 12.61 .01 14.82 0.22 10.44 10.76 3.89 0.87 n.a. n.a. 99.256 3vG2-8
43.30 2.22 12.35 0.04 14.40 0.19 10.88 10.76 3.72 0.96 n.a. n.a. 98.82 3VG29
43.19 1.62 12.84 0 15.16 0.22 10.38 10.97 3.13 1.24 n.a. n.a. 98.75 3VG2-10
43.21 142 12.26 0.04 15.44 0.17 1047 11.22 3.00 1.31 n.a. n.a. 98.54 3vG2-11
4257 1.59 12.51 0.01 15.12 0.25 10.09 10.98 3.30 1.21 n.a. na. 97.62 3VG2-12
43.02 2.66 12.30 0 14.58 0.19 11.05 10.38 3.92 0.78 n.a. na. 98.87 3vG2-13
43.47 2.38 12.05 0.02 13.98 0.18 11.24 10.91 3.53 0.91 na. na. 9865 3VG2-14
43.17 1.61 12.55 0.03 15.43 0.21 10.27 11.26 3.12 1.28 na. na. 98,93 3VG2-15
43.11 2.09 12.50 0.01 14.80 0.20 10.61 10.99 3.39 1.05 nd. n.d. 98.75 Average
0.44 0.58 0.52 0.01 0.65 0.03 0.43 0.33 0.42 0.23 nd. nd. Std.Dev.
4371 1.41 12.14 0.01 15.50 0.20 10.88 11.95 1.24 1.20 0 0.05 98.28 3VG11-1
42,35 1.44 12.72 0.02 16.29 0.24 10.20 11.55 1.49 1.28 0 0.06 9761 3vG11-2
42,63 1.52 12.85 0.02 16.34 0.22 10.03 11.45 1.40 1.26 0 0.07 97.78 3VG11-3
43.56 1.48 12.80 0.02 15.91 0.21 10.10 11.32 1.40 1.25 0 0.03 98.06 3VG114
42.85 1.62 12.69 0.01 15.93 0.20 10.04 11.74 1.41 1.32 0 0.06 97.85 3VG11-5
43.07 1.44 13.05 0.03 15.89 0.25 10.11 11.32 1.52 1.20 0 0.06 97.91 3VG11-6
42.83 1.56 12.53 0 15.58 0.19 10.37 11.60 1.32 1.27 0 0.05 97.28 3VG11-7
43.50 1.30 11.86 0.03 16.58 0.28 10.48 11.61 1.42 1.19 0 0.05 98.27 3VG11-8
42.87 1.7 12.68 0 15.90 0.20 10.46 11.84 1.48 1.23 0 0.08 98.44 3VG11-9
4258 1.39 12.58 0.01 15.87 0.25 10.64 11.38 1.49 1.33 0 0.05 9755 3VG11-10
42.78 1.48 12.73 0.01 15.86 0.21 10.38 11.585 1.50 1.39 0 0.06 97,93 3vG11-11
42.84 1.50 12.59 0 16.07 0.19 10.28 11.56 1.27 1.27 0 0.06 9761 3VG11-12
43.14 1.58 1241 0 15.95 0.19 10.34 11.70 1.46 1.28 0 0.07 98.11 3vG11-13
42,68 1.60 12.40 0.01 16.17 0.23 10.31 1.77 1.40 1.36 0 0.06 9796 3VG11-14
42.68 1.55 12.85 0 15.84 0.21 10.36 11.22 1.42 1.33 0 0.07 97.52 3vG11-15
42.87 143 11.85 0 16.21 0.22 10.24 11.29 1.44 1.28 0 0.06 96.88 3VG11-16
43.06 1.73 12.91 0 15.59 0.16 10.49 11.43 1.47 1.33 0 0.08 98.23 3vG11-17
44.84 1.24 10.33 0.01 15.77 0.25 11.34 11.92 1.23 0.93 0 0.04 97.89 3vG11-18
43.52 1.30 12.67 0.02 15.79 0.21 10.11 11.82 1.43 1.17 0 0.07 98.09 3vG11-19
42.97 1.50 12.79 0.02 16.10 0.21 10.20 11.39 1.44 1.35 0 0.04 98.00 3VG11-20
47.10 0.37 8.53 0.02 17.26 0.27 11.11 12.50 0.95 0.05 0 0.00 98.14 3vG11-21
42.87 1.58 12.92 0.01 15.81 0.18 10.38 11.39 1.40 1.33 0 0.07 97.94 3IvG11-22
42,92 1.56 13.08 0 16.20 0.23 10.26 11.48 1.45 1.32 0 0.07 98,56 3VG11-23
43.14 1.69 12.59 0.02 15.54 0.18 10.30 11.50 1.44 1.26 0 0.09 97.72 3VG11-24
43.28 1.63 12.86 0.02 16.12 0.26 10.25 11.35 1.47 1.30 0 0.08 96.58 3VG11-25
43.22 1.46 12.38 0.01 16.00 0.22 10.39 11.59 1.40 1.22 0.00 0.06 97.94  Average
0.95 0.26 0.98 0.01 0.37 0.03 0.32 0.28 0.12 0.26 0.00 0.02 Std. Dev.
43.18 1.63 12.98 0.01 15.76 0.23 10.25 11.35 1.45 1.30 0 0.05 98.17 3VG-10-1
40.73 1.79 1493 0 16.60 0.17 9.14 11.98 1.64 1.39 0 0.1 9846 3vG-10-2
44,32 1.35 12.21 0 16.05 0.24 10.25 11.13 1.53 1.06 0 0.05 98.17 3VG-10-3
43.13 1.49 12.69 0.02 16.07 0.20 10.29 11.33 1.54 1.36 0 0.06 98.16 3vG-104
43.15 1.52 12.92 0.01 16.06 0.18 10.46 11.42 1.43 1.33 0 0.06 98.53  3VG-10-5
42.96 1.55 12.94 0 16.22 0.25 10.28 11.47 1.58 1.39 0 0.05 98.68 3VG-10-6
43.07 1.26 12.31 0 16.54 0.22 10.32 11.43 1.65 1.21 0 0.07 98.06 3VG-10-7
42.49 1.50 12.88 0.01 15.99 0.19 10.31 11.30 1.55 1.33 0 0.05 97.59 3VG-10-8
43.20 1.62 12,63 0.02 15.90 0.18 10.46 11.32 1.58 1.20 0 0.08 98.17 3vG-10-9
42,82 1.82 11.67 0.03 16.09 0.23 10.23 11.78 1.27 1.27 0 0.06 97.25 3VG-10-10
43.83 1.36 11.83 0.03 16.11 0.20 10.86 11.45 1.29 117 0 0.04 98,16  3VG-10-11
43.01 1.59 12.69 0 16.19 0.24 10.25 11.51 1.53 1.32 0 0.05 98.34  3VG-10-12
42,61 1.55 13.03 0 15.84 0.23 10.04 11.33 1.52 1.36 0 0.09 97.58 3VG-10-13
42.89 1.56 12.78 0.02 16.25 0.21 10.33 11.45 1.52 1.28 0 0.06 98.36 3VG-10-14
43.83 1.77 11.62 0.03 15.66 0.19 10.54 11.64 1.46 1.22 0 0.10 98.03 3IVG-10-15
42.93 1.62 12.77 0.01 16.20 0.21 10.25 11.35 1.53 1.32 0 0.06 9823 3vG-10-16
42.86 1.53 12.82 0.02 16.32 0.24 10.30 11.49 1.51 1.37 [} 0.07 98.50 3VG-10-17



Appendix A

Si0, Tio, AlLO, Cr,0; FeO MnO MgO Ca0 Na,0 K;0 F (o] Total Sample
4276 1.58 12.70 0.02 16.15 0.18 10.37 11.53 1.41 1.28 0 0.08 98.04 3VG-10-18
4297 1.53 12.76 0.01 16.04 0.19 10.36 11.23 1.44 1.28 0 0.06 97.86 3VG-10-19
42.82 1.64 12.80 0.03 16.38 0.22 10.29 11.60 1.44 1.38 a 0.04 98.62 3VG-10-20
43.06 145 13.06 0 15.98 0.24 10.17 11.32 1.50 1.31 0 0.07 98.15  3VG-10-21
42.82 1.54 12.46 0.02 16.28 0.21 10.44 11.44 1.42 1.28 0 0.04 §7.94 3VG-10-22
42.96 1.60 12.92 0.01 15.95 0.21 10.22 11.24 1.44 1.26 0 0.06 97.85 3VG-10-23
4297 1.56 1271 0.01 16.11 0.21 10.28 11.44 1.49 1.29 0.00 0.06 98.14 Average

0.64 0.13 0.64 0.01 0.23 0.02 0.29 0.19 0.09 0.08 0.00 0.02 Std, Dev.
42.99 1.49 12.74 0.01 16.41 0.23 10.43 11.66 1.49 1.31 0 0.06 98.80 3VGE-1
42.95 1.60 12.75 0.01 16.35 0.22 10.29 11,32 1.52 1.26 0 0.08 98.33 3VG6-2
42,62 1.44 13.02 0.02 16.22 0.22 10.17 11.11 1.47 1.32 0 0.07 97.67 3VG6-3
44.10 1.38 11.39 0.01 15.68 0.20 10.73 11.70 1.34 1.14 0 0.07 97.72  3VG64
42.49 1.48 12.88 0.01 15.82 0.20 10.23 11.53 1.47 1.29 0 0.05 97.43  3VG6S
43.37 1.65 12.61 0.03 16.27 0.22 10.20 11.26 1.53 1.13 0 0.04 98.30 3VG6-6
43.53 1.55 12,75 0.02 16.14 0.21 10.25 10.99 1.48 1.15 0 0.07 98.11 3VGE-7
42,57 1.59 12.56 0.02 16.44 0.22 10.33 11.10 1,62 1.26 0 0.05 97.74 3VG6-8
42.79 1.60 12.76 0.02 15.85 0.22 10.19 11.40 1.48 1.35 0 0.08 97.70 3VG6-9
42.96 1.59 12,62 0 16.34 0.19 10.34 11.59 1.42 123 0 0.06 98.31 3VGE-10
43.04 1.63 1243 0 15.93 0.20 10.54 11.36 1.51 1.22 0 0.06 97.92  3VGE-11
4312 1.52 12.68 0 16.01 0.19 10.46 11.49 1.37 1.33 0 0.08 98.22 3VGE-12
42.43 1.73 12,68 0 15.88 0.22 10.33 11.40 1.50 1.32 0 0.05 97.52 3VG6-13
42.73 1.42 12.82 0 16.27 0.19 10.20 11.79 1.38 1.30 0 0.05 98.13  3VG6-14
42.86 1.53 12.35 0.02 16.69 0.23 10.42 10.90 1.63 097 0 0.07 97.66  3VG6-15
42.60 1.57 12.78 0.01 16.04 0.17 1028 11.14 1.54 127 0 0.08 97.46  3VG6-16
42.82 1.60 12.95 0.02 16.22 0.20 10.30 11.07 1.45 1.33 0 0.08 98.02 3VG6-17
4261 1.56 12.95 0 16.14 0.22 10.32 11.33 1.59 1.29 0 0.06 98.05 3VG6-18
42,65 1.66 12.87 0.01 16.11 0.24 10.07 11.22 1.55 1.40 0 0.06 97.82 3VG6-18
42.76 1.49 12,63 0 16.10 0.19 10.40 11.56 1.43 1.31 0 0.08 97.92 3VG6-20
4252 1.49 12.38 0 16.36 0.20 10.18 11.51 1.40 1.30 0 0.08 97.42  3VGE-21
4284 1.50 13.07 0.03 16.03 0.21 10.33 11.34 1.51 1.27 0 0.07 98.16  3VG6-22
42.46 1.64 12,98 0 16.23 0.22 10.16 11.32 1.47 1.35 0 0.07 97.89 3VG6-23
42,81 1.52 12.83 0.02 15.89 0.18 10.57 11.30 1.51 1.29 0 0.09 97.97 3VGE-24
42.67 1.60 12.70 ] 16.51 0.20 10.33 11.55 1.42 1.39 ] 0.08 98.42 3VG6-25
42.85 1.55 12,69 0.01 16.16 0.21 10.32 11.36 1.48 127 0.00 0.07 97.96 Average

0.38 0.08 0.33 - 0.01 0.24 0.02° 0.15 0.23 0.07 0.09 0.00 0.01 Std. Dev.
43.23 1.44 12.71 0 16.09 0.20 10.53 10.86 1.43 1.42 0 0.07 97.96 3VGS5-1
43.36 1.45 12.90 0 16.06 0.19 10.37 10.92 1.48 1.39 0 0.06 98.16 3VG5-2
42.64 1.69 12.84 0 16.37 0.19 10.21 10.97 145 1.30 0 0.07 97.70 3VGS-3
43,03 1.31 12,69 0 16.42 0.23 10.18 10.89 1.40 1.32 0 0.06 97.51 3vVG54
43,12 1.30 12.44 0 16.20 0.22 10.32 11.24 1.43 129 0 0.08 97.62 3VG55
4297 1.56 12.86 0 15.87 0.19 10.38 10.80 1.43 1.36 0 0.06 97.45 3VG5-6
42.96 1.55 13.10 0 16.12 0.18 10.25 10.71 1.46 127 0 0.06 97.65 3VG5-7
4327 1.59 12.84 0 16.14 0.16 10.54 10.75 1.48 1.24 0 0.07 98.08 3VG5-8
43.10 1.26 1237 0 16.20 0.18 10.43 11.13 1.36 134 0 0.08 97.42 3VG59
43.18 1.26 12.36 0 16.53 0.19 10.33 11.31 1.41 1.32 0 0.08 97.95 3VG5-10
4323 1.34 1243 0 16.20 0.17 10.48 11.32 1.39 1.31 0 0.07 9793 3VG5-11
4311 1.46 12.60 0 16.09 0.21 10.43 11.28 1.34 1.32 0 0.04 97.87 3VG5-12
43.18 1.43 12.45 0 16.38 0.19 10.33 10.82 1.40 1.28 0 0.06 97.61 3VG5-13
4321 1.30 12,63 0 16.25 0.19 10.31 11.19 1.44 1.37 0 0.07 97.96 3VG5-14
42,93 1.46 13.13 0.01 16.18 0.19 10.23 10.88 1.44 1.34 o 0.07 97.85 3VG5-15
42.95 1.45 13.04 0 15.87 0.19 10.32 10.84 1.58 1.29 0 0.07 9756 3VG5-16
43.16 1.40 13.02 0 16.10 0.22 10.22 11.09 1.49 1.29 0 0.07 98.04 3VG5-17
43.11 1.45 13.29 0 15.94 0.19 10.24 10.95 1.50 136 0 0.07 98.09 3VG5-18
42.54 1.64 12.28 0 16.10 0.19 10.31 11.24 1.45 1.38 0 0.07 97.16 3VG5-19
4285 1.55 12.55 0 16.11 0.18 10.26 11.08 147 132 0 0.05 97.40 3VG5-20
4312 1.38 12.88 0 16.00 0.15 10.68 10.80 1.44 1.37 0 0.10 97.87 3VG5-21
43.13 149 13,11 0.02 16.34 0.22 10.20 10.73 1.45 134 0 0.07 9808 3VG5-22
42.99 1.49 13.06 0.02 16.28 0.21 10.29 10.76 1.46 1.27 0 0.08 97.87 3VG5-23
43.11 1.42 12.50 0.02 16.59 0.19 10.55 11.15 1.51 1.33 0 0.05 98.41 3VG5-24
4272 1.67 12.82 0 16.54 0.17 10.44 10.67 1.53 1.19 ] 0.09 97.83  3VG5-25
42.66 1.74 12.81 0.02 16.71 0.19 10.30 10.57 1.47 1.21 0 0.08 97.74 3VG5-26
4354 1.55 13.18 0.03 15.38 0.16 10.19 10.97 1.46 117 0 0.06 97.68 3VG5-27
42,59 1.54 12.55 0.01 15.81 0.19 10.32 11.07 1.37 1.30 0 0.08 96.78 3VG5-28
43.30 1.48 1265 0 16.12 0.16 10.54 11.12 1.53 1.34 0 0.07 98.28 3VG5-29
43.07 1.45 1278 0 15.90 0.21 10.26 10.95 1.38 1.36 0 0.06 97.41 3VGS6-30
42.08 1.51 12.80 0.02 15.87 0.24 10.37 10.88 1.47 1.34 0 0.07 97.53 3VG5-31
4362 1.48 12.72 0 15.53 0.19 10.54 10.88 1.44 1.20 0 0.09 97.66 3VG5-32
4277 1.35 12.73 0.01 16.20 0.20 10.33 11.21 1.46 1.37 0 0.10 97.71 3VG5-33
42.74 1.51 12.76 0 16.02 0.16 10.18 10.99 1.46 128 0 0.09 97.16  3VG5-34
43.35 1.39 12.54 0 15.40 0.18 10.48 11.04 1.37 1.26 0 0.06 97.05 3VG5-35
43.05 1.39 12.71 0.01 15.74 0.17 10.69 10.66 1.43 1.23 0 0.08 97.15 3VG5-36
43.53 1.90 11.58 0.01 15.51 0.15 10.81 11.03 1.41 1.10 0 0.10 97.10  3vG6-37
42.44 1.58 13.07 0.02 15.87 0.13 10.25 10.84 1.42 1.31 0 0.06 96.99 3VG5-38
43.43 1.48 12.88 0 15.19 0.18 10.46 10.89 1.42 1.33 0 0.07 97.31 3VG5-39
43.09 174 12,43 0.02 16.03 0.17 10.41 11.06 1.52 147 0 0.09 97.73  3VG540
43.04 1.63 12.20 0.01 16.11 0.16 10.24 10.66 1.54 117 0 0.07 96.82 3VG5-41
43.08 1.56 12.97 0.02 16.13 0.17 10.34 10.69 1.42 127 0 0.08 97.71  3VG542
43.06 1.49 1272 0.01 16.06 0.19 10.37 10.95 1.45 1.30 0.00 0.07 97.65 Average
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Sio,
0.27

4322
43.14
42,73
42.62
42.31
42.79
42.09
42,19
43.09
43.03
43.03
42.64
42.82
42.90
4270
43.32
42.99
43.16
42.94
4276
42.92
42.98
44,56
43.01
42.98
43.04
43.46
43.33
42.79
43.26
43.65
42,91
41.85
42,94
43.64

42.96
0.48

43.68
43.04
43.33
43.12
43.69
43.24
43.13
42,78
41.76
42.68
43.17
43.04
42.86
43.12
42,73
43.45
43,25
43.13
42.00
42.83
43.56
43.10
42,72
42.80
43.18

43.02
0.44

43.68
43.55
43.51
43.19
43.78
43.63
43.36
43.55
43.61
43.84
43.65
43.62

TiO,
0.14

1.44
1.36
1.35
1.43
1.86
1.34
1.53
1.65
1.36
1.54
1.51
1.39
1.39
133
141
143
1.46
1.42
1.41
1.42
1.39
1.49
1.20
1.51
1.47
1.01
1.28
151
1.45
1.46
1.33
1.44
1.51
1.43
1.44

143
0.13

143
1.50
1.37
1.42
137
1.55
1.57
1.47
145
1.50
1.63
1.56
1.43
1.48
1.56
1.50
1.53
1.79
1.54
161
1.47
1.37
1.62
1.47
143

1.50
0.09

1.69
1.54
1.63
1.59
1.50
1.45
1.60
120
1.46
1.29
1.48
1.64

ALO,
0.32

12.92
12.84
12.98
12.93
12.62
12.53
12.74
12.81
12.87
12,78
12.17
13.02
12.94
12,93
12,60
13.12
12,99
13.06
13.17
13.00
12.43
1317
11.10
12.98
13.03
1281
13.01
13.04
1273
1248
12.02
12.87
13.70
12.30
12.18

1277
0.44

12.33
13.06
12.82
13.18
12,67
12.84
12.95
13.07
12.64
12.81
13.03
13.26
13.20
12.75
12.76
12.88
12.57
12.49
13.22
13.06
12.31
12.72
12.99
13.09
13.08

12.87
0.27

12.91
13.01
13.15
13.10
1240
12.83
12.87
13.68
12.99
1264
12.86
13.05

Cr,0,
0.01

0.01

FeO
0.33

16.36
16.43
16.76
16.64
16.92
16.55
16.17
16.38
16.39
16.30
16.13
16.38
16.29
16.51
16.65
16.57
16.55
16.36
16.41
16.58
16.79
16.32
16.18
16.14
16.30
16.81
16.19
16.25
16.47
16.35
16.03
16.41
17.00
15.98
16.31

16.42
0.24

15.78
15.65
15.74
15.99
15.71
15.81
16.31
15.99
15.89
16.13
16.11
16.00
16.01
16.45
16.12
15.48
16.33
16.05
16.43
15.83
15.84
16.25
16.03
15.54
16.13

15.98
0.26

16.27
15.80
15.01
15.30
15.43
15.63
15.48
15.76
1573
15.76
15.48
15.61

MnO
0.02

0.18
0.17
0.19
0.21
018
0.19
0.15
017
019
017
0.20
0.23
0.19
0.18
0.20
0.22
0.18
0.23
022
0.19
0.21
0.18
0.19
0.18
0.21
0.18
0.16
0.17
017
0.14
0.14
0.19
0.16
017,
0.17

0.18
0.02

0.26
0.17
0.18
0.19
0.17
0.18
0.24
0.21
0.21
0.24
0.22
0.18
0.20
0.18
0.20
0.17
0.17
0.18
0.20
0.21
0.19
0.20
0.18
0.19
0.19

0.20
0.02

0.22
0.22
0.23
0.20
0.25
023
0.24
0.26
0.21
0.21
0.23
0.20

MgO
0.15

10.37
10.59
10.54
1040
10.39
10.29
1040
10.51
10.48
10.66
10.60
10.43
10.59
10.49
10.51
10.60
10.49
10.36
10.40
10.48
10.45
10.36
11.22
10.62
10.52
10.62
10.62
10.53
10.47
10.78
10.68
10.36

10.57
10.54

10.51
0.19

10.60
10.48
10.52
10.29
10.84
10.36
10.36
10.11
10.06
10.14
10.14
10.32
10.17
10.34
10.38
10.42
10.35
10.47
10.22
10.30
10.60
10.45
10.53
10.16
10.23

1035
0.18

10.02
10.13
10.14
1013
10.06
10.38
10.41
9.84

10.30
10.42
10.05
10.14

Cao
0.20

10.73
10.71
10.86
10.86
10.40
11.14
10.59
10.70
10.88
10.84
10.98
10.68
11.06
10.86
10.81
10.84
10.76
10.74
10.88
10.69
10.96
10.86
11.41
11.06
10.71
11.07
11.02
10.72
11.03
11.21
11.26
10.77
11.11
10.71
10,72

10.88
0.21

11.47
11.25
11.67
11.47
11.52
11.58
11.33
11.41
11.17
11.74
11.49
11.38
11.57
11.41
11.47
10.83
11.49
11.73
11.60
11.41
11.78
11.64
11.44
11.30
11.48

11.46
0.20

11.23
11.33
11.37
11.09
11.37
11.28
11.15
11.37
11.25
11.36
11.16
11.29

Na,O
0.05

1.47
1.48
137
1.41
2.31
1.69
2.39
1.82
1.61
1.93
2.02
1.87
1.46
1.46
1.71
1.47
1.45
1.85
1.49
1.82
1.41
1.47
1.36
1.52
1.40
1.49
1.42
1.46
1.47
1.48
1.88
1.50
1.70
1.81
2.19

1.64
0.27

1.82
2.03
1.63
1.42
1.73
1.52
1.61
1.62
1.61
1.73
1.51
1.58
1.48
1.55
1.56
2,07
1.65
1.60
1.87
1.77
2.19
1.77
1.61
2.20
1.72

1.71
0.21

1.43
1.47
1.42
1.56
1.44
1.48
1.57
1.61
1.80
1.48
143
1.52

K,0
0.07

1.31
135
1.36
1.31
1.21
1.26
1.34
1.20
1.29
1.25
1.26
1.34
1.31
1.37
1.35
1.34
1.30
1.33
132
1.32
1.31
1.34
1.14
1.40
1.35
1.38
1.34
1.33
1.42
1.35
1.18
1.33
1.20
1.29
122

1.30
0.06

0.19
0.20
0.21
0.18
0.21
0.22
0.19
0.22
0.20
0.18
0.16
0.20
0.20
0.16
0.20
0.18
017
0.18
0.21
0.17
017
0.22
0.19
0.18
0.18

0.18
0.02

1.29
1.40
1.30
1.28
1.35
1.30
1.28
1.158
1.32
1.27
1.26
1.32

F
0.00

COO0O000D0DO0O0O0DODOCOCOOODODODODODOOOODODOODOOOO

oo

00000000 ODODOOODOO0O0ODODODODOODOO

0.00
0.00

n.a.
na.
n.a.
n.a.
n.a.
na.
n.a.
na.

n.a.
n.a.
n.a.

Cl
0.01

0.08
0.06
0.09
0.06
0.08
0.06
0.06
0.04
0.08
0.06
0.05
0.08
0.05
0.07
0.058
0.06

0.07
0.05
0.05
0.06
0.08
0.06
0.07
0.07
0.09
0.07
0.06
0.09
0.06
0.058
0.08
0.10
0.05
0.08

0.07
0.01

0.10
0.05
0.1
0.08
0.06
0.04
0.11
0.05
0.03
0.11
0.09
0.03
0.06
0.10
0.09
0.09
0.10
0.07
0.09
0.08
0.09
0.11
0.08
0.08
0.02

0.08
0.03

n.a.
n.a.
n.a.
n.a.
na.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.

Total

98.06
98.13
98.20
97.86
98.27
97.84
9747
97.46
98.22
98.54
97.97
98.02
98,12
98.08
98,10
98.95
98.24
98.27
98,29
98.31
97.92
98.23
98.41
98.46
98.03
98.46
98.56
98.41
98.08
98.58
98.23
97.86
98.25
97.34
98.46

98.18

97.68
97.44
97.59
97.33
97.96
97.31
97.79
96.94
95,02
97.23
97.46
97.56
97.18
97.53
97.06
97.04
97.59
97.67
97.35
97.26
98.17
97.80
97.38
97.00
97.64

97.38

97.64
98.48
97.78
97.45
97.62
98.23
97.96
98.44
98.38
98.28
97.60
98.29

Appendix A

Sample
Std. Dev.

3VG4-1

3VG4-2

3VG4-3

3VG4-4

3VG4-5

3VG4-6

3VG4-7

3VG4-8

3VG4-9

3VG4-10
3VG4-11
3VG4-12
3vG4-13
3VG4-14
VG415
3VG4-16
3VG4-17
3VG4-18
3VG4-19
3VG4-20
3VG4-21
3VG4-22
3vG4-23
3VG4-24
3VG4-25
3VG4-26
3VG4-27
3VG4-28
3VG4-29
3VG4-30
3vG4-31
3VG4-32
3vG4-33
3VG4-34
3VG4-35

Average
Std. Dev.

3VG22-1
3VG22-2
3vG22-3
3VG22-4
3VG22-5
3VG22-6
3vG22-7
3vG22-8
3vG22-9
3vG22-10
3vG22-11
3vG22-12
3vG22-13
3VG22-14
3VG22-15
3VG22-16
3vVG22-17
3vG22-18
3vG22-19

3VG22-20 °

3vG22-21
3VG22-22
3vG22-23
3VG22-24
3VG22-25

Average
Std. Dev.

3VG19-1
3VG19-2
3VG19-3
VG194
VG195
3VG19-8
3vG18-7
3vG19-8
VG189
3VG19-10
3VG19-11
3VG19-12
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Appendix A

Sio, TiO, Al,O; Cr,0, FeO MnoO Mgo CaO Na, O K0 F ci Total Sample
43.33 145 1243 1] 16.10 0.21 9.94 11.40 1.40 1.26 na, n.a. 97.53 3vG19-13
43.62 1.53 12.66 1] 15.78 0.18 10.04 11.30 1.44 1.31 n.a. na. 97.87 3vG19-14
43.83 1.46 12.97 0.01 16.27 0.22 10.32 11.20 1.49 1.28 n.a. n.a. 98.04 3vG19-15
43.09 1.42 13.25 0.02 16.31 0.21 10.08 11.44 1.54 1.31 n.a. n.a. 97.66 3vG19-16
43.55 1.48 12.92 0.01 15.55 0.22 10.15 11.29 1.49 1.29 nd. n.d. 97.95 Average
0.21 0.11 0.31 0.01 0.28 0.02 0.17 0.10 0.06 0.05 nd. nd. Std. Dev.
42.31 1.45 12.79 0.02 17.06 0.21 9.82 11.77 1.38 0.21 0 0.11 97.11 3vG16-1
42,67 1.52 13.00 0.01 16.39 0.23 10.37 11.66 1.55 0.17 0 0.08 97.62 3vVG16-2
43.48 1.38 12.77 0.01 16.01 0.22 10.50 11.56 1.54 0.19 0 0.05 97.69 3vG16-3
43.45 1.56 13.18 0 15.98 0.24 10.34 11.05 1.70 0.15 0 0.06 97.68 3vG16-4
43.25 1.36 13.30 0.01 16.08 0.23 10.26 11.38 1.39 0.16 0 0.11 97.50 3VG16-5
43.95 1.44 1247 0.02 15.76 0.21 10.64 11.96 1.28 0.16 0 0.05 97.94 3vG16-6
43.02 1.1 12.70 0 16.36 0.18 10.53 11.87 1.50 0.15 0 0.04 9745 3VG16-7
43.00 1.57 13.08 1] 16.21 0.24 10.39 11.47 1.52 0.19 0 0.10 97.75 3vG16-8
42.90 1.58 12.90 0 16.49 0.17 10.15 12.00 1.54 0.19 0 0.09 97.97 3VG16-9
4297 1.46 13.40 0.02 16.19 0.23 10.20 11.07 1.7 0.21 0 0.09 97.53 3vG16-10
42.67 1.55 13.47 0 16.25 0.20 10.26 11.54 1.47 0.15 0 0.06 97.60 3vG16-11
43.37 1.62 12.93 0 16.10 0.18 10.58 11.46 1.43 0.15 0 0.04 97.74 3VG16-12
42.66 1.56 13.16 0.02 15.94 0.21 10.14 11.39 1.47 0.21 0 0.08 96.81 3VG16-13
42.62 1.42 12.97 0.02 16.22 021 10.44 11.19 1.84 0.19 0 0.10 97.20 3vG16-14
42.73 1.59 13.34 0.01 16.12 0.21 10.30 11.22 1.52 0.16 0 0.06 97.25 3VG16-15
42.96 1.52 12.88 0.01 15.74 0.20 10.41 11.69 1.52 0.19 0 0.06 97.16 3VG16-16
43.53 1.36 12.49 0.01 16.38 0.23 10.58 1.74 1.55 0.18 a 0.09 88.12 3VG16-17
43.16 1.61 12.68 0.02 16.22 0.21 10.39 11.63 1.57 0.17 0 0.05 97.69 3vG16-18
43.07 1.57 12.49 0.01 16.75 0.21 10.58 11.74 1.58 0.19 0 0.09 97.26 3VG168-19
43.33 1.63 13.00 0 15.99 0.21 10.33 11.35 1.47 0.16 0 0.07 97.52 3VG16-20
43.05 1.49 12.95 0.01 16.16 0.21 10.36 11.54 1.583 0.18 0 0.07 97.55 Average
0.39 0.12 0.30 0.01 0.30 0.02 0.19 0.28 0.12 0.02 0 0.02 Std. Dev.
43.94 1.77 12.67 0.01 15.45 0.21 10.33 10.53 2.91 0.99 n.a. n.a. 98.82 3vG15-1
43.09 1.68 13.05 0 15.93 0.22 10.07 10.93 1.76 1.28 n.a. na. 98.02 3VG15-2
43.08 1.50 12.66 0.02 17.03 0.20 10.25 11.18 1.50 1.31 n.a. n.a. 98.73 3vG15-3
42.93 1.92 12.39 0.02 15.55 0.19 10.32 10.77 2.94 1.15 n.a. n.a. 98.17 3VG154
43.50 1.51 12.97 0.01 16.26 0.19 10.23 10.81 2.60 1.26 n.a. n.a. 99.32 3VG15-5
43.35 1.60 13.02 0 16.12 0.21 10.22 10.67 2.53 1.23 n.a. na. 98.96 3VG15-6
43.31 1.66 12.80 0.01 16.06 0.20 10.23 10.82 237 1.20 nd. n.d. 98.67 Average
0.37 0.16 0.26 0.01 Q.57 0.01 0.09 0.22 0.60 0.12 nd. nd. Std. Dev.
42.66 1.99 12.96 0 15.87 0.17 10.36 10.91 2.14 0.16 0 0.05 97.26 3VG20-1
42.96 1.37 13.11 0 15.81 0.18 10.43 11.34 177 0.18 0 0.07 97.20 3VG20-2
43.04 1.66 12.79 0.01 15.31 0.13 10.73 11.09 2.10 0.17 0 0.10 97.12 3VG20-3
43.50 1.53 12.40 0 16.20 0.14 10.61 11.81 1.83 0.19 0 0.04 98.24 3vG20-4
43.32 1.32 12.66 0 16.06 0.15 10.51 11.47 1.85 0.19 0 0.09 97.60 3vG20-5
43.07 1.51 13.07 0.03 15.35 0.15 10.56 11.43 1.85 0.16 0 0.08 97.25 3VG20-6
42.77 1.80 13.38 0.03 15.81 0.18 10.33 11.26 1.88 0.14 0 0.05 97.60 3VG20-7
43.39 1.37 12.98 0 15.82 0.18 10.85 11.44 1.99 0.18 0 0.07 98.25 3vG20-8
42.97 1.54 13.23 0.01 1577 0.20 10.30 11.33 2.02 0.17 0 0.10 97.59 3VG20-9
43.50 1.52 13.22 0.03 15.66 0.16 10.66 11.39 1.97 0.17 0 0.05 98.32 3VG20-10
42.46 1.58 13.18 0 15.62 0.19 10.41 11.41 1.87 0.22 0 0.04 96.97 3VG20-11
42.61 2.04 12.78 0.02 16.03 0.17 10.63 10.92 236 0.16 0 0.06 97.76 3VG20-12
43.31 1.54 13.08 0.03 15.83 0.18 10.52 11.29 1.95 0.18 0 0.05 97.95 3VG20-13
43.38 1.48 13.21 0.01 15.84 0.22 10.45 11.33 1.56 017 0 0.07 97.70 3VG20-14
42.50 1.92 13.03 0.02 15.78 0.16 10.49 10.87 213 0.18 0 0.06 9712 3VG20-15
42.87 1.93 13.25 0.03 15.80 0.21 10.38 11.04 2.05 0.17 0 0.07 97.77 3VG20-16
42.87 1.97 13.22 0.01 15.72 0.15 10.42 10.92 2.10 0.16 0 0.08 97.60 3vG20-17
43.79 1.12 12.54 0.01 15.97 0.20 10.60 11.67 1.50 0.14 0 0.07 97.58 3VG20-18
43.15 1.53 13.28 0.02 156.80 0.18 10.46 11.52 1.7 0.16 0 0.08 97.87 3vG20-19
43.01 1.43 13.01 0.02 16.13 0.25 10.20 11.47 1.48 0.17 0 0.08 97.22 3VG20-20
42.54 2.04 13.39 0.06 16.27 0.18 10.20 10.51 2.39 0.14 0 0.03 97.74 3vG20-21
43.15 1.54 12.77 0.02 16.45 0.21 10.41 11.65 1.48 0.17 0 0.09 97.92 3vG20-22
43.04 1.62 13.02 0.02 15.86 0.18 10.48 11.28 1.9 0.17 0 0.07 97.63 Average
0.36 0.26 0.27 0.01 0.27 0.03 0.16 0.31 0.26 0.02 0 0.02 Std. Dev.
42.30 1.43 12.89 0 15.89 0.21 10.43 11.21 1.64 0.14 0 0.1 96.23 3vG18-1
42.44 1.59 13.06 0 15.93 0.19 10.57 11.20 1.66 0.13 0 0.08 96.62 3vG18-2
4223 151 1275 0 15.32 0.19 10.70 11.36 1.74 0.18 0 0.06 96.02 3VG18-3
41.90 1.60 12.39 0 15.46 0.16 10.63 11.65 1.47 0.18 0 0.07 9548 3VG184
4141 203 13.36 0.02 15.54 0.13 10.34 11.31 1.96 0.15 0 0.07 96.31 3VG185
42.08 1.62 12.86 0 16.69 0.20 10.41 11.50 1.82 0.15 Q 0.08 96.38 3VG18-6
41.10 1.67 12.72 [1] 15.02 0.18 10.46 11.38 1.73 0.20 0 0.07 94.52 3VG18-7
42.39 1.66 12.64 0.02 15.61 0.14 10.56 11.64 1.73 0.18 0 0.07 96.61 3vG18-8
42.05 1.52 12.38 0.02 15.36 0.16 10.79 11.52 1.55 0.19 0 0.06 95.57 3vG189
42.11 1.51 12.72 0.01 15.68 0.17 10.42 11.47 1.82 0.16 0 0.08 96.13 3VG18-10
40.16 3.60 13.62 0 16.14 0.10 10.44 10.24 2.65 0.11 0 0.09 96.13 3vG18-11
42.66 1.65 12.84 0 16.18 0.21 10.17 11.22 1.49 0.13 0 0.09 96.60 3VG18-12
42.93 1.56 13.14 0.01 16.07 0.16 10.40 11.50 1.52 0.14 0 0.08 97.48 3vG18-13
42.23 1.63 12.86 0 16.10 0.18 10.46 M.17 1.54 0.13 i} 0.10 96.38 3VG18-14
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Appendix A

Sio, TiO, AlLO, Cr,0, FeO MnO MgO Cao Na, 0 K0 F ] Total Sample
42.00 1.75 12.87 0.01 15.64 0.17 10.48 11.31 1.74 0.15 0 0.08 96.21 Average
0.70 0.55 0.34 0.01 0.36 0.03 0.15 0.35 0.30 0.03 0 0.02 Std. Dev.
43.11 1.55 13.19 0.05 15.74 0.26 9.74 11.14 1.52 1.27 n.a. n.a. 97.58 3vG21-1
43.40 1.40 12.51 0.01 16.29 0.18 9.98 11.37 1.55 1.31 n.a. n.a. 98.01 3vG21-2
43.28 142 13.13 0 15.47 0.22 10.06 11.04 1.68 1.30 n.a. na. 97.5¢ 3vG21-3
43.74 117 12.52 0.02 15.07 0.23 9.96 12.08 1.70 1.10 n.a. na. 9759 3vG21-4
43.58 1.68 12.74 0.01 15.47 0.23 9.97 10.98 1.54 127 n.a. n.a. 97.47 3vG21-5
43.10 1.58 12.41 0.03 15.95 0.20 10.23 11.25 1.46 1.28 n.a. na. 9749 3VG21-6
42.82 1.20 14.14 0 15.28 0.21 9.36 11.13 1.81 1.28 n.a. n.a. 97.24 3vG21-7
4322 1.75 12.38 0.03 16.38 0.21 9.94 11.38 1.63 1.35 na. na. 98.29 3VG21-8
43.20 1.73 12.56 0 16.17 0.21 9.90 11.23 1.52 1.34 n.a. n.a. 97.85 3vG21-9
43.36 1.54 12.33 0 15.56 0.17 10.01 11.47 1.45 1.25 na. na. 97.13  3vG21-10
43.09 1.42 12.64 0.01 16.15 0.21 9.95 11.06 1.52 1.35 na. na. 97.40 3vG21-11
43.26 1.49 12.78 0.02 15.78 0.21 9.92 11.29 1.58 1.28 nd. nd. 97.60 Average
0.25 0.20 0.53 0.02 0.44 0.02 0.22 0.31 a1 0.07 n.d. n.d. Std. Dev.
42.91 1.54 13.07 0.02 15.87 0.19 10.42 11.33 147 0.20 0 0.07 97.08 3vG28-1
43.10 1.56 13.25 0.01 16.23 0.18 10.54 11.22 1.55 0.17 0 0.06 97.85 3VG28-2
42.93 1.33 13.00 0 16.37 0.21 10.40 11.32 1.50 0.18 0 0.08 97.28 3vG28-3
43.49 1.52 13.15 0.03 16.04 0.22 10.16 11.37 1.62 0.19 0 0.10 97.86 3vG284
43.37 137 12.62 0.04 16.05 0.22 10.48 11.34 1.45 0.18 0 0.09 97.20 3vG28-5
43.53 1.60 13.45 0.01 15.91 0.18 10.44 11.20 1.51 0.15 0 0.06 98.01 3VG28-6
42,78 1.12 15.49 0 15.13 0.25 9.37 11.31 1.71 0.10 0 0.08 97.32 3VG28-7
43.01 1.49 12.96 0.01 16.04 0.22 10.34 11.55 1.46 0.23 0 0.06 97.34 3vG28-8
43.02 1.52 13.15 0.01 16.08 0.23 10.34 11.35 1.47 0.16 4] 0.11 9741 3vVG289
42,70 1.7 12.61 0 15.91 0.22 10.33 11.68 1.48 0.20 0 0.10 96.93 3vG28-10
43.01 1.49 12.45 0.01 16.27 0.21 10.36 11.61 1.50 0.16 0 0.05 97.11  3vG28-11
42.83 1.63 12.69 0 16.07 0.18 10.28 11.88 1.51 0.20 0 0.05 97.32  3VG28-12
42.98 1.44 13.06 0.01 16.14 0.22 10.48 11.31 1.49 0.20 0 0.08 9737 3vG28-13
42.95 117 12.73 0.02 16.12 0.16 10.67 11.81 1.49 0.19 0 0.08 97.36 3vG28-14
42.49 1.51 13.25 0.05 16.06 0.20 10.21 11.81 1.53 0.17 0 0.08 97.32 3v(G28-15
42.54 1.53 13.23 0.01 15.95 0.22 10.46 11.58 1.48 0.16 0 0.07 97.21 3VG28-16
42.33 1.59 13.48 0.04 16.04 0.18 10.29 11.58 1.48 0.19 0 0.10 97.27 3VG28-17
42.58 1.49 13.19 0 16.36 0.19 10.49 11.48 1.52 0.22 0 0.07 97.56 3VG28-18
42.92 1.48 13.16 0.01 16.03 0.20 10.33 11.48 1.51 0.18 4] 0.08 97.39 Average
0.33 0.15 0.65 0.01 0.27 0.02 0.27 0.21 0.06 0.03 0 0.02 Std. Dev.
43.88 117 12.51 0.01 15.94 0.24 10.49 11.44 1.60 1.04 n.a. n.a. 98.32 3vG29-1
43.25 1.64 13.27 0 15.78 0.23 9.89 11.13 1.58 1.32 n.a. na. 98.08 3VG29-2
43.62 1.38 13.68 0.01 15.11 0.18 10.02 10.98 1.81 1.22 na. na. 98.00 3vG29-3
4312 1.55 13.01 0 15.56 0.21 9.99 11.22 1.51 1.35 n.a. n.a. 97.53 3vVG294
42,94 1.72 12.89 0.03 15.65 0.16 10.14 11.40 1.54 1.36 na. na. 97.82 3VG29-5
43.19 1.58 12.89 0.04 16.01 0.24 10.07 11.18 1.55 1.27 n.a. n.a. 98.00 3vG29-6
43.29 1.13 13.53 0 15.57 0.19 10.06 11.18 1.60 1.17 n.a. n.a. 97.73 3VG29-7
43.26 1.58 13.04 0.01 15.78 0.20 9.95 11.09 1.74 1.29 n.a. na. 97.94 3VG29-8
43.54 1.51 13.14 0 15.50 0.20 9.94 10.92 1.63 1.20 n.a. n.a. 97.58 3vG29-8
43.55 1.44 13.01 0 15.61 0.20 9.88 11.02 1.64 1.17 n.a. n.a. 97.52 3vG29-10
43.65 1.44 12.80 0.01 15.80 0.23 10.23 11.34 1.69 1.33 na. n.a. 98.50 3vG29-11
4355 1.26 12.97 0 15.64 0.25 10.08 10.87 1.53 1.15 na. na. 97.23 3vG29-12
43.36 1.55 13.31 0.01 15.59 0.20 9.79 10.95 1.68 1.24 n.a. n.a. 97.67 3vG29-13
4362 1.47 13.28 0.02 15.52 0.16 9.85 11.09 1.50 1.21 na. n.a. 97.71  3VG29-14
42,99 1.45 13.06 0.02 15.63 0.21 9.74 11.04 1.57 1.32 na. na. 97.03 3VG29-15
43.26 1.50 12.81 0.02 15.26 0.18 10.08 11.30 1.41 1.33 n.a. n.a. 97.14 3VG28-16
43.08 . 1.51 12.94 0.02 15.86 0.18 9.84 11.18 1.42 1.35 n.a. na. 9740 3VG29-17
4313 1.90 12.43 0.02 15.84 0.22 10.12 11.38 1.45 1.32 n.a. n.a. 97.82 3vG29-18
43.35 1.49 13.03 0.01 15.65 0.20 10.01 11.15 1.58 1.26 nd. n.d. 97.73  Average
0.26 0.18 0.31 0.01 0.22 0.03 0.18 0.17 0.1 0.09 nd. n.d. Std. Dev.
46.60 1.41 8.95 0 13.16 0.10 11.99 14.94 1.78 0.3 0 0.05 99.88 3vG8-1
42.69 1.40 12.50 0 15.80 0.16 10.31 11.31 1.84 1.29 0 0.06 9736 3VG8-2
42,12 1.59 12.74 0 16.03 0.19 9.88 11.14 1.63 1.27 0 0.08 96.65 3VG8-3
42.56 1.66 1213 0 15.72 0.18 10.37 11.56 1.53 1.31 0 0.06 97.07 3vG84
42.11 1.73 12.69 0.01 16.17 0.18 10.36 11.55 1.55 1.34 0 0.10 97.77  3VG8-5
42.49 1.54 13.04 0.02 15.83 0.18 10.03 11.13 1.71 1.27 0 0.09 97.31 3VG6-6
42.35 1.62 12.63 0.01 15.88 0.18 10.16 11.18 1.56 1.23 0 0.07 96.84 3VGE-7
42,77 1.62 12,95 0 15.63 0.19 10.14 1147 1.65 1.28 0 0.07 97.44 3VG8-8
42,06 1.56 12.98 0.03 15.47 0.17 9.94 10.81 1.70 1.25 0 0.07 96.03 3VG8-9
43.15 1.73 13.19 0 14.84 0.13 10.93 11.04 2.00 1.19 0 0.08 98.25 3VG8-10
42.81 1.53 12.86 0 15.99 0.19 10.41 11.18 1.73 127 0 0.07 98.02 3VG6-11
42.39 1.62 12.80 0.01 15.44 0.20 10.33 11.38 1.68 1.34 0 0.07 97.34 3vG8-12
42.27 1.63 