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. Abstfact( .
,, _Dichotomies for q_yetemS".:of ordinary differential ‘equations may be viewed as

o

‘b'ounds»on. a G_reen function 'of -aypa.r'ticula.r form. This view is used to provide ag

introduction to dichotomies. o ‘ ) R
., : L] . . ‘

" The advantage of this treatment is the naturaﬁnclusiOn of angular separation .
conditions. These,are related to bounds on part of the Green function which can . . -

-~

be ignored for time-invariant sys.;tems_,' and other systems with bounded a.ngula.r ‘

separation of vsupplementary subspacee of solutions. By not ignorixre it, angular

eep&r_at'ion;;enters naturally. Systems .can be treated without requiring bounded
ang'ulefseparation. R .

The ﬁrst three chapters descrxbe the system to whlch £uture arguments wnll '

#
apply in aome detall In a.dd:tlon to fam111a.rlzmg the rea.der wrth the nota.tlon

used here, they are 1ntended to. help the begmner. After tha.t a bnef survey &
gwen of the current role of dlchotomxes in stablhty theory of non—lmear and lmear

systems.

Next, the relatlonshlp between dxchotomles and the asymptotrc be‘havnour,

.

of aolutlons of hnear homogeneous s;atems is estabhshed in. sufﬁcnent genera.htyn '

“to accommoda.te unbounded a.ngular separa.tlon As pa.rt of thls program, a.ngula.r \
)

. sepa.ratnon is rela.ted to the norm of the dlfference between su’pplementa.ry projec-

txons This result is proved for any Ba.nach spa.ce, wnthout reference to ordma.ry
dlﬁ'erentlal equatnons For general Banach spaces', “b@t posslble bounds are pro—
vnded These are compared to the usua.l bounds Whlch relate a.ngula.r tepa.ratxon_"j.

R4



Jto the norm of each prq]ectxdn For Hxlb“sp&ces an exact formula'ls p;ovxded
Some of the current kmds of dxchdtomxes are. then descnbed he .relat,;onv o
. g e XL e L
. shxp between dtchoton'ues and the solutxons of linear. &hémogeneoun systems 18“_ S
trea,ted bneﬂy.. Fmally, a guxde to: the sea.rch fora new kmds of dxchotomles m’.‘"i-"”
gwen The adva.ntage of compa.rmg Green functlons of twp dx?erent systems m ‘
outlmed ‘ | :
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1. DESCRIPTION OF T®E SYSTEM

, A linee.r' system of ordina.ry ditfererltial .equetiohs hastheform
C iy _A(t)x @, s e
.where J = [a, .b] is a.rea.l 1nterva.l whxch may be bounded or unbounded |
| j 'There is a homogeneous syetem correspondmg to(l).h;- S - _l .
f\} A(t)x o, teJ '_ . B o ("l)_ .
When A is constant the system is called tlme mvarmht (statxonary, adtonomous) ‘.
When A varies w1th t, the system is called tlme varymg (non—sta.tlona.ry)

| The vectors x, f a.nd Ax may va.ry thh t At each t, they ta.ke thelr va.lues

- vm some Ba.nach spa.ce B.

& \> :

- In pa,rtlcula.r, B could be R" or C", Fo-x" 'thos‘e' s'oacee,' an iz-dimexisi’onal o

: bas,\s may be ﬁxed The lmear opera.tor A then becomes an n x n ma.trxx whlch:
varies w1th t. This matrix may become unbounded ast—a ort —b.

Only operators A which are linear are considered. That is, A(aixl +az.*2 )= | ,

o Ax'l + ag.Ax§ for all scalar a; a,nd as. This ha.s two 1mmediate cohseqoen.ceg,‘ )

. At AU R D

Superpomtmn Prmcxple 1 1 If X a.nd‘\xz,ar‘e ‘both"solutions of the homo-

o

' geneous system (2), 80 1s a1x1 + azxz. Thus,, the soluvtiohs.vo_f (2) form a ‘_litlear-'

'subset.. . AN

'Superpomtlon Prmc1ple 1. 2. x, and xz both satzsfy tbe mbomogeneoa system
' 2

(1) if a.nd only u" one of them dow a.nd their dszerence solves (2) Thus addmg

1
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each solutiaixZ‘aF (Z)m turn to any bne _p;rtic;iléf"‘sélu'tiod 'bf (1) wxllptodqceall .

X v
. v

of (1)

~  solution

e

N
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2. THE SYSTEM IS DEFINED BY CONTINUGUS FUNCTIONS

o™
’

v J’(Z}ivven any (to,co0) € J X B, it' is usually possible to.prove,ther_e is a unique.
“ solution x(t) satisfying (1) the graph of which passes through (to,co), that. is,
“with x(to) = co. For any system of ordinery differential e'quat_iom‘;,'_whethe'r linea.r
like (1) or nbl{-hnear,' such exnstence and uniqueness of solutxons follow from the

'Banhch ﬁxed pomt theorem once it is ﬁrst shown that successwe appmxnmatnons'. -

Twt
-~

R _ converge Thls ﬁrst step is where hnea.rlty can help Roughly spea.kmg, assump-

. '._.- - ,-'.' ‘ -.' . . e
" - these condxtlons, successive a.pproxnma.tlons converge.

. “

' (4 o
txons a.re made to ensure J can. be covered by ﬁmte mterva.ls, chosen so that for, -

each mterval K_ in ‘the cove’r, f | K is continuous and [ K"A" iis bounded. ~Under"

o

> One dxstxnctxve fea.ture of the results dlscussed later rs tha.t they apply even

when A is not bounded ast—a or t— b the endpoxnts of J At pomts where A
is not bounded the method of proof outlmed abo' sometlmes stnll works smce

' it depends on A a.nd nat on ||A 1tself In general though solutlons may | faxl
Q\

N

to be unlque or even. exlst at ﬁmte endpomts where A 1s ot bounded so\these ; :

. "«. ‘e o
8 s - ‘ "’

" are remo\_red.jfrom. epnsxdera.txon 1n.the followmg theorem.

S

Deﬁmtion J!is the mterva] obtamed from J by om:ttmg any endpomts where_ a

: kA is not bounded

o

Theorem 2.1. Assun'ievf(t)‘ is continuous for t € J' and A(t)c is continuous for

 (t,¢) € J' x B. Then given (to,co) eJ -x_.B','b'system' (1} has a»uuique'solultion

G .8



x(t) de_'_ﬁne_d, for all t € J', with x(to) = co

Sketch of proof..

-]

Corollary 2.2. Assume A(t)c is continuous for (tc) € J' x B, as above. Then

g:ven (to,co) €J'xB, system (2) also has a unique squtxon x(t) deﬁned for al‘f"

: tEJ' thhx(to)-—co

/.

| When A and f are continuous like this, the above conditions L4 -eovergence -

2

of sucéessii'e s.pproxima.tions are satisfied by a.ny cover of J by finite interva.ls :

The corolla.ry follows since (2) is a spec1al case of (1) thh f (t) =0 for all

: i o vs-
, : , . L
A byproduct of a;pplylng the Ba.na.ch ﬁxed pomt theorem is the knowledge

: that x(t) is contlnuous. From. (1) it may be inferred that eﬁh solution x(t) W1ll

[

'be one notch more dxﬂ'erentxa.ble tha.n A a.nd f are. For mstance, when A and f

|

| are contmuous, x will be contmuously dxfferentxa.ble In that ca.se, (1) is satlsﬁed

. ateverthJ’ '

Tha.nks to these results the assumptlon tha.t A a.nd f be contmuous keeps

- the dlscusslon slmple, but is lt necedsary? The main lme of a.rgument stlll works for

any lmear system for whu:h succisswe a.pproxxmatlons converge on ﬁmte intervals
' ~F

'in (a, b), giving solutions whxch extend to the whole of (a, b) It is known that not

stnll an open quatmn However, systems whlch satxsfy “Ca.ra.théodox;y condltlons

. are knoWn to have them These condltlons a.llow not only all systéms whlch are

N .
Y

’ deﬁned by contmuous functlons as descnbed a.bove, but a.lso systems of prat.tlca.l

N

all linear systems,have_.these cha.racterxstxcs. Precxsely.whlch systems have them is
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" interest which are defined by séme kinds of functions whichbaré‘ndt_'hontihﬁdhs, _

I g :

“such as step fﬁnétiohs. QDiachdto'mio;s have l;eén discussed imderv Ca_.ra.théodory .

‘conditions. Technical digressioms then obs_(:u;je the main line of uguméqt, w}iiéh:

. -is the same as in the continuous case. This _intrpductioh will therefore treit only

the contipuous case. -
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3. FUNDAMENTAL SOLUTION

£
) It is necessa.ry to hst the results of this sectlon to have them in the exphclt L '
: \ - . S I
form needed for reference by later sectxons The form of the results is the game
\ . . . .

whethet géneral Banach spaces are consxdered or whether attention is- restncted'

\

to the case. when B is R" or C" Slnce no extra. work is entalled the proofs  have

' been given for . 1'Banach . -
een gwen or general Banac spa.ces S

Theorem 8.1. The set S of. aII solutions of a linear s:ystem:h (1) is in one-one

. Cer_ec;pondence:‘;with B. s ) o
- o o - Lk A
.;'.,Proof - S o e o,

The 1dea of the proof is to select a to, then label each solutxon X € S by 1ts

value x(to) G B o Ce T
Ple a to G J and deﬁne o.
&
¥ 'S — B .
d: x — x(to) I S (4) '

- $is ca(led an initial value map. It will now oe eho_wn that <I>-.:i's a bijecti_on, ae_:‘é;_ L

_ ‘.cgneeqnence of Theorem 2 1 | | u o o
: A solutton x(t) of (1) is deﬁned for some t € J'. ' Accordxﬁg to Theorem 2 1 s L
| v‘-' x(t) is then a functxon that exnsts a.t all t € J ! hence at to. Tha,t 13, every solutxon ‘

o M . i . . ' . ) i 3 \n " o : N . N ) . f’ . . '
S A . d . . . -~ L S . . . s B



.
(i) *Since every soluti'on is e function which extends to _to, ¢ i3 a
well—deﬁned functxon I e o
(u) Smce solutxons are unique when x(to) is given, <I> is one-one. .
\
(1’11) Slnce'solutxons exist with x(to) =c for every ¢ € B,.-<I_> is
onto'_." | . ) o ’
i This COrresoondenee epr)lies to any system of ordine.ry dift'erehtiai equations,

_whether linear or not for which the propertles emphasrzed in (1) (u) and (iii) in
the proof can be utabllshed

Although the set S of a.ll solutlons and the spa.ce B are in one-one correspon- )

dence, they may be very dlfferent 1n thelr structure An 1mportant dxstmctxon is

th’_a.t 'B_ is a lmear space, closed under vector.addltlon-a.nd.scalar multiplication,' '
- while S usually is not, @s.the followﬁl_ng theorem shows. -

, ! )
Lo

L6

"I‘heorem' 3.2. Sisa linear spe_ee' ‘&= the linear syétem is.homogeneous; e

CProof. . oo | S

SN

=> Assume Sisa hnea.r spaCe It therefore mcludes the zero functxon, x(t) =0

for all- t €J. Smce thxs must sa.tlsfy (1) f (t) =0 for all ¢ E J and the system is

B

homogeneous(Z) R o : LT

<= :‘"T.h'e eonverSe'is‘;iust'the _sup'erpos'rt_i'on prineiple L1 g

The srgmﬁg\a.nce of Theorem 3 2 is tha.t 1t is possxble for the set S to hn(/
the sa.me structure as the spax:e B only when the system is homogeneous ~For the

homogeneous system, S and B turn out to be womorphlc as vector spaces

o -
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e - . T .o Bt 4

Theorem 3.3. . The sét S of all solutions of a 'ho'm_ogene“oi:s' linear system (2) is"
isomorphic as a vector space to the space B.:

Prqof.

. Finding one isomorphism is enough to prove this. Pick a o € J !. Construct
® as in the 'pro.of of TheOrem 3.1. There it was shown to be a bijection. Now we

want toahqwl that when {fe system is :homogeneOue, ® is also, lihea.r.
a;‘I’(x) + ag<I>(y) <I>(a1x + azy) _for all x, y € S and all scalar a; and a,

| 'u_lx(tq) +azy(to) = (‘-atx+42$’)(t0) DL T (5)
- . f - \ ) . ' N

The left ha.nd axde of (5) is precmely how the rlght hand 51de is deﬁned 80 <I> is
lmear Remember it was necesssa.ry to restnct the domam of @ to S for 1t to be
. a bijection. Therefore it is importa.nt to checlc that- a1 x + azx is' in the doma‘.in of - -
~® in this equé.fi(ﬁn.f It is, as weknow from the superposition p_ririeiple 1.1. (Thls
| is pointed'out. since this is where the proof can fail for hon-homogerleou_e or non- . -
linear systems, even if ® is bijective.) Since  is a linear bijection between linear

s e

spaces, it is an isomorphism, and.li)roof‘of Theorem 3.3"is"<:omplete.' |'

l ‘This theorem 18 not enough to show thet S and B are isomorphic as Banach 4
. spa,ces under $. To do that solutxons must be consndered&/‘

E 'a.nd only if their mma.l va.lues are close

Thxs comcxdes thh the ordmary meamng of t:he ‘word close when fimte t ‘

- "lnterva.ls are conmdered That result is ca.lled loca.l contmmty of solutxons wrth

frespect to mmal condltlona and may be proved even foq more genera.l systems

close in some norm if .



\

th.an ours by estxmatmg the solutxons uslng Gronwa.ll’s mequa.hty (In our cue, it

~ is also a consequence of Ba.na.ch theo;em). B

» It can dif_fer from the ordinary mea.niné of the word “closé” when infinite t

intervals are considered. The simplest illustration is this scalar system.j’-

/

b doz=0, ..t,e_lo,oo_l,_ Z(t)eR

The difference between any two dlstmct solutlons becomes unbounded as t — oo,

no ma.tter how sma.ll the dnfference in thexr mltlal values. Sand ‘another way, @y .

: 'exa.mple d1is not‘::ontlnuous a.nd S and B are not lsornorphxc as Ba.na.ch spac
| unless an unusual notion of closeness is deﬁned for the solutnons Sta.blllty theory
is the art of descrlbmg what ca,n happen to solutxons with close lmtnal values
. The 'rea,de'r‘has been warned not to sssume automatlcslly _tha‘t o1 is con-
._ tmuous | This‘Wa.rning_aPPlies_"a.l‘so to all fundsmentsl eoiutions, whlch w}ill’ nouv

 be introduced, when they-a.te ’con'sidered_ as maps frOm B to S.'f'- o RS

Deﬁnltlon. A fundamenta] solutzon for the linear homogeneous system (2) isa |

(vector space) womorplusm X from the spa.ce B to the set S of solutxons

e -

‘The two -prinCipie' results of this section. follow inimedia'tely, '

Theorem 34 -Existence' of a fundamental‘ soiution. .-’When"A'(t) is con{in- . K

-

. uous, as dwcnbed in CoroIIa.ry 2.2, a fundamenta.l solutzon for the homogeneous

A

system (2) exnsts forte J '

- , v
Itroof o

. NG

Pick'a to € J', and consider the inap &', the inverse of the map defined

9:‘



' | ’ | " ‘ | | 10 -
in. Theorem 3.1. Theorem 33proved $:S —+ B is a vector sp‘a.ce,isorﬁoﬁrphism.
Therefore $-1:B N S. i“sxan/E an- 'omorphism; and Q;‘ is one example of a funda-

~-mental solution for the hom'o'geneo’m; system.(2). § - - .

T

' vTheorem 3.5. The use of a fundamental solution to solve the homoge- )

“neous system (2) Solutions x of the homogeneous system (2) are always of the

A

- form x = Xc where X is a fundamental solut:on andc€Bisa constant vector.

Proof. .’
It is only necessary to explain the-notati‘on to see this is no more than a

L rephrasing of the definition of a fundamental soi_ﬁtio_n.
For a.ny linear .mep X from B to S, the notation - /

x=Xec T - . {6)

N sh__oWs.X taking a co‘n'sta.nt.c € B as input, and giving a fuhctioh X, sa.tisfyihg (2),
A as output. No parentheses are put around c Beea.use X is linear. In the spe’éial

- case where X isa fundamental solution, _ea._ch‘soluti'on x €S is matched to exa.c'tly' _ |
one ¢ € B because X is a bijection. | -

It is posslble to cha.ractenze ot and the othen funda,mental solutxons in

. o .
fterms ofa dlﬂ'erentla.l equatlon they must satlsfy The followmg theorelx is that
' characterizetxon; which is shown to be an equxvalent, deﬁmtlon for a fundamenta.lv

solution.

Theorexn 3.8. Xisa furidain.ehtal ISOIu'tx;on' for the homogeneous' sjsteth (2) ' 4=>



o

" X is a solution of - ¥ z‘ ' - .' : N
‘ ' B &(t)x 0, te,J' o <Jm}
a.nd X(to) is a buectlon for some (equxvalently, all) to € J !
o / ' ) ~ ‘ ‘ 5
Proof. - ,
. Fromv the definition, a fundamental solution is a linear map from B to S
whxchnls»a buection L'emma. 3.7 will show that sayihg X is a linear map from B

to S is equlva.lent to saymg X solves (7) Lemma 3. 8 will complete the proof by
B S
showmg that Xi is a buectlon 1f and only 1f X(to) is a buectloh C T
Lemma 3.7. X isa Iinear map from B to S <= X isa solut:on of (7)

Proof of Lemma.
X is hnee.r map from B to g\mea.ns that for any ¢ € B, Xc € S. That is,
P <o s e . N A -
e

Xc is a solution of the honiogeneous system (2). Since ¢ € B does not depend on

t, formally we have the follov{ring.‘

e (Xc) SAG() =0, tel frallceB ()
| / e ) Xc—A(ﬁXc _. . te J",'fpe_au‘c €B (9)
// o < = x —A(t)x')'c f 0, t‘é J",,forvall c€B’ (10)

/ B A hnea.r X sa,tlsfylng (10) is what is meant by a solutlon to (7) ‘80 lt only

. ’/ . . °
‘remznns to Justlﬁ this formal procedure To. do that X’ must be sultably deﬁned

When B is ﬁmte dxmensxona.l Xisa ma.trxx of fun‘ctxons, _a.nd X’ is obta.med by

»

dxfferentxa.tmg each entry Now we wnll justlfy thm, a.nd at the same tune see haw

| X can be deﬁned when B is not ﬁmte dxmenslona.l

v

l



The ¢ime c}lependencej_n (6) ma;y be shown explioitly.‘ In(ﬁ)’ xisa lmea.r o
fu‘n.ctioo of c. This means that at ea.oh_&iXed to€J ", x(to) xs a lmea.r functxon of
‘c. This function is defined to be X(to)- | | "
- x(to) = X(to_)c; \ for fixedto€J' - (11)
Here X(to) is a linear map from B to B. ' | |
It blis poegible to vdeﬁ;ne‘ X(t) for ea.chte J ' , since o was arbitrary. Thus -

(11) may be rewritten ss _

x(t) = X(t)c, Cferallted' (12)

" From Corollary 2 2 x'(t) exxsts everywhere on J ' Usmg (12) in the usua.l
definition of x (t) ag a hmxt shows x' (t) is a lmea; funct,xon of ¢ at -ea,ch fixed t.
‘This function is defined to be X'(t).

'(t) = (X(t)C)

.-—X’(t)c, 2 fora.llteJ' ;

That i is, (Xc)' X’c, showmg (8) and (9) are equlvalent The lmeanty of N

X shows (9) and (10) are equlvalent | | , s

L a 3.8. suppose X is Imear and for aII c € B Xec is a squtxon of tbe

~
]

bomogeneous system (2) Then the foIIowmg are equzva.lent

. (1) X is abiieetion. |



(“) x(to) isa buectlon for some to e J .

(m) X(t) isa buectnon for a.ll t e .

. Proof of lem‘ma_;_';,f‘.m

Flrst we Wlll show (1) ¢=¢» (u) :

Usmg the sa.me to a.s m ', 11);“<I>7 i ",_be constructed followmg the procedure B

" in ‘Theorem" 3'1’ vThen 9_ x H x(to),-for a.ny solution‘x;-of (2) chk any cE B L

__‘?(Xc) (to) = X(to)c The choxce of ‘c wds a.rbntrary, s0 this

shows <I’ o X X(to) Because <I> 1s a buectlon thu} shows X ;s a buectxon if and’ ",

: '_only if X(to) 18 a bxjectxon ;[‘ius complete&the proof that (i) 7=h (u)

The choxce of to in the a.bove a.rgument was a.rbxtrary, 80 (1) => (). Fmally, c
Y ) o

e () = (n) since (31) is a partlcula.r mstance of (m) This completes the proof of

i

4;Lemma38| s : . L ' .

e

"To complete the pl:oo?lof Theas'em 3.6, i mtist be checked that_ the supposi-
ti_oh the.t;_st.alrtsLeﬁlms. 3.8_ls satﬁﬁegt When proving Theosem 3.6 in the l'orWasd
dil'eetion, this isa clire‘ct consequehce of the'deﬁhition of the fuhda.mehtal solution-
When provmg the convefse this follows from the fact tha.t X solves (7) as was

’seen in Lemma. 3.7. l

- For clériﬁcs.tlon,vsome further results are'now 'mer‘ltiOne&.' 'These “arev not
nee_ded-ih the sequel, so we do not dwell on them. .
By deﬁhition, the fundamental solutions which are of the' Qform.'x = Q‘“_ for

" some ¢ have X(to) =1 'I_‘hex:efore’theyea_-e' the subset of the solutions-_of (7) with .
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this xmtlal value. When the unique exlstence of solutnons of (7) for any mltla.l value

s establxshed we ¢ can show that a.ny funda.menta.l solutxon Y of (2) is of ’the form
Y = XC where X is ‘any solutlon of (7) for whlch X(to) is an 1sornorphxsm for
‘some (equwa.lently, all) to € J', and C isa constant momorphlsm We can thmk _

of C a&a constant lmea,r change of va.nables on the domam of the f\mdamenta.l |

solutlon For ﬁmte dlmenslonal spaces, thls means a.ny two fundamenta.l solutions .

' are the"same, ap's.rt from a constant change of basis for the_lr domams,_ and are .- .

- equivalent for many pﬁrpOses.

" To‘ estabhsh the unique exnstence of solutnons of (7) we may rega.rd it as& :
system of the form (2) where X' a.nd A(t)X ta.ke thelr va.lues in [B], the Ba.nachbl .' '
- space of bounded lmea.r maps from B to B (For exa.mple, when Bis R" or Cc",
[B] is. the set of allnxn consta.nt matnces, with two ma.trlces bemg close when:" S
correspondmg entrxes are close) The left multxphca.tlon by A(t) mdlca.ted in (7) is
llnear in X. It was to ma.ke thls a.nalogy between (2) a.nd (7 clea.r that the letter
X was used for the funda.mental solutlons The umque exlstence of solutlons is
‘then glven by Corolla.ry 2. 2 rea.dmg X in pla.ce of X. Thls isa consequence of the
fact tha.t A(t)c is contxnuous for all (t c) € J Lx B 1mplxes A(t)C is contmuous
for all (t C) € J' x [B] The smoothness of the solutxons X(t) as a. functlon of t
| also follows | % L | L

-~ For ﬁmte dlmenslonal B a.ll funda.menta.l solutlons take their va.lues in' [B]

: and nothmg is lost by considenng (7) to ta.ke place in [B] For lnﬁmte dlmensxo =

. ‘systems, not a.ll fundamenta.l solutlons as prevnously deﬁned ta.ke thelr vnlues m": L
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- (B}, 80 consxdermg (7) to ta.ke plmce in [B] only descnbes some of the fundamental

solutxons Exther a more restncted deﬁmtlon of a funda.menta.l solutnon must be ‘

used, or we must be content with results which d;rectly pertam only to some *

)
.

. 'funda.mentsl solutions a.nd indirect iriferences about the others.’ Alternatively, we |

~ can use'_ a different method to establish the unique existence of solutions of (7). - o

In the case where A(t)‘ is tboun-ded_fb;ﬁ-' each t, which we are considsrirx'g in

-

~ this ‘pa'pér,':choosingiorily X fd'r whiCh ,X(tvo) is bounded fox.",some. (equivalently,

all) to € J'is natural and qulte satisfactory. Thét is, we may consxder X(t) € [B]
for each t € J'. The real issue is whether thxs convement a.ssumption should be‘ |
made for mﬁmte dlmensxonal systems when A(t) is unbounded at fixed t [14] o

.Such systems of ordma.ry dxfferentxa.l equa.tlons crop up in the study of partxa.l

. differential equa.t,lons. o o <
. Summary S S

This seg:tion established two )pfincipal results.

I Ex1stence of fundamental solutions Under tbe hypotbeses of contmmty. :
deta:led in Corollary 2.2, fundamenta] squtxons for the homogeneous system (2) |

exzstforte.]’

I The use of fundamenta] solutxons to solve the hompgeneous system

\‘*}

.

, (2) Solutwns x of the bomogeneous system (2) are a.Iways of the form _ B

x=Xe¢ e o

* 'whére X‘is a fundamental solu_tidn andc €B is a constant vector.

Tow

v
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"'4. REASON FOR INTEREST IN DICHOTOMIES

The purpose of thls chapter is to outlme only those pa.rts of the stablhty

theory of ordmary dlﬁ'erentxal equa.tlons whlch have been rela.ted to dlchotomxa o

‘r

Introductlons to the subJect which do not suﬁ'er thm dlStOl'thIl .are Coppel [5] a.nd .

Da]eck”f a.nd Kreln [7] In partxcula.r, we want to focus attentlon on the role played

. by systems of the form (1) .

E

- It is not usually posslble to ﬁnd explxcnt solutxons of the general ordmary

. _\_' o

dxﬂ'erentlal equatlon

T T .' C ;;»’('13)‘3 .

Instea.d a quahtatxve theory has developed What kmd of BOhIthILS exlst" _. .‘ |

' How do they beha.ve? | |
Lmear systems are used to mveetxga.te how solutlons of (13) a.re a.ffected by'- -
o | smooth varlatlons in some parameter, such as uutnal condxtnons One reason euch. |
’ %“A lnvestxgation is. xmportmt is ‘thm When a dyna.mxcal system is engmeered for the R

real world to operate rellab]y 1t muet be etable wnth respect to mltla.l condltlons |

The ploneermg work based on the va.na.tlonal equatlon for (13), was done
by Pomcaré and Lnapunov (meunov 8 ﬁmt method) For the work of Poxncaré '
see Hartman (12] a.nd the mtroductnon at the begmnmg of Abra.ham and Ma.rsden -

"16'



- [1}. The blbllography in [1] hsts the releva.nt references Lnapunov s work has been

B : reprmted [15] Coppel [5 p 53] descrxbw pa.rt of thxs work and gwes references

to la.ter sunphﬁed trea.tments

s Systems of the form (13) are classrﬁed as follows Ea.ch cla.ss is a subset of

the one that follows (-
(i) h'riear.systems with bounded constant A
(ii) linear syStems thh txme—varymg.}(t) .
: (lu) wea.kly noh-liheer_' systems (lfhesr 's'ystemsfvyith small kA
| - non-linear pertorhetions) |

(iv) quasi-linear systems p

(v) general non-linear systems (13)

' Brief remarks are next made about ea.ch of these in-turn, for later dishuss‘iori’ R

4a.bout dlchotomxes: As we proceed down thm hst less and less is currently known -

“about the beha.vrour of the solutxons of the systems

- (i) - Iin;ear_ systems with bo'un‘d'e‘d coristaht A

(Note /in ﬁnite‘ dimensions, consta.nt'A-a.r'e always bounded 80 this stipulation
only restncts 1nﬁn1te drmensronal A) The theory of lmear systems wnth consta.nt ‘

. ';7;f"_1‘: .’bounded A is. well advanced. Thrs mcludes spectral theory and the usual La.pla.ce_

ansform methods : 2.

(u) Imear systems wrth tzme—varymg A(t)

These are. systems of the form (1) whxch are the focus of attentxon in thm paper

o The restrlctxons we ha.ve made on the space B (1t must be a Ba.na.ch space) and

Bl
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the ‘coeﬂici‘entsjA(t) and f(t) (they must be continyous) mean that we are not 3
treaiting_ the problem in full g’enerality'. '

,: R (lll) wealrly hon-bnear systems (Imear systerhs with- small
| ' non-linear perturbatxons) o “ e

The Astudy of non—linea.r sj'rstems (13) which devia.te from lihear systems ina‘srrﬁll )

way was mstxgated by Llapunov Now thls is the best developed bra.nch of the

theory of non-lmear systems It mcludes the case where g(x,t) is- a.nalytxc Study

of these systems is especxdlly useful sxhce ma.ny éystems are desxgned with the

- 1dea.l (i) in mmd a.nd small- non-lmea.ntles result from the 1mperfectlon of the -

e

i_mplementatlon.
(iv)' qua.éiJineat eysteins
These are systems sxmlla.r in form to lmea.r systems (1), except that the coefﬁcxents

‘ A a.nd f are allowed to depend on the solutlons x and not only on ¢.

XA C o

- Ma.ny system{ (13) ca.n be put in this form, with' well-behaved A e.nd f . For N
i

P exa.mple, ,we can ta.ke a ﬁrst order Taylor expa.nsmn (with remamder) of g xn x
-

, a.lone, or-in x and t. ThlB ca.n be done, for msta.nce, yvhen g —18 contmuously

\ e

dléerentlable in the va.rla.ble(s) of expa.nsxon It leads to systems of the form (m) ‘
Here is a specnﬁc exa.mple of this kmd of expa.nsxon. When g is contmuously ,. :

dxfferentmble m x, we may write g&x, t) = A(x, t)x + g(O t) Let us brxeﬁy show . -
v

this. Consnder h(s) = g(sx t) so that h’' (s) =J (sx, t)x where J gg Smce
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() - h(O) fo (s ds
8(x, ‘)‘ 8(0 ‘) = A(x t)x

" where A(x,.t‘)‘= fol J(sx,t) ds.
| 'I‘_here is a standard trick for studying quasi-linear systems using linea.r sys-

o tems: First'note that for any given function y v J — B .
x' = A(’y(t),t)‘x + f('y,(t),,t‘) | (15)

- is;a lmea.r system of the form (1) (In thxs paper we conslder only contmuous

*Aand f. To make use of thxs system, we would ﬁrst ha.ve to show A and f are

v

contmuous or use results more general tha.n those presented here) If we choose a
. solutnon of the system (14) to-be y in (15) xt is seen to also be‘a solutlon of (15)

' Suppose we know propertres common to the solutlons of the dlﬁ'erent systems

(15) formed by substitut_ing different y ina fa.mily Y which includes all (or a sub'set B
of) solutions of (14). Then all (or the subset of) solutions of (14) have the common

property.
A better a.pproach is available when (15) ha.s a unique solutlon in Y for'ea.ch
.’.'y € Y Then we can thmk of the ma.p y—x whxch ta.kes any function y whnch
we put into (15) to -the umque solutxbn;x in Y whlch results from (1.5). .The'ﬁxed j
points of thisnrep afre,the solutions of (14) in Y [2] [13]). _‘ |

(v) * general non-linear systems (13) - ' Cae s <

¢ )
There is a rnethod of exploring‘ the global behaviour of _solutiOns;which'applies'tov s

| all systems (13) a.nd not only those in (i);-(iv)", above. This is\Lia.punav"s second or . L

-
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: .‘dxscussed there have since been surpassed) A more genera.l mtroductlon is gwen' _

.

: by Ha.rtman [12] and Ka.rtsatos [13, ,pp 79—92] The method is’ developed for

. '.systems'sa;-tisfying Cara._th_éodory;condxtlons in Mass§{a_.,an&5chaﬁ'er [18, pp.- 311- .

’ N

| 320]; '.'Ihe "ba‘siereference, is Yoshizewa. [72.3-].
Now the brief description of the‘ classes of ordina.ry diﬂ.'erent'r.al'eouationsis ’
| ﬁmshed Mucﬁ work has been done in relating these classw, 850 tha.t knowledge of “

the better understood systems near the top of the hst ca.n be apphed to systems

. 'a.t_th'e bottom of the hst; _' N T | - | R
In this scheme, the systems of the form (I) in {ii) are an interesting middle

ground. 'The.discussion‘ of quasi-linear systems’(in (iv) oroﬁided a.'ske'tc_h of one
‘way to‘rvnake the transition from (v) to (ii)- Let*us'now see how (1) ‘end"(ii)' ere B

. ‘.‘--‘ related. At the Jsa.me tirne, We will introduce diehqtoinies_' a.nd‘ _'present_the scope
~of the nresent‘paper. Then we w1ll return to indicete how diehot_omies ha'u;/e‘been .
re!ated to the other'ideas ontlined a._bove,. as tvell as a_few other's whlch have not -
‘been mentioned yet '

R

Because the spectral theory 1s so succ&sful for tlme-mvarlant systems (i), -

P

- »attempts 'have been made to modlfy thxs idea to work for the tlme-va.rymg systems '

by,
L (n) When A(t) i not consta.nt it is. pbss;ble to consrder its spectrum (set of
s ,e;genvalues) -at ea.ch t For dxﬂ'erent t th;s set can shufﬂe around mstead of bemg
b y * . e T o L .‘)...1:" . .' : ’“‘v ’ R . ) . o
- B S L G R T 4




static as it is when A is constant. This idea does not work out as hbped."

CBample fps ¥

When AIS éo;létaﬁt' and all eigenvaluéé ;.re_ ‘—‘ 1., spectral théory‘ tells u; tﬁat
‘ v.t;-hev system ‘is\ un‘ifom:;l)‘( asymptofically stabléf In pa.it;.i'cula_r,‘. all solutiox"@ temi to . ‘.
- z_ero-for‘;‘i‘r‘l;:"r:ea;ihgbt.‘ _ To sf;&ow baé‘ly, éi"gehvé,lue;a‘fail a.sl,'a: diagnostic tool wﬁen
3 A(t) is not 'cons_t‘;c_:.xit,.' hgfe is an e);ampl‘e w-ﬁgre&_ all eigenvgltiés-..‘are —1 at everyt, .
and yet t.}.le.s.ystvem has 'So_lptiong that@re_imBiolt‘m:ded! |
- Take Att) =R°l (t)AoR(t), whvereT | SR - .

[

. (1 -5 | cost  sint '

Ao= ( 0 -Ll')’ R()= <—sint éost)"

Ay is triangular so the eigenvalues appear on the diagonal. These eigenvalues are”

riot affected by a rotation R.

‘Here is a funda.menta.i matrix for the corfeéponding hc;mogenbus system (2). -

- [ €(cost + 1sint) cf‘m (cost —,j sint)

X = N
o ¢!(sint — 3 cost) e ¥ (sin t + 7 cost)

Every solution Xc where ¢ has non-zero first component, becomes uqboim_ded' as

t — oo. Thus understanding the behaviour of sol-utiohs.comp_letely in terms of the

spéctl_'um of.A(t) when A(t) is not constant is déomed to failure. |-

.

Nonethéless, in special circumstances, part of the spectral theory for s?a.tic
’ s_ygfemg (i) can be applied to time-yary'ing__gys_tgm.é (ii)- Floquef theory for ’perio&ic_
’Av(t):ﬁl?-major_ advance. Coppel [5] su_ﬁﬁﬁrizés what can be salvaged. A more

 fruitful approach than this -is_deseribed_nggt. "

A
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In rettospect we may view developments the followmg way. For motwatxon, .

we: look at the spectra.l theory for constant A What kmd of bounds on the

. L

h solutxons or the Green functlon arise from the spectrum a.nd are used in the theory?

:To develop the analogue for txme-va.rymg A(t), yve consrder bounds of the game’
form These can be establxghed w1thout any reference to the movrng spectrum of
A(t), a.lthough it is mterestmg to relate the bounds to the movmg spectrum when -

o N

thls can be -done ig lly, we forget about the spectrum a.ltogether, and try to

; generahze the formslof the bounds ‘80 they can be a.pphed to a broa.der class of | '
sy‘stems." | | - | |
Two developments of this kind a.re-‘mat‘rix meesuresa.nd dichotomiesL Ma¢
" _trix.measures are 'used toestima.te the growth ‘rates of 'the norms of solutions.

I‘ntroduc‘tions_‘.to‘ -_matrixv measures (logalrithmic ‘norms’ of Lozinskil’) a.re ‘Cop'p’el
- [5, pp. 41‘,5‘8] a.nd Kartsetos (13, pp. 65—70] | |
o As‘-esrly as the_ yvorlr.ol" »Perron [21] the germ of the ides. of a.d_ichotomy .
- c.a;n.‘be seen. ‘H‘owever; the word dichotomy; was {pparentl_y first .used m this
connection by 'Masserh a.nd Schiﬂ'er, vyh‘o give a t‘horOugh t\ree.tment of ordina.ry ' '

' _a.nd exponentla.l dxchotomles in [18]. The mtroductlon and cha.pter end notes in

[18] descrrbe the hxstoncal evolutlon of the ldea, and give references to ea.rlxer

" work. A more accessible lntroductlon is Coppel (6].
o '\"'“ " In the .present.p-aper,' a dichoto'my 1s considered to be a kind of bouhd ona
- p_a'rticular form of the Green function of the‘.system. (1). Exponentia‘l and qrdma.ry |

dichotomies came first. Bounds of these forms arise from consi'deration:.'of-;:the_
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“ spectrum for constant bounded A, and can be used to find properties of the"

_ solutions of (1) in that case. Without reference to the spectrum, criteria are found -

' wluch will ensure bounds of the same form when A(t) is not consta.nt. o
Fof this, theorems 6.2 a.nd 6.4 are developed.' They relate the bounds on
_ the Green functxon to the behavxour of the solutnons of the homogeneous system

-

(2) (Malzel’ [16] ﬁrst notu:ed thxs kind of connection in a slmple case) In" thns
way dxchotormes are related to different asymptotic _behavxour of two subspaces

" of solutlon's of (2). Dichotomies may therefore be vievred as a kind of conditional

| ‘.stability. :

The prograrn is-csrried out in suﬁicient ‘generslity to a.cednmmbdst‘eja broader '

class of bounds than ordma.ry and exponentla.l dxchotomles Some of these,l na.rnely
. v(ul,uz) dxchotom1es (17] [20] are mtroduced Other generahzatlons ex:st A brief
N 'revxew is mcluded in Elaydx and Hajek [10] The present pa.per ends with- further

‘suggestlons e : ' ) . ‘
. v B

The relatlon between dlchotomles and the asymptotlc behavxour of solutions
RPRFS
of (2) can be used to determme cqndltwns for the exxstence ofa dxchotorny dlrectly

from A(t) Coppel [6] provxdes an 1ntroductnon to thls For ordmary and exponen-
- tial dxchotomxes in finite dxmensronal ‘Banach spaces (wx_th‘ real scalar,s) Massera.
| a.nd.Schiifl'er.,[.lS] introduce euxilia.ry’functionsakin to Lla.puhov functions suited |
to this purpose. Muldowney [20], who uses auxxllary functlons of a slmllar kind
"':a.nd matrlx measures, relates propertles of A(f) to (u, ,u,)-dlchotomy condntxons :

: & .
- for B R" a,nd B ='C™.- Furth‘er results on anpunov functxons and dlchotormes
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‘ "appear in .,Cbppelb»[-t]. '

Dichotomies c'an be'used to esta.blish the uniquenessof solutio‘ns of the kind -

needed in (15) to establlsh the map y =X descrlbed there ‘Much valuable infor- |
ma.tlon about thls is presented in Massera and Scha.ﬁ'er [18], but they mtentxonally‘
bavolld dmcussmg non-lmea.r systems, and do not relate thexr work to this a.ppll-
~ cation. In this wa.y, dichotomies are rel_}ated‘ to the study of Qua.shlgrleg systems.
The relntionship"bet‘ween.npn-lineer systeme and dichotc)mi_oﬁ is also being pur-i

sued in_terms of the variational equation [10]; (A related formulation is touched

h R

onbelow)r» | ' - | o L e
Dichotomies describe the asymptotic behaviour of two subspa.cee of solutions.
~ There are generalizations that describe three (trichetomjes) or more subspaces of
solutions. It would be interesting to nh_ra.se these as'bounds on a Green function '
of a form different than that considered here. .- I e
The werk of Perron has also grown in_.'-"i different setting, manifolds thh a
Rlemanman metrlc mstead of Ba.nach spaces [9] Exponential dichotomfesu and

-

' exponentlal trlchotomles arise there. They are not condltlons on subspa.cw of

. solutioné like ours.

) In stdble manifeld theory,v‘ they aésume in advance that' the solutions of
/interest always ha.ve their values restricted to some compact'\_suhset. Then _they
try to 'investig'ate more closely what can happen.. Our qu&tiené'a‘re different. In

' fact we would be quxte happy if solutions startmg ina compa.ct subset left thel

3 A' subset at some future tune, provrded we could descrxbe how this ha.ppens D&plte,
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. this dxﬁ'erence in set!;mg a.nd purpose, it is useful to compare this work wnth ours

For exa.mple, "dxchotomles in va.natxon may be better formul;ted in terms of the'
der_xved ﬂow.
Exponentlal tnchotomy condltlons (“hyperbohmty requxrements”) were used

by Sma.le [22] in proving the existence of centre—stable ’ma.mfolds For an outline of

- th&se mults see Abra.ha.m and Ma.rsden [1 » PP- 528—-531] .No doubt more general |

. f

dichotomies will be used i in that settmg



I 5. VARIATION OF CONSTANTS FORMULA

AND GREEN FUNCTIONS %

[

We have seen in (15) that-it may be useful to con'sider‘systems~ of the form-

: (1) for which A(t) or £ (t) or both may not be explicitly determmed in a.dvance, |
although we may know some restnctxons on them What restnctlons a.ne neces-
sary and sufficient to dete:mme the behe.vxou;’or un_xque e:_nstence of sol.utxons?".
,Onlybpa.rt of the problem is eonsidered. In the remainder of th’is'. pé’per, we fmd'
. ,condmons on the solutions of the homogeneous system (2) whxch in the presence
of mlld restrxctxons on f, allow us to descrxbe the behaviour’ of solutlons of (1).

Thg_ problem of solving the inhomogeneous system (1) is now considered.

"
& X -~Alt)x=£(t), tedJ (186
A change of variables simpli_ﬁee this equation. Call the new variable y..
x=Xy '(*17)_

_Here Xisa fundamen%l solutlon for the correspondmg homogeneous system (2) }
Note that X a.lways e?sts but is: not usually known explxc;tly, so the subsequent

© process m va.luable for ﬁndmg properties of the solutlons of (1), but not usua.lly~_

1

s

_the solutlons explxcxtly
This substltutlon (17) uses the variable Yy to replace the constant ¢ in (6) .

and is vtherefor_e known as “va.na.txon of constantg”_ ox::_ “va.rlatlon of pa.rameters‘, g :

- This last comes from the finite dimensional case where the components of cmay . “

. ) i

26



A
‘b'e thoix‘gin;:of as p'ar-ameters used to ‘determine which'solution-ﬁts given initial -
', condltlons (For any one solutxon of (2) though the components of ¢ are constant )

e

| Substltute (17) in (16) and solve for y'.
ey=x4§. | ’ (18)

' Here, (X' — AX)y = 0 from equation (10) has been used. T.A_he benefit of the

change of variable is that. this can be directly 'integrated; o
lx-l . o (16)
The 1dea of a dxchotomy arises because it is adva.ntageous to separate thxs

integral into two pieces. Let us continue without doing so, to see what the probl_em o

/ié. Th‘is means we will eventually write (19) as this definite integral ,_

y ==c¢ + / X1 (s)f(s)ds  for any tg in J
Jo SRR o

- where ¢ is an arbitrary constant in B. Before using this, let us continue from (19)
~ for one more step. - -

~The plan is to apply X to both sides to transform back to the original’

, variable, then ma.ke the tiine dependenc*{tplicit again.
 x£x/x4f'
- x(t) = X(¢) (c + / X1 (s)f(s) ds ) '

k) =X@e+X(Q) [ X @@ (@0
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vetlﬁed by dlﬂ'erentlatlon prowded th¢mfegra.l e:ust&'%" R L N

1 .
The exxstence or boundedriess of tile solutxon (20) can L be ensured for a variety

of f by requiring %tem to meet certa.in stability requirement,s. o
Example.

Here is a sketch, without pr’oéif, of how these ideas de’v‘e'lop‘ when there is a
*bound of this form.

 ROX @ SDewmi-a)  t2a @)

-

»

" ‘Here Lisa positive rezlxl'éohsta.:nt and m is #strictly négaﬁve real -cdnsta'n.t‘.‘
S}s?é‘@ meétﬁg this condition are said to be unifbrmly asyxﬁptot‘ica'.llly sta-
| b’lé for increasigg t, and the regéer ma'y;l;ea.dy be aware of sufﬁciént cqnditiéﬁé
on A(t)‘Whiqh ‘gtvlfa'ra_nt_:ee:this. bound. |

This gives a bound ’.for the integral in (20).

| x“.’ [xt e ” < /,: v"X(t)'X‘i{(s)lli uf(sm ds -

ERC

< [ Lexpime- ol M) do . £2t0 (22)



"'Piec& o ' .o

. . correspondmg to pomf.s in the subspa.ce PzB ha,ve dlﬂ'erent behav iy . We ‘

kS ' @

. Even when b, the right enidpoint of J, is infinite, (22) will remain bourded’ " . -

B
as t — b, provided'_some minor),ggtriction is placed on £.. For ex'ample, this

remains bounded whenfisa loeally mtegrable functxon for which f H" E(r)lidr <

K where K is the same consta.nt for any choxce of t. Provnded 1 meets thm

'nrequu'ement the estimate (21) thus ensures the rlght term in (20) is bounded

,' The estimate (21) also ensures the left term in '(20), w’h’ich- is a solution of the

honiogeneous system, will be bounded as t — b. Thus if the system is uni'fdr'mly
asymptotlcally sta.ble for i mc;easxng 't, all solutlons of the mhomogeneous system |

W1ll be bounded as t — b for a.ny f whlc}t meets the above reqmrements No

detailed. knowledge of f is needed. i o / ' I

1.

This example is of limited practical usé. The problem is that very'few sys- ‘
tems ever meet condition, (21) because it requires all solutiqm:to be Well-behaved '
ast — b, The stroke of 'geniue is to harness separately the 'cdmvrerging power of

| ‘the ébhxtions which are well-behaved as t.—~+ b and that of solutions which are

N

We‘l'l-"be“haved ast — a. Let us return to (19) add separate thegiptegral into two

@

L3

Consxder B, the domain of the funda.menta.l solutign X. (If X(to) = I this \‘

P

' ‘doma.m may be conmdered to. be the dnﬁ'erent possxble mmal values solutlons may
" have at to) Let us. assume there are two supplem/enta.ry pro,;ectlons, Pl a.nd Ps,

.on B such tha,t solutnons corxespondmg to pomts in the subspace P;B a.nd those |

' >

“nL
these ptOJectlons to separa.te the mtegral in (19).. -




A

ce ny=b+/P1x-$gf~.+~,/ P, Xf
r , '_ ) a - - b - - .' ) -

‘Here b is a..conste.x_lt_ ih B. It is not i'n'genera;'l the sa.meas c in (20), hex‘rée. theb
introduction ;f the new sy.mbol Thie generalization incltrdes (20) as’ajspecial cd

: since we ma.y ta:ke a= to, P; =1 and Pz = ?The lower hmlts of each mtegra.l.
are called a and b because henceforth they w1ll be thought of as the’ endpomts of ‘

J, the mterva.l of interest.

Note that the limits have been chosgn in each case so that the mtegra.l is ta.ken..
over dxﬂ'erent intervals. As w1ll be. appa.rent shortly, this ena.bles a.dva.ntage to be |
‘.ta.ken of the two dxﬁ'erent beha.vxougs‘l‘he derwatwe is stlll P1 X"l f +P3 X'1 f =

(P1 + Pz)X"lf X‘lf as (18) requires.-

Applylng X to transform ba.ck to the ~original va.rla.ble now results in thls ‘4

, form for (20) e

x(t)—X(t)B+X(t) / P, X’1 (s)f(a)ds+X(t) / P,X“ (8)f(s)d3
| Sord TR
. —X(t)b+ / X(t)Pl x-l (s)f(s)ds+],—X(t)P,x l(s)f(s) ’g (24)»._ |

Smce tisa common limit of the mtegrals they may be Jomed This results -

A}

in the following form:

£



m
| .%{ X(t)Plx l(s), B t>s o
 where Glt,s) = 4 X() (B - P,) X(s), t=s ‘26)
. SXOPa X, . t<s

(

A function which beha.ves as G does in (25) is called a Green function.
It has been shown that’ solutlons of (1) are gnven by (25) when the integral |
exists. <Tl{ﬁegenera.l solutlon of the mhomogenous system (1) given by (25) is still
of the o) expected by the superposmon prmcnple 1.2. Usmg each b in B in
' ‘the term X(t)b nges each solutxon of the homogeneous system (2),, and the term. ‘
/ G(t s)f(s) ds isa pa.rtlcular solutlon of the 1nhomogeneous system.
Any choxce of supplementa.ry pair of prOJectlons P, and Pz in the deﬁmxn
i - of G (26) is acceptable, provided it permlts proof that the mtegral in (25) exists.
For any chmce of prOJectlons, (26) shows G depends only on X, a fundamental
solutlon of the homogeneous system (2) and not on f. The term X(t)b in (25)
also depends only on’X and not on f. By careful choice of pro;ectlons, it is

thus poSsxble to descrlbe the solutxons (25) of the 1nhomogenwm system from

- )
&wledge of the homogeneous system The task is complxcated by the fact that a

pry

. .. fundamental solutlon X for (2) is seldom known explxcxtly, but condltlons on A(t)

'l/

A ca.n be formulated Wthh ensure X and G have desnred propertles

'J



" 6. BOUNDS ON THE GREEN FUNCTION .- =~ S

Ll

2 N

‘Bounds on the Green function are equivAa.lent‘to‘ Bounds_on the' solu_tion;s'of
th'e'_homogeneous system. To see t_his, We start b-}",‘phrasing the deﬁnition of the
Green function (26) in terms of the solutions ot' the homogenWystem (2)-

B “In the prevfxousﬂcha‘p\ter;\x svas used :in the more genera;l sense as a solution '
- of the binhomo.geneous system. When f(t) is set to 0, all results there re_duce to'the

‘ _corr_espondi_né result for the homoéeneous system.’ Novu we are revertin_g to using
' "x only" in the more special sense as a sotutio@f the homogéneous sy‘stem.t
. Every sdﬁ'xon x of the homogeneous 'A)Rtem is given by x = Xc for some c-
| m B (When X(tg I for some to in J, c is the initial value of the. solutlon at to ) '
‘-The pto_)ectlons Pl La.nd P; spht c ‘into two components na.mely c=c +cg where
¢ = Plc and Cz = ch./These he in two supplementary subspaces of B na.melf
B; = PlB compnsed of all possxble cy components and Bz PzB comﬁxsed {
all possible ¢ components. s

By using‘the isomorphism X, ¢ andcz cofrespond to two component s0-

‘ lhtnons, na.mely X =x1 + X3 where Xy = Xcl a.nd xz = Xcz These he in two )
supplementa.ry subspaces oﬁthe set of solutions S namely 81 = XB1 comprnsedr‘
: of all possxble xl components a.nd S3 = XBz compnsed of a.ll possrble X3 compo-
nents (When X(to) =T for some to, Bl is a subspace of uhtnal values, a.nd Sl is

thggubspa.ce of solutlons that pass through them at to. These may stra.y fa.r from

32 -

-/V,
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. Bj at other times. The corresponflixl‘g remarks hold for B3 and S;.).
If we know x(s) for some s, the compohent solution il can be found this |

-

way.

=_);PIX-1‘(.'9)x(;9)‘ . o “.;(27)_'
B |

This is a result of the fact that x(s) X(s)c for a.ll s, 8o the (ﬁ(\ t ¢ can

 be determined by knowing the vé,luévx(s) at’ 'a.ny_s, rom ¢ = X1 (s)x(s). Sta,ré

- from x(s), (27) represents the following operations. . ' ’
X P X _ '
x(s) —— ¢ —— ¢ —— X] s

- Note that for a.nqe solutlon X, the same c¢ and hence the same functlon Xy -

- ¢

results, mdependent bf f.he 8 for whlch x(.s) 18 known ~ : Lo o

From (27), for all ¢ ;n J
- mM=xmmxﬂ®4if .;éu
From the.sarln; line of rea{sonir;g:"- fot vt}he. other cor;i)bn;nt X2, wé‘_ get»"thié reéult.‘
o0 = X(OPX ()

This allows us to rewrite (26) this way.

xl(t) ‘.1 o t>8 ‘
ko= {x@-m@ =0 @y
—x3(t) o “t<s

ra



V;’hen told what x(a) is at'; a.ny ptesent time. 8, the x; component is'’known for future
- tunes, the xz component is known for past tlmes, and the dnfference between them B
’ '15 'known a.tf the. present Knowmg these three for all solutxons X, tha.t is, for all
, 'x(s) E B is equwalent to knowmg the Green funct;on Thls much mformatlon is
' 'seldom- aﬁallable Howev)ex.',- bounds on the Green fnnctlon w111 imply bounds on

. ,these, a.nd bounds on thae wxll xmply bounds on the Green functxon

' . : The norm of the G(een functxon may now be’ wntten in the style of (26) or

) ‘--.‘,..,,intheut,yle of (28) e R . 5 ’-l N _ . ’ .
R R TSt (e X AT  t>s
SR | ||§(t,8)||‘=‘ le(t) (P1 ~Pg) X (8)|| t=s (29 "

||X(t)P2X“ §’)|| T ent<s

s o |
REE N b ) >
. _ ' et ||x1(t)—xz(t)|| _
"G‘f f’"_'_ p Ol J O _"‘"
O IIXz t)n
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between two enpplementa.r& projections on a Banach eoace B,is a measure of the
"sepa.ration of the two'co'rresponding eubspacw PB and Pg‘B. Before ptOceeding
thh our ‘particular case, let us look at the general result, which relates A - P3||

to two other common measures of a.ngular sepa.ratlon

Since 1 = || (P. - Pz) <A = Pgll2 we have ||P1 Pz" 1. Note that

1A — Pz|| is' deﬁned even when one of the pro_)ectxons Pe is O so0 the other isI .
,'Qqulvalentl'ﬁ*?when one of the subspaces PiB is {0} so,-the other }is B). In that

case || — Pl ha.s the va.lue 1 (Thls value occurs in other sltuatlons, notably

Iy ,
when the subspa.ces are non—zero but orthogona.l Jas we wrll see). In contrast,

the other two measures of angular separatxon are not usually deﬁned unless both -

.pro_jectlons are non-zero (equwalently, both subspaces are not {0} 50 cohtam

non-zero vectors and hence umt vectors) This shortcommg can. be pa.tched up by

adoptmg conveMut thrs is not useful Here are the- deﬁmtxons when both

subspaces are not {0}

«Deﬁnltlon. Tbts is a.ngular dxsta.nce Sn(R $S) between two non-zero subspa.ces R |

——— ——»/‘ﬁ‘-«—-,——

a.ng S of a Bana.cfz space

. r g
soct5) = . [ Tl

€S, 8£0

It meas'uree the least distance between any two unit vectors, one t'rom R and the .
"other from §.

Deﬁmtlon. The a.riéle 0. between two non-zero su,bspacea }2 and $ of a Ba.mu:h

‘space can ~be deﬁned only when ‘the a.ngle between vectors is deﬁned B could
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be \R" or C* with the Euclidean norm; or any other Hilbert epaee. For.non-zero

ad

vectors, - o - v‘ : »lf‘ ' e e /

| .Lﬂ(r,s) a.rccos&(u " " "> L(r,e) € [0, 7]

‘where ( , ) ie the hermitean inner'product .-associated"witb-'the space, and R . ..

md:cates the rea.I part (ForR", tlus is the the usua.l a.ngIe between vectors) Tbe ;

IO ; ,4._. d,,"_

a.ngle ¢ between the two non-zero subspa.ces R and § is deﬁned this way. L

0= mf L(r,s) T,
.ES -#0 S c
It measures the least angle between a.‘xty two non-gero vectors (equiMentln be-

tween any two unit vectors), one from R and the other from §.

Lemma 6.1. Angular separation and the n’orni of the diﬁ'efence of sup-

plementary projectlons. Let B be any Banach space, an’d P1 a.nd Pz be any

)

two supplementary pro,;ect:ons on B s0 tbat PlB a.nd P2B are the couespond— L

' mg supplementary subspaces Tbe norm of tbe dzlference between the pro;ectxons
»||P| — P is a mea.sure of tbe separatton of the. subspaces PlB and PzB When
both of the subspaces are not {0}, it is related to the other ‘measures of angulat

separatzon a.s'follows.
'1 i) general Banach spaces

2 4
—————<s AB,AB)< —
1+ [|A - lel n(‘ ! )-'1+||P1 Al
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(i) Hilbert spaces only

1P =Pl =cot

" Sn(AB, ~2B) =2sin- =

: 4
The bounds 2 ‘are a.ctually attamed for some . =

"Px Pz ”7 ‘1 + ”Pl Pz"

Ba.nach spa.ces and pro,;ectlons For specxﬁc Bana.ch spaces they may be lmproved '

. a-S the result t:or Hilbert spaces shows'. 5%

o ‘

"
R}

v:"l;'foof.}' .

A

Before provmg lemma. 6 1 for general Ba.na.ch spaces, two ex&mples will be
trea.ted The ﬁrst example isa descnptxon wnthout proof for B R"' witr* the
j Euclxdea,n norm. For proof, the rea.der can look at the second exa‘.mple, which

- mcluda the ﬁrst as a specxa.l case. The second example trea.ts Hxlbertapa,cea and

k provndes an outlmed proof It gnves the result in part (n) o£ the lemma, Then the
result for genera.l Ba.nach spa.ces 18 proved L o

“Pl P2 " = gup M_&)_f_”. = sup "cl' —‘C§I'
<70 llet 70 |ler +cal|:

 whereci = Pic. ;

'What we #e tr);ing,"to iao is understand the 'seolf,“’?ric siéniﬁcance’of the

ratio. -

MGl cagl T @
ller+eafl © e R ( )
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The set of all possible K will be denoted as K.

K ."_cl.—_c_iﬂ c € B C # 0} |
| e Feall o

N Pl =supk S (32)
Sinoe cy _ fz is a non-zero vector in B whenever cy + c2 "is',‘clie.nging the sign of -
cz in (31) results in .another element of K . Thus K is a non-empty fet of strictly

. positive rea.l nurnbers" that contains all itsrecipmca,ls. | Any finite upper bound on
thie set is thus .eqniv;_lent toa stric‘tly‘ p'os.itive lower boun‘d. The two "bounds.are_
reciprocals. F‘llrtlrermore, any upper .bonnd must be at leagt one, and e.ny iower
bound must be at most orie and iinpoees no restriction unless lt is greater‘tha.n
zero. B

' Example B =R? withithe Euclid.ea;n norm- |

The componeri_t;g" c; and C belong“ to two supplemenlialry '_sub'spai:esﬂolf B, |

' na.mely PllB a.nd PzB for B = R2 with the Euclidea.n norm, the possible supple- |
menta.ry paxrs of subspa.cm are of two kmds First one of the subspaces could be

{o} anll .the other R2 'l‘hm is equnialent to one of P1 or Pz bemg zero. Smce one -

- “of the ck in (31) is zero and the other isnot, K =1 alwa.ys. |Pi=P]| =supK =1.

* This conforms to the discussion before the lemma was sta.ted Parts (1) and (u) of

i the lemma do not a.pply,to tlus case.

. ' The peconJ kmd of eupplementary pa,ir. of subspaces oceurs hen each sub-

'spai:e isa etrilght line. The' lines intersect at one point--th : 1g1n This is

o K equlva.lent to both A and Pz being non-zero. For each non-zero ce RZ, We can



.'”Pl,— Pz" =gup K = cot _0_

‘.39,.-

.‘ think of the parallelogram tha.t shows ¢ as the vector sum of the two' components~

A,

| c and Cg, eachona drfferent one of th&e lmes Then K in (31) is the ratio of the

‘dxagonals. Itisa natural measure of the angular ,separatron'b_etween. c) a__nd (:2. n

IS

%

When thq,@wo lme&?ﬂre orthogonal the parallelogram is a rectangle and the
ratio K = 1 always When the two hn% are not orthogonal for dlﬂ'erent c thls

‘ . 41

ratio wxll vary but it attalns 1ts extremea when the para.llelogram is a rhornbus.v,‘,’
.For these extreme cases, 1:"{3 easy to see tha.t the ratlo is ta‘h ¢ where ¢ lp the
angle in the parallelogram at the ongln, ‘For a rhombus in a quadrant where this
arlgle is acude] the ratxo attams 1ts-'rnln1murn., For a rhombus in a onadrant where

this angle is obtuse, the ratio attains its maximum. These two rhombuses are

sirnilar, but the roles of the diagonals are-reversed. The corréeponding.ratiosv K

~ are therefore recxprocals For future reference, the drﬁ'erent c values for each of ‘

these two rhombuses wﬂl be called A and B.

For every parallelogram, whether lt is a rhombus or not there is'a snmlla.r‘

parallelogram 1n an adjacent quadrant for whlch the roles of the dlagonals are I

2]
Vi

ireversed The correspondlng ra.tlos K are recrprocals Thm illustrates the pomt R

K ‘that the set K contalns all 1ts reciprocals.

If 0' is the acute angle hetw_een' the two lines, for the rhombueee é =0 or

¢=n — 4, so the extre_r_ne values of K are tan g and cot -g Thus from (32), o

" ,,
.'2. . .

There art"only' two possible angleé, 0 and 7r =0 between two unit vectors,

e PN

R

‘one on each line. The least dlstance between any two such umt vectors is easxly s

-

» Y

, a‘, :
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&
r seen to be Sn(P;B PzB) = 2smg

. Thls verlﬁes the sta.tement of part (n) of the lemma. for thxs case. However,

]
- may be seen, by consldermg a pa.th from A to B Wthh a.vords the ongm Thus
s R v

S
K= [ta.n E,cot 5] l

' 1t is mterestmg that eath possnble K €. [ o,cot g] is 'actually attained. This

S

B 2

. Reca.ll PlB is the subspace of B which consxsts of a.ll oossrble values of |
The correspondmg rema.rk hoIds for P,B. In this exa.mple, there were onIy,_
two posslble a.ngles ¢ between non;zero values of c1 and vcz The supplementa,ry
. subspaces of B PIB and PzB were lines. | | T
The situation may be dlfferent in other spa.ces For exa.mple, taike B RSI i

. w1th the Euchdeﬁl norm Assume one of the Subspaces’ sa.y PLB 1s . pla.ne i

%

- cogtalmng the Or.lgm whxle the other-subspa.ce is a lme whxch mtersects thls plane

“ only at the ongm but xs not perpendlcular to 1t The angle ¢ va.rxes as dxfferent U o
: *non—zero vectors, on,e on the pla.ne the other on the llne, are consxdered

<

Apa.rt from a.llowmg’ for more possxble va.lues for &, generahza.txon to spaces '
o where angles ma.ke sense (tha.t is; when B is R" or C" tvrth the Euchdea.n norm-'. o

. or a.hy other H_l'lbert spa_.ce).xs stralghtforwa'rd. S o ', L |

| Ez’camplé; Hilbert '»spa;:es., Ptoof ofv’.(ii‘) in Ierhi:na 6.1

| For any vector ¢ € B = cl + cz where c;, 6 PkB «’I‘he t‘wo supplementm'yv

b

% ,possxble vaiues of -

subspa.ces PlB and PzB of . B are compnséd réspectrvely of ﬁ;

"Yl

B

e 'and}cg__,.. ‘ L

- .We can write ¢; = au, where u; is a unit vector in P;B, and a is a réal

Y
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scalar. ‘When cp #0,u; =+ ": i and g = :t||c1 Il When ¢1 = 0, we use the
1

hypothesus that P, #0 (that is, B # {0}) to slrow some unit vector u, in A B

’

exxsts and wnte ¢ = auy where a = 0 (== ||c1 ||) By repeatmg this construction

o

‘we can write cy = buz where b =% "03 Il and ug,m a unit vector in AB. c=0if

a.ndonlylfa—b 0.

B — {0} = {au, +bug | ﬁk € PB, |[ull =1, k= 1,2l,' a,beR not both zero}

Here : w a.nd u; are not ﬁxed but roam over all possible umt vectdrs in /B and

P.B respectlvely

K = { ller. = ca|
‘ llcl + ¢2||

{ ||au1 ~ bu,||

flau; + bug||

cEB c;EO}

ukePkB ||uk||—1 k—l 2 a, bERnot both zero} .

Smce a hermitean i 1nner product ( ) is avalla.ble the usual cosme rule for

the sum of two vectors applles For c1.+ cz = au + bllg we have

||au1 + bII2 || (aul + tuz,aul +'buz) .
= "_(au; , oul )+ (bpé , bug‘)”-{- <aﬁ, , buz. ) + ,(buz ,au; )
=a +bz+2abcos£(u1,ug) |
‘where tos L(ul,uz) — [(ul,uz) + (uz,ul)] !R(ul,uz) R mdnca,t;esw the'real
pa.rt We ma.y ta.ke L(ul,uz) = a.rccos!R(ul,uz) to lle in (0 7r) |

Thls ena.bles us to wmte '

K2 B a’ +b% — 2abcos ¢

= T T 2aboosd’ a,b not both zero "~ (33)
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where a, b are any real numbers. The set of all possible angles ¢ which. occu? here .
is &.
o ® = {L(ul,uz) IukEPkB llukll-—l k=1 2}

= {é(cx,Cz) ICk € AB,ck #0,k=1,2}
- For any. ﬁxed ¢ € @, (33) has extreme values when a = :tb Smce K is

¢

| posxtxve, the extreme values of K are ta.n% and cot -é-

As prekusly defined, the angle between the subspaces PlB a.nd PzB is
- 0= 1nf<I> Note 0< 0 <z 2 T because <I’ is symmetrlc about E To see thxs, pick ahy
€ P Then ¢ = L(ul,ug) vfor some u; and uz'. Since 7 — ¢ = L(ul,-—uz),, and
L —uz is a unit 'vectur in. B wWe_r us ie, ir'-— ¢ €l<I>.' - |

" For all ¢ € ®, ma.x{ta.n %,coti} = Ebt% where <p = mixi{¢,'1r —¢}: The set
of al’fﬂ‘ossxble pis <I>' {m1n{¢,1r —~¢}| B} = <I>n(o —] where the symmetry |
’of@hasbeenused”toshowwmm<I>when1tls7r é. - ;‘ :

-
|
1

||P1 P2||—§upK—:é10pcot§—cotp1€n£ 3—cot£gfg-‘l cot§

Th'e squa.re of the distance between two unit vecfors,‘one in PlB the dfhei""
~in PgB is 2 2cos¢ for ¢ € 3. Smce mf (2 2cos¢) =2- 2c080 = 4sin? g we

have Sn(PlB PgB) = 2sln?— Smce A = P || = cotg ,

©

o 2'
e Sn(PlB PgB) \/ "P1 P2”2

This completes the proof of (ii) in lemma 6.1.

It'is mtetestmg that the set K ca.n/g\ found exphcxtly This is not requu'ed
‘ ‘_"Q S
for the proof of the lemma., 50 results are outlmed
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., 6 81
tan — el .
[a.nz,cetz], 06(’}

(ta.n%,cut g) | 0 ¢ -
The fact that all mtermedlate values are- atta.med results from consldermg
paths from a = +b to u —--—b whlch do not mtersect a= — b 0 for a sequence of j A
’¢"w:tl‘1 limit 0. ‘The pa.;smet_ers a and b were designed tu permit_ this.
’F_‘o'r“‘ finite dimensi_unal Hilt;ert spaces, su_ch. as R"" or _(:"f v'vith the Euclidean
':ng)rm, K'is sl;uays the closed interval. Fo;' infinite diinensious.l Hilbert spaces,
cases. where Kis .'the' open interval and cases where it is the closed. interval both

occur. '

w

j Now we take iup the.‘p;oof of .p'a._rt (1) of lemma 6.1.

1+ 1A+ P 7 ler = |
: .. 1+ fsup g
- e c;éo "cl + ¢2~"

. 2"01 +Cz” A-
= inf ,
#0 [lcr + ezl + [ler — ez

s

. . } < inf 2"111 + u2||
i ' . : s u&GUk ||U1 + U2" +. Hul - u2||

where Uy = {uk € PgB | "llk” = 1} k=1, 2 In each case, Uy is the set of all
unit vectors in the correspondmg subspace A subset of. B {0} is now mdlcated
1 in the xuf, 80 it ca.nno_t be smaller_thun' before.
| Froni-the tris.ngle mequahty,"“l-i'uz II +||u1 — uz)| > |[2uy | =2

-

&



2||uy +uz|| < inf [lup 4+
wel :fJuy +us| + flug - ug|| 7wl
Fmally we have the requu'ed result

_ < f u; + ug)|'= Sn(A, B P.B
1+"P1+P2"_ m " 1+ 2" n(l 2 )
Next we ﬁnd the upper bound on Sn(PlB PzB)
inf
weli "“‘

. “’".— TT uPl quW
‘Let D = |[e1 +e| + |’|cl - .

e, e 2les]. b\—zllczll ”
PSRRIl 2(c1 +c¢ +———-—-—-
o * feap| < B +en el = el
5(2uc1+czn+|D afér! 1+1 D~ 2fesl 1)
1
- H(dter +es 1+ 2l =l = 2l + e n

4||c1 + ca|
= llex +cal +lles —caf

ch a.nd Ck ;é 0. Note D > 2Hcg|| by the tna.ngle mequa.hty, so the

a.bsolute va.lue of a non-negatnve value is comndered in each case.

2

Here c-g

mf _C3 4||c1 +ecall 4 =
||°1 I ||¢z|| °*¢° l|¢1 +°2||+||¢1 —02|| 14 sup ~ lea Czll !

||°1 +c2 Il

ck =,é 0} th‘éﬂeft term is
||¢1 || Ilcz I '
Sn(P; Pz) as reqmred Now we want to relate the nght term to ||P1

o smce {llus — ual| | u € U,,} {

Pl
l \ a‘_““ .
ller = eal] } { || c1— ¢ } R
T 0} = #0p ={|P - : :
: "“"{ucwcan ot #0} = les+eal | W-rl



5
To see this, \ﬁrst note the set S = {MI—I ck # 0} is not empty aince

| 2T Ul +eal ?
the subspa.ce; PkB contain non-zero elements by hypothesis. Pick any a E S. Then

B I N

a and l are both in S. Therefore S contains an element not less than 1 The
a

set S i is-a subset of the other set ' S' = {___”cl ca|
' o llc: + s

between S and §' is contributions from elements for which precisely one of the cx

J&
;é 0} The only dnﬂ'erence

is zero. These contribute thevalue 1. Since thxs is equalled or exceeded by a value

in S, the two’ sets have the same supremum :

Thrs complet& the’-proof of the bound.

i,

4

S PB','P.B "<v—————
n( 1 2. ) "Pl P2”

The followmg bounds have been obtained.

v .':; '., 2 ' 4
s <Sn(AB,AB) < — 4
1A A S Sn(AB,AB) < 1~ TR =Al

Can we hope to do better? The followmg exa.mples show that these boundsu
.a.re a.ctually attamed for some Ba.nach spaces and pro_lectxons, 80 for arbitrary
Bana.ch spa.ces the consta.nts whlch appear here are the best possrble (This does
not preclude better bounds of a different forrn) For pa.rtlcula.r spaces. we can do.

better, as shOWn by the prevrous results for Hrlbert spaces.

4 * '1' ‘, "-‘\‘

We consider R2 wnth the norm || (z;,zz)ll = I;r:l |+ Izzl and take Pg to be the
ca.nomca.l prOJectlons, so that P; (zl,zz) = (:1:1,0) a.nd Pz (zl,:cz) (O zz) Then

17 ~ f’zll—| lfup II(%O) (0 zz)ll—l U = (1 0)( 1 0)} and U =
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{l'(OI 1),(0,-1)}, s0 Sn(PlB PzB) ||u1 -uzll = mln{ll(il il)ll}, where

-

* the choices of slgn are mdependent Thus Sn(PlB PB) =2 a.nd.

Fra—.

4

_ g4 :

| Sn(PxB,PzB) =2=,= 1+[P = 2
Example. sa(AB,AB) -2
xample. 5n(/ 3,/ _1+'||P1 P2||

/

. ‘We keep the same space R2 and -same pro_]ectlons P as m the pre‘\;xous

example, but change the norm to "(21-,2:2)" = max{|z1|,| . "The U are
the same as before. 1P - Pz" = sup N(z1,0) =A0, z2)|| = 1, but now

, , . - max {[z|zal}=1
Sn(A B, AB) = min {||(£1,+1)[} = 1. Thus.

% ' . _—y=___ ¢
{’ﬁ . 4 Sn(A B, PzB) . 1 '2 T ”PI lel . | K

.This completes the’ oof of lemma. 6 1 |A\

Let us now apply this genera.l lemma. to the partlcular case where ||P1 Pl
is the norm of the Green function ||G(t t)|l for fixed ¢ in (29) or (30). Ifx(t) is the

value at ¢ of some solutlon x that has non-zero comp?nents X1 ‘€ S a.nd vxz e Sg , it
. . ™.

an?

‘i seen tha.t thls norm is a measure of the least posmble angular sepa.ratxon between

© x1(t) and x (t),smce Plx(t) — x,(¢) and Pax(t) =3 (). (If one of the Sk s {0} |
| tlu; nerm is one, _but a.ngula.r separa.tlon is not deﬁned) Equxva.lently, thls norm _
measures the least a.ngujsr sepa.ratlon between the subspaces PlB X(t)PlB a.nd )

. PzB X(t)PaB compnsed of all posslble va.lues a.t t ta.ken by solutlons in S;"
.a.nd S, respectlvely Armed thh thls mterpreta.tmn, we can now proceed to thek

main resultsofthxs chapter ‘- BN
\\ -

N
- B
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: Theorem 6.2, Fora Green function of the form (26), suppose ||G(t s)|l < g(t 8

where g(s t) isa (non-negatxve) rea.l va.lued functwn The behaviour of solutions

of the _homogeneous system is thex_z restricted as foIIows.

v Pll = 0 " no reétra.int oh'é.ny solution
P, ;é 0 these restramts on the solutlons X; €Sy

© g(t,s) for t > s => ¢
oltg) for 8> o @I <o for T

a2 ;(t—o’r—)llm (to.)” | .for T<to

( this restramt on the solutxons x €S, x # 0

1 lel(t) =xa(8)l]
- e(te) s IIX1(t) @] =

(t t) for all t .

That is,
J . 2 ' ) \"}'
. Sn(t) > “1,_*_ g‘(t,t) |
W, ere n = ln XI(t) xz(t) (34) -
where Sn(t) = _inf “ @~ Tl " o

measures the lea.st angular separation between

B

the values x; (t) and x;(t) for non-zero Xk € Si.

.

" For Hilbert spaces,

£ (2 (0, x2 ) > 2arccotg(t,t)

(P2 =0 no restraint on any solution
, )

Py ;él 0 ‘these restraints on the solutions X2 €8,

g(ii,s) fort < s == < . 1
: X2(TH| > —————=|Ixa(t forT >ty
Pa(T)l 2 s lhattol] for T > t

o ke < 9("; to)lixz(to)ll forr <ty



ap oses no resbralnt Otherwxse Sl 'j:f L

“x t)ug g(t,s)"xl(s)"

3

The remaxmng mequa.htxes follow from lemma. 6 1 a.nd the dlSCUSSlon fol-




iowin'g it Ta.ke P = X(i)ka-l (t). Then G(t,1) = Pl A and Sn(t)

Sn(P;B PzB) Note that when one’ of the Pk is zero, these remammg 1hequal-

‘ 1t1es say nothmg, smce 1t is not posmble to find non-zero X € Sk The ra.tl,o '

s (8) = % (1) S e
', ”xl(t).-iﬁz(t)“ -lmthxsca.se 1 o S |

‘ "ﬁy ‘“oonsi'dering the cohaitions ~in\ this theorem as 1T — aor T — b Where
[a b] is the mterva.l of deﬁmtlon of the system, it is seen that the asymptotic

behavxour of solutions in each subspace is. descrlbed Thxs is cfetermqu by the

asymptotlc form of g(t s)

It appears that in passing from the condltlons on the left side of (34) to the.

7 N - v."-‘.“ "s

conclusxons on the right, some mformatlon)has been lost Wnth the exceptlon of

the dedle angula.r sepa.ratlon condltlon (t = s), we have retamed information -

only about solutrons which are purely in Sl or purely in Sz Via."(30) the condition

]IG(t s)|| < g(t,s) also restricts solutxons which are a mixture of the two kinds.

\
When' one of the subspaces Si is {0}, there is no problem Otherwnse, lf we

start from the nght side of (34) it is not posslble in. genera] to to reverse the" :

<3,

I

1mphcatlons completely However, it turns out that enough mforma.txon about the

way so,lutxons mix is contained in the angular sepa.ra.tion condition to allow us to ;

recover from the right side of (34) somewhat weak bounds on the norm of the

: o . RN o
Green function. For this we need the following t.

i

 Lemma 6.3. Angular separation;a_nd norms of supplementary projec-

tions. Suppose P, and P2 are supplementary projections on a B»anac_hf‘space B.

" The following estimate is '_va.Iid when P, # 0. |
: Sy : o .. o
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4 »gné ¥
< Sn(A B, PzB <
1mu (A3, ) wu
Proof. : o , : - .v s

:'Tl"x_,ie;'ijﬁfleroma 1.1 on page 156 in Daleckil ‘and Kretn [7].

Note thatx 1+ ||P1 Pz|| —‘||P1 + Pz I+ ||P1 Pz" > 2||Pk|| s0 (when Pe # 0),

. 'the order of the bounds in lemmas 6.1 and 6.3 is this.

2 3 4 2

< < Sn(A, B PzB : <
1Hm,&ulmn ABAB) S AT S TR .
REIENY e :
Theorem 6.4. (Part:al converse of ttheoz'em> 6.2 ) Let-S, and Sz be two supple-
yox

. ' *,ﬂ
. mentary subspaces of squt:ons of a hoxnpgeneous system, 81 # {0} and Sz # {0},

- ‘satxsfymg these condmons for sbme (non-negatlve) reaI-va.Iued functtons k(t s) and -

I
s wv‘ .

a :*TH- :
|umm<kuqhdm|t>gmesl

JA‘{”

(;; ; .;'_"\. Sn(t) > aft) >0

e
||xz(t)|| < k(t, 8)l|xz (8)|| s> 1t,% € Sz

X1 (t) X3 (t)
(231 @ lx20)1

' gula.r dzstance between tbe values X1 (t) a.nd X3 (t) for non-zero x- e Sk Then the

measures the Ieast an-

where fo;r eacb fixed t, Sn(t) = 1nf l

«

R 27,? - : : S T . .o e
; ) T . A _

eyl . R . . L . . L
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_i ' correspondmg Greenﬁfunctron of the form (26) satzsﬁes ﬂG(t s)|| < g(t s) Whem
' ‘ . e 2k(t 2k(t, 3) t>s -
? A T A C R
" RPN )
. . ,3 —_ —_— — - .
., v . ) o ..._ N g " g(t) _ . : )
r A A -2k(t 2k(t,s) oy
. <
Ty PSS

Here we ha.vé wrltten the cases for t>sand? < 8 sepa.rately, since often

“in a.pphcatxons the form of k(t s) is. dlﬁ"erent in, these two cases, The condltlons
- on the solutxons here are hke thoSe on ‘the nght srde of (34) They have begn‘

s hd

abbrevxated by the omxssron of the reéxproca.l relatnons whlch are equwalent

Bounds on-a.ngula.r sepa.ra,tron are often derived usin’g diﬁ'ere'ntia.l inequa.lities’z
X ) . ’ . . ° . . . { e }\'l o s . . . Lo
Tra.ditionally Sn has been used"even* when angles are deﬁned Ita deriva.'tives are

easxer For thrs reason, the. a,ngular sepa.ra.tlon condltron ha.s been phrased in terms

¢ lea (2) — xa(e) I «

of Sn Note this condxtlon could also be wrltten in the style
| IIx1() +x2 Ol

k(t t), 1mmed1ately grvmg a bound on llG(t t)“ and mdlrectly provndmg a factor

e

int place of a(s) in the other terms

Proof.

f

First take Pe = X(s)PkX -1 (s)

. s0 that xk(s) ka(s) a.nd Sn(s) Sn(PlB PzB)

4

”Xl (8)ll = ||P1x(8)|| < I[Pl || ||x(8)|[ Since 81 96 {0}, it follows tha.t P; 96 0' .. o :

i

a.nd P #0. Thus ||x(s)]| > —— ||P “ ||x1(s)|| When X # 0

lex(t)H 2llx1(t)ll .2|Ix1(t)ll < 2k(t 2)
hmu upﬂm“m eumm@m a(s)

t>'

o
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‘Example. Ordinaryﬂdichotomy. |G(t,8)|| <L

. Here lenima‘ 6.3.. has been ebplied.’ A

I ()1l
0 [[x(s)l”

For t > s, (30) shows lG(t, 8)|| = aup Since the ratio is 0 whenever‘
x1(t) = 0, the‘ inequality

lea ()] . 2k(t, 6)

t>8

@l = "afs)
is alweys'satisﬁed when x # 0, and : A , R
@l 2kes)
et = g 1 = el

as requir’ed
'IQhe caset < s is proved by replacmg subscnpt 1'by 2 throughout The case
= & follows from lemma. 6.1. Ta.ke Pk = X(t)P,,X‘1 (t) Then G(t t)=P - Pz |

and Sn(t) = Sn(PlB RB). | | I
To pirr down‘these ideas, let us apply them to some simple ces&. o % |

Here we are ‘con;ﬁering g(t,8) = L, a real corrstant. Since we know ||G(t, t)|| >1,

this is only possible for L >1.

Case 1. Py =0, Py =

When Pl =0, the subspa.ce 81 = {0} The angular dlsta.nce between the (.
2
values a.t t of two solutrons, one in 81 a.nd ‘the other m Sz, is not deﬁned The

condxtrons in th_e last case in (34) _show that fol_' the subspa.ce S; = S,v'

o a2 Flix2 ()l forT>to | (37) ™
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w & _ . : L
‘80 all non-z'&o"solution_s are bounded away from zero for increasing time, and -
L ROl S L)l forr<t  (3s)
4 : ) P ) - ‘ S ’ R
soall non-zero solutions are bounded for decreasing time.

Conversely, if all non-zero solutlons are bounded away from zero for mcreas-

/.

ing time and bounded for decreasmg tlme, in a uniform way 80 that (37) or

¥

equiva.lently (38), holds with the same L for all solutrons, then the Green functlon

“of the form (26) w1th P1 0.is bounded.
c&z.Pl_IP,—o I
When Pg' = 0, the ana.lyéis is similar to case ll,hb.u-t,the behévibur is.cornple | :
.mentary in the sense that the roles of increa.sing and d-'ecreasing times are reversed *
v Ces_e 3': P1 # Q,, P, #-0

oy

# -b and Pg #0, the nngular'distnnce 'between the va.lues ‘

When both2

(;gmi)‘ *-

- at t of two non-iero solutlonsl one in Sl and the other in Sg, is deﬁned ‘~At L

'each fixed t, Sn(t) measures the least such dmta.nce From the rmddle case. in’ s

. 2 N
(34) Sn(t) > m Not only must the non-zero solutions in Sl alwa.ys be at

Qﬁa e .
stnctly pos1t1ve a.ngula.r drstance from any non—zero solutxons in’ Sz, but also thls

R 3
- dxstance is- bounded a.way from zero both for mcrea.smg a.nd decreasmg t. That

18, 1t cannot approach z€ro even for extreme tlmes Thm last 13 a consequence of
the ﬁ&t that L = g(t t) is consta.nt (It will a.lso hold for other kinds of g(t t)
: whxch are umformly bounded for all t It may or may.not hold for: g(t t) whxch

are unbounded for. extreme tlmes, since thls does not determme whether IIG(t t)"

remains bounded or not)



o ]ut{ons Sl a.nd S; w:th the.se propettzes

The a.nalysm of the beha.vxgur of sofutxans%n 81 repeats that in case 1 and

case 2 a.bove ThlB lea,ds to the followmg summa.ry of results (34) of thereom 6.2 -

& A "?'” ‘

S RV

for the case P; 960 Pz ;éO

'

Ordmary Dichotomy condltions. Tbete are supplementary subspaces of so-

ey

J R

i

'}AII. bolﬁtioh)s in Sr a.re. bounded for ihcréasing t aﬁd all 'ﬁon-:

RN

zero solutions in S) are bounded away from zero for-deﬁeumg

t. More precisely; the norm of non-zero .solultigixis" in Sy cannot

. 'expériéhce' gain more than a fa;ctor, of L for any’ intérva] of

4.
v’

'inc"reasitig t'no matter.b.ow long. (Equivalént]},‘ the‘ norm of -

non-zero squtxons in Sl ca.nnot dummsQ by more than a factor

. . 1
of — for a.ny mtetval of decreasmg t no matter how Iong) Here

(i)

| d!mmrsh by more tba.n a factor of

L

L>1 does not depend on wbzcb squtxons are considered. -

Alllsollutions in Sy are bounded for decreasing t and all non-

“gero solutions'in S are bounded away from gzero for increasing

.

t. More ptecise]y, the norm of ‘no'n-zero solutions’ in S§ cannot.

I for any mterva] of mcreas— s
ing t no matter how Iong (Eqmva.lent]y, tbe norm of non-zero

squtzons in Sg cannot expenence gain more tba.n a factor of

L for any mterval of decreasmg t no matter how Iong) Here

L>21 does ‘not depend on wb:cb solutxons are consxdered



(m) At each ﬁxed t, the non-zero solutions in Sl are always at
stnctly posmve angular dxsta.nce from aII non-gero solutzons
vm(Sg, a‘nd even in the limit ast —a or_t — 'b.this angu‘
diétan}ce is hou'nded awey fro7’éero. f;ere Jh= [a, 8] is the ., .
intervel of definition of the system. , ' '
Note, the behatviours in (i) and (ii) ‘a.re complementa.ry, in the sense tha.t the‘ roles
~of iucreasing and de_cre_asing t‘_a.re» reversed.

The word dichotomy means a cutting f@o.' Here the space of solutiom
S is cut mto two parts S; and S; wnth complementa.ry behavnour Thm kind of
dlchotomy is ca.lled ordma.ry to dlstmgulsh it from other kmds whlch will soon be'j
introduced. |

'~ So far we have ’seen that systems with a Green function of the form (26)
_wh(i)ch is.bounde‘d 5y‘.a constant sa.tisfytheee ordina.ry dichotomf COnditiouB. Thiu
 was a consequence of theorem 6.2. These condltxons ‘were specxﬁca.lly stated for
the case 3 where Pl # 0 and P2 ;é 0. However, rerea.dmg them for case 1 and
case 2 shows tha.t the statement is stlll true for them In case 1 Sl = {0}. The
non—zero solutlons in S; talked about in (1) and (iii) do not exist. 'ijese cOnditions
sa.y nothmg a,nd Are harmlessly true In ca.se 2,8, = {0} The non-zero solutions
', | in 1 S; ta.lked about in (u) and (m) do not exlst These condmons say. nothmg and’
~ are ha.rmlessly true. :

Now we wa.nt to see that when any. homogeneous syetem satisfies these or-A
dmary dlchotomyi condltlons, there is a Green functxon (for the correspoudmg

mhomogeneous system) of the form (26) whngh is bounded by ﬁgmtmt. This =

3 S .
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e R,
has x&.lrea.d&v been seen for Case 1\}1d case@ —ﬂ o
Suppése thete are two supplementa.ry subspaces of solutlons Sl'%.nd Sz Let
g

using theorem64 L .f‘" . LT

bl

" us use (1) m the ordxna.ry dxchotomy condrtlons to formula.te the reqmred behavrour

" of solutionis in Sl. The solutions in 81 do not experience gain more tha.n a factor

3

of KL for any .,i’nterva.l of increasing ¢ no matter how long. éEquiva.lently, the norm 4

_ 1 .
of non-zero solutions in Sl does not d1m1msh by more tha.n a fa.ctor of e for any "
. 1

mterval of decreasmg t no matter how long) Here K1 > 1 does not depend on .

* ]

' whxch solutions are consldered Thus we have
@l < Kala@s)|l  t>sxes, (39)

Next let us use (ii) in the ordinary dichotomy conditions to formulate the
required behaviour of solutions in S3. The norm of non-zero solutions in S does
not diminish by more than a factor of FJ for any interval of increasing ¢ no matter -

' how long. (E(iuivalently, the norm of non-zero solu:tions in S; does not experience

gain more than a factor of K for any interval of decr'easingvt no matter how long).

o

Here K, 2' 1 does not depend on which solutions are considered.

@Ol Kla@l  t<axes; )

Note fha-t ,different constants K. 1 and K, have been used for each suybspace’
2 “of solutions. ‘Both (39) and (40) rerna.in true when K1 and Kj are replaced .by-
larger constants Therefore, 1f thwe are true for some. K, and Kz , replacing both

e | Ky a.nd Kz by K ma.x{K;,Kg} or any larger consta.nt will bnng them strxctly

<



into accord w1th the ordmary dlchotomy condxtlons previously, stated. However, ,
J 1mproved bounds on the Green functloe wnll result if we a.llow K a.nd K3 to be
dividuall
indivi :ua. y%as

single_consta.nt bound on tHe_Green function. -We will eﬂ'ectively consider their

sma.ll as possi_ble. This is not helpful in the present sedrch for a’

ma.xlmum anyway However, w1th an eye to other a.pphca.tlons for whlch improved

bounds mxght be helpful we defer this as long as poss:ble

Next let us use (iii) in the ordma.ry dlchotomy condmons to formulate. the
required beha.vmur of the a.ngula.rﬁ‘dlstance between the non-zero solutlons in §;

‘and a.ll non-zero solutlons in Sz. This is bounded away_ from zero.

"

“ xl(t) ~ xQ(t)
EACIE 2 (2)]

” 28>0 forallxg €Sg,x¢ #0

That is, -

x1(t)  xa(t)

[§ESH (t)II T2 @)

”=Sn(t)2ﬂ>.0

“(This is equwa.lent to mf Sn(t) > 0 and the condition is sometxmes stated tha.t ,

[ ]
wa.y) \\

{\f o Ty ‘ ‘
o Application of theorem 6.4. is now straightforwa.rd. Take k(t,s) = K1 for

t> s k(t 8) = Kz for t <s, and a(t) = f. Then (36) shows ||G(t 8|l < g(t,s)

where | » | A ' .' ‘ />
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2K1 4 2K
| 2
concludes the proof that when any homogeneousv- system satisfies the ordinary

: That is, ||G(t a)" < L where L = max { } is a constant. This

: dichotomy conditions, 21ere isa Green funét‘io.n' of the forni (26) which is’bonnded
. by a conste.nt : | | o

| In summa.ry, ‘the solutions of a homogeneous system satisfy the ordinary
dxchotomy condltlons if and only 1f there is a Green functxon of the f'urm (26) the

norm of whxch i8 bounded by a consta.nt Thls finishes the eXample 1

Lexp(/'#l) t>s

Example. (4, 4,)-dichotomy.  [|G(t,8)| < { L . o t=s

e Lexp(f%) lf i<

Here ul ‘and p, are. mtegra.ble functlons of t usually a.ssumed contmuous Lisa

rea.l constant, vand from the case t = ¢ we,k'now only L > 1 are possible. ‘We can
write the condition in this compressed form.

: IG(t, 9) |_|‘ < glt,9) =-Lexp.('/tyg),"’w' if (1) (s _j';tg_;Z.OQk =12 (#)

I ~
B, R

Elsewhere, these conditions are written in the”t:orm

XEOPX @ < Leep ([ ), (D60 20k=12 ().
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where L; and L; are positive constants.
»The two forms (41) and (42) are not the same. However bounds of the form

(41) imply bounds of' the form (42), and bounds of the form (42) 1mply bounds of

- the form (41) Let us prove thls ' . o

va.nsz, L. ' A

First suppose bounds of the form (41) are given. L@ka—l (t) = P

From the tna.ngle 1nequahty

4
b

|P1+P2"+||P1 — P 1+||P1 — Al 1+L <L

<
1Rl < . r <y

r

B where we have used the fact that G(¢; t) = P1 Pz to show P~ Py |f< L and to -

~show only L > 1 are posmble, so I;L < L. 'Therefore, (42) holds. with Ll =L

I 'Second suppose bounds of the form (42) are given. ||P1 Pg” <NAle+Pall,

FT A

'*,so (41) hqlds wﬂ{f"-ﬁh L + Lz Note that a constant upper bound for ||G(t t)|l

. is thus’gnherent in (42) ‘When' bothﬁf* are not zero, thls is equxvalent to a

5
&
-!;

' p?smve lower bound on the ,an'gula.r dlstance between non-zero solutlons, one in

EES X
each supplementa.ry subspa.ce of solutlons of the homogeneous system
. £ ) ]
Therefore we may assume the condltxons are 11_1 the form (4 1), or more explic-
itlyz in the form git'en in the example heading. Using theorem 6. 2, these translate:

int'o (reys yzv)-dich my condntxons on the solutlons of the homogeneous system' "

analagous to the ordinary dichotomy conditions (i), (ii) and (m), developed in the

. prevxous exa.mple Usmg g(t, s) exp ( / “1) in the top case of (34), gwes the

?

t ' ,
a.na.logue of (i). Usmg 9(t,8) = Lexp ( / ) in the bottom case of (34), gives
]

 the a.na.logue of (u) Consxdermg the limits of these a.na.logues of (1) and (u)
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t—aort — b reveals the asyin?totic behaviour of sefﬁtions in S; s.nd S2. The

condition (iii) remains. unehahged since g(¢,t) = Lis a cohsta.nt

If the solutions of a ho‘m\;g_eneous’system'_ss.tisf}; these (u,, u,)-dichotomy" .
eo;;ciitiom,.bounfis of the. form (41) can be reeovered, either directly v'g‘hen one of
the Pk =0, .er by'.» using theorem 6.4. | |

- Thus the bounds on the Green functlon (41) determine and are determmed 3
' 4
by the (ul,uz)-dlchotomy condltnons on the behavxour of ‘the solutions of ‘the

%

homogeneous system.

§ ‘;\,‘," of some (ul,uz')édiehotomies that-have been studied
extensively. For t:hem, the functions s, (t) -——\‘fn,; where my is constant, k=1,2.

Therefo:e (41) may be specialized.

eﬁ% : .
‘ ,‘:3%»' l ?‘ * ':;‘b‘ -

. ﬂ:,
o ‘,rz’ . 3

ey )uqq,ggnuexp[mk(t—sn i (-0He-020k=12 (3

Q

Deﬁgitfon If condmon (43) is satzsﬁed with:

(1) m1 mg = 0 the system has ;n ordxnery dxchotomy
(u) ml < 0 < m, the system has an exponentxa.l dxchotoxhy
(m) m; <'ma, the system Ilas a.n exg:mentxa] splitting.

Ordma.ry dlchotomxes ha.ve alrea.dy been metan the precedmg exa.mple Now
_they are vxewed as a specxa.l kxnd of (ul,yz)-dnchotomy The three 1deas (1) (u)
and (m) are related as follows, though we do not px:ove this here

Let O be the set of a.ll systems that have,a.n ordma.ry dlchptomy, E be the set

\r"!

of all systems tha.t ha.ve an exponentla.l dlchotomy, and S be the set of a.ll systems

o
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: thh an exponentxa.l sphtting o a.nd S may be plctured as two overlappmg cnrcles :
ina Venn dlagra.m, w1th Ein thexr intersection. The sets O — S and S — O are

not empty, and E isa proper subset of O N S

Let. MB denote the set of all systems deﬁned on a Banach space B or a |
g Ba.na.ch spa.ce' lsomorphlc to B that have a (y,, ,u.z) dnchotomy (for any continuous |
1‘1 and #z) Sxmrlarly, we deﬁne OB, EB and Sm which are all subsets of Mp.
Suppose we start with a system in one of these four cla.sses, a.nd perform a cha.nge

l

of variables. Will the new%system be in the same class orin a diﬂ'erent class?

This 'depends on the type of change ’of variables allowed. If smooth lin'ear
changes of variable are allowed, any sy;te'm of the form (1) can be transformed
.into any other system of the form (1) (ln the sa.me space B or one lsomorphlc to
o 1t) However, 1f the change of variables and its i inverse are in eddltlon requxred to
be bounded as functrons ofﬂt, in whlch case the wtra,nsform is known';a.s a kinematic
similerity,‘ this is not possih‘le.‘ The sets Mg, 01;, Eg and Sp are in fact each

stable under kinematic similatities [7, p. 166]

In some cucumstances when A(t) in- the deﬁmtlon of a system is perturbed
the new system will ha.ve an exponentlal dichotomy if the old one did. For thm
. reason, the propert_y of having an exponentxel dlchotomy is said to be rough or

robust [4, p. 62] [6, p. 34 [1] [18].

' F,inally; we can return to (22). This can now be recognized as a system with b

an exponentlal dxchotomy, ‘w1th P, =1, Pz =0, and m; = m. The ”ZUment VRN

in tha.t exa.mple can be carried out for the form (25) of the solutlon mstea,d of



3
-

ﬂ‘

_ ‘Th :&oncludes the example of (ul', i"z) dxchotozmes._ i

: )
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Now we return to the study of the solutxons of the mhomogeneous system in

\the form (Zﬂ , - - ;_ - . I

/

Yoo =

x(t) = X(t)b +/ 'G(t,s)f(s)’ds : o (44)

Here the symbol x represents a solution to the mhomogeneous sy%em Thxs differs |

from its use in cha.pter 6 to represent solutxons'of the homogeneous system, but
conforms to the ea.rher use m cha.pter 5. 4 |

Theorem 6 2 in the prevrous cha.pter showed bounds on the Green functlon

| determme some behav1our of the solutlons ot' the homogeneous system. This ls‘

the‘ term X(t)b in (44) Let us see how condxtxons on G are, useful for determmmg.

propertles of the rlght term in (44). Herers a sxmple eXa.mple.

_‘,--. ’

Example Suppose tbe sys,tem(@) wzth J = {0, 0] has an exponentza.l dxchotomy ‘

. Then for any bounded contmuom f / G(t, s)f(s) ds in (44) is bounded

7 . o A

/ at, s)f(s)ds / X(t)PIX (5)£(s) ds - / X(t)PzX'l(s)f(s)ds

&Je can show the mtegrals ex1st by showing / ”X(t)Pl}("l (s)” ||f(s) I ds

<

4a.nd / ||X(t)PzX"1 (s)|| £ (8)" ds are bounded This can be shown usmg the es- |

o trma.tes provxded by the exponentnal dxchotomy condltlon (namely (43) wnth m1 < .

* : . o

/63
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0 < @) ‘These also show ” / G(t,8)f(s) ds" <.t

|m1|

sl

Thus / G(t, a)f (a) da in (44) is bounded
0 : . .
This result has an mterestmg ‘converse. If for all. bounded continuous f,

the system (1) with J = [0, oo] has a bounded solutlon then the systém has an
] '
' exponentlal dxchotomy To prove this, some wo‘f\the’ possible f are used as test

. -

prob.‘_ |

‘There are many sirnilar results revlating dichotornies the nature of the so- .
lutlons and the nature of the dlfferent possxble f Fon exponentlal and ordmary\ '
dxchotomles, they are descnbed in- deta.xl in Massera and Schaffer [18].

Here is a gulde to whxch bounds on ||G(t a)|| may ‘be useful.

ltA

vl The bounds must be established from A(t) Tlns pta.ctzca.l problem imposes -

Itm:tatxons on wluch bounds can be used

K3

’The Green function ‘is'usually not explicitly known. Bounds must b inferred
-
“from A(t) in the homogeneous system (2) In the case of (ul,uz) dlchotoxmes :

'btwo general methods have been developed [20] for finite dlmensmnal B. First,

the bounds on ||G(t s)|| can be related to A(t) usmg matrix measures. Second

t bounds on IIG(t s)|| can be rela.ted to A(t) usmg pairs of functlons akin to Li-
' aponov functlons Usmg palrs of functlons allows us to accomodato%he different

behavrour of so,lutlons in each subspac'e.' This' is in contrast to usua.l use of Lia-
punov functions (Liapunov’s second method) in which all solutions are shown to
) ) : : R ‘ o~ :

_have common asymptotic nature. References to other work are included_ in the
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" o vy .
2. The bounds should belp’deswbe the ssymptotlc behav:our of squt:ous of the o
‘ bomogeneous system _ o E . ) \L = :
N . o ' X e ’/:

The _limiting form of the bounds g(t,s) ast —»_a'or"t —b is 17(volve\d here.v. _

3. Tbe bounds should help estrmate‘ the mtegraI in (44)1. to prove exlstence a.nd

‘-N -
L4 . -

ﬁnd the behaviour of squtxons of the mbomogeneous system ' PP

£ Note tha.t in the preceding exa.mple the exponentxal dxchotomy bounds are

‘themselves the norm of a Green functlon (Any (y,l, p.,) dxchotomy bounds csn be N

i thought of thxs way, but the idea i is only helpful when propertles of’the underlymg ) }

system are known) Thls suggests we should usz Green functxons (kernels) of 5

2 Y
B .

other systems for comparlson Propertxes of the other system tan then help show"'-

S

propertxes of the 1ntegral in (44) The other ?ysténi does ndt need to be of the._':'_,

¢t
B

‘same d1mensxon asthe original system Cieg S o
.15 TR v R ;\',. .' ""

Systems which do not satlsfy the a.ngula.r separ&txon t:rltereon cannob have

»

n‘ “'.

(ul , ;1.2) drchotomres ‘On the contra.ry,, for them “"G(t t)[] must become unbounded

for extreme tlmes By lookmg at the kernels of srmple systetns (for exa.m,ple, two

-‘drmenmona.l systems) we ina.y ﬁnd adva.ntageous forms for confpa.rxson of these .

[

systems, in contrast to usmg L = L(t) in (41) chosen some other wa.y The full -

generality of theorems 6.2 and 6 4 w1ll be exploxted

[y

«Fxna.lly2 by iavestlgatmg the kernels of other systems the approprna.te form

- of the fu.nctxons a,kln to Lla.punov functlons may be found whxch may then be
traed on the orlgmal system This overcomes the “loss of direction” mherent in

A,

dlrect comparison of the norms of the kernels of the two systems
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