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Abstract 
 

Activated carbon (AC) has attracted tremendous interest in adsorption-based air treatment. 

Nonetheless, a major challenge associated with the use of ACs is the decline in adsorption capacity 

with time due to heel build-up (i.e., accumulation of non-desorbed species). Designing a reliable 

adsorption system requires a deeper understanding of the changes occurring during the long-term 

use of ACs. For this purpose, the effect of ACs' properties such as porosity and operational 

conditions such as purge gas flow rate on the long-term performance of ACs requires further 

investigation.  

 The objective of the present work was two-fold: first, to study the simultaneous effect of purge 

gas flowrate and activated carbon's porosity during prolonged cyclic adsorption/regeneration of 

three different ACs. Secondly, develop a model that can predict the long-term performance of ACs 

during adsorption/regeneration of a representative volatile organic compound (VOC). This section 

itself comprised two main stages: 1) Modeling the impact of heel on AC's pore size distribution 

(PSD), adsorption isotherm, and capacity, and 2) verifying the model using cyclic adsorption-

desorption of 1,2,4-trimethyl benzene (TMB). The model predicts the cyclic adsorption capacity 

of AC by applying the Dubinin-Radushkevich-Langmuir (D-R-L) isotherm based on AC's limiting 

pore volume and adsorbate-adsorbent affinity coefficient.  

For the long-term experimental study, six scenarios were investigated by varying the dry air purge 

gas flow rates 0.5 and 5 SLPM and the porosity of adsorbent used (44%, 60%, and 86% 

microporosity). The cyclic adsorption/regeneration experiment results indicated that the 

cumulative heel and the adsorption capacity followed ascending and descending trends with cycle 

number, respectively. Initially, the porosity and micropore volume of the adsorbents played a more 
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important role in their performance. However, at higher cycle numbers, the effect of purge gas 

flow rate was more determinant in the performance of ACs. In the first five cycles, the two 

adsorbents with the highest micropore volume, G-70R, and B101412, showed similar heel build-

up formation rates while B100772 with lower micropore volume (0.43 
𝑐𝑚3

𝑔
 as opposed to 0.50 

𝑐𝑚3

𝑔
) 

had slightly lower heel build-up. Alternatively, at the 20th cycle, purge gas flow rate had a clear 

effect on the performance and cumulative heel build-up of all three ACs regardless of their 

porosity. For all three adsorbents used in this study, samples regenerated with 0.5 SLPM all had 

an average cumulative heel of 31 %. Those regenerated with 5 SLPM Had a cumulative heel build-

up average of 21%. The presence of mesopores and a hierarchal pore structure certainly helped 

reduce heel build-up in the micropores. DTG analysis of the samples showed that with an increase 

in purge gas flow rate, the nature of heel build-up starts to change and transform into heavier 

chemically formed compounds.  

In the second part, two machine learning (ML) algorithms, multivariate linear regression (MLR) 

and Decision tree, were applied to predict Micropore volume reduction because of volatile organic 

compounds (VOCs) cyclic heel build-up on activated carbons (ACs). A dataset of 100 

experimental tests of cyclic adsorption/regeneration of different VOCs on ACs with distinct 

properties was used. It was observed that micropore volume reduction could be predicted with 

acceptable accuracy with an R2 of 0.85 ± 0.08 using the MLR algorithm by considering the 

adsorbent characteristics, adsorbate properties, and regeneration conditions. The micropores 

prediction results were then combined with several mathematical equations to predict the pore size 

distribution of a used activated carbon. To verify the model, its results were tested against nine 

samples with various stages of heel build-up. The micropore and PSD were predicted with a mean 

relative absolute error (MRAE) of 3.5%, 10.8%, and 12.0% for G-70R, B101412, and B100772, 
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respectively. The PSD prediction model was then utilized in conjunction with the DRL isotherm 

prediction model, and the adsorption capacity of samples at five concentrations of 0, 50, 100, 500, 

and 1000 ppm were predicted for each adsorbent. The prediction of adsorption capacity on the 

virgin G-70R, B101412, and B100772 had a MRAE of 0.6%, 8.9%, and 2.7, respectively while 

for the corresponding used samples the MRAE was 13.2%, 10.1%, and 10.0%. The results of this 

study are beneficial in improving the long-term performance of activated carbons and making them 

last longer. 
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1. CHAPTER 1: Introduction 
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1.1 Volatile Organic Compounds 

Several Definitions for Volatile Organic Compounds (VOCs) are used by various governmental 

entities. These definitions differ based on which characteristic of VOC is targeted1. The U.S 

Environmental Protection Agency (EPA) defines VOCs based on the potential for photochemical 

reaction. It identifies VOCs as any carbon compound that can participate in the atmospheric 

photochemical reaction, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic 

carbides or carbonates, ammonium carbonate, and those it designates as having negligible 

photochemical reactivity2. Prior to 2001, the European Union (E.U.) defined VOCs as any organic 

compound, at 293.15 K, having a vapor pressure of 0.01 KPa or more. Subsequently, a new 

definition more aligned with their U.S. counterpart was brought forth that defined VOCs as all 

anthropogenic organic compounds, excluding methane, which have the potential for 

photochemical oxidants production due to reaction with nitrogen oxide in the presence of 

sunlight3,4. Similarly, the Canadian Environment Protection Act (CEPA) describes VOCs as 

organic compounds with one or more carbon atoms that can readily evaporate into the atmosphere, 

excluding photo-chemically non-reactive compounds such as methane, ethane and the 

chlorofluorocarbons (CFCs)5 

The U.S EPA categorizes a large number of VOCs as human carcinogens, irritants, and toxicants. 

Moreover, recent studies suggest that not only a link exists between the development of several 

respiratory diseases and VOC exposure, but also they could exasperate existing conditions in 

patients6,7. In addition, VOCs being precursors in the formation of particulate matter (PM2.5) and 

ground-level ozone, through photochemical reactions with NOx, can facilitate smog formation 8. 

VOC sources can be categorized into two major groups of anthropogenic sources and natural 

sources. Natural sources include volcanic eruptions, vegetation emissions, and forest fires1,while 
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human-made sources refer to transportation (i.e., vehicle exhaust emissions), oil refining, and 

many industrial activities9. VOC emissions from the aforementioned major sources vary greatly. 

On a global scale, natural sources release significantly more VOC than human-made sources10,11 

However, in most industrialized countries such as China, both sources produce almost the same 

level of VOC emission12. In Canada, the amount of anthropogenic VOCs remained almost the 

same from 1990 to 1998, averaging 2867 kilotonnes of VOC per year, but since then, with the 

enactment of new control methods and regulations, these amounts have continuously declined and 

have reached values as low as 1675 kilotonnes by 2019. In that order, the primary sectors 

contributing to VOC emissions in 2019 were the oil and gas, paints and solvents, and 

commercial/residential/institutional 13. 

As stated, the paints and solvents sector has been ranked the second primary anthropogenic source 

of VOC emission in Canada and produced about 300 kilotonnes of VOC in 2019 alone, where 

surface coating operations contributed to about 22 % of it 13. These emissions results from the 

solvent-based paints being generally used, which contain various organic compounds such as 

aromatic and aliphatic hydrocarbons, esters, ketones, and alcohols. Many efforts have been made 

to replace these solvent-based paints with water-based paints and powdered paints; alas, these 

efforts have mainly been unsuccessful thus far because of encountering two issues: (i) they are not 

100% organic solvent-free and still emit a considerable amount of VOCs, and (ii) the final quality 

of the paint is negatively affected, which cannot meet the market requirement9. As a result, 

mitigation methods are still the main approach for controlling VOC emissions. 

1.2 VOC mitigation methods 

There exists a wide variety of methods for the control of VOC emissions. However, these 

techniques can be categorized into two general groups: (i) methods that require modifications in 
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the equipment and materials used in the process or even changes in the process itself, with VOC 

emission reduction in mind, and (ii) add-on control techniques aiming to regulate emissions. Even 

though the former techniques can be effective, their usage is limited because modifications are not 

always possible. Add-on control techniques can further be classified into two main sub-groups: (i) 

destructive and (ii) non-destructive methods 14. 

As the name suggests, the central common factor in destructive methods is eliminating VOCs, 

whether with the help of oxidation as in thermal and catalytic oxidation or digestion by 

microorganisms as is the case in bio-filtration 14. Thermal oxidation is generally used when 

recovery of energy is of high importance since energy recovery up to 85% is possible. In this 

method, VOCs are directly combusted and converted mainly into carbon dioxide and water. 

Catalytic oxidation functions similarly to thermal oxidation, with the major difference of operating 

at much lower temperatures (370-480 °C as opposed to 700 to 980 °C). Biofiltration operates by 

directing the VOC-laden air stream over biologically active compost or soil and thus oxidizing the 

VOCs with the biological activity of the bed. Although this method requires less capital investment 

and produces safer secondary waste, it is limited by its sluggishness and selectivity of the 

microorganisms towards different VOCs 15.  

Non-Destructive methods are used when the target is the recovery of the VOC rather than its 

removal 15. In comparison with destructive methods, recovery methods are more economical 

because they realize recovery of VOCs, which could be re-used down the line. Furthermore, the 

high temperatures used in destructive methods will inadvertently result in toxic byproducts such 

as NOx 
16 . Recovery methods consist of condensation, adsorption, absorption, and membrane 

separation, each with its own advantages and limitations. 14,15 Figure 1.1.1 Illustrates various VOC 

mitigation methods most commonly used.  
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Figure 1.1 Classification of VOC abatement methods14 

 

Adsorption is extensively applied for VOC capture and recovery and is the most favorable 

mitigation method due to its low cost and high efficiency 16,17. Selecting a proper adsorbent is 

crucial for an efficient adsorption process. An ideal adsorbent is expected to possess specific 

characteristics such as high adsorption capacity, high hydrophobicity to be competitive with water 

vapor present in flue gas, easy regeneration, and high thermal stability to make sure it can 

withstand cyclic adsorption/regeneration17. Activated carbon is one of the most widely used 

adsorbents due to its low-cost production, considerable adsorption capacity, and thermal stability 

16. In industries, standard practice follows the adsorption stage with a regeneration stage to re-use 

the activated carbon and make it a financially viable method for VOC capture and removal 18.  
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Several regeneration methods are available, including thermal19, chemical20 and biological21. In 

most industrial processes, thermal regeneration is conducted at temperatures not exceeding 300 °C 

to regenerate activated carbon adsorbents loaded with VOCs from a contaminated gas stream 22.  

However, this regeneration cannot always completely restore the adsorbent to its virgin state, and 

heel build-up, i.e., accumulation of non-desorbed species and their byproducts on the surface of 

the adsorbent, occurs after each regeneration step. Heel build-up significantly impacts the 

adsorption capacity of activated carbon and, as a result, its lifespan and forces an inevitable 

replacement of the adsorbent, which results in an increased cost of the process 23. It follows that 

knowing the heel formation rate and factors affecting it is essential. 

 

1.3 Research Significance 

Laboratory and pilot-plant testing have traditionally been the building block of adsorption system 

design. As with any experimental method, prior to conducting the experiments, specific goals are 

determined and parameters are set to study the aforementioned goal. These selected parameters 

such as regeneration temperature, adsorbate used and type of flow gas for the experimental 

conditions, as valuable as they are, limit the results obtained to that specific experimental 

condition. This limitation entails that one needs to conduct separate experiments for each different 

experimental condition and scenario one has in mind. In the case of cyclic adsorption experiments, 

investigating one specific adsorption scenario itself takes a long time and requires repetition of the 

adsorption/regeneration experiment to study changes occurring with consecutive usage. 

Additionally, in each experimental cycle, depending on the nature of the experiment, energy and 

chemicals are consumed. As a result, if multiple experimental scenarios are needed to be studied, 

the stress put on resources both from an economic and environmental perspective is worsened 24. 
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For long-term investigation of the adsorption/regeneration cyclic experiment in which the goal is 

to lifespan of the adsorbent, the difficulties above worsen to the point of making the study almost 

unachievable. Especially if for better comparison of the results, there is a need to run the test again 

with a different adsorbate or vary the experimental parameters. These issues might be why there 

are so few studies investigating changes occurring during the long-term performance of activated 

carbon adsorbents. 

 Alternatively, a mathematical model can simplify the design of a full-scale adsorption system by 

reducing the number of tests required under various operating conditions. These models are usually 

calibrated by a few well-designed and controlled laboratory bench-scale tests. Having been 

verified, the model itself can be used as a means of primary data development in place of the 

experiments. Ultimately, a verified model can be used to extrapolate other non-tested variables 

and avoid unnecessary time and expenses generally associated with pilot-scale testing to a 

reasonable extent. For the case of long-term performance, if a verified model existed, testing the 

effect of different experimental conditions on the performance of the selected adsorbent would be 

much easier and the difference between a five-cycle experiment and a 50 cycles experiment would 

be reduced to mere seconds rather than weeks and months. 

1.4  Objectives 

This study was conducted with two main objectives in mind: 

1. Study the effect of activated carbon's (AC) microporosity on its long-term performance 

under two extreme purge gas flow rates. 

2. Develop a mathematical model to predict changes in pore size distribution and 

performance of the activated carbon after long-term cyclic experiments. 
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In the experimental stage, three different activated carbons with various microporosities underwent 

consecutive cyclic adsorption/regeneration experiments using two different purge gas flowrates to 

study heel formation rates and capacity reduction for each case. For the modeling section, a dataset 

of 100 experimental tests of VOCs on activated carbon was collected from both existing literature 

and long-term cyclic experiments conducted in the first stage. Multivariable linear regression was 

applied to the data set in conjunction with the mathematical models existing in the literature to 

predict the effect of cumulative heel build-up on the pore size distribution and adsorption capacity 

given the adsorbents characteristics and adsorbents initial physical properties. 

1.5 Thesis Outline 

This thesis is divided into five chapters. Chapter 1 gives a general introduction of the topic and its 

objectives. Chapter 2 includes a detailed literature review on related topics such as adsorption, 

regeneration, heel formation, machine learning, and its application in adsorption. Chapter 3 

includes a description of the materials and methods used. Chapter 4 presents the experimental and 

modeling results and their relevant discussions. Finally, in chapter 5 conclusions of the research 

as well as recommendations for future works are provided. 
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2.1 Adsorption 

Adsorption is a separation process in which gas or solutes are transferred and accumulated onto 

solid surfaces 1,2. Unbalanced molecular forces exist on all surfaces; when a substance collides 

with that surface, the existing unbalanced forces attract the substance and maintain it near the 

interface. This phenomenon results in a more prominent presence of the gas or liquid in the vicinity 

of the solid surface than the bulk phase, regardless of gas or liquids' nature 3. The gas or vapor 

accumulated on the solid, which is in the adsorbed state, is usually referred to as "adsorbate," and 

the space it occupies is aptly named "adsorption space" 4. 

Based on the nature of forces involved, adsorption can be divided into two main categories: 

physical adsorption (physisorption) and chemical adsorption (chemisorption). Physisorption is 

produced by the reversible interaction of weak van der Waals forces among adsorbed species and 

adsorbent surface. Chemical Adsorption, on the other hand, involves the transfer or sharing of 

electrons resulting in the formation of chemical bonds3,5. The chemical bonds formed are relatively 

more robust than the intermolecular forces existing in physisorption. Therefore, the enthalpy 

changes in chemisorption are more substantial and in the order of 40 to 400 KJ, while it does not 

usually exceed 20 K.J. for physisorption 3,5. 

Furthermore, physisorption is non-selective and can occur between any adsorbate-adsorbent 

system, whereas chemisorption only takes place in specific system combinations. Finally, because 

of the selectivity involved in chemisorption, it can only form unimolecular layers; conversely, 

physisorption does not suffer this limitation and can form multimolecular layers 6. It should be 

noted that chemical and physical adsorption are not isolated and often co-occur 7.   

In the case of separation processes, research has shown physical adsorption to be the more 

significant of the two. Physisorption can further be categorized into Thermal swing adsorption 
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(TSA) and Pressure swing adsorption (PSA), which is solely dependent on how the operation is 

performed 2. 

2.2 Activated Carbon 

First records of activated carbon usage in human history go back as far as 1600 B.C in Egypt where 

wood chars had a medicinal purpose. There have been many instances of activated carbon being 

used as an adsorbent in the recorded history, but practical usage of it only began in the 20th century 

during the world wars where the need for gas masks' development intensified adsorption research 

1. Activated carbon is an excellent adsorbent for most pollutants due to its highly porous structure, 

hydrophobicity, and large specific surface area. It can be produced by pyrolysis of nearly all 

carbonaceous organic material such as wood, husks, and coconut shells 7. 

Activated Carbons, in general, have strongly developed internal surfaces and a porous structure 

made up of pores of various shapes and sizes 3. Several methods have been suggested to determine 

the shape of the pores, which resulted in a diverse outcome such as slit-shaped, V-shaped 

capillaries, and many more 83.The most common classification of pores, introduced by Dubinin 

and adopted by the International Union of Pure and Applied Chemistry (IUPAC), is based on the 

pores' width (W). The pore width is defined as the distance of the two adjacent walls for a slit-

shaped pore or the radius of a cylindrical pore 3. Based on Dubinins' classification, the porous 

structure of activated carbon is tri-dispersed and is made up of micropores, mesopores, and 

macropores.  

Micropores, if slit-shape, are two-dimensional spaces in between two graphite-like walls and if 

cylindrical are the three-dimensional space within a cylinder with the cylinder diameter 

representing the pore width; however, whereas in graphite, the distance between two neighboring 

planes is a constant 3.76 Å (0.376 nm), in activated carbon, this distance is varied and mostly 
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greater than 3.76 Å since it can accommodate much larger adsorbate molecules 1. In fact, 

micropores have pore widths of up to 20 Å (2nm). Another important parameter of micropores is 

their large surface areas. Because adsorption forces from opposite walls overlap in micropores, 

they have much larger adsorption energy than mesopores, and thus they are where a vast majority 

of adsorption takes place. The adsorption process, in micropores, is exclusively done through 

volume filling rather than capillary condensation 3.  

Mesopores (also known as transitional pores) have dimensions in the range of 20 to 500 Å and 

typically only makeup 5% of the carbon's total surface area. Capillary condensation is the primary 

source of adsorption in these pores. Finally, macropores have a negligible contribution to the total 

surface area of the adsorbent 3. 

Commercial activated carbon can often be found in one of two forms: powdered activated carbon 

(PAC) and granular activated carbon (GAC). PACs are produced from sawdust, and their average 

size is in the range of 15 to 25 µm. Alternatively, GACs are produced from pulverized powders 

and then bound together using tar. GACs sizes vary based on their application. 1 

2.3 Adsorption parameters 

Adsorption parameters such as adsorption capacity and adsorption kinetics are influenced by a 

variety of factors. Although the affecting factors are many, they can mainly be divided into three 

categories: (i) operational conditions under which adsorption is conducted, (ii) adsorbent's 

chemical and physical property, and (iii) adsorbate's characteristics. Improving and optimizing 

industrial adsorption processes requires a thorough understanding of the aforementioned factors 

and their corresponding effects on the adsorption process 9.  

Prior to delving deeper into the above categories, a few definitions are needed. Adsorption capacity 

(also known as loading) is the mass of adsorbate captured by the unit mass of adsorbent10. At any 
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given temperature, adsorption capacity, either as a function of its partial pressure or concentration, 

is described by the adsorption isotherm 11. Adsorption capacity can be determined in many ways, 

two of the more important methods are: 1. Utilizing the gravimetric methods and weighting the 

adsorbent both before and after the adsorption process, and 2. Through the integration of the 

breakthrough curve. 

The breakthrough curve is a plot that illustrates the concentration of the adsorbate existing in the 

effluent stream at any time since the initiation of the experiment. As long as the adsorbent has the 

capacity, the adsorbate vapor is wholly captured, and thus, the effluent stream is void of any vapor 

trace. When saturation of the adsorbent is imminent, vapor concentration in the effluent stream 

begins to rise. The time at which 5% of the influent concentration is reached is called 

"breakthrough time." The rise in vapor concentration continues, and saturation time is reached 

when 100% of inlet concentration is observed, and no more adsorption occurs12,13.  

2.3.1 Adsorption Conditions  

One of the most critical factors affecting the adsorption process is the temperature at which it takes 

place. Adsorption, being an exothermic reaction, is adversely affected by temperature increase14,15. 

Raising the adsorption temperature can provide the activation energy required to form chemical 

bonds and thus promotes chemisorption16,17. Additionally, higher temperature means faster 

adsorption kinetic and, as a result, shorter breakthrough time 18. Lastly, by providing the molecules 

with more energy (i.e., increase in temperature), their kinetic energy and motion increase, resulting 

in easier diffusion into smaller pores 18. Jahandar Lashaki et al.16, in a study on the effect of 

adsorption and regeneration temperature on heel build-up on activated carbon, examined the effect 

of adsorption temperature on adsorption of 1-butanol, n-decane, and a mixture of chemicals 

typically emitted from automobile painting operations. It was reported that a 20°C increase in 
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adsorption temperature (from 25°C to 45°C) resulted in nearly 30% capacity loss for 1-butanol 

since it was physisorbed. However, for n-decane and the mixture in which chemisorption at 25°C 

was suspected, the increase in temperature caused a negligible difference in adsorption capacity. 

In conclusion, it appears that high temperatures is undesirable for adsorption since it decreases the 

adsorption capacity of the physisorbed compounds while at the same time promoting 

chemisorption, which can result in severe loss of capacity in future cycles. 

Purge gas flowrate is another effective parameter that plays a role in heel buildup. Niknaddaf et 

al.19, conducted a study where they investigated the combined effect of purge gas flowrate and 

heating rate. It was reported that that decreasing heating rate and/or increasing purge gas flow rate 

decreases heel buildup. The justification for this was that with an increased in purge gas flowrate, 

the resident time of adsorbates in micropores are reduced and thus they are exposed to high 

temperatures for shorter durations. Babu et all20, also reported that with four times increase in 

flowrate, the breakthrough curve became steeper and the breakthrough time was almost halved. 

This was attributed to shorter residence time of the adsorbate in the bed which was not long enough 

to allow for adsorption equilibrium to be reached. 

Adsorption duration is an essential element in multi-component gas adsorption. As the adsorption 

duration lengthens, heavier compounds replace the lighter ones leading to an increase in 

irreversible adsorption. 18 

2.3.2 Adsorbent's properties   

The adsorption capability of activated carbons is dependent on several factors, including their 

physical properties such as their pore size distribution, surface area, total pore volume, and surface 

functional groups 21,22. The aforementioned properties are highly influenced by the precursor 

organic material and the activation method and conditions chosen 23. 
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Cal et al. 24, investigated the adsorption of acetone and benzene on three activated carbon fibers 

(ACFs) with different porosity. It was reported that for a specific adsorbate, at low concentrations, 

the adsorbent with the narrower pores demonstrated better adsorption compared with the ACF with 

larger pores, even though the former had significantly lower surface area and total pore volume. 

However, the situation is reversed with increased inlet concentration, in which case total pore 

volume seems to play a more crucial role in adsorption capacity. Similar results were also reported 

by Mangun et al.25, in a study where adsorption of alkanes with a different number of carbons, 

ranging from methane to pentane, on four varied ACF was studied. This study illustrated that at a 

low concentration for alkane with low boiling points, the molecule does not condense in the narrow 

micropore and remains in a tightly bound gas phase. As a result, it does not occupy a large volume, 

and the available pore volume is not a limiting parameter.  

On the other hand, with an increase in the concentration and boiling point of the alkane, the 

adsorbate prefers to condense inside the larger mesopores; in this case, the available pore volume 

becomes an essential factor that affects adsorption capacity. As stated by Mangun et al.25, the ideal 

adsorbent would be one with very narrow micropores and thus influential overlapping forces and 

sizeable total pore volume, facilitating adsorption in a broad range of VOC concentrations. From 

the previous study, it can be concluded that a pore size/ pore volume effect must be considered to 

optimize adsorbent performance. 

Lillo-Ródenas et al.23, performed a comprehensive study on the effect of microporosity on 

adsorption of benzene and toluene at low concentrations. They compared toluene and benzene 

adsorption capacity at low concentrations (200 ppmv) on ten different activated carbons. A high 

correlation was reported between CO2 micropore volume, which shows micropore volume of 
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smaller micropores below 7 Å, and the adsorption capacity. Their conclusions for activated carbon 

are in good agreement with previous experiments conducted on ACF. 

Comparable studies were conducted by Huang et al.26, where three types of activated carbons 

adsorbed acetone and n-hexane. They showed that since BET surface area and pore volume are 

closely related, it is better to study adsorption capacity per unit BET area for practical purposes. 

This method simplifies observing the effect of micropore size differences on adsorption capacity. 

It was reported that the adsorption capacity per unit of BET area for acetone decreases for all three 

adsorbents when the porosity increases. The results are in agreement with previous studies. Since 

acetone has a low boiling point, it remains in the gas phase inside the pores, and the smaller pores, 

having stronger overlapping forces, can accumulate more acetone within than their larger 

counterparts. 

The effect of porosity on adsorption capacity was also investigated by Lashaki et al.27, in a study 

involving a mixture of VOCs and five different beaded activated carbons. The mixture involved 

many compounds with a high boiling point which would condense inside the meso and macro 

pores, requiring large volumes. As a result, a greater correlation of adsorption capacity with total 

pore volume than with micropore volume was reported (R2of 0.87 and R2of 0.70, respectively). 

Feizbakhshan et al.28, studied the effect of activated carbon's pore size distribution on its 

performance in cyclic process. Three different activated carbons were investigated, using 1,2,4- 

trimethyl benzene as adsorbent. Two of the adsorbents, namely ACFC-20-N and G-70R-V, were 

highly microporous (97% and 85.5% microporosity, respectively), while the last one, B-100777-

V, had much lower micropore volume (37% microporosity). At first, the results might appear 

contradictory with previous studies since the first cycle adsorption capacity shows a weak 

correlation with total pore volume (R2of 0.72). However, by normalizing by surface area and 
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gaining the adsorption capacity per surface area, there is a significant correlation with total pore 

volume as suggested by previous studies (R2of 0.99). 

Surface characteristics such as acidity, polarity, and chemical reactivity are heavily influenced by 

carbon-oxygen surface groups present. These carbon-oxygen surface compounds result from 

oxygen gas reactions with activated carbon at temperatures below 400 °C since these reactions 

predominantly develop during chemisorption of oxygen. The carbon-oxygen surface groups can 

be divided into three categories: (i) acidic, (ii) basic, and (iii) neutral3. Lillo-Ródenas et a 23 

reported that samples with reduced carbon-oxygen surface groups had higher adsorption of toluene 

and benzene compared to their pristine counterparts. This phenomenon was hypothesized to result 

from the specific interaction between π electron-rich regions of the graphene layer with the 

aromatic ring of the adsorbate. 

2.3.3 Adsorbate's properties 

The physical and chemical properties of the adsorbate also play an important role in the adsorption 

process. Some of these prominent properties are molecular weight, functional groups, polarity, and 

boiling point of the adsorbate29. Mangun et al.25, reported that for each specific ACF used in the 

experiment, the amount of alkane adsorbed is positively related to its boiling point. Canet et al.30 

showcased that adsorbates with large molecular volume have limited access to narrower 

micropores, and as a result, the adsorbent is underutilized, and adsorption capacity is reduced.  

2.4. Adsorption isotherm models 

Equilibrium adsorption isotherms are an invaluable tool in designing an adsorption system 31. 

When adsorbate containing gas stream has been in contact with the adsorbent surface for an 

adequate amount of time, the adsorbate concentration ends up in a dynamic balance with the solid 

interface concentration. This balance is usually referred to as adsorption equilibrium 32. Adsorption 
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isotherms illustrate the equilibrium mentioned above at a certain temperature33. In the upcoming 

section, we will discuss some of the more common adsorption isotherm models developed. 

2.4.1. Langmuir isotherm model 

Langmuir adsorption isotherm is a simplified isotherm model initially developed to describe the 

adsorption of gases onto solid-phase adsorbents, specifically activated carbons34. In the 

formulation of this model, several assumptions are made regarding the nature of the adsorption 

process. Firstly, a finite number of adsorption sites are considered to exist on the adsorbent surface. 

These sites are presumed to be identical. Secondly, monolayer adsorption onto these homogenous 

adsorption sites is assumed. Lastly, the adsorbed molecules are assumed to have no sideways 

interaction35. The Langmuir adsorption isotherm model can be presented as36: 

𝑞𝑒 =
𝑞𝑚𝑏𝐶

1+𝑏𝐶
  2-1 

 And  

𝑏 = 𝑏0exp (
−∆𝐻𝑎𝑑

𝑅𝑇
)  2-2 

Where qe is adsorbent equilibrium capacity, qm is the adsorbent maximum equilibrium capacity, b 

is the temperature-dependent Langmuir affinity coefficient (m3/kg), C is the gas phase 

concentration, b0 is the pre-exponential constant (m3/kg), ∆𝐻𝑎𝑑 is the heat of Adsorption, R is the 

ideal gas constant, and T is the temperature. It can be observed that the above equation can be 

reduced to Henry's law isotherm at low concentration and low pressure and is thus 

thermodynamically consistent in this region37. 

2.4.2 Freundlich isotherm model 

Freundlich isotherm model38 is the earliest known example of a relationship defining non-ideal 

reversible adsorption. Historically it was developed for adsorption on animal charcoal34. As 
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opposed to the Langmuir isotherm model, this isotherm model does not rely on an assumption of 

uniformity of heat and affinities. The isotherm model expression itself demonstrates the 

heterogeneity of the surface37. Freundlich isotherm model is empirical and, as such, lacks a 

fundamental thermodynamic basis. The model is not valid for a wide range of adsorption data 

since it does not approach Henry's law constant at low pressures, and at high pressures, it does not 

have a finite limit 34,37. However, despite these limitations, it has wide applications in 

heterogeneous systems such as activated carbons 37. 39 

Freundlich adsorption isotherm model can be presented as38: 

𝑞𝑒 = 𝐾𝑓𝐶
1

𝑛   2-3 

Where 𝐾𝑓 and 𝑛, for a given adsorbent-adsorbate system, are constant at a specific temperature 34. 

1/n is a measure of the intensity of adsorption or surface heterogeneity. 1/n values in the range of 

0 to 1 indicate favorable adsorption, while 1/n values greater than one represent unfavorable 

adsorption 37.  

2.4.3 Dubinin-Radushkevich isotherm model 

Dubinin-Radushkevich isotherm is a semi-empirical model based on Polanyi's potential39. It was 

originally developed with the adsorption of gases on microporous adsorbents in mind37. However, 

its usage soon expanded to include many adsorbents with heterogeneous surfaces and a Gaussian 

energy distribution37. Unlike Freundlich isotherm, the D-R isotherm model maintains a core 

thermodynamic basis and, as a result, is highly regarded 36. It has been often demonstrated to work 

exceptionally well for intermediate and high concentration data ranges but, similar to the 

Freundlich isotherm model, fails to approach Henry's law constant at low concentrations 34. The 

D-R adsorption isotherm model can be presented as39: 
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𝑊 = 𝑊0 𝑒𝑥𝑝(−𝑘𝐴2)  2-4 

And 

𝐴 = 𝑅𝑇 𝑙𝑛(𝑃0/𝑃)  2-5 

Where W represents the volumetric adsorption capacity expressed as adsorbed liquid volume per 

unit mass of adsorbent; A is the adsorption potential; W0 is the limiting pore volume; R is the 

universal gas constant; T is the absolute temperature; P0 is the saturated vapor pressure at 

temperature T, and P is the partial pressure of the adsorbate. 

k is the D-R equation parameter for the target compound, if we were to choose a reference 

adsorbate, the following equation can estimate the k value: 

𝑘 =
𝑘𝑠

𝛽
  2-6 

Where ks is the value of k for reference adsorbate, and 𝛽 is the affinity coefficient for target 

adsorbate 39. There have been many approximation methods suggested for 𝛽 such as (i) ratio of 

molar volumes of the target adsorbate to that of reference compound (𝑉/𝑉𝑠), (ii) ratio of molecular 

parachors of the target adsorbate to that of reference compound and (iii) ratio of the polarities (
𝛼

𝛼𝑠
) 

for polar organic adsorbates40. The reference adsorbate chosen for 𝛽 is usually benzene for which 

𝛽 ≡ 1.041. 

The most significant advantage of the D-R isotherm is that it only requires two parameters, namely 

W0 and k, to make predictions for the adsorption capacity of any adsorbate-adsorbent system39. 

Urano et al. 40, conducted a study on seven different activated carbon samples and 13 organic 

adsorbents to find an association between D-R equation parameters and properties of AC samples. 

Previously Dubinin had reported W0 to be related to the micropore volume 37. However, after their 

investigation, Urano et al.40, empirically found that values of W0 can be predicted from the volume 
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of pores below 3.2 nm (32Å) plus 0.055 mL. Crittenden et al. 42, also arrived at the same conclusion 

that W0 values are solely dependent on the adsorbent. 

For prediction of 𝛽, several approaches have been presented in the literature. Dubinin himself 

suggested the use of either molar volume ratios or parachors ratios 43. Reucroft et al. 44, selected 15 

chemicals and subsequently categorized them into three groups based on their respective polarity. 

A reference adsorbate was arbitrarily chosen from each group to approximate 𝛽 and it was 

demonstrated that the ratio of electronic polarities leads to better estimation for 𝛽. Moreover, it 

was reported that if a single compound were chosen to represent the entire data set, the error value 

for the predicted 𝛽 vs the experimental 𝛽 would be too high. Conversely, Urano et al. 40 observed 

that when benzene is used as the reference adsorbate, kS and 𝛽 values had a negligible variation 

with the change in adsorbent type and averaged 2.7 ± 0.3 × 10−3. Additionally, satisfactory 

predictions of 𝛽 could be made for all 13 chemicals involved in the study. Noll et al. 45 also 

investigated the influence of adsorbates' selection on 𝛽 prediction via various methods. In their 

study, isotherm data for ten organic compounds, ranging from nonpolar to strongly polar, were 

developed. It was reported that to gain optimum accuracy in 𝛽prediction, it is best to choose a 

reference adsorbate with similar polarity. The previous studies demonstrate no concurrence for 

selecting a reference adsorbate, and the choice is often made arbitrarily. 

Furthermore, depending on the method chosen for calculating   , some experimental measurement 

is unavoidable. Given the limitations mentioned above, Prakash et al . 43 proposed using a 

quantitative structure-activity relationship (QSAR) method to predict k directly with no need for a 

reference adsorbate. QSAR approach asserts that a given chemical's physical and biological 

properties are closely related to its molecular structure; thus, with the help of some "molecular 

descriptors, "one can derive statistical relationships between the chemical's properties and its 
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topological features 46. Nirmalakhandan et al. 46, had previously used this method and the molecular 

connectivity descriptor to predict AC adsorption capacity successfully. Prakash et al. 43 conducted 

linear regression of the k values present in the literature vs. the first-order valance molecular 

connectivity index and reported a single variable model capable of predicting k value with a R2 of 

0.924. The model can be presented as:  

log 𝑘 = 1.585 − 0.442 𝜒𝑣
 

1    2-7 

Qi et al.41 further investigated the QSAR model proposed by Prakash et al. 43. k values for benzene, 

acetone and methyl ethyl ketone (MEK) adsorption on three different activated carbon fibers were 

obtained experimentally. These experimental values were compared against their corresponding 

QSAR model-produced counterparts. It was reported that for two of the activated carbon fibers 

utilized, the results agreed with a maximum difference of 16%. The model showed some 

divergence (63-96%) from experimental values for the last ACF. This divergence was 

hypothesized to be due to a specific adsorbent-adsorbate interaction for that particular ACF. 

Hung et al. 39, employed all the above-mentioned estimation methods for D-R equation parameters 

and developed a mathematical model capable of predicting ACs' adsorption capacity. In this 

method, having knowledge of the adsorbent's structure and adsorbate's pore size distribution is 

sufficient to make predictions regarding capacity. However, since at low concentration ranges D-

R equation overestimates adsorption capacity and does not approach Henry's law constant, the D-

R equation was modified. Through experiments on various AC samples, it was reported that at 

relative pressure between 1.5 × 10−3 and 0.01, both the D-R isotherm model and Langmuir 

isotherm model generate similar isotherms. Thus, the parameters required for Langmuir isotherm 

can be determined by fitting the isotherm obtained from the D-R equation. Finally, an isotherm 

model was developed to overcome the limitations of the D-R model. This new isotherm model 
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utilized Langmuir isotherm for relative pressures below 1.5 × 10−3 and D-R model for relative 

pressures beyond it. The newly developed isotherm model was fittingly named the D-R-L isotherm 

model. The D-R-L isotherm model's predictive capabilities were tested against experimentally 

obtained adsorption capacity values. An average discrepancy of 9.7% and 2.5% was reported for 

benzene adsorption onto the selected ACs at low and high relative pressure. 

It is essential to mention that all the above studies were conducted on freshly prepared and virgin 

AC samples, and to the best of our knowledge, no study has been done to modify the D-R-L 

predictive model to accommodate used ACs. In industrial applications, AC is often used in a cyclic 

adsorption/regeneration process where its physical properties constantly change. As a result, 

modifications are inevitable to make the D-R-L model better suited for practical industrial usage. 

The most crucial change in the physical property of AC regarding isotherm prediction are changes 

occurring in its pore size distribution due to the accumulation of heel-buildup in the pores. Were a 

model to be developed which could predict PSD after cyclic heel build-up, ACs' adsorption 

capacity throughout the long-term cyclic process could be predicted.  

2.5. Regeneration 

As the cyclic adsorption process goes on, the target adsorbate is continuously accumulated on the 

surface of the adsorbent. This accumulation of adsorbate reduces the working adsorption capacity 

of the adsorbent with each cycle. A suitable regeneration stage can preserve the porosity and 

internal structure of the adsorbent while eliminating the adsorbed species leading to the adsorbents 

reuse47. Various techniques are available for the regeneration of VOC-laden adsorbents, including 

but not limited to thermal regeneration 48, chemical regeneration47, and bio-regeneration50. 
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2.5.1. Thermal Regeneration 

Thermal regeneration is the more commonly used method, and comprises heating the adsorbent 

bed to increase its temperature while a purge gas flow passes through it, carrying the desorbed 

species away51. Alternatively steam or hot purge gas can be used to heat the bed and thus regenerate 

it. The purge gas used is usually an inert gas, such as N2, to avoid any potential reactions among 

desorbed compounds and impurities in the gas52. To provide heating to the adsorbent bed, 

traditionally, hot purge gas or steam is applied. However, many novel methods have been proposed 

and utilized, including conductive, microwave, and resistive heating53–55.  

2.5.2. Chemical Regeneration 

Thermal regeneration methods are effective yet energy-intensive approaches for the re-use of 

adsorbents. This high energy consumption motivated researchers to look for methods that could 

increase the regeneration efficiency while consuming less energy, and thus chemical regeneration 

methods came to be. Chemical regeneration techniques are many, and they differ in the 

regeneration mechanism employed and the regeneration agents used52. The most well-known of 

these regenerative methods are solvent, NaOH, supercritical, and oxidative regeneration 52. As with 

any method, there are advantages and drawbacks involved with all chemical regeneration 

techniques named above. Solvent regeneration, for example, causes much less damage to the 

porous structure of the adsorbent56. However, it employs the use of hazardous organic compounds 

that, if not disposed of properly, can have environmental consequences57. Consequently, the use 

of chemical regeneration methods needs to be considered on a case-by-case basis. 

2.5.3. Bio-Regeneration 

Bio-regeneration is defined as using microbial activities to re-new activated carbon58. It involves 

mixing bacteria with the loaded activated carbon in a closed batch system59. In the literature, two 
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mechanisms have been proposed for the bio-regeneration of activated carbon. The first mechanism 

requires the desorption of organic compounds from carbon into the liquid phase due to a 

concentration gradient. Subsequently, the released compounds are then degraded by microbial 

activity60. The second mechanism hypothesizes the presence of extra-cellular enzymes excreted 

by microorganisms which can then enter the pores of activated carbon and degrade the adsorbed 

species 61. However, this hypothesis has been challenged since, for enzymes to react with 

adsorbate, they first need to be adsorbed into the carbon pores. The adsorption of the enzyme into 

small pores might prove challenging since the average molecular diameter of a monomeric enzyme 

is above 31 Å, which would exclude all micropores and even some mesopores. This exclusion is 

contradictory to observations made in experiments 58.  One factor that strongly limits the use of 

bio-regeneration is the biodegradability of the adsorbate. Having a recalcitrant organic compound 

as adsorbate can hamper the biodegradation process and reduce its efficiency 58.   

2.6. Heel-build up 

One of the main challenges associated with the adsorption of VOCs using activated carbon is heel-

build up. Heel refers to the accumulation of strongly adsorbed species that can thwart complete 

regeneration of adsorbent and thus lower its adsorption capacity and reduces its operational 

lifespan. This reduction in capacity will force the operator to replace the adsorbent bed more 

frequently, increasing maintenance costs62. Several mechanisms have been suggested in the 

literature for heel-build-up: (i) non-desorbed physisorption, (ii) chemisorption of adsorbates or 

adsorbate's reaction by-products (iii) adsorbate decomposition (i.e., char formation). The 

occurrence of each of the mentioned mechanisms depends on a variety of factors, such as the 

nature of the VOCs involved and the extent of the cyclic adsorption/regeneration procces62. 

Jahandar Lashaki et al.62, conducted a study on heel formation mechanisms in full-scale adsorber's 
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products and concluded that non-desorbed physisorption was the most important mechanism in 

the early cycles. Moreover, if carbon was exposed to oxygen impurities of the purge gas, thermal 

oxidation could play a significant role in heel-buildup. If no such exposure occurred, however, 

pyrolysis reactions were the main contributor instead. 

Parameters affecting heel-build up have been the subject of many studies since heel-build up can 

have a major economic and environmental impact on the adsorption process. These studies helped 

to identify several impactful parameters and how they influence heel-build up. These parameters, 

similar to the ones affecting adsorption capacity mentioned before, can be divided into three major 

groups: 

 Adsorbate's characteristics  

 Adsorbent's properties. 

 Operational conditions under which adsorption/regeneration is conducted. 

With regards to adsorbate property. Wang et al. 63, investigated the adsorption of a mixture of 

organic compounds commonly found in vehicle painting booth operations. With the help of solvent 

extraction methods, they were able to identify the organic compounds and their respective 

concentration remaining on regenerated BAC. It was concluded that high boiling point compounds 

contribute more to heel build-up since they are harder to desorb. In special cases where compounds 

might have similar boiling points, their structure and functionality affect adsorption dynamics. 

As for adsorbent properties, several independent investigations have been performed, a summary 

of which is included here. Jahandar Lashaki et al. 64, performed a thorough investigation on five 

activated carbon adsorbents to study the role of the pore size distribution (PSD) on heel formation. 

To isolate the contribution of PSD, the ACs were chosen meticulously to cover a wide range of 

physical properties (30-88% microporosity) while sharing similar surface chemistry. Next ACs 
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underwent 5 cycle adsorption/regeneration experiments. Adsorbents were characterized both 

before and after cyclic experiments. Based on the reports, the heel was linearly correlated 

(R2=0.91) with BAC micropore volume. Furthermore, adsorbents with the highest share of 

mesopores exhibited the best adsorption performance. This was attributed to the fact that 

mesopores contribute to adsorption but not to heel formation. From their reports, it can be 

concluded that a balance of mesopores and micropores is needed to have adsorbents with sufficient 

adsorption capabilities and low heel formation. It should be noted that regeneration was done in 

the absence of oxygen.  

Feizbakhshan et al. 65 explored the role of PSD on heel formation in the presence of oxygen 

impurity in the purge gas. For this study, three activated carbon samples with various physical 

properties were chosen. They arrived at the same conclusion that samples with higher 

microporosity exhibit higher amounts of heel build-up. It was also suggested that a hierarchal pore 

structure is beneficial in the presence of oxygen and simplifies the desorption process. This was 

attributed to the fact that larger pores (mesopores and macropores) help overcome the transport 

limitation present in micropores. The role of BACs surface oxygen groups was investigated by 

Jahandar Lashaki et al. 64, and it was reported that samples with higher surface oxygen groups 

result in higher heel build-ups. 

 

The impact of regeneration parameters on heel-build-up is highly dependent on the regeneration 

method chosen. One of the first parameters studied was the temperature in which desorption was 

completed. Jahandar Lashaki et al. 66, firstly investigated the influence of adsorption temperature 

on heel build-up. It was reported that an increase of 10 °C from (25 to 35 °C) increased heel build-

up by 30%, regardless of the consecutive regeneration temperature. Conversely, a further increase 
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from 35 to 45 °C had no effect. The reasoning behind this phenomenon was suggested to be a shift 

from physisorption to chemisorption at some point in between 25 to 35 °C. Additionally, 

cumulative heel build-up for activated carbons regenerated at 288 and 400 °C was also assessed. 

The use of higher regeneration temperature resulted in a 60% reduction in mass balance cumulative 

heel. The reduction is due to the greater difference between regeneration temperature and boiling 

point of the adsorbates, which translates to a greater driving force for desorption. However, it 

should be heeded that the experiments mentioned above were all done in the absence of oxygen. 

As Feizbakhshan et al. 67 later demonstrated, the increased temperature can facilitate reactions 

amongst adsorbates and oxygen impurity, resulting in higher heel build-up.  

A more in-depth study on the effect of desorption purge gas's oxygen content was performed by 

Jahandar Lashaki et al 68. In this study, different concentrations of oxygen impurity  (≤ 5 −

10,000 𝑝𝑝𝑚 ) were used in N2 desorption purge gas. It was reported that an increase in oxygen 

impurity was accompanied by an increase in mass balance cumulative heel up to 35%. This result 

was argued to be due to a shift from pure physisorption to a combination of physisorption and 

chemisorption with an increase in oxygen impurity. The subsequent derivative thermogravimetric 

analysis confirmed their claims. 

Niknaddaf et al. 69 illustrated that in addition to the regeneration temperature, the heating rate used 

to achieve such a high temperature also plays a role in the heel build-up rate. Their study used 

resistive heating on activated fiber cloth at several heating rates ranging from 5 to 100 °C/min. It 

was reported that an increase in heating rate was accompanied by an increase in heel build-up from 

4.6 to 10.4 (wt.%). In the same study, Niknaddaf et al. 69, investigated the effect of purge gas flow 

rate and described that a 50 fold increase in purge gas flow rate (from 0.1 to 5) resulted in a ten-

fold decrease in heel build-up (from 14 to 1.4%). They supported these results by claiming that a 
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surge in heating rate or a reduction in flow rate both allow a higher concentration of adsorbate to 

be in contact with increased temperatures for a longer duration, which will result in an increased 

adsorbate decomposition and coke formation on the adsorbent surface.  

The above-mentioned studies primarily focused on a limited number of cycles (up to 5). This 

limitation reduces the opportunity for further heel formation and even heel transformation from 

physisorbed species into higher molecular weight non-desorbed species. Additionally, the heel 

formation trends have only been confirmed in the studied cycles, and any heel trend for higher 

cycles is currently only speculation. There are still gaps in research on what happens in higher 

cycle numbers. This gap is problematic since, in full-scale abetment systems, hundreds of cycles 

are typically completed on individual BAC batch 62.  

2.7. Machine-learning method 

In recent years, machine learning (ML) has become an invaluable tool in developing computational 

algorithms. It has been influential in recent discoveries in the fields of artificial intelligence, 

computer science, and chemistry70. Machine learning's primary goal is to make accurate 

predictions of y from x. One advantage that machine learning methods offer is their ability to 

discover complex structures without prior knowledge. These methods enable us to fit very complex 

functions onto the dataset without the risk of occurrence of overfitting.71.  

Machine learning's application in environmental engineering has been a topic of interest recently.  

These methods have already been utilized in various fields such as waste-to-energy conversion72, 

municipal solid-waste treatment73, biochar for organic compound sorption72, and adsorption 

processes. Application of ML in adsorption is generally centered around one of the topics below: 

 Inverse design of adsorbent material 75 

 Performance prediction76 
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 Adsorption process optimization 77 

Yuan et al. 78 applied several tree-based models to predict CO2 adsorption as a function of textural 

and compositional properties of biomass waste-derived porous carbons To that end, they complied 

a data set including 527 data points and applied ML methods to them. Out of the various models 

assessed, it was reported that gradient boosting decisions (GBDTs) demonstrated the best 

predictive performance with R2 of 0.98 and 0.84 on training and test data, respectively. 

Subsequently, feature importance analysis was done on the GBDT method, which was recognized 

as the most accurate. The pressure and temperature of the adsorption experiment were reported as 

the most influential parameters.  

Xiao et al. 79, investigated the optimization of a layered bed pressure swing adsorption for hydrogen 

purification using ML methods. Published experimental results showcased a contradiction 

between hydrogen purity and recovery; therefore, multiple target optimization was needed. To that 

purpose, polynomial regression (PNR) and artificial neural network (ANN) were used to predict 

the performance of a two-bed six-step process designed for purification. Following this step, a 

combination of two ANN models and a sequence quadratic program algorithm were used to 

achieve multi-level optimization. Final optimization results were validated with Aspen Adsorption 

cycle model. It was concluded that ANN, rather than PNR, is a better choice for optimizing the 

purification performance of hydrogen. 

Even though an increasing number of studies have been pursued in adsorption, no studies, to the 

best of our knowledge, are using ML techniques to predict changes in adsorbent porosity caused 

by heel formation. As previously mentioned, heel build-up can significantly change the porous 

structure of the activated carbon adsorbent, resulting in reduced adsorption capacity. Thus having 
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a PSD prediction model can help us predict adsorption capacities of ACs during cyclic 

adsorption/regeneration experiments and avoid unwarranted replacement of adsorbent bed. 
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3. CHAPTER 3: Materials and Methods 
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3.1 Experimental Set-up and Materials 

In the first section of this chapter, we go over the materials and methods used in the long-term 

adsorption/regeneration experiments to understand the factors affecting activated carbon's 

performance in extended cyclic processes. Firstly, the three adsorbents used in the experiments are 

introduced, accompanied by their physical and chemical properties. Then there is a detailed 

explanation of the automated setup developed exclusively for extended cyclic experiments, and 

finally, a brief description of the characteristic tests conducted to fulfill the objectives of this 

research work.  

3.1.1 Adsorbents and Adsorbate 

Three BACs (B101412, B100772 supplied by Blucher GmbH, and G-70R provided by Kureha 

Corporation) were tested. The BACs all shared similar surface chemical composition (Table 3.1) 

while having distinct physical properties, including a wide range of microporosities. As a result, 

the effect of porosity on the long-term performance of the mentioned samples can be isolated. A 

summary of all the relevant physical properties for the tested adsorbents can be seen in Table 3.2;  

Ahead of the experiments, all BACs were preheated at 300°C with a purge gas flow of 1 SLPM 

N2 (99.9984% pure, Praxair, for 3 hours to remove any adsorbed impurity. The adsorbate used for 

all experiments was 1,2,4-trimethyl benzene (1,2,4-TMB, 98%, Sigma-Aldrich). 1,2,4-TMB has a 

boiling point of 171°C, and a kinetic diameter of 0.68 nanometers 1. The reason for using 1,2,4-

TMB is two-fold: first, this compound can typically be found in most vehicle painting and coating 

operations and thus can act as an effective surrogate for VOCs from paints and solvents2. Second: 

due to its large kinetic diameter, it will fill up the micropores fast and thus promotes heel build-up 

and makes the changes in adsorption capacity much easier to observe.3 For regeneration of the 
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adsorbent, dry air (99.999% pure, Praxair and high purity N2 (99.9984% pure, Praxair) were 

utilized. 

 

Table 3.1.The surface chemical composition (atomic %) of virgin activated carbons obtained 

from XPS analysis 

Adsorbent Carbon (%) Oxygen (%) Sulfur (%) 

B101412_Virgin 92.81 6.45 0.74 

B100772_Virgin 92.03 7.22 0.74 

G-70R_Virgin 93.41 6.59 Negligible 

 

 

Table 3.2. Physical properties of the virgin adsorbents gained through N2 adsorption at 77.15 K 

 

Adsorbent B101412_Virgin B100772_Virgin G-70R_Virgin 

Microporosity % 44.00 60.00 86.00 

Micropore Volume (cm3/g) 0.49 0.43 0.50 

Total pore Volume (cm3/g) 1.10 0.72 0.58 

BET surface area (m2/g) 1640 1400 1331 
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3.1.2 Experimental Set-up and Methods 

The main obstacle to overcome in studying cyclic adsorption/regeneration experiments is ensuring 

that each consecutive cycle is conducted as similar to the last one as possible. The challenge is 

mainly due to the number of parameters involved in the experiments. One must check the inlet 

concentration for each cycle and ensure a steady-state concentration of pollutants being injected 

into the inlet air stream, temperatures of the reactor where adsorption, or regeneration, are taking 

place need to be closely monitored as well. Additionally, the endpoint of the experiment, be it 

when a specific concentration is reached or a defined duration of time has passed, is another critical 

factor to be cautious about. As with any other experiment, despite the operator's precision, human 

errors are inevitable. 

All the issues mentioned above are exacerbated as the number of consecutive 

adsorption/regeneration cycles increases. Thus, there was a need to automate the experiment to a 

large extent for investigation beyond the usual five cycles. To achieve this and obtain reliable 

results for long-term adsorption/regeneration experiments, an automated adsorption/regeneration 

experimental setup, shown in Figure 3.1, was developed. The automated setup was devised to run 

a large number of consecutive adsorption/regeneration experiments. Using this setup allows us to 

obtain a heel build-up trend for any adsorbate-adsorbent system quickly.  
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Figure 3.1. Automated setup designed for long-term cyclic adsorption/regeneration experiments 
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The automated setup’s hardware (Figure 3.2) comprises an adsorption/regeneration tube, an 

adsorbate generation system, an organic vapor detection system, a regeneration system consisting 

of two half-cylinder ceramic heating element and a thermocouple, and a data acquisition and 

control (DAC) system. The adsorption/regeneration tube consisted of a stainless-steel tube (5mm 

inner diameter, 155 mm length) containing 2.000± 0.001 gr of dried BAC held in place by quartz 

wool at the bottom and top of the tube. A thermocouple (Omega; K type) was placed exactly in 

the center of the adsorption/regeneration tube cylinder to measure temperature changes inside the 

bed. The thermocouple was carefully measured to be exactly in the center of the AC bed.  
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Figure 3.2. Schematic of the automated adsorption/regeneration setup developed for long-term 

cyclic experiments. 

 

As for the adsorbate generation system, it consisted of a syringe pump (Chemyx Inc, Fusion 100), 

a mass flow controller (Alicat Scientific) and a fiberglass heating tape (Omega). The vapor stream 

of adsorbate is generated by injecting the target adsorbate into an air stream controlled with a mass 

flow controller. Additionally, the injection site is heated using the heating tape to help evaporate 

the adsorbate quicker. In this case the inlet stream into the adsorption tube consisted of 10 standard 
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liters per minute of dry air (SLPM) with a concentration of 100 ppmv. The syringe pump injected 

1,2,4-TMB at a rate of 5.62 µl/min. To achieve a steady concentration, quartz glass wool was 

placed inside the injection port, and the port itself was slightly heated using a fiberglass heater tape 

to reach 40 ± 1°C. The vapor detection system consisted of two photoionization detectors which 

were used to measure the concentration of the VOC in the inlet and outlet stream (PID; Baseline-

Mocon Inc. piD-TECH eVx purple) for the adsorption stage and in the outlet stream (PID; 

Baseline-Mocon Inc. piD-TECH eVx green) for the regeneration. 

For regeneration, two semi-cylinder ceramic heating elements (Omega) were utilized to heat the 

regeneration tube. The DAC system and the LabVIEW program controlled the applied power to 

the heating unit to maintain the regeneration temperature at 288 °C for 3 hours. The regeneration 

parameters were chosen to simulate the industrial operation as closely as possible while optimizing 

the desorption of the adsorbate and minimizing adsorbent structural damage4,5. A type K 

thermocouple (1.6 mm outer diameter ungrounded, Omega) was used to measure the regeneration 

temperature at the center of the adsorbent bed. In order to study the effect of purge gas flow rate 

on the long-term performance of several BACs, two regeneration flowrates (0.5 and 5 SLPM) of 

dry air were chosen. The outlet concentration of the desorbed species was measured and recorded 

with the help of a second Photoionization detector (PID; Baseline-Mocon Inc. piD-TECH eVx 

green). 

The DAC system was interfaced with the mass flow controller, adsorption/regeneration tube’s 

thermocouple, and PIDs. All the necessary data was fed into a LabVIEW program, explained in 

detail in the next paragraph, and the values were controlled against the predefined parameters. All 

adsorption experiments were conducted until saturation, when the outlet concentration reaches the 

inlet concentration. 
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The setup utilized a specially designed LabVIEW program (Figure 3.3) to monitor 

adsorption/regeneration's progress and make decisions regarding the state of the cycle based on 

several predefined parameters. As a result, the operator's involvement is minimized only to setting 

the initial experimental parameters and ensuring the program is functioning as intended. With the 

program's help, it is possible to run a cyclic experiment 24/7 and reduce the chance of operational 

error.  

 

Figure 3.3. LabVIEW program interface used for controlling and monitoring the operation of 

cyclic adsorption/regeneration experiments 
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Prior to start of each cyclic test, the adsorption generation system was utilized in conjunction with 

vapour detection system to calibrate the PID. The calibration was done at a concentration of 200 

ppmv of 1,2,4-TMB and a flow rate of 10 SLPM dry air. The calibration stage usually lasted around 

30 minutes to allow for stabilization of the inlet concentration. After PID calibration, the system 

moved to the next stage which was the adsorption stage. This stage, as mentioned before, lasted 

until full saturation of the adsorbent bed was achieved. The Labview program checked saturation 

by comparing the effluent concentration data from the PID and comparing it against the inlet 

concentration of the bed. After adsorption stage, the regeneration begins by heating up the 

adsorption/regeneration tube until the target temperature, 288 °C, is reached. The system is kept 

at this temperature for 3 hours while dry air, at either 5 or 0.5 SLPM, purges the bed. After three 

hours, heating is stopped, but the air flow rate is maintained to cool the adsorption/regeneration 

tube to 25°C, which is required for the start of the next cycle. This is called the cooling stage. After 

cooling the whole procedure is repeated.  

Two methods, integration of concentration curves and gravimetric methods, were used in 

conjunction to determine the heel build-up and adsorption capacity. For the integration method, 

firstly, with the data gathered by both PIDs, the breakthrough curves and desorption curves were 

drawn, and subsequent integration of the curves was done to obtain the required values. Integration 

of the breakthrough curves and desorption curves provides us with mass adsorbed and desorbed, 

respectively. Finally, adsorption capacity and heel build-up can be calculated as demonstrated: 

qi(%) =
IMAi

MI
× 100  3-1 

Hi(%) =
IMDi−IMAi

MI
× 100  3-2 
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Where qi is the adsorption capacity and Hi is the cyclic heel build-up. IMA and IMD (g) are the 

integrated mass adsorbed and integrated mass desorbed in turn. The subscript i refers to cycle i, 

and MI is the weight of the preheated BAC. 

Cumulative heel (HT) defined as the total mass percentage accumulated on adsorbent after n 

consecutive adsorption/regeneration cycles, is calculated as follows: 

HT (%) = ∑ Hi(%)
𝑛
𝑖=1   3-3 

 

To verify the above results and ensure calculations' accuracy, the above values were also calculated 

every three cycles based on gravimetric analysis. To that purpose, the adsorption/regeneration tube 

was weighted three times for the selected cycle. Before and after adsorption at the cycle and one 

final time after regeneration. The below equations were used to obtain the adsorption capacity and 

heel build-up via gravimetric analysis: 

 

qi(%) =
Weight of BAC after adsorption−Weight of BAC before adsorption

weight of preheated BAC
× 100  3-4 

Hi(%) =
Weight of BAC after regeneration−Weight of BAC before adsorption

weight of preheated BAC
× 100  3-5 

HT(%) =
Weight of BAC after last regeneration−Weight of BAC before first adsorption cycle

weight of preheated BAC
× 100 

 3-6 

Gravimetric analysis results of every third cycle were gathered and used as a base measure to 

normalize and calibrate the values obtained from the integration of the curves. Accordingly, the 

values obtained by integration were compared to the gravimetric results, and a correction factor 

was obtained. The correction factor was then used to calibrate the result of the next two cycles for 
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which no gravimetric results was present. This step was repeated every three cycle to get the most 

accurate results. 

3.1.3 BACs Characterization  

Several characterization tests were performed on BAC samples. These samples included virgin 

BAC gathered prior to the start of the experiments and ones collected at various points throughout 

the cyclic adsorption/regeneration experiments. 

3.1.3.1 Micropore Surface Analysis  

A micropore surface analyzer (Autosorb iQ2MP, Quantachrome.) was used to conduct surface 

analysis of several BAC samples and collect pore size distributions and BET surface areas. To this 

end, the device utilizes Nitrogen gas adsorption at 77 K with relative pressures ranging from 10-7 

to 1. Before the Nitrogen gas adsorption, 30-60 mg of samples were placed inside specific 6 mm 

cells and degassed for 5 hours at 110 ° C to remove all moisture present on the sample. To obtain 

the specific surface area of the samples, BET method was utilized at relative pressures ranging 

from 0.01 to 0.07. For micropore volume and total pore volume, the V-t method (0.2 <
𝑝

𝑝0
< 0.5 

) and quench solid density functional theory (QSDFT) were used, respectively. QSDFT methods 

provided the pore size distribution as well. 

3.1.3.2 Thermogravimetric Analysis (TGA) 

Derivative thermogravimetric (DTG) analysis (TGA/DSC 1, Mettler Toledo) was performed on 

selected samples to investigate the thermal stability of the heel developed in the BAC pores. The 

samples were heated from 25 °C to 800 °C with a constant heating rate of 5  
°C 

𝑚𝑖𝑛
 and their weights 

was collected every second. 20 standard cm3/min N2 gas (99.999% pure, Praxair) was used to 

purge the desorbed species away.   
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3.1.3.3 X-ray photoelectron spectroscopy (XPS) Analysis 

XPS was used to determine the three activated carbons' surface elemental composition (C, O, and 

S). With the help of the AXIS 165 spectrometer (Kratos Analytical), high-resolution scans of 

binding energies ranging from o to 1100 eV were gathered. The samples were selected to represent 

a start point, and endpoint of each adsorption/regeneration experiment for adsorbents. 

Subsequently, CasaXPS software was used to process the scans, and atomic concentration results 

were reported. 

3.2 Pore size distribution model development  

3.2.1 Introduction and Background 

Hung et al. 6, developed a mathematical model capable of making predictions regarding the 

adsorption capacity of activated carbons at a wide range of relative pressures. Their model 

employed several estimation methods developed by previous researchers 7,8. The final product was 

a D-R-L (Dubinin–Radushkevich-Langmuir) equation requiring only the pore size distribution of 

the adsorbent to be obtained experimentally. However, going through adsorption/regeneration 

experiments, the PSD of an adsorbent is subject to constant change. As it stands, one needs to 

conduct surface analysis for ACs after every adsorption/regeneration experiment and obtain the 

modified PSD. The surface analysis experiments require specific equipment and can take 

anywhere from a couple of days to a week to be completed. Having to conduct such a time-

consuming experiment negates all the time saved by using a mathematical model in the first place. 

As a result, an addendum capable of making PSD predictions to the D-R-L model is needed. The 

D-R-L isotherm as explained in detail in chapter 2 is an expansion of the D-R equation which is a 

semi-empirical model based on Polayni’s potential. The D-R isotherm has proven to work 

exceptionally well for intermediate and high concentration data ranges but fails to approach 
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Henry’s law constant at low concentrations 6. As a result of this shortcoming, Hung et al. 6 

suggested to integrate the well-known D-R isotherm model with Langmuir isotherm. To this end 

experimental work was conducted and it was reported that for relative pressures below 1.5 × 10−3  

Langmuir isotherm would fit best and for 1.5 × 10−3 and above the aforementioned D-R model 

could be utilized. However, to avoid the need for experimental investigations to obtain the 

Langmuir isotherm parameters, it was suggested that at relative pressure between 1.5 × 10−3 and 

0.01, both the D-R isotherm model and Langmuir isotherm model generate similar isotherms. 

Thus, the parameters required for Langmuir isotherm can be determined by fitting the isotherm 

obtained from the D-R equation.  

The D-R-L model proposed can be described as below 6: 

For  
𝒑

𝒑𝟎
< 𝟏. 𝟓 × 𝟏𝟎−𝟑 (Langmuir section): 

𝑞𝑒 =
𝑞𝑚𝑏𝐶

1+𝑏𝐶
   3-7 

Where qm and b can be determined by fitting the isotherm obtained from the D-R equation. 

For  𝟏. 𝟓 × 𝟏𝟎−𝟑 <
𝒑

𝒑𝟎
<0.01 (D-R section): 

𝑊 = 𝑊0 𝑒𝑥𝑝(−𝑘𝐴2)  3-8 

𝑊0 = 𝑉32 + 0.055  3-9 

log 𝑘 = 1.585 − 0.442 𝜒𝑣
 

1   3-10 

𝐴 = 𝑅𝑇 𝑙𝑛(𝑃0/𝑃)  3-11 

Where W represents the volumetric adsorption capacity expressed as equivalent liquid volume 

adsorbed per unit mass of adsorbent; A is the adsorption potential; W0 is the pore limiting volume, 

V32 represents the volume of pore below 32 Å as defined by Urano et al. 7; R is the universal gas 

constant; T is the absolute temperature; P0 is the saturated vapor pressure at temperature T, and P 
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is the partial pressure of the adsorbate. k is the D-R equation parameter for the target compound. 

𝜒𝑣
 

1  is the first-order valance molecular connectivity index of the targeted VOC. To obtain this 

parameter, first the hydrogen-suppressed molecular skeleton of 1,2,4- TMB was drawn, and each 

node was labeled. Then each node was given a valence value based on the atom located at the node 

and the type of bonds it had with surrounding atoms. For example, the carbon atom has a valence 

value equal to the number of bonds it has with surrounding molecules except hydrogen, so a fully 

saturated carbon atom has a valence value of 4. Subsequently ∏𝑣1, 𝑣2 was calculated for each 

subgraph of the hydrogen-suppressed molecular skeleton. Finally, 𝜒𝑣
 

1  was calculated based on 

the following equation 6: 

 𝜒𝑣
 

1 = ∑ ∏𝑣1, 𝑣2
0.5𝑛

1   3-12 

 

Where n is the number of nodes on the skeleton.  

To predict the PSD of an activated carbon sample that has gone through multiple cyclic 

adsorption/regeneration experiments. First, we need to determine how much available pore volume 

of the adsorbent has been reduced due to heel build-up within the pores. As previous investigations 

demonstrated, 9,10 heel build-up is primarily focused in the micropore region, and as such, almost 

all volume reduction will be exclusive to the volume of pores below 20 Å. Machine learning tools 

were chosen to predict micropore volume changes.  

3.2.2 Data collection and preprocessing 

The experimental data used in this study consisted of two main sections. The majority of the tests 

were compiled from already published investigations on cyclic adsorption/regeneration of VOCs 

on activated carbons10–14. The remaining experiments were selected from the long-term 

adsorption/regeneration cyclic tests conducted in this study. These experiments varied in many 
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ways, such as type of adsorbent, adsorbate, and purge gas, to name a few; however, they shared 

several essential similarities. For all test cases, adsorption was done using 10 SLPM air. 

Additionally, the adsorbate was a single compound, and no mixture was used; this is important 

since the developed isotherm prediction model had been designed for a single compound 

adsorbate. Three main parameter groups exist from which the input features for the ML model's 

development were chosen:  

 Adsorbent parameters: physical properties of the initial fresh activated carbon, 

including pore volumes (
𝑐𝑚3

𝑔𝑟
); micropore and total pore volume, BET surface area (

𝑚2

𝑔𝑟
). 

 Adsorbate parameters: molecular weight (
𝑔𝑟

𝑚𝑜𝑙
,), density (

𝑔𝑟

𝑚𝑙
,), boiling point(°C), 

melting point(°C), electronic polarization, molecular parachors, molar volume (
𝑐𝑢 𝑚

𝑘𝑚𝑜𝑙
), 

polarizability (Å³), Henrys Law Constant (
atm−m3

𝑚𝑜𝑙
) 

 Parameters related to the operating condition of the cyclic experiment: First cycle 

adsorption capacity (%wt.), final cycle's cumulative heel build-up (%wt.), purge gas 

oxygen content (ppmv), and normalized purge gas flow rate. 

Normalized purge gas flow rate (
𝑆𝐿𝑃𝑀

𝑐𝑚2
) = 

𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒(𝑆𝐿𝑃𝑀)

𝐶𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐴𝐶 𝑏𝑒𝑑 (𝑐𝑚2)
 

To account for the difference in the cross-sectional areas of the adsorbent beds between tests, 

purge gas flowrate was normalized by the cross-sectional area of each bed. 

The targeted feature was defined as (
𝐹𝑖𝑛𝑎𝑙 𝑀𝑖𝑐𝑟𝑜𝑝𝑜𝑟𝑒 𝑉𝑜𝑙𝑢𝑚𝑒

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑖𝑐𝑟𝑜𝑝𝑜𝑟𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 
∗ 100) to better represent changes 

occurring in the micropore volume of the adsorbent. 

 

Pearson Correlation Coefficient (PCC) was used to measure the linear dependency between any 

two features. A correlation is a number ranging from -1 to +1 that measures the degree of 



63 

 

association between two attributes. Positive values for the correlation imply a positive association 

and vice versa, with +1 and -1 suggesting the presence of a strong positive and negative correlation, 

correspondingly. Values close to zero represent a very weak linear correlation, with 0 showing an 

absence of any linear correlation. When two features are highly correlated, one needs to be 

removed since they do not contribute any new information to the model. The cut-off point in this 

model was defined as 0.95; thus, features with an absolute PCC of 0.95 or higher were selected, 

and one was filtered out. PCC among two variables x and y can be calculated as follows: 

2 2

( )( )

( ) ( )

x X y Y
r

x X y Y

 


       



 
  3-13 

Where X¯ or Y¯ are the averages of variable x or y. 

The PCCs between any two features used in this study are provided in Figure 3.4. In training and 

testing ML algorithms, two features, initial micropore volume and molecular parachors, were 

eliminated due to high linear correlation with virgin adsorbent BET surface area (PCC Micropore 

volume & BET = 0.988) and molecular weight (PCC Molecular Parachors & MW = 0.964), respectively. 

After removing highly correlated features, all the variables except the target value were normalized 

using the Z-transformation method into the range of 0.1-0.9. Normalization is critical when dealing 

with attributes of varying scales and units. For a fair comparison among all attributes, they should 

have the same scale and fit in a specific range. Z- transformation is a common normalization 

technique that is less influenced by outliers. This normalization subtracts the mean of the data from 

all values and divides them by standard deviation. 
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Figure 3.4. Pearson Coefficient matrix visualization. 
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3.2.3 Predictive model selection 

The processed data, consisting of 100 data points gathered from both previous studies10-14 and ones 

conducted in this research, was fed into the RapidMiner studio ™ program, a preliminary test was 

conducted using various predictive models such as Linear regression, Decision tree, Gradient 

boosted trees, and support vector machine, to identify models best suited for the dataset. Based on 

the program's performance results, the linear regression model and Decision tree were selected as 

the leading predictive models to be further investigated. The reason behind this selection was that 

the generalized linear model showed the highest correlation with a value of 0.807 and the lowest 

root mean squared error (RMSE) of 0.026, while the Decision tree was the fastest running model 

with a good correlation value of 0.769 and RMSE of 0.03. a comparison of the predictive models 

tested and their performance can be observed in Table 3.3. 

Table 3.3. Predictive models performance 

* Obtained via AMD Ryzen 7 4800HS with a clockspeed of 2.9GHZ 

Model Correlation 
Standard 

Deviation 
RMSE 

Computation 

time (s)* 

Generalized Linear 

Model 
0.803 0.200 0.026 81 

Decision Tree 

 
0.769 0.160 0.030 50 

Gradient Boosted Trees 

 
0.775 0.122 0.037 6435 

Support Vector 

Machine 

 

0.615 0.290 0.049 609 
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3.2.3.1. Linear regression 

Regression is a technique used to predict dependent variables' y’ with the help of a range of 

independent variable values ‘x’15. This statistical measure attempts to determine the strength 

of the relationship between one dependent variable (i.e., the label attribute) and a series of 

other changing variables known as independent variables (regular attributes). Based on the 

number of independent variables, a regression can be divided into Simple linear regression 

(one independent variable) and Multivariate linear regression (MLR)15,16. The basic MLR 

model can be described as follows: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯+ 𝛽𝑚𝑥𝑚 + 𝜀  3-14 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑦  3-15 

Where 𝛽 = [

𝛽0

𝛽1

⋮
𝛽𝑚

], 𝑋 = [

1 𝑥11

1 𝑥12

⋯ 𝑥1𝑚 
⋯ 𝑥2𝑚

⋮ ⋮
1 𝑥14

⋮ ⋮
⋯ 𝑥𝑛𝑚

], 𝑌 = [

𝑌1

𝑌2

⋮
𝑌𝑛

]  3-16 

The least squared method (LSM) attempts to find the matrix 𝑏 = [

𝑏0

𝑏1

⋮
𝑏𝑚

] such that the cumulative 

squared distance from the real 𝑦𝑖 and the values predicted 𝛽0 + ⋯+ 𝛽𝑚𝑥𝑚 

approaches the minimum possible. The least-square results for a basic linear regression can be 

obtained by solving this system 15. 

[
 
 
 

𝜕

𝜕𝛽0
∑ [𝑦𝑖 − (𝛽0 + 𝛽1

𝑛
𝑖=1 𝑥𝑖)]

2 

⋮
𝜕

𝜕𝛽𝑚
∑ [𝑦𝑖 − (𝛽0 + 𝛽1

𝑛
𝑖=1 𝑥𝑖)]

2 ]
 
 
 

= 0  3-17 
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The resulting �̂� = 𝑏0 + 𝑏1𝑥1 + ⋯+ 𝑏𝑚𝑥𝑚 can describe the relationship between x and y. 

3.2.3.2. Decision tree 

A decision tree comprises a collection of nodes aimed at creating a decision on values affiliation 

to a class or an approximation of a numerical target value. Each node contains a splitting rule for 

an attribute. In classification methods, this rule separates values into different classes, while for 

regression, this division is done to reduce error in an optimal way for the targeted criterion. Nodes 

are constantly created, and data is split until the targeted criteria are met. An approximation for a 

numerical value is obtained by averaging values in a leaf15,16.  

3.2.4. Cross-Validation  

Cross-validation is a statistical method developed for the evaluation of learning algorithms. This 

is achieved by dividing the data into two segments: one part is used for training the model while 

the other is used to test the model against. In conventional cross-validation methods, the data sets 

cross over between both segments in successive rounds, and as a result, each data point will be 

validated against. The performance of the model is measured during the testing phase. K-fold 

cross-validation is the primary form of cross-validation typically utilized17. In k-fold cross-

validation, the input Example Set is partitioned into k segments of equal size. One of those k 

segments is randomly chosen as the testing segment, and the remaining k - 1 are used as a training 

data set (i.e., input of the Training subprocess). This process is repeated k times, and each time a 

different segment is designated as the test segment. The k results from the k iterations are averaged 

to produce a single estimation. Cross-validation is usually performed with one of the two goals in 

mind: (i) measure the generalizability of the algorithm (ii) compare the performance of several 

algorithms and decide which one is best suited for the available data set. The performance of the 
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selected model on an independent test is a reasonable approximation of its performance on unseen 

data sets. It is also to observe the occurrence of “overfitting” phenomena. Overfitting occurs when 

the model represents the testing data very well, but it does not generalize well for new data. Thus, 

the performance can be much worse on test data. A 5-fold cross-validation was chosen to test the 

generalizability of our models and compare MLR and decision tree methods. Thus the data points 

were separated into five equal-sized groups, and each time one group was selected as the test group, 

and the outcome of the other data points in the training group was validated against them. This 

process was repeated five times, and average performance parameters were reported for each 

model at the end. 

Within the 5-fold cross-validation module and prior to the application of the select predictive 

model, the Forward selection technique was applied. Forward selection is a feature importance 

technique; Feature importance refers to techniques that assign a score to input features based on 

how useful they are at predicting a target variable; in this method, we start with one feature, and 

other features are added one by one to select the best combination of features for accurate 

prediction18. By applying this technique only, the features that played a major role in micropore 

volume changes are considered.  

3.2.4. Models’ performance 

Models’ performance evaluations for predictability and generalizability are acquired. The 

following three error types are used to evaluate the performance of each model and its accuracy. 

𝑅2 = 1 −
∑ (𝑌𝑖

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
−𝑁

𝑖=𝑖 𝑌𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

)2

∑ (𝑌
𝑖
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

−𝑁
𝑖=𝑖 Ŷ𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
)2

   3-18                                                              

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑌𝑖

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 −𝑁
𝑖=𝑖 𝑌𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 = |
𝑌𝑖

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
−𝑌𝑖

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

𝑌
𝑖
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 | ∗ 100    3-20                                            

3.2.5. PSD prediction model 

The Machine learning algorithm proposed in the previous section provides us the updated 

micropore volume of the activated carbon adsorbent containing heel build-up as a result of 

consecutive adsorption/regeneration experiments. Having the knowledge of new micropore 

volume, it is possible to predict the new pore size distribution of the adsorbent and make 

predictions regarding other PSD-related parameters such as the pore limiting volume parameter 

involved in the DRL isotherm prediction model. To that end, a new PSD needs to be devised that 

presents a new micropore volume equal to that predicted by the ML algorithm. 

The first step is to gain a detailed PSD of the virgin adsorbent using the density function theory 

(DFT) method, as explained in the surface analysis section. Each point in the PSD represents a 

specific pore with its own pore width, and the area underneath it denotes the pore volume it 

contains. The target would be to reduce the PSD points until the area under the PSD in the 

micropore section (i.e., pores below 20Å) reach the updated micropore volume value predicted by 

the ML algorithm (Figure 3.5). 

As demonstrated by the yellow arrows in Figure 3.5, each of the points below 20Å on the PSD of 

the virgin adsorbent needs to be reduced until they reach a new position. That position is decided 

by how much the micropore volume and thus the area within the micropore section needs to be 

reduced. To calculate the area, trapezoid sums calculation can be utilized. A straightforward 

method for point reduction would be to reduce all pores equally. In this method, the pores are all 

reduced simultaneously, and for an equally small amount, then the area can be calculated, and if 

the target has yet to be achieved, another reduction step is taken. However, based on previous 
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investigation and studies, it is known that adsorption is not done equally on all pores and different 

parameters affect the contribution of pores to adsorption and heel formation5,19.  

 

Figure 3.5. An example of micropore volume reduction required to obtain the new PSD. Purple 

shaded area represents the difference between new micropore volume and the virgin micropore 

volume. 

To make the prediction of pore size distribution more accurate and better represent the real-world 

adsorption process, two new parameters were created to account for variation in different 

micropores’ adsorption capabilities. S and E parameter representing volume of each pore and its 

characteristic energy, respectively. Firstly, in the micropore region, it is safe to assume that the 

larger the volume of an individual pore, the more adsorbate it can accommodate. This could also 

be considered as the frequency of each pore. To calculate this parameter trapezoid integration was 

used on the PSD to find out the volume of each pore size. The larger the area of the PSD plot under 

a specific pore size, the better its chance of adsorbing the target compound. These normalized 

factors were then used to represent the increased adsorption capabilities of relatively larger 

micropores. The result of these integrations were put inside the matrix S. 
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However, the available volume is not the only influential factor in the difference between 

adsorption of various pore sizes. Chen et al20 conducted a thorough investigation on characteristic 

energy and pore size for adsorption in micropores. They concluded that characteristic energy is a 

complicated function of many factors, including pore size and temperature, but some 

approximation methods could still be used. These methods might not be suitable for the exact 

calculation of characteristic energy, but they are beneficial for comparing adsorption between 

various pores. One such approximation method was developed by, McEnaney21 who proposed an 

empirical equation for characteristic energy (E0) as a function of pore size L for activated carbon 

adsorbents as follows. 

𝐸0 = 41.26 exp (−1.120𝐿)  3-21 

This function is only applicable for pore sizes in the range of 4 to 28 Å. However, this limitation 

does not affect the current work since we are only interested in pores below 20 Å. The 

characteristic energy of each pore below 20 Å was calculated with the above formula and a matrix 

of characteristic energies, named E, was formed. Matrix S and E were then multiplied to form a 

matrix named MSP which represents capability of each individual micropore in adsorbing the 

targeted VOC. With the help of the introduced parameters, the reduction amount for each PSD 

point was modified to represent its frequency and characteristic energy. The reduction was made 

until targeted micropore volume was achieved. The code utilized in MATLAB is presented in 

Appendix C. 

Finally, having predicted a new PSD with the help of the ML algorithm and the PSD prediction 

model, we can gain new, previously unavailable information such as the volume of pores below 

32 Å required for the DRL isotherm prediction. A summary of the modeling approach can be seen 

in Figure 3.6. 
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Obtaining the volume of 

pores with pore widths 

of below 32 Å required 

Urano’s eq 3-9 from the 

newly acquired PSD. 

Using the DRL eq 3-8 + 

Urano’s eq 3-9 to obtain 

adsorption capacity of 

the used AC  

Use Integration on the Virgin 

PSD to obtain S which 

represents pore volume of 

each individual micropore  

Using eq 3-21 calculate 

characteristic energy of each 

individual micropore   

Combining the result of all 3 

previous steps. Reduce the 

Virgin PSD proportional to the 

capability of each pore, using 

MSP until the final micropore 

volume predicted by Machine 

Learning is reached 

Form MSP parameter 

representing capability 

of each individual 

micropore in 

adsorbing the target 

compound 

Figure 3.6. Flowchart of the modeling approach to obtain adsorption capacity of a used activated carbon sample 

containing heel. 

A 
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4. CHAPTER 4: Results and Discussions  
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4.1 Long-term Experimental Results 

4.1.1 Long-term cyclic adsorption breakthrough curve and capacity 

Long-term cyclic adsorption/regeneration experiments were conducted on three different 

activated carbon adsorbents under experimental conditions explained in the previous chapter. 

The cyclic experiment was continued until the 20th cycle for all but one experimental scenario, 

G-70R BAC at 0.5 SLPM purge gas flowrate, in which G-70R was exhausted long before the 

20th cycle was reached. For the rest of the cyclic experiments, the breakthrough curves of every 

five cycles are presented in Figure 4.1, for clarity and better visualization of breakthrough 

results.  
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Figure 4.1. Adsorption breakthrough curves of 1,2,4-TMB on three adsorbents at various purge 

gas flow rates. a) G-70R at 0.5 SLPM, b) G-70R at 5 SLPM, c) B101412 at 0.5 SLPM, d) 

B101412 at 5 SLPM, e) B100772 at 0.5 SLPM, and f) B100772 at 5 SLPM. 
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 As observed in Figure 4.1, the first cycle breakthrough time remained constant for the same 

adsorbent between various experiments since they were sourced from the same pre-regenerated 

batch. The longest first cycle breakthrough time was seen in B101412 (236 minutes). B100772 

and G-70R were ranked second (223 minutes) and third (172 minutes) respectively. Since 

adsorption capacity can be calculated using the area under the breakthrough curves, the same 

trend can be expected for the first cycle adsorption capacities (Figure 4.2-A). The trend in 

breakthrough times and adsorption capacities of the first adsorption cycle agrees with surface 

area and porosity data in Table 3.2, where B101412 has the highest total pore volume and 

surface area.  

For all experiments, regardless of the adsorbent or the purge gas flow rate used, breakthrough 

times, and thus adsorption capacities, decreased with cyclic use, indicating that regenerative 

conditions selected such as the selected temperature of 288°C, or the purge gas used and 

duration of the regeneration were not able to completely remove the adsorbed organic vapors 

and restore the adsorption capacity of the adsorbent, resulting in heel formation. The most 

noticeable drop in adsorption capacity and breakthrough time is seen for G-70R adsorbent 

when purged with 0.5 SLPM of dry air. In this case, after only ten cycles, an immediate 

breakthrough of 1,2,4- TMB was recorded, and BAC appears fully exhausted. On the other 

hand, the lowest drop in adsorption capacity with cyclic adsorption/regeneration is seen in the 

highly mesoporous B101412 activated carbon when purged with 5 SLPM dry air, where the 

difference between the first cycle and 20th cycle breakthrough time was only 71 minutes (∆T1,20 

=71 min), only 30% drop in breakthrough time. 

In general, the decline of adsorption capacity and breakthrough time, as seen in Figure 4.2-

A, are much less substantial when 5 SLPM of purge gas is utilized instead of 0.5 SLPM.  
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Figure 4.2. Adsorption capacity (A) and heel formation (B) during long-term cyclic 

adsorption/regeneration. 

  

 

The rank order of the adsorption capacity remained the same throughout all the experiments. 

B101412 having the highest total pore volume and surface area, always had the highest adsorption 

capacity, as seen in Figure 4.2-A. Furthermore, it appears that for a specific adsorbent, the 

adsorption capacities of the first two cycles are very close regardless of the purge gas flow rate. 

This could mainly be attributed to the small, cumulative heel build-up even at a low purge gas flow 

rate. 

Kureha_0.5 Kureha_5 B101412_0.5

B101412_5 B100777_0.5 B100777_5

0

10

20

30

40

50

60

0 5 10 15 20

A
d

so
rp

ti
o

n
 C

a
p

a
ci

ty
 (

w
t%

)

Cycle NumberA

0

5

10

15

20

25

30

35

40

0 5 10 15 20
C

u
m

u
a

ti
v
e 

H
ee

l 
(w

t%
)

Cycle NumberB



81 

 

As Figure 4.2-B shows, for all adsorbents at both flow rates, a considerable amount of heel was 

accumulated throughout cyclic adsorption experiments. Thus, it can be concluded that the 

experimental conditions and parameters (e.g., temperature, purge gas flow rate, type of purge gas) 

utilized for regeneration of the adsorbent were not sufficient to desorb the VOC adsorbed in each 

cycle completely. However, the large cumulative heel build-up was expected based on previous 

studies using dry air as the purge gas. Feizbakhshan et al. 1. studied the effect of oxygen-induced 

regeneration and reported substantial heel build-up especially compared to the sample regenerated 

with Nitrogen gas.  

Taking a closer look at Figure 4.2-B, two very separate groupings start to appear at higher cycle 

numbers. Ones regenerated with 0.5 SLPM dry air and those regenerated with 5 SLPM dry air. 

The difference in cumulative heel builds up amongst adsorbents, though, appear to be less 

noticeable. Based on these observations, purge gas flowrate appears to be more determinant in heel 

build-up at higher cycle numbers.  
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4.1.2 Effect of adsorbent's physical properties 

Physical properties of the three activated carbon adsorbents used, such as their total and micropore 

volume, have a noticeable impact on their breakthrough times and adsorption capacities, as 

demonstrated in Figure 4.1 and Figure 4.2-A, respectively. As noted before, B101412 having the 

highest total pore volume, offered the highest adsorption capacity regardless of the purge gas flow 

rate used. This is consistent with a previous study by Jahandar Lashaki et al. 2. where it was 

concluded that the adsorption capacity of an adsorbent is highly correlated with its total pore 

volume.  

In the first five cycles, it appears that adsorbents with higher micropore volume experienced a 

larger drop in their adsorption capacity. As seen in Figure 4.2-A, this trend is much more apparent 

at 0.5 SLPM purge gas. The drop in breakthrough time from the 1st to the 5th cycle is almost the 

same for B101412 and G-70R. Regardless of the adsorbent used, in later cycles, adsorption 

capacity changes slowed down noticeably, and its variation from one cycle to the next became less 

prominent. By comparing Figure 4.2-A and Figure 4.2-B, the reduction in adsorption capacity 

decrease is accompanied by a slower rate of heel formation at later cycles. 

The cumulative heel build-up at the first five cycles for the experiments using the same purge gas 

flow rate is very similar. This could be argued to be a result of similar micropore volumes for all 

three adsorbents. Micropore volume can increase heel formation because of the strong overlapping 

attractive forces from opposing walls, increasing adsorption energy drastically3. Previous studies 

on the 5-cycle adsorption regeneration experiments also reported a high correlation between 

micropore volume of the adsorbent and the cumulative heel build with an R2 of 0.912. To further 

strengthen this argument, it can be seen in Figure 4.2-B, that B100772 having a slightly lower 
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micropore volume (0.43 as opposed to 0.50 for G-70R and B101412), is experiencing marginally 

less cumulative heel build up in the first five cycles. 

However, from cycle five onward, a difference appears amongst adsorbents in their heel build 

accumulation, which was not observed in most studies that focused only on the first five cycles. 

As Figure 4.2-B demonstrates, this difference is more apparent when 0.5 SLPM purge gas is 

utilized. This different behavior between adsorbents in the later cycles of adsorption/regeneration 

stems from the exhaustion of the majority of micropores. As explained, in the first five cycles, 

micropores, having higher adsorption energy, participate extensively in heel formation. In the most 

extreme case, this phenomenon is much more apparent for G-70R which is mainly comprised of 

micropores. After the 5th cycle, the micropore volumes are mostly exhausted and blocked. This 

blockage is further proven by the sudden drop in adsorption capacity for G-70R when going from 

cycle number 5 to 6. When using 0.5 SLPM as purge gas, adsorption capacity of G-70R is halved 

(from 26% to 13%). The drop in adsorption capacity is less noticeable in the other two adsorbents 

due to their lower microporosity (86%, 60%, and 44% for G-70R, B100772, and B101412 in that 

order). By the 10th cycle, G-70R being 86% micropores is fully exhausted while the other 

adsorbents can continue adsorption using meso and macropores that are still available. 

Nevertheless, because meso and macropores do not contribute in a major way to heel formation, 

the cumulative heel builds up rates slows down. 

It can be deducted from the aforementioned changes in cumulative heel build-up; after the first 

few cycles, larger pores such as macro and mesopores can help overcome the transport limitations 

present in micropores. Thus, if the target is to conduct a long-term cyclic adsorption/ regeneration 

on activated carbon adsorbents, selecting adsorbents with a hierarchal pore structure containing 

micropores and mesopores becomes more critical. 
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4.1.3 Effect of purge gas flow rate 

In general, a higher purge gas flowrate can help desorb more VOCs off the surface of the 

adsorbent. High flow rates during regeneration can decrease the desorption concentration and, 

as a result, expose less adsorbate to the high regeneration temperature of 288°C 4. Due to this 

low exposure, there is a lower chance of adsorbate thermal decomposition and oxidation, which 

could lead to the formation of chemisorbed species, especially in the presence of oxygen5.  

Figure 4.2-B demonstrate that when 0.5 SLPM flowrate of dry air was used as the purge gas, 

heel build-up for the three adsorbents was markedly different compared to samples regenerated 

at higher flowrate. At the low purge gas flow rate, after 20 cycles of adsorption/regeneration, 

final cumulative heel values of around 30% were observed for all the activated carbon 

adsorbents regardless of their physical properties. On the other hand, when 5 SLPM dried air 

was used, final cumulative heel values were in the range of 20%. 

The effect of purge gas flow rate seems more apparent towards the later cycles. In early cycles, 

the differences between cumulative heel build-ups, when different flowrate is utilized, are not 

prominent, as shown in Figure 4.2-B. As reported in previous investigations, one of the 

contributing factors to heel formation is mass transfer limitations that are at play during 

regeneration4. As discussed in the previous section, micropores, due to their intense adsorption 

energy, offer more transport limitations that need to be overcome for adsorbent regeneration 1, 

and it is known that flowrate increase reduces the heel build-up on all pores as demonstrated 

in Figure 4.2-B. However, due to the mentioned mass transfer limitations in the micropore 

region, this beneficial effect of purge gas flowrate increase is less impactful compared with its 

impact in the larger mesopore and macropore regions. Unfortunately, after the first few cycles, 

when micropore volumes are greatly reduced the flowrate increase can have a much more 
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meaningful effect in desorbing the adsorbed species in the mesopores with lower adsorption 

energy. Based on these results, it can be reasonably argued that for early cycles, the 

microporosity of the adsorbent and its micropore volume are important factors in heel 

formation. In contrast, purge gas flowrate becomes a decisive factor in heel formation at higher 

cycle numbers where micropores are no longer dominant. 

4.1.4 Nitrogen adsorption analysis 

Since purge gas flowrate mainly affects the adsorbents' final cumulative heel formed, samples 

were chosen based on their cumulative heel build-up to investigate the changes occurring in 

the pore size of the three adsorbents. For each adsorbent, three samples were selected at various 

stages of heel build-up. BET surface area, micropore volume, and total pore volume of BAC 

samples before and after regeneration are listed in Table 4.1. As the data demonstrates, heel 

formation drastically reduced all three parameters. However, by taking a closer look at the data 

in Table 4.1 and the pore size distributions shown in Figure 4.2, it becomes apparent that pore 

loss mainly occurred in micropores for all three adsorbents regardless of the total pore volume. 

Although the presence of mesopores and a hierarchal structure of pores certainly eases the 

desorption and reduces heel build-up in the cases studied, in general, changes in the mesopore 

region are negligible compared to the micropores. For example, a 28% cumulative heel build-

up on the highly microporous G-70R sample reduced its micropore volume by 92%. In 

contrast, 24% cumulative heel build-up on the mesoporous B101412 reduced its micropore 

volume by only 54%. 

As expressed in Figure 4.2, 28% heel build for G-70R BAC corresponds with the point of 

exhaustion for this specific adsorbent. As seen in Table 4.1, at this point, the micropore volume 

of the adsorbent is almost reduced to zero. still, even at this point, around 0.17 (
𝑐𝑚3

𝑔
) of meso 
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and macropores are left. This further proves that even though adsorption capacity correlates 

more closely with total pore volume, the presence of micropores is essential for adsorption, 

and the absence of micropores can seriously hamper the adsorption capabilities of an activated 

carbon adsorbent.   

Table 4.1. Physical characterization of virgin and regenerated BAC samples. 

Adsorbent 
Micropore 

Volume (cm3/g) 

Total pore Volume 

(cm3/g) 

BET surface 

area (m2/g) 

G-70R_Virgin 0.50 0.58 1331 

G-70R_10% 0.37 0.48 961 

G-70R_28% 0.04 0.17 118 

B101412_Virgin 0.49 1.1 1640 

B101412_11% 0.35 0.93 1240 

B101412_24% 0.21 0.57 700 

B100772_Virgin 0.43 0.72 1400 

B100772_10% 0.33 0.47 1229 

B100772_19% 0.12 0.28 405 
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Figure  4.3. PSD analysis of BACs: (A) micropore (≤20 Å) and (B) mesopore (20–500 Å) 

regions. 
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4.1.5 Thermogravimetric analysis 

TGA and DTG analysis can be valuable tools in understanding the nature of the heel formed. 

The heel formation mechanism is influenced by various factors such as characteristics of the 

adsorbate (boiling point, kinetic diameter, and molecular structure) 3, operating conditions 

(e.g., purge gas flowrate, and regeneration temperature)6–8, and physical properties of the 

adsorbent as well 1. The physisorbed part of the heel usually comprises adsorbates that cannot 

be completely removed due to their high boiling point and large molecular size 9. Eventually, 

given enough time, these none-desorbed adsorbates might be converted into heavier species 

through thermal oxidation in presence of oxygen. In the end, it has been reported that if the 

compound undergoes many cyclic reactions, heel species can be converted into char5. In 

Figure 4.4. DTG results for the virgin and regenerated samples of the final cycle of each 

experiment can be observed.  For all cases, a first peak is seen below 100 °C, due to desorption 

of adsorbed moisture10. Beyond 100 °C to around 300°C, a flat region is observed where no 

desorption occurs; species that could have been desorbed in this range has already done so 

during the last regeneration cycle. 

In almost all cases, a peak appears at 400°C, though it is more distinct and apparent in some 

cases such as the first cycle regenerated samples using 0.5 SLPM dry air. This peak is due to 

the physisorbed compounds, and thus the existence of the mentioned peak signifies 

physisorbed heel formation11.Because all samples were regenerated with dry air there is a much 

greater chance of chemical reaction occurring with the oxygen molecules present in the purge 

air. Most of the samples, however, show a third peak at 550°C-600°C. This peak is attributed 

to chemisorbed species. Next, an additional peak is observed at 650°C which is more apparent 

for cases where 5 SLPM dry air was utilized. This peak can be attributed to heavy polymeric 
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species formed through thermal oxidation of non-desorbed organic species5. Ultimately, 800°C 

is the temperature at which carbon loss would occur, so the tests were limited to this point.  
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Figure 4.4. DTG analysis of samples regenerated with A) 0.5 SLPM, B) 5 SLPM dried air at the 

first and final cycle of adsorption/regeneration. 
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As it can be seen in Figure 4.4.-A, for the cases where 0.5 SLPM purge gas flowrate was utilized, 

in all three adsorbents, two very separate peaks representing physisorbed and chemisorbed species 

could be detected. However, when these cyclic experiments progressed and reached the final cycle, 

the peak located in the 550 to 700 °C region which represents the chemisorbed and polymeric 

species becomes the much more noticeable peak. This result shows that with culmination of the 

cyclic experiment and continuous contact of the physisorbed species with oxygen at high 

temperature (288°C), more and more of those weakly attached compounds underwent thermal 

oxidation, and thus the nature of the heel began to change. This transformation of the heel from 

physisorbed into chemisorbed can be much better examined in Figure 4.5 where the DTG of G-

70R is shown at three stages during its cyclic adsorption/regeneration. In this case, at almost the 

midway point (cycle 6), there are still two separate visible peaks at 400°C at 550°C; however, at 

the 10th cycle the height of the peak at 550°C almost experienced no change while the peak 

previously observed at 400°C was reduced markedly. Also an increase is seen at around 600°C-

650°C. It can be concluded that for each case that 0.5SLPM purge gas was used, a gradual change 

was in progress in which physiosorbed slowly transforms into more strongly attached 

chemiosorbed heel. Thus, at early cycles, heel is much more easily removed since it is mostly 

physiosorbed; however; the removal of heel gradually becomes more and more difficult as nature 

of the heel changes5.  
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Figure 4.5. DTG of G-70 R sample at various stages of the ten cycle adsorption/regeneration 

when 0.5 SLPM purge gas was used. 
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Finally, taking different adsorbents into account, it appears that at the first cycle regenerated with 
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average micropore pore width of 9.0 Å. The narrower slit-shaped pores in G-70R and B100772, 

with an average micropore pore width of 7.8 and 8.0 Å respectively, are much more likely to trap 

the products of the reactions with oxygen, resulting in a heel that requires more energy to be 

removed. These findings are in agreement with a previous study by Feizbakhshan et al 1 who 

reported higher weight loss at (350-400 °C) for B-100777, a mesoporous AC, and at 500-550 °C 

for G-70R, which are used in this study. Other than this specific case for all other samples, the 

differences among adsorbents seem to be negligible. Considering this, it can be concluded that the 

purge gas flowrate is more determinant in the nature of the heel formed than the physical property 

of the adsorbent used. 

4.1.6 XPS analysis 

The XPS analysis was conducted to determine the virgin and regenerated surface atomic 

composition of the BACs. The primary purpose of this analysis was to investigate whether the 

change in the surface elemental composition of adsorbents is similar after a long-term cyclic 

experiment or significant changes can occur based on their microporosity and surface physical 

properties. The results of the XPS analysis are shown in Table 4.2. 
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Table 4.2. The surface atomic composition of virgin and used activated carbon. 

Adsorbent Carbon (%) Oxygen (%) Sulfur (%) 

B101412_Virgin 92.81 6.45 0.74 

B100772_Virgin 92.03 7.22 0.74 

G-70R_Virgin 93.41 6.59 Negligible 

B101412_20th cycle_5SLPM 82.05 17.83 0.12 

B100772_20th cycle_5SLPM 86.29 13.45 0.26 

G-70R_20th cycle_5SLPM 85.77 14.23 Negligible 

 
As seen in Table 4.2, all three adsorbents had very similar surface elemental composition at the 

start of the experiment, with a dominant presence of carbon and then oxygen. However, after the 

cyclic experiments, a sharp increase in oxygen accompanied by a decrease in carbon can be seen 

for all samples. This increase of oxygen on the surface of samples indicates that a significant part 

of the heel formed was due to thermal oxidation of adsorbate. Additionally, B101412, having the 

highest total cumulative heel (24% as opposed to 19% and 21% for B100772 and G-70R, 

respectively), experienced a more prominent presence of oxygen atoms on the surface subsequent 

to cyclic regeneration.     

 

4.2 Modeling Results 

In the following section results of the two Machine learning methods chosen in chapter 3 are 

brought. Subsequently a comparison is made on the accuracy of each method to arrive at the best 

method suited for our objective which is prediction of the micropore volume reduction. Firstly 
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regression tree method was utilized and its result are shown and then compared with the 

multivariable linear regression method. Important to mention that prior to the utilization of the 

Machine learning method, some initial methods were utilized to predict changes occurring in the 

pore volume of the adsorbent. The most significant of these methods was one in which the total 

pore volume of the adsorbent was reduced equal to the volume of the cumulative heel existing on 

it. Next this pore volume reduction was considered to be uniform across all pores regardless of 

their pore width. Needless to say, due the simplistic assumptions existing in this method, large 

relative error was observed in the predictions. The two main problem with this method were 1) 

assuming volume reduction is uniform across all pores and 2) the size of the adsorbate had no 

impact. Both of these issues were rectified in the Machine Learning method.  

4.2.1 Comparison of Decision tree and MLR Model in Predicting AC 

Micropore Volume 

For the decision tree prediction model, there is a need to choose a criterion based on which the 

split value is optimized. Since we are working with numeric data, the criterion chosen was the least 

square. With this criterion, an attribute is selected for splitting, which minimizes the squared 

distance between the average values in the nodes regarding true value12. A summary of the least 

square decision tree parameters can be seen in Table 4.3. 

Table 4.3. Design parameters for the regressive decisions tree predictive model. 

Decision tree 

Parameters 

Criterion Least Square 

Maximum Depth 

 
10 

Minimal Gain 

 
0.01 

Minimal leaf size 

 
2 
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The decision tree was designed to have a maximum depth of 10. Based on the size and 

characteristics of the example set, various depth values were attempted for the decision tree model, 

and the scores were compared. A maximum depth of 10 was decided upon since it showed the 

minimum error value while avoiding overfitting of the data. Other parameters were selected on a 

similar trial and error basis to produce the most suitable model possible for the selected dataset. A 

small section of the decision tree model (as deep as 5th depth) closer to the root of the tree can be 

observed in Figure 4.6. A complete graph of the decision tree is brought in the appendix. 
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Figure 4.6. Plot of the regression tree devoted for micropore reduction prediction shown as deep as 5 layers. 



97 

 

As explained in the methodology section in chapter 3, a forward selection technique was conducted 

on the data set prior to model application. The forward selection model reduced the influential 

features from the initial 16 to only 4: final cumulative heel, normalized flowrate, oxygen impurity, 

and electronic polarization of the test adsorbate. 

One important observation that can be made from even the small section of the regression tree 

(Figure 4.6) is the fact that the most repeated node is the final cumulative heel. This means that 

the most influential feature in determining how much micropores are reduced is the amount of heel 

accumulated during cycling adsorption/regeneration experiments. This conclusion is in line with 

previous studies that demonstrated micropores are highly affected by heel formation2,13. 

A 5-fold cross-validation technique was utilized to test the model's generalizability and 

performance. R2, MAE, and RMSE values were selected to evaluate the performance of the model. 

Figure 4.7 shows the final predictions of the regression tree for micropore volume reduction versus 

the actual micropore volume reductions obtained via surface analysis. The micropore volume 

reduction targeted for prediction by the ML algorithm is expressed as:  

 

𝑚𝑖𝑐𝑟𝑜𝑝𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑦𝑐𝑙𝑖𝑐 𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛/𝑟𝑒𝑔𝑒𝑛𝑟𝑎𝑡𝑖𝑜𝑛 

𝑚𝑖𝑐𝑜𝑟𝑝𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑒 𝑓𝑜𝑟 𝑣𝑖𝑟𝑔𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒
× 100  4-1 

 

Many samples in the dataset had a large reduction in micropore volume, as observed in Figure 

4.7, with the accumulation of points on the top right corner. This accumulation creates the false 

impression of a relatively good R2 at first glance. However, high deviation from the trendline at 

lower points reduces the average R2 of the model drastically. It can be reported that the model has 

a R2 of 0.76 ± 0.12 with a micro average of 0.58.  
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Figure 4.7. The regression tree predicted values of micropore reduction (micropore 

final/micropore initial %) vs. the experimentally obtained values. 

 

The regression tree model also had an RMSE of 8.84 ± 2.86 and an MAE of 5.40 ± 0.95. The high 

deviation of predictions from actual values makes this model an unreliable predictive method for 

this dataset.  
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The multivariable linear regression model (MLR) was developed in conjunction with the same 

forward selection and cross-validation techniques as the previous decision tree model. However, 

the forward selection had a much larger impact on the outcome of the MLR model and managed 

to reduce the contributing features from 15 to only 2, final cumulative heel and molar volume of 

the adsorbate. The linear regression model suggested for micropore volume prediction is as 

follows: 

𝑚𝑖𝑐𝑟𝑜𝑝𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑦𝑐𝑙𝑖𝑐 𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛/𝑟𝑒𝑔𝑒𝑛𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑖𝑐𝑜𝑟𝑝𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑒 𝑓𝑜𝑟 𝑣𝑖𝑟𝑔𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒
× 100 = 

−13.265 × 𝐹𝑖𝑛𝑎𝑙 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐻𝑒𝑒𝑙 (𝑤𝑡%) − 1.016 × 𝑚𝑜𝑙𝑎𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 ( 
𝑚3

𝑘𝑚𝑜𝑙
) + 88.210 

 4-2 

The above equation puts a high focus on the final cumulative heel accumulated on the adsorbent 

as a cause of micropore volume reduction which is in agreement with both previous studies and 

the regressive tree model's results 2,13. However, an interesting fact is the role of the adsorbate's 

molar volume, which was absent in the regressive tree model. As expressed in previous studies, 

the molar volume and the kinetic diameter of the adsorbate can appreciably impact the adsorption 

capacity of an adsorbent and thus the micropore volume reduction14,15. Larger adsorbate molecules 

cannot enter the narrow micropores. As a result, instead of filling the narrow micropores from 

within, they will immediately block off the entrance to the pore and remove that pore's volume 

from the total available micropore volumes. With this explanation in mind, the negative coefficient 

for molar volume is acceptable and demonstrates that larger adsorbate volumes will result in a 

more considerable loss of available micropores volume. 

The comparison of the predicted micropore volume reductions versus the experimentally obtained 

values can be observed in Figure 4.8.   
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Figure 4.8. The MLR predicted values of micropore reduction (micropore final/micropore initial 

%) vs. the experimentally obtained values. 

 

The first noticeable change in Figure 4.8 compared to Figure 4.7 is a much tighter spread of the 

points around the trendline, which notably improves the prediction capability. Obtaining the 

performance values further proves the overall better performance of the MLR model compared to 

the regressive tree model. The MLR model had an R2= 0.85 ± 0.08 with a micro average of 0.84, 

an RMSE of 5.64± 1.19, and an MAE of 4.27 ± 0.77.  Based on these performance criteria, the 

MLR model appeared to be a reliable model for micropore volume prediction and was thus chosen 

as the primary model for future applications. 
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4.2.2. PSD modeling 

The MLR prediction model chosen was incorporated into the previously developed mathematical 

model (equation 4-1). This newly improved model is capable of predicting the pore size 

distribution of activated carbon adsorbents after cycles of adsorption/regeneration. To test the 

model, three activated carbons with various physical properties were chosen. Each of these 

activated carbons had undergone a long-term cyclic adsorption/regeneration explained in detail in 

the previous section. For each activated carbon, three samples containing a wide range of heel 

build-ups were chosen. These nine samples were collected from several long-term 

adsorption/regeneration experiments. All operating conditions of these experiments were the same 

except for the flow rate of the purge gas used during desorption which was either 0.5 or 5 SLPM 

of dried air. The change in desorption flow rate was used to produce wide ranges of heel build-up. 

A summary of these operating conditions can be observed in Table 4.4. The heel-build ups were 

carefully selected to represent three ranges of low heel, medium heel, and high heel build-up. The 

model was used to predict each sample's pore size distribution, and the results are presented below. 

In addition, the result of the pore size distribution prediction is subsequently used in the DRL 

equation to obtain the adsorption capacity of the adsorbent at the specific experimental 

concentration of 100 ppm 1,2,4- TMB. 
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Table 4.4. Operating conditions of the long-term cyclic adsorption/regeneration experiments 

previously conducted on all three BAC adsorbents. 

Adsorption Regeneration 

Injection port Temperature: 40 °C Bed Temperature: 288 °C 

Flow: 10 SLPM Flow: 0.5/5 SLPM 

Flow Gas: Air Flow Gas: Air  

Injection: 100 ppm of 1,2,4-TMB Duration: 180 min 

 

G-70R 

G-70 R, is a highly microporous activated carbon adsorbent (86% microporosity), as 

demonstrated previously. During the long-term cyclic adsorption/regeneration experiments, 

nine total samples at various stages of cumulative heel development were collected as 

demonstrated in Figure 4.9  out of these nine samples; three were chosen, for further study 

and model comparison, representing low, medium, and high heel build-up, distinguished in 

Figure 4.9  by green triangles.  These samples had 6.0%, 11.5%, and 18.9 % mass balance 

cumulative heel build-up, in that order. More information regarding the samples, such as the 

desorption purge gas flowrate and the cycle number from which they were collected, can be 

found in Table 4.5. 
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Figure 4.9. Samples collected from long-term cyclic adsorption/regeneration experiments on G-

70R and their corresponding heel-buildup. Green triangles distinguish samples chosen for model 

comparison. 

 

Table 4.5. G-70R Collected samples' information 

Sample 

Tag 
Desorption Flow (SLPM) 

Cycle 

Number  

 Cumulative 

Heel (wt.%) 

A 5 3 6.3 

B 5 4 11.5 

C 0.5 4 18.9 
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Figure 4.10. PSD of virgin, experimental, and model predicted for G-70R. Sample A, B, and C. 
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Table 4.6. Experimental measurement and model prediction of micropore volume, volume of 

pores below 32Å, and adsorption capacity for G-70R samples 

Sample A 

Physical properties 

Cumulative heel 

(wt.%) Micropore volume 

(cm3/g) 

V32 

(cm3/g) 

Adsorption Capacity 

(wt.%) 

Experimental 0.32 0.35 36.4 

6.3 

Model 0.34 0.37 35.2 

Absolute relative 

error % 

7.5 

 

5.14 

 

3.32 

 

Sample B 

Physical properties 

Cumulative heel 

(wt.%) Micropore volume 

(cm3/g) 

V32 

(cm3/g) 

Adsorption Capacity 

(wt.%) 

Experimental 0.29 0.32 33.0 

11.5 

Model 0.29 0.31 30.9 

Absolute relative 

error % 

0.80 

 

1.70 

 

6.21 

 

Sample C 

Physical properties 

Cumulative heel 

(wt.%) Micropore volume 

(cm3/g) 

V32 

(cm3/g) 

Adsorption Capacity 

(wt.%) 

Experimental 0.23 0.26 26.2 

18.9 

Model 0.22 0.24 25.00 

Absolute relative 

error % 

3.11 

 

7.69 

 

4.76 
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Most of the data available in our dataset for the MLR model was collected from cyclic 

adsorption/regeneration experiments conducted on G-70R adsorbent. Since micropore prediction 

directly results from the MLR model, it was expected to see micropore volume reduction 

predictions with great accuracy for the G-70R sample. The results from Table 4.6 proved our 

assumption with a Mean Relative Absolute Error (MRAE) of 3.5% and a Mean Absolute Error 

(MAE) of only 0.01 
𝑐𝑚3

𝑔
 for G-70R micropore volume prediction. The first sample which was in 

the low heel build-up range showed to most error for micropore volume prediction with an 

Absolute Relative Error (ARE) of 7.5 %. This is in agreement with the MLR model results as 

observed in Figure 4.8, where the biggest dispersion of values around the trendline was observed 

for low micropore volume reductions (low heel build-up region). Furthermore, V32 had been 

defined as the volume of pores below 32 Å plus a constant value of 0.055616; hence the same error 

values as micropore volume for V32 predictions were expected. The final results prove this point 

and a MRAE of 5.5% and an MAE of 0.02 
𝑐𝑚3

𝑔
 for V32 prediction was observed. Taking into 

account the PSD predictions, it appears that the model predicted PSD closely follows the trend of 

the experimental PSD. However, narrower micropore regions show some deviation, best seen in 

Figure 4.10-B at around the 7 Å and below. In this area, the model overpredicts the available 

volume when it has actually been reduced much more due to the heel build-up. This inaccuracy 

can be the result of pore blockage. The adsorbate used, 1,2,4- TMB, has a kinetic diameter of 

around 6.8 Å14, as a result, it can easily block the entrance to these narrow micropores and remove 

a large section of the mentioned narrow micropores from the total micropore volume even with a 

low amount of accumulated heel. The model is incapable of predicting this occurrence which 

results in over-prediction. MAE and MRAE were calculated for the result of the adsorption 

capacity prediction at 100 ppm concentration of the adsorbate to help us better evaluate the new 
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DRL model's performance in capacity prediction. The model had an MAE of 1.50 wt.% and a 

MRAE of 4.8 %. 

Blucher 100772  

 

Blucher 100772 is the second adsorbent chosen for experiments. This adsorbent has lower total 

micropore volume and microporosity than G-70R (0.43 
𝑐𝑚3

𝑔
 and 60%, respectively), as 

demonstrated in the previous section. During the long-term cyclic adsorption/regeneration 

experiments, six total samples at various stages of cumulative heel development were collected, 

as demonstrated in Figure 4.11, out of which three were chosen for further study, same as G-70R. 

These three samples had 4.4%, 10.1%, and 14.7% mass balance cumulative heel build-up. The 

same procedure of surface analysis and comparison of experimental results to the model predicted 

values was conducted on these three samples. Table 4.7 displays more information about these 

samples. Important to note that samples with high cumulative heel build-up, such as 19%, were 

not chosen since in industrial usage, when the BAC reaches these values of heel build-up, it has 

lost most of its adsorption capabilities and is thus of no practical usage, and since our model was 

developed with the goal of industrial adsorption in mind, these samples were excluded.  
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Figure 4.11. Samples collected from long-term cyclic adsorption/regeneration experiments on 

B100772 and their corresponding heel-buildup. Green triangles distinguish samples chosen for 

model comparison. 

 

Table 4.7. B100772 Collected samples' information 

Sample 

Tag 
Desorption Flow (SLPM) 

Cycle 

Number  

 Cumulative 

Heel (wt.%) 

A 0.5 1 4.4 

B 5 4 10.1 

C 0.5 3 14.7 
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Figure 4.12. PSD of virgin, experimental, and model predicted for B100772. Sample A, B, C. 
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Table 4.8. Experimental measurement and model prediction of micropore volume, volume of 

pores below 32Å, and adsorption capacity for B100772 samples 

Sample A 

Physical properties 

Cumulative heel 

(wt.%) Micropore volume 

(cm3/g) 

V32 

(cm3/g) 

Adsorption Capacity 

(wt.%) 

Experimental 0.44 0.47 45.1 

4.4 

Model 0.48 0.51 47.4 

Absolute relative 

error % 

9.1 

 

10.05 

 

5.03 

 

Sample B 

Physical properties 

Cumulative heel 

(wt.%) Micropore volume 

(cm3/g) 

V32 

(cm3/g) 

Adsorption Capacity 

(wt.%) 

Experimental 0.37 0.39 43.2 

10.1 

Model 0.41 0.44 41.1 

Absolute relative 

error % 

10.81 

 

12.16 

 

4.62 

 

Sample C 

Physical properties 

Cumulative heel 

(wt.%) Micropore volume 

(cm3/g) 

V32 

(cm3/g) 

Adsorption Capacity 

(wt.%) 

Experimental 0.31 0.33 38.1 

14.7 

Model 0.36 0.38 36.7 

Absolute relative 

error % 

14.41 

 

16.57 

 

3.52 
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Blucher 101412 

 Blucher 101412 is the final adsorbent chosen for experiments. This adsorbent is highly 

mesoporous and has the lowest microporosity (44%) between all three BAC adsorbents chosen for 

this study. However, it has almost the same total micropore volume as G-70R (0.50  
𝑐𝑚3

𝑔
). Ten 

samples were gathered during the long-term cyclic adsorption/regeneration experiments, and three 

were selected for model validation. These three samples had 10.6%, 15.7%, and 24.4% mass 

balance cumulative heel build-up, respectively. Table 4.9 displays more information about the 

three chosen samples. As mentioned above, B101412 is highly mesoporous while having the same 

micropores volume as G-70R. As a result, B101412 has a much higher adsorption capacity and 

thus heel build-up accumulation. This high adsorption capacity is why samples gathered here had 

notably more heel build-up accumulated than previous BACs.  

 
Figure 4.13. Samples collected from long-term cyclic adsorption/regeneration experiments on 

B101412 and their corresponding heel-buildup. Green triangles distinguish samples chosen for 

model comparison. 
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Table 4.9. B101412 Collected samples' information. 

Sample 

Number 
Desorption Flow (SLPM) 

Cycle 

Number  

 Cumulative 

Heel (wt.%) 

A 5 4 10.6 

B 0.5 3 15.7 

C 5 19 24.4 
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Figure 4.14. PSD of virgin, experimental, and model predicted for B101412. Sample A, B, C. 

  

 

 

 

0.00

0.02

0.04

0.06

0.08

0.10

4 6 8 10 12 14 16 18 20

d
(V

) 
 (

cm
3
/Å

/g
)

Pore Width (Å)

Virgin

Experimental

Model

A

0.00

0.02

0.04

0.06

0.08

0.10

4 9 14 19

d
(V

) 
 (

cm
3
/Å

/g
)

Pore Width (Å)

Virgin

Experimental

Model

B

0.00

0.02

0.04

0.06

0.08

0.10

4 9 14 19

d
(V

) 
 (

cm
3
/Å

/g
)

Pore Width (Å)

Virgin

Experimental

Model

C



114 

 

Table 4.10. Experimental measurement and model prediction of micropore volume, volume of 

pores below 32Å, and adsorption capacity for B101412 samples 

Sample A 

Physical properties 

Cumulative heel 

(wt.%) Micropore volume 

(cm3/g) 

V32 

(cm3/g) 

Adsorption Capacity 

(wt.%) 

Experimental 0.48 0.51 50.1 

10.6 

Model 0.43 0.46 43.1 

Absolute relative 

error % 

9.42 

 

8.97 

 

13.98 

 

Sample B 

Physical properties 

Cumulative heel 

(wt.%) Micropore volume 

(cm3/g) 

V32 

(cm3/g) 

Adsorption Capacity 

(wt.%) 

Experimental 0.39 0.41 45.1 

15.7 

Model 0.36 0.39 37.2 

Absolute relative 

error % 

5.40 

 

3.61 

 

17.46 

 

Sample C 

Physical properties 

Cumulative heel 

(wt.%) Micropore volume 

(cm3/g) 

V32 

(cm3/g) 

Adsorption Capacity 

(wt.%) 

Experimental 0.28 0.30 34.5 

24.4 

Model 0.24 0.27 27.2 

Absolute relative 

error % 

14.23 

 

10.61 

 

21.25 
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Since both Blucher BAC adsorbents, with higher mesoporosity, were not represented equally in 

the data set used for the MLR learning algorithm and the dataset mostly contained samples with 

high microporosity, a higher range of error values was expected to be observed across the board 

for them. The final observation was in line with expectations of the model's capabilities. Model's 

micropore predictions for Blucher 100772 had a MAE of 0.04 
𝑐𝑚3

𝑔
 and a MRAE of 12.0%. 

Interestingly the error values for Blucher 101412 were quite comparable with Blucher 100772 with 

a MAE of 0.04 
𝑐𝑚3

𝑔
 and a MRAE of 10.8%. This similarity in micropore prediction capability 

indicates that the root of the issue is the under-representation of the adsorbent in the learning 

algorithm and not an inherent problem with the model itself. By adding more data into the data 

set, the error values for micropore volume prediction could be expected to drop to the levels of G-

70R. Additionally, V32 predictions for both adsorbents followed the same trend as micropore 

predictions, and for Blucher 100772, a MAE of 0.05 
𝑐𝑚3

𝑔
 and an MRAE of 12.1% was observed, 

while for the mesoporous Blucher 101412, slightly lower values of 0.033 
𝑐𝑚3

𝑔
 and 8.2% for MAE 

and MRAE were obtained, respectively.  

Taking a gander at micropore volume predictions for all nine samples, it can be concluded that the 

least ARE was obtained for the medium heel region in all three adsorbents. This variation in error 

among heel regions can be due to the occurrence of pore blockage. In low heel build-up regions, 

since the adsorbate used has a sizeable kinetic diameter (about 6.8 14), and the adsorbents utilized 

have many narrow micropores well below this size, there is a good chance that a sudden blockage 

of one of these narrow micropores might ensue, reducing the available micropore volume 

drastically. However, the model can not take this sudden blockage into account and, considering 

the low mass of the accumulated heel, makes false predictions. As explained before, this is also 
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why the model predicted PSD plot has the most deviation from the experimentally obtained PSD 

at narrower micropores. These pore blockages reduce the available micropore volume of the BAC 

more than the model anticipates based on the mass of the heel accumulated. In conclusion, the 

medium heel region is where the model works best at making micropore volume predictions. 

Nevertheless, its answers are still useful for all regions. 

The adsorption capacity of Blucher samples at an inlet concentration of 100 ppm 1,2,4-TMB was 

predicted as well. For Blucher 100772, the adsorption capacity was predicted with a MAE of 1.9 

wt.%, and MRAE of 4.4%, whereas for B101412, much higher error values of 7.4 wt.% and 17.6% 

were observed for MAE and MRAE, respectively. The first thing to note is that the prediction 

accuracy for G-70R and Blucher 100772 are very similar, with a MARE of 4.7% and 4.4% for G-

70R and Blucher 100772, correspondingly. However, they have considerably different error values 

for V32 predictions (MARE of 5.51 and 12.16 for G-70R and Blucher 100772, respectively). This 

observation could be explained by how the DLR equation is formulated. 

𝑊 = 𝑊0 𝑒𝑥𝑝(−𝑘𝐴2)  4-3 

 

𝐴 = 𝑅𝑇 𝑙𝑛(𝑃0/𝑃)  4-4 

 

In the equation above, W0 represents V32 and thus the micropore volume available in the 

adsorbent, while A, known as adsorption potential, is the only parameter here affected directly by 

the inlet concentration. It can be understood that the larger the inlet concentration becomes, the 

more impactful the micropore volume will be. At low concentrations such as 100 ppm used in the 

tests, the impact of available micropore volume is reduced, and thus relatively large errors in V32 

predictions cannot translate directly into substantial error for predictions of adsorption capacity. 

With the above mentioned fact in mind, what becomes essential in adsorption capacity prediction 

at low concentrations of adsorbate, is the initial value of the physical properties of the adsorbent, 
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such as initial micropore volume, since changes in the micropores and V32 are minimal compared 

with the initial value and as a result are not enormously influential in the final prediction errors. 

As suggested in a previous study by Jahandar Lashaki et al. 2, adsorption capacity is much more 

closely correlated with the total pore volume rather than micropore of the adsorbent, at the 

investigated concentration; thus, G-70R and Blucher 100772 having close total pore volume 

initially (0.58 
𝑐𝑚3

𝑔
 and 0.72 

𝑐𝑚3

𝑔
 for G-70R and Blucher 100772 respectively) are expected to show 

similar adsorption capacities, which agrees with the results obtained, and the model performs at 

the same accuracy for both of them.   

Furthermore, for the highly mesoporous Blucher 101412, with a much greater total pore volume 

of 1.10 
𝑐𝑚3

𝑔
, the model is having great difficulty in capacity prediction. This issue could be the 

result of another important factor influencing the model's accuracy: the definition of the W0 

parameter in the DRL equation. Urano et al. 16 considered W0 to be only a function of micropore 

volume thus the adsorption is mainly limited by the available micropore volume of the adsorbent 

regardless of how much meso and macro pores are available. This conclusion directly contrasts 

with results from this study and previous studies1,2 where Blucher 101412 and G-70R, while 

having very close initial micropore volume, showed drastically different first cycle adsorption 

capacity. The limitation is W0 parameter definition causes the model not to consider adsorption 

done in adsorbents with large mesopores volume such as B101412, resulting in the under-

prediction of the BAC's capacity. 

In conclusion, the more microporous the adsorbent, the better the prediction of the adsorption 

capacity of the model becomes. This is apparent when comparing MRAE of adsorption capacity 

prediction for all three adsorbents where the most microporous sample G-70R showed a minor 

ARE (1.5%) and the least microporous Blucher 101412 showed the highest ARE (7.5%). 
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4.2.3. Adsorption Capacity Prediction at various concentrations 

In the previous section, all the results were provided for the same inlet concentration of 100 ppm 

1,2,4-TMB. This limitation constrains any investigation into the model's performance at different 

inlet concentrations of adsorbates. To rectify this problem, three samples, one from each adsorbent, 

were chosen. These samples each had a medium amount of cumulative heel build-up on them. The 

heel build-up amounts were 14.1% (cycle 3), 20.6% (cycle 5), and 19.0% (cycle 5) for G-70R, 

B101412, and B100772, respectively. These samples were obtained separate from the previous 

experiments and were chosen to be in the same heel build-up region. The experimental condition 

of which were explained in chapter 3. The adsorption capacity of these used samples was 

experimentally obtained at 50, 100, 500 and 1000 ppm inlet concentrations of 1,2,4-TMB. 

Additionally, the virgin samples of each adsorbent were put through the same test for further 

investigation into the model's performance. 

As reflected in Figure 4.15 for all adsorbents, whether virgin or used, increased inlet concentration 

resulted in a more considerable deviation between the model predicted adsorption capacity values 

and those obtained experimentally. This deviation is mainly due to the different adsorption 

mechanisms at low and high inlet concentrations. As reported by Mangun et al 17. the adsorbate 

does not condense in the narrow micropores at low concentrations and remains in a tightly bound 

gas phase. Hence only a small volume of a pore is occupied, and the total available pore volume 

is not a limitation. However, at high inlet concentrations, the adsorbate prefers to condense inside 

the meso and macro pores. In this case, the total available pore volume becomes a limiting factor 

rather than the adsorption energy of the pores. As a result of the mentioned difference, at high inlet 

concentrations, meso and macropores, which have a much larger pore volume and in them 

adsorption takes place through capillary condensation, become much more valuable and help in 
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increasing the maximum adsorption capacity of the adsorbent. In contrast, they are much less 

noticeable at low inlet concentrations, and micropores with higher adsorption energy and the 

mechanism of volume filling are primarily at play 18.  
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Figure 4.15.Modeled and experimentally obtained adsorption capacities at various inlet 

concentrations for (a) Virgin G-70R, (b) Used G-70R, (c) Virgin B101412, (d) Used B101412, 

(e) Virgin B100772, and (f) Used B100772. 
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Nevertheless, the above-mentioned difference in adsorption at low and high inlet concentrations 

has not been defined in the basic DRL model proposed by Hung et al19. As a result, for all three 

BACs experimented, the model predicts a negligible rise in adsorption capacity with an increase 

in adsorbate concentration (Figure 4.15). The most significant noticeable deviation is seen for the 

used Blucher 101412 in Figure 4.15-d. This considerable deviation is due to the fact that this 

adsorbent is highly mesoporous. For G-70R, as seen in Figure 4.15 (a) and (b), the deviation is 

much smaller since the G-70R is highly microporous and does not contain a large volume of 

mesopores to contribute in the adsorption process compared to the other two adsorbents.  

 

In general, as expected, the predictions were more accurate for virgin adsorbents since no 

additional error caused by micropore volume prediction was involved. A MAE of 0.3 wt.%, 4.3 

wt.%, and 1.6 wt.% was observed for G-70R, B100772, and B101412, respectively. On the other 

hand, for the used samples, the error values were generally greater than the virgin samples with a 

MAE of 4.6 wt.%, 3.0 wt.%, and 3.9 wt.% for G-70R, B100772, and B101412, respectively. The 

only exception is B100772, where a smaller MAE was seen for the used sample. However, this 

variation can be explained by Figure 4.15-f. For Blucher 100772, the model predicted values were 

greater than those experimentally obtained. Since micropores were mainly occupied by the heel 

accumulated in the previous cycles in the used sample, the mesopores played a more considerable 

role in adsorption. As a result, with increased adsorption capacity at higher concentrations, the 

slope of the experimental plot is increased compared to the virgin sample. This increase in slope 

combined with the aforementioned overprediction present in this specific samples concludes in the 

gap between the model and actual values growing smaller relative to the adsorption capacity values 

obtained for the virgin B100772, and thus the average error is reduced. 
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In the end, the model made adsorption capacity prediction for all three samples with an average 

MAE of 3.8 at the lower end of inlet concentrations, these error values were much less considerable 

for all three samples tested. It appears that if the adsorbent being used is highly mesoporous, it is 

best to use the model only at lower inlet concentrations to decrease error in calculations.  
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127 

 

5.1 Conclusions 

The experiments performed on G-70R Kureha BAC, Blucher 101412, and Blucher 100772 

evaluated the performance of these adsorbents for 20-cycle adsorption/regeneration of 1,2,4-TMB 

under two different purge gas flowrates. This research has added to the understanding of the long-

term performance of activated carbons beyond the common five cycle studies usually conducted. 

Additionally, the results of the mentioned long-term investigations were further utilized to develop 

a mathematical model capable of predicting both the pore size distribution and the adsorption 

capacity of the BAC adsorbents throughout the cyclic experiment. 

The combined effect of purge gas flow rate and porosity of activated carbon on the long-term 

performance of 1,2,4-TMB on BAC was investigated. 6 different scenarios made up of a 

combination of three different activated carbon adsorbents with various porosity and physical 

properties and two different purge gas flow rates (0.5 and 5 SLPM) were studied. Initially, the 

effect of the porosity and the available micropore volume of adsorbents were more determinants 

in the performance of the BAC and the final cumulative heel build-up. In the first five cycles, G-

70R and B101412 had almost the same initial micropore volume (0.50 and 0.49 
𝑐𝑚3

𝑔
  respectively) 

demonstrated a very similar heel formation rate and B100772, which had the lowest micropore 

volume (0.43 
𝑐𝑚3

𝑔
 ) lagged in heel formation in comparison with the other two adsorbents. 

However, the adsorption capacities had a much better correlation with the total pore volume, and 

the highly mesoporous B101412 (40% microporosity) showed a much higher adsorption capacity 

than the other two. With the progression of the adsorption/regeneration experiments to higher cycle 

numbers, however, the effect of purge gas flowrate became much more significant, and a clear 

separation was observed in both heel formation and adsorption capacity among samples 

regenerated using 0.5 SLPM of dried air and those regenerated with 5 SLPM. It was reported that 
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at higher cycle numbers, due to the elimination of a majority of micropores in adsorbents, 

microporosity of the adsorbent is reduced and its effect diminishes greatly, and purge gas flow rate 

increase can be much more effective in the removal of the adsorbed species in the larger 

mesopores. At the final cycles, samples regenerated with 0.5 SLPM all had an average cumulative 

heel of 31 %, and those regenerated with 5 SLPM had a cumulative heel build-up average of 21%, 

signifying the importance of purge gas flow rate in heel reduction in later cycles. 

Interestingly the DTG results showed that even though higher purge gas flow rates reduce the 

magnitude of heel build-up, it also transforms the heel into heavier chemically formed compounds. 

Additionally, the PSD of the virgin and regenerated samples were compared, and it was 

demonstrated that micropores are mostly exhausted in the first few cycles, and this effect is 

exasperated the more microporous a sample is. In the extreme case of using a 0.5 SLPM purge gas 

flow rate, G-70R was utterly exhausted, and its micropore volume of 0.50 
𝑐𝑚3

𝑔
 reduced to almost 

zero by the 10th cycle, however, the mesoporous B100772 under the same operating condition 

lasted 20 cycles and only lost 50% of its initial micropore volume. This difference indicates that 

selecting activated carbon with a hierarchal pore structure containing micropores and mesopores 

helps to lengthen the lifetime of the adsorbent in cyclic adsorption/ regeneration processes. 

In the second section, a model was developed to predict the pore size distribution of activated 

carbon adsorbents after going through cyclic adsorption/regeneration. At first, using machine 

learning and multivariable linear regression, a mathematical regression model was found, based 

on data points existing in the literature and also ones gathered in this study, to predict the micropore 

volume of activated carbon based on the cumulative mass heel formed on it and the molar volume 

of the adsorbate. This newly acquired micropore volume was utilized to finalize the pore size 

distribution model. The PSD prediction model was then tested on nine different samples from the 
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three activated carbon adsorbents forming different level of heel. The PSD model better predicted 

the micropore volume and PSD of the G-70R adsorbent with a mean relative absolute error 

(MRAE) of 3.5%. In contrast, the micropore prediction for B101412 and B100772 had a MRAE 

of 10.8% and 12.0%, respectively. The difference in accuracy was due to under-representing the 

more mesoporous adsorbents in the machine learning training data set.  

Finally, the PSD prediction model was utilized to enhance the existing DRL isotherm model to 

predict the adsorption capacity of used activated carbon samples with various amounts of 

cumulative heel build-up on them. The accuracy and capabilities of the enhanced DRL model were 

tested on three virgin samples, and three used samples of the G-70R, B100772, and B101412. As 

expected, virgin samples' adsorption capacity prediction errors were much lower for all three 

adsorbents than their used counterparts. For example, virgin B101412 had an MRAE of 2.68%, 

while used B101412 had an MRAE of 10%. This variation was expected since no errors from PSD 

prediction were involved in virgin isotherms. 

Furthermore, the enhanced DRL model demonstrated greater deviation from experimental values 

as the inlet concentration was increased. The deviation was mainly due to the different mechanisms 

of adsorption at low and high concentrations of VOC. It was concluded that the more mesoporous 

the adsorbent becomes, the larger this deviation at high inlet concentration grows. Thus, it is best 

to use the model at low to mid concentration of volatile organic compounds, especially if the 

adsorbent has significant meso and macropores. 

This study demonstrated how impactful the choice of adsorbent and purge gas flow rate could be 

on the long-term cyclic performance of activated carbon. Furthermore, the model developed could 

help understand the changes occurring throughout the cyclic adsorption/regeneration and thus 

provide the operator with a reasonable estimation of how different adsorbents could perform prior 
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to the start of the actual operation. Based on the model results, a well-informed choice can be made 

on proceeding with cyclic adsorption. 

As a final comment, the model developed for adsorption capacity prediction combined with the 

automated setup has the capability to substantially reduce the time and effort required to obtain 

isotherms and pore size distribution for various VOC/adsorbent combinations. For example, one 

can conduct a 30 cycle analysis over a short duration and have 30 isotherms for adsorption of the 

targeted compound at various inlet concentrations. This preliminary data can help improve 

industrial processes to understand better the changes occurring in the adsorption capacity of their 

selected activated carbon adsorbent as the cyclic adsorption/regeneration process progresses. With 

this deeper understanding, it is possible to plan for how long an adsorbent can be used before 

immediate replacement is required and how much each adsorbent can be used before the risk of 

going over applicable limits can occur. As a result, less time and energy will be spent replacing 

the adsorbent, and a reduced amount of waste will be generated. 

Furthermore, the pore size distribution changes can also be easily predicted with this model. PSDs 

are invaluable in understanding how each adsorbate with its distinct kinetic diameter interacts with 

narrow pores of the selected activated carbon. The knowledge gained from these interactions could 

be used to predict the capability of adsorbents when used with new compounds with similar or 

larger kinetic diameters. 

5.2. Recommendations   

One crucial limitation faced in this study was the lack of cyclic adsorption/regeneration data on 

more mesoporous adsorbents. Most of the data set used in this study involved G-70R Kureha BAC, 

and as a result, the PSD and adsorption capacity models were more accurate for G-70R compared 

to other adsorbents. To overcome this issue and increase the model's generalizability, the long-
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term performance of activated carbons with various porosities could be conducted. By adding more 

data from these adsorbents into the training dataset of the model, its accuracy will increase.  

Furthermore, for better optimization of the long-term performance of activated carbons, the same 

investigation method of this study could be utilized to observe the effect of other operating 

parameters such as regeneration duration or temperature. Design experiment (DOE) methods such 

as "Taguchi methods" could be applied to investigate and optimize long-term performance of the 

adsorbent.  
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Appendix: Supplementary Information for Chapter 4 
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A. Machine Learning Process Flowchart 

  

1 2 

3 
Figure A.1. Basic schematic of the first layer of the process showing the preprocessing stages and the final cross validation. 
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Figure A.2. Basic schematic of the second layer, nested inside cross-validation, shows the forward selection and the decision tree model’s 

application. 
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1) In this section, we use the Pearson Correlation Coefficient (PCC) to measure the linear dependency 

between any two features using the below equation: 
2 2

( )( )

( ) ( )

x X y Y
r

x X y Y

 


       



 
 

where X¯ or Y¯ are the averages of variable x or y. Using the calculated correlations, any two features that 

are highly correlated, more than 0.95, are filtered out. This will reduce the number of features to 14. 

2) In this stage, all the variables except the target value were normalized using the Z-transformation method 

into the range of 0.1-0.9.  
 

𝑥𝑖
∗ = 0.1 + 

0.8(𝑥𝑖 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
 

 

3) This section is the main cross-validation in which model training and testing occur. Nested inside this 

stage are the forward selection method and the decision tree model. 

 

4) Forward selection is a feature importance technique; Feature importance refers to techniques that assign 

a score to input features based on how useful they are at predicting a target variable. In this method, we 

start with one feature, and other features are added one by one to select the best combination of features 

for accurate prediction.  

 

5) The decision tree and linear regression prediction model are applied to the selected features and examples. 

 

6) The targeted feature is defined as (
𝐹𝑖𝑛𝑎𝑙 𝑀𝑖𝑐𝑟𝑜𝑝𝑜𝑟𝑒 𝑉𝑜𝑙𝑢𝑚𝑒

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑀𝑖𝑐𝑟𝑜𝑝𝑜𝑟𝑒 𝑉𝑜𝑙𝑢𝑚𝑒 
∗ 100) 

 

7) Models performance evaluations for predictability and generalizability are acquired. 
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∑ (𝑌𝑖
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𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
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𝑖
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
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𝑖=𝑖 Ŷ𝑎𝑣𝑒𝑟𝑎𝑔𝑒
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𝑅𝑀𝑆𝐸 = √
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B. Dataset for the ML model 

 90 experiments were chosen as sample data (Excluding the experimental data gathered in this study). 

These experiments varied in many ways, for example: type of adsorbent, adsorbate, and purge gas to 

name a few however they shared several similarities that made them suitable for our purpose. 

 All the experiments have been done using 10 SLPM air. 

 In all the experiment the adsorbate was a single compound, and no mixture was used; this is 

important for us since the developed isotherm prediction model requires a single compound 

adsorbate. 

 Regeneration for all the cases was done using the same technique of wrapping the reactor with 

heating tape and the duration of heating was also 3 hours for all. 

 Properties of tests utilized in this dataset can be seen in Table B.1 

 The complete 90 Data point table is also included in Table B.2. 
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Table B.1. Collected samples properties to be used in machine learning algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adsorbate (VOC) used in the experiments:  

n-butanol,  xylenes,  p-xylene,  n-decane,  2-heptanone,  n-butyl acetate,  2-butoxyethanol,  4-methyl-2,   pentanone 

/Methylisobutylketone,  n-Heptane,  Diethanolamine (dissolved in tetrahydrofuran 13.94 wt%),  Methyldiethanolamine 

(dissolved in tetrahydrofuran 19.24 wt.%),  Methyldiethanolamine (dissolved in tetrahydrofuran 20 wt.%),  

isopropylbenzene,  Naphthalene (dissolved in Tetrahydrophuran 11.58%wt),  1-Ethyl-2-Methylbenzene,  

neopentylbenzene,  Pentamethylbenzene(Solid; dissolved in tetrahydrofurane (THF) (83.61% wt.)),  (TXIB) dissolved in 

THF (20.87 wt. %),  Indan,  2-Amino-2-Methylpropanol  dissolved in THF (42.77 wt.%),  benzene,  ethylbenzene,  

butylbenzene,  Tetrahydrofuran,  Butyl propionate/ Propanoic acid,   Butyl isobutyrate 

Adsorbents used in the experiments: 

Blucher 100777, Heat treated BAC, BAC-H ( Hydrogen treated BAC), BAC-O-400 ( Oxygen Functionalized BAC), BAC 

Kureha, ACFC-"20"   

Purge gas oxygen impurity (ppmv) used in the experiments:  

5, 208, 625, 1250, 2500, 5000, 10000, 20000, 21500 ,210000  

Regeneration Temperature (°C) used in the experiments: 

200, 288, 400   
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Table B.2. Datapoints used in the ML algorithm. The first 6 features. 

Source Adsorbent Adsorbate 

Adsorption 

capacity 

(wt.%) 

Cumulative 

Heel 

(wt.%) 

Flow 

(SLPM) / 

Cross 

sectional 

Area(cm2) 

O2 impurity 

PPMV 

1st-quarter- 

Ford Report 

Kureha 

BAC 
n-butanol 38.66 0.00 0.61 5 

1st-quarter- 

Ford Report 

Kureha 

BAC 
xylenes 42.37 0.00 0.61 5 

1st-quarter- 

Ford Report 

Kureha 

BAC 
xylenes 42.55 0.00 0.61 5 

2nd-quarter-

Ford report 

Kureha 

BAC 
xylenes 42.61 0.25 0.61 5 

2nd-quarter-

Ford report 

Kureha 

BAC 
n-butyl acetate 41.96 0.00 0.61 5 

2nd-quarter-

Ford report 

Kureha 

BAC 

4-methyl-2-

pentanone 

/Methylisobutylke

tone 

37.69 0.00 0.61 5 

2nd-quarter-

Ford report 

Kureha 

BAC 
n-Heptane 31.98 0.00 0.61 5 

2nd-quarter-

Ford report 

Kureha 

BAC 
Tetrahydrofuran 29.28 0.00 0.61 5 

2nd-quarter-

Ford report 

Kureha 

BAC 

Butyl propionate/ 

Propanoic acid 
41.46 0.00 0.61 5 

2nd-quarter-

Ford report 

Kureha 

BAC 
Butyl isobutyrate 41.32 0.00 0.61 5 

3d-quarter- Ford 

report 

Kureha 

BAC 

Methyldiethanola

mine (dissolved 

in tetrahydrofuran 

19.24 wt.%) 

30.62 8.35 0.61 5 

3d-quarter-Ford 

reprot 

Kureha 

BAC 

(TXIB) dissolved 

in THF (20.87 wt. 

%) 

22.70 16.27 0.61 5 

3d-quarter-Ford 

reprot 

Kureha 

BAC 

1-Ethyl-2-

Methylbenzene 
44.00 2.11 0.61 5 

3d-quarter-Ford 

reprot 

Kureha 

BAC 

Pentamethylbenze

ne(Solid; 

dissolved in 

tetrahydrofurane 

(THF) (83.61% 

wt.)) 

26.30 4.92 0.61 5 

3d-quarter-Ford 

reprot 

Kureha 

BAC 
Indan 46.10 1.39 0.61 5 

3d-quarter-Ford 

reprot 

Kureha 

BAC 

Naphthalene 

(dissolved in 
22.25 0.70 0.61 5 
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Tetrahydrophuran 

11.58%wt) 

3d-quarter-Ford 

reprot 

Kureha 

BAC 

Diethanolamine 

(dissolved in 

tetrahydrofuran 

13.94 wt%) 

20.59 3.29 0.61 5 

3d-quarter-Ford 

reprot 

Kureha 

BAC 

2-Amino-2-

Methylpropanol  

dissolved in THF 

(42.77 wt.%) 

32.70 0.96 0.61 5 

5th-quarter-

Ford reprot 

Kureha 

BAC 

2-Amino-2-

Methylpropanol  

dissolved in THF 

(20 wt.%) 

22.73 0.71 0.61 5 

Keivan 

Rahmani's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.49 34.57 0.06 215000 

Keivan 

Rahmani's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.55 21.11 0.61 215000 

Keivan 

Rahmani's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.51 19.13 0.06 10000 

Keivan 

Rahmani's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.43 4.10 6.13 10000 

Keivan 

Rahmani's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 44.09 11.94 0.61 10000 

Keivan 

Rahmani's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.55 5.50 6.13 215000 

Keivan 

Rahmani's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 42.70 4.02 0.06 5 

Keivan 

Rahmani's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.00 4.72 0.01 5 

Keivan 

Rahmani's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 41.80 0.48 0.61 5 

Keivan 

Rahmani's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 42.84 0.17 6.13 5 

Mohammad 

Feizbakhshan's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.59 9.53 1.22 210000 
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Mohammad 

Feizbakhshan's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.68 6.42 1.22 210000 

Mohammad 

Feizbakhshan's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 45.36 6.55 1.22 10000 

Mohammad 

Feizbakhshan's 

Thesis 

ACFC-20" 1,2,4-TMB 61.10 18.61 1.22 210000 

Mohammad 

Feizbakhshan's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.74 2.07 1.22 10000 

Mohammad 

Feizbakhshan's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 44.31 1.58 1.22 5 

Mohammad 

Feizbakhshan's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.80 0.49 1.22 5 

Mohammad 

Feizbakhshan's 

Thesis 

ACFC-20" 1,2,4-TMB 61.20 0.89 1.22 5 

Mohammad 

Feizbakhshan's 

Thesis 

B-100777" 1,2,4-TMB 66.30 9.59 1.22 210000 

Mohammad 

Feizbakhshan's 

Thesis 

B-100777" 1,2,4-TMB 66.20 0.42 1.22 5 

Nastaran 

Mosavari Thesis 
BAC-H n-decane 35.29 0.71 0.61 5 

Nastaran 

Mosavari Thesis 

BAC-O-

400. 
2-heptanone 38.23 2.18 0.61 5 

Nastaran 

Mosavari Thesis 

BAC-O-

400. 
1,2,4-TMB 44.38 4.34 0.61 5 

Nastaran 

Mosavari Thesis 
BAC-H 2-heptanone 38.07 0.32 0.61 5 

Nastaran 

Mosavari Thesis 

BAC-O-

400. 
2-butoxyethanol 42.58 1.62 0.61 5 

Nastaran 

Mosavari Thesis 
BAC-H 1,2,4-TMB 41.60 0.32 0.61 5 

Nastaran 

Mosavari Thesis 

BAC-O-

400. 
p-xylene 39.41 3.28 0.61 5 

Nastaran 

Mosavari Thesis 

BAC-O-

400. 
n-decane 35.24 1.24 0.61 5 

Nastaran 

Mosavari Thesis 

heat treated 

BAC 

(BAC-400) 

1,2,4-TMB 45.08 0.73 0.61 5 

Nastaran 

Mosavari Thesis 
BAC-H p-xylene 39.52 0.61 0.61 5 
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Nastaran 

Mosavari Thesis 

heat treated 

BAC 

(BAC-400) 

2-butoxyethanol 44.97 1.10 0.61 5 

Nastaran 

Mosavari Thesis 
BAC-H 2-butoxyethanol 42.35 0.74 0.61 5 

Nastaran 

Mosavari Thesis 
BAC-H n-butanol 35.32 0.30 0.61 5 

Nastaran 

Mosavari Thesis 

BAC-O-

400. 
n-butanol 34.77 0.57 0.61 5 

Nastaran 

Mosavari Thesis 

heat treated 

BAC 

(BAC-400) 

n-decane 36.68 0.72 0.61 5 

Nastaran 

Mosavari Thesis 
BAC-H ethylbenzene 38.61 0.05 0.61 5 

Nastaran 

Mosavari Thesis 

BAC-O-

400. 
ethylbenzene 39.36 1.41 0.61 5 

Nastaran 

Mosavari Thesis 

heat treated 

BAC 

(BAC-400) 

p-xylene 41.54 0.39 0.61 5 

Nastaran 

Mosavari Thesis 

heat treated 

BAC 

(BAC-400) 

2-heptanone 40.26 0.46 0.61 5 

Nastaran 

Mosavari Thesis 
BAC-H n-butyl acetate 40.00 0.00 0.61 5 

Nastaran 

Mosavari Thesis 

BAC-O-

400. 
n-butyl acetate 39.62 0.37 0.61 5 

Nastaran 

Mosavari Thesis 

heat treated 

BAC 

(BAC-400) 

ethylbenzene 41.07 0.25 0.61 5 

Nastaran 

Mosavari Thesis 

heat treated 

BAC 

(BAC-400) 

n-butanol 36.45 0.25 0.61 5 

Nastaran 

Mosavari Thesis 

heat treated 

BAC 

(BAC-400) 

n-butyl acetate 41.56 0.17 0.61 5 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.90 15.80 0.61 20000 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
isopropylbenzene 45.80 11.20 0.61 10000 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.60 6.30 0.61 1250 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 44.30 8.80 0.61 2500 
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Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.30 11.80 0.61 5000 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
n-butyl acetate 41.10 1.30 0.61 10000 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
isopropylbenzene 44.40 4.60 0.61 5 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
ethylbenzene 40.80 1.50 0.61 10000 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
butylbenzene 43.20 0.80 0.61 5 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
n-butyl acetate 42.60 1.30 0.61 5 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
butylbenzene 41.90 7.00 0.61 10000 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 44.40 4.20 0.61 625 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
2-heptanone 39.30 2.90 0.61 10000 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
ethylbenzene 40.60 0.10 0.61 5 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
1,2,4-TMB 43.40 1.30 0.61 208 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
n-decane 37.40 3.40 0.61 10000 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
2-butoxyethanol 45.00 1.10 0.61 5 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
neopentylbenzene 41.60 0.70 0.61 5 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
neopentylbenzene 42.00 1.40 0.61 10000 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
2-butoxyethanol 44.70 1.30 0.61 10000 
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Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
2-heptanone 40.30 0.46 0.61 5 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
benzene 27.30 0.20 0.61 10000 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
1-butanol 37.00 0.70 0.61 10000 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
n-decane 36.70 0.70 0.61 5 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
1-butanol 36.40 0.20 0.61 5 

Seyed Mojtaba 

Hashemi's 

Thesis 

Kureha 

BAC 
benzene 26.70 0.00 0.61 5 
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Table B.3. Datapoints used in the ML algorithm. The next 6 features. 

Source 

Initial BET 

Surface Area 

(m2/g) 

Initial 

Micropore 

volume (cm3/g) 

Initial Total 

Pore volume 

(cm3/g) 

Molar 

mass 

(g/mol) 

Density 

(g/ml) 

Boiling 

point 

°C 

1st-quarter- 

Ford Report 
1307.30 0.47 0.55 74.12 0.81 117.70 

1st-quarter- 

Ford Report 
1307.30 0.47 0.55 106.17 0.86 138.50 

1st-quarter- 

Ford Report 
1307.30 0.47 0.55 106.17 0.86 138.50 

2nd-quarter-

Ford report 
1307.30 0.47 0.55 106.17 0.86 138.50 

2nd-quarter-

Ford report 
1307.30 0.47 0.55 116.20 0.88 126.00 

2nd-quarter-

Ford report 
1307.30 0.47 0.55 100.16 0.80 116.50 

2nd-quarter-

Ford report 
1307.30 0.47 0.55 100.21 0.68 98.50 

2nd-quarter-

Ford report 
1307.30 0.47 0.55 72.11 0.89 66.00 

2nd-quarter-

Ford report 
1307.30 0.47 0.55 130.18 0.88 145.00 

2nd-quarter-

Ford report 
1307.30 0.47 0.55 144.21 0.86 155.50 

3d-quarter- Ford 

report 
1307.30 0.47 0.55 119.16 1.04 247.00 

3d-quarter-Ford 

reprot 
1307.30 0.47 0.55 286.41 0.94 380.00 

3d-quarter-Ford 

reprot 
1307.30 0.47 0.55 120.19 0.88 165.20 

3d-quarter-Ford 

reprot 
1307.30 0.47 0.55 148.24 0.92 232.00 

3d-quarter-Ford 

reprot 
1307.30 0.47 0.55 116.16 0.97 177.90 

3d-quarter-Ford 

reprot 
1307.30 0.47 0.55 128.17 1.14 217.90 

3d-quarter-Ford 

reprot 
1307.30 0.47 0.55 105.14 1.09 217.00 

3d-quarter-Ford 

reprot 
1307.30 0.47 0.55 89.14 0.93 165.00 

5th-quarter-

Ford reprot 
1307.30 0.47 0.55 89.14 0.94 165.50 

Keivan 

Rahmani's 

Thesis 

1372.00 0.50 0.57 120.19 0.88 169.38 
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Keivan 

Rahmani's 

Thesis 

1372.00 0.50 0.57 120.19 0.88 169.38 

Keivan 

Rahmani's 

Thesis 

1372.00 0.50 0.57 120.19 0.88 169.38 

Keivan 

Rahmani's 

Thesis 

1372.00 0.50 0.57 120.19 0.88 169.38 

Keivan 

Rahmani's 

Thesis 

1372.00 0.50 0.57 120.19 0.88 169.38 

Keivan 

Rahmani's 

Thesis 

1372.00 0.50 0.57 120.19 0.88 169.38 

Keivan 

Rahmani's 

Thesis 

1372.00 0.50 0.57 120.19 0.88 169.38 

Keivan 

Rahmani's 

Thesis 

1372.00 0.50 0.57 120.19 0.88 169.38 

Keivan 

Rahmani's 

Thesis 

1372.00 0.50 0.57 120.19 0.88 169.38 

Keivan 

Rahmani's 

Thesis 

1372.00 0.50 0.57 120.19 0.88 169.38 

Mohammad 

Feizbakhshan's 

Thesis 

1380.00 0.53 0.62 120.19 0.88 169.38 

Mohammad 

Feizbakhshan's 

Thesis 

1380.00 0.53 0.62 120.19 0.88 169.38 

Mohammad 

Feizbakhshan's 

Thesis 

1380.00 0.53 0.62 120.19 0.88 169.38 

Mohammad 

Feizbakhshan's 

Thesis 

1940.00 0.73 0.80 120.19 0.88 169.38 

Mohammad 

Feizbakhshan's 

Thesis 

1380.00 0.53 0.62 120.19 0.88 169.38 

Mohammad 

Feizbakhshan's 

Thesis 

1380.00 0.53 0.62 120.19 0.88 169.38 

Mohammad 

Feizbakhshan's 

Thesis 

1380.00 0.53 0.62 120.19 0.88 169.38 
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Mohammad 

Feizbakhshan's 

Thesis 

1940.00 0.73 0.80 120.19 0.88 169.38 

Mohammad 

Feizbakhshan's 

Thesis 

1745.00 0.66 1.78 120.19 0.88 169.38 

Mohammad 

Feizbakhshan's 

Thesis 

1745.00 0.66 1.78 120.19 0.88 169.38 

Nastaran 

Mosavari Thesis 
1296.00 0.47 0.55 142.29 0.73 174.00 

Nastaran 

Mosavari Thesis 
1288.00 0.47 0.56 114.18 0.80 151.00 

Nastaran 

Mosavari Thesis 
1288.00 0.47 0.56 120.19 0.88 169.38 

Nastaran 

Mosavari Thesis 
1296.00 0.47 0.55 114.18 0.80 151.00 

Nastaran 

Mosavari Thesis 
1288.00 0.47 0.56 118.17 0.90 168.00 

Nastaran 

Mosavari Thesis 
1296.00 0.47 0.55 120.19 0.88 169.38 

Nastaran 

Mosavari Thesis 
1288.00 0.47 0.56 106.16 0.86 138.00 

Nastaran 

Mosavari Thesis 
1288.00 0.47 0.56 142.29 0.73 174.00 

Nastaran 

Mosavari Thesis 
1353.00 0.50 0.54 120.19 0.88 169.38 

Nastaran 

Mosavari Thesis 
1296.00 0.47 0.55 106.16 0.86 138.00 

Nastaran 

Mosavari Thesis 
1353.00 0.50 0.54 118.17 0.90 168.00 

Nastaran 

Mosavari Thesis 
1296.00 0.47 0.55 118.17 0.90 168.00 

Nastaran 

Mosavari Thesis 
1296.00 0.47 0.55 74.12 0.81 118.00 

Nastaran 

Mosavari Thesis 
1288.00 0.47 0.56 74.12 0.81 118.00 

Nastaran 

Mosavari Thesis 
1353.00 0.50 0.54 142.29 0.73 174.00 

Nastaran 

Mosavari Thesis 
1296.00 0.47 0.55 106.16 0.87 136.00 

Nastaran 

Mosavari Thesis 
1288.00 0.47 0.56 106.16 0.87 136.00 

Nastaran 

Mosavari Thesis 
1353.00 0.50 0.54 106.16 0.86 138.00 

Nastaran 

Mosavari Thesis 
1353.00 0.50 0.54 114.18 0.80 151.00 

Nastaran 

Mosavari Thesis 
1296.00 0.47 0.55 116.16 0.88 126.00 
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Nastaran 

Mosavari Thesis 
1288.00 0.47 0.56 116.16 0.88 126.00 

Nastaran 

Mosavari Thesis 
1353.00 0.50 0.54 106.16 0.87 136.00 

Nastaran 

Mosavari Thesis 
1353.00 0.50 0.54 74.12 0.81 118.00 

Nastaran 

Mosavari Thesis 
1353.00 0.50 0.54 116.16 0.88 126.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 120.19 0.88 169.38 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 120.20 0.86 152.40 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 120.19 0.88 169.38 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 120.19 0.88 169.38 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 120.19 0.88 169.38 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 116.20 0.88 126.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 120.20 0.86 152.40 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 106.20 0.86 136.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 134.20 0.86 183.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 116.20 0.88 126.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 134.20 0.86 183.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 120.19 0.88 169.38 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 114.20 0.81 151.00 
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Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 106.20 0.86 136.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 120.19 0.88 169.38 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 142.30 0.73 174.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 118.17 0.90 171.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 148.30 0.86 185.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 148.30 0.86 185.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 118.17 0.90 171.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 114.20 0.81 151.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 78.11 0.87 80.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 74.12 0.81 117.70 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 142.30 0.73 174.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 74.12 0.81 117.70 

Seyed Mojtaba 

Hashemi's 

Thesis 

1371.00 0.50 0.57 78.11 0.87 80.00 

 

 

 

 

 

 

 

 

 

 



163 

 

 

 

 

Table B.4. Datapoints used in the ML algorithm. The last 6 features. 

Source 
Melting 

point °C 

Electronic 

polarization 

of the test 

(cm3/mol) 

Molecular  

parachors 

Molar 

volume 

(m3/kmol) 

polarizability 

( Å³) 

Henrys Law 

Constant 

(atm-

m3/mole) 

1st-quarter- 

Ford Report 
-89.50 22.15 207.00 0.09 8.80 0.00 

1st-quarter- 

Ford Report 
-34.00 35.96 284.67 0.12 14.20 0.01 

1st-quarter- 

Ford Report 
-34.00 35.96 284.67 0.12 14.20 0.01 

2nd-quarter-

Ford report 
-34.00 35.96 284.67 0.12 14.20 0.01 

2nd-quarter-

Ford report 
-78.00 31.52 294.15 0.13 13.42 0.00 

2nd-quarter-

Ford report 
-84.70 29.81 272.90 0.13 11.80 0.00 

2nd-quarter-

Ford report 
-90.61 35.05 315.93 0.14 13.70 1.80 

2nd-quarter-

Ford report 
-108.40 19.88 181.30 0.26 42.70 0.00 

2nd-quarter-

Ford report 
-89.00 36.15 338.19 0.15 14.40  

2nd-quarter-

Ford report 
-91.50 41.54 378.86 0.16 16.20  

3d-quarter- Ford 

report 
-21.00 32.28 292.57 0.11 12.70 0.00 

3d-quarter-Ford 

reprot 
-70.00 80.37 710.54 0.30 31.50 0.00 

3d-quarter-Ford 

reprot 
-81.00 40.00 316.69 0.14 16.10 0.00 

3d-quarter-Ford 

reprot 
54.50 47.71 374.17 0.17 20.00 0.00 

3d-quarter-Ford 

reprot 
-51.40 39.04 298.08 0.12 15.20 0.00 

3d-quarter-Ford 

reprot 
80.26 40.10 283.10 0.13 17.50 0.00 

3d-quarter-Ford 

reprot 
28.00 26.72 247.72 0.10 10.80 0.00 

3d-quarter-Ford 

reprot 
25.50 25.50 231.30 0.10 10.20 0.00 

5th-quarter-

Ford reprot 
25.50 25.47 231.06 0.10 10.20  
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Keivan 

Rahmani's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Keivan 

Rahmani's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Keivan 

Rahmani's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Keivan 

Rahmani's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Keivan 

Rahmani's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Keivan 

Rahmani's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Keivan 

Rahmani's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Keivan 

Rahmani's 

Thesis 

-43.78 40.43 320.64 0.14 16.10 0.01 

Keivan 

Rahmani's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Keivan 

Rahmani's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Mohammad 

Feizbakhshan's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Mohammad 

Feizbakhshan's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Mohammad 

Feizbakhshan's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Mohammad 

Feizbakhshan's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Mohammad 

Feizbakhshan's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Mohammad 

Feizbakhshan's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 
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Mohammad 

Feizbakhshan's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Mohammad 

Feizbakhshan's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Mohammad 

Feizbakhshan's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Mohammad 

Feizbakhshan's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Nastaran 

Mosavari Thesis 
29.70 48.31 428.56 0.20 20.61 5.15 

Nastaran 

Mosavari Thesis 
-35.00 35.21 322.81 0.14 14.31 0.00 

Nastaran 

Mosavari Thesis 
-43.78 40.43 317.92 0.14 16.10 0.01 

Nastaran 

Mosavari Thesis 
-35.00 35.21 322.81 0.14 14.31 0.00 

Nastaran 

Mosavari Thesis 
-74.80 33.16 296.89 0.13 14.37 0.00 

Nastaran 

Mosavari Thesis 
-43.78 40.43 317.92 0.14 16.10 0.01 

Nastaran 

Mosavari Thesis 
13.20 35.96 284.41 0.12 14.20 0.01 

Nastaran 

Mosavari Thesis 
29.70 48.31 428.56 0.20 20.61 5.15 

Nastaran 

Mosavari Thesis 
-43.78 40.43 317.92 0.14 16.10 0.01 

Nastaran 

Mosavari Thesis 
13.20 35.96 284.41 0.12 14.20 0.01 

Nastaran 

Mosavari Thesis 
-74.80 33.16 296.89 0.13 14.37 0.00 

Nastaran 

Mosavari Thesis 
-74.80 33.16 296.89 0.13 14.37 0.00 

Nastaran 

Mosavari Thesis 
-89.80 22.15 206.99 0.09 9.21 0.00 

Nastaran 

Mosavari Thesis 
-89.80 22.15 206.99 0.09 9.21 0.00 

Nastaran 

Mosavari Thesis 
29.70 48.31 428.56 0.20 20.61 5.15 

Nastaran 

Mosavari Thesis 
-94.90 35.80 284.96 0.12 14.20 0.01 

Nastaran 

Mosavari Thesis 
-94.90 35.80 284.96 0.12 14.20 0.01 

Nastaran 

Mosavari Thesis 
13.20 35.96 284.41 0.12 14.20 0.01 
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Nastaran 

Mosavari Thesis 
-35.00 35.21 322.81 0.14 14.31 0.00 

Nastaran 

Mosavari Thesis 
-78.00 31.51 295.37 0.13 13.42 0.00 

Nastaran 

Mosavari Thesis 
-78.00 31.51 295.37 0.13 13.42 0.00 

Nastaran 

Mosavari Thesis 
-94.90 35.80 284.96 0.12 14.20 0.01 

Nastaran 

Mosavari Thesis 
-89.80 22.15 206.99 0.09 9.21 0.00 

Nastaran 

Mosavari Thesis 
-78.00 31.51 295.37 0.13 13.42 0.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Seyed Mojtaba 

Hashemi's 

Thesis 

-96.00 40.39 322.19 0.14 16.00 0.01 

Seyed Mojtaba 

Hashemi's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Seyed Mojtaba 

Hashemi's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Seyed Mojtaba 

Hashemi's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Seyed Mojtaba 

Hashemi's 

Thesis 

-78.00 31.52 294.15 0.13 13.42 0.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

-96.00 40.39 322.19 0.14 16.00 0.01 

Seyed Mojtaba 

Hashemi's 

Thesis 

-93.00 35.95 286.06 0.12 14.20 0.01 

Seyed Mojtaba 

Hashemi's 

Thesis 

-88.00 45.27 365.20 0.16 17.90 0.01 

Seyed Mojtaba 

Hashemi's 

Thesis 

-78.00 31.52 294.15 0.13 13.42 0.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

-88.00 45.27 365.20 0.16 17.90 0.01 

Seyed Mojtaba 

Hashemi's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 
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Seyed Mojtaba 

Hashemi's 

Thesis 

-35.00 34.74 319.79 0.14 14.31 0.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

-93.00 35.95 286.06 0.12 14.20 0.01 

Seyed Mojtaba 

Hashemi's 

Thesis 

-43.78 40.43 317.92 0.14 16.10 0.01 

Seyed Mojtaba 

Hashemi's 

Thesis 

-29.70 48.32 429.19 0.20 19.10 4.83 

Seyed Mojtaba 

Hashemi's 

Thesis 

-74.80 33.16 296.39 0.13 14.37 0.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

-44.72 49.80 400.75 0.17 19.70  

Seyed Mojtaba 

Hashemi's 

Thesis 

-44.72 49.80 400.75 0.17 19.70  

Seyed Mojtaba 

Hashemi's 

Thesis 

-74.80 33.16 296.39 0.13 14.37 0.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

-35.00 34.74 319.79 0.14 14.31 0.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

5.50 26.36 206.22 0.09 10.32 0.01 

Seyed Mojtaba 

Hashemi's 

Thesis 

-89.80 22.04 205.97 0.92 9.21 0.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

-29.70 48.32 429.19 0.20 19.10 4.83 

Seyed Mojtaba 

Hashemi's 

Thesis 

-89.80 22.04 205.97 0.92 9.21 0.00 

Seyed Mojtaba 

Hashemi's 

Thesis 

5.50 26.36 206.22 0.09 10.32 0.01 
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C. MATLAB code for PSD prediction 

function V20 = Pore_size_changes_Micropores_ML(file_name,Heal_data) 

subsetA = xlsread(file_name,1,'A3:B50');     

Molar_volume =0.14 ;     %TMB molar volume 

Micropore_Volume_percent=- 2.295 * Heal_data*100- 8.418 * Molar_volume+ 97.578;  
 

Pore_width = subsetA(:,1); 

Pore_width_below_20 = Pore_width(Pore_width<=20); 

dV = subsetA(:,2); 

dV20 = dV(1:size(Pore_width_below_20)); 

Pore_width_below_32 = Pore_width(Pore_width<=32); 

Pore_width_20_32 = Pore_width_below_32(Pore_width_below_32>20); 

dV = subsetA(:,2); 

dV32 = dV(1:size(Pore_width_below_32)); 

dv21_32 = dV(18:size(Pore_width_20_32,1)+17);  

Micropore_volume = trapz(Pore_width_below_20,dV20);  

Micropore_voume_final = Micropore_volume*(Micropore_Volume_percent/100); 

S = cumtrapz(Pore_width_below_20,dV20); 

 Sprime = zeros(length(S),1); 

 Sprime(1)=S(1); 

 for j=2:length(S)           

     Sprime(j)=S(j)-S(j-1); 

 end 

Sprime(1)=S(2)+0.01; 

E0 = Characteristic_Energy_micropore(file_name);   

 temp1 = length(Sprime)-length(E0); 

 temp2 = ones(temp1,1); 

 E = vertcat(E0,temp2); 

 MSP= E.* Sprime;        

while trapz(Pore_width_below_20,dV20) -

Micropore_voume_final>0.00000000000000000000000001  

    dV20 = dV20-MSP*0.00001; 

    dV20(dV20<0)=0; 

end 

dV20 

dv_new = vertcat(dV20,dv21_32); 

V20 = trapz(Pore_width_below_20,dV20); 

fprintf('your new available total micropore volume is %10f5\n',V20); 

V32 = trapz(Pore_width_below_32,dv_new); 
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fprintf('your new available V32 is %10f5\n',V32); 

V = trapz(Pore_width,dV); 

fprintf('your new available total pore volume is %10f5\n',V); 

dV(1:length(dV20)) = dV20; 

plot(Pore_width,dV,'r'); 

axis([0,100,-0.01,0.15]); 

grid on; 

title('Pore Size Disturbution for cycle '); 

ylabel('d(V) (cm3/A/g)'); 

xlabel('Pore width'); 

hold off; 

end 
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D. Regression Tree graph 
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