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Abstract

Fuego is an open-source software framework for developing game en-
gines for full-information two-player board games, with a focus on the game
of Go. It was mainly developed by the Computer Go group of the University
of Alberta. Fuego includes a Go engine with a playing strength that is com-
petitive with the top programs in 9 × 9 Go, and respectable in 19 × 19 Go.
This report describes the reusable components of the software framework
and specific algorithms used in the Go engine. The description includes a
new enhancement for Monte-Carlo tree search: a lock-free multithreaded
mode.

1 Introduction

Research in computing science is driven by the interplay of theory and practice.
Advances in theory, such as Monte-Carlo Tree Search and the UCT algorithm [4,
24], lead to breakthrough performance in computer Go, as in the programs Crazy
Stone [4] and MoGo [15]. In turn, attempts to improve the playing strength of
these programs led to improved algorithms, such as RAVE and prior knowledge
initialization [16].

Fuego is an open-source software framework for developing game engines for
full-information two-player board games, with a focus on the game of Go. Open
source software can facilitate and accelerate research. It lowers the overhead of
getting started with research in a field, and allows experiments with new algorithms
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that would not be possible otherwise because of the cost of implementing state
of the art methods. Successful previous examples show the importance of open-
source software: GNU Go [14], by providing the first open source program with a
strength approaching the best classical programs, has had a huge impact, attracting
dozens of researchers and hundreds of hobbyists. In planning, Hoffmann’s FF
[18] has had a similar impact, and has been used as the basis for much followup
research.

Fuego contains a state of the art implementation of MCTS with many stan-
dard enhancements. It implements a coherent design, consistent with software
engineering best practices. Advanced features include a lock-free shared memory
architecture. The Fuego framework has been proven in applications to Go, Hex,
and Amazons.

The main innovation of Fuego lies not in the novelty of its methods or algo-
rithms, but in the fact that for the first time, a state of the art implementation of
these methods is made available freely to the public in form of a consistent, well-
designed, tested and maintained open source software.

There is a number of other available systems: For MoGo [15, 17], only an
executable is available. The reference MCTS implementation by Dailey [6] pro-
vides a very useful starting point, but is far from a competitive system. Recent
versions of GNU Go [14] contain a hybrid system adding Monte-Carlo search to
GNU Go. However, it is several hundred Elo rating points weaker than state of the
art programs.

1.1 Why Focus on MCTS and on Go?

Research in computer Go has been revolutionized by MCTS methods, and has seen
more progress within 3 years than in the two decades before. Programs are close
to perfection on 7× 7 and have reached high amateur dan level on the 9× 9 board.
The top programs are also dan level on 19× 19 and have far surpassed the strength
of classical programs. For example, David Fotland’s new MCTS-based version of
The Many Faces of Go is 5 stones stronger than his old program [13].

MCTS is the state of the art in computer Go and General Game Playing [12].
In Go, at the 13th International Computer Games Championship in Beijing 2008,
MCTS-based programs dominated the field. In both the 9 × 9 and the 19 × 19
competition, the top half dozen programs used MCTS. The programs MoGo, Crazy
Stone and Many Faces of Go have achieved successes against professional players
in even games on 9×9 and with handicaps of 6-9 stones on 19×19 [33]. In General
Game-playing, the MCTS program CadiaPlayer by Finnsson and Björnsson has
won both the 2007 and 2008 AAAI competitions [12].

In several other games, the MCTS approach is being intensely investigated. In
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the games of Amazons and Hex, MCTS-based programs have reached the strength
of classical approaches [26, 1]. At the 13th International Computer Games Cham-
pionship, the MCTS-based Amazons program Invader took the title from the five
times champion, the classical alpha-beta searcher 8 Queens Problem. In Hex, Mo-
Hex 2008, which used an earlier version of the Fuego MCTS engine described
in this report, finished in a strong second place and won 3 out of 4 games in its
mini-match against the winning program Wolve 2008 [1].

2 The software framework

2.1 History

Fuego is built on two previous projects: Kierulf’s Smart Game Board [21, 22] and
Müller’s Explorer [27, 28]. Smart Game Board is a workbench for game-playing
programs that has been under development since the mid 1980’s. Explorer is a
Go-playing program built on top of Smart Game Board. It’s history goes back to
Kierulf and Chen’s first version in 1988.

Motivated by the successes of Crazy Stone and Mogo, Enzenberger started
to implement an MCTS program in 2007. This program was built on top of the
Smartgame and Go core routines but independent of the remaining Explorer code
base. This program, simply called Uct at first, became the basis of Fuego. Fuego
became an open source project in May 2008.

2.2 Technical Description and Requirements

This paper describes version 0.3 of Fuego. File downloads and access to the ver-
sion control system are available at a public open-source hosting service [9]. It is
distributed under the terms of the GNU Lesser General Public License [25], version
3 or newer.

Fuego is a software framework. In contrast to a small library with limited func-
tionality and a stable API, Fuego provides a large number of classes and functions.
The API is not stable between major releases. Porting applications that depend on
the Fuego libraries to a new major release can be a significant effort. For each ma-
jor release a stable branch is created, which is used for applying critical bug fixes
that do not break the API, and can be used by applications that do not want or need
to follow new developments in the main branch. The code is divided into five li-
braries, and uses a largely consistent coding style. Figure 1 shows the dependency
graph of the libraries and applications.

The code is written in C++ with portability in mind. Apart from the standard
C++ library, it uses selected parts of the Boost libraries [7], which are available
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for a large number of platforms. The required version of Boost is 1.33.1 or newer.
Fuego compiles successfully with recent versions of gcc, from 4.1.2 up. Older
versions of gcc will probably work but have not been tested.

Platform-dependent functionality, such as time measurement or process cre-
ation, is encapsulated in classes of the SmartGame library (see Section 2.4). The
default implementation of those classes uses POSIX function calls. No attempt is
made to provide GUI-specific functionality. GUIs or other controllers can interface
to the game engines by linking, if they are written in C++ or a compatible language,
or by inter-process communication using the Go Text Protocol (see Section 2.3).

GtpEngine

SmartGame

Go

SimplePlayers GoUct

FuegoTest FuegoMain

Figure 1: Libraries and applications of Fuego

2.3 GtpEngine library

GTP, the Go Text Protocol [11], is a text-based protocol for controlling a Go en-
gine over a command and response stream, such as the standard I/O streams of
the process, or network sockets. It was first used by GNU Go [14] and has gained
widespread adoption in the Computer Go community in the last few years. Among
other applications, it is used for connecting an engine to graphical user interfaces,
for regression testing, and as a simple language to set engine parameters in config-
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uration files. The protocol has also been used for other games with game-specific
command sets, for example for the games Amazons, Othello [30], and Hex.

The GtpEngine library provides a game-independent implementation of GTP.
Concrete game engines will typically derive from the base engine class and register
new commands and their handlers. The base engine runs the command loop, parses
commands and invokes the command handlers. In addition, GtpEngine provides
support for pondering, to allow the engine to think during the opponent’s time.
The pondering function is a function of the subclass that is invoked whenever the
engine is waiting for the next command. The base engine sets a flag when the
next command was received to indicate to the subclass that the pondering function
needs to terminate. This facilitates the use of pondering, because the necessary use
of multithreading is hidden in the base engine. The functions of the subclass do not
need to be thread-safe, because they are only invoked sequentially. GtpEngine also
provides support for the non-standard GTP extension for interrupting commands as
used by the GoGui graphical user interface [8]. Again, the necessary multithreaded
implementation is hidden in the base engine class.

2.4 SmartGame library

The SmartGame library contains generally useful game-independent functionality.
It includes utility classes, classes that encapsulate non-portable platform-dependent
functionality, and classes and functions that help to represent the game state for
two-player games on square boards. Further, there are classes that can represent,
load and save game trees in Smart Game Format [19]. The two most complex
classes are game-independent implementations of the alpha-beta search algorithm
and Monte-Carlo tree search, which will be described in more detail in the next
two sections. Both search classes assume that player moves can be represented by
positive integer values. This restriction could be lifted in the future by making the
move class a template parameter of the search.

2.4.1 Alpha-beta search

SmartGame contains a game-independent alpha-beta search engine. It supports
standard alpha-beta search as well as iterative deepening with fractional ply ex-
tensions, a transposition table, and move ordering heuristics such as the history
heuristic and preordering the best move from the previous iteration. It also pro-
vides an implementation of Buro’s Probcut [2]. Tracing support allows saving a
search tree as an sgf file, complete with game-specific text information in nodes.
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2.4.2 Monte-Carlo tree search

The base Monte-Carlo tree search class of the SmartGame library implements the
UCT search algorithm [24] with a number of commonly used enhancements. Con-
crete subclasses need to implement pure virtual functions for representing the game
state, generating and playing moves in both the in-tree phase and the playout phase,
and evaluating terminal states.

The search can optionally use the Rapid Action Value Estimation (RAVE)
heuristic [15], which was first used in the MoGo Go program and is an impor-
tant enhancement for Go and other games with a high correlation of the values of
the same move in different positions. RAVE is implemented in a slightly differ-
ent form than originally used by MoGo. Instead of adding a UCT-like bias term
to the move value and the RAVE value before computing the weighted sum, the
weighted sum of the values is computed first, and the UCT bias term is added after
that. Since initially most of the moves will have only RAVE samples, and the num-
ber of move samples is zero, the UCT bias term is slightly modified by adding 1 to
the number of move samples. This avoids a division by zero with minimal impact
on the value of the bias term for larger numbers of move samples. The weights of
the move and RAVE value are derived by treating them as independent estimators
and minimizing the mean squared error of the weighted sum. The mean squared
error of the move and RAVE value are modeled with the function a/N + b with N
being the number of samples and constants a, b that need to be determined exper-
imentally. The RAVE values can optionally be updated by weighting the samples
with a function that decreases with the number of moves between the game states.

The move and RAVE values can be initialized with prior knowledge from
game-specific static heuristics [15], if the subclass can provide such heuristics.

For efficiency, the tree implementation avoids dynamic memory allocation and
allocates new nodes from an array of pre-allocated memory. Nodes are never
deleted during a search. If the tree runs out of memory, the search can option-
ally be restarted after pruning leaf nodes with a count below a certain threshold.

Most of the parameters of the search class can be changed at run-time to fa-
cilitate tuning. The search also collects statistical information, for example the
average in-tree and total length of simulations and the number of simulations per
second.

2.4.3 Multithreading in the Monte-Carlo tree search

The search supports parallelization on a single system using multithreading and
shared memory. Each thread runs the normal Monte-Carlo tree search algorithm
and has its own game state. All threads share the same game tree; modifications of
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the tree are protected by a global mutex. The maximum speedup of this paralleliza-
tion method is bounded by the inverse of the time that is spent in the phases of the
simulation that needs locking (the in-tree play phase and the tree update phase) as
a percentage of the total time for the simulation. Other researches have proposed
a more fine-grained locking mechanism that needs a separate mutex for each node
in the tree, but this did not work well in practice [3]. The problem here is that
usually a large number of nodes are shared in the initial in-tree move sequences of
the different threads; at least one node, the root node, is always shared.

The Monte-Carlo tree search implementation of Fuego introduces a new lock-
free multithreading mode that can improve the performance significantly [10].
Lock-free mode depends on hardware support for a specific memory model. There-
fore it is an optional feature of the base search class that is switched off by default
and needs to be enabled explicitly. The lock-free implementation does not use a
mutex at all. Each thread has its own node allocator. If multiple threads expand
the same node in the tree, only those children are used that are created last, which
causes a small memory overhead. The move and RAVE values are stored in the
nodes as counts and incrementally updated mean values. They are updated without
protection of a mutex. This can cause updates of the mean to be lost with or without
increment of the count, as well as updates of the mean occurring without increment
of the count. In practice, these wrong updates occur with low probability and are
intentionally ignored. The requirements on the memory model of the platform
are that writes of the basic types size t, int, float and pointers are atomic and that
writes by one thread are seen in the same order by another thread. The popular IA-
32 and Intel-64 architecture guarantees these assumptions and even synchronizes
CPU caches after writes [20].

Figure 2 shows the performance of locked and lock-free multithreading with n
threads in comparison to a single-threaded search given n times more time. The
experiment was performed using the Monte-Carlo tree search Go engine of Fuego
(see Section 3) on both 9 × 9 and 19 × 19 boards, with one second per move, on
a Intel Xeon E5420 2.5 GHz dual quadcore system. Each data point shows the
percentage of wins in 1000 games against the single-threaded version. The version
using locking does not scale beyond two threads on 9 × 9 and three on 19 × 19.
The lock-free version scales up to seven threads in this experiment. Preliminary
recent results on a 16 core system suggest that the program continues to improve
with more cores, though the gain is marginal in the case of 9× 9.

The search supports other optional features that can improve the multithreaded
performance depending on the game and the number of threads.

• Using more than one playout per simulation decreases the percentage of time
that is spent in the in-tree phase in each simulation.

7



• The virtual loss technique [3] can reduce the chance that different threads
explore the same or very similar in-tree sequences.

2.5 Go library

The Go library builds on the SmartGame library and provides functionality specific
to the game of Go.

The most important class is an efficient implementation of a Go board, which
keeps a history of all moves played and allows to undo them. It incrementally
keeps track of the stones and liberties of all blocks on the board and allows to check
moves for legality. All commonly used ko rules, simple ko, situational superko and
positional superko, are supported.

The library contains a base class for generally useful but Go-specific GTP com-
mands. Two classes implement widely used algorithms for detecting unconditional
life: the Benson algorithm and Müller’s extension for life under alternating play
[27].

An opening book class allows to read opening positions from a data file using
a simple text format, and matches them on the current position independent of
rotations and mirroring of the position. One such data file is included.

2.5.1 Opening Book

Fuego contains both a 9 × 9 and a 19 × 19 opening book. The 9 × 9 book is
hand-built. The design principles are to avoid bad moves, and to keep the game as
simple as possible in favorable positions. To keep the book small, only one move is
selected per position. This makes the book easier to maintain, but has one potential
disadvantage - it could be exploited by opponents to prepare “killer” variations.
Most of the book lines are short. A few longer lines were added in cases where a
position is equal or favorable in the human’s judgment but the program “panics”
and starts self-destructing. However, these long lines are problematic and will
probably be removed in the future.

Fuego’s human-built book is in contrast to MoGo’s massive machine-built
book. It would be very interesting to compare these books, for example by swap-
ping the books used by Fuego and MoGo. Another contrasting approach is Yogo’s
book, which apparently contains a large number of traps designed by a professional
player. These traps are positions that are often misplayed by Monte-Carlo based
programs.

The book is grown by analyzing losses, and by examining winning statistics of
matches against other strong programs. Therefore the book is biased towards lines
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occurring in practice, and still has big “holes” in other lines. The current book con-
tains 1491 positions, which get expanded into 11598 positions by adding rotated
and mirrored variations for fast matching. Most lines are of length 5 or shorter. In
self-play the 9×9 opening book gives about a 60-70 Elo points gain. Interestingly,
this gain seems to remain roughly the same, even when varying the number of sim-
ulations per move over the large range of 12 - 48000. Many weaknesses addressed
by the book seem to be systematic weaknesses in Fuego’s opening play that cannot
be discovered easily by more search.

The 19 × 19 book consists of a small database of popular full-board openings
extracted from dan-level amateur games. Its effect is largely cosmetic, to play
more natural-looking moves in the very beginning. In contrast to most classical
programs, the current Fuego does not contain a Joseki book with local standard
sequences.

2.6 Other libraries and applications

SimplePlayers is a library with a collection of simple Go playing algorithms, for
example a random player and a player that maximizes a simple influence function.
They can be used for testing and reference purposes.

GoUct and FuegoMain are a library and application that contain the main
Fuego engine and a GTP interface to it. The main Fuego engine is described in
detail in Section 3.

FuegoTest is a GTP interface to functionality in the SmartGame and Go li-
brary. It exists to provide access to the engine via additional GTP commands, for
example in regression tests, which need not be included in the main Fuego engine.
FuegoTest can also be used to play against any of the players of the SimplePlayers
library.

2.7 External Applications and Playing Engines that use Fuego

The following programs currently use the Fuego framework:

MoHex is a world-class Hex program [1]. It currently uses the UCT search frame-
work from Fuego 0.3, along with some utilities such as reading and writing
sgf, random number generation, and timers/clocks.

SRI has a research team working on a DARPA funded Go seedling project. They
use Fuego 0.2.1 as a base to insert/interface their own players and test against
other simple players in Fuego as well as entering it into CGOS. Their re-
search explores machine learning techniques for learning new patterns dur-
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ing ”self-play” to improve playing strength, as well as testing of an influence
function designed by Thomas Wolf.

Explorer is a classical knowledge- and local search-based Go program [27, 28].
The Fuego modules GtpEngine, SmartGame, Go and SimplePlayers were
originally extracted from Explorer and are still used there. Explorer is kept
in sync with the most recent subversion development version of Fuego.

TsumeGo Explorer is the world’s best Life and Death solver for enclosed areas
[23]. It uses the SmartGame and Go libraries and is kept in sync with sub-
version.

RLGO is a reinforcement learning Go program [31]. RLGO is built on the SmartGame
and Go libraries from Fuego 0.1. In addition, the tournament version of
RLGO uses the default playout policy from Fuego 0.1 to rollout games to
completion.

Arrow is an Amazons-playing program. It uses the classical alpha-beta search
and other basic functionality from the SmartGame module. Arrow is kept in
sync with subversion.

SOS implements a simple abstract Sum-of-Switches game and is used for experi-
ments with Monte-Carlo Tree Search [32]. It currently uses the UCT search
framework from Fuego 0.3.

Student Projects Several other current and previous research projects by students
at the University of Alberta have used the Fuego framework for topics such
as combinatorial games and adversarial planning. Examples are [29, 34].

3 The Go engine

The main Go engine of Fuego uses a full-board Monte-Carlo tree search. It is
contained in a library named GoUct. The library contains classes that can be reused
for other Monte-Carlo tree search applications in Go, for example local searches,
and a GTP engine with the main Fuego player and commands for setting player
and search parameters and querying information about the search. The application
FuegoMain contains the top-level main function, which runs the GTP engine using
the standard I/O streams of the process.
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3.1 Full-board Monte-Carlo tree search

The Go-specific Monte-Carlo tree search class extends the Monte-Carlo tree search
class of the SmartGame library by providing a Go-specific game state. The game-
state uses the Go board of the Go library in the in-tree phase and a special Go board
for the playout phase. The playout board is speed-optimized at the cost of reduced
functionality: it still provides incrementally updated information about stones and
liberties of blocks, but does not support undoing moves, and supports only the
simple ko rule.

The full-board Monte-Carlo tree search class extends the Go-specific Monte-
Carlo tree search class and implements a playout policy and prior knowledge.

The playout policy is similar to the one originally used by MoGo [15]. Capture
moves or atari-defense moves, or moves that match a small set of hand-selected
3×3 patterns, are selected if they are adjacent to the last move played on the board.
Fuego-specific enhancements include a move generator for 2-liberty blocks. If no
move is selected so far, a global capture move is selected. If no global capture
move exists either, a move is selected randomly from all legal moves on the board.
A replacement policy attempts to move tactically bad moves to an adjacent point.
Moves are never selected if all adjacent points are occupied by stones of the color
to move, unless one of them is in atari. A pass in the playout phase is generated
only if no other moves were produced.

The prior knowledge class initializes moves in the tree, that would have been
played by the playout policy, with positive values for the player to move. An addi-
tional bonus is given to global matches of the 3× 3 patterns of the playout policy,
moves that set the opponent into atari, and all moves that are in a neighborhood up
to a certain distance to the last move. Self-atari moves are penalized. The values
and counts used in the initialization depend on the occurrence of moves in these
move classes and on the board size.

A move filter is implemented to completely prune moves in the root node. This
filter can run algorithms that would take too much time if they were run at every
node of the search, or that use code that is not thread-safe. Currently, it prunes
unsuccessful ladder-defense moves, because the result of the ladder would likely
not become visible within the search tree on large board sizes. Also, moves to
points on the edge of the board are pruned if there is no stone in a neighborhood of
the point up to a certain distance.

The evaluation of terminal positions in the playout phase is simple, because
passes are only generated if no other moves are generated. After two consecu-
tive pass moves, the position contains only alive blocks and single-point eyes or
connection points, such that the score can be easily determined. The win/loss eval-
uation is modified by a small bonus that favours shorter playouts and terminal posi-
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tions with a larger score. This not only plays more human-like moves by preferring
wins with fewer moves and maximizing the score, even if all moves are losses. It
also contributes with a small amount to the playing strength, because playouts with
long sequences or wins with a small score have a larger error.

The evaluation in the in-tree phase is more difficult, because pass moves are
always generated here to avoid losing sekis in zugzwang situations. A terminal
position after two passes in the in-tree phase will usually contain dead blocks,
but the search does not have information about the status of blocks. Therefore,
the score is determined using Tromp-Taylor rules: every block is considered to
be alive. Together with the additional requirements that the two passes are both
played in the search, this will still generate the best move if Chinese rules are used,
in which dead blocks may remain on the board, because the Tromp-Taylor score
is a lower bound to the Chinese score. The player to move therefore will only
generate a pass move if he can afford that the opponent terminates the game by
also playing a pass, and the position is evaluated with Tromp-Taylor.

3.2 The player

The player class of the Go engine uses the full-board Monte-Carlo tree search to
generate moves and provides additional functionality on top of it. The player sets
search parameters depending of the current board size, because some parameters,
for example the ones defining the RAVE weighting function, have different optimal
values on different board sizes.

If pondering is enabled, the player will also perform a search on the current
position while waiting for the opponent to move. The next search for the player
will then be initialized with the reusable subtree of the pondering search. To a lesser
extent, reusing the subtree can also be useful if pondering is disabled, because a
subtree of the last regular search of the player can be used.

The player aborts the search early if the value of the root node is close to a win,
and performs additional searches to check if the position is still a win after passing
and the status of all points on the board is determined. For determining the status of
points, the search can compute statistics for the ownership of points averaged over
all terminal positions of the search. If passing seems to win with high probability,
the player passes immediately. This avoids the continuation of play in clearly won
positions and losing points if Japanese rules are used, in which playing moves in
safe territory can cost score points. This works well in most games, but is not a
full implementation of Japanese rules. The statistics for the ownership of points
are also used for the implementation of the standard GTP commands for querying
the final score or final status of blocks.
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3.3 Development and debugging

Fuego provides a number of GTP commands that are compatible with GoGui’s
generic analyze commands [8]. These commands have defined response types and
the response can be displayed graphically on the board. This allows a visualiza-
tion of the engine state or details of the search results, which helps development
and debugging. Fuego can also visualize the search dynamically by outputting in-
formation to the standard error stream, which uses GoGui’s LiveGfx syntax. For
example, the visit counts of the children of the root node or the current main vari-
ation of the search can be displayed on the board using a configurable interval of
simulations.

Many parameters of the search can be changed at runtime with GTP com-
mands. This makes it easy to experiment with different search parameters in a
given position or to set up experiments to tune the parameters. The GTP com-
mands for setting parameters are compatible with GoGui’s parameter command
type, such that GoGui can automatically create dialogs to edit these parameters in
the graphical user interface. Figure 3 shows Fuego running in GoGui with a dialog
for setting search parameters.

The search tree of a search and the history of all games played in the simula-
tions can be saved in SGF format. The saved search tree contains the position and
RAVE counts and values as SGF label properties or as text information in comment
properties.

3.4 Performance

3.4.1 CGOS

Fuego has been playing on the Computer Go Server (CGOS) [5] since July 2007.
CGOS is a game playing server for Computer Go programs, which computes an
incremental Elo rating of the programs, as well as a Bayes Elo rating based on the
complete history of all games played.

Figure 4 shows the performance of Fuego up to the release of version 0.3 in
December 2008. The data is based on the Bayes Elo computation of CGOS from
January 15 2009 (16:03 UCT for 19 × 19; 18:19 UCT for 9 × 9). Version 0.3
running on eight cores (Intel Xeon E5420 2.5 GHz dual quadcore system) in lock-
free mode was ranked as the 3rd-strongest program ever on 9 × 9 with a rating
of 2664 Elo. The two top-ranked programs are versions of MoGo running on
multinode supercomputer hardware. On 19 × 19 Fuego was the 2nd-strongest
program ever with a rating of 2290 Elo1.

1At the time this report was updated, April 30, 2009, the program Zen is also ranked above Fuego
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3.4.2 Tournaments

Fuego has achieved the following results in competitions:

• 1st place, KGS 9 × 9 tournament, December 7, 2008. 4 participants, 12
rounds, 11 wins, 1 loss.

• 4th place, 13th International Computer Games Championship, 19× 19, Oc-
tober 1, 2008. 13 participants, round robin, 8 wins, 4 losses.

• 4th place, 13th International Computer Games Championship, 9×9, October
1, 2008. 18 participants, 9 double rounds, 11 wins, 7 losses.

• 5th place, KGS tournament, September 14, 2008. 8 participants, 8 rounds, 4
wins, 4 losses.

• 6th place, 9× 9 Computer Go Tournament, European Go Congress, August
2008. 8 participants, 5 rounds, 2 wins, 3 losses.

• 7th place, 19×19 Computer Go Tournament, European Go Congress, August
2008. 8 participants, 6 rounds, 2 wins, 3 losses, 1 round missed due to
technical problems.

3.4.3 Play against Humans

Fuego has been tested in play on KGS against humans. It has achieved a rating of
2 kyu in 19× 19 games. 9× 9 games are not rated on KGS, but in informal games,
Fuego has beaten several high-dan amateur players on even.

3.4.4 Regression tests

The Fuego project contains several regression test suites which can be run with the
gogui-regress tool [8]. Main topic are blunders from games played, and tests for
the UCT and static safety of territory modules. For details, please see http://
fuego.svn.sourceforge.net/viewvc/fuego/trunk/regression/.

3.4.5 Performance tests

Figure 5 shows the performance on 9 × 9 against GNU Go version 3.6 depending
on the number of simulated games per move. No opening book was used for the
experiment. On an Intel Xeon E5420 2.5 GHz, Fuego achieves about 11000 sim-
ulations per second per core on an empty 9 × 9 board and about 2750 simulations
on an empty 19× 19 board.

on both board sizes, and Crazy Stone is now ranked ahead of Fuego on 9× 9 as well
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4 Future work / outlook

Fuego is a work in progress. Some of the bigger goals for future improvements
include:

• Grow the user community and increase the number of developers.

• Develop a massively parallel version.

• Apply Monte-Carlo tree search to other games such as Amazons or Dots and
Boxes.

• Establish Fuego as a top program on 19× 19.
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community for sharing their ideas, encouragement and friendly rivalry.
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Figure 2: Self-play performance of locked and lock-free multithreading in compar-
ison to a single-threaded search (1 sec per move)
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Figure 3: Fuego running in GoGui.
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Figure 4: Performance on CGOS until the release of version 0.3. Older versions
played under the name Uct, newer versions as Fuego. Before the implementation
of multithreading, Fuego used only 1 core (1c), later 2 or 8 cores (2c, 8c).
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Figure 5: Performance on 9×9 and 19×19 against GNU Go version 3.6 depending
on the number of simulated games per move.
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