
GreenAdvisor: A Tool for Analyzing the Impact of
Software Evolution on Energy Consumption

Karan Aggarwal, Abram Hindle, and Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, Canada

{kaggarwa, abram.hindle, stroulia}@ualberta.ca

Abstract—Change-impact analysis, namely “identifying the
potential consequences of a change” is an important and well
studied problem in software evolution. Any change may po-
tentially affect an application’s behaviour, performance, and
energy consumption profile. Our previous work demonstrated
that changes to the system-call profile of an application correlated
with changes to the application’s energy-consumption profile.
This paper evaluates and describes GreenAdvisor, a first of its kind
tool that systematically records and analyzes an application’s
system calls to predict whether the energy-consumption profile of
an application has changed. The GreenAdvisor tool was distributed
to numerous software teams, whose members were surveyed
about their experience using GreenAdvisor while developing
Android applications to examine the energy-consumption impact
of selected commits from the teams’ projects. GreenAdvisor was
evaluated against commits of these teams’ projects. The two
studies confirm the usefulness of our tool in assisting developers
analyze and understand the energy-consumption profile changes
of a new version. Based on our study findings, we constructed an
improved prediction model to forecast the direction of the change,
when a change in the energy-consumption profile is anticipated.
This work can potentially be extremely useful to developers who
currently have no similar tools.

Index Terms—Software energy consumption, energy efficiency,
software tools, application software

I. INTRODUCTION

Software undergoes continuous change through evolutionary
software-development processes, and maintenance activities
such as bug fixes and patches. The impact of these changes to
the application behaviour can be extensively and thoroughly
tested, using a variety of available tools. However, the conse-
quences of changes to the application’s energy consumption
are extremely difficult to predict and, to date, there is little
tool support to help developers with this challenging task.

This problem manifests itself as a great challenge in the
context of mobile applications. According to Pew [1], as of
May 2013, 63% of adult smartphone owners (in North America)
use their phones to go online and 34% of smartphone Internet
users go online primarily using their phones (and not a more
“traditional” device such as a desktop or laptop computer).
These trends have motivated the development of sophisticated
and complex mobile applications, offering a multitude of
information-access, entertainment and education functionalities.
The more sophisticated these applications become, the more
they demand of the mobile device battery. Battery life, which
affects a mobile device’s availability, is a critical factor in user

satisfaction. Despite its importance however, developers are
generally unable [2], [3] to estimate the energy consumption
of their applications, and predict how it may be impacted by
code changes.

Some research effort has been devoted to the examination
of factors affecting the energy consumption of mobile applica-
tions and constructing models to estimate smartphone energy
consumption [4], [5], [6]. Most previous work has focused
on helping end users track the energy consumption of their
smartphone [7], [8], [9], but relatively little attention has been
paid to the effect of code changes on an application’s energy-
consumption profile. Most notably, Hindle [10] proposed Green
Mining methodology, for analyzing the impact of code changes
on energy consumption. Intuitively, this methodology proposes
that the energy consumption of multiple versions of software
should be measured, and investigates the correlation of energy
consumption across software versions with multiple software
metrics in order to recognize which metrics might be potentially
useful proxies for estimating the size and direction of the
energy-consumption impact of code changes.

Applications invoke system-calls (syscalls) in order to use
resources and services mediated by the operating system (OS).
Examples of such resources and services include hardware
devices, network communication, intra-application communica-
tion, and peripherals. To access the peripherals that typically
consume quite substantial energy, the application would use
system-calls to request access to a peripheral from the OS and
invoke its operations. Thus the system-call log, a record of
system-calls invoked by the application, serves as a signature of
an application’s resource usage. In our previous work [11], the
green-mining methodology was used to correlate system-call
counts with the energy consumption of Android applications; a
simple and easy to use qualitative Rule of Thumb was proposed
to predict whether energy consumption will change (or not)
based on the system-call counts. Even though this is a very
simple model, it can potentially be very useful since developers
have been found to be generally unaware of the factors affecting
energy consumption of their applications [3].

This paper introduces GreenAdvisor, a tool developed to
operationalize this Rule of Thumb [11], in the context of
evolutionary software development by comparing the system-
call logs of subsequent commits and predicting how the new
version’s energy-consumption profile will compare to that of



the previous version. We conducted a user study to evaluate
GreenAdvisor against the projects of several software teams
in order to measure its perceived usefulness, while at the
same time probing the developers’ understanding of the factors
that affect the energy consumption of their applications. The
user study examines whether the users feel that the tool is
useful on two fronts: (a) the tool’s ability to predict change in
energy-consumption profile with change in code, and (b) its
ability to locate the code segment responsible for the change.
Furthermore, we refined the original Rule of Thumb model [11]
to predict not only whether the application energy consumption
will change but also the direction of the change, and this new
model was evaluated on important commits.

The rest of this paper is organized as follows: this work
in the context of related work is described in Section II; the
tool is described in Section III. Our evaluation methodology
is described in Section IV; our findings are reported in
Section V and discussed in Section VI; and our conclusions
are summarized in Section VIII.

II. RELATED WORK

This section reviews the relevant literature regarding power-
model construction, mining software repositories, and energy
discussions online.

A. Power Modeling

A number of models have been proposed for modelling
the energy consumption of devices, based on their hardware
components or their instruction sets. The general model-
construction methodology involves running sample applications
on the devices under examination and using the collected
records to infer models of the devices’ energy consumption.
These studies have focused on profiling individual components
of the software like CPU, disk, network, peripherals, screen.
This has led many researchers to building component profilers
to predict the energy consumption of their software [8], [4],
[12], [5], [9], [13], [14].

A hybrid was proposed by Pathak et al. [6], by applying
system-call tracing to model the energy consumption of smart-
phone applications. They concluded that previous models, built
by correlating component utilization with energy consumption,
are not accurate. They proposed the construction of finite
state machine (FSM), based on modeling energy states and
system calls for each component, which they integrated to
produce a single smartphone FSM that can estimate the energy
consumption of an application.

Hao et al. [15] built an energy-consumption model, eCalc,
for estimating CPU energy consumption at the program and
method levels. eLens [16] is an extension of eCalc that uses
other hardware components, besides the CPU, to profile energy
at multiple levels. Li et al. [17] extended it by profiling bytecode
instructions, and estimating energy consumption of each line of
source code with high accuracy. However, their studies relied
on quite device-specific models and focused on end users rather
than assisting development environments.

B. Mining Software Repositories

The MSR methodology – i.e., the use of statistical and
data mining techniques to discover interesting information
from software repositories [18] that can be leveraged in future
decisions – has also been applied to understanding software
energy-consumption profiles. Gupta et al. [19] studied the
energy consumption of a Windows phone, using a combination
of power traces and execution logs to build power models. They
also successfully utilised this data to detect energy patterns
that could predict buggy modules.

Hindle [10] described the Green Mining methodology for
collecting energy-consumption data over multiple application
versions. Based on energy-consumption measurements and
software metrics, they examined correlations between software
changes and energy consumption over multiple application
versions. Hindle et al. [20] also created the Green Miner test
bed, a dedicated hardware infrastructure to measure the energy
consumption of Android applications. They demonstrated that
multiple test runs are required to reliably calculate the energy
consumption of an application on a smartphone. Green Miner
can measure up to 50 power readings every second. A constant
voltage is provided to the phone, which draws varying current
according to the phone requirements. This test bed was used
for measuring the energy consumption of the projects examined
in this study.

Our previous work [11] proposed a simple model, based
on system-call counts, to predict changes in the energy-
consumption profile of the applications. A simple rule was
proposed by relating the energy-consumption profile to the
system-call profile. This Rule of Thumb states that significant
changes in system-call profiles lead to significant changes in
energy consumption. This helps developers develop an intuition
about code changes inducing energy-consumption changes,
which otherwise might be difficult to detect in the absence of
energy-consumption measuring instrumentation.

The case studies presented in this paper are based on the
Green Mining methodology, correlating code changes with
system-call profile changes and changes in energy-consumption.

C. Online Discussions about Energy

Online discussion forums are potentially a rich source
of information relevant to understanding software energy
consumption. Pinto et al. [3] analysed a dataset of more
than 300 questions, and 800 users on the Stackoverflow for
the energy-consumption related discussions among developers.
They found that developers lack the necessary tools and
knowledge for energy-aware development.

Pathak et al. [21] analysed four online mobile user forums
for discussions on bugs that led the applications to consume
high amounts of energy. Wilke et al. [22] analysed energy-
related user comments on Google play applications. They
found that energy inefficiency negatively impacts the user
rating of the applications. They also discovered that free
and paid-for applications had similar energy-efficiency related
complaints, evidently demonstrating a general obliviousness
to energy-efficiency driven development among application



C Library Functions

Application

System Call 
Interface

Kernel

User
 Space

Kernel 
Space

Fig. 1. This diagram shows how applications, C library functions, system-calls,
and the kernel interact with each other.

developers. Hence, developers are realizing the importance of
their applications’ energy efficiency, but are unable to follow
energy-efficiency driven development for the lack of tools.

III. GreenAdvisor

The GreenAdvisor tool is based on our previous findings [11]
that measured changes in the system-call profile, and used these
changes in system-call counts to predict the changes in the
application’s energy consumption.

A. Background

System-calls provide an API for user-space applications
to access the services, abstractions and devices managed by
the OS kernel and other OS components. System-calls are
functions provided by the OS kernel that user processes invoke
to manipulate or access resources [11].

Typically system-calls are provided for communicating with
the hardware (for example, accessing the hard disk), creating
and executing new processes, managing memory use, sending
(receiving) data to (from) other processes, and receiving event
notifications [23]. Figure 1 presents the relationships between
user applications, C library functions, system-calls, and the
OS kernel [23]. System-calls are typically invoked through
a library, such as the C standard library, graphics libraries,
network libraries, inter-process communication (IPC) libraries,
and occasionally by the application itself. System-call logs can
be generated with tools like strace 1.

Different versions of an application are expected to invoke
different system calls at run time, if the application behaviour
has changed from the previous version. In our previous
work [11], system-call profiles were related with energy-
consumption profiles. This method can help developers predict
changes in the energy profile of their applications, without any
special instrumentation. While examining multiple versions
of two open-source Android applications – firefox and
calculator in the study, it was found that system-call
profile exhibits instability similar to the energy-consumption
measurements. The variance per system-call averaged across
the versions is shown in Figure 2. Some system-calls are less
stable and have higher variance than others. Thus system-
call counts should be measured multiple times to get a stable

1Strace is part of systat http://sebastien.godard.pagesperso-orange.fr/

average. In energy-consumption research, it is very important
to address non-determinism of the environment by executing
multiple tests [10].

Linear and logistic regression models were built using these
measurements to estimate energy consumption and to classify
versions as low/high energy consuming versions. The main
contribution of that work was a Rule of Thumb that states
– "If the system-call profile changes significantly from the
previous version, it is probable that the application’s energy
consumption has changed as well" [11]. Using this rule, if
any system-call changes statistically significantly, then the
application’s energy consumption is also likely to have changed
statistically significantly. A pairwise Student’s t-test established
the statistical significance of difference between the energy
consumption or system-call counts of two commit-versions.
Energy-consumption measurements of the same system tend
to be normal and parametric, thus the t-test is appropriate.

In order to establish the usefulness of the Rule of Thumb,
we examined four metrics: precision, recall, specificity, and
F-measure (F1):

Precision =
SS

SS + SN

Recall =
SS

SS + NS

Specificity =
NN

NN + SN

F1 = 2 · Precision ·Recall

Precision + Recall

SS is the number of times that the changes in energy
consumption and system-call counts are significant. NS is
the number of times the change in energy consumption is
significant, while the system-call profile remains the same.
SN is the number of times the system-call profile changes
significantly, but the energy consumption does not. Finally,
NN is the number of times that neither change is significant.

All four metrics range from 0 to 1, with 0 being the worst
and 1 being the best possible value. High precision indicates
that the significant change in system-call counts leads to a
significant change in power consumption. High recall indicates
that the cases where significant energy consumption changes
were observed, co-occur with the cases with significant change
in system-call counts. High specificity indicates that our Rule of
Thumb generates few false positives: the cases where energy
consumption change was not significant were not marked as
significant. F1, the weighted mean of precision and recall, is
a measure of accuracy; the higher the F1 the more balanced
and accurate the model is.

The precision, recall and F1 values were much better than
random guess but not very high, while specificity was quite
high. As most of the commits do not produce significant energy-
consumption changes, high specificity indicates the Rule of
Thumb model works in the majority of the cases [11]. It is much
easier for developers to apply, as system-call counts can be
easily traced using freely available tools like strace, rather
than using expensive hardware-based energy-consumption
instrumentation [20]. We use this Rule of Thumb model from



0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

se
nd

to

re
ad

re
cv

fro
m

ge
tti

m
eo

fd
ay

ep
ol

l_
w

ai
t

io
ct

l

op
en

cl
os

e

ge
tp

id

ca
ch

ef
lu

sh

w
rit

e

to
ta

l

cl
oc

k_
ge

tti
m

e

m
ad

vi
se

si
gp

ro
cm

as
k

m
m

ap
2

ls
ee

k

ge
tp

rio
rit

y

fu
te

x

ge
tu

id
32

m
pr

ot
ec

t

st
at

64

ge
tti

d

m
un

m
ap

w
rit

ev

pr
ea

d

System Calls

Va
ria

nc
e(

%
)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

cl
os

e
ut

im
es

_l
ls

ee
k

fs
yn

c
pi

pe
si

ga
ct

io
n

ls
ta

t6
4

ge
tti

m
eo

fd
ay

ge
tu

id
32

op
en

un
lin

k
to

ta
l

fs
ta

t6
4

fu
te

x
cl

oc
k_

ge
tti

m
e

si
gp

ro
cm

as
k

m
pr

ot
ec

t
w

rit
e

ge
tp

id
ca

ch
ef

lu
sh

fc
nt

l6
4

ge
td

en
ts

64
ac

ce
ss

re
ad

st
at

64
ls

ee
k

so
ck

et
se

nd
m

sg
se

t_
tls

co
nn

ec
t

cl
on

e
io

ct
l

m
kd

ir
ge

tp
rio

rit
y

br
k

se
ts

oc
ko

pt
ge

ts
oc

ko
pt

se
nd

to
ep

ol
l_

w
ai

t
m

m
ap

2
ge

tti
d

m
ad

vi
se

re
cv

fro
m

m
un

m
ap

po
ll

ge
te

gi
d3

2
ge

te
ui

d3
2

ge
tg

id
32

w
rit

ev
re

cv
m

sg
ge

tp
ee

rn
am

e
na

no
sl

ee
p

ge
ts

oc
kn

am
e

System Calls

Va
ria

nc
e(

%
)

Fig. 2. Variance as a percentage of mean value across 10 runs per system-call per version for the Calculator (left) and Firefox (right)
applications [11]. The X axis refers to the system calls, while the Y axis refers to variance in percentage.

our previous work [11] to build a tool called GreenAdvisor and
evaluate Rule of Thumb in the light of new data collected from
our survey described in latter section.

B. The GreenAdvisor Tool

The GreenAdvisor tool has been built to enable programmers
to apply the Rule of Thumb model [11] on their own Android
applications without the need for expensive hardware based
energy-consumption instrumentation. It profiles the system-
calls of application test cases, and uses the Rule of Thumb [11]
to alert the application developer about a possible change in the
energy-consumption profile of their application. By profiling
the system-call traces between application versions, it alerts
the developer about possible changes in energy-consumption
profile and highlights the code that might be responsible for that
change using a simple bag-of-words model to relate system-
calls to Java API calls.

The GreenAdvisor uses the jUnit tests constructed by the
application developers as test cases for application usage. It
uses application executables (.apk files in Android) and the
application’s Android jUnit test cases to obtain system-call
trace profiles. While the jUnit test cases are executing on the
application, it uses strace program to profile the system-call
counts of the tests. These test runs are performed multiple
times, the default being 5 times per commit-version to obtain
both an average and a distribution of measurements. These
system-call measurements are compared using a Student’s t-test
in order to apply the Rule of Thumb .

The GreenAdvisor generates a report as shown in Fig. 3,
listing the system-calls that have changed significantly, and
the source code in the diff between versions that potentially
causes the functional changes in the application. For example,
if calls to the open system-call increase significantly, the
tool indicates to the developer that they might be performing
a higher number of open file operations. The report also

highlights the code changes that might be responsible for the
change in the system-call profile using a bag-of-words model.

GreenAdvisor uses bags of words, dictionaries, related to a
system-call to annotate source code relevant to that system-call.
The bag-of-words are created from observed system-calls and
the Java APIs that potentially generate these system-calls. This
is currently a manual and ad-hoc process where by keywords,
identifiers, APIs, and terms from Java code and Android APIs
are grouped into bags-of-words relevant to a particular system-
call. Keywords and identifiers from file IO APIs, and database
APIs such as FileInputStream and Android Preferences
API have been inserted into bags-of-words for open, write,
and read (depending on the exact identifier). Some system-
calls such as close might not be explicitly called (finalizers
called during garbage collection). These word bags have been
built manually by the authors, and could be improved by a
variety of automated techniques.

If there is a significant change in open system-call, that
might be mapped to FileInputStream’s open() method.
If a system-call is found to have been changed significantly, the
tool searches for these Java method(s) corresponding to that
system-call in the diff between the application code prior to
and its code after the commit. If any of those identifiers are
found in the diff, they are indicated in the report associated
with the particular system-call. By indicating the changed code
that might be behind the expected energy-consumption change,
the tool can help developers review their code change, and
possibly optimize it. A code segment highlighted by the tool
in a sample run is shown in Figure 4.

In summary, the GreenAdvisor workflow involves the fol-
lowing step sequence.

1) First it takes as input the application executable apk and
jUnit tests.

2) Next, it records the system-call-profile for selected
(possibly all) application versions by executing test runs
multiple times.



Fig. 3. A sample report generated by the GreenAdvisor tool indicating a
change in system-call counts.

Fig. 4. A code segment of diff highlighted by the GreenAdvisor tool
indicating the likely source of the writev system-call.

3) It compares the system-call profiles of subsequent appli-
cation versions, and, using the Rule of Thumb, predicts
whether a significant energy-consumption change may
have occurred between the two versions.

4) Next, it uses a pre-defined bag of words to map the
changed system-calls to corresponding Java methods in
the application, to indicate which code segments in the
commit diff might be responsible for the change.

5) Finally, it generates a report of the changed system-calls
and the code changes that might be responsible for these
changes.

IV. THE CASE-STUDY METHODOLOGY

Using the GreenAdvisor tool, a user study was conducted
with 13 student teams of 77 third-year University of Alberta
students, enrolled in a software-engineering course. As part
of their course deliverables 11 student teams developed geo-
location-aware question-and-answer portal application while
2 teams developed a travel expense claims application. Using
these projects, experiments were run to evaluate the prediction
models. This section describes our data-collection method, our
survey, and the experiments we ran on the 13 projects.

A. User Study on the GreenAdvisor Tool

In order to evaluate the GreenAdvisor tool, a voluntary survey
was distributed to the course students. The user-study evaluates
the tool on on two requirements: its ability to predict changes
in the application energy-consumption profile with changes in
code, and its ability to identify the code responsible for that
change. A demonstration of GreenAdvisor was given in the

class and its usage was explained to the students. The student
teams were asked to run the tool on selected commits that
they thought might change the energy consumption of their
applications. They were also asked to examine whether the code
segments identified by the tool matched with their expectations
of the code inducing the energy-consumption change. Students
could run the GreenAdvisor tool in the lab or at home on their
own time. Based on this exercise, they were asked to evaluate
the tool with respect to its effectiveness in predicting the energy
change and in identifying the code that induced it. They were
also asked to write a general paragraph about the factors they
thought affected the energy consumption of their applications
and their views on the tool. This survey was approved by
Ethics board at University of Alberta (ID: Pro00050197).

77 students (13 teams) consented for the study, and, out
of those, 42 students (seven teams) completed the survey
questionnaire. The effort per student on the course project can
be estimated to be around 80 hours per student, approximately
480 person-hours per team, throughout the term. The combined
effort of all the teams who participated was more than 6160
person-hours.

B. Expert Use of the Tool

In parallel with our survey of the student developer teams,
distinct commits from each of the 13 projects (from teams that
had consented) were selected manually to evaluate the Rule of
Thumb proposed in [11].

a) Student projects: All of the 11 projects in Fall’14
aimed to build an online question-and-answer forum, accessed
through a mobile application from any location. A set of applica-
tion requirements were given to the students, including posting
questions, searching for questions, browsing questions, posting
replies to questions, sorting questions/answers, favouriting
questions, upvoting/downvoting answers, attaching geolocation
to questions and so on. All 11 teams used the same requirement
specifications. There were three course-project deliverables
(milestones) during three months of project duration.

The projects of 2 teams that participated in the study in
Winter’15, aimed to build a travel expense claim submission
application for a corporate setting. The set of requirements
included creating claims, submitting claims, approving claims,
providing offline functionality, adding geolocation to the travel
destination and so. They too had three course-deliverables.

Students started writing jUnit tests after the first deliverable.
The jUnit tests were written explicitly to test the project use-
cases and user-stories. Test-driven development was promoted
during this period. Between the deliverables, they developed
the key application features such as user location recording,
online storage with Elasticsearch, taking photos and offline
storage. Table I shows the number of commits for each of the
projects. The number of commits vary widely across projects
from 252 commits to 840 commits.

b) Selection of commits: As each project has 100s
of commits, it is infeasible to run experiments on all the
commits. Even more importantly, most of the commits rep-
resent very trivial changes, and hence, there is not much



difference between successive commits. Therefore, only large-
sized and deliverable commits, important to deadlines were
evaluated. Prior work [24] suggests that estimating energy
profiles based on sub-selecting commits does not heavily harm
the accuracy energy consumption profile estimation. In fact,
energy-consumption profiles tend to consist of plateaus of
constant energy consumption with intermittent changes in
energy consumption. For each of the deliverables, the commits
that made the largest change to the code base were selected.
In addition, the largest commits in between two deadlines
were selected, as they are likely to represent an appreciable
change in the application code – this was an attempt to ensure
uniform selection as prescribed by Romansky et al. [24]. Finally
the commit messages were examined and, if any appeared
important, the corresponding commits were chosen as well.
Using this procedure, around ten commits per project were
gathered. These commits were generally large ones, except the
ones submitted as course deliverables. If a commit version that
was submitted as a deliverable did not have any functional
change in the application, the last commit that made a code
change in the application code was selected. In many cases,
the large commits introduced some errors like build errors,
jUnit test crash errors, so that the next available functional
commit was selected. Most of the commits were selected after
the manual inspection of commit messages.

c) Evaluating Rule of Thumb : The Green Miner test
bed [20] was used for obtaining the energy-consumption
measurements of the various versions (commits) of the ap-
plications. It includes four Galaxy Nexus phones, controlled
by a Raspberry Pi that starts the tests, collects, and uploads
the measurements to a centralized server. Each phone is also
attached to an Arduino for measuring its energy consumption.
The test bed was configured to run jUnit tests. The selected ap-
plication versions were run to obtain their energy-consumption
readings and their system-call profile counts. Multiple energy-
consumption measurements recorded from Green Miner were
used to establish if pairs of subsequent commits had statistically
significantly different energy consumption by performing t-tests.
Then, t-tests were performed on the multiple system-call counts
to observe whether the system call profiles were statistically
different from the previous commit or not.

In summary, for each of the 13 projects, 10 versions of the
application were built; each version was tested and its energy
consumption was measured 10 times. Then its system-calls
were measured 10 times, resulting in 1300 energy consumption
measurements and 1300 system-call measurements across 13
projects. Using these measurements, four metrics described in
the previous section, precision, recall, specificity, and F1 score,
were calculated to evaluate the Rule of Thumb model on each
of these projects.

C. Improved Prediction Model

Rule of Thumb only predicts whether or not the applica-
tion energy consumption has changed significantly. However,
developers are more interested in the direction of energy-
consumption change. They are more interested in knowing

TABLE I
NUMBER OF COMMITS, LINES OF CODE (LOC), AND NUMBER OF FILES OF

EACH TEAMS’ PROJECT.

Team #Commits LOC #Files
1 252 3576 70
2 573 9568 196
3 840 6739 81
4 637 7827 120
5 626 6077 119
6 425 10196 154
7 458 6011 103
8 549 4420 86
9 390 9243 153
10 555 7543 112
11 391 5999 109
12 704 9269 185
13 382 10708 137
Average 521 7475 125

if their application’s energy consumption has significantly
increased or decreased. Given that Rule of Thumb has high
specificity, i.e., in the case where the Rule of Thumb predicts
no significant change in energy consumption, developers can
be confident in that their newly committed version is “safe”
with respect to energy-consumption changes. However, in
the case where Rule of Thumb predicts significant change in
energy consumption, there is no indication whether the energy
consumption has increased or decreased. Thus, the model was
augmented by logistic regression models. These models were
constructed using the system-calls and energy-consumption
measurements of the calculator and firefox applica-
tions from our previous work [11], and the dataset from these
13 student projects. The logistic regression model takes as
input the change in average system-call counts for consecutive
versions and predicts whether the energy consumption has
increased or decreased. The following three models were built
by using different data for training and testing set as below:

• Trained on calculator and firefox datasets, and
tested on student projects.

• Trained on calculator, firefox and, randomly
selected 50% of commits from combined 13 student
projects dataset, and tested on a remaining 50% commits
student projects dataset.

• Trained and tested on student projects dataset using cross
validation.

These logistic regression models are used in the case where tool
predicts significant change in energy consumption to predict
the direction of change.

V. FINDINGS

A. The User Study

All teams in the class received the GreenAdvisor tool in the
lab-sections for the course and used the tool in the lab and on
their own computers.

Out of the 77 students (13 teams) that consented, 42 students
(7 teams) submitted the survey forms. Each of the teams
identified some commits they thought could have caused a
change in the energy-consumption profile of their application.
Then, on these commits, teams used the GreenAdvisor tool to



generate report and prediction about the energy-consumption
change. Out of the 7 teams, 4 agreed, while 3 disagreed,
that tool was able to identify code associated with change in
system-calls. Out of those three, one team was not able to
see the associated code with the system-calls because those
system-calls did not have a pre-defined code patterns in bag-of-
words model. The other two teams expected change in energy
consumption of their application while the tool predicted no
change. Out of 7, 5 teams reported that the tool was able
to indicate energy-consumption change “regularly”, while the
other two reported that it worked only “sometimes”.

Next, the commits mentioned by the groups were examined
to identify whether they really exhibited an energy-consumption
change, as the student developers thought. Only 5 out of 7
identified commits (across seven projects) exhibited a change
in the energy-consumption profile of the application. The teams
that had reported that the tool was unable to predict energy-
consumption changes, had identified commits that did not
produce energy-consumption changes, and were hence unable
to see any responsible code either.

The students were asked to provide a paragraph describing
their use of the tool. Most students described the system-calls
identified by the tool. Some of the students described some
ideas on how they could optimise the energy consumption
of their applications, including minimal use of GPS, using
dark colors, optimising local-storage update with the remote
server — matching some of the suggestions of Pinto et al. [3].
Interestingly, students did not indicate that they knew anything
about these factors until they had done their own research
online, reading literature and forums, in order to produce these
paragraphs.

In summary,

• 5 (30 students) out of 7 student groups (42 students)
identified commits in their own project that induced a
change in energy consumption;

• 4 (24 students) out of 7 groups felt that the bag-of-words
system-call identifying code approach worked; and

• 5 (30 students) out of 7 student groups (42 students) felt
that the GreenAdvisor tool was able to indicate energy
consumption changes regularly.

While some of the results are mixed, the tool was usable and
was able to identify relevant system-calls for multiple teams.
The user-study indicated that more work could be done on
system-call inference from changed source code. This student
feedback serves mostly as a qualitative form of feedback and
validation. The next section, when combined with these results,
confirms that the GreenAdvisor tool can indeed be useful to
for actual developers.

B. Expert Use of the Tool

In order to evaluate the Rule of Thumb model on these
13 projects built by 77 students, energy consumption and
system-call counts for the selected commits were used. Using
the system-call counts, the Rule of Thumb predicts when the
energy consumption of the application has significantly changed.

0

10

20

30

40

50

60

70

80

90

100

pr
ea

d6
4

m
un

m
ap

io
ct

l
m

ad
vi

se
m

m
ap

2
si

gp
ro

cm
as

k
cl

os
e

na
no

sl
ee

p
st

at
64

se
nd

to
pr

ct
l

se
t_

th
re

ad
_a

re
a

op
en

fs
ta

t6
4

fc
nt

l6
4

ls
ee

k
flo

ck
co

nn
ec

t
m

pr
ot

ec
t

cl
on

e
ge

tti
d

ep
ol

l_
w

ai
t

br
k

ac
ce

ss
ge

tti
m

eo
fd

ay
re

ad
ep

ol
l_

ct
l

du
p

cl
oc

k_
ge

tti
m

e
ge

tu
id

32
ge

tp
id

re
cv

fr
om

w
rit

ev
se

ts
oc

ko
pt

ge
tp

rio
rit

y
so

ck
et

ge
ts

oc
ko

pt
ge

ts
oc

kn
am

e
sc

he
d_

se
ts

ch
ed

ul
er

bi
nd

fu
te

x
w

rit
e

System Calls

V
ar

ia
nc

e(
%

)

Fig. 5. Variance as a percentage of mean value across 30 runs per system-
call per version for all the applications considered. The X axis refers to
the system-calls, while the Y axis refers to variance in percentage.

TABLE II
PRECISION, RECALL, AND SPECIFICITY VALUES OF PREDICTION OF ENERGY

CHANGE USING RULE OF THUMB MODEL FOR EACH TEAM PROJECT

Team Rule of Thumb
Precision Recall Specificity F1

1 0.33 0.66 0.75 0.44
2 0.50 1.00 1.00 0.66
3 0.44 1.00 1.00 0.61
4 0.11 1.00 1.00 0.20
5 0.43 1.00 1.00 0.60
6 0.50 1.00 1.00 0.66
7 0.57 1.00 1.00 0.73
8 0.66 1.00 1.00 0.80
9 0.44 1.00 1.00 0.61
10 0.33 0.66 0.75 0.44
11 0.43 1.00 1.00 0.60
12 0.57 1.00 1.00 0.73
13 0.43 1.00 1.00 0.60
Average 0.44 0.95 0.96 0.59

This prediction is verified by obtaining the actual energy-
consumption measurements from the execution of application
versions (commits) on the Green Miner.

First the question of system-call stability across 13 projects
was investigated. The variance in system-call values is shown
in Figure 5 by using 30 runs per commit-version of each
application. As can be observed, the variation values are quite
similar to the ones obtained before as shown in Figure 2.

Four statistical measures, precision, recall, specificity, and
F1 score, are used to measure the effectiveness of the Rule of
Thumb . Average precision was 0.44, recall 0.95, specificity
0.96, F1 score 0.59 across the 13 projects as shown in Table II.
As can be observed, recall and specificity values are quite high,
though the precision and F1 scores are not that high, consistent
with our previously obtained results [11].

These projects varied in their implementation, though the
requirement specifications were exactly the same for 11 projects
in the Fall’14 term and 2 projects in the Winter’15 term.
Students were expected to create a questions-answer/travel-
expense application according to these specifications. They had
to use an Elasticsearch server provided by the instructors to
store application’s data remotely. In absence of a connection
to server, the application is expected to store the data locally



on the phone. They were also expected to record and display
the location of user in the application using GPS.

Most of the projects had bright screen colors, while only one
had dark colors. Some of the applications frequently updated
the server with the local data while some waited a bit more.
The frequency of accessing the GPS and updating the user
location also varied across the projects. Thus main variation
points for energy consumption were primarily network IO,
disk IO, GPS peripherals. The applications were not heavily
CPU-bound or memory-bound. These choices impacted the
energy consumption of these applications.

An observation made across all of the projects was that once
students started using Elasticsearch their application’s energy
consumption increased significantly. Using Elasticsearch meant
that the students had to rely on more network IO. Another
observation was that their applications’ energy consumption
increased once geo-location and GPS tracking was implemented.
In one of the applications, a decrease in energy consumption
was observed when the geo-location usage was disabled
between certain versions of the application. Project 6 used
dark screen colors, and exhibited lower energy consumption
than the other projects, though it still had some commits with
releative high energy consumption. When geo-location was
introduced to project 6, the mean power use went up to 1.6W,
inducing more energy consumption. The normal power use
was 0.8W prior to this commit, half of the energy consumption.
Other projects had mean power use around 0.9W, though this
might also be possible because of difference in jUnit tests and
consequently the different test sequences.

C. Improved prediction model

We constructed logistic-regression models to predict the
direction of change in energy consumption, i.e., , increase or
decrease, when the Rule of Thumb predicts significant energy-
consumption change. We only used those system calls that were
individually statistically significant with energy consumption
(∆energy ∼ syscalls). 12 such calls were identified in cases
1 and 3, while 7 in case 2. These 12 calls common to all the
models are shown in Table IV.

The results are shown in Table III. The cases in the Table III
refer to the three experiments corresponding to the three
different testing and training sets. In case 1, the model was
trained on the firefox and calculator dataset, and tested
on the projects dataset. In case 2, the model was trained on the
firefox, calculator and 50% randomly student projects,
and tested on the remaining projects. In case 3, the model
was trained and tested on the combined dataset of all the
student projects using 10-folds cross validation. We observe
that when more student projects are used for training, the
precision, specificity increases, resulting in better accuracy.
Hence, this logistic regression model can be augmented with
the Rule of Thumb in the case where Rule of Thumb predicts
significant change in energy consumption of the application.
Since we use a test dataset to evaluate each logistic-regression
model, metrics like likelihood ratio-test used to evaluate the
models for the training data are not required. Hence, in order

TABLE III
TRUE POSITIVE AND FALSE POSITIVE RATES OF PREDICTION OF DIRECTION

OF ENERGY CHANGE USING THE IMPROVED MODEL. FF INDICATES
FIREFOX, CALC INDICATES CALCULATOR, P INDICATES THE 13 STUDENT

PROJECTS, 0.5P INDICATES HALF OF THE PROJECTS. CASE 3 EMPLOYS
10-FOLDS CROSS VALIDATION.

Case Train Test Precision Recall Specificity F1

1 FF Calc P 0.50 0.43 0.62 0.46
2 FF Calc 0.5P 0.5P 1.00 0.33 1.00 0.50
3 P P 0.63 0.53 0.53 0.58

TABLE IV
SELECTED SYSTEM-CALLS WITH THEIR DESCRIPTIONS FROM THE

IMPROVED PREDICTION MODEL

system-call Description [25]
open open a file descriptor

cacheflush flush contents of instruction and/or data cache
mmap2 map files or devices into memory

epollwait wait for events on the epoll file descriptor
write write selected bytes into file descriptor
getpid returns the process ID of the calling process

getpriority returns the current priority for a process
sendto used to transmit a message to another socket
munmap creates a new mapping in the virtual address space

nanosleep suspends the calling thread for specified time
clock_gettime finds the precision of the specified clock
sigprocmask fetch and/or change signal mask of calling thread

to determine the prediction accuracy of the model on our
test dataset, the precision, recall, specificity, and F1 metrics
have been used. Using the Rule of Thumb, the commits
can be separated into versions exhibiting significant energy-
consumption changes or not. As the Rule of Thumb is highly
accurate for predicting insignificant-change cases, the logistic
regression model is applied on the cases where the Rule of
Thumb predicts significant energy-consumption change. The
logistic-regression model then predicts the direction of change
on these cases, i.e., whether the energy consumption increased
or decreased. Using this two-layer model, we can be predict
whether the energy consumption of the applications changed
or not, and if it did, the direction of change.

VI. DISCUSSION

This paper introduces GreenAdvisor, a first of its kind of tool
that can be used by developers to track the energy-consumption
profile of their applications. The tool can predict whether
the energy-consumption of application has been changed, but
also tries to identify the source-code changes that might have
induced that change in energy consumption profile. While,
most of prior work focuses on providing a perspective to users
about the components or applications utilising energy of their
mobile phones, this work provides a simple method and a
handy tool for application developers to estimate changes in
their applications energy consumption profile while developing
their applications, all without hardware instrumentation.

For the user study, students were asked to identify the
code commits that they expected to have induced change in
their application’s energy consumption profile. The user study
evaluated the tool regarding the students’ perceived usefulness
and ability to predict changes in the energy-consumption
profile of their applications, and its ability to identify the



code responsible for that change. The findings of the user
study were overall positive, with most students agreeing to the
tool’s ability to predict change in energy-consumption profile.
The tool correctly identified the no-change cases, even though
the students thought otherwise. However, the tool was not
able to identify the lines of source code that induced energy-
consumption changes, according to the responses of three teams
(out of seven teams) because not all of the system-calls could
be easily mapped to Java API calls by the authors. These
results prompt further investigation into better identifying the
source of system-call changes in source code.

From the student write-up about energy-aware development,
it is clear that students have only a rough idea of how their
design and implementation decisions impact their application’s
energy profile. A similar observation was made by Pinto
et al. [3] on StackOverflow, though their dataset included
experienced developers rather than the undergraduate students
considered in this study. This calls for an energy-aware devel-
opment curriculum in the software engineering courses [2].

Using the Rule of Thumb model to predict the occurrence of
significant changes in the application energy consumption, high
specificity was observed across all 13 systems, as was observed
across two larger Android applications in prior work [11].
High specificity indicates that our Rule of Thumb generates
few false positives, and hence developers spend less time
testing insignificant change commits. Profiling system-calls
using GreenAdvisor is less resource intensive than setting up a
special hardware test-bed like Green Miner, and utilizing that
to instrument energy consumption. The Rule of Thumb requires
only that developers track system-call profiles, which is very
simple with the help of GreenAdvisor tool, which additionally
gives them a hint of the code that might be responsible for
energy consumption change.

An improved model was developed using logistic regression
to predict the direction of energy consumption change (in-
creased or decreased) and evaluated. Though not exceptionally
accurate, this model enhances the Rule of Thumb model [11] by
predicting direction of the change, when there is a significant
change. The logistic-regression model was created and tested
using foreign projects profiles, indicating that there is infor-
mation to learn from the available corpus of software in the
wild. Furthermore, it hints at potentially universal system-call
models, rather than application-specific ones.

VII. THREATS TO VALIDITY

Internal validity is constrained by the choice of project
requirements given that all projects in a term had the same
requirements. The choice of commits selected for investigation
of the Rule of Thumb model presents a validity construct.
External validity is constrained by the test construction. It
is possible that the tests that students wrote had limited
coverage of the application’s features. However, students were
expected to use test-driven development, and were marked
on the quality of the tests. Hence, the tests covered most
parts of the application. External validity is hampered by our
use of student projects [26]; some students are exceptional
programmers, already employed in industry but many are not.

VIII. CONCLUSIONS

A first of its kind, developer-centric system-call profile based
tool GreenAdvisor has been introduced, that predicts changes
in the energy-consumption profile of applications and corre-
sponding changes in their code base. The GreenAdvisor tool
uses the application’s system-call profile to warn developers
about possible changes in the application’s energy consumption
profile by using Rule of Thumb introduced in our previous
study [11]. GreenAdvisor also indicates the possible code that
might be behind that change from pre-defined code for a set
of system-calls using a bag-of-words model.

GreenAdvisor was evaluated using 77 students (13 teams)
in an undergraduate class. A short survey asked the students
to use the tool for commits they expected to have introduced
energy-consumption changes. The survey results were positive,
though the students felt that the tool’s ability to highlight the
change inducing lines of code could be improved. Based on
the survey results we concur with Pang et al. [2] that energy
aware software development should be included in the software
engineering courses.

GreenAdvisor and its Rule of Thumb model were evaluated
through a series of experiments indicating that they can accu-
rately find commits with changed energy-consumption profile,
and they can determine the direction of the change. These
experiments further confirm the generality and usefulness of the
Rule of Thumb model on much more number of applications
than our previous work. The Rule of Thumb exhibits high
specificity and recall, though lower precision. This demonstrates
the usefulness of the Rule of Thumb, since most of the code
commits do not exhibit any significant changes in the energy
profile of applications. In fact, in our survey, even though
students identified commits that they thought exhibited different
energy consumption, our model correctly recognized that this
was not the case. Hence, in the absence of any instrumentation,
Rule of Thumb allows the developers to better track the energy-
consumption profiles of their applications. The improved model
using logistic regression can be used with Rule of Thumb to
predict the direction of change of energy consumption as well.
The proposed method and tool are helpful for developers to
trace the energy profile of their applications without using any
special instrumentation that is rarely accessible to developers.
It is available freely for download with instructions for use
here: https://github.com/kaggarwal/GreenAdvisor

GreenAdvisor helps developers to determine energy-
consumption changing commits by aggregating a profile
of system-call counts over many versions and applying an
improved Rule of Thumb model. In order to improve the
prediction, two open problems demand additional research
effort: first, building a general model of system-calls that can
work on all types of applications; and second, automatically
associating API and common patterns to system calls for
detection of energy change inducing code.

IX. ACKNOWLEDGEMENTS

The authors would like to thank NSERC and IBM Canada
for the generous support.



REFERENCES

[1] P. Research, “Smartphone Ownership 2013,” http://www.pewinternet.org/
2013/06/05/smartphone-ownership-2013/, 2013.

[2] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do programmers
know about the energy consumption of software?” PeerJ PrePrints, vol. 3,
2015.

[3] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software
energy consumption,” in Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 2014, pp. 22–31.

[4] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan,
M. Kandemir, T. Li, and L. K. John, “Using Complete Machine
Simulation for Software Power Estimation: The SoftWatt Approach,”
in Proceedings of the 8th International Symposium on High-Performance
Computer Architecture, ser. HPCA ’02, 2002.

[5] A. Shye, B. Scholbrock, and G. Memik, “Into the Wild: Studying Real
User Activity Patterns to Guide Power Optimizations for Mobile Archi-
tectures,” in Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO 42. New York, NY, USA:
ACM, 2009, pp. 168–178.

[6] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
Grained Power Modeling for Smartphones using System Call Tracing,” in
Proceedings of the sixth conference on Computer systems, ser. EuroSys
’11. New York, NY, USA: ACM, 2011, pp. 153–168.

[7] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the Energy Spent inside My
App?: Fine Grained Energy Accounting on Smartphones with Eprof,” in
Proceedings of the 7th ACM european conference on Computer Systems,
ser. EuroSys ’12. New York, NY, USA: ACM, 2012, pp. 29–42.

[8] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate Online Power Estimation and Automatic
Battery Behavior Based Power Model Generation for Smartphones,”
in CODES/ISSS ’10. New York, NY, USA: ACM, 2010, pp. 105–114.

[9] R. Mittal, A. Kansal, and R. Chandra, “Empowering Developers to
Estimate App Energy Consumption,” in Proceedings of the 18th annual
international conference on Mobile computing and networking, ser.
Mobicom ’12. New York, NY, USA: ACM, 2012, pp. 317–328.

[10] A. Hindle, “Green Mining: A Methodology of Relating Software Change
to Power Consumption,” in MSR, 2012, pp. 78–87.

[11] K. Aggarwal, C. Zhang, J. C. Campbell, A. Hindle, and E. Stroulia, “The
power of system call traces: Predicting the software energy consumption
impact of changes,” in Press of the 2014 Conference of the Center for
Advanced Studies on Collaborative Research, IBM Corp, 2014.

[12] A. Carroll and G. Heiser, “An Analysis of Power Consumption in a
Smartphone,” in Proceedings of the 2010 USENIX conference on USENIX
annual technical conference, ser. USENIXATC’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 21–21.

[13] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study of the
energy consumption of android applications,” in Software Maintenance
and Evolution (ICSME), 2014 IEEE International Conference on. IEEE,
2014, pp. 121–130.

[14] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: an empirical study,” in Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 2014, pp.
2–11.

[15] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating Android
Applications’ CPU Energy Usage via Bytecode Profiling,” in First
International Workshop on Green and Sustainable Software (GREENS),
in conjunction with ICSE 2012, June 2012.

[16] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating
Mobile Application Energy Consumption using Program Analysis,”
in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13, 2013, pp. 92–101.

[17] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in Proceedings
of the 2013 International Symposium on Software Testing and Analysis.
ACM, 2013, pp. 78–89.

[18] A. E. Hassan, “The Road Ahead for Mining Software Repositories,”
in Proceedings of the Future of Software Maintenance (FoSM) at the
24th IEEE International Conference on Software Maintenance, 2008, pp.
48–57.

[19] A. Gupta, T. Zimmermann, C. Bird, N. Naggapan, T. Bhat, and S. Emran,
“Detecting Energy Patterns in Software Development ,” Microsoft
Research, Tech. Rep. MSR-TR-2011-106, 2011.

[20] A. Hindle, A. Wilson, K. Rasmussen, J. Barlow, J. Campbell, and
S. Romansky, “GreenMiner: A Hardware Based Mining Software
Repositories Software Energy Consumption Framework,” in Mining
Software Repositories (MSR), 2014 11th IEEE Working Conference on.
ACM, 2014.

[21] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging
on smartphones: a first look at energy bugs in mobile devices,” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks.
ACM, 2011, p. 5.

[22] C. Wilke, S. Richly, S. Gotz, C. Piechnick, and U. Aßmann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in Green Computing and Communications (GreenCom), 2013
IEEE and Internet of Things (iThings/CPSCom), IEEE International
Conference on and IEEE Cyber, Physical and Social Computing. IEEE,
2013, pp. 134–141.

[23] R. W. Stevens and S. A. Rago, Advanced Programming in the UNIX(R)
Environment (2nd Edition). Addison-Wesley Professional, 2005.

[24] S. Romansky and A. Hindle, “On improving green mining for energy-
aware software analysis,” in Press of the 2014 Conference of the Center
for Advanced Studies on Collaborative Research, IBM Corp, 2014.

[25] The Linux man-pages project, “Linux Man Pages Online,” http://man7.
org/linux/man-pages/, 2013.

[26] J. Feigenspan, C. Kastner, J. Liebig, S. Apel, and S. Hanenberg, “Mea-
suring programming experience,” in Program Comprehension (ICPC),
2012 IEEE 20th International Conference on, June 2012, pp. 73–82.


