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Abstract

Partial observability—when the senses lack enough detail to make an optimal

decision—is the reality of any decision making agent acting in the real world.

While an agent could be made to make due with its available senses, taking

advantage of the history of senses can provide more context and enable the

agent to make better decisions. This thesis investigates recurrent architectures

to learn agent state (a summarization of the agent’s history), and identifies

some modifications—inspired by predictive representations of state—to enable

efficient learning in (continual) reinforcement learning. First, I contribute to

standard recurrent neural networks trained through back-propagation through

time. This contribution provides pragmatic recommendations for incorporating

action information into a recurrent architecture, and through extensive empiri-

cal investigations shows the trade-offs of several techniques. Second, I develop a

recurrent predictive architecture which uses temporal abstractions—predictions

in the form of general value functions—as the basis for its state representation.

I show advantages of this architecture over standard recurrent networks in a

continuing reinforcement learning domain, derive an objective and correspond-

ing learning algorithm, and discuss several added concerns when using this

architecture—such as discovery, what types of networks can be constructed,

and off-policy prediction.
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The first principle is that you must not fool yourself—and you are the easiest

person to fool. So you have to be very careful about that. After you’ve not

fooled yourself, it’s easy not to fool other scientists. You just have to be honest

in a conventional way after that.

– Richard Feynman, Cargo Cult Science, 1998
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Chapter 1

Introduction

One goal of machine intelligence research is to design and understand an agent

which interacts with its world through a continuous stream of interactions,

consistently getting better through feedback. Continual reinforcement learning

(Ring 1994; Khetarpal et al. 2022) is one paradigm used to build agents which

continually improve. Similar to reinforcement learning (RL), a continual RL

agent seeks to maximize the cumulative sum of rewards—which provides a

simple yet effective path towards learning behavior. The main attribute of con-

tinual RL is that there is an unending stream of sensorimotor interactions that

the agent must sift through online. This is different from many instantiations

of reinforcement learning where the agent often gets to the goal or the end

of a maze and then is sent back to the beginning to continue learning—also

known as episodic reinforcement learning—in continual RL the agent never

reaches a point where it is reset to a constrained starting distribution. The

agent must also balance computation to make decisions in real-time, while also

learning from recent observations. Finally, the agent must handle a world which

is constantly changing over time. These properties make the continual RL

problem challenging, but applicable to a wide range of real-world applications.

Continual RL systems in the real-world will inevitably have to make decisions

when the information available is insufficient to make an optimal choice (also

known as partial observability). For example, a rolling robot which observes

its world through a forward facing camera or other agent-centric (centering on

the agent) sensors. The agent can view what is in its immediate senses, say

1



a ball in-front of the camera. If the agent rotates the ball can disappear off

the edge of the agent’s vision, but the ball is still there physically. Or if the

ball were to be kicked to the other side of a wall, the ball still exists but is

visually obscured by the wall. These environment attributes could result in

conditions in which the agent could never predict the future given its senses.

In situations like these, where the agent has insufficient context, the world

appears non-stationary: the world responds differently when the agent acts

according to the same set of senses.

In the face of partial observability, the main approach developed in machine

learning is to summarize the past to provide the agent context which is missing

from its current senses. In the rolling robot example, the agent can keep a

history to judge how long the ball has been out of the agent’s immediate

vision observations. The agent could use this information to move towards

the ball while actively observing another agent who may steal the ball, or

know to go over the wall to retrieve the ball and continue playing. In the past,

artificial intelligence research focused on outlining all possible scenarios the

agent could face (Durkin 1996). These systems faced challenges in that humans

were notoriously poor at outlining why they made a decision in a given scenario.

A raw history of observations has also been used to some effect in the past

(McCallum 1993; McCallum et al. 1996), but these face many challenges in

developing a long enough memory. The goal of representation learning—which

is embodied by the current wave of deep learning—is to construct compact

memories of the past in order to aid decision making.

In RL, the most widely used approaches for representation learning are based

on ideas developed for supervised learning (SL). Recurrent neural networks

(RNNs) have been established as an important tool for learning predictions of

data with temporal dependencies. They have been primarily used in language

and video prediction (Mikolov et al. 2010; Oh et al. 2015; T. Wang and Cho 2016;

Saon et al. 2017; Y. Wang et al. 2018), but have also been used in traditional

time-series forecasting (Bianchi et al. 2017). Recurrent networks have also

been applied to the RL problem (Onat et al. 1998; Bakker 2002; Wierstra

et al. 2007; Hausknecht and Stone 2015; Heess et al. 2015; Igl et al. 2018; Zhu
2



et al. 2018), but often these applications focus on how to fit the RL problem

into what will work with the standard recurrent training approaches. Recently,

transformers (Vaswani et al. 2017) have become a widely used alternative

to recurrent architectures in natural language processing. Transformers have

also shown some success in reinforcement learning but either require the full

sequence of observations at inference and learning time (Mishra et al. 2018;

Parisotto et al. 2020) or turn the RL problem into a supervised problem using

the full return as the training signal (Chen et al. 2021). This is again similar

to the application of recurrent networks where the problem is modified to fit

the architecture.

While we can—and arguably should—use the intuitions built in the SL

setting for continual RL problems, these intuitions must be tested and re-

justified as an agent if there is no-longer a well defined dataset with constrained

histories and the agent must make decisions which effect the data stream, like

in continual reinforcement learning. In this thesis, we ask

How can ideas and algorithms from off-policy prediction and predic-

tive state representations be used to make reinforcement learning

methods more performant in partially observable, continual decision

making tasks?

I use (continual) reinforcement learning to study recurrent architectures and

provide novel observations and algorithms to learn representations in the RL

setting. In the following sections, I outline the main contributions of this

dissertation.

1.1 Incorporating Actions in Recurrent Networks

The contribution presented in Chapter 3 empirically evaluates architectural

choices for encoding action in the update function of recurrent networks. The

evaluation provides a simple, general recommendation to incorporate action

information into recurrent neural networks through a multiplicative operation

which improves prediction and control in reinforcement learning. Evidence for
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the preferred strategy is provided through an in-depth analysis of the prediction

setting in a small example domain and in a variety of control problems.

1.2 A Novel Predictive Approach to Learning in
the Face of Partial Observability

I develop a novel approach to incorporate ideas from predictive state representations—

an approach to representation learning that is designed for temporal partially

observable prediction problems—and recurrent neural networks, called a gen-

eral value function network (GVFN). This contribution directly addresses the

question posed above by directly restricting the state of a recurrent network

to be learned through off-policy prediction. The approach is shown to be

competitive to RNNs in several continual learning and time-series domains,

often without needing history when learning. This contribution is split into

three chapters.

• Chapter 4 introduces the architecture and relates it to recurrent neural

networks and previous predictive approaches.

• Chapter 5 derives several learning algorithms for the architecture derived

from an extension of the Mean-Squared Projected Bellman Network Error.

• Chapter 6 empirically compares the new architecture to standard recurrent

neural networks in several continual learning prediction problems.

1.3 Designing and Generating Predictive Ques-
tions

The contribution presented in Chapters 7 and 8 investigates the set of pre-

dictive questions available to GVFNs and how these can be generated for the

architecture discussed above. The impact of this contribution brings clarity to

the set of predictive questions applicable to the GVFN architecture (Chapter

7) and progresses towards automatic deployment to a general set of partially
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observable settings (Chapter 8). These chapters use a collection of lemmas and

empirical evidence to draw conclusions about the set of general value functions.

1.4 Off-policy Prediction using Importance Re-
sampling

GVFNs require learning value functions off-policy. Off-policy prediction means

learning the answer to a predictive question (i.e. GVF) using experience gener-

ated through a separate behavior policy—unrelated to the target policy of the

GVF. Because a GVFN requires GVFs to be stable during the learning pro-

cess, previous off-policy prediction algorithms—i.e. using importance sampling

ratios—can cause significant problems if the behavior is very different from the

target policy. This has an impact not only in learning GVFNs, but generally

applying off-policy prediction to the deep learning setting.

The contribution presented in Chapter 9 defines a new off-policy prediction

algorithm using importance resampling. The resulting estimator is shown to be

more sample efficient than importance sampling, and robust to settings with

large importance sampling ratios, while still being consistent. This estimator

is widely applicable to reinforcement learning when using a replay buffer, but

also is consequential for the predictive approaches developed in this thesis. The

evidence provided is through several empirical experiments and theorems with

proofs provided in the appendix.
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Chapter 2

Background

In this thesis, I take the perspective that an agent is situated inside its envi-

ronment and observes its world continually (Ring 1994; Ring 1997; Sutton,

Modayil, et al. 2011). In this chapter, I provide the relevant general back-

ground. This includes background on reinforcement learning (RL) (including

off-policy prediction and control), and learning under the constraint of partial

observability. Specific background details related to certain solution methods

will be presented closer to their relevant topics.

2.1 Reinforcement Learning

The problem setting considered in this thesis is (continual) reinforcement

learning (RL). In short, a reinforcement learning agent seeks to maximize the

accumulation of a reward signal by acting in the world. In this thesis, I am

concerned with two learning problems in reinforcement learning. Specifically, I

focus on the model-free prediction and control problem, but each share the same

general framework. The agent-environment interaction consists of a stream of

data (from the agent’s senses), coming in at a consistent rate into the agent’s

central control systems. In most reinforcement learning, the agent-environment

boundary is placed inside the agent’s nervous system where parts of the agent’s

body which are defined through evolution are external to the learning process,

and those that are learned and modified through an agent’s lifetime are a

part of the learning process. This enables RL researchers to focus on the

core problem of learning a policy to maximize reward. Figure 2.1 depicts the
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Figure 2.1: Diagram of the agent-environment interaction represented in re-
inforcement learning. The internals of the agent are representative of the
agents discussed through this thesis. The perception box denotes the function
used to construct agent state. The auxiliary prediction box is used in several
ways throughout the thesis. Finally, the policy can either be learned or fixed
depending on the experimental question being asked.

agent-environment interaction loop in RL.

In the agent’s lifetime it observes its surroundings, takes actions, and

receives rewards as the infinite sequence o1, a1, r2,o2, . . . ,ot, at, rt+1,ot+1, . . ..

The observation ot is the agent’s window into the world through various sensing

parts of its body. These can include a camera for vision, microphone for audio,

lidar to measure distance from other objects, and many other analog-to-digital

conversion technologies. The agent then selects an action At which is passed

to the agent’s actuators or sub-level control system. By performing this action,

the agent receives a reward rt+1 and another observation ot+1 determined by

the dynamics of the environment.

The agent-environment interaction can be formalized as a Markov decision

processes (MDP). The underlying dynamics are defined by a tuple ( ,A,P,R).

At time-step t given the state of the environment  t 2  1 and action taken

in that state at 2 A the environment transitions to a new state  t+1 2  
according to the state transition probability matrix P :  ⇥A⇥ ! [0,1)

with a reward given by R :  ⇥A! R. In the fully observable case, the agent
1Typically, the environment state is denoted with s. Here I use  to more clearly

distinguish it from the state of the agent 2.4.
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receives the state of the environment as its observations ot =  t, or an equivalent

state which has the Markov property p(ot+1|ot, at) = p(ot+1|o0, . . . , ot, at). We

discuss the partially observable case in Section 2.4. This thesis primarily

assumes the discrete action setting, where the set of actions is a finite discrete

set of values A def
= {a1, a2, . . . , an}.

The agent has several canonical internal components. A policy is a dis-

tribution over the space of actions ⇡ :  ⇥ A ! [0, 1], which defines a way

of interacting with the environment. Most often, a policy is notated as a

conditional probability distribution where the probability of selecting an action

given a state is ⇡(a| ). The return Gt =
P

1

i=1 �
i�1Rt+i

2 is the cumulative

(discounted) reward into the future. A value function is a prediction of the

future return the agent will obtain by following a policy. Specifically,

V ⇡( ) = E⇡[Gt| t =  , At ⇠ ⇡(·| t)] (2.1)

with a state-action value function defined similarly

Q⇡( , a) = E⇡[Gt| t =  , At = a].

The operator E⇡ indicates an expectation with actions selected according to

policy ⇡. This thesis uses both state value functions and state-action value

functions to do prediction and control. In the following sections I will 1) go into

the specifics of the prediction (Section 2.2) and control (Section 2.3) problems

as they relate to this thesis, and 2) introduce this framework to the partially

observable case.

2.2 Prediction

The prediction problem in RL is that of learning value functions efficiently and

accurately. This process can be used to improve an agent’s policy through value

iteration or policy iteration (Sutton and Barto 2018), or to learn temporal

abstractions of the sensorimotor stream through options or general value

functions (see Section 2.6 for more details). A value function can be learned
2Throughout this document, unbolded uppercase variables are random variables; lowercase

variables are instances of that random variable; and bolded variables are vectors
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either on-policy or off-policy through temporal difference learning. In this

section, I introduce the on and off-policy prediction problem as used throughout

this text.

As introduced above in Equation (2.1), a value function is a prediction

of the future cumulative (discounted) reward received by following a policy ⇡.

GVFs encompass standard value functions, where the cumulant is a reward.

Otherwise, GVFs enable predictions about discounted sums of others signals,

when following a target policy ⇡. These values are typically estimated using

parametric function approximation, with weights W 2 Rd defining approximate

values V ( ;W).

The simplest algorithm to learn the value function is through Monte-Carlo

sampling. The brief of the algorithm is to get samples of the return starting in

state  following policy ⇡, which are then averaged to receive the expected

return. You can use the trajectories to estimate the returns for either first-visit

to a specific state or on every visit, see (Singh and Sutton 1996; Sutton and

Barto 2018) for more details. This algorithm only requires the environment to

be episodic (i.e. clear terminations) and converges to the true value function

as the number of rollouts grow.

Another approach to learning value functions is to take advantage of the

Bellman equation through dynamic programming. The Bellman equation for

the value function V⇡( )

V ⇡( ) = E⇡[Gt| t =  , At ⇠ ⇡(·| )]

= E⇡[Rt + �Gt+1| t =  , At ⇠ ⇡(·| )]

= R( , ⇡( )) + �
X

 0

P ( 0| , At ⇠ ⇡( ))V ⇡( 0)

where R( , ⇡( )) is the expected one-step reward for policy ⇡ in state  . The

algorithm uses the transition dynamics of the environment P to iteratively

calculate the value function through dynamic programming (Sutton and Barto

2018).

Temporal-difference learning combines advantages of both these algorithms,

eliminating the need for environment dynamics (as in dynamic programming)
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and episodic environments (as in Monte-Carlo sampling). For tabular settings,

TD learning follows the update rule

V ( t) V ( t) + ↵ [Rt + �V ( t+1)� V ( t)] .

The target for the temporal-difference learning algorithm is known as the

TD target Rt + �V ( t+1). TD bootstraps using the previous estimate of the

return on the next state V ( t+1) (like dynamic programming) while sampling

transitions from the environment following ⇡ (like Monte-Carlo sampling).

When using function approximation, the preferred approach is to follow

the gradient taken of the value function with respect to the parameters of your

function. This is known as the semi-gradient TD learning algorithm

�t = Rt + �V ( t+1;Wt)� V ( t;Wt)

Wt+1  Wt + ↵�trWV ( t;Wt).

This update can be seen as minimizing the mean squared TD objective

L( t, t+1, Rt) = (V ( t;Wt)� Ut)2 assuming the bootstrapped target Ut =

Rt + �V ( t+1;Wt) has gradient rWUt = 0.

2.2.1 Off-policy Prediction

In off-policy prediction, transitions are sampled according to behavior policy,

rather than the target policy. To get an unbiased sample of an update to

the weights, the action probabilities need to be adjusted. Consider on-policy

temporal difference (TD) learning, with update ↵t�trWV ( ;Wt) for a given

 t =  , for learning rate ↵t 2 R+ and TD-error �t
def
= Rt+1+�t+1V ( t+1;Wt)�

V ( ;Wt). If actions are instead sampled according to a behavior policy

µ :  ⇥A! [0, 1], then importance sampling (IS) is used to modify the update,

giving the off-policy TD update ↵t⇢t�trWV ( ;Wt) for IS ratio ⇢t
def
= ⇡(At| t)

µ(At| t)
.

Given state  t =  , if µ(A| ) > 0 when ⇡(A| ) > 0, then the expected value

of these two updates are equal. To see why, notice that

Eµ [↵t⇢t�trWV ( t;Wt)| t =  ] = ↵trWV ( ;Wt)Eµ [⇢t�t| t =  ]
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which equals E⇡ [↵t⇢t�trWV ( t;Wt)| t =  ] because

Eµ [⇢t�t| t =  ] =
X

a2A

µ(a| )⇡(a| )
µ(a| )E [�t| t =  , At = a]

= E⇡ [�t| t =  ] .

Though unbiased, IS can be high-variance. A lower variance alternative is

Weighted IS (WIS). For a batch consisting of transitions {( i, ai, i+1, ri+1, ⇢i)}n

i=1,

batch WIS uses a normalized estimate for the update. For example, an offline

batch WIS TD algorithm, denoted WIS-Optimal below, would use update

↵t

⇢tPn
i=1 ⇢i

�trWV ( ;Wt). Obtaining an efficient WIS update is not straight-

forward, however, when learning online and has resulted in algorithms in the

SGD setting (i.e. n = 1) specialized to tabular (Precup, Sutton, and Dasgupta

2001) and linear functions (Mahmood, van Hasselt, et al. 2014; Mahmood and

Sutton 2015).

While the above objectives have been shown to work in a wide range of

problem settings, there are a series of known counter examples where these

algorithms do not converge. This is due to what is known as the deadly-triad

in off-policy semi-gradient TD: off-policy updates, function approximation, and

bootstrapping (Baird 1995; Sutton and Barto 2018; van Hasselt, Doron, et al.

2018). Removing any of these properties results in a convergent learning rule.

Instead, minimizing an objective known as the mean squared projected Bellman

error (MSPBE) converges to the TD fixed point. This objective minimizes the

full Bellman error through a projection operator (Maei, Szepesvári, Bhatnagar,

Silver, et al. 2009; Sutton, Maei, et al. 2009). Minimizing this objective

results in several algorithms including one known as temporal-difference with

corrections (TDC). For linear function approximation V ( t;Wt) = W>

t
�

t

(where �
t
is the feature vector corresponding to state  t)

Wt+1  Wt + ↵�t�t
� ↵��

t+1(�
>

t
ut)

ut+1  ut + �(�t � �>

t
ut)�t

where ↵ and � are learning rates which can also be set per time-step. This

algorithm can also be derived when the value function is non-linear (Maei,
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Szepesvári, Bhatnagar, Silver, et al. 2009). See Chapter 5 for a non-linear

derivation with added constraints.

2.3 Control in Reinforcement Learning

The control problem is the process of learning a policy which the agent can

use to decide actions. There are many possible approaches for control in

reinforcement learning, from value-based control to direct policy optimization

through policy gradient and actor critic methods. All the control experiments

in this thesis use value-based control as a means to study the perception of

reinforcement learning agents (see 2.4 for more details).

As defined above, a state-action value function

Q⇤( , a) = E⇡⇤ [Gt| t =  , At = a].

where ⇡⇤ is the optimal policy is the main object for value based control. The

goal of the agent is to search through the space of policies to maximize the

total return the agent will receive from any state, or in other words to find

the optimal policy ⇡⇤. In this thesis, our control experiments are restricted to

Q-learning (Watkins and Dayan 1992; Mnih et al. 2015), an off-policy technique

which learns the optimal policy. Q-learning, in its simplest form, is defined by

the following set of updates

�t+1 = Rt+1 + �max
a

(Q( t+1, a))�Q( t, At)

Q( t, At) Q( t, At) + ↵�t+1

Similarly to the TD learning rule, semi-gradient updates can be derived from

the tabular rule by minimizing an objective

Ut = Rt+1 + �max
a

(Q( t+1, a))

L( , A, 0, Rt) = (Q( , A;W)� Ut)
2.

So far, the above update rule for q-learning is defined for the tabular setting.

In section 2.5, this algorithm is extended to the function approximation setting.
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2.4 Perception and Partial Observability in Re-
inforcement Learning

In a setting which is partially observable the observations are a function of

an unknown, unobserved underlying state. The dynamics, like in the fully

observable case, are specified by transition probabilities P =  ⇥A⇥ ! [0,1)

with state-space  and action-space A. On each time step the agent receives

an observation vector ot 2 O ⇢ Rm, as a function ot = fo( t) of the underlying

state  t 2  . The agent only observes ot 6=  t, and then takes an action at,

producing a sequence of observations and actions: o0, a0,o1, a1, . . ..

Observations do not have the Markov property to enable the use of the

above reinforcement learning algorithms. Instead, the agent will define its

functions through histories of observation action sequences. A history hk

def
=

(o0, a0, . . . , ok�1, ak�1, ok) is said to have the Markov property if p(ok+1|hk, ak) =

p(ok+1|o�1, a�1,hk, ak), where �1 indexing is meant to mean an observation

that comes before the history. A history can be said to be minimal if it is

the minimal history needed to ensure the Markov property p(ok+1|hk, ak) 6=
p(ok+1|o1, a1, . . . ,ok�1, ak�1,ok, ak). The minimal set of histories H enables

the Markov property for the distribution over next observation

H = {hk | where hk has both the Markov and minimal properties. } . (2.2)

The goal for the agent under partial observability is to identify a state repre-

sentation st 2 RN which is a sufficient statistic (summary) of history H, for

targets yt. More precisely, such a sufficient state ensures that yt given this

state is independent of history ht = o0, a0,o1, a1, . . . ,ot�1, at�1,ot,

p(yt|St) = p(yt|St,ht) (2.3)

or so that statistics about the target are independent of history, such as

E[Yt|st] = E[Yt|st,ht]. Such a state summarizes the history, removing the need

to store the entire (potentially infinite) history.

In the next two sections, I detail recurrent neural networks (RNNs) and

the algorithms used to train RNNs in SL and RL.
13



�

�

�

...
...

�

�

�

...
...

st,1

<latexit sha1_base64="1C5XJ9I1F6itQwCRFdvJv9QXgDU=">AAACB3icbVDLSsNAFJ3UV62vqEtBBovgQkoiFV0W3bisYB/QhDKZTtqhk0mYuRFLyM6Nv+LGhSJu/QV3/o3Tx0JbD1w4nHMv994TJIJrcJxvq7C0vLK6VlwvbWxube/Yu3tNHaeKsgaNRazaAdFMcMkawEGwdqIYiQLBWsHweuy37pnSPJZ3MEqYH5G+5CGnBIzUtQ+9iMAgCDOddzM4xR6wB8g84HKE3Tzv2mWn4kyAF4k7I2U0Q71rf3m9mKYRk0AF0brjOgn4GVHAqWB5yUs1Swgdkj7rGCpJxLSfTf7I8bFRejiMlSkJeKL+nshIpPUoCkzn+Go9743F/7xOCuGln3GZpMAknS4KU4EhxuNQcI8rRkGMDCFUcXMrpgOiCAUTXcmE4M6/vEiaZxW3Wjm/rZZrV7M4iugAHaET5KILVEM3qI4aiKJH9Ixe0Zv1ZL1Y79bHtLVgzWb20R9Ynz+DV5m5</latexit>

st,2

<latexit sha1_base64="lzKw0jU6NKWLd580QA1KZrICEGg=">AAACB3icbVBNS8NAEN34WetX1aMgi0XwICUpFT0WvXisYD+gCWWz3bRLN5uwOxFLyM2Lf8WLB0W8+he8+W/ctD1o64OBx3szzMzzY8E12Pa3tbS8srq2Xtgobm5t7+yW9vZbOkoUZU0aiUh1fKKZ4JI1gYNgnVgxEvqCtf3Rde6375nSPJJ3MI6ZF5KB5AGnBIzUKx25IYGhH6Q666Vwhl1gD5C6wOUYV7OsVyrbFXsCvEicGSmjGRq90pfbj2gSMglUEK27jh2DlxIFnAqWFd1Es5jQERmwrqGShEx76eSPDJ8YpY+DSJmSgCfq74mUhFqPQ9905lfreS8X//O6CQSXXsplnACTdLooSASGCOeh4D5XjIIYG0Ko4uZWTIdEEQomuqIJwZl/eZG0qhWnVjm/rZXrV7M4CugQHaNT5KALVEc3qIGaiKJH9Ixe0Zv1ZL1Y79bHtHXJms0coD+wPn8AhN2Zug==</latexit>

st,n

<latexit sha1_base64="WnttidNCETqR4+WBlCJXUoQXr9E=">AAACB3icbVDLSsNAFJ3UV62vqEtBBovgQkoiFV0W3bisYB/QhDKZTtqhk0mYuRFLyM6Nv+LGhSJu/QV3/o3Tx0JbD1w4nHMv994TJIJrcJxvq7C0vLK6VlwvbWxube/Yu3tNHaeKsgaNRazaAdFMcMkawEGwdqIYiQLBWsHweuy37pnSPJZ3MEqYH5G+5CGnBIzUtQ+9iMAgCDOddzM4xR6wB8g84HKEZZ537bJTcSbAi8SdkTKaod61v7xeTNOISaCCaN1xnQT8jCjgVLC85KWaJYQOSZ91DJUkYtrPJn/k+NgoPRzGypQEPFF/T2Qk0noUBaZzfLWe98bif14nhfDSz7hMUmCSTheFqcAQ43EouMcVoyBGhhCquLkV0wFRhIKJrmRCcOdfXiTNs4pbrZzfVsu1q1kcRXSAjtAJctEFqqEbVEcNRNEjekav6M16sl6sd+tj2lqwZjP76A+szx/gRZn2</latexit>

�

�

�

...
...

st,1

<latexit sha1_base64="1C5XJ9I1F6itQwCRFdvJv9QXgDU=">AAACB3icbVDLSsNAFJ3UV62vqEtBBovgQkoiFV0W3bisYB/QhDKZTtqhk0mYuRFLyM6Nv+LGhSJu/QV3/o3Tx0JbD1w4nHMv994TJIJrcJxvq7C0vLK6VlwvbWxube/Yu3tNHaeKsgaNRazaAdFMcMkawEGwdqIYiQLBWsHweuy37pnSPJZ3MEqYH5G+5CGnBIzUtQ+9iMAgCDOddzM4xR6wB8g84HKE3Tzv2mWn4kyAF4k7I2U0Q71rf3m9mKYRk0AF0brjOgn4GVHAqWB5yUs1Swgdkj7rGCpJxLSfTf7I8bFRejiMlSkJeKL+nshIpPUoCkzn+Go9743F/7xOCuGln3GZpMAknS4KU4EhxuNQcI8rRkGMDCFUcXMrpgOiCAUTXcmE4M6/vEiaZxW3Wjm/rZZrV7M4iugAHaET5KILVEM3qI4aiKJH9Ixe0Zv1ZL1Y79bHtLVgzWb20R9Ynz+DV5m5</latexit>

st,2

<latexit sha1_base64="lzKw0jU6NKWLd580QA1KZrICEGg=">AAACB3icbVBNS8NAEN34WetX1aMgi0XwICUpFT0WvXisYD+gCWWz3bRLN5uwOxFLyM2Lf8WLB0W8+he8+W/ctD1o64OBx3szzMzzY8E12Pa3tbS8srq2Xtgobm5t7+yW9vZbOkoUZU0aiUh1fKKZ4JI1gYNgnVgxEvqCtf3Rde6375nSPJJ3MI6ZF5KB5AGnBIzUKx25IYGhH6Q666Vwhl1gD5C6wOUYV7OsVyrbFXsCvEicGSmjGRq90pfbj2gSMglUEK27jh2DlxIFnAqWFd1Es5jQERmwrqGShEx76eSPDJ8YpY+DSJmSgCfq74mUhFqPQ9905lfreS8X//O6CQSXXsplnACTdLooSASGCOeh4D5XjIIYG0Ko4uZWTIdEEQomuqIJwZl/eZG0qhWnVjm/rZXrV7M4CugQHaNT5KALVEc3qIGaiKJH9Ixe0Zv1ZL1Y79bHtHXJms0coD+wPn8AhN2Zug==</latexit>

st,n

<latexit sha1_base64="WnttidNCETqR4+WBlCJXUoQXr9E=">AAACB3icbVDLSsNAFJ3UV62vqEtBBovgQkoiFV0W3bisYB/QhDKZTtqhk0mYuRFLyM6Nv+LGhSJu/QV3/o3Tx0JbD1w4nHMv994TJIJrcJxvq7C0vLK6VlwvbWxube/Yu3tNHaeKsgaNRazaAdFMcMkawEGwdqIYiQLBWsHweuy37pnSPJZ3MEqYH5G+5CGnBIzUtQ+9iMAgCDOddzM4xR6wB8g84HKEZZ537bJTcSbAi8SdkTKaod61v7xeTNOISaCCaN1xnQT8jCjgVLC85KWaJYQOSZ91DJUkYtrPJn/k+NgoPRzGypQEPFF/T2Qk0noUBaZzfLWe98bif14nhfDSz7hMUmCSTheFqcAQ43EouMcVoyBGhhCquLkV0wFRhIKJrmRCcOdfXiTNs4pbrZzfVsu1q1kcRXSAjtAJctEFqqEbVEcNRNEjekav6M16sl6sd+tj2lqwZjP76A+szx/gRZn2</latexit>

<latexit sha1_base64="VY8mnfr/6DkEKUggAs74e5IOYS0=">AAAB+XicbVDLSsNAFJ34rPUVdelmsAhuLIn4Whbc6K6CfUAbwmQ6aYdOJmHmplBC/sSNC0Xc+ifu/BsnbRbaemDgcM693DMnSATX4Djf1srq2vrGZmWrur2zu7dvHxy2dZwqylo0FrHqBkQzwSVrAQfBuoliJAoE6wTju8LvTJjSPJZPME2YF5Gh5CGnBIzk23Y/IjAKwkznfgbnbu7bNafuzICXiVuSGirR9O2v/iCmacQkUEG07rlOAl5GFHAqWF7tp5olhI7JkPUMlSRi2stmyXN8apQBDmNlngQ8U39vZCTSehoFZrLIqRe9QvzP66UQ3noZl0kKTNL5oTAVGGJc1IAHXDEKYmoIoYqbrJiOiCIUTFlVU4K7+OVl0r6ou9f1q8fLWuOhrKOCjtEJOkMuukENdI+aqIUomqBn9IrerMx6sd6tj/noilXuHKE/sD5/ALYkk74=</latexit>st�1

<latexit sha1_base64="j5kbVghtlEcN8WGL4ckTdCP5Gjs=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFcaEnE17LoxmUF+4A2lMl00g6dTMLMjVhCfsWNC0Xc+iPu/BsnbRbaemDgcM693DPHjwXX4Djf1tLyyuraemmjvLm1vbNr71VaOkoUZU0aiUh1fKKZ4JI1gYNgnVgxEvqCtf3xbe63H5nSPJIPMImZF5Kh5AGnBIzUtyu9kMDID1Kd9VM4dU/crG9XnZozBV4kbkGqqECjb3/1BhFNQiaBCqJ113Vi8FKigFPBsnIv0SwmdEyGrGuoJCHTXjrNnuEjowxwECnzJOCp+nsjJaHWk9A3k3lSPe/l4n9eN4Hg2ku5jBNgks4OBYnAEOG8CDzgilEQE0MIVdxkxXREFKFg6iqbEtz5Ly+S1lnNvaxd3J9X6zdFHSV0gA7RMXLRFaqjO9RATUTRE3pGr+jNyqwX6936mI0uWcXOPvoD6/MHl6OUKA==</latexit>st�1,1

<latexit sha1_base64="PyBixcY18bY8MFvrywpHPm8rg7k=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgQktSfC2LblxWsA9oQ5hMJ+3QyYOZG7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOFwuuwLK+jdLK6tr6RnmzsrW9s7tn7lc7KkokZW0aiUj2PKKY4CFrAwfBerFkJPAE63qT29zvPjKpeBQ+wDRmTkBGIfc5JaAl16wOAgJjz09V5qZwZp82MtesWXVrBrxM7ILUUIGWa34NhhFNAhYCFUSpvm3F4KREAqeCZZVBolhM6ISMWF/TkARMOekse4aPtTLEfiT1CwHP1N8bKQmUmgaensyTqkUvF//z+gn4107KwzgBFtL5IT8RGCKcF4GHXDIKYqoJoZLrrJiOiSQUdF0VXYK9+OVl0mnU7cv6xf15rXlT1FFGh+gInSAbXaEmukMt1EYUPaFn9IrejMx4Md6Nj/loySh2DtAfGJ8/mSiUKQ==</latexit>st�1,2

<latexit sha1_base64="74dDkOJFouIil4mjKh7dOem8tMA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFcaEnE17LoxmUF+4A2lMl00g6dTMLMjVhCfsWNC0Xc+iPu/BsnbRbaemDgcM693DPHjwXX4Djf1tLyyuraemmjvLm1vbNr71VaOkoUZU0aiUh1fKKZ4JI1gYNgnVgxEvqCtf3xbe63H5nSPJIPMImZF5Kh5AGnBIzUtyu9kMDID1Kd9VM4dU9k1rerTs2ZAi8StyBVVKDRt796g4gmIZNABdG66zoxeClRwKlgWbmXaBYTOiZD1jVUkpBpL51mz/CRUQY4iJR5EvBU/b2RklDrSeibyTypnvdy8T+vm0Bw7aVcxgkwSWeHgkRgiHBeBB5wxSiIiSGEKm6yYjoiilAwdZVNCe78lxdJ66zmXtYu7s+r9ZuijhI6QIfoGLnoCtXRHWqgJqLoCT2jV/RmZdaL9W59zEaXrGJnH/2B9fkD9FSUZQ==</latexit>st�1,n

<latexit sha1_base64="RRB85H9xkj6/9qZqKGVCVvjRjOs=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBFclUR8LQtudFfBPqCNZTKdtEMnD2ZulBLyH25cKOLWf3Hn3zhps9DWAwOHc+7lnjleLIVG2/62lpZXVtfWSxvlza3tnd3K3n5LR4livMkiGamORzWXIuRNFCh5J1acBp7kbW98nfvtR660iMJ7nMTcDegwFL5gFI300Asojjw/1Vk/xaxfqdo1ewqySJyCVKFAo1/56g0ilgQ8RCap1l3HjtFNqULBJM/KvUTzmLIxHfKuoSENuHbTaeqMHBtlQPxImRcimaq/N1IaaD0JPDOZp9TzXi7+53UT9K/cVIRxgjxks0N+IglGJK+ADITiDOXEEMqUMFkJG1FFGZqiyqYEZ/7Li6R1WnMuaud3Z9X6bVFHCQ7hCE7AgUuoww00oAkMFDzDK7xZT9aL9W59zEaXrGLnAP7A+vwBWjKTGw==</latexit>st

<latexit sha1_base64="/rIRYDlJ/IjDzQ8qjJCbUFVcqWY=">AAAB9XicbVDLSgMxFM34rPVVdekmWARXZUZ8LQtudFfBPqAdSybNtKGZZEjuKGWY/3DjQhG3/os7/8ZMOwttPRA4nHMv9+QEseAGXPfbWVpeWV1bL22UN7e2d3Yre/stoxJNWZMqoXQnIIYJLlkTOAjWiTUjUSBYOxhf5377kWnDlbyHScz8iAwlDzklYKWHXkRgFISpyvopZP1K1a25U+BF4hWkigo0+pWv3kDRJGISqCDGdD03Bj8lGjgVLCv3EsNiQsdkyLqWShIx46fT1Bk+tsoAh0rbJwFP1d8bKYmMmUSBncxTmnkvF//zugmEV37KZZwAk3R2KEwEBoXzCvCAa0ZBTCwhVHObFdMR0YSCLapsS/Dmv7xIWqc176J2fndWrd8WdZTQITpCJ8hDl6iOblADNRFFGj2jV/TmPDkvzrvzMRtdcoqdA/QHzucPVA6TFw==</latexit>ot
<latexit sha1_base64="Ub7zK5Wbbcgz0Veh6XJY6N40Njc=">AAAB+XicbVDLSsNAFJ34rPUVdelmsAiCUBLxtSy6cVnBPqANYTKdtEMnkzBzUyghf+LGhSJu/RN3/o2TNgttPTBwOOde7pkTJIJrcJxva2V1bX1js7JV3d7Z3du3Dw7bOk4VZS0ai1h1A6KZ4JK1gINg3UQxEgWCdYLxfeF3JkxpHssnmCbMi8hQ8pBTAkbybbsfERgFYRbnfgbnbu7bNafuzICXiVuSGirR9O2v/iCmacQkUEG07rlOAl5GFHAqWF7tp5olhI7JkPUMlSRi2stmyXN8apQBDmNlngQ8U39vZCTSehoFZrLIqRe9QvzP66UQ3noZl0kKTNL5oTAVGGJc1IAHXDEKYmoIoYqbrJiOiCIUTFlVU4K7+OVl0r6ou9f1q8fLWuOurKOCjtEJOkMuukEN9ICaqIUomqBn9IrerMx6sd6tj/noilXuHKE/sD5/AKrRk7E=</latexit>ot+1

Figure 2.2: A visual representation of a simple recurrent network. The dotted
lines denote gradients while the solid lines denote the forward operations both
going through time.

2.4.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) have been established as an important tool

for learning predictions of data with temporal dependencies. They have been

primarily used in language and video prediction (Mikolov et al. 2010; Oh et al.

2015; T. Wang and Cho 2016; Saon et al. 2017; Y. Wang et al. 2018), but have

also been used in traditional time-series forecasting (Bianchi et al. 2017) and

RL (Onat et al. 1998; Bakker 2002; Wierstra et al. 2007; Hausknecht and Stone

2015; Heess et al. 2015; Igl et al. 2018; Zhu et al. 2018). In this section, I will

outline the three major architectures applied in this thesis. In the next section

I will detail the algorithms deployed to train these architectures in SL and RL.

An RNN provides one such solution to learning st and the associated state

update function. The simplest RNN is one which calculates state st 2 Rn

recursively,

st = �(Wxt + b)

where xt = [ot, st�1] and � is any non-linear transfer function (typically tanh).

While concatenating information (or doing additive operations) has become
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standard in RNNs, another idea explored

st,i = �

 
MX

j=1

NX

k=1

Wijkot,jst�1,k + bi

!
. where W 2 R|s|⇥|o|⇥|s|

where indexing into a vector on time-step t is indicated through a double

subscript as st,j for the jth component of st. Using this type of operation

was initially called second-order RNNs (Goudreau et al. 1994), and was also

explored in one of the first landmark successes of RNNs (Sutskever et al. 2011)

in a character-level language modeling task.

There are several known problems with simple recurrent units (or simple

recurrent cells). The first is known as the vanishing and exploding gradient

problem (Pascanu et al. 2013). In this, as gradients are multiplied together

(via the chain rule in back-propagation through time) the gradient can either

become very large or vanish into nothing. In either case, the learned networks

often cannot perform well and a number of practical tricks are applied to

stabilize learning (Bengio et al. 2013). The second problem is called saturation.

This occurs when the weights W become large and the activations of the hidden

units are at the extremes of the transfer function. While not problematic for

learning stability, this can limit the capacity of the network and make tracking

changes in the environment dynamics more difficult (Chandar et al. 2019).

Many specialized architectures have been developed to improve learning

with recurrence. These architectures are designed to better learn long-temporal

dependences and avoid saturation (Hochreiter and Schmidhuber 1997; Cho

et al. 2014; J. Chung et al. 2014; Greff et al. 2017; Chandar et al. 2019). The

experiments presented in this work use three cell types. The first was the

simple RNN introduced earlier in this section. The other cells used are Long

short-term memory cells (LSTM) (Hochreiter and Schmidhuber 1997), and

gated-recurrent units (GRU) (J. Chung et al. 2014) which are standard cells

used throughout sequence prediction in supervised learning. Long short-term

memory cells (LSTM) were developed to address the issues with modeling

long-temporal dependencies and the vanishing gradients problem observed in

simple RNN cells. Gated-recurrent units (GRU) are a modification from the
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LSTM cell which maintains performance in many settings, improves ease of

use, and improves computational footprint (Greff et al. 2017).

2.4.2 Back-Propagation Through Time

In supervised learning, back-propagation through time (BPTT) (Mozer 1995) is

a commonly used algorithm for estimating the gradients of recurrent networks.

In this section, BPTT is briefly introduced alongside some alternatives. This

algorithm effectively unrolls the network through the sequence and calculates the

gradient as if it was one large network with shared weights. When calculating

the gradients through time for a specific sample using BPTT, the loss can be

defined 3 as

Lt(o1, . . . ,ot, yt,Wt) =
NX

i

(Vi(s(o1, . . . ,ot;Wt))� yt,i)
2

where N is the size of the batch, and y is the target defined by the specific

algorithm, and t is the current time. This will calculate the loss for a single

step at the end of the sequence rolling back through the entire sequence to the

beginning.

One might notice the above loss function requires growing computational

and memory requirements as the agent interacts with the environment. To

limit the computational and memory concerns, the current standard in training

recurrent architectures in RL is truncated back-propagation through time.

p-BPTT truncates the unrolling of the network to some number of steps p.

While this alleviates computational-cost concerns, the learning performance

can be sensitive to the truncation parameter (Pascanu et al. 2013), particularly

if the dependencies back-in-time are longer than the chosen p—as reaffirmed

by the results in this thesis. The loss is slightly modified from above as

Lt(ot�p, . . . ,ot, yt,Wt) =
NX

i

(Vi(s(ot�p, . . . ,ot;Wt))� yt,i)
2.

An alternative to p-BPTT is real time recurrent learning (RTRL) (R. J.

Williams and Zipser 1989). Unfortunately RTRL is known to suffer high
3You can also sum over the temporal dimension, passing in a sequence of labels to the

loss. In this work, the loss is calculated with respect to the most recent time-step (or the
end of sampled sequence) and calculate gradients back from this.
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computational costs for large networks. Several approximations have been

developed to alleviate these costs (Mujika et al. 2018; Tallec and Ollivier 2018),

but these algorithms often struggle from high variance updates making learning

slow. The approximation to the RTRL influence matrix proposed by Menick

et al. 2020 shows significant promise in sparse recurrent networks, even outper-

forming BPTT when trained fully online. Ke et al. (2018) propose a sparse

attentive backtracking credit assignment algorithm inspired by hippocampal

replay, showing evidence the algorithm has beneficial properties of both BPTT

and truncated BPTT. The focused architecture was often able to compete with

the fully connected architecture on length of learned temporal sequence and

prediction error on several benchmark tasks. Another line of search/credit

assignment algorithms is generate and test (Kudenko and Hirsh 1998; Mah-

mood and Sutton 2013; Samani and Sutton 2021; Dohare et al. 2022). These

search algorithms aren’t as tied to their initialization as other systems as they

intermittently inject randomness into their search to jump out of local minima.

Many of these approaches combine both gradient descent and generate and test

to gain the benefits of both. While a full generate and test solution is possible,

finding the right heuristics to generate useful state objects quickly could be

problem dependent.

2.5 Prediction and Control in Deep Recurrent
Reinforcement Learning

When applying deep recurrent neural networks to the RL setting, there are

several components which have been shown improve learning (Mnih et al. 2015).

In this section, these components are introduced in a piecemeal way. In the

empirical results of this thesis, all details are provided closer to their respective

results.

Loss Functions: In all the following results, semi-gradient learning updates

are used unless otherwise specified. Given a loss function of the form

L(St, At, St+1, Rt) = f(Ut,Q(St, At;W))

where the bootstrapped target is Ut = Rt + �maxa Q(St+1, a;Wt) for Watkins
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q-learning (Watkins and Dayan 1992). The semi-gradient learning update only

considers the gradient with respect to Q(S,A;W) where the gradient of the

target rWUt = 0. The function f is the mean squared error f(ŷ, y) = (ŷ� y)2,

unless otherwise specified.

Experience Replay Buffer: The experience replay buffer is mechanism

for re-using data (Lin 1992; Lin 1993) and for inducing an almost independent,

identically distributed set of examples with which to train the network (Mnih

et al. 2015; Schaul, Quan, et al. 2015). The replay buffer simply is a buffer of

stored transitions (S,A, S0, R) which is sampled according to some distribution

(typically uniform).

Target Networks: Target networks are a slow moving copy of the network

representing the q-function. It is updated according to pre-determined frequency

of agent steps. The target-network is used to calculate the bootstrapped target

(Ut above). This is said to provide a more stable target for the network to

approximate (Mnih et al. 2015).

Auxiliary Tasks: Auxiliary tasks are a set of learning objectives unrelated

to the underlying control problem used to supplement an often sparse reward

structure. These tasks are often prediction tasks of the observations on a

separate head of the network (Jaderberg et al. 2017). They have also been

defined as a set of general value functions (see section 2.6) (Sutton, Modayil,

et al. 2011; Jaderberg et al. 2017) and discovered through a meta-learning

process (Veeriah et al. 2019) or generate-and-test (Rafiee, Ghiassian, et al.

2022).

2.5.1 Architectural Choices for Recurrent Networks in
RL

Previously, the components of a deep feed-forward reinforcement learning agent

were introduced. Many of these components are the same when the architecture

is recurrent, but there are minor differences and challenges which are described

below.

The woes of the experience replay buffer: Current deep learning,

including recurrent architectures, in reinforcement learning include the need
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for an experience replay buffer. While a learning algorithm which overcomes

this limitation would likely be preferable, in the short term cohesive strategies

for combining an experience replay with recurrent architectures should be

empirically explored. There are two major approaches currently: 1) using the

stale traces, or 2) warming up the agent from the beginning (or some number

of time-steps prior) of an episode (Hausknecht and Stone 2015). Instead, a

third strategy is used in this thesis, we use gradient information to refresh the

hidden state to minimize the objective. We found little difference between this

and the stale approach. For much more insight and discussion on this choice

(see Kapturowski et al. 2019).

Target networks and state: Using a recurrent target network introduces

a new challenge. Specifically, in the approach chosen to initialize the hidden

state of the target network. Several choices could be made such as rolling

forward from the start of an episode, or using the state stored in the replay

buffer generated when the example was originally seen. Another possible

approach is to use the state in the buffer to regularize the learning of the

network (Nath et al. 2020). Unless otherwise specified, the following results

simply use the state stored in the buffer to initialize the recurrent network at

the beginning of a sequence.

Objectives matter even more: It is known that some objective functions

are more learnable in both the fully and partially observable settings (Mozer

1991; van Hasselt and Sutton 2015). In this thesis, a specific loss structure

is adopted to make comparisons between several styles of architectures (see

section 2.4.2 for details), but others could have been used. Another addition are

auxiliary tasks which augment the objective function (Jaderberg et al. 2017),

and has been argued to improve learning state representations.

2.6 Temporal Abstractions in Reinforcement Learn-
ing

Reinforcement learning is built on predicting the effect of behavior on future

observations and rewards. Many of our algorithms learn predictions of a
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cumulative sum of (discounted) future rewards, which is used as a bedrock

for learning desirable policies. While reward has been the primary predictive

target of focus, TD models (Sutton 1995) lay out the use of temporal-difference

learning to learn a world model through value function predictions. Temporal-

difference networks (Sutton and Tanner 2005; Tanner 2005) take advantage

of this abstraction and build state and representations through predictions.

Sutton, Modayil, et al. (2011) and A. White (2015) further the predictive

perspective by developing a predictive approach to building world knowledge

through general value functions (GVFs).

Two objects in RL which enable agents to reason beyond the moment-to-

moment stream of experience are known as options (Precup, Sutton, and

Singh 1998) and general value functions (GVFs) (Sutton, Modayil, et al.

2011). In this thesis, I focus on applying GVFs to learning a representation

of history, leaving the incorporation of options for future work. GVFs have

been pursued broadly in reinforcement learning: Günther et al. (2016) used

GVFs to build an open loop laser welder controller, Linke et al. (2020) and

McLeod et al. (2021) used predictions and their learning progress to develop

an intrinsic reward, Edwards et al. (2016) used GVFs to build controllers for

myoelectric prosthetics, using GVFs for auxiliary training tasks to improve

representation learning (Jaderberg et al. 2017; Veeriah et al. 2019), to extend

a value function’s approximation to generalize over goals as well as states

(Schaul, Horgan, et al. 2015), and to create a scheduled controller from a set

of sub-tasks for sparse reward problems (Riedmiller et al. 2018). Successor

representations and features are predictions of the state, learned or given, which

have been shown to improve learning performance (Dayan 1993; Russek et al.

2017; Barreto et al. 2018; Sherstan et al. 2018).

General value functions are a generalization of value functions enabling

agents to learn value function predictions of their sensorimotor stream beyond

a reward signal. A GVF question is a tuple (⇡, C, �) composed of a policy

⇡ : S ⇥ A ! [0,1), cumulant C : S ⇥ A ⇥ S ! R and a continuation (or

discount) function4 � : S ⇥A ⇥ S ! [0, 1] (M. White 2017). The answer to
4The original GVF definition assumed the continuation was only a function of St+1. This
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a GVF question is a mapping V : S ! R or Q : S ⇥A! R to the expected

discounted return of a cumulant function 5:

Vc,�,⇡(s) = E
"

1X

k=t

 
kY

i=t+1

�(Si�1, Ai�1, Si)

!
c(Si�1, Ai�1, Si)

�����St = s, At:1 ⇠ ⇡

#
.

General value functions were introduced in the context of prediction (i.e. as

a prediction demon). This object can be used in both prediction (as described

above) and for control (similarly to options). A control demon is encoded

into a state-action value function and learned through Q-learning (Watkins

and Dayan 1992) or Sarsa (Rummery and Niranjan 1994) to maximize the

return. This is similar to the control problem (Section 2.3)—where the objective

is to use value iteration to learn a policy—but often the behavior policy is

arbitrarily different from the current policy of the demon. While these objects

present unique sets of predictive information, our focus in the thesis will be

on prediction demons throughout the thesis and consider the incorporation of

control demons in future work. GVF questions, or the definitions used here,

can be used as a unifying specification for reinforcement learning tasks (i.e. for

options, predictions, control, etc. . . ) (M. White 2017).

was later extended to transition-based continuation (M. White 2017), to better encompass
episodic problems. Namely, it allows for different continuations based on the transition, such
as if there is a sudden change from St to St+1. I use this more general definition for this
reason, and because the cumulant itself is already defined on the three tuple (St, at, St+1).

5Note how S is used instead of  in these definitions. While the definition can be for
either the agent state or the environment state, this dissertation focuses on the case when it
is a function of agent state or history. See Chapter 4 for more details on GVFs defined on
history.
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Chapter 3

Incorporating Action into a

Recurrent Network

Before we address the research question posed in this thesis, first we take a

deeper look at how recurrent architectures are used in reinforcement learning

and how we can improve them. One important design decision is the strategy

used to incorporate action in the state update function which can have a large

impact on the agent’s ability to predict and control (see Figure 3.1). This has

been noted before, Zhu et al. 2018 provides a discussion on the importance

of these choices developing an architecture which encodes the action through

several layers before concatenating with the observation encoding. Other types

of action encodings have been used for the state update in RNNs for RL

(Schaefer et al. 2007; Zhu et al. 2018; Schlegel, Jacobsen, et al. 2021), but

without an in-depth discussion or focus on the ramifications of the particular

choice of architecture. In other cases, action has seemingly been omitted

(Hausknecht and Stone 2015; Oh et al. 2015; Espeholt et al. 2018). Other state

construction approaches also see action as a primary component, predictive

representations of state encode predictions as the likelihood of seeing action-

observation pairs given a history (Littman and Sutton 2002).

The major contribution of this chapter is the comparison and analysis of

several architectures for incorporating action into the state-update function

of an RNN in partially observable RL settings. Many of these architectures

have been proposed previously for recurrent architectures (i.e. Zhu et al. 2018;

Schlegel, Jacobsen, et al. 2021), and others are either related to or obvious
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Figure 3.1: Learning Curves for various RNN cells in Ring World using experi-
ence replay and three strategies to incorporate action into an RNN. The agent
learns 20 GVF predictions for 300k steps. The results reported is the root
mean squared value error averaged over 50 runs with 95% confidence intervals
with window averaging over 1000 steps. See Section 3.5 for full details.

extensions of those architectures. The results include an in-depth empirical

evaluation on several illustrative domains, and outline the relationship between

the domain and architectures using the deep recurrent q-network (DRQN)

framework (Hausknecht and Stone 2015).

3.1 Constructing State with Recurrent Networks

For convenience, this section reiterates some of the details used to learn a

state-update function using recurrent neural networks. Much of the content

is the same as found in Section 2.4, with details specific to this contribution.

Specifically, the details needed for incorporating RNNs into the deep Q-network

framework as originally discussed by Hausknecht and Stone (2015).

For effective prediction and control, the agent requires a state representation

st 2 Rn that is a sufficient statistic of the past: E [Gc

t
|st] = E [Gc

t
|st,ht].

When the agent learns such a state, it can build policies and value functions

without the need to store any history. For example, for prediction, it can learn

V (st) ⇡ E [Gc

t
|st].

23



An RNN provides one such solution to learning st and associated state

update function. The simplest RNN is one which learns the parameters W 2 Rd

recursively

st = �(Wxt + b)

where xt = [ot, st�1] and � is any non-linear transfer function (typically tanh).

In this chapter we use truncated back-propagation through time (p-BPTT)

with details provided in section 2.4.

To improve sample efficiency experience replay (ER) is incorporated. ER

is a critical part of a deep (recurrent) system in RL (Hausknecht and Stone

2015; Mnih et al. 2015). There are two key choices here: how states are stored

and updated in the buffer and how sequences are sampled (Kapturowski et al.

2019). In the following sections, the hidden state of the cell is stored in the

experience replay buffer as apart of the experience tuple. This is then used

to initialize the state when sampled from the buffer for both the target and

non-target networks. Gradients are passed back to the stored state to update

them along with our model parameters, see a full discussion in Section 10.2.1.

A separate initial state is also stored for the beginning of episodes, which is

updated with gradients. This is slightly differ from the approach taken by

Kapturowski et al. 2019, but this architectural choice should have little impact

on the results presented here. If the beginning of an episode is sampled from

the replay, the most up to date version of this vector was used to initialize the

hidden state. The agent samples states across the episode. For samples at the

end of the episode, a shorter sequence length ⌧ is used.

3.2 Tensors and Low-Rank Decompositions

Before getting to the details of how to encode actions in the state-update

function, I will provide the required background on Tensors. The simplest,

albeit slightly inaccurate, way to describe and use a tensor is as a multi-

dimensional array of numbers (either real or complex) which transform under

coordinate changes in predictable ways. In this chapter, tensors are multi-

dimensional arrays using Einstein summation notation. The ith, jth, kth
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component of an order-3 tensor will be denoted with lower indices Wijk 2 R
with associated dimension size denoted with corresponding uppercase letters

as W 2 RI⇥J⇥K .

Like matrices, tensors have a number of decompositions which can prove

useful. For example, every tensor can be factorized using canonical polyadic

decomposition (CP decomposition), which decomposes an order-N tensor W 2
RI1⇥I2⇥...⇥IN into N matrices as follows

Wi1,i2,... =
RX

r=1

�rW
(1)
i1,r

W(2)
i2,r

. . .W(N)
iN ,r

= �rW
(1)
i1,r

W(2)
i2,r

. . .W(N)
iN ,r

. Explicit summation over r 2 {1, . . . , R}.

where W(j) 2 RIj⇥R, and R is the rank of the tensor. This is a generalization

of matrix rank decomposition, and exists for all tensors with finite dimensions.

Working with tensors takes a bit more care in deciding which fibers (gener-

alization of row and column) the product should be over. One type of product

is known as the n-mode product which is defined as follows

(W ⇥n v)i1,i2,...,in�1,j,in+1,...iN = Wi1,i2,...,in�1,in,in+1,...iNvj,in

where v 2 RJ,In .

An important property, which will be used later in this chapter, are the

simplifications when using n-mode products with a tensor’s rank decomposition.

For example, order 3 tensors W 2 RIJK , with CP-decomposition Wijk =

�rairbjrckr and vector over a strand vM = v(1,M) 2 R1⇥M).

(W ⇥2 v
J ⇥3 v

K)i,1,1 =
KX

k=1

 
JX

j=1

Wijkv
J

1j

!
vK

1k

=
KX

k=1

JX

j=1

 
RX

r=1

�rairbjrckr

!
vJ

1jv
K

1k

=
RX

r=1

�rair

 
JX

j=1

bjrv
J

1j

! 
KX

k=1

ckrv
K

1k

!

=
RX

r=1

�rair
�
vJB� vKC

�
1r

W ⇥2 v
J ⇥3 v

K = �A
�
vJB� vKC

�>
. �i,i = �i
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Similarly to CP decomposition, Tucker rank decomposition can be used

to create a similar operation. Tucker rank decomposition decomposes an

order-N tensor W 2 RI1⇥I2⇥...⇥IN into N matrices another order-N tensor

G 2 RR1⇥R2⇥...⇥RN as follows

Wi1,i2,...iN =
R1X

r1=1

R1X

r1=1

. . .
R1X

r1=1

gr1r2...rNW
(1)
i1,r1

W(2)
i2,r2

. . .W(N)
iN ,rN

.

With similar simplifications to CP decomposition,

(W ⇥2 v
J ⇥3 v

K)i,1,1 =
KX

k=1

 
JX

j=1

Wijkv
J

1j

!
vK

1k

=
KX

k=1

JX

j=1

 
PX

p=1

QX

q=1

RX

r=1

gpqraipbjqckr

!
vJ

1jv
K

1k

=
PX

p=1

QX

q=1

RX

r=1

gpqraip

 
JX

j=1

bjqv
J

1j

! 
KX

k=1

ckrv
K

1k

!

=
PX

p=1

QX

q=1

RX

r=1

gpqraip
�
vJB

�
1q

�
vKC

�
1r

W ⇥2 v
J ⇥3 v

K = G⇥1 A
> ⇥2

�
vJB

�> ⇥3

�
vKC

�>

= A
h⇣

G> ⇥2

�
vJB

�>⌘ �
vKC

�>i
.

One interesting property of this operation is now each of the dimensions can

have a separately tuned rank, giving the system designer more discretion on

where to focus representational resources.

A low-rank approximation of a multiplicative operation has been used several

times before. A multiplicative update was used to make action-conditional

video predictions in Atari (Oh et al. 2015). This operation also appears in a

low-rank approximation defined by Predictive State RNN hidden state update

(Downey et al. 2017), albeit the low-rank approximation never performed as

well as the full rank version.
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Figure 3.2: Visualizations of the multiplicative and additive RNNs. The
dimensions of the weight matrices use the size of the RNN’s state |st�1| = n
and the size of the observation |ot| = m.

3.3 Architectural Designs for Incorporating Ac-
tion

There are two broad categories for incorporating action into the state update

function of an RNN. This section defines these categories and discusses various

variations in these categories (see Figure 3.2 for a visualization of two main

architectures).

3.3.1 Additive

The first category is to use an additive operation. The core concept of additive

action recurrent networks is concatenating an action embedding as an input

into the recurrent cell (Schaefer et al. 2007; Zhu et al. 2018). For example, the

update becomes

st = � (Wxxt +Waat�1 + b) (Additive)

where Wx and Wa are appropriately sized weight matrices. This requires no

changes to the recurrent cell if the action embedding at�1 2 Rb is concatenated

to the observation vector. In the empirical experiments, the additive update

cells use a hand-designed one-hot encoding function as all our domains have

discrete actions.

A variant of the additive approach was explored in Zhu et al. 2018, where

they modified the architecture slightly to learn a function of the action input
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at = fa(at). The label Deep Additive is used for this architecture, where

the action encoding function fa is a feed-forward neural network. As in

their architecture, the action embedding is concatenated with the observation

encodings right before the recurrent network. This focuses the empirical

evaluation on the changes in the basic operation rather than enumerating all

possible places the action can be concatenated before the recurrent operation.

3.3.2 Multiplicative

The second category is inspired by second-order RNNs (Goudreau et al. 1994)

and first appeared as a part of a state update function in Rafols, Koop, et al.

2006, where the observation, hidden state, and action embedding are integrated

using a multiplicative operation:

st = � (W ⇥2 xt ⇥3 at�1) , (Multiplicative)

where W 2 R|st|⇥|xt|⇥|at�1| and ⇥n is the n-mode product, which is detailed in

Section 3.2. This type of operation is known to expand the types of functions

learnable by a single layer RNN (Goudreau et al. 1994; Sutskever et al. 2011),

and decreases the network’s sensitivity to truncation (Schlegel, Jacobsen, et al.

2021).

While this type of update has very clear advantages, there is also a tradeoff

in terms of number of parameters and potential re-learning depending on the

granularity of the action representation. For example, in the Ring World exper-

iment depicted in Figure 3.1 the RNN cell with additive used 285 parameters

with hidden state size of 15. The multiplicative version would have used 510

parameters with the same hidden state size. While this doesn’t seem like a

lot, in a domain like Atari (with 18 actions, 1024 inputs, and |st| = 1024) the

number of parameters would be 2 million vs 38 million respectively. As shown

below in the empirical study, the size of the state can be significantly reduced

when using a multiplicative update. In any case, it would be worthwhile to

develop strategies to reduce the number of parameters, which is discussed next.
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3.3.3 Reducing Parameters of the Multiplicative

The first way to reduce the number of parameters is by using a low-rank

approximation of the tensor operations. Like matrices, tensors have a number

of decompositions which can prove useful. For example, every tensor can

be factorized using canonical polyadic decomposition, which decomposes an

order-N tensor W 2 RI1⇥I2⇥...⇥IN into n matrices as follows

Wi1,i2,... =
MX

r=1

�rW
(1)
i1,r

W(2)
i2,r

. . .W(N)
iN ,r

where W(j) 2 RIj⇥M , �r 2 R is the weighting for factor r, and M is the rank of

the tensor. This is a generalization of matrix rank decomposition and exists for

all tensors with finite dimensions, see Appendix 3.2 for more details. Several

simplifications using the properties of n-mode products can be made. Using

the definition of the multiplicative RNN update,

W ⇥2 xt ⇥3 at�1 ⇡ �Wout
�
xtW

in � at�1W
a
�>

. �i,i = �i. (Factored)

Previous work explored using a low-rank approximation of a multiplicative

operation. A multiplicative update was used to make action-conditional video

predictions in Atari (Oh et al. 2015). This operation also appears in a Predictive

State RNN hidden state update (Downey et al. 2017), albeit it never performed

as well as the full rank version. Our low rank approximation is also similar to

the network used in Sutskever et al. 2011, where they mention optimization

issues (which were overcome through the use of quasi-second order methods).

Another approach to reducing the number of parameters required—and

to reduce redundant learning—by using an action embedding rather than a

one-hot encoding. For example, in Pong it is known that only ~5 actions matter.

By taking advantage of the structure of the action space further reductions

to the number of parameters could be made. This architecture is explored

briefly in Section A.3. While this is an important piece of the puzzle, no effort

is afforded to learning good action embeddings in the following results and I

leave it to future work.
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Figure 3.3: The illustrative environments used in Section 3.5 and Section 3.6
respectively. (left) The Ring World environment with 6 states is depicted,
where the observation the agent receives is denoted in each of the circles,
available actions denoted by the red arrows, and the agent’s current location
denoted by a double line. (right) The base TMaze environments are depicted
with the available actions denoted below and labeled according to the Bakker’s
TMaze and Directional TMaze used in Section 3.6.

3.4 Empirical Questions

In the following sections, I set out to empirically evaluate the three operations

for incorporating action into the state update function: No Action input

(“NA”), Additive Action (“AA”), Multiplicative Action (“MA”), Factored

(“Fac”), Deep Additive Action (“DAA”). I explore all the variants using both

standard RNNs and a GRU cell. Our experiments are primarily driven by

the main hypothesis that the multiplicative will strictly outperform the other

variants. To explore this hypothesis I focus on two main empirical questions:

1. How do the different cells affect the properties of the learned value

function and internal state of the agent?

2. Are there examples where the other variants outperform the multiplicative

variant?

Question 1:

There are several properties I am interested in when analyzing the learning

capabilities of the different architectures. First, and most obvious, is prediction
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error (calculated using root mean squared value error). While error is a

reasonable method to compare different architectures, Kearney and Oxton

(2019) argue only inspecting error can be misleading in the quality of the

prediction. To account for this in our analysis I visually inspect the raw

predictions as well to confirm they are reasonably modeling the target returns.

With respect to the internal state, I am primarily interested in understanding if

there are qualitative differences which lead to differences in prediction quality.

Question 2:

The second question is more straightforward than the first, and requires a

complete empirical investigation of all the variants on a set of problems with

a diverse set of underlying dynamics and characteristics. You can see this

question as an extension of the hypothesis implied by Figure 3.1:

The multiplicative update outperforms the other variants in the

reinforcement learning setting for both control and prediction.

While the above hypothesis cannot be confirmed empirically, if question 2 is

affirmed then the hypothesis is false. Counter examples for the hypothesis will

also lead to more intuitive knowledge about when to apply one of the above

variants.

3.4.1 Experimental Setup:

In all control experiments, an ✏-greedy policy with ✏ = 0.1 is used. All

networks are initialized using a uniform Xavier strategy (Glorot and Bengio

2010), with the multiplicative operation independently normalizing across the

action dimension (i.e. each matrix associated with an action in the tensor

is independently sampled using the Xavier distribution). Unless otherwise

stated, a hyperparameter search was performed for all models using a grid

search over various parameters (listed appropriately in the Appendix A.4). The

number of hyperparameter settings were fixed to be equivalent across all models,

except the factored variants which use several combinations of hidden state

size and number of factors. The best settings were selected and reported using

independent runs with seeds different from those used in the hyperparameter
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Figure 3.4: Ring World sensitivity curves of RMSVE over the final 50k steps for
CELL (hidden size) (left) RNN (15), AARNN (15), MARNN (12), FacRNN
(12 [solid] and 15 [dashed]), DARNN (12, |a| = 2), and (right) GRU (12),
AAGRU (12), MAGRU (9), FacGRU (9 [solid] and 12 [dashed]), DAGRU (9,
|a| = 10). Reported results are averaged over 50 runs with a 95% confidence
interval. FacRNN used factors M = {12, 8} respectively, and FacGRU used
M = {14, 12}. All agents were trained over 300k steps.

search, unless otherwise specified. All the network sizes were controlled such

that they had an approximately equal number of free parameters. All final

network sizes can be found in Appendix A.4.

3.5 Investigating Properties of the Predictions
and State

I explore the first empirical question by revisiting the Ring World environment,

specifically to test model performance with various truncations, and to compare

the architecture’s learned state. The Ring World, depicted in Figure 3.3, consists

of a cycle of states with a single state containing an active observation bit, and

other states having an inactive observation bit. The agent can take actions

moving either clockwise or counter clockwise in the cycle of states. The agent

must keep track of how far it has moved from the active bit. For all experiments,

Ring World had 10 underlying states.

The agent’s objective is to learn a total of 20 GVFs with state-termination

continuation functions of � 2 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. When

the agent observes the active bit in Ring World (i.e. enters the first state) the

predictions are terminated (i.e. � = 0.0). The GVFs use the observed bit as

32



a cumulant. Half of the GVFs follow a persistent policy of going clockwise

and the other follow the opposite direction persistently. The agent follows

an equiprobable random behavior policy. The agent updates its weights on

every step following a off-policy semi-gradient TD update with a truncation

values denoted. The agent was trained for 300000 steps and averaged over 50

independent runs. Root mean squared value error (RMSVE) is used as the

main error metric. RMSVE can be calculated as

RMSVEt =
1

|V (ht)|
||V (ht)� Voracle( t)||2,

where Voracle is a known oracle for the true value function.

3.5.1 Results

Time
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Figure 3.5: Ring World predic-
tions of seed = 62 for the mul-
tiplicative and additive RNNs.
Discounts listed with the tar-
get policy persistently going
counter-clockwise.

Figure 3.4 contains a survey over truncation

values for all the architectures. For both the

RNN and GRU cells the MA variant per-

forms the best, while the additive performs

the worst of the cells which include action

information. Interestingly, the factored vari-

ants for the GRU perform almost identically,

while the FacRNN with a smaller hidden state

perform marginally better. All factored vari-

ants straddled the performance of the additive

and multiplicative updates. The DAAGRU

performs similarly to the AAGRU, while the

DAARNN fails to learn in this setting. Fi-

nally, the MARNN performs the best overall,

only needing a truncation value of ⌧ = 6 to

learn, which is shorter than the Ring World. With the same number of param-

eters, the operation used to update the state can have a significant effect on

the required training sequence length ⌧ and final performance.

To ground the prediction error reported, two representative examples of the

learned predictions for the additive and multiplicative RNNs are reported in
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Figure 3.6: Individual learning curves for the additive (hidden size of 15) and
multiplicative (hidden size 12) RNNs in Ring World with truncation ⌧ = 6.
The plots are smoothed with a moving average with 1000 step window sizes.
The gray box denotes the seed used in Figures 3.5 and 3.7. Overall, the
multiplicative is quite resilient to initialization, but the distance from zero error
in Figure 3.1 can be explained by a few bad initializations.

Figure 3.5. These plots show a single seed (selected as the best for the additive)

over a small snippet of time, but are representative of our observations of

the general performance for both cells. The multiplicative follows the actual

prediction within a small delta being as close to zero error as can be expected,

while the additive has many artifacts and other miss-predictions for both the

myopic (� = 0.0) and long-horizon (� = 0.9) predictions. In Figure 3.6, all the

individual learning curves were reported for the additive and multiplicative.

3.5.2 Looking Beyond Performance

A natural question is why might the multiplicative cell perform significantly

better than the other cells in this simple setting? One hypothesis is that

the multiplicative cell does a better job at separating the histories on action

sequence as compared to the additive operation. While this question is difficult

to test, one can peer into the learned state of each cell and see if there are

qualitative features that appear to help explain the better performance. After

learning (using the same parameters as in Figure 3.4) another 1000 steps of

hidden states are collected. With these hidden states TSNE (Maaten and

Hinton 2008) is applied to reduce the space of hidden states to two dimensions.

The resulting scatter plots for the additive and multiplicative simple RNNs

can be seen in Figures 3.7 and 3.8.
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Figure 3.7: TSNE plots for the additive and multiplicative RNNs for truncation
2 {1, 6}. Given the learning objective (described in Section 3.5), the state
should have 10 distinct clusters for each state of the underlying environment.
One would expect the truncation ⌧ = 1 to not be able to produce this kind of
state for either cell variant. The learning curves correspond to a single seed
(seed=62 which is best for the Additive update). The top scatter plots are
colored on the underlying state the agent is currently in, the bottom scatter
plots are colored based on the previous action the agent took. TSNE is initilized
with the same random seed, with max iterations set to 1000, and perplexity
set to 30. (top) additive and (bottom) multiplicative update functions.

35



Truncation 6Truncation 1
Steps (x100)

R
M

SV
E

0.0

0.5

0 3000 Steps (x100)

R
M

SV
E

0.0

0.5

0 3000

St
at

es
A

ct
io

ns

Truncation 6Truncation 1

St
at

es
A

ct
io

ns

Steps (x100)

R
M

SV
E

0.0

0.5

0 3000Steps (x100)

R
M

SV
E

0.0

0.5

0 3000

Median Seed

M
ul

tip
lic

at
iv

e
A

dd
iti

ve

Figure 3.8: TSNE plots for the additive and multiplicative RNNs for truncation
2 {1, 6}. Given the learning objective (described in Section 3.5), the state
should to have 10 distinct clusters for each state of the underlying environment.
One would expect the truncation ⌧ = 1 to not be able to produce this kind of
state for either cell variant. The learning curves correspond to a single seed.
The top scatter plots are colored on the underlying state the agent is currently
in, the bottom scatter plots are colored based on the previous action the agent
took. TSNE is initialized with the same random seed, with max iterations set
to 1000, and perplexity set to 30. The results are presened for the median
seeds of both cells (top) additive uses seed=55 and (bottom) multiplicative
uses seed=67.
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Overall, the additive and multiplicative’s states can be separated on the

previous action equally well, matching our initial hypothesis. While action is

important, the additive seems to be hyper-focused on action even as the cell is

able to partition on environment state. The multiplicative, on the other hand,

is able to cluster the hidden states for various environment states together with

only minor separation on action as seen in states 1 and 7. It is possible this is

a natural part of th learning process for both the cells, but the multiplicative

is able to cluster the states in less samples. Looking at the median performer

(seed=55 and seed=67 for the additive and multiplicative respectively), the

additive fails to separate on environment state, while the multiplicative looks

similarly to the previous seed.

Above, I hypothesized the separation of action faced by the additive agent

could have been an artifact of the learning dynamics. To test this hypothesis

TSNEs were generated for several agents at different points in the training

process. The results can be seen in Figure 3.9. For the multiplicative [50000,

75000, 100000, 300000] are reported. These temporal points represent the

major learning milestones of the network. For the additive [50000, 150000,

200000, 500000] was chosen. These go beyond the original experiment’s sample

limits and shows the major milestones when the network separates the histories

according to state. For 100000 steps of training for the multiplicative similar

properties where the actions taken to get to specific states are quite separated.

As the number of samples grow, to 300000, the states converging to be mostly

clustered together regardless of the action taken. The additive version never

sees the states converging, where even after 500000 time-steps the actions are

still regarded highly by the network.

3.6 Understanding when Action Encoding Does
and Does Not Matter

This section investigates learning behavior in two environments with slightly

differing properties. The first domains is called TMaze (Bakker 2002), depicted

in Figure 3.3, with a size of 10, which was initially proposed to test the
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Figure 3.9: TSNE plots for multiplicative and additive RNNs for various
number of training samples.
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Figure 3.10: (left) Bakker’s TMaze box plots and violin plots over the per-
formance averaged over the final 10% with 50 independent runs. Trained
over 300k steps with ⌧ = 10. All GRUs use a state size 6, while RNNs use a
state size 20. The deep additive used an action encoding of |a| = 4. (right)
Directional TMaze comparison over the performance averaged over the final
10% of episodes with 100 independent runs trained over 300k steps with ⌧ = 12
for CELL (hidden size): RNN (30), AARNN (30), MARNN (18), DARNN (25,
|a| = 15), GRU (17), AAGRU (17), MAGRU (10), DAGRU (15, |a| = 8).

capabilities of LSTMs in RL using Q-Learning. The environment is a long

hallway with a T-junction at the end. The agent receives an observation

indicating whether the goal state is in the north position or south position at

the T-junction (which is randomly chosen at the start of the episode). The

agent can take actions in the compass directions. On each step the agent

receives a reward of -0.1 and in the final transition receives a reward of 4 or

-1 depending if the agent was able to remember which direction the goal was

in. The agent deterministically starts at the beginning of the hallway. The

observation in the first state is [1, 1, 0] if the goal state is located above the

agent and [0, 1, 1] if the goal state is below the agent. In the final state of the

hallway the agent receives [0, 1, 0] as an observation, and everywhere else the

observation is [1, 0, 1].

Our control agents are constructed similarly to those used in the Ring World

environment. The agent’s network is a single recurrent layer followed by a linear

layer. A sweep is performed over the size of the hidden state and learning rates,

and selected all variants of a cell type to have the same value. The network

is trained over 300000 steps with further details reported in appendix A. The

agent’s performance is reported over the final 10% of episodes by averaging

39



the agent success in reaching the correct goal. All results are reported using

a box and whisker plot with the distribution. The upper and lower edges of

the box represent the upper and lower quartiles respectively, with the median

denoted by a line. The whiskers denote the maximum and minimum values,

excluding outliers which are marked.

Shown in Figure 3.10 (left), all the cells have similar median performance

with the GRU (with no action input) performing the best with the least amount

of spread. This conclusion is the same across the size of the hidden state, where

the multiplicative and factored variants performed poorly (see Appendix A

for factored results). While this initially suggests the action embedding is not

important beyond our simple Ring World experiment, notice the difference

in how the environment’s dynamics interact with the agent’s action. In the

TMaze, the underlying position of the agent is affected by only two of the

actions (the East and West action), while the North and South actions only

transition to a different state at the very end of the maze. Also, the agent’s

actions do not affect needs to be remembered, no matter what trajectory the

agent sees the meaning of the first observation is always the same. Thus, these

results are much less surprising. For example, the multiplicative variants will

have to learn the update dynamics multiple times for the North and South

actions.

To better replicate these dynamics in TMaze, a direction component is

added to the underlying state. For example, many robotics systems must be

able to orient and turn to progress in a maze, which I hypothesize actions will

be critical for modeling the state. The agent can take an action moving forward,

turning clockwise, or turning counter-clockwise. Instead of the observations

only being a function of the position, the agents direction plays a critical role.

In the first state, the agent receives the goal observation [1, 1, 0] when facing the

wall corresponding to the goal’s direction. All other walls have the observation

[0, 1, 0], and when not facing a wall the agent receives the observation [0, 0, 1].

In DirectionalTMaze the agent is forced to contextualize its observation by the

action it takes before or after seeing the observation. The state updates are

evaluated using the same methodology as in the TMaze with results reported
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Figure 3.11: Sensitivity curves over number of factors M with standard error
for the (top) FacRNN (30) and (bottom) FacGRU (17). All agents were
trained over 300k steps. The data was generated by a sweep over the learning
rate with 40 runs and compare to the data in figure 3.10. The red labels on
the x-axis indicate when the network has the same number of parameters as
the multiplicative.

in Figure 3.10 (right).

Now that the agent must be mindful of its orientation, the action again

becomes a critical component in learning. The multiplicative variants outper-

forming all other variants in this domain. Without action, the GRU and RNN

are unable to learn, and even the additive and deep additive versions are unable

to learn in 300000 steps. Figure 3.11 reports the performance of a sweep over

the number of factors and report the as compared to the multiplicative and

additive variants. As the factors increase, generally the performance increases

as well. This matches our expectations, as with increased factors the factored

variants should better approximate the multiplicative variances. But there

is a tradeoff when adding too many factors, causing performance to decrease

substantially. While the factored variant has some interesting properties, the

remaining experiments focus on the base architectures (NA, MA, AA, DA) and

report full results with the factored variant in Appendix A.
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Figure 3.12: Two variants of combining cells. State size chosen based on
procedures of previous environments. (top) Performance of success rates (left)
TMaze with same basic parameters as above for CELL (hidden size): Softmax
GRU (6), Cat GRU (6), Softmax RNN (20), Cat RNN (20). (right) Directional
TMaze with same parameters as above for CELL (hidden size): Softmax GRU
(8), Cat GRU (12), Softmax RNN (15), Cat RNN (22). (bottom) Average
softmax weights of cells over training with standard error over runs.

3.7 Combining Cell Architectures

This section empirically evaluates combinations of the additive and multiplica-

tive cells. These architectures are a minor step toward building an architecture

which learns the structural bias currently hand designed.

The hidden state between an additive and multiplicative operation are

combined through two techniques. The first is through an element-wise softmax.

Both the additive and multiplicative have the same size hidden state (sa and

sm respectively), and each element of the hidden states are weighted by

si =
e✓

a
i sa

i
+ e✓

m
i sm

i

e✓
a
i + e✓

m
i

where ✓a,✓m 2 Rn. This should learn which cell to use depending on the

structure of the problem. The second combination is through concatenating

the two hidden state together s = cat(sa, sm). This gives more room for experts

to add more state to the different architectures, but in this work the two

architectures are fixed to have the same state size.

These combinations are compared to the original architectures in TMaze

and Directional TMaze following the same procedure as above. These cells
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should perform as well as either the additive or the multiplicative (which ever

is doing the best in the specific domain). The results can be seen in Figure 3.12.

Overall, the softmax combination performs similarly or slightly better than the

multiplicative version except in the Directional TMaze for the GRUs. In TMaze,

concatenating the two states together performed better than the additive

and multiplicative cells, but this operation worked slightly worse than the

multiplicative in the Directional TMaze. To test the hypothesis that the softmax

weighting should emphasize the better cell in a given domain the softmax

weighting over the training period is reported. For TMaze the weightings end

being approximately equivalent while the Directional TMaze shows a very

distinct separation where the multiplicative is weighted significantly more and

the additive is continually down-weighted.

3.8 Learning State Representations from Pixels

Finally, an empirical study in two environments with non-binary observations is

performed. I am particularly interested in whether the recurrent architectures

perform comparably when the observation needs to be transformed by fully

connected layers, or when the observation is an image. These experiments only

use the GRU cells. Full details can be found in Appendix A.4.

The first domain considered is a version of DirectionalTMaze which uses

images instead of bit observations. The agent receives a gray scale image

observation on every step of size 28⇥ 28. The agent sees a fully black screen

when looking down the hallway, and a half white half black screen when looking

at a wall. The agent observes an even (or odd) number sampled from the

MNIST (LeCun et al. 2010) dataset when facing the direction of (or opposite

of) the goal. The rewards are -1 on every step and 4 or -4 for entering the

correct and incorrect goal position respectively. The same error metrics as in

the prior TMaze environments are reported, with the environment’s hallway

being of length 6. Notice the hallway size is smaller and the negative reward is

larger, this was to speed up learning for all architectures.

Results for the Image DirectionalTMaze can be seen in Figure 3.13. In this
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Figure 3.13: (left) Image Directional TMaze percent success over the final 10%
of episodes for 20 runs for CELL (hidden size): AAGRU (70), MAGRU (32),
DAGRU (45, |a| = 128). Using ADAM trained over 400k steps, (⌧ = 20). GRU
omitted due to prior performance. (center) Lunar Lander average reward over
all episodes for CELL (hidden size): GRU (154), AAGRU (152), MAGRU (64),
DAGRU (152, |a| = 64) and (⌧ = 16). (right) Lunar Lander learning curves
over total reward. Ribbons show standard error and a window averaging over
100k steps was used. Lunar Lander agents were trained for 20 independent
runs for 4M steps.

domains, the multiplicative performs quite well, although not as well as in the

simple version. The AAGRU is unable to learn in this setting, and the deep

additive variant performs slightly better than the additive.

3.9 Learning State Representations from Agent-
Centric Sensors

The second domain is a partially observable version of the LunarLander-v2

environment from OpenAI Gym (Brockman et al. 2016). The goal is to land a

lander on the moon within a landing area. Further details and results can be

found in Appendix A.4. The observation is modified by removing the anglular

speed, and filtering the angle ✓ such that it is 1 if �7.5  ✓  7.5 and 0

otherwise. The average reward obtained over all episodes and learning curves

are reported.

As seen in Figure 3.13, our findings generalize to this domain as well. The

multiplicative variant improves over the factored (see Appendix A), additive,

and deep additive variants significantly. In the LunarLander environment the

multiplicative learns faster, reaching a policy which receives on average 100

total reward per episode. Both the additive and factored eventually learn
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Figure 3.14: Individual learning curves. Line is the median over 1000 episodes,
with the shaded region as the 1st and 3rd quantile over the same window.

similar policies, while the standard GRU seems to perform less well (although

not statistically significant from the additive variant). The average return is

~100 less than some of the best agents on this domains. The agent does this

well 50% of the time, as seen in the individual median curves in Figure 3.14.

This difference can be explained by the failure start states being more frequent

than in the fully observed case.
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3.10 Summary and Conclusions

This chapter empirically evaluated several strategies for incorporating the

previous action into the state update of a recurrent neural network. The

impact of this choice was shown to have a large impact on an RL agent’s

performance in several environments from several observation types. These

empirical results suggest that the multiplicative operation performs the best

even when using a smaller state vector, and the factored and the deep additive

versions perform marginally better than the additive versions in most domains.

While the multiplicative seems to be the clear winner on the tested domains,

it is important to note not all domains require this architecture. One interesting

strategy could be to use the softmax combined cells to decide which cell to use

in your final architecture (by looking at the softmax weighting). One could also

imagine an architecture which is able to learn which cell to use conditioned

on the history of the agent (see Section 10.2.2). Until better architectures for

RL are defined this choice is left to system designers. While the additive and

deep additive versions under-performed compared to the other encodings, it

still out-performed naively using RNNs without action input.

What is apparent in these experiments and other empirical evidence recently

gathered on the performance of recurrent architectures in the online setting

(Schlegel, Jacobsen, et al. 2021; Rafiee, Abbas, et al. 2022) is that the methods

and architectures developed and utilized by supervised learning might not

be suitable for the reinforcement learning problem. This paper uncovered

a simple choice can have a large impact, and provides some evidence that

the assumptions made in supervised learning might be holding back recurrent

architectures in the reinforcement learning setting (see Section 10.2.1 for details).

Small, focused studies using recurrent agents in controlled experiments will

continue to produce insights on the limitations of the base algorithms and

continue to inspire future algorithm developments.
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Chapter 4

General Value Function Networks

In this chapter, a predictive representations of state approach known as general

value function networks is introduced. In short, these networks constrain the

state of a recurrent network to answer predictive questions in the form of GVFs.

This chapter defines the core framework of the general value function network

(GVFN). The key contributions include the restriction of predictive questions to

be composed in acyclic graphs, and extensions to include the set of predictions

made by PSRs, TDNets, and other forecasting networks. In later chapters a

set of learning algorithms for these architectures are derived (Chapter 5), and

then empirically evaluated (Chapter 6).

4.1 Representations of State

Most domains of interest are partially observable, where an agent only observes

a limited part of the state. In such a setting, if the agent uses only the immediate

observations, then it has insufficient information to make accurate predictions

or decisions. A natural approach to overcome partial observability is for the

agent to maintain a history of its interaction with the world. For example,

consider an agent in a large and empty room with low-powered sensors that

reach only a few meters. In the middle of the room, with just the immediate

sensor readings, the agent cannot know how far it is from a wall. Once the

agent reaches a wall, though, it can determine its distance from the wall in the

future by remembering this interaction. This simple strategy, however, can be

problematic if a long history length is needed (McCallum et al. 1996).
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State construction enables the agent to overcome partial observability,

with a more compact representation than an explicit history. Because most

environments and datasets are partially observable—in time series prediction,

in modeling dynamical systems and in reinforcement learning—there is a

large literature on state construction. These strategies can be separated into

Objective-state and Subjective-state approaches.

Objective-state approaches specify a true latent space, and use observations

to identify this latent state. An objective representation is one that is defined in

human-terms, external to the agent’s data-stream of interaction. They typically

require an expert to provide feature generators or models of the agent’s motion

and sensor apparatus. Many approaches are designed for a discrete set of latent

states, including HMMs (Baum and Petrie 1966) and POMDPs (Kaelbling

et al. 1998). A classical example is Simultaneous Localization and Mapping,

where the agent attempts to extract its position and orientation as a part of

the state (Durrant-Whyte and Bailey 2006). These methods are particularly

useful in applications where the dynamics are well-understood or provided, and

so accurate transitions can be used in the explicit models. When models need

to be estimated or the latent space is unknown, however, these methods either

cannot be applied or are prone to misspecification.

The goal of subjective-state approaches, on the other hand, is to construct

an internal state only from a stream of experience. This contrasts objective-

state approaches in two key ways. First, the agent is not provided with a true

latent space to identify. Second, the agent need not identify a true latent state,

even if there is one. Rather, it only needs to identify an internal state that

is sufficient for making predictions about target variables of interest. Such a

state will likely not correspond to objective quantities like meters and angles,

but could be much simpler than the true latent state and can be readily

learned from the data stream. Examples of subjective-state approaches to state

construction include Recurrent Neural Networks (RNNs) (Hopfield 1982; Lin

1993), Predictive State Representations (PSRs) (Littman and Sutton 2002)

and TD Networks (Sutton and Tanner 2005).

I have discussed several causes and remedies for the instability of RNNs. An
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alternative direction, that requires more domain expertise than RNN expertise,

is to use predictions as auxiliary losses. Auxiliary unsupervised losses have

been used in NLP to improve trainability (Trinh et al. 2018). Less directly,

auxiliary losses were used in reinforcement learning (Jaderberg et al. 2017)

and for modeling dynamical systems (Venkatraman et al. 2017), to improve

the quality of the representation; this is a slightly different but nonetheless

related goal to trainability. The use of predictions for auxiliary losses is an

elegant way to constrain the RNN, because the system designers are likely to

have some understanding of the relevant system components to predict. For

the larger goals of AI, augmenting the RNN with additional predictions is

promising because one could imagine the agent discovering these predictions

autonomously—predictions by design are grounded in the data stream and

learnable without human supervision. Nonetheless, the use of predictions as

auxiliary tasks provides a more indirect (second-order) mechanism to influence

the state variables. In this work, I ask: is there utility in directly constraining

states to be predictions?

To answer this question, a practical approach for learning RNNs where

the internal state corresponds to predictions is needed. I propose a new RNN

architecture, where the hidden state is constrained to be multi-step predictions,

using an explicit loss function on the hidden state. Specifically, the architecture

uses general policy-contingent, multi-step predictions: General Value Functions

(Sutton, Modayil, et al. 2011).

4.2 Constraining State to be Predictions

Let us start in a simpler setting and explain how the hidden units could be

trained to be n-horizon predictions about the future. Imagine you have a multi-

dimensional time series of a power-plant, consisting of d sensory observations

with the first sensor corresponding to water temperature. Your goal is to make

a hidden node in your RNN predict the water temperature in 10 steps, because

you think this feature is useful to make other predictions about the future.

This can be done simply by adding the following loss: (st,1 � xt+10,1)2. The
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combined loss Lt(W) on time-step t is

Lt(W)
def
= `(ŷt, yt) + (st,1 � xt+10,1)

2 (4.1)

where both ŷt and st are implicitly functions of W. This loss still encourages

the RNN to find a hidden state st that predicts yt well. There is likely a whole

space of solutions that have similar accuracy for this prediction. The second

loss constrains this search to pick a solution where the first state node is a

prediction about an observation 10 steps into the future. This second term

can be seen as a regularizer on the network, specifying a preference on the

learned solution. In general, more than one state node—even all of st—could

be learned to be predictions about the future.

The difficulty in training such a state representation depends on the chosen

targets. For example, long horizon targets—such as 100 steps rather than 10

steps into the future—can be high variance. Even if such a predictive feature

could be useful, it may be difficult to learn accurately and could make the

state-update less stable. Using n-horizon predictions also requires a delay in

the update: the agent must wait 100 steps to see the target to update the state

at time t.

Therefore, I propose to restrict ourselves to a class of prediction that have

been shown to be more robust to these issues, GVFs (Sutton, Modayil, et al.

2011; Modayil et al. 2014; van Hasselt and Sutton 2015). Algorithms exist to

estimate these predictions online, without having to wait to see outcomes in

the future. This property of GVFs is independence of span (van Hasselt and

Sutton 2015), meaning learning can be achieved with computation and memory

independent of the horizon. Such a property is doubly critical for predictions

within an RNN, as it is more likely these predictions can be estimated sufficiently

quickly to be usable as state. Further, there is some evidence that this class

of predictions is sufficient for a broad range of predictions about the future

(Pezzulo 2008; Sutton, Modayil, et al. 2011; Modayil et al. 2014; A. White 2015;

Banino et al. 2018; Momennejad and Howard 2018), and so the restriction to

GVFs does not significantly limit representability.
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4.2.1 The components of a predictive state approach

Every approach to constructing state with predictions has three core com-

ponents. The first is how a predictive question is asked or phrased. This

can have dramatic affects on the hypothesis/function class of the predictive

state, and induce large differences in the underlying algorithmic assumptions

used for training. The second is in how the questions will be answered. An

approach must consider the base function classes used to represent answers,

the abstractions (either temporally or otherwise), and the learning algorithms

applied to the architecture. The third, and probably less studied, is that of

discovery. Discovery is the automatic specification of predictive questions (e.g.

GVFs in a GVFN).

Choosing the semantics of how predictive questions are asked will have

major effects in the question’s discoverability and answerability. PSRs use

histories of action observation pairs to construct predictive question, where the

answer is a representation of the probability of the sequence of observations

being seen given a history and the agent follows the action sequence (Littman

and Sutton 2002; Singh, James, et al. 2004). TDNs use an question network

which is a graph of target dependencies with the core nodes representing

specific parts of the observational space. This graph can be many layers, and

is acyclic with the single exception of a self-recurrence denoting discounting.

Both TDNs and PSRs were originally defined only using primitive actions to

ask questions, but were later extended to included temporally abstract options

through option-conditional TDNs (Sutton and Tanner 2005; Rafols, Koop, et al.

2006) and hierarchical PSRs (HPSRs) (Wolfe and Singh 2006).

The second component is that of learning and representing the answers of

the predictive questions. While respectively different questions, they are deeply

connected in the design of any system. The original work in PSRs restricted

the sets of observations and actions to be finite. The reason this was needed

was how the answers were represented, given a history and sequence of actions

for the sequence of observations to not be trivially zero the observations must

be sampled according to a mass function. This was addressed in later work

51



using kernel density estimation and information-theoretic tools to realize PSRs

in the case of continuous observations and actions (Wingate and Singh 2007).

The answers were then represented as a vector of predicted values for the core

tests, which could be updated incrementally with new observations. TDNs use

artificial neural networks to underly their representation of answers. While the

organization of nodes is not restricted (Sutton and Tanner 2005), most of the

empirical results shown can be described as using a recurrent neural network.

Schlegel, Jacobsen, et al. 2021 make this restriction more apparent, where they

explicitly learn the predictive representation as the state of a recurrent network.

This simplifies the comparison to non-predictive subjective state approaches

(i.e. RNNs), while also enabling the application of backpropagation through

time and real-time recurrent learning.

The third and final component is that of discovery. Discovery is the

automatic specification of predictive questions to use in learning the predictive

state. PSRs approached discovery by exploring the set of tests to construct

a core set that enables all other tests to be answered (James et al. 2005;

Wolfe, James, et al. 2005; Mccracken and Bowling 2006; Wingate and Singh

2007). This objective is trying to find a sufficient statistic of the history for all

predictions, and has been discussed in various forms (Subramanian et al. 2022).

I conjecture that finding such a state is not feasible in large complex problems,

and searching for such a state would be a poor use of a finite set of computational

resources. Instead, the agent should focus on finding a set of questions which

is useful for the agents overarching goals—for example, maximizing the return

in the control problem. Along this new objective several other approaches

have been proposed. Generate and test is a general algorithm for searching

through a large space with opaque dynamics (Mahmood and Sutton 2013;

Javed 2020). Another approach is to define the predictive questions as a

parametric optimization problem and use meta-gradient descent (Bacon and

Precup 2017; Veeriah et al. 2019). This approach splits the problem into two

optimization problems: an inner problem and an outer problem. The inner

optimization consists of the usual control or prediction procedure, where the

agent seeks to maximize the discounted return or lower prediction error. The
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outer optimization calculates gradients through this procedure, with respect to

the meta-parameters.

Given a predictive approach to state building requires consideration of

these difficult algorithmic choices, a natural question arises “Why shouldn’t

we use non-predictive subjective based approaches for learning state, such as

the usual recurrent networks?”. While this thesis won’t provide (or seek) a

conclusive answer to this question, predictive approaches to state construction

may have a positive effect on a system’s ability to generalize and learn a state

representation. This is stated in the Predictive Representation Hypothesis

(Schaul and Ring 2013):

a(n) (explicit) predictive representation of state will be able to

continually construct useful generalizations of the regularities in an

environment.

An (explicit) predictive representation of state is an algorithm, or architec-

ture, which constrains the state to be predictions which minimize an objective

separate (or jointly) from the agent’s general goal in an environment. This

class of algorithms includes PSRs, TDNs, GVFNs, and several others. Because

the state will be made of small-specific predictive questions of the agent’s

sensory-motor stream, as the distributions of the underlying dynamics shift

the answers to the questions should appropriately shift as well.

4.3 GVF Networks

In this section, GVF Networks are introduced. The GVF Network (GVFN)

is an RNN architecture where hidden states are constrained to predict policy-

contingent, multi-step outcomes about the future. I first describe GVFs and

the GVF Network (GVFN) architecture. Several related predictive approaches,

such as TD Networks, are discussed in Section 4.5, after introducing GVFNs.

First, the definition of GVFs (Sutton, Modayil, et al. 2011) needs to be

expanded to the partially observable setting, to use them within RNNs. The

first step is to replace state with histories. Remember in Section 2.4 we
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introduced the set of minimal histories that enables the Markov property for

the distribution over next observation

H =
n
hk=(o0, a0, . . . ,ok) | (Markov property)p(ok+1|hk,ak)=p(ok+1|o�1,a�1,hkak),

(Minimal history) p(ok+1|hk) 6=p(ok+1|o1,a1,...,ak�1,ok)

o

(4.2)

As defined in Section 2.6, a GVF question is a tuple (⇡, C, �) composed of a

policy ⇡ : H ⇥A! [0,1), cumulant C : H ⇥A⇥H ! R and continuation

(or discount) function � : H ⇥ A ⇥ H ! [0, 1]. On time step t, the agent

is in Ht, takes actions At, transitions to Ht+1 and observes cumulant Ct+1

and continuation �t+1. The answer to a GVF question is defined as the

value function, V : H! R, which gives the expected, cumulative discounted

cumulant from any history ht 2 H. The value function which can be defined

recursively with a Bellman equation as

V (ht)
def
= E[Ct+1 + �t+1V (Ht+1) | Ht = ht, At ⇠ ⇡(·|ht)] (4.3)

=
X

at2A

⇡(at|ht)
X

ht+12H

p(ht+1|ht, at)[C(ht, at,ht+1)+

�(ht, at,ht+1)V (ht+1)].

The sums can be replaced with integrals if A or O are continuous sets. The

definitions and theory associated with the GVFN assumes that H is a finite set,

for simplicity; however, the theory can be extended to infinite and uncountable

sets.

A GVFN is an RNN, and so is a state-update function f , but with the

additional criteria that each element in st corresponds to a prediction—to a

GVF. A GVFN is composed of N GVFs, with each hidden state component

st,j trained such that at time-step t, st,j ⇡ V (j)(st) for the jth GVF and

history st. Each hidden state component, therefore, is a prediction about a

multi-step policy-contingent question. The hidden state is updated recurrently

as st
def
= fW(st�1,xt) for a parametrized function fW, where xt = [at�1, ot] and

fW is trained so that sj ⇡ V (j)(ht). This is summarized in Figure 4.1.

General value functions provide a rich language for encoding predictive

knowledge. In their simplest form, GVFs with constant � correspond to multi-

timescale predictions referred to as Nexting predictions (Modayil et al. 2014).
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Figure 4.1: GVF Networks (GVFNs), where each state component st,i is
updated towards the return Gt,i

def
= C(i)

t+1 + �(i)
t+1st+1,i for the ith GVF. The solid

forward arrows indicate how state is updated; in fact, the update is the same as
a standard RNN. The difference is with the dotted lines, that indicate training.
The dotted black arrows indicate the targets for the state components. The
dotted red arrows indicate that the target Gt,i are created using the observation
and state on the next step.

Allowing � to change as a function of state or history, GVF predictions can

combine finite-horizon prediction with predictions that terminate when specific

outcomes are observed (Modayil et al. 2014).

To build some intuition, below are some examples in Compass World. This

environment is used in our experiments and depicted in Figure 4.2. Compass

World is a grid world where the agent is only provided information about the

color directly in front it. This world is partially observable, with all the tiles

in the middle having a white observation, with the only distinguishing color

information available to the agent at the walls. The actions taken by the agent

are to move forward, turn left, or turn right.

In this environment, the agent might want to know if it is facing the red

wall. This can be specified as a GVF question: “If I go forward until I hit a

wall, what is the probability I will see red?”. The policy is to always go forward.

If the current observation is ‘Red’, then the cumulant is 1; otherwise it is zero.

The continuation � is 1 everywhere, except when the agent hits a wall and

sees a color; then it becomes zero. The sampled return from a state is 1.0 if

the agent is facing the Red wall, because going forward will result in summing

many zeros plus a 1 right before termination. If the agent is not facing the
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Figure 4.2: The Compass World: A partially observable grid world with
observations of the color directly in front of the agent. Actions: The agent
can take the actions Move Forward (one cell), Turn Left, and Turn Right.
Observations: The agent observes the color of the grid cell it is facing. This
means the agent can only observe a color if it is at the wall and facing outwards.
The agent depicted as an arrow would see Blue. In the middle of the world,
the agent sees White. Goal: The agent’s goal is to make accurate predictions
about which direction it is facing.

Red wall, the return is 0, because the agent terminates when hitting the wall

but only sees cumulants that are zero for the entire trajectory. Because the

outcome is deterministic, the probabilities are 1 or 0.

The agent could also ask about how frequently it will see Red, within a

horizon of about 10 steps. An approximation to this question can be obtained

by using a constant continuation of � = 0.9. The intuition for this comes from

thinking of 1 � � as a success probability for a geometric distribution: the

probability of successfully terminating. The mean of this geometric distribution

is 1
1��—which in this case is 1

1�0.9 = 10—provides the expected number of

steps until the first success. Recall that termination indicates that a return is

cut-off, and so a cumulant is not included in the sum after termination. This

probabilistic termination means that even if Red is seen after 10 steps, it will

still be included in the return. However, it does indicate its contribution has

been significantly decayed. This exponential prediction loses precision, and so

the GVF only provides an approximation to this question.
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The agent could also also ask if it will see Red, within a horizon of about

10 steps. In this case, the continuation would be 0.9 until the agent observed

Red, at which point it would become zero (indicating termination). The GVF

answer corresponds to a discounted probability of observing Red, with a smaller

number if Red is observed further in the future. If the agent always see Red in

1 step from ht, then it observes Ct+1 = 1 and �t+1 = 0 and the value is precisely

1. If the agent sees Red in 2 steps from ht, then Ct+1 = 0, �t+1 = 0.9, Ct+2 = 1

and �t+2 = 0 resulting in a value of 0.9. If the agent sees Red in 10 steps from

ht, then the value is 0.99 ⇡ 0.4. If just a few more steps into the future, say

15 steps, then the value would be 0.2. The magnitudes start to get quite low,

indicating that it is less likely to observe Red in this window.

Notice that though the cumulants and continuation functions are defined

on the underlying (unknown) state ht, this is a generalization of defining it on

the observations. The observations are a function of state; the cumulants and

continuations � that are defined on observations are therefore defined on ht. In

the examples above, these functions were defined using just the observations.

More generally, these functions are a part of the problem definition. This

means they could be defined using short histories, or other separate summaries

of the history. As discussed in Section 5, one can also consider cumulants that

are a function of our own predictions or constructed state.

A natural question is how these GVFs are chosen. This problem corresponds

to the discovery problem for predictive representations. This chapter focuses

on the utility of this architecture with simple heuristics or expert chosen GVFs.

I briefly discuss simple ideas for discovery in Chapter 8, but leave a more

systematic investigation of the discovery problem to future work.

4.4 A Case Study using GVFNs for Time Series
Prediction

GVFNs can be used for time series prediction by simply assuming that a

fixed (unknown) policy generates the data. The GVFs within the network

are assumed to have this same fixed unknown policy in common, but differ
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Figure 4.3: (left) Example learning curve for MSO with GVFNs and simple
RNNs (right) The returns for different �, corresponding to GVFs in the GVFN,
for a small section of the MSO time series dataset. The dotted red line for
� = 0 looks overlayed with the time series plotted in black, but is actually the
observation one step in the future.

in the pair of continuation and cumulant functions. For a multi-variate time

series, one GVF could have a cumulant corresponding to the first entry of the

observation on the next time step, and another GVF could use the second

entry. Even for a single-variate time series, meaningfully different cumulants be

defined. For example, one GVF could correspond to the probability that the

observation becomes larger than 1. The cumulant would be zero until this event

occurs, at which point it would be 1. In Figure 4.3 (left) preliminary results

using a GVFN to forecast 12-steps into the future on the single-variate Multiple

Super-imposed Oscillator (MSO) time series dataset. The full empirical set-up

is discussed in Section 6.1, and here some insights relevant to building intuition

for how to use GVFNs are provided.

The GVFN consists of a recurrent, constrained layer of 128 GVFS with �s

spaced linearly in [0.1, 0.97] to learn the state. To make predictions, feedforward

layers from this recurrent layer can be added; here a ReLu layer is added for

additional nonlinearity in the prediction. For comparison, a simple RNN is also

included, which similarily uses an additional ReLu layer after its recurrent layer.

The prediction target is the observation 12 steps into the future. Both the

RNN and GVFN have to wait 12 steps to see the accuracy of their prediction,

delaying updates based on the target by 12 steps. The GVFN, however, can

use the loss on the state at each step, and so more directly influence the value
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of states with the most recent observations. Both methods use p-BPTT, with

truncation p. With a sufficiently high p, both perform well (see Section 6.1 for

results with many p). The result reported here is for p = 1, where the GVFN

already obtains near-optimal performance.

It might be surprising that this simple GVFN, with GVFs only differing in

continuation �, can perform well. For time series data, however, such constant

� predictions provide anticipatory information about observations in the future.

To see why, the time series as well as returns for � 2 {0, 0.75, 0.9, 0.96} as

dotted lines are shown in Figure 4.3 (right). These returns reflect the type of

information that would be provided by a GVF prediction. At each time point

t on the x-axis, the smaller �, like � = 0.75 as dotted green, anticipate the

observations in a nearby window. If the time series is starting to rise in the

near future, then the dotted green starts to rise right now. Returns can thus

provide useful predictive information about increases and decreases that are

expected to soon appear in the time series. Notice that the magnitude of the

returns are approximately equal. For practical use, the magnitude of each GVF

prediction should be similar, to avoid large differences in magnitude between

state variables. With large �, however, the return becomes large and so too

does the value function. The standard fix to this is straightforward: each GVF

uses a scaled cumulant of (1� �)ot+1.

Notice, though, that there is a trade-off between anticipating a cumulant

farther into the future and the precision of predictions about the future. Returns

with lower continuations predict trends closer to when they occur in the dataset

and have higher resolution. Returns with higher continuations anticipate

changes further in the future, at the cost of smoothing over the detailed

changes in the dataset. By using both lower and higher continuations, the

benefits of both can be obtained. This simple heuristic—GVFs with the same

cumulant and varying �—as a general purpose heuristic is further discussed in

Chapter 8.
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4.5 Connections to Other Predictive State Ap-
proaches

The idea that an agent’s knowledge might be represented as predictions has a

long history in machine learning. The references to such a predictive approach

can be found in the work of Becker (1973), Drescher (1991), and Cunningham

(2013) who hypothesized that agents would construct their understanding of the

world from interaction, rather than human engineering. These ideas inspired

work on predictive state representations (PSRs) (Littman and Sutton 2002), as

an approach to modeling dynamical systems. Simply put, a PSR can predict all

possible interactions between an agent and it’s environment by reweighting a

minimal collection of core test (sequence of actions and observations) and their

predictions, without the need for a finite history or dynamics model. Extensions

to high-dimensional continuous tasks have demonstrated that the predictive

approach to dynamical system modeling is competitive with state-of-the-art

system identification methods (Hsu et al. 2012). PSRs can be combined with

options (Wolfe and Singh 2006), and some work suggests discovery of the

core tests is possible (Mccracken and Bowling 2006). Work in closing the

learning-planning loop using predictive state representations lead to a spectral

algorithm for learning a PSR directly from action-observation sequences (Boots

et al. 2011).

TD networks (Sutton and Tanner 2005) were introduced after PSRs, and

inspired by the PSR approach to state construction that is grounded in obser-

vations. GVFNs build on and are a strict generalization of TD networks. A

TD network (Sutton and Tanner 2005) is similarly composed of N predictions,

and updates using the current observation and previous step predictions like

an RNN. TD networks with options (Rafols, Ring, et al. 2005) condition the

predictions on temporally extended actions similar to GVF Networks, but do

not incorporate several of the recent modernizations around GVFs, including

state-dependent discounting and convergent off-policy training methods. The

key differences, then, between GVF Networks and TD networks is in how the

question networks are expressed and subsequently how they can be answered.
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GVF Networks are less cumbersome to specify, because they use the language

of GVFs. Further, once in this language, it is more straightforward to apply

algorithms designed for learning GVFs.

More recently, there has been an effort to combine the benefits of PSRs

and RNNs. This began with work on Predictive State Inference Machines

(PSIMs) (Sun et al. 2016), for inference in linear dynamical systems. The state

is learned in a supervised way, by using statistics of the future k observations

as targets for the predictive state. This earlier work focused on inference

in linear dynamical systems, and did not state a clear connection to RNNs.

Later work more explicitly combines PSRs and RNNs (Downey et al. 2017;

Choromanski et al. 2018), but restricts the RNN architecture to a bilinear

update to encode the PSR update for predictive state. In parallel, another

strategy to incorporate ideas from PSRs into RNNs, without restricting the

RNN architecture, called Predictive State Decoders (PSDs) (Venkatraman et al.

2017). Instead of constraining internal state to be predictions about future

observations, statistics about future observations are used as auxiliary tasks in

the RNN.

Of all these approaches, the most directly related to GVFNs is PSIMs. This

connection is most clear from the PSIM objective (Sun et al. 2016, Equation

8), where the goal is to make predictive state match a vector of statistics about

future outcomes. There are some key differences, mainly due to a focus on

offline estimation in PSIMs. The predictive questions in PSIMs are typically

about observations 1-step, 2-step up to k-steps into the future. To use such

targets, batches of data need to be gathered and statistics computed offline

to create the targets. Further, the state-update (filtering) function is trained

using an alternating minimization strategy, with an algorithm called DAgger,

rather than with algorithms for RNNs. Nonetheless, the motivation is similar:

using an explicit objective to encourage internal state to be a predictive state.

A natural question, then, is whether the types of questions used by GVFNs

provides advantages over PSIMs. Unlike k-step predictions in the future, GVFs

allow questions about outcomes infinitely into the future, through the use of

cumulative discounted sums. Such predictions, though, do not provide high
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precision about such future events. As motivated in Section 4.2, GVFs should

be easier to learn online. In our experiments, a baseline, called a Forecast

Network, that uses k-step predictions as predictive features, is included to

provide some evidence that GVFs are more suitable as predictive features for

online agents.

Researchers in reinforcement learning, decision making, and artificial in-

telligence are not alone in asking if decision making systems use predictions

to effectively navigate their world (Hawkins and Blakeslee 2004; Bubic et al.

2010; Clark 2013). Anticipation (Butz et al. 2003; Pezzulo et al. 2008)—which

has similar properties to the GVF approach to prediction—has been used to

mean elevated processing prior to an event (also prediction) as well as the

overall effect of prediction on an agent behavior. An agent can anticipate an

event in the future, and act accordingly. This requires the agent’s policy to

be defined in terms of predictions, or for the representation to have predic-

tive/anticipatory properties. Hierarchical predictive coding (Rao and Ballard

1999; Huang and Rao 2011) was used to explain non-classical interference

observed in the visual cortex. In this approach, feedback connections transport

predictions (or priors) from higher layers to lower layers to give context to

the current observations. Prospective codes (Schütz-Bosbach and Prinz 2007)

take the theory of prospection and encode future events as representations

used for planning and simulation. While there is evidence to suggest organic

decision making systems are directed forward in their representation of the

world, memory and “postdiction” both play an important, separate role in

building a systems underlying representations (Soga et al. 2009; Synofzik et al.

2013). While I focus on two distinct classes in this thesis (i.e. predictive and

postdictive), future architectures should be built to take advantage of both

approaches.

While GVFs provide, in our opinion, a better language to ask complex

predictive questions, one should understand what is given up when moving

away from PSRs and PSIMs in predictive power. In the next two sections

it is shown that the questions used in PSIMs and PSRs can be posed by

GVFs not only through standard cumulants, but also through composite GVFs.
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Below I use composite GVFs to show the potential predictive power of complex

networks of GVFs. See Chapter 7 for a more detailed exploration into some of

the properties of composite predictions.

4.5.1 k-step Forecasts using GVFs

I first show how to construct k-step forecasts using GVFs and then move to the

more complex case of the core-tests in PSRs. The simplest way to make k-step

forecasts with a GVF is to construct a cumulant function that requires the

agent to receive k new observations and then update the forecast through any

usual means. While this is reasonable in the offline setting, when training online

our agent should be able to update predictions as soon as possible without

waiting for k time-steps. This can be done trough composite predictions. With

myopic discounts (i.e. � = 0) a chain of GVFs can be constructed such that

each GVF in the chain has a cumulant of the prior GVF’s prediction on the

next time-step. The (k � 1)th GVF in this sequence will be predicting the

observation of the first GVF k steps into the future.

4.5.2 Core-tests in Predictive State Representations can
be Defined by Composite GVFs

A predictive state representation is made up of a finite set of core-tests

{q1, q2, . . . , qn} and a set of likelihoods indicating the probability of seeing

the core-test given the current history p(q1|Ht). The history is constructed as a

sequence of observation-actions from the beginning of the agent’s lifetime Ht =

{o0a0o1a1 . . . ot}. Each core-test is a sequence q = {a0, o1, a1, o2, . . . , al�1, ol}.

Note how the sequence starts with the pair (a0, o1), which is different from the

usual notation used in the PSR literature.

To construct a single core-test using composite GVFs a chain of myopic

predictions much like the k-step forecasts can be used. The first GVF in the

chain of GVFs will have a cumulant c(ot, at, ot+1) = (at = al�1, ot+1 = ol),

where 1 is the indicator function. Given a history Ht, the expected target of

this GVF will be vl = E[ (at = al�1, ot+1 = ol)|Ht] = p(al�1, ol|Ht). Now if

GVFs are composed together, where subsequent GVFs are chained according to
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the cumulant function c(ot, at, ot+1, v̂l�i) = (at = al�i�1, ot+1 = ol�i) and v̂l�i

t+1

(where the “and” represents a product). As the chain continues the final GVF

should represent the likelihood p(q|Ht) which is the likelihood for a PSR test.

I prove the length two case in the following lemma, but the more general case

very easily extends from this case.

Lemma 4.5.1. Given a length 2 sequence of actions and observations S =

a0, o1, a1, o2 and a history Ht, the probability of seeing the sequence S given the

history can be represented as two composed value function targets.

Proof. The above corollary can be easily proven through the rules of conditional

expectation and probabilities. The probability of seeing a sequence S given a

history Ht can be written as

p(At = a0, Ot+1 = o1, At+1 = a1, Ot+2 = o2|Ht) =

E[ {At = a0, Ot+1 = o1, At+1 = a1, Ot+2 = o2|}Ht]

where is the indicator function. Now following the procedure laid out above

to build composite GVFs. The first GVF in the chain will have a cumulant

c2(ot, at, ot+1) = {At = a1, Ot+1 = o2} with a myopic discount (i.e. � = 0).

The resulting value function prediction is

V2(Ht) = E[ (at = a1, ot+1 = o2)|Ht] = p(At = a1, Ot+1 = o2|Ht).

The next value function in the chain uses the previous predictions value

c1(ot, at, ot+1, Ht) = {At = a0, Ot+1 = o1V2({HtAt, Ot+1})}. The resulting

value function will predict

V1(Ht) = E[ (At = a0, Ot+1 = o1)E[ (At+1 = a1, Ot+2 = o2)|Ht, At, Ot+1]|Ht]

=
X

(At = a0, Ot+1 = o1)p(At, Ot+1|Ht)
X

(At+1 = a1, Ot+2 = o2)p(At+1, Ot+2|Ht, At, Ot+1)

=
XX

(At = a0, Ot+1 = o1) (At+1 = a1, Ot+2 = o2)p(At, Ot+1|Ht)p(At+1, Ot+2|Ht, At, Ot+1)

=
XX

(At = a0, Ot+1 = o1, At+1 = a1, Ot+2 = o2)p(At, Ot+1|Ht)
p(At, Ot+1, At+1, Ot+2|Ht)

p(At, Ot+1|Ht)

=
XX

(At = a0, Ot+1 = o1, At+1 = a1, Ot+2 = o2)p(At, Ot+1, At+1, Ot+2|Ht)

= p(At = a0, Ot+1 = o1, At+1 = a1, Ot+2 = o2|Ht)
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4.6 Summary

This chapter presented the GVFN predictive representations of state and

contrasts this approach to various types of representations of state including

recurrent neural networks, predictive state representations, and TD Networks.

This chapter concluded by providing some constructions of GVFNs corre-

sponding to state in compass world, k-forecasts, and finally the core-tests of a

PSR.

The aim of this chapter was to lay the ground work needed for the next

sections, and to discuss the intuitive motivation behind the GVFN approach to

state construction. This is the beginning of our exploration into how off-policy

prediction can be applied to state construction using recurrent networks, and

later chapters unwrap the implications of this approach. The motivation behind

the GVFN work is extremely similar to that of TD networks and PSRs, except

sufficiency is explicitly considered to be tied only to an agent’s goals rather

than all possible predictions provided by the agent. While this makes intuitive

sense from the perspective of searching and learning the agent state, proving

viability becomes intractable from these constraints (Subramanian et al. 2022).

The subsequent chapters will focus on the question of usefulness of such an

approach through empirical means.
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Chapter 5

Learning Algorithms for GVFNs

In this section, I introduce the objective function for GVFNs, that constrains

the learned state to be GVF predictions. Each state component of a GVFN

is a value function prediction, and so is approximating the fixed point to a

Bellman equation with history in Equation (4.3). The extension is not as

simple as using a standard Bellman operator, however, because the GVFs are

in a network. In fact, the Bellman equations are coupled in two ways: through

composition—where one GVF can be the cumulant for another GVF as seen

in section 6.3—and through the parametric recurrent state representation. I

first discuss the Bellman network operator in Section 5.1, which extends the

typical Bellman operator to allow for composition. I then explain how the

coupling that arises from the recurrent state representation can be handled

using a projected operator, and provide the objective for GVFNs, called the

Mean-Squared Projected Bellman Network Error (MSPBNE), in Section 5.2.

Then I discuss several algorithms to optimize this objective in Section 5.3.

Finally, I also describe a simple procedure for using eligibility traces when

using semi-gradient temporal-difference methods for GVFNs.

The GVFN objective can be mixed with the standard RNN objective, to

provide an RNN where the learned states are both useful for prediction of

the target and encouraged—or regularized—to GVF predictions. In this work,

GVFNs are only trained with the GVFN objective, without including the loss

to a target, to focus the investigation on the utility of the proposed objective

and on predictive features.
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5.1 The Bellman Network Operator

To understand the Bellman network operator, it is useful to first revisit the

Bellman operator for learning a single GVF. The set of histories H is assumed

finite.

Assume a tabular encoding for the values, V(j) 2 R|H|, for a GVF question

(⇡(j), c(j), �(j)). The Bellman equation in (4.3) can be written as a fixed point

equation, with Bellman operator

B(j)V(j) def
= C(j) +P(j)V(j) (5.1)

where C(j) 2 R|H| is the vector of expected cumulant values under ⇡(j), with

entries

C(j)(ht)
def
=
X

at2A

⇡(j)(at|ht)
X

ht+12H

p(ht+1|ht, at)c
(j)(ht, at,ht+1). (5.2)

and P(j) 2 R|H|⇥|H| is the matrix of values satisfying

P(j)(ht,ht+1) =
X

at2A

⇡(j)(at|ht)p(ht+1|ht, at)�
(j)(ht, at,ht+1). (5.3)

If the operator B(j) is a contraction, then iteratively applying this opera-

tor converges to a fixed point. More precisely, if for any V(j)
1 ,V(j)

2 2 R,

kB(j)V(j)
1 � B(j)V(j)

2 k < kV(j)
1 � V(j)

2 k, then iteratively applying B(j), as

V(j)
2 = B(j)V(j)

1 , . . . ,V(j)
t+1 = B(j)V(j)

t , . . ., converges to a fixed point. Because

temporal difference learning algorithms are based on this fixed-point update,

the Bellman operator is central to the analysis of many algorithms for learning

value functions, and is used in the definition of objectives for value estimation.

Similarly, a Bellman operator can be defined that accounts for the rela-

tionships between GVFs in the network. Assume there are N GVFs, with

V 2 RN |H| the stacked values for all the GVFs,

V
def
=

2

64
V(1)

...
V(N)

3

75 . (5.4)
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The cumulants may now be functions of the values of other GVFs; therefore

cumulants are explicitly written as C(j)
V . The Bellman network operator B is

BV
def
=

2

64
C(1)

V +P(1)V(1)

...
C(N)

V +P(N)V(N)

3

75 . (5.5)

The Bellman network operator needs to be treated as a joint operator on all

the GVFs because of compositional predictions, where the prediction on the

next step of GVF j is the cumulant for GVF i. When iterating the Bellman

operator V(j) is not only involved in its own Bellman equation, but also in

the Bellman equation for V(i). Notice that if there were no compositions, the

Bellman network operator would separate into individual Bellman operators,

that operate on each V(j) independently.

To use such a Bellman network operator, it needs to be ensured that

iterating under this operator converges to a fixed point. For no composition,

this result is straightforward, as it simply follows from previous results showing

when the Bellman operator is a contraction. This is stated explicitly below in

Corollary 5.1.1.1. Under composition, the effect of the current value function

on the cumulant needs to be considered. Consequently, the operator may no

longer be a simple linear projection of the values, followed by a sum of expected

cumulants.

First, identify a necessary condition: the connections between GVFs must

be acyclic. For example, GVF i cannot be a cumulant for GVF j, if j is already

a cumulant for i. More generally, the connections between GVFs cannot create

a cycle, such as 1 ! 2 ! 3 ! 1. A counterexample is provided, where

the Bellman network operator is not a contraction when there is a cycle, to

illustrate that this condition is necessary.

Further restrictions are placed on the cumulant, if it is a function of other

GVFs. In particular, it is required that the cumulant is a Lipschitz function of

the other value functions. Note that this restriction encompasses the setting

for a non-compositional GVF, because the cumulant can be a constant w.r.t.

these values. It also encompasses the setting used in the below experiments:

that each cumulant is a linear function of the GVF values on the next step.
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Assumption 1 (Acyclic Connections). The directed graph G is acyclic. G

consists of N vertices, each corresponding to a GVF, and each directed edge

(i, j) indicates that j is used in the cumulant for i.

Assumption 2 (Lipschitz Compositional Cumulants). If GVF i has directed

edges to {j1, . . . , jk}, then the cumulant c(i)V (ht+1) is Lipschitz in V(j1), . . . ,V(jk)

with Lipschitz constant Ki. That is, for V1,V2 2 RN |H|, kC(i)
V1
� C(i)

V2
k 

Ki

P
k

l=1 kV
(jl)
1 �V(jl)

2 k.

Note that this assumption is satisfied if when assuming that for some

bounded weights w1, . . . , wk 2 R, the cumulant must satisfy c(i)V (ht+1) =
P

k

l=1 wlV(jl)(ht+1) or equivalently, C(i)
V =

P
k

l=1 wlP(jl)V(jl). This is because

P(jl) is a non-expansion, and so

kC(i)
V1
�C(i)

V2
k =

�����

kX

l=1

wlP
(jl)(V(jl)

1 �V(jl)
2 )

����� 
kX

l=1

|wl|kP(jl)(V(jl)
1 �V(jl)

2 )k

 (max
l

|wl|)
kX

l=1

kV(jl)
1 �V(jl)

2 k.

The third assumption is standard for showing Bellman operators are con-

tractions, and is easily satisfied if the policy is proper: is guaranteed to visit at

least one state where the continuation is less than 1.

Assumption 3 (Discounted Transitions are Contractions). For all j 2 {1, . . . , N},
�j

def
= kP(j)k < 1, where k · k is the spectral norm.

With these three assumptions, the main result can be proven.

Theorem 5.1.1. Under Assumptions 1-3, iterating Vt+1 = BVt converges to

a unique fixed point.

Proof. First, the proof that the sequence of value estimates converges (Part 1)

is detailed, then follows a proof that it converges to a unique fixed point (Part

2 and 3).

Part 1: {The sequence V1,V2, . . . defined by Vt+1 = BVt converges to a

limit V⇤ 2 RN |H|.}
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Because G is acyclic, there is a linear topological ordering of the vertices,

i1, . . . , iN : for each directed edge (i, j), i comes before j in the ordering.

Therefore, starting from the last GVF j = iN , remember that the Bellman

operator B(j) is a contraction with rate �j < 1,

kB(j)V(j)
1 �B(j)V(j)

0 k = kP(j)V(j)
1 �P(j)V(j)

0 k  �jkV(j)
1 �V(j)

0 k.

Therefore, iterating B for t steps results in the error

kV(j)
t+1 �V(j)

t k  �t

j
kV(j)

1 �V(j)
0 k

and as t!1, V(j)
t converges to its fixed point.

Induction is used for the argument, with the above as the base case. Assume

for all j 2 {ik, . . . , iN} there exists a ball of radius ✏(t) where kV(j)
t+1 �V(j)

t k 
✏(t) and ✏(t)! 0 as t!1. Consider the next GVF in the ordering, i = ik�1.

Case 1: There are no outgoing edges from i. If i does not use another

GVF j in its cumulant, then iterating with B independently iterates V(i)
t with

B(i). Therefore, as above, V(i)
t converges because the Bellman operator is a

contraction. In this setting, clearly such an ✏i(t) exists because kV(j)
t+1�V

(j)
t k !

0 as t!1.

Case 2: The cumulant for GVF i is composed of the values for the set

of GVFs J ✓ {ik, . . . , iN}. The basic idea, formalized below, is that GVF i

will be guaranteed to converge once the GVFs used to construct the become

sufficiently accurate. The update is V(i)
t+1 = C(i)

Vt
+P(i)V(i)

t . The change in V(i)
t

is

kV(i)
t+1 �V(i)

t k = k(C
(i)
Vt
�C(i)

Vt�1
) +P(i)(V(i)

t �V(i)
t�1)k

 Ki

X

j2J

kV(j)
t �V(j)

t�1k+ �ikV(i)
t �V(i)

t�1k

 NKi✏(t� 1) + �ikV(i)
t �V(i)

t�1k.

In the first inequality, the first term is due to Lipschitz continuity of the

cumulant and the second term is due to the fact that kP(i)k = �i. In the

second inequality, kV(j)
t �V(j)

t�1k  ✏j(t), under the inductive hypothesis. The

second inequality is loose, as the sum only involves |J | < N terms, but
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N is used for simplicity since the results goes through with this constant

as well. For sufficiently large t, ✏(t � 1) can be made arbitrarily small. If

NKi✏(t� 1) < (1� �i)kV(i)
t �V(i)

t�1k, i.e., ✏(t� 1) < (1��i)
NKi
kV(i)

t �V(i)
t�1k then

kV(i)
t+1 �V(i)

t k  �̃ikV(i)
t �V(i)

t�1k for some �̃i < 1

and so the iteration is a contraction on step t. Else, if ✏(t� 1) � (1��i)
NKi
kV(i)

t �
V(i)

t�1k, then this implies the difference kV(i)
t+1 �V(i)

t k is already within a small

ball, with radius NKi✏(t� 1)/(1� �i). As t!1, the difference can oscillate

between being within this ball, which shrinks to zero because ✏(t) shrinks to

zero, or being iterated with a contraction that also shrinks the difference. In

either case, there exists an ✏i(t) such that kV(i)
t+1�V

(i)
t k  ✏i(t), where ✏i(t)! 0

as t!1.

By induction, there exists such a ✏i for all GVFs in the network. Therefore,

the sequence V(i)
t converges.

Part 2: V⇤ is a fixed point of B.

Because the Bellman network operator is continuous, the limit can be taken

inside the operator

V⇤ = lim
t!1

Vt = lim
t!1

BVt�1 = B
⇣
lim
t!1

Vt�1

⌘
= BV⇤

Part 3: V⇤ is the only fixed point of B.

Consider an alternative solution V. Because of the uniqueness of fixed

points under Bellman operators, all those GVFs that have non-compositional

cumulants have unique fixed points and so those components in V must be

the same as V⇤. All the GVFs next in the ordering that use those GVFs as

cumulants must then also converge to a unique value, because their Bellman

operators with fixed GVFs as cumulants have a unique fixed point. This

argument continues for the remaining GVFs in the ordering.

Corollary 5.1.1.1. Under Assumption 3 with non-compositional cumulants

(no edges in G), iterating Vt+1 = BVt converges to a unique fixed point.

Proposition 5.1.2 (Necessity of Acyclic Composition). There exists transition

function P :  ⇥A⇥ ! [0, 1] and policy ⇡ :  ⇥A! [0, 1] such that, for

two GVFs in a cycle, iteration with the Bellman network operator diverges.
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Proof. Assume there are two states, with the policy defined such that the

Markov chain has the following dynamics

P⇡ =


0.9 0.1
0.1 0.9

�
. (5.6)

Assume further that � = 0.95. The resulting Bellman iteration is
hV(1)

V(2)

i
= P⇡

hV(2)

V(1)

i
+ �P⇡

hV(1)

V(2)

i

= P⇡


0 1
1 0

� hV(1)

V(2)

i
+P⇡


� 0
0 �

� hV(1)

V(2)

i

= P⇡


� 1
1 �

� hV(1)

V(2)

i

Since the matrix P⇡


� 1
1 �

�
is an expansion, for many initial

hV(1)

V(2)

i
this

iteration goes to infinity, such as initial V(1) = V(2) =
h1
1

i
.

5.2 The Objective Function for GVFNs

With a valid Bellman network operator, the objective function for GVFNs can

be defined. The above fixed point equation assumes a tabular setting, where

the values can be estimated directly for each history. GVFNs, however, have a

restricted functional form, where the value estimates must be a parametrized

function of the current observation and value predictions from the last time-step.

Under such a functional form, it is unlikely that the fixed point can be exactly

solved for. Rather, a projected fixed point will be used, which projects into

the space of representable value functions.

Define the space of functions as

F =
n
VW = [V(1)

W , . . . ,V(N)
W ] 2 RN |H| | where W 2 ⌦ and (5.7)

VW(ht+1) = fW([V (1)
W (ht), . . . , V

(N)
W (ht)],xt+1) (5.8)

when p(ht+1|ht,xt+1) > 0
o

where VW is used to mean the value function parameterized by weights (i.e.

V (;W)) to minimize notation. Recall that xt+1 = [at, ot+1]. p(ht+1|ht,xt+1) >

0 only when ht+1 ⌘ htatot+1, and so expect this to only be true for one
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outcome ht+1. And write that ht+1 is equivalent, rather than equal, to the

current history appended with action at and observation ot+1, because ht+1

might be shorter (more minimal): earlier actions and observations might not

be needed. Define the projection operator

⇧F(V)
def
= min

V̂2F

kV � V̂k2d where kV � V̂k2d
def
=
X

h2H

d(h)(V (h)� V̂ (h))2

(5.9)

where d : H! [0, 1] is the sampling distribution over histories. Typically, data

is assumed to be generated by following a behavior policy µ : H! [0, 1], and

that d is the stationary distribution for this policy. The value functions for

policies ⇡i are typically learned off-policy, since in general ⇡i will not equal

µ. The behavior policy µ used to gather the data is different, or off of, the

policy—or policies—that are being evaluated.

To obtain the projected fixed point solution, a natural goal is to minimize

the following projected objective,

min
W2⌦

k⇧FBVW �VWk2d (5.10)

Unfortunately, this objective can be hard to compute, because the projection

operator ⇧F onto the nonlinear manifold can be intractable. Instead, the same

approach as Maei, Szepesvári, Bhatnagar, and Sutton (2010) is taken, when

defining the nonlinear MSPBE for learning value functions with neural networks

and other nonlinear function approximators. The idea is to approximate the

projection onto the nonlinear manifold by assuming it is locally linear. Then,

a linear projection operator can be used, defined locally at the current set of

parameters W 2 ⌦, spanned by the basis �
j,W(h)

def
= r✓V

(j)
W(h) for all h 2 H

and GVFs j. Let �j,W correspond to the matrix of stacked �
j,W(h)> for all

h 2 H, having |H| rows. Define

�W
def
=

2

64
�1,W

...
�N,W

3

75 D
def
= diag

2

64
d
...
d

3

75 ⇧W
def
= �W(�>

WD�W)�1�>

WD.

Using this locally linear approximation to the objective potentially expands

the set of stationary points. The fixed points under the original projection are
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still fixed points under this locally linear approximation. But, there could be

points that are fixed points under this locally linear approximation, that would

not be under the original.

The final objective using this projection is called the MSPBNE1, defined as

MSPBNE(W)
def
= k⇧WBVW �VWk2d (5.11)

In the following lemma it is shown, with proof, that in can be rewritten in

a way that makes it more amenable to compute and sample gradients.2 This

reformulation is used to develop algorithms to minimize this objective in the

next section.

Lemma 5.2.1. The MSPBNE defined in Equation (5.11) can be rewritten as

MSPBNE(W) = �(W)>⇤(W)�1�(W) (5.12)

where

⇤(W)
def
= Ed

 NX

j=1

�
j,W(H)�

j,W(H)>
�
=
X

h2H

d(h)
NX

j=1

�
j,W(h)�

j,W(h)>

(5.13)

�(W)
def
=

NX

j=1

Ed,⇡j


�j(H,A,H 0)�

j,W(H)

�

�j(H,A,H 0)
def
= c(j)(H,A,H 0) + �(j)(H,A,H 0)V (j)

W (H 0)� V (j)
W (H).

Proof. Starting with equation (5.11) and for �W
def
= BVW �VW,

MSPBNE(W) = k⇧WBVW �VWk2d
= k⇧W [BVW �VW] k2d
= k⇧W�Wk2d

1A variant of the MSPBNE has been introduced for TD networks (Silver 2013); the above
generalizes that MSPBNE to GVF Networks. Because it is a strict generalization, thus the
same name is used.

2Since developing the MSPBNE, an alternative approach to defining a nonlinear MSPBE
has been developed using a conjugate form for the Bellman error (see Dai et al. (2017)
and in-preparation work that makes the connection the MSPBE more explicit (Patterson
et al. 2022)). The extension here should be relatively straightforward, as the objective is
formulated using histories.
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The projection operator can be wrapped around the full TD error �W, because

it has no affect on VW which is already in the space. Then plugging in the

definition of ⇧W

⇧>

WD⇧W = D>�W(�>

WD�W)�1�>D

k⇧W�Wk2d = �>

W⇧
>

WD⇧W�W

= �>

WD>�W(�>

WD�W)�1�>D�W (5.14)

As in prior gradient TD work the matrix operations are converted to expectation

forms.

�>

WD�W =
nX

j=1

X

h2H

d(h)�
j,W(h)�j,W(h)>

= Ed

"
nX

j=1

�
j,W(H)�

j,W(H)>
#

= W (W)

�>

WD�W =
nX

j=1

X

h2H

d(h)�
j,✓
(h)
X

a2A

⇡j(a|h)E[�j(h, a,H 0)]

=
nX

j=1

Ed,⇡j

⇥
�j(H,A,H 0)�

j,W(H)
⇤

= �(W)

Then substituting into equation (5.14), getting the result MSPBNE(W) =

�(W)>⇤(W)�1�(W).

Samples are not received according to ⇡j ; instead, they are sampled accord-

ing to the behavior µ. Throughout this work, it has been assumed µ has a

coverage property. This means that the behavior policy µ satisfies µ(a|h) > 0

if any ⇡j(a|h) > 0 for policies ⇡1, . . . , ⇡N .

Corollary 5.2.1.1. For importance sampling ratios ⇢j(a|h)
def
= ⇡j(a|h)

µ(a|h) and

�µ(W)
def
= Ed,µ

 NX

j=1

⇢j(H,A)�j(H,A,H 0)�
j,W(H)

�

=
X

h2H

d(h)
X

a2A

µ(a|h)
NX

j=1

⇢j(a|h)E

�j(H,A,H 0)�

j,W(h)|H = h, A = a

�
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then it can be shown that �µ(W) = �(W) and so

MSPBNE(W) = �µ(W)>⇤(W)�1�µ(W)

Proof. The key is simply to show that �µ(W) = �(W), because W (W) depends

only on d, not on the policies ⇡ or µ. This is straightforward with the typical

cancellation in importance sampling ratios

�µ(W) =
X

h2H

d(h)
X

a2A

µ(a|h)
NX

j=1

⇢j(a|h)E

�j(h, a,H

0)�
j,W(h)|H = h,A = a

�

=
X

h2H

d(h)
NX

j=1

X

a2A

µ(a|h)⇢j(a|h)E

�j(h, a,H

0)�
j,W(h)|H = h,A = a

�

=
X

h2H

d(h)
NX

j=1

X

a2A

⇡j(a|h)E

�j(h, a,H

0)�
j,W(h)|H = h,A = a

�

= �(W).

From here on, therefore, it is assumed that �(W) is defined more generally

as the above �µ(W), since they result in the same objective but this more

general expression more obviously highlights off-policy sampling.

From this reformulation, one can see that the MSPBNE objective is a

weighted quadratic objective, with weighting matrix W (W) on vector �(W).

The objective is zero—and so minimal—when �(W) = 0. This is similar to the

temporal difference (TD) learning fixed point criteria. In fact, TD implicitly

optimizes the linear MSPBE, which corresponds to the above objective with

N = 1 and fixed features that do not depend on the parameters. Once we have a

projected Bellman error objective, we can take advantage of the many advances

in formulating TD algorithms to optimized MSPBE objectives. Therefore,

though this objective looks quite complex, there is substantial literature to

facilitate minimizing the MSPBNE.
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5.3 Algorithms for the MSPBNE

The algorithms to optimize the MSPBNE are a relatively straightforward

combination of standard algorithms for RNNs and the TD algorithms designed

to optimize the MSPBE. To provide some intuition on these algorithms, and

how to obtain this combination of TD and RNN algorithms, I begin with a

simpler setting: extending TD to a recurrent setting, with one GVF. From

there, two algorithms for the MSPBNE are introduced: Recurrent TD and

Recurrent GTD.

Consider first the on-policy TD update, without recurrence, assuming the

true state st at time t is given:

Wt+1  Wt + ↵t�trWV (st;Wt)

where �t
def
= Ct+1 + �t+1V (st+1;Wt)� V (st;Wt).

With recurrence, where the state is estimated and so is a function of Wt, the

only difference to this update is in the computation of rWV (st;Wt), where

st should instead be thought of st(Wt). This gradient now requires the chain

rule, to account for the impact of Wt on the last state, and the state before

then, and so on:
@V (st;Wt)

@Wi

=
@V (st;Wt)

@st

> @st
@Wi

where st = fW(st�1,xt). Computing this gradient back-in-time, rWst—which

is also called the sensitivity—is precisely the aim of most RNN algorithms,

including truncated BPTT and RTRL. Any algorithm that computes sensitivi-

ties can be used to obtain a TD update with recurrent connections to estimate

the state.

For GVFNs, there are two differences: one needs to account for off-policy

sampling and the fact that state is itself composed of these value estimates,

rather than being learned to estimate values. Value estimation within GVFNs

requires off-policy updates, because the target policies ⇡j are not typically

equal to the behavior policy µ. Therefore, importance sampling ratios must be
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included in the update

⇢t,j
def
=
⇡j(At|ht)

µ(At|ht)
for all j 2 {1, 2, . . . , N}.

This ratio multiplies the TD update, to adjust the expectation of the update to

be as if action At had been taken under ⇡j rather than the behavior µ. For the

second difference, the Recurrent TD update is actually even simpler because

the value function itself is the state. For the j-th value function—which is

the j-th state variable—rWV (j)(;W) at time t is rWst,j. Notice that this

gradient actually corresponds to using the above chain rule update, by using

V (j)(st) = st,j as a selector function into the state variable.

The Recurrent TD update for GVFNs is

st  f(st�1,xt;Wt) . where xt

def
= [at�1,ot]

st+1  f(st,xt+1;Wt) . where xt+1
def
= [at,ot+1]

�
t,j
 rWst,j . Compute sensitivities using p-BPTT

�t,j  C(j)
t+1 + �(j)

t+1st+1,j � st,j

⇢t,j  
⇡(j)(at|ot)

µ(at|ot)
. Policies can be functions of histories.

Wt+1  Wt + ↵t

 NX

j=1

⇢t,j�t,j�t,j

�

The TD update, however, is only an approximate semi-gradient update,

even in the fully observable setting. To obtain exact gradient formulas, I turn

to Gradient TD (GTD) algorithms. In particular, the nonlinear GTD strategy

developed by Maei, Szepesvári, Bhatnagar, Silver, et al. 2009 to the MSPBNE.

As above, any algorithm to compute the sensitivities can be used in the

Recurrent GTD algorithm. But, the algorithm becomes more complex, simply

because nonlinear GTD is more complex than TD even without recurrence.

The following theorem is used to facilitate estimating the gradient. The

main idea is to introduce an auxiliary weight vector, u, to provide a quasi-

stationary estimate of part of the objective. This proof and explicit derivation

for the resulting Recurrent TD algorithm is given in the Section 5.4. As a

warm up, the result for non-compositional GVFs is derived: no GVFs predict
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the outcomes of other GVFs. This makes the algorithm easier to follow. The

more general proof and derivation is contained in Section 5.4.

Theorem 5.3.1. Assume that V (h;W) is twice continuously differentiable as

a function of W for all histories h 2 H where d(h) > 0 and that W (·), defined

in Equation (5.13), is non-singular in a small neighbourhood of W. Assume

further that there are no compositional GVFs in the GVFN: no GVFs has a

cumulant that corresponds to another GVFs prediction. Then for u(W) and

�(W) defined in Lemma 5.2.1,

u(W)
def
= ⇤(W)�1�(W) (5.15)

�̂j,✓(H)
def
= �

j,W(H)>u(W)

 (W)
def
= Ed,µ

"
NX

j=1

⇢j(H,A)
⇣
�j(H,A,H 0)� �̂j,✓(H)

⌘
r2V (j)

W (H)u(W)

#

(5.16)

getting the gradient

�1
2rMSPBNE(W) = �(W)�

Ed,µ


⇢j(H,A)�(j)(H,A,H 0)�̂j,✓(H)�

j,W(H 0)

�
�

 (W)

Now two additional terms are needed to estimate beyond the standard

sensitivities in a typical RNN gradient. First, the additional weight vector u is

estimated via Equation (5.15). This can be done using standard techniques in

reinforcement learning. Second, a Hessian-vector product must be estimated.

The Hessian-vector product is given in Equation (5.16). Fortunately, this can be

computed using R-operators, without explicitly computing the Hessian-vector

product, using only computation linear in the length of the vector.

The Recurrent GTD update, for this simpler setting without composition,
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is3

st  f(st�1,xt;Wt)

st+1  f(st,xt+1;Wt)

�
t,j
 rWst,j . Compute sensitivities using truncated BPTT

�0

t,j
 rWst+1,j

⇢t,j  
⇡(j)(at|ot)

µ(at|ot)

vt  r2stut . Computed using R-operators, see Appendix 5.5

�̂t,j  �>

t,j
ut

 
t
 

NX

j=1

(⇢t,j�t,j � �̂t,j)vt

Wt+1  Wt + ↵t

 NX

j=1

⇢t,j�t,j�t,j
� ⇢t,j�j,t+1�̂t,j�

0

t,j

�
� ↵t t

ut+1  ut + �t

 NX

j=1

⇢t,j(�t,j � �̂t,j)�t,j

�

The derivation for this algorithm is similar to the derivation for Gradient

TD Networks (Silver 2013), though for this more general setting with GVF

Networks.

As alluded to, there are a variety of possible strategies to optimize the

MSPBNE for GVFNs. This variety arises from different strategies to optimize

RNNs, back-in-time, as well as from the variety of strategies to optimize the

MSPBE for value estimation. For example, sensitivities can be computed using

truncated BPTT or RTRL and its many approximations. Similarly, for the

MSPBE, there are a variety of different strategies to approximate gradients,

because the gradient is not straightforward to sample. These including a variety

of gradient TD methods—such as GTD and GTD2—saddlepoint methods and

semi-gradient TD (see Ghiassian et al. (2018) for a more exhaustive list).
3As mentioned above, one could have considered an alternative MSPBNE, using an recently

published nonlinear MSPBE objective (Patterson et al. 2022). The resulting Recurrent GTD
algorithm would look very similar, except the Hessian-vector product could be omitted:  t

is simply dropped in the update to ✓.
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5.4 Deriving the Full Recurrent GTD Update

Now that the objective is written in its expectation form, the gradients can be

take with respect to the weight parameter. The main body stated the result

for a simplified setting (Theorem 5.3.1), to make it simpler to understand the

result. The more general result, for compositional GVFs, is presented in this

section.

Theorem 5.4.1. Assume that VW(h) is twice continuously differentiable as a

function of W for all histories h 2 H where d(h) > 0 and that W (·), defined

in Equation (5.13), is non-singular in a small neighbourhood of W. Then for

�(W)
def
= Ed,µ

 NX

j=1

⇢j(H,A)�j(H,A,H 0)�
j,W(H)

�

u(W) = W (W)�1�(W)

 (W) = Ed,µ

"
NX

j=1

⇣
⇢j(H,A)�j(H,A,H 0)� �

j,W(H)>u(W)
⌘
r2V (j)

W (H)u(W)

#

getting the gradient

�1

2
rMSPBNE(W) = �Ed,µ

 NX

j=1

⇢j(H,A)rW�j(H,A,H 0)�
j,✓
(H)>

�
u(W)

� (W) (5.17)

Proof. For simplicity in notation below, the explicit dependence on the random

variable H are dropped in the expectations.

�
j,W(H)! �

j,W, �
j,W(H 0)! �0

j,W

�j(H,A,H 0)! �j, ⇢j(H,A)! ⇢j

Further, @i indicates the partial derivative with respect to Wi. Also, assume all

expectations are with respect to d, and µ. J is used to denote the MSPBNE,

which from Lemma 5.2.1 and Corollary 5.2.1.1, can be written J(W) =

�(W)>W (W)�1�(W). When applying the product rule Recall that u(W) =

81



W (W)�1�(W), and that W (W) is symmetric, giving

@iJ(W) = 2(@i�(W))>u(W) + �(✓)>@iW (W)�1�(✓)

@i�(W) = E
 NX

j=1

⇢j@i�j,W�j + �j,W@i�j

�

@iW (W)�1 = �W (W)�1@iW (W)W (W)�1

= �2W (W)�1E
 NX

j=1

(@i�j,W)�>

j,W

�
W (W)�1

�(✓)>@iW (W)�1�(✓) = �2�(✓)>W (W)�1E
 NX

j=1

(@i�j,W)�>

j,W

�
W (W)�1�(✓)

= �2u(W)>E
 NX

j=1

(@i�j,W)�>

j,W

�
u(W)

= �2u(W)>E
 NX

j=1

�
j,W(@i�j,W)>

�
u(W)

The last line follows from the fact that the transpose of a scalar is equal to the

scalar. Here the whole expression is transposed, leading to a transpose of the

outer-product inside the sum. Additionally,

@i�(W)>u(W) = E
 NX

j=1

⇢j�j(@i�j,W) + ⇢j�j,W@i�j

�>
u(W)

= E
 NX

j=1

⇢j�j(@i�j,W)>
�
u(W) + E

 NX

j=1

⇢j@i�j�
>

j,W

�
u(W)

Grouping the terms with (@i�j,W),

E
 NX

j=1

⇢j�j(@i�j,W)>
�
u(W)� u(W)>E

 NX

j=1

�
j,W(@i�j,W)>

�
u(W)

= E
 NX

j=1

⇣
⇢j�j � u(W)>�

j,W

⌘
(@i�j,W)>u(W)

�

=  
i
(W)

where the last follows from the definition of rW (W), which is the gradient
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vector composed of partial derivatives  
i
(W). Therefore,

@iJ(W) = 2@i�(W)>u(W) + �(✓)>@iW (W)�1�(✓)

= 2 
i
(W) + 2E

 NX

j=1

⇢j@i�j�
>

j,Wu(W)

�

which proves Equation (5.17). Now the second term can be further simplified,

using the fact that �
j,W = rWVj,W, giving

rW�j = rWcj,W + �j�
0

j,W � �j,W.

Now notice that

E
 NX

j=1

⇢jrW�j�
>

j,Wu(W)

�
= �E

 NX

j=1

⇢j�j,W�
>

j,W

�
u(W)

+ E
 NX

j=1

⇢j
�
rWcj,W + �j�

0

j,W

�
�>

j,Wu(W)

�

Because u(W) = W (W)�1�(W),

E
 NX

j=1

⇢j�j,W�
>

j,W

�
u(W) = W (W)u(W) = �(W)

Putting this all together,

�1
2rWJ(W) = � 

i
(W)� E

 NX

j=1

⇢jrW�j�
>

j,Wu(W)

�

= � (W) + �(W)� E
 NX

j=1

⇢j
�
rWcj,W + �j�

0

j,W

�
�>

j,Wu(W)

�

completing the proof.

The resulting Recurrent GTD algorithm explicitly learns a second set of

weights u, to perform this update. In our implementation, a particular form of

composition is used, namely that the cumulant for a GVF is a linear weighting

of the predictions of some of the other GVFs on the next time-step. If c(i, j)

indicates the weight on the ith GVF in the cumulant for the jth GVF, then

rWcj,t =
P

N

i=1 c(j, i)�
0

i,t
.

The full Recurrent GTD update is
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st  fWt(st�1,xt)

st+1  fWt(st,xt+1)

�
t,j
 rWst,j . Compute sensitivities using truncated BPTT

�0

t,j
 rWst+1,j

⇢t,j  
⇡j(at|ot)

µ(at|ot)

vt = r2stut . Computed using R-operators, see Section 5.5

 
t
=

NX

j=1

(⇢j,t�j,t � �>

j,t
ut)vt

Wt+1 = Wt + ↵t

 NX

j=1

⇢j,t�j,t�j,t
� ⇢j,t


rWcj,t + �j,t+1�

0

j,t

�
�>

j,t
ut � t

�

ut+1 = ut + �t

 NX

j=1

⇢j,t
⇣
�j,t � �>

j,t
ut

⌘
�

j,t

�

5.5 Computing Gradients of the Value Function
Back Through Time

In this section, I show how to compute �
t
, which was needed in the algorithms.

Recall from Section 5.3 that V (j)(st+1) = st+1,j, and using zt+1
def
=
h st
xt+1

i
let

st+1,j = �
�
z>
t+1W

(j)
�

for some activation function � : R ! R. For both

Backpropagation Through Time or Real Time Recurrent Learning, it is useful

to take advantage of the following formula for recurrent sensitivities

@V (i)(St+1)

@W(k,j)
= �̇(z>

t+1W
(i))

✓✓
@zt+1

@W(k,j)

◆>

W(i) + (zt+1)j�


i,k

◆

= �̇(z>
t+1W

(i))

✓
@V (1)(St)

@W(k,j)
, ...,

@V (n)(St)

@W(k,j)
,0>

�
W(i) + (zt+1)j�



i,k

◆

where � is the Kronecker delta function and �̇(·) is shorthand for the derivative

of � w.r.t its scalar input. Given this formula, BPTT or RTRL can simply be

applied.

For Recurrent GTD—though not for Recurrent TD—Hessian needs to be

computed back through time, for the Hessian-vector product. The Hessian
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for each value function is a N((d+ n))⇥N((d+ n)) matrix; computing the

Hessian-vector product naively would cost at least O(((d+n)+N)2N2) for each

GVF, which is prohibitively expensive. This can be avoided using R-operators

also known as Pearlmutter’s method (Pearlmutter 1994).

The R-operator R{·} is defined as

Ru

⇢
g(W)

�
def
=
@g(W + ru)

@r

����
r=0

for a (vector-valued) function g and satisfies

Ru

⇢
rWf(W)

�
= r2

Wf(W)u.

Therefore, instead of computing the Hessian and then producting with ut, this

operation can be completed in linear time, in the length of ut.

Specifically, for our setting,

Rw

⇢
�̇(z>

t
W)[rWz>

t
W + z>

t
rWW]

�

=
@

@r

✓
�̇(z>

t
(W + ru)[rWz>

t
(W + ru) + z>

t
rW(W + ru)]

◆����
r=0

To make the calculation more manageable each partial for every node k and

associated weight j is separated.

@V (i)(St+1,W)

@W(k,j)
= �̇(z>

t+1W
(i))(⌘t+1)i,k,j

(⌘t+1)i,k,j = ((ut)
>

k,j
W(i) + (zt+1)j�i,k)

(ut)k,j =


@V (1)(St)

@W(k,j)
, ...,

@V (n)(St)

@W(k,j)
,0>

�>

⇠
t
=


@V (1)(St)

@r
, ...,

@V (n)(St)

@r
,0>

�>
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(Rt)w,V =
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⇢
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�
, ...,Rw

⇢
@V (N)(St�1)
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@V (i)(St)

@r
= �̇(z>

t
W(i))(⇠>

t�1W
(i) + z>

t
wi)

5.6 TD(�) for GVFNs

For many of the experiments Recurrent TD is used with no back-propagation

through time p = 1. This algorithm only adjusts parameters to minimize

immediate TD error. In many cases, this was sufficient, but at times it was

slow and increasing p improved learning. Another strategy is to use traces

to obtain credit assignment back-in-time. The TD-error on this step can be

attributed to state values back-in-time, with the {TD(�) algorithm}

st  fWt(st�1,xt)

st+1  fWt(st,xt+1)

gt,j  rWjfWt(st�1,xt) . gradient given st�1, no BPTT

et,j  gt,j + �t,j�et�1,j . eligibility trace, 0  �  1

�t,j  C(j)
t+1 + �t+1,jst+1,j � st,j

Wt+1,j  Wt,j + ↵t�t,jet,j

Notice the difference to Recurrent TD and Recurrent GTD, that the weights

for each GVF are updated independently. This difference arises because the

gradient computations for back-in-time, for the sensitivities, is what couples

the updates. Without these sensitivities, the immediate gradient of the value

gt,j is independent for each GVF.
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5.7 Summary

This chapter focused on the characterization of the mean squared projected

bellman network error (MSPBNE) and subsequent derivations of algorithms

based on this objective function. Specifically, I defined the Bellman network

operator and the subsequent restrictions on the cumulants (i.e. acyclic compos-

ite connections). Equipped with the Bellman network operator and proving it

is a contraction under some standard assumptions, the mean squared projected

bellman network error can be defined. The final sections of the chapter derived

the recurrent GTD and TD algorithms, and provided some insight into how to

calculate various components with temporal sensitivities.
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Chapter 6

Empirically Exploring Hand

Designed GVFNs

In this chapter, I empirically explore GVFNs with hand-designed GVFs. These

empirical investigations provide the initial evidence that GVFNs can learn

without gradients calculated through BPTT. Through this empirical exper-

imentation I show the importance of choosing GVFs as a means to develop

predictive targets, explore the application of GVFNs on time-series forecasting,

and finally show recurrent TD to be enough to learn in Ring World.

6.1 Experiments in Forecasting

In this section, I compare GVFNs and RNNs on two time series prediction

datasets, particularly to ask 1) can GVFNs obtain comparable performance

and 2) do GVFNs allow for faster learning, due to the regularizing effect of

constraining the state to be predictions.1 I investigate if they allow for faster

learning both by examining learning speed as well as robustness to truncation

length in BPTT.

6.1.1 Datasets

I consider two time series datasets previously studied in a comparative analysis

of RNN architectures by Bianchi et al. 2017: the Mackey-Glass time series and

the Multiple Superimposed Oscillator.
1All code for these experiments can be found at https://github.com/mkschleg/GVFN
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The single-variate Mackey-Glass (MG) time series dataset is a synthetic

data set generated from a time-delay differential equation:

@y(t)

@t
= ↵

y(t� ⌧)
1 + y(t� ⌧)10 � �y(t). (6.1)

I follow the learning setup in Bianchi et al. 2017: setting ⌧ = 17, ↵ = 0.2,

� = 0.1, and take integration steps of size 0.1. The target variable y is

forcasted twelve steps into the future, starting from an initial value y(0) = 1.2.

T = 600, 000 samples are generated.

The Multiple Superimposed Oscillator (MSO) synthetic time series

(Jaeger and Haas 2004) is defined by the sum of four sinusoids with unique

frequencies

y(t) = sin(0.2t) + sin(0.311t) + sin(0.42t) + sin(0.51t). (6.2)

The resulting oscillator has a long period of 2000⇡ ⇡ 6283.19. Because data is

generated using t 2 N, the oscillator effectively never returns to a previously

seen state. These attributes make prediction difficult with the MSO, as the

model cannot rely on memory alone to make good predictions. T = 600, 000

samples are generated and make predictions with a forecast horizon of h = 12.

6.1.2 Experimental Settings

The focus in this work is on online prediction, and so report online prediction

error. At each step t, after observing ot = y(t), the RNN (or GVFN) makes a

prediction ŷt about the target yt, which is the observation 12 steps into the

future, yt = y(t+h). The magnitude of the squared error (ŷt� yt)2 depends on

the scale of yt. To provide a more scale invariant error, the error is normalized

by the mean of the target—a mean predictor. Specifically, for each run, the

average error over windows of size 10000 with the mean predictor is computed

for each window is reported. This results in T/10000 normalized squared errors,

where T is the length of the time series. This process is repeated 30 times,

and average these errors across the 30 runs, and take the square root, to get a

Normalized Root Mean Squared Error (NRMSE).
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The values for hyperparameters are fixed as much as possible, using the

previously reported value for the RNN and reasonable defaults for the GVFN.

The stepsize is typically difficult to pick ahead of time, and so sweep that

hyperparameter for all the algorithms. The number of hyperparameters swept

are made comparable for all methods, to avoid an unfair advantage. The

truncation length is not tuned, as results are reported for each truncation

length p 2 {1, 2, 4, 8, 16, 32} for all the algorithms.

6.1.3 Algorithm Details

The GVFN consists of a single layer of size 32 and 128 (for MG and MSO

respectively), corresponding to horizon GVFs. A horizon GVF is where the

discount is constant value. As described in Section 4.4, each GVF has a

constant continuation �(j) 2 [0.2, 0.95] and cumulant C(j)
t = 1��(j)

ymax
t

y(t), where

ymax
t

is an incrementally-computed maximum of the observations y(t) up to

time t. The GVFs are generated to linearly cover the range [0.2, 0.95]. This

set is chosen as one of the simplest options that can be used without much

domain knowledge. It is likely not the optimal set of GVFs for the GVFN,

but represents a reasonable default choice. The GVFN is followed by a fully-

connected layer with ReLU activations to produce a non-linear representation,

which is linearly weighted to predict the target. The GVFN layer uses a linear

activation, with clipping between [-10, 10], to help ensure state features remain

bounded; again, this represented a simple rather than optimized choice.

The GVFN was trained using Recurrent TD with a constant learning rate

and a batch size of 32. The weights for the fully-connected ReLU layer and the

weights for the linear output are trained using ADAM, to minimize the mean

squared error between the prediction at time t and target y(t+h). The stepsize

hyperparameters were swept: the learning rate for the GVFN ↵GVFN = N · 10�k

for N 2 {1, 5}, k 2 {3, . . . , 6}, and the learning rate for the fully-connected

and output layers ↵pred = N · 10�k for N 2 {1, 5}, k 2 {2, . . . , 5}.

I compare to RNNs, LSTMs, and GRUs 2. The network architecture is

similar to the GVFN for all recurrent models. The RNN size is set to 32 for
2Using standard implementations found in Flux (Innes 2018).
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Average
NRMSE

Truncation (p) Truncation (p)

GRU
GRU (Aux-Tasks)

GVFN
RNN
RNN (Aux-Tasks)

LSTM
LSTM (Aux-Tasks)

Figure 6.1: Truncation sensitivity for the (left) Mackey-Glass and (right)
Multiple Superimposed Oscillator datasets. Errors are calculated using the
normalized root mean squared error (NRMSE) averaged over the last 10k steps
for the training results ± 1 standard error over 30 independent runs.

MG and 128 for MSO, while the GRU and LSTM have 8 hidden units for MG

and 128 for MSO. Notice how the GRU and LSTM have fewer hidden units

than the RNN and GVFN for the MG experiment. This roughly accounts

for the increased complexity of the LSTMs and GRUs as compared to the

GVFN and RNN. While this was needed to make all the models competitive in

MG, I found the GVFNs performed well in MSO even with the same number

of hidden units as the GRU and LSTMs. These models were trained using

p-BPTT—specifically with the ADAM optimizer with a batch size of 32—to

minimize the mean squared error between the prediction at time t and y(t+ h).

The learning rate was swept in the range ↵ = 2�k with k 2 {1, . . . , 20}.

Finally, I also compare to RNNs with the 128 GVFs as auxiliary tasks. The

augmented RNN has the same architecture as above, but with an additional

set of output heads. The additional GVF heads are the same as those used

by the GVFN, and are trained with TD. The gradient information from the

GVFs is back-propagated through the network, influencing the representation.

The augmented RNN was tuned over the same values as the RNN. The goal

for adding this baseline is to gauge if there is an important difference in using

the GVFs to directly constrain the state, as opposed to indirectly as auxiliary

tasks. It further ensures that the RNN is given the same prior knowledge as

the GVFN—namely the pertinence of these predictions—to avoid the inclusion

of prior knowledge as a confounding factor.
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Figure 6.2: Learning curves for the (top) Mackey-Glass and (bottom) Multiple
Superimposed Oscillator datasets. The normalized root mean squared error
(NRMSE) normalized to the performance of the windowed average baseline is
reported. All results are an average of 30 independent runs ± the standard
error.

All RNNs and GVFNs include a bias unit, as part of the input as well as in

all layers. All methods have similar computation per step, particularly as they

are run with the same truncation levels p.

6.1.4 Results

I first show overall results across the truncation level in p-BPTT in Figure

6.1. Three results are consistent across both datasets: 1) GVFNs can obtain

significantly better performance than RNNs with small p; 2) GVFNs are

surprisingly robust to truncation level, providing almost the same performance

across p; and 3) auxiliary tasks in the RNN do not provide consistent benefits

across models and datasets. GVFNs provide a strict improvement on the MSO

dataset. The result on MG is more nuanced. As truncation levels increase,

the RNN’s performance significantly improves and then passes the GVFN.

This might suggest some bias in the specification of the GVFs. As is typical

with regularization or imposing an inductive bias, it can improve learning—

here allowing for much more stable learning with small p—but can prevent

the solution from reaching the same prediction accuracy. In some cases, the

inductive bias is strictly helpful, constraining the solution in the right way so
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as to incur minimal bias but improve learning. In MSO, it’s possible the GVF

specification was more appropriate and in MG less appropriate.

To gain more detailed insight into the behavior of the algorithms across

truncation levels, learning curves for p 2 {1, 8, 32} are presented in Figure

6.2. All the approaches learn more slowly for p = 1, but the RNNs are clearly

impacted more significantly. In MSO, the GVFN has a clear advantage in

terms of learning speed. This is not true in MG, where once p � 8, the RNN

performs better and learns faster. The GVFN objective here may actually be

difficult to optimize, but it allows the agent to make progress constructing a

useful state, whereas the signal from the error to the targets is insufficient.

6.2 Investigating Performance under Longer Tem-
poral Dependencies

In this section, I investigate the utility of constraining states to be predic-

tions, for an environment with long temporal dependencies. Compass World,

introduced in Section 4.3 (see Figure 4.2), which can have long temporal de-

pendencies, is used because the random behavior can stay in the center of

the world for many steps, observing only the color white. The observation is

encoded with two bits per color: one to indicate that color is observed, and

the other to indicate another color is observed. The behavior policy chooses

randomly between moving one-step forward; turning right/left for one step;

moving forward until the wall is reached ({leap}); or randomly selecting actions

for k steps ({wander}). The full observation vector is encoded based on which

action was taken, and includes a bias unit.

Five hard-to-learn GVFs are used to evaluate the models. These GVFs

correspond to the wall the agent is facing. These predictions are not learnable

without constructing an internal state. These five questions correspond to leap

questions. The leap question is defined as having a cumulant of 1 in the event

of seeing a specific wall (orange, yellow, red, blue, green), and a continuation

function defined as � = 0 when any color is observed—when the agent is facing

a wall—and � = 1 otherwise.
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Figure 6.3: Results averaged over 30 runs ± one standard error. The dashed
lines correspond to each RNN type augmented with auxiliary tasks, namely
here the terminating horizon GVFs. The plots on the (left) are for a constant
learning rate swept in range {0.1 ⇥ 1.5i; i 2 [�10, 5]} [ {1.0}. The plots on
the (right) are for the ADAM optimizer with learning rate swept in range
{0.01 ⇥ 1.5i; i 2 {�18,�16, . . . , 0}}. The (top) row shows sensitivity over
truncation measured by the average root mean squared value error (RMSVE)
over the final 200000 steps of training. The (bottom) row shows learning
curves for p = 4 for prediction accuracy. The prediction is the color of five
walls with the highest GVF output, where the GVF prediction corresponds to
a probability of facing that wall. When averaged over a window (10000 steps
in our case) this results in a percentage of correct predictions during that time
span.

The same architecture is used for both RNNs and GVFNs. The GVFN

uses 40 GVFs: 8 GVFs per color. The 8 GVFs for a color correspond to

Terminating Horizon GVFs. This means that they have a cumulant of 1

when seeing that color, and zero otherwise; they have a � = 1 � 2k for one

of 8 k 2 {�7,�6, . . . ,�1}; they terminate—� becomes zero—when any color

is observed; and the policy is to always go forward. These GVFs are similar

to the horizon GVFs in time series prediction, except that termination occurs

when a wall is reached and the policy is off-policy. The RNN similarly uses

40 hidden units for the recurrent layer. For RNNs, the hyperbolic tangent is
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used. Sigmoids are used instead for GVFNs, because the returns are always

nonnegative; otherwise, these two activations represent a similar architectural

choice.

Treating the input action at specially significantly improved performance

of both the RNN and GVFN, as suggested by Chapter 3. This is done by

specifying separate weight vectors {wa 2 Rn; 8a 2 A} for each action the agent

can take. The hidden state is then calculated as st+1 = �(w>

at
[ot+1, st]), where

� is the activation function. For the GRUs and LSTMs, this architectural

modification is not straightforward; instead the action is passed in as a one-hot

encoding.

All approaches share the same structure following the recurrent layer. The

state st is passed to a 32-dimensional hidden layer with ReLU activation, and

then is linearly weighted to produce the predictions for the five hard-to-learn

GVFs: ŷt = ReLU(s>
t
F)W where F 2 R40⇥32 and W 2 R32⇥5. All methods

include a bias unit on every layer.

The performance for increasing p, as well as learning curves for p = 8, are

show in Figure 6.3. Again, there are several clear conclusions. 1) The GVFN

is again highly robust to truncation level, reaching almost perfect accuracy

with p = 1. 2) The GVFN can learn noticeably faster with smaller p, such as

p = 4, and the differences disappear for larger p. 3) The auxiliary tasks do not

provide near the same level of benefit as the GVFN, though unlike the time

series results, there does in fact seem to be some benefit. 4) All the methods

are improved when using ADAM—especially the LSTMs and GRUs—though

GVFNs are effective even with constant stepsizes.

6.3 Investigating Poorly Specified GVFNs

In the previous Compass World and Forecasting experiments, the GVFNs were

robust to truncation. In fact, computing one-step gradients was sufficient for

good performance. A natural question is when we can expect this to fail. I

hypothesize that this robustness to truncation relies on appropriately specifying

the GVFs in the GVFN. Poorly specified GVFs could both (a) make it so that
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the GVFN is incapable of constructing a state that can accurately predict

the target and (b) make training difficult or unstable. In this section, this

hypothesis is tested by evaluating several choices for the GVFs in the GVFN

in Compass World.

Three additional GVFN specifications are considered: two that include

intentional (but realistic) misspecifications and one that should be an improve-

ment on the Terminating Horizon GVFN. The first misspecification, which is

called the Horizon GVFN, causes the hidden states to have widely varying

magnitudes. These GVFs are similar to the Terminating Horizon GVFs, except

that they do not include termination when a color is observed. This means

the true expected returns can be quite large, up to 1
1�� (e.g., 1

1�0.99 = 100)

if the agent is already immediately in front of the wall with that color. The

policy is to go forward, and so if the agent is already facing the wall and

receives a cumulant of 1, it will see a 1 forever onward, resulting in a return of
P

1

i=0 �
i = 1

1�� .

The second misspecification provides a minimal set of sufficient predictions,

but ones that are harder to learn. A natural choice for this is to use the five

hard-to-learn predictions themselves, which is clearly sufficient but may be

ineffective because they cannot be learned quickly enough to be a useful state.

This is called the Naive GVFN, because it naively assumes that representability

is enough, without considering learnability.

Finally, I also consider a specification that could improve on the more

generic Terminating Horizon GVFN, that is called the Expert Network. This

network also has 40 GVFs, but ones that are hand-designed for Compass World.

This GVFN is a modified version of the TD network designed for Compass

World (Sutton and Tanner 2005). The GVFs are defined similarly for the

5 colours. There are 3 myopic GVFs: a myopic GVFs consists of a myopic

termination (� = 0 always) and a cumulant of the color bit. Each myopic GVF

has a persistent policy, which takes one action forever. Since there are three

actions there are three myopic GVFs. These myopic GVFs indicate whether

the agent is right beside the color (ahead, to the left or to the right). There

is 1 leap GVF where the policy goes forward always, the cumulant is again
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Figure 6.4: Learning curves for (dashed) p = 1 and (solid) p = 8 for
various GVFN specifications and the Forecast networks. The GVFN is labeled
TermHorizon, to highlight that it is composed of terminating horizon GVFs.
Learning rates were chosen as in Figure 6.3, where the left plot corresponds
to using a constant stepsize and the right to using the ADAM optimizer. The
errors were averaged over 30 independent runs, to get the final learning curves
± standard error.

the color bit and � = 1 except when a color is observed, giving � = 0. There

are 2 GVFs with a persistent policy (left, right) with myopic termination and

a cumulant of the previous leap GVF’s. These compositional GVFs let the

agent know if they were to first turn right (or left) and then go forward, would

they see the color. There are 2 leap GVFs with cumulants of the myopic GVFs.

Finally, there is 1 GVF with uniform random policy with � = 0 at a wall event

and � = 0.5 otherwise.

As a baseline, a Forecast network is included, which uses k-horizon predic-

tions for the hidden state instead of GVFs. The architecture of the Forecast

network is otherwise the same as the GVFN. The Forecast network uses a set

of horizons K = {1, 2, . . . , 8}, for each of the non-white observations, resulting

in a hidden state size of 40. To train these networks online a buffer is kept of

p+max(K) observations, using the first p observations in the BPTT calculation

and the next k observations to determine the targets of the network. The most

recent hidden state is recovered to train the evaluation GVFs as done with the

RNN and GVFN architectures. More specifically, at time-step t, the state st�k

is updated with observations ot�k+1, . . . ,ot.

Learning curves for all the GVFN specifications, as well as the Forecast

network, with p = 1 and p = 8, are reported in Figure 6.4. The results
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indicate that the specification can have a big impact. The two misspecified

GVFNs perform noticeably worse than the Terminating Horizon GVFN. As

expected, the Naive GVFN is eventually able to learn, with enough steps, p = 8

and the ADAM optimizer. It is sufficient to obtain a good state, but poor

learnability prevents it from playing a useful role. The Horizon GVFN, which

has potentially high magnitude GVF predictions, is closer in performance to

the Terminating Horizon GVFN, but clearly worse. The Expert GVFN, on the

other hand, can get to a lower error, though it does not have a clear advantage

in terms of learning speed or robustness to p; this slower learning could again

be potentially due to the fact that these expert GVFs were more difficult to

learn than the simpler terminating horizon GVFs. Finally, the Forecast network

performed very poorly. This is not too surprising in this environment. When

considering a k-horizon prediction, the target is often zero, with the occasional

one. This is generally a hard learning problem, as the resulting prediction loss

does not provide a useful constraint. These results clearly show specifying the

GVFs used to constrain the hidden state is an important consideration when

using GVFNs, and could be the difference between learnable and un-learnable

representations.

6.4 Comparing Recurrent GTD and Recurrent
TD

TD networks with a simple TD network update rule—no backprop through

time—have been shown to have divergence issues on a simple six-state domain,

called Ring World~(Tanner and Sutton 2005). In fact, Gradient TD networks

(Silver 2013) were introduced precisely to solve this problem. Because GVFNs

are a strict generalization of TD networks, the GVFN can be set to get the

same problematic setting if a simple TD update is used (RTD with p = 1). This

raises a natural question of if Recurrent TD (RTD) similarly has divergence

issues, and if Recurrent GTD (RGTD) is needed.

In all of the experiments so far, I have opted for the simpler RTD algorithm,

rather than the full gradient algorithm RGTD, because empirically little
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Figure 6.5: Learning curves for p = 1 and p = 2 averaged over 10 runs with fixed
window smoothing of 1000 steps, in the Ring World environment. Learning rates
chosen from a sweep over ↵ 2 {0.1⇥ 1.5i; i 2 {�10,�9, . . . , 6}} for the RNN
and learning rates ↵ 2 {0.1 ⇥ 1.5i; i 2 {�6,�9, . . . , 8}} and � = {0.0, 0.01}
corresponding to RTD and RGTD respectively. All approaches needed only
p = 2 to learn, including the baseline RNN included for comparison.

difference is found between the two. RTD, unlike the simple TD update rule,

does in fact compute gradients back-in-time, and so should be a more sound

update. Further, once truncated BPTT is used, even RGTD is providing a

biased estimate of the gradient. But nonetheless RTD—which is built on the

semi-gradient TD update—does drop more of the gradient than RGTD. It is

likely that RGTD is needed in some cases. But it is possible that for most

settings, RTD provides a reasonable interim choice between the simple TD

network learning rule, and the more complex RGTD.

In this section, I test RTD and RGTD on Ring World, to see if they perform

differently on this known problematic setting. Note that for p = 1, RTD reduces

to the simple TD network learning rule, and so expect poor performance.

Ring World is a six-state domain~(Tanner and Sutton 2005) where the agent

can move left or right in the ring. All the states are indistinguishable except

state six. The observation vector is simply a two bit binary encoding indicating

if the agent is in state six or not. The agent behaves uniformly randomly. The

goal is to predict the observation bit on the next time-step. The environment
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itself is not too difficult for state-construction; rather a particular TD network

causes divergence from the simple TD update rule. The corresponding GVFN

consists of two chains of compositional GVFs: one chain for always go right and

one chain for always going left. In the first chain, the first GVF is a myopic

GVF, that has as cumulant the observed bit after taking action Right, with

� = 0. This first GVF predicts the observation one step into the future. The

second GVF has the first GVFs prediction as a cumulant after taking action

Right, with � = 0. This second GVF predicts the observation two steps into

the future. There are five GVFs in each chain, for a total of 10 GVFs in the

GVFN.

Figure 6.5 shows the results of the Ring World experiments for truncation

p = 1 and p = 2. The GVFNs for both RTD and RGTD needed only p � 2 to

learn effectively. A baseline RNN of the same architecture is included, that

indicates that the GVFN specification does negatively impact performance.

But, with even just p = 2, any convergence issues seem to disappear. In

fact, RTD and RGTD perform very similarly. The fact that Ring World

is not problematic for RTD is by no means a proof that RTD is sufficient,

especially since Ring World was designed to be a counterexample for the simple

TD network update not for RTD. But, it is one more datapoint that RTD

and RGTD perform similarly. In future work, counter examples should be

investigated for RTD to better understand when it might be necessary to use

RGTD.

6.5 Summary

This chapter contains some initial evidence to the effect of using GVFs to

constrain the state of a recurrent network. While this provides some evidence

for the Prediction Representation hypothesis defined in Section 4.2.1, I do not

perform a explicit test of this hypothesis. While these experiments show the

initial promise of the GVFN approach to learning a state-update function, they

are not extensive. In all the empirical results, the agent’s were trained in a

sequential manner without experience replay buffers. This possibly limited
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the performance possible for both the RNNs and GVFNs. The results also

relied on hand designed GVFs. While several networks used simple heuristics

to construct a collection of GVFs, it is yet to be tested whether these results

generalize beyond the simple bit domains and synthetic forecasting domains

used here.
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Chapter 7

The set of Predictive Questions in

General Value Functions

In Chapter 6, I explored several hand designed network configurations. This

lead to several observations, including compositional GVFs have considerable

representational power if the predictive questions can be answered. In the

following Chapter, I propose constraints we should apply to the set of GVFs.

These constraints are born from the constraints on a continual learning agent,

and inform future explorations in using GVFs and GVFNs for planning and

control. I follow up this discussion by analyzing a specific type of GVF oft

unexplored in the literature, composite GVFs. Specifically, I explore the open

question of “what do GVFs composed together in chains predictively represent?”

While I don’t answer this question conclusively for all possible chains GVFs, I

provide explorations for two important types of composite GVFs: those which

have constant discounts, and those which have terminating discounts.

7.1 Composite GVFs

Consider the setting where there is an infinite sequence of sensor readings x =

{x[0], x[1], . . . , x[t], . . . , x[1]} where x[i] 2 [xmin, xmax] and a constant discount

�. The return of this signal starting at a time-step t is V [t] =
P

1

k=0 x[k]�[k� t]

where �[k] = �k�1 for k >= 1 and 0 otherwise. This framing of the return

is slightly different from the typical presentation. Specifically, the return can
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lations, with top graph as the cumulant and subsequent plots n compositions
with constant and terminating discounts respectively.

be interpreted as a convolution beteween � and x 1 and shift the discount

sequence over the sensor readings. This implicitly defines an infinite sequence

of predictions V [t]. In the above equation, the sequence x is replaced with the

sequence of predictions V getting a new set of predictions, and for any number

of compositions

V n[t] =
1X

k=0

V n�1[k]�[k � t].

Expanding this equation the general sequence of effective discounts for n

compositions and the corresponding return can be defined as

�n[k] =

(
0 if k < n
Qn�1

i=1 (k�i)
(n�1)! �k�n

V n[t] =
1X

k=0

x[k]�n[k � t]

where �1[k] = �[k] defined above and V n[t] is the target of the nth composition

at time-step t. For any value n there are two sequences multiplied together.

The original discounting shifted by the number of applications �1[k � n] and a

diverging series

Qn[k] =

Q
n�1
i=1 (k � i)

(n� 1)!
=

�(k)

�(k � n+ 1)�(n)

where �(k) = (k � 1)! for k 2 Z is known as the Gamma function, and can be

used to analyze the function with k 2 R.
1In digital signal processing (Oppenheim and Schafer 2010) often the convolution,

in this case �, is mirrored across t and the inifinte sequence of sensor readings is
x = {x[�1], . . . , x[t], . . . , x[1]}. The corresponding convolution would be V [t] =P1

k=�1 x[k]�[t � k] which would change how the sequence of � is defined. To be con-
sistent with the reinforcement learning literature, � is implicitly defined as the mirrored
version and only consider the sequence starting at k = 0.
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For any particular application of the convolution � on a series with known

domain [xmin, xmax] the value function can take values bounded by V 1[t] 2
[xmin
1�� ,

xmax
1�� ]. This extends to n compositions in a straightforward way where the

range of the value function becomes V n[t] 2 [ xmin
(1��)n ,

xmax
(1��)n ]. While normalizing

the value function to take values in the range [0, 1] has been used in various

settings (Schlegel, Jacobsen, et al. 2021), as more compositions are added the

effective range of values shrinks considerably.

Given the effective discounting sequence above, which observations are

emphasized in the predictions can be uncovered. The first 100 steps of the

effective discount function for several values of n can be seen in figure 7.1.

These sequences are normalized to be in the range [0, 1] for a visual comparison.

The emphasis becomes increasingly spread as n increases, with the peak of this

function moving further to the future at a consistent rate.

To find the maximum value, take the derivative of the log of the sequence

with respect to k getting

�

�k
ln �n[k] =  (k)�  (k � n+ 1) + ln �

where  (z + 1) = Hz � C is the digamma function, Hz =
P

z

i=1
1
i

R

z

1
1
x
dx =

ln(z) is the Euler harmonic number, and C is the Euler-Mascheroni constant.

Using the approximation above, the maximal value is (to an approximation)

k = hn� (h� 1) = h(n� 1) + 1, where h = 1
1�� is sometimes known as the

horizon of discount �. Of course this is an approximation from above and the

real value falls in k 2 [h(n� 1), h(n� 1) + 1)].

7.2 Empirical Observations

While one can describe the effective discount for composing constant discount

predictions, the same techniques are difficult to apply to a non time-invariant

discount (i.e. state-dependent discounts (Sutton, Modayil, et al. 2011; A. White

2015; M. White 2017)). Instead, in this section I look at the ideal returns

of various signals using constant discounting and a terminating discounting

functions. I use three datasets moving from highly synthetic to real-world
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Figure 7.2: (left two) Returns of the multiple sinusoidal oscillator (MSO)
synthetic dataset with constant and terminating discount respectively. The
gray vertical lines are where the return terminates. (right two) Returns
of Critterbot dataset over the light3 sensor with constant and terminating
discount respectively.

robot sensori-motor data. The goal of this section is to show the non-intuitive

behavior of compositions to motivate further analysis and exploration.2 Below

� = 0.9 unless otherwise stated.

The first series is based off the cycle world, where the agent observes a

sequence of a single active bit followed by 9 inactive bits, where the length of

the sequence is m = 10. The cumulant is the observation itself, and in this

section all learning is done through TD(� = 0.9) with learning rate ↵ = 0.1

and an underlying tabular representation where each component is the place

in the sequence. Two chains of compositions were trained. The first is that

of the continuous discounting described above, and the second is a series of

discounts which terminate (i.e. �[t] = 0) when the observation is active. The

predictions of a single run can be seen in figure 7.1. For the constant discount,

as the number of compositions increases the prediction sequence converge to

what looks to be a sinusoid with frequency of 10, and amplitude driven by the

analysis above. For the terminating discount, the wave form is more interesting.

The first layer of predictions look very similar to the constant discount with

amplitude shifted by �
m

1��m . But as there are more compositions the effect seems

to be the prediction is at its height farther away from the active bit. As the

agent gets closer to the observation, the sequence of summed values is shorter

leading to smaller values. Given the sequence used, it is easy to mistake this

as the agent creating a trace of the cumulant, but remember the prediction is

about future cumulants.
2All code can be found at https://github.com/mkschleg/CompGVFs.jl
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Next the Critterbot dataset (Modayil et al. 2014; A. White 2015) is used,

focusing on light sensor 3 in figure 7.2. This gives a sequence of spikes similar

to the cycle world sequence and a long pause in-between consistent saturations

of the light sensor. The predictions look more like shifted and spread spikes as

compared to the cycle world results. But with many more compositions, the

return reverts to a similar form as before. The terminating discounts (with

termination at sensor saturation x[t+ 1] > 0.99) provides a nice demonstration

of how the returns are predicting the signal, just with a decaying prediction

instead of the usual growing prediction. The results are similar in the multiple

sinusoidal oscillator (Jaeger and Haas 2004). A slightly different terminating

discount is used where the return terminates when the previous normalized

prediction is yn�1[t+ 1] > 0.9 rather than when the observation is saturated.

While there are decays as the MSO sequence peaks, as the depth of the

composition is increased, these periods are less frequent. Deep compositions

may indicate parts of the sequence where there are fewer saturations in the

original sequence.

7.3 Future Directions

This work suggests a number of interesting research directions and questions.

While I mostly analyzed the sequence on discrete steps and applications of the

filter, the general form does lend itself to continuous and complex values of n

and k. In a similar vein, I focused on real valued exponential discounting while

several discounting schemes exist which could be applied to our formulation. I

am particularly interested in complex discounting (De Asis et al. 2018) and

hyperbolic discounting (Ainslie and Haslam 1992; Fedus et al. 2019). Applying

a diverse set of discounting schemes in compositions provide an interesting way

to extend the power of value functions while maintaining learnability through

efficient algorithms like temporal-difference learning.

The approach used in this chapter is unable to analyze state-dependent

discount functions. One way around this might be in analyzing truncated

sequences and taking an expectation over a distribution of sequence lengths.
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This might lead to a expected effective discounting sequence, but how this will

interact with an underlying Markov process is unclear. This is an important next

step for understanding the effects of compositions in general value functions,

and could also help in analyzing off-policy compositions.

Finally, the return can be re-interpreted as a convolution over the infinite

sequence of observations. While this interpretation was only used to better the

notation in this manuscript, further connections to convolutions and digital

signal processing should be explored. Better filter designs might inspire different

discounting schedules to squeeze more information from the data stream. I

have also only analyzed these convolutions in the time domain. The frequency

domain might give us more insight into how consistent signals like the cycle

world dataset will be effected by compositions.
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Chapter 8

Discovery of GVFNs through

Generate and Test

In Chapter 6, I explored several hand designed network configurations. While

a necessary first step to judge the GVFN’s potential, discovering the predictive

questions used to construct the state is essential to more aptly apply GVFNs

to large complex problems. In chapter 7, I discussed the considerations needed

when designing cumulant, discount, and policy functions for GVFs in a continual

learning agent. In this chapter, I consider the discovery question for GVFNs

in a continual learning setting. While this chapter only serves as the tip of

the iceberg of what is possible with discovery, I aim to provide a baseline

and structure to approach the question in future work. I also describe several

approaches to discovery used throughout the predictive learning literature and

discuss how they might apply to the GVFN architecture directly.

Previous approaches to discovery in predictive representations have focused

on finding a set of predictions that would enable the agent to answer all

predictive questions accurately. This objective is trying to find a sufficient

statistic of the history for all predictions, and has been discussed in various

forms (Subramanian et al. 2022). This is the approach typically taken in PSRs

and a usual criteria when approaching a POMDP problem. This criteria falls

naturally from the POMDP specification, where the assumption is there is

a true underlying latent state which the agent can determine from enough

interactions with the system. I conjecture that finding such a state is not

feasible in large complex problems, and searching for such a state would be a
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poor use of a finite set of computational resources. Instead, the agent should

focus on finding a set of questions which is useful for the agents overarching

goals—for example, maximizing the return in the control problem. In the

following section, I describe several prior approaches to discovery applicable to

the GVFN framework, develop a simple approach to a discovery framework for

future testing, and discuss various ways of specifying GVFs by hand for the

GVFN.

8.1 Previous Approaches

There are two main families of approaches to discovery of GVFs for GVFNs:

generate-and-test and gradient descent.

Generate and test is a natural algorithmic approach when considering

a search problem through a complex unordered (or not obviously ordered)

space. The core of the approach is to propose GVFs through a generator and

approximate their utility for the downstream task through a proxy measure.

This approach has been used for representation discovery (Mahmood and

Sutton 2013; Javed 2020). The simplest setting where such a generate-and-test

approach could be used is time series forecasting, as the predictions are on-

policy and so policies do not have to be proposed by the generated. Further,

practitioners can apply their prior knowledge in creating the cumulant and

continuation functions considered by the generator. There are, however, some

simple strategies for generating policies, which is discussed in Section 8.2.

A generate and test algorithm has been developed for TD networks (Makino

and Takagi 2008). The process of discovery involves creating new predictions

built entirely from existing structures: senses or predictions. By building new

predictions from existing predictions, it facilitates the creation of composite

structures. The system proposed in Makino and Takagi (2008) determines

when a node (i.e. a prediction or sense) should be expanded on using three

criteria. They then expand these nodes in specific ways to ask a broad set of

composite questions. TD networks do not include policies—rather they include

action primitives—so the approach does not directly extend. However, the idea
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of iteratively creating such composite structures does extend. For example,

in this work, the expert network considered in Section 6.3 was composed of

composite GVFs. Composite GVFs could be generated simply by using existing

GVFs as the cumulant for the new GVF.

Meta-gradient descent uses gradient descent to learn meta-parameters

that affect learning performance. The meta-parameters could correspond to

initialization of a model for later fine tuning (Finn et al. 2017), a set of GVF

auxiliary tasks to improve representation learning in Atari (Veeriah et al. 2019)

or parameterized options (Bacon and Precup 2017). This approach splits

the problem into two optimization problems: an inner problem and an outer

problem. The inner optimization consists of the usual control or prediction

procedure, where the agent seeks to maximize the discounted return or lower

prediction error. The outer optimization calculates gradients through this

procedure, with respect to the meta-parameters.

For example, to learn a set of GVFs as auxiliary tasks, Veeriah et al. (2019)

parameterized the cumulant and continuation functions. They did not need to

parameterize the policies for the GVFs as they assumed on-policy prediction: the

policy ⇡ for the GVF is the current policy. These meta-parameters are optimized

in the outer loop to produce auxiliary tasks that improve control performance

in the inner loop. For this setting, one could similarly parameterize GVF

questions, including the policy. This meta-gradient approach was reasonably

effective for discovering GVFs as auxiliary tasks, though the procedure is

expensive and has some trainability issues. Nonetheless, it is a reasonable

direction for pursuing discovery for GVFNs.

8.2 Investigating a Simple Generate and Test
Strategy for GVF Discovery

This simple discovery framework is based on algorithms described for represen-

tation search (Mahmood and Sutton 2013) focusing on two main components:

an evaluator, and a generator. The evaluator is responsible for testing GVFs

and removing unused GVFs. The generator proposes new GVFs from a set of
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possible GVFs. The framework is summarized in Figure 8.1. The key questions

are how GVFs are evaluated and how new ones proposed. Our goal here is

simply to demonstrate one avenue for discovery in GVFNs, rather than to

develop an algorithm for discovery; this section opts for what are some of the

simplest choices.
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Figure 8.1: The discovery framework.

The magnitude of the associated

weight in the external tasks using the

GVFN is used to evaluate a GVF. The

state vector is assumed to be used

linearly to make predictions, with ✓j
corresponding to state sj and so to

the jth GVF. All GVFs are evaluated

every N 2 N steps and prune the

lowest ✏ 2 [0, 1] percentage, i.e., prune

bn✏c least useful GVFs of the full set

of N GVFs. Other criteria have been

proposed for evaluation, such as using

traces of the weight magnitudes and considering internal weights (Mahmood and

Sutton 2013). As mentioned above, the simplest choice that is still reasonably

effective is opted for over more complex evaluation metrics.

New GVFs are generated randomly from a set of GVF primitives. A set

of basic types of cumulants, continuations and policies are randomly sampled

from. For continuations, the set includes myopic discounts (� = 0), horizon

discounts (� 2 (0, 1)) and terminating discounts (the discount is set to � 2 (0, 1]

everywhere, except for at an event, which consists of a transition (o, a, o0)).

For cumulants, the set includes stimuli cumulants (the cumulant is one of

the observations, or taking on 0 or 1 if the observation fulfills some criteria

(e.g. a threshold)) and composite cumulants (the cumulant is the prediction

of another GVF). Random cumulants (the cumulant is a random number

generated from a zero-mean Gaussian with a random variance sampled from a

uniform distribution) are also included; these are not expected to be useful,

but rather use it to define what is called here a dysfunctional GVF to test
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pruning. For the policies, random policies (an action is chosen at random) and

persistent policies (always follows one action) are used.

The resulting GVF primitives consist of a triplet (c, �, ⇡) where each is

randomly chosen from these basic types. For example, a randomly generated

GVF could consist of a myopic continuation, a stimuli cumulant on observation

bit one and a random policy. This would correspond to predicting the first

component of the observation vector on the next step, assuming a random

action is taken. As another example, a randomly generated GVF could consist

of a termination continuation with � = 0.9, a stimuli cumulant which is 1 when

the observation is zero and is otherwise zero otherwise and a persistent policy

with action forward. This GVF corresponds to predicting the likelihood of

seeing the observation change from active (‘1’) to inactive (‘0’), given the agent

persistently moves forward, within the horizon of about (1� �)�1 = 10 steps.

Parameterized continuations, cumulants and policies and randomly could

have been considered. This set, however, is large. The GVF primitives can

be seen as a prior over the full set of GVFs, which is too large from which to

randomly generate. Without this prior the discovery approach is expected to

still work but to take even longer than the experiments presented below.

The performance of the framework is evaluated on two experiments in

Compass World (Sutton and Tanner 2005). Both experiments use the five

hard-to-learn GVFs as the targets for the GVFN, introduced in Chapter 6.

These questions correspond to a question of “which wall will I hit if I move

forward forever?”. The first experiment, Figure 8.2 (left), provides a sanity

check that the evaluation strategy prunes dysfunctional representational units.

The GVFN is initialized with 200 GVFs: 45 used to form the expert crafted TD

network (Sutton and Tanner 2005), and 155 defective GVFs predicting noise

⇠ N (0, �2). In Figure 8.2 the learning curve and pruned GVFs over 12 million

steps are reported. The second experiment, Figurere 8.2 (right), uses the full

discovery approach to find a representation useful for learning the evaluation

GVFs. The learning curves of the evaluative GVFs over 100 million steps are

reported.

These experiments have many similarities to the experiments above, but
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Figure 8.2: (left) Pruning predictive units occurs every million steps with no
regeneration ↵ = 0.001,� = 0.9, ✏ = 0.1, �2 = 1 (right) Learning curves of the
evaluative GVFs N = 1000000, ✏ = labeled,↵ = 0.001,� = 0.9, n = 100, over 5
runs with standard error denoted by the shaded region.

there is one key differences worth noting. Instead of using RTD or RGTD,

TD(�) is used; see Appendix 5.6 for the update equations. TD(�) is sufficient

to learn the expert network specification in a reasonable number of steps, and

is significantly simpler than the other algorithms. Note that TD(�) was not

used in the above comparisons with RNNs. This was excluded for two reasons.

First in the cases where the target was not a return, it is not possible to use

eligibility traces, as they are designed for predicting expected returns. Second,

as far as I am aware, the eligibility trace calculation for neural networks with

several output nodes has not been formally derived nor tested.

The results indicate that even a simple generate and test approach can

be effective for discovery in GVFNs. The first figure shows that the pruning

approach gradually removes the dysfunctional GVFs, without pruning the expert

GVFs. Eventually, once the agent has mostly removed all the dysfunctional

GVFs, it is then forced to prune the expert GVFs and prediction performance

begins to drop. Of course, in practice, the agent would not prune all its GVFs;

in this experiment pruning is simply continued until the end. The second plot

shows that iteratively pruning and generating new GVFs significantly improves

on using an initial random set. For ✏ = 0.2, which means about 20% of GVFs

are pruned in each pruning phase, the prediction error continues to decrease

until it almost reaches 0 and is almost as good as the set of hand-design GVFs

used in previous experiments.
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The goal of this experiment was to answer: is it possible to discover useful

GVFs for a GVFN, even in simple settings? A negative answer would mean

that GVFNs might have limited applicability. A demonstration that it is

possible provides some evidence that this is a tractable problem for which even

simple solutions can help us make traction. This demonstration, however, by

no means shows an ideal or even efficient algorithm and there is ample room

for improvement. Primarily, the random generation strategy does not take

into account the current set of proposed predictions, potentially resulting in

redundancy. A more principled method would look to generate a wide variety

of predictions dependent on the current set of predictions.

8.3 Heuristics to Specify GVFNs

Through testing GVFNs in several domains there are some rules of thumb for

choosing GVFs which can be applied today. In the time-series experiments,

selecting GVFs with constant �(j) 2 [1�2�j ] where j 2 N is surprisingly effective

across the settings with fixed policies—namely the time series datasets. This

is encouraging as these specifications on the surface seem simpler to discover

than something as complex as the Expert network in Compass World. A set

of discounts selected linearly across a range was also effective. Also including

GVFs which have a pseudo-termination at a known event (known due to expert

knowledge) and a cumulant which is only active at this event improved learning

performance considerably (see the performance of the Terminating-Horizon

network in Section 6.3).
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Chapter 9

Importance Resampling for

Prediction in Reinforcement

Learning

One lingering issue that plagues not only GVFNs but the community of learning

answers to predictive questions generally is the variance induced by off-policy

prediction through importance sampling. There have been several alternatives

to straight importance sampling ratios, many of which have been proposed

for a more standard policy evaluation setting (i.e. where the target and

behavior policies are close together on the simplex). In this Chapter, I propose

importance resampling as an off-policy prediction algorithm to mitigate the

update variance of importance sampling while also being a consistent estimator.

I characterize the bias of this new estimator. Finally, I empirically investigate

IR on three microworlds and a racing car simulator, learning from images,

highlighting that (a) IR is less sensitive to learning rate than IS and V-trace

(IS with clipping) and (b) IR converges more quickly in terms of the number of

updates.

9.1 Introduction

An emerging direction for reinforcement learning systems is to learn many pre-

dictions, formalized as value function predictions contingent on many different

policies. The idea is that such predictions can provide a powerful abstract

model of the world. Some examples of systems that learn many value func-

115



tions are the Horde architecture composed of General Value Functions (GVFs)

(Sutton, Modayil, et al. 2011; Modayil et al. 2014), systems that use options

(Sutton, Precup, et al. 1999; Schaul, Horgan, et al. 2015), predictive repre-

sentation approaches (Sutton and Tanner 2005; Schaul and Ring 2013; Silver

et al. 2017; Schlegel, Jacobsen, et al. 2021) and systems with auxiliary tasks

(Jaderberg et al. 2017). Off-policy learning is critical for learning many value

functions with different policies, because it enables data to be generated from

one behavior policy to update the values for each target policy in parallel.

The typical strategy for off-policy learning is to reweight updates using

importance sampling (IS). For a given state s, with action a selected according

to behavior µ, the IS ratio is the ratio between the probability of the action

under the target policy ⇡ and the behavior: ⇡(a|s)
µ(a|s) . The update is multiplied

by this ratio, adjusting the action probabilities so that the expectation of

the update is as if the actions were sampled according to the target policy ⇡.

Though the IS estimator is unbiased and consistent (Kahn and Marshall 1953;

Rubinstein and Kroese 2016), it can suffer from high or even infinite variance

due to large magnitude IS ratios, in theory (Andradóttir et al. 1995) and in

practice (Precup, Sutton, and Dasgupta 2001; Mahmood, van Hasselt, et al.

2014; Mahmood, Yu, et al. 2017).

There have been some attempts to modify off-policy prediction algorithms

to mitigate this variance.1 Weighted IS (WIS) algorithms have been introduced

(Precup, Sutton, and Dasgupta 2001; Mahmood, van Hasselt, et al. 2014; Mah-

mood and Sutton 2015), which normalize each update by the sample average

of the ratios. These algorithms improve learning over standard IS strategies,

but are not straightforward to extend to nonlinear function approximation.

In the offline setting, a reweighting scheme, called importance sampling with

unequal support (Thomas and Brunskill 2017), was introduced to account for

samples where the ratio is zero, in some cases significantly reducing variance.

Another strategy is to rescale or truncate the IS ratios, as used by V-trace
1There is substantial literature on variance reduction for another area called off-policy

policy evaluation, but which estimates only a single number or value for a policy (e.g., see
Thomas and Brunskill 2016). The resulting algorithms differ substantially, and are not
appropriate for learning the value function.
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(Espeholt et al. 2018) for learning value functions and Tree-Backup (Precup,

Sutton, and Singh 2000), Retrace (Munos et al. 2016) and ABQ (Mahmood,

Yu, et al. 2017) for learning action-values. Truncation of IS-ratios in V-trace

can incur significant bias, and this additional truncation parameter needs to

be tuned.

An alternative to reweighting updates is to instead correct the distribution

before updating the estimator using weighted bootstrap sampling: resampling

a new set of data from the previously generated samples (Smith and Gelfand

1992; Arulampalam et al. 2002). Consider a setting where a buffer of data is

stored, generated by a behavior policy. Samples for policy ⇡ can be obtained

by resampling from this buffer, proportionally to ⇡(a|s)
µ(a|s) for state-action pairs

(s, a) in the buffer. In the sampling literature, this strategy has been proposed

under the name Sampling Importance Resampling (SIR) (Rubin 1988; Smith

and Gelfand 1992; Gordon et al. 1993), and has been particularly successful

for Sequential Monte Carlo sampling (Gordon et al. 1993; Skare et al. 2003).

Such resampling strategies have also been popular in classification, with over-

sampling or under-sampling typically being preferred to weighted (cost-sensitive)

updates (López et al. 2013).

A resampling strategy has several potential benefits for off-policy prediction.2

Resampling could even have larger benefits for learning approaches, as compared

to averaging or numerical integration problems, because updates accumulate in

the weight vector and change the optimization trajectory of the weights. For

example, very large importance sampling ratios could destabilize the weights.

This problem does not occur for resampling, as instead the same transition

will be resampled multiple times, spreading out a large magnitude update

across multiple updates. On the other extreme, with small ratios, IS will waste

updates on transitions with very small IS ratios. By correcting the distribution

before updating, standard on-policy updates can be applied. The magnitude of

the updates vary less—because updates are not multiplied by very small or very
2We explicitly use the term prediction rather than policy evaluation to make it clear that

we are not learning value functions for control. Rather, our goal is to learn value functions
solely for the sake of prediction.
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large importance sampling ratios—potentially reducing variance of stochastic

updates and simplifying learning rate selection. I hypothesize that resampling

(a) learns in a fewer number of updates to the weights, because it focuses

computation on samples that are likely under the target policy and (b) is less

sensitive to learning parameters and target and behavior policy specification.

9.2 Background

This chapter considers the problem of learning GVFs (Sutton, Modayil, et al.

2011). The agent interacts in an environment defined by a set of states S, a

set of actions A and Markov transition dynamics, with probability P(s0|s, a) of

transitions to state s0 when taking action a in state s. A GVF is defined for

policy ⇡ : S⇥A! [0, 1], cumulant c : S⇥A⇥S!R and continuation function

� : S⇥A⇥S ! [0, 1], with Ct+1
def
= c(St, At, St+1) and �t+1

def
= �(St, At, St+1) for

a (random) transition (St, At, St+1). The value for a state s 2 S is

V (s)
def
= E⇡ [Gt|St = s] where Gt

def
= Ct+1 + �t+1Ct+2 + �t+1�t+2Ct+3 + . . . .

The operator E⇡ indicates an expectation with actions selected according to

policy ⇡. GVFs encompass standard value functions, where the cumulant is a

reward. Otherwise, GVFs enable predictions about discounted sums of others

signals into the future, when following a target policy ⇡. These values are

typically estimated using parametric function approximation, with weights

✓ 2 Rd defining approximate values V✓(s).

In off-policy learning, transitions are sampled according to behavior policy,

rather than the target policy. To get an unbiased sample of an update to

the weights, the action probabilities need to be adjusted. Consider on-policy

temporal difference (TD) learning, with update ↵t�tr✓V✓(s) for a given St = s,

for learning rate ↵t 2 R+ and TD-error �t
def
= Ct+1 + �t+1V✓(St+1) � V✓(s). If

actions are instead sampled according to a behavior policy µ : S ⇥A! [0, 1],

then importance sampling (IS) to modify the update, giving the off-policy TD

update ↵t⇢t�tr✓V✓(s) for IS ratio ⇢t
def
= ⇡(At|St)

µ(At|St)
. Given state St = s, if µ(a|s) > 0

when ⇡(a|s) > 0, then the expected value of these two updates are equal. To
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see why, notice that

Eµ [↵t⇢t�tr✓V✓(s)|St = s] = ↵tr✓V✓(s)Eµ [⇢t�t|St = s]

which equals E⇡ [↵t⇢t�tr✓V✓(s)|St = s] because

Eµ [⇢t�t|St = s] =
X

a2A

µ(a|s)⇡(a|s)
µ(a|s)E [�t|St = s, At = a]

Though unbiased, IS can be high-variance. A lower variance alternative is

Weighted IS (WIS). For a batch consisting of transitions {(si, ai, si+1, ci+1, ⇢i)}n

i=1,

batch WIS uses a normalized estimate for the update. For example, an offline

batch WIS TD algorithm, denoted WIS-Optimal below, would use update

↵t

⇢tPn
i=1 ⇢i

�tr✓V✓(s). Obtaining an efficient WIS update is not straightforward,

however, when learning online and has resulted in algorithms in the SGD

setting (i.e. n = 1) specialized to tabular (Precup, Sutton, and Dasgupta 2001)

and linear functions (Mahmood, van Hasselt, et al. 2014; Mahmood and Sutton

2015). Nonetheless, WIS is used as a baseline in the experiments and theory.

9.3 Importance Resampling

In this section, Importance Resampling (IR) for off-policy prediction is intro-

duced and its bias and variance is characterized. A resampling strategy requires

a buffer of samples, from which to resample. Replaying experience from a

buffer was introduced as a biologically plausible way to reuse old experience

(Lin 1992; Lin 1993), and has become common for improving sample efficiency,

particularly for control (Mnih et al. 2015; Schaul, Quan, et al. 2015). In the

simplest case—which is assumed here—the buffer is a sliding window of the

most recent n samples, {(si, ai, si+1, ci+1, ⇢i)}t

i=t�n
, at time-step t > n. Samples

are generated by taking actions according to behavior µ. The transitions are

generated with probability dµ(s)µ(a|s)P(s0|s, a), where dµ : S ! [0, 1] is the

stationary distribution for policy µ. The goal is to obtain samples according

to dµ(s)⇡(a|s)P(s0|s, a), as if actions were sampled according to policy ⇡ from

states 3 s ⇠ dµ.
3The assumption that states are sampled from dµ underlies most off-policy learning

algorithms. Only a few attempt to adjust probabilities dµ to d⇡, either by multiplying IS
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The IR algorithm is simple: resample a mini-batch of size k on each step

t from the buffer of size n, proportionally to ⇢i in the buffer. Using the

resampled mini-batch the value function can be updated using standard on-

policy approaches, such as on-policy TD or on-policy gradient TD. The key

difference to IS and WIS is that the distribution itself is corrected, before the

update, whereas IS and WIS correct the update itself. This small difference,

however, can have larger ramifications practically, as shown in this chapter.

Two variants of IR are considered: with and without bias correction. For

point ij sampled from the buffer, let �ij be the on-policy update for that

transition. For example, for TD, �ij = �ijr✓V✓(sij). The first step for either

variant is to sample a mini-batch of size k from the buffer, proportionally to

⇢i. Bias-Corrected IR (BC-IR) additionally pre-multiplies with the average

ratio in the buffer ⇢̄ def
= 1

n

P
n

i=1 ⇢i, giving the following estimators for the update

direction

XIR
def
= 1

k

kX

j=1

�ij XBC
def
= ⇢̄

k

kX

j=1

�ij

BC-IR negates bias introduced by the average ratio in the buffer deviating

significantly from the true mean. For reasonably large buffers, ⇢̄ will be close

to 1 making IR and BC-IR have near-identical updates4. Nonetheless, they do

have different theoretical properties, particularly for small buffer sizes n, so

both are characterized.

Across most results, the following assumption is applied.

Assumption 4. A buffer Bt = {Xt+1, ..., Xt+n} is constructed from the most

recent n transitions sampled by time t + n, which are generated sequentially

from an irreducible, finite MDP with a fixed policy µ.

ratios before a transition (Precup, Sutton, and Dasgupta 2001) or by directly estimating
state distributions (Hallak and Mannor 2017; Liu et al. 2018). In this chapter, resampling
is used to correct the action distribution—the standard setting. However, several insights
are expected extend to how to use resampling to correct the state distribution, particularly
because wherever IS ratios are used it should be straightforward to use our resampling
approach.

In the sections below, I provide the bias characterizations of the two estimators de-
fined above with proofs provided in the appendix. In the appendix, you can also find a
characterization of the update variance.

4⇢̄ ⇡ E[⇢(a|s)] = E[⇡(a|s)
µ(a|s) ] =

P
s,a

⇡(a|s)
µ(a|s)µ(a|s)dµ(s) = 1.
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To denote expectations under p(x) = dµ(s)µ(a|s)P(s0|s, a) and q(x) =

dµ(s)⇡(a|s)P(s0|s, a), the notation from above is overloaded, using operators

Eµ and E⇡ respectively. To reduce clutter, E is used to mean Eµ, because most

expectations are under the sampling distribution.

9.3.1 Bias of IR

Below I show IR is biased, and that its bias is actually equal to WIS-Optimal,

in Theorem 9.3.1

Theorem 9.3.1 (Bias for a fixed buffer of size n). Assume a buffer B of n

transitions sampled i.i.d according to p(x = (s, a, s0)) = dµ(s)µ(a|s)P(s0|s, a).
Let XWIS⇤

def
=
P

n

i=1
⇢iPn

j=1 ⇢j
�i be the WIS-Optimal estimator of the update. Then,

E[XIR] = E[XWIS⇤ ]

and so the bias of XIR is proportional to

Bias(XIR) = E[XIR]� E⇡[�] / 1

n
(E⇡[�]�2

⇢
� �⇢,��⇢��) (9.1)

where E⇡[�] is the expected update across all transitions, with actions from

S taken by the target policy ⇡; �2
⇢
= Var( 1

n

P
n

j=1 ⇢j); �2
� = Var( 1

n

P
n

i=1 ⇢i�i);

and covariance �(⇢,�) = Cov( 1
n

P
n

j=1 ⇢j,
1
n

P
n

i=1 ⇢i�i).

Proof. Notice first that when we weight with ⇢i, this is equivalent to weighting

with dµ(Si)⇡(Ai|Si)P(Si+1|Si,Ai)
dµ(Si)µ(Ai|Si)P(Si+1|Si,Ai)

, and so is the correct IS ratio for the transition.

E[XIR] = E [E[XIR|B]] = E
h
E
h
1
k

kX

j=1

�ij |B
ii

= E
h
1
k

kX

j=1

E[�ij |B]
i

. E[�ij |B]=
nX

i=1

⇢iPn
j=1 ⇢j

�i

= E
h nX

i=1

⇢iP
n

j=1 ⇢j
�i

i

= E[XWIS⇤ ].

This bias of XIR is the same as XWIS⇤ , which is characterized in Owen 2013,

completing the proof.
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Theorem 9.3.1 is the only result which follows a different set of assumptions,

primarily due to using the bias characterization of XWIS⇤ found in Owen

2013. The bias of IR will be small for reasonably large n, both because it

is proportional to 1/n and because larger n will result in lower variance of

the average ratios and average update for the buffer in Equation (9.1). In

particular, as n grows, these variances decay proportionally to n. Nonetheless,

for smaller buffers, such bias could have an impact. The bias can be easily

mitigated with a bias-correction term, as shown in the next corollary.

Corollary 9.3.1.1. BC-IR is unbiased: E[XBC] = E⇡[�].

Proof.

E[XBC] = E
h
⇢̄

k

kX

j=1

E[�ij |B]
i
= E

h
⇢̄

nX

i=1

⇢iP
n

j=1 ⇢j
�i

i

= E
h
1
n

nX

i=1

⇢i�i

i
= 1

n

nX

i=1

E
h⇡(Ai|Si)

µ(Ai|Si)
�i

i

= 1
n

nX

i=1

E
hdµ(Si)⇡(Ai|Si)P(Si+1|Si, Ai)

dµ(Si)µ(Ai|Si)P(Si+1|Si, Ai)
�i

i

= 1
n

nX

i=1

E⇡ [�i] = E⇡ [�] .

The last equality follows from the fact that the samples are identically dis-

tributed.

9.3.2 Consistency of IR

Consistency of IR in terms of an increasing buffer, with n!1, is a relatively

straightforward extension of prior results for SIR, with or without the bias

correction, and from the derived bias of both estimators (see Appendix B.2

for proofs). More interesting, and reflective of practice, is consistency with a

fixed length buffer and increasing interactions with the environment, t!1.

IR, without bias correction, is asymptotically biased in this case; in fact, its

asymptotic bias is the one characterized above for a fixed length buffer in

Theorem 9.3.1.
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Theorem 9.3.2. Let Bt = {Xt+1, ..., Xt+n} be the buffer of the most recent

n transitions sampled according to Assumption 4. Define the sliding-window

estimator Xt

def
= 1

T

P
T

t=1 X
(t)
BC. Then, if E⇡[|�|] < 1, then XT converges to

E⇡[�] almost surely as T !1.

9.4 Weighted Importance Sampling

In this section, I detail the several variants of weighted importance sampling

(WIS) used throughout the empirical evaluation (Section 9.5). All of these

methods are either obvious variants of WIS when using an experience replay

buffer in reinforcement learning or defined previously.

9.4.1 Mini-Batch Algorithms

Three weighted importance sampling updates are considered as competitors to

IR. n is the size of the experience replay buffer, k is the size of a single batch.

WIS-Minibatch and WIS-Buffer both follow a similar protocol as IS, in that

they uniformly sample a mini-batch from the experience replay buffer and use

this to update the value functions. The difference comes in the scaling of the

update. The first, WIS-Minibatch, uses the sum of the importance weights

⇢i in the sampled mini-batch, while WIS-Buffer uses the sum of importance

weights in the experience replay buffer. WIS-Buffer is also scaled by the size of

the buffer and brought to the same effective scale as the other updates with
1
k
. WIS-Optimal follows a different approach and performs the best possible

version of WIS where the gradient descent update is calculated from the whole

experience replay buffer. Analysis on the bias or consistency of WIS-Minibatch

or WIS-Buffer is not provided, but are natural versions of WIS one might try.

�✓ =

P
k

i
⇢i�ir✓V (si; ✓)P

k

j
⇢j

WIS-Minibatch

�✓ =
n

k

P
k

i
⇢i�ir✓V (si; ✓)P

n

j
⇢j

WIS-Buffer

�✓ =

P
n

i
⇢i�ir✓V (si; ✓)P

n

j
⇢j

WIS-Optimal
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9.4.2 Incremental Algorithm

While implementing an efficient true WIS algorithm for mini-batch updating

is beyond the scope of this work, WIS-TD(0) is compared to the incremental

versions of IR, IS, VTrace, and WISBatch. The difference between the mini-

batch and incremental algorithms is how the updates are calculated. In the

incremental scheme a random mini-batch of data is similarly sampled from the

buffer. Each sample is used individually to update the value function. This

is done to more naturally compare our baselines to WIS-TD(0) (Mahmood

and Sutton 2015). WIS-TD(0) has parameters u0 2 { 1
64 , 1, 5, 10, 50} ⇤ 64, µ 2

10�2:0.25:1, and ⌘ = µ

u0
. WIS-TD(0) follows the update equations:

ui+1 = (1� ⌘�
i
� �

i
) � ui + ⇢i�i

� �
i

. � def
= element wise product

↵i+1 = 1↵ ut+1 .↵ def
= element wise division

�̄i = Ci + �i✓
>

i
�0

i
� ✓>

i�1�i

✓i+1 = ✓t +↵i+1 � ⇢i(✓>i�1�i
� ✓>

i
�

i
)�

i
+ ⇢i�̄i↵i+1 � �i

where ✓ 2 Rd is the weight vector of the value function, �
i
2 Rd is the

feature vector of the i-th transition in the experience replay buffer, and �0

i
2 Rd

is the feature vector of the next state of the i-th transition in the experience

replay buffer.

9.5 Empirical Results

Two hypothesized benefits of resampling as compared to reweighting are in-

vestigated: improved sample efficiency and reduced variance. These benefits

are tested in two microworld domains—a Markov chain and the Four Rooms

domain—where exhaustive experiments can be conducted. Finally, a demon-

stration that IR reduces sensitivity over IS and VTrace in a car simulator,

TORCs, when learning from images is provided5.
5Experimental code for every domain except Torcs can be found at

https://mkschleg.github.io/Resampling.jl
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IR and BC-IR are compared against several reweighting strategies, includ-

ing importance sampling (IS); two online approaches to weighted important

sampling, WIS-Minibatch with weighting ⇢i/
P

k

j=1 ⇢j and WIS-Buffer with

weighting ⇢i/ k

n

P
n

j=1 ⇢j; and V-trace6, which corresponds to clipping impor-

tance weights (Espeholt et al. 2018). WIS-TD(0) (Mahmood and Sutton 2015)

is also used as a baseline, when applicable, which uses an online approximation

to WIS, with a stepsize selection strategy (as described in Section 9.4.2). This

algorithm uses only one sample at a time, rather than a mini-batch, and so

is only included in Figure 9.2. Where appropriate, baselines using On-policy

sampling are included; WIS-Optimal which uses the whole buffer to get an

update; and Sarsa(0) which learns action-values—which does not require IS

ratios—and then produces estimate V (s) =
P

a
⇡(s, a)Q(s, a). WIS-Optimal is

included as an optimal baseline, rather than as a competitor, as it estimates

the update using the whole buffer on every step.

In all the experiments, the data is generated off-policy. The absolute value

error (AVE) or the absolute return error (ARE) is computed on every step.

For the sensitivity plots the average over all the interactions as specified for

the environment are taken—resulting in MAVE and MARE respectively. The

error bars represent the standard error over runs, which are featured on every

plot—although not visible in some instances. For the microworlds, the true

value function is found using dynamic programming with threshold 10�15, and

AVE is taken over all the states. For TORCs and continuous Four Rooms,

the true value function is approximated using rollouts from a random subset

of states generated when running the behavior policy µ, and the ARE is

computed over this subset. For the Torcs domain, the same subset of states

is used for each run due to computational constraints and report the mean

squared return error (MSRE). Plots showing sensitivity over number of updates

show results for complete experiments with updates evenly spread over all the

interactions. A tabular representation is used in the microworld experiments,
6Retrace, ABQ and TreeBackup also use clipping to reduce variance. But, they are

designed for learning action-values and for mitigating variance in eligibility traces. When
trace parameter � = 0—as assumed here—there are no IS ratios and these methods become
equivalent to using Sarsa(0) for learning action-values.
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Figure 9.1: Four Rooms experiments (n = 2500, k = 16, 25 runs): left Learning
curves for each method, with updates every 16 steps. IR and WIS-Optimal
are overlapping. center Sensitivity over the number of interactions between
updates. right Learning rate sensitivity plot.

tilecoded features with 64 tilings and 8 tiles is used in continuous Four Rooms,

and a convolutional neural network is used for TORCs, with an architecture

previously defined for self-driving cars (Bojarski et al. 2016).

9.5.1 Investigating Convergence Rate

The convergence rate of IR is investigated first. Learning curves and sensitivity

to the learning rate are reported in the Four Rooms domain. The Four Rooms

domain (Stolle and Precup 2002) has four rooms in an 11x11 grid world.

The four rooms are positioned in a grid pattern with each room having two

adjacent rooms. Each adjacent room is separated by a wall with a single

connecting hallway. The target policy takes the down action deterministically.

The cumulant for the value function is 1 when the agent hits a wall and 0

otherwise. The continuation function is � = 0.9, with termination when the

agent hits a wall. The resulting value function can be thought of as distance

to the bottom wall. The behavior policy is uniform random everywhere except

for 25 randomly selected states which take the action down with probability

0.05 with remaining probability split equally amongst the other actions. The

choice of behavior and target policy induce high magnitude IS ratios.

As shown in Figure 9.1, IR has noticeable improvements over the reweighting

strategies tested. The fact that IR resamples more important transitions from

the replay buffer seems to significantly increase the learning speed. Further, IR

has a wider range of usable learning rates. The same effect is seen even as the to-
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Figure 9.2: Convergence rates in Continuous Four Rooms averaged over 25 runs
with 100000 interactions with the environment. left uniform random behavior
policy and target policy which takes the down action with probability 0.9 and
probability 0.1/3 for all other actions. Learning used incremental updates (as
specified in section 9.4.2). right uniform random behavior and target policy
with persistent down action selection learned with mini-batch updates with
RMSProp.

tal number of updates is reduced, where the uniform sampling methods perform

significantly worse as the interactions between updates increases—suggesting

improved sample efficiency. WIS-Buffer performs almost equivalently to IS,

because for reasonably size buffers, its normalization factor 1
n

P
n

j=1 ⇢j ⇡ 1

because E[⇢] = 1. WIS-Minibatch and V-trace both reduce the variance signifi-

cantly, with their bias having only a limited impact on the final performance

compared to IS. Even the most aggressive clipping parameter for V-trace—a

clipping of 1.0— outperforms IS. The bias may have limited impact because

the target policy is deterministic, and so only updates for exactly one action

in a state. Sarsa—which is the same as Retrace(0)—performs similarly to the

reweighting strategies.

The above results highlight the convergence rate improvements from IR, in

terms of number of updates, without generalization across values. Conclusions

might actually be different with function approximation, when updates for

one state can be informative for others. For example, even if in one state the

target policy differs significantly from the behavior policy, if they are similar

in a related state, generalization could overcome effective sample size issues.

Therefore, this phenomena is further investigated under function approximation

with RMSProp learning rate selection.
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Two experiments similar to above are conducted in a continuous state Four

Rooms variant. The agent is a circle with radius 0.1, and the state consists

of a continuous tuple containing the x and y coordinates of the agent’s center

point. The agent takes an action in one of the 4 cardinal directions moving

0.5±U(0.0, 0.1) in that directions with random drift in the orthogonal direction

sampled from N (0.0, 0.01). The representation is a tile coded feature vector

with 64 tilings and 8 tiles. Results are provided for both mini-batch updating

(as above) and incremental updating (i.e. updating on each transition of a

mini-batch incrementally, see appendix 9.4.2 for details). For the mini-batch

experiment, the target policy deterministically takes the down action. For

the incremental experiment, the target policy takes the down action with

probability 0.9 and selects all other action with probability 0.1/3.

Generalization can mitigate some of the differences between IR and IS above

in some settings, but in others the difference remains just as stark (see Figure

9.2 and Appendix B.3.2). If the behavior policy from the tabular domain, which

skews the behavior in a sparse set of states, is used the nearby states mitigate

this skew. However, if a behavior policy that selects all actions uniformly is

used, then again IR obtains noticeable gains over IS and V-trace, for reducing

the required number of updates, as shown in Figure 9.2.

Similar results are found for the incremental setting Figure 9.2 (left), where

resampling still outperforms all other methods in terms of convergence rates.

Given WIS-TD(0)’s significant degrade in performance as the number of updates

decreases, I also compare with using WIS-TD(0) when sampling according to

resampling IR+WIS-TD(0). Interestingly, this method outperforms all others —

albeit only slightly against IR with constant learning rate. This result leads us

to believe RMSProp may be a optimizer poor choice for this setting. Expanded

results can be found in Appendix B.3.2.

9.5.2 Investigating Variance

To better investigate the update variance a Markov chain is used, this domain

can more easily control dissimilarity between µ and ⇡, and so control the

magnitude of the IS ratios. The Markov chain is composed of 8 non-terminating
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Figure 9.3: Learning Rate sensitivity plots in the Random Walk Markov
Chain, with buffer size n = 15000 and mini-batch size k = 16. Averaged
over 100 runs. The policies, written as [probability left, probability right] are
µ = [0.9, 0.1], ⇡ = [0.1, 0.9] left learning rate sensitivity plot for all methods
but V-trace. center learning rate sensitivity for V-trace with various clipping
parameters right Variance study for IS, IR, and WISBatch. The x-axis
corresponds to the training iteration, with variance reported for the weights
at that iteration generated by WIS-Optimal. These plots show a correlation
between the sensitivity to learning rate and magnitude of variance.

states and 2 terminating states on the ends of the chain, with a cumulant of 1

on the transition to the right-most terminal state and 0 everywhere else. The

policies with probabilities [left, right] equal in all states: µ = [0.9, 0.1], ⇡ =

[0.1, 0.9] are considered; further policy settings can be found in Appendix B.3.1.

First, the variance of the updates for fixed buffers is measured. I compute

the variance of the update—from a given weight vector—by simulating the

many possible updates that could have occurred. I am interested in the variance

of updates both for early learning—when the weight vector is quite incorrect

and updates are larger—and later learning. To obtain a sequence of such weight

vectors, the sequence of weights generated by WIS-Optimal is used. As shown

in Figure 9.3, the variance of IR is lower than IS, particularly in early learning,

where the difference is stark. Once the weight vector has largely converged,

the variance of IR and IS is comparable and near zero.

The update variance can be measured by proxy using learning rate sensitivity

curves. As seen in Figure 9.3 (left) and (center), IR has the lowest sensitivity to

learning rates, on-par with On-Policy sampling. IS has the highest sensitivity,

along with WIS-Buffer and WIS-Minibatch. Various clipping parameters with

V-trace are also tested. V-trace does provide some level of variance reduction

but incurs more bias as the clipping becomes more aggressive.
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9.5.3 Demonstration on a Car Simulator

The TORCs racing car simulator is used to perform scaling experiments with

neural networks to compare IR, IS, and V-trace. The simulator produces

64x128 cropped grayscale images. A deterministic steering controller is used.

The controller produces steering actions adet 2 [�1,+1] and take an action

with probability defined by a Gaussian a ⇠ N (adet, 0.1). The target policy

is a Gaussian N (0.15, 0.0075), which corresponds to steering left. Pseudo-

termination (i.e., � = 0) occurs when the car nears the center of the road, and

the cumulant becomes 1. Otherwise, the cumulant is zero and � = 0.9. The

policy is specified using continuous action distributions and results in IS ratios

as high as ⇠ 1000 and highly variant updates for IS.

Again, IR provides benefits over IS and V-trace, in Figure 9.4. There is

even more generalization from the neural network in this domain, than in Four

Rooms where generalization did reduce some of the differences between IR and

IS. Yet, IR still obtains the best performance, and avoids some of the variance

seen in IS for two of the learning rates. Additionally, BC-IR actually performs

differently here, having worse performance for the largest learning rate. This

suggest IR has an effect in reducing variance.
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9.6 Conclusions

In this Chapter, I introduced a new approach to off-policy learning: Importance

Resampling. I showed that IR is consistent, and that the bias is the same

as for Weighted Importance Sampling. I also provided an unbiased variant

of IR, called Bias-Corrected IR. I empirically showed that IR (a) has lower

learning rate sensitivity than IS and V-trace, which is IS with varying clipping

thresholds; (b) the variance of updates for IR are much lower in early learning

than IS and (c) IR converges faster than IS and other competitors, in terms

of the number of updates. These results confirm the theory presented for IR,

which states that variance of updates for IR are lower than IS in two settings,

one being an early learning setting. Such lower variance also explains why IR

can converge faster in terms of number of updates, for a given buffer of data.

The algorithm and results in this Chapter suggest new directions for off-

policy prediction, particularly for faster convergence. Resampling is promising

for scaling to learning many value functions in parallel, because many fewer

updates can be made for each value function. A natural next step is a demon-

stration of IR, in such a parallel prediction system. Resampling from a buffer

also opens up questions about how to further focus updates. One such option

is using an intermediate sampling policy. Another option is including prioriti-

zation based on error, such as was done for control with prioritized sweeping

(Peng and R. Williams 1993) and prioritized replay (Schaul, Quan, et al. 2015).
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Chapter 10

Conclusions and Final Remarks

This thesis set out to uncover some of the key discrepancies between how

recurrent models work in the supervised learning setting and the continual

reinforcement learning setting. In this chapter, I will summarize the main

contributions made to agent-state construction in the continual RL setting.

I will discuss potential future directions and propose open questions and

directions for developing methods of agent-state construction based on the

work presented in this thesis.

10.1 Summary of Contributions

The work presented in this thesis takes a deep look into using recurrent networks

in the reinforcement learning setting. I focus on two assumptions brought over

from supervised learning and construct an architecture to take advantage of

temporal-difference learning to learn agent state. Through controlled experi-

mentation and a focused approach the contributions which make up this thesis

show several limitations of recurrent networks as used in the supervised learn-

ing setting when applying them to the reinforcement learning and continual

reinforcement learning settings. Some of these limitations were alleviated by

leveraging ideas inspired by predictive representations of state (Littman and

Sutton 2002; Tanner 2005), with several future research directions identified.

First, the incorporation of actions and other information was investigated

in the DRQN framework in Chapter 3. In this chapter, I discussed several

approaches to incorporate information into the cell of a recurrent network
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found throughout the literature. I incorporated these approaches into both

simple recurrent cells and gated-recurrent units to uncover the advantages of

each. I showed that, in most cases, we should be applying the action through

a multiplicative update, and that combining architectures can be used to find

the appropriate cell for a problem.

Next, I developed a predictive approach to learning state which restricts the

agent-state to predictions of the observation stream. Approaching this question

resulted in a new predictive framework for agent-state construction known as

General Value Function Networks (Chapter 4). I explored the similarities of this

approach to previous predictive approaches, and showed GVFNs encompasses

the predictive targets of several previous directions.

To fully develop the predictive approach found in Chapter 4, I defined a set

of learning updates following in the footsteps of gradient temporal-difference

algorithms and previous predictive architectures in 5. These algorithms fol-

low naturally from the gradient temporal-difference learning updates (Maei,

Szepesvári, Bhatnagar, Silver, et al. 2009; Sutton, Maei, et al. 2009) and gradi-

ent temporal-difference networks (Silver 2013). Our learning update extends

beyond these approaches to incorporate composite predictive questions into the

objective as well as arbitrary discounting (with the usual limitations (M. White

2017)).

In Chapter 6, I empirically compared the usual approaches to agent-state

construction in supervised learning with our predictive approach in several

continual reinforcement learning and continual timeseries domains. I showed the

incorporation of predictions which can be learned through temporal-difference

learning results in a recurrent network which can learn absent of gradients rolled

back through time. These predictions were also competitive to predictions

made by other recurrent architectures when allowed large truncations in BPTT.

I investigated several predictive questions which result in a wide range of

performance and also highlight GVFs learned through temporal-difference as a

key component. Finally, I reproduced a known counter example for temporal-

different networks in ring world and showed this can be solved through the

use of recurrent semi-gradient temporal difference learning rather than the full
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gradient update rule derived in section 4.

The empirical results discussed in 6 lead to questions about the underlying

targets presented by composite predictive questions and what an algorithm

to discover structures like this may look like. I posed and provided initial

explanations and explorations in Chapters 7 and 8 respectively. These results

create a promising future research direction in developing new methods for

discovering predictive questions and combing GVFs to create novel hand

designed structures which might be relevant across a wide range of problems

Finally, posing off-policy prediction questions for learning an agent-state

requires us to re-think the core approach to off-policy prediction. Due to

traditional importance sampling can quickly result in large variance unsta-

ble updates, I proposed importance resampling as a technique to avoid the

instability induced by large importance sampling ratios in Chapter 9. This

new approach to off-policy prediction effectively manages the update variance

found when using importance sampling ratios directly in the update, while also

improving the efficiency of each update towards learning the target prediction.

In this thesis, I not only contributed to our understanding and art in

learning agent-state for the partial observable reinforcement learning setting, I

developed a general purpose approach to learning agent-state through off-policy

temporal-difference learning and showed the utility of such an approach as

compared to the usual approach found in supervised learning. This thesis

lays the ground work for a wide range of interesting research questions about

learning agent-state. More details of these future directions can be found below.

10.2 Future Directions and Work

In this section, I outline several promising future research directions derived

from the work presented in this thesis.

10.2.1 Open Problems for Recurrent Architectures in RL

Recurrent architectures are often taken off-the-shelf from the supervised learning

setting for use in reinforcement learning. While this has been moderately
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successful, the RL problem poses challenges not often considered by supervised

learning. Below I discuss three interesting properties of an RL system, and

how they affect learning using recurrent networks.

Practical Online Recurrent Learning:

In reinforcement learning, it is desirable to learn as much about the most

recent experience before selecting an action (i.e. to learn online and incre-

mentally). Learning efficiently online enables adapting behavior in real time

and scaling to massive data-streams and architectures. This puts pressure on

the learning system to update the weights within a set amount of time so the

system can act (Sutton, Modayil, et al. 2011; A. White 2015), which is often

not a concern in the supervised setting. In settings where an agent must move

around its environment independently, the on-board computational system can

be heavily constrained by the power of the processor as well as limited energy

from the battery. An algorithm whose computational and memory complexity

scales independently of the sequence length (without the quadratic complexity

on size of the network as real time recurrent learning (R. J. Williams and

Zipser 1989)) and could be applied online-incrementally would be a major

breakthrough in using recurrent architectures for RL and computationally

constrained systems generally.

Active Data Collection Matters:

Imagine an agent in a hallway with recognizable observations only at the

beginning and end of the hallway, much like our TMaze environments. The

agent must learn a state update which spans at least the length of the hallway.

But this is in the best case scenario when the agent prioritizes making it to

the end of the hallway. In reality, our agents will randomly explore the hallway

until the end, often extending the length of the sequence the agent needs to

learn over. The interaction between the agent’s behavior (or exploration) and

the difficulty of training under partial observability with a recurrent agent

is currently unexplored. Active data collection strategies could mitigate the

length of long-temporal dependencies, which would show massive improvements

in our agent’s learning efficiency and ability.

To show the potential of active data collection, I will briefly revisit the
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Directional TMaze. Start with an agent who has learned the base task of

the Directional TMaze environment. If the agent is forced to take specific

actions and to start in a specific orientation at the beginning of the episode,

we could feasibly teach the agent to artificially extend the horizon of its policy

without increasing the length of the training sequence. See Figure 10.1 for

preliminary results of how behavior can extend the horizon of the agent’s

policy. In this experiment, trained multiplicative agents are paced through a

set of interventions. The naive strategy uses epsilon greedy after forcing the

agent to step forward twice down the hallway. The hand designed sequence,

instead guides the agent through a series of forced actions to build to the final

desired policy. This simple experiment shows the potential for slowly extending

the temporal horizon of a policy without adjusting the truncation value by

intervening on the agent’s behavior.
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Figure 10.1: Average success
over the intervention taking the
go forward activation and start-
ing in the eastward position.
(Naive Strategy) Using the
evaluated intervention over 60k
steps for training, (Hand De-
signed) a sequence of hand de-
signed interventions to build up
to the final evaluation interven-
tion over 60k steps.

Insight Beyond Learning Curves:

Learning curves provide little understand-

ing of an agent’s learning process and this

likely limits algorithmic progress in partially

observable settings. Unfortunately, such met-

rics can’t be used to address more compli-

cated questions about the agent and its behav-

ior. While searching for SOTA is admirable,

deeper questions about the internal learned

structures and behaviors of our agents are

often, but not always, ignored. Analyzing

the internal dynamics of an agent with re-

current architectures is uniquely challenging

in reinforcement learning. Some challenges

include:

• Generating data for evaluating and analyzing representation learning is an

especially difficult problem for agents with recurrence. The data generated

must be coherent trajectories the agent may potentially experience in
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the environment, meaning a (or several) data generating policy must

be selected to provide coverage over the space of agent-environment

interactions

• Current tools for analyzing state representations are designed for NLP

(Karpathy et al. 2015; Ming et al. 2017) and are ill-suited for analyzing

the link between the environment, the agent’s state, and the behavior

policy.

• Analyzing the behavior of our agents through performance metrics leaves

many questions unanswered: How the agent might be behaving? When

does the agent make a long-term decision? In what circumstances might

the agent’s policy fail?

Learning curves showing the agent’s performance, usually through episodic

return or prediction error, over the agent’s lifetime has been the primary

method algorithms are compared. Unfortunately, such metrics can’t be used to

address more complicated questions about the agent and its behavior. While

searching for SOTA is admirable, deeper questions about the internal learned

structures and behaviors of our agents are often, but not always, ignored.

Analyzing the internal dynamics of an agent with recurrent architectures is

uniquely challenging in reinforcement learning.

One challenge is how data is generated. Unlike SL whose data is usually a

dataset designed ahead of time, RL generates data through interactions with an

environment whose underlying dynamics are likely unaccessible to the system

designer. While randomly generated data, in combination with tools from NLP

(Karpathy et al. 2015; Ming et al. 2017), can give us some insight into how our

agent’s perform, see section 3.5, extending the analysis to larger domains could

leave large parts of the agent-environment interactions unseen.

While I provide some representational analysis in the prediction setting,

further results in the control setting would be even more beneficial. Unfor-

tunately, many of the analysis tools considered require the “correct” target

at a given time. In the control setting, even when the underlying dynamics
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of an environment can be fully specified (say in lunar lander) a notion of

what the right action is at a given time can be extremely difficult to discover.

Future work should go into analyzing the link between histories, agent state,

environment state, and behavior.

Even when analyzing the behavior of our agent, using the performance

metric as the primary measure is deeply flawed. This type of analysis fails to

address questions such as: How the agent might be behaving? When does the

agent make a long-term decision? In what circumstances might the agent’s

policy fail? Analyzing the agent as a non-linear coupled system with the

environment through a series of dynamical equations could lead to further

insight on conditions which lead the agent to behave in certain ways or when

certain decisions are made by the agent. Beer 2003 develop a series of questions

and experiments to analyze an artificial agent from this perspective in a simple

catcher like domain. While these tools would be difficult to apply to real-world

problems, using them in simulations could provide useful insight into a full

description of the agent’s learned policy.

Because of the above challenges there are several lingering questions about

these types of agents left unanswered in these domains. 1) Under what con-

ditions will the agent’s policy fail in an environment? 2) How robust are the

policies to out-of-distribution events and how does this effect the hidden state?

3) What algorithms do the learning process discover to solve the domains

reliably? 4) Is the model stable over a long training period or in a continual

domain? 5) When does the agent make a decision, and does the agent stick to

this decision? I believe answering these questions and more can lead to better

understanding of recurrent agents as well as pathways to better algorithms for

training such agents.

10.2.2 Learning How to Encode Action in Recurrent Ar-
chitecture through Experience

So far, we’ve focused on architectures which have static architectures, where the

agent has no agency in learning the appropriate structure. While this strategy

seems to be reasonable as a starting point, in the future an architecture which
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Figure 10.2: Directional TMaze sweep over size of the gating network (i.e
how many units in a single hidden layer with ReLU activations and an output
network w/ softmax output) for (left) RNN and (right) GRU. All experiments
follow the procedures from previous results, except the MoE networks use 20
runs.

can learn these different networks would be more desirable. I propose one

such architecture here and an initial empirical evaluation of this architecture,

leading to a discussion on the problematic properties such an algorithm might

have.

zi
t
= fupdate(W,xt, at�1)

 t = fGN(xt, at�1)

st = zt �  t.

Where fGN : A⇥ S ⇥O ! R|s| is a parameterized function which is used to

create a mixture over the experts state z 2 R|s| produced by a state update

function fupdate. Both the gating function and the expert rnn state update

function can be arbitrarily constructed. In this section, I focus on the simple

RNN update and a feed forward ANN with ReLU activations and a softmax

activation on the final layer.

The results are presented in Figure 10.2. A sweep over various number of

experts and a simple gating network with a single layer and softmax activation.

As compared to the additive and multiplicative the mixture of experts RNN

network performs in-between the two networks. The GRU, on the other hand,

fails to perform well in this domain. This might be related to the results

seen in section 3.7, where both the combined GRUs failed to outperform the

multiplicative.
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10.2.3 Understanding the Intersection between Predictive
and Non-Predictive Agent-State Construction

While this thesis creates a dichotomy between predictive and non-predictive

approaches to learning agent-state, this is generally not a necessary distinction.

One key question is to combine the two approaches into a network that both

takes advantage of temporal-difference for learning state as well as has the

flexibility to learn state objects which aren’t dictated by predictive questions.

Such an architecture could improve on the sensitivity to truncation for many

recurrent networks while also providing a depth of representation not available

in the current state of the GVFN framework. Future work should go into

understanding such an architecture.

10.2.4 Discovery and the Form of GVF Prediction Targets

As explored in Chapters 7 and 8, little is known about the shape of composite

predictive targets or of the space of predictive questions generally. while several

works appeal to the ability of GVFs to specify questions about everything the

agent could imagine, we must be careful that prior knowledge in the space of

questions an agent can specify is avoided. Instead, questions should be built on

the sequence of observations from the environment. This can be done through

a meta-learning process or generate and test (see Chapter 8), but little effort

has gone into understanding the complex structures of these predictive question

networks.

10.2.5 Beyond a Synchronous Predictive Network

Like co-agent networks before them, the GVFN framework provides a mecha-

nism for de-linking the final objective of the agent and its internal representation

learning. Using this framework to derive a asynchronous set of architectures

could provide a lower-variance scheme as compared to the co-agent network

work. The key reason this is possible is because the targets of the individual

units are now predictions of the underlying data stream (or any other available

signal), meaning the variance in predictions should be the direct result of
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the underlying uncertainty or variance in the actual data stream. This is

unlike co-agent networks as they rely on random sampling for each co-agent’s

activations. An approach which combines prediction and control demons in

the GVFN framework could be key to creating such an asynchronous network.

10.3 Conclusion

This thesis investigated how off-policy prediction could be applied to improve

state construction in reinforcement learning. The general value function net-

work architecture shows off-policy prediction can be leveraged to improve state

construction in RL when using recurrent networks in several ways. Through

these investigations we developed several learning algorithms and future direc-

tions in taking advantage of off-policy prediction for state construction. I also

discussed many of the implications of these choices, and thought about what

the limits of this approach may be in both how expressive GVFs are and in

the methods for discovering sets of GVFs for a GVFN.

This thesis also provides evidence that the intuitions developed about

recurrent neural networks in supervised learning might not directly apply to

the continual reinforcement learning setting. While many of the approaches

derived in SL could be useful in RL, these should be re-investigated, validated,

and understood in the continual reinforcement learning setting. While I propose

several directions for improvement in recurrent networks for CRL, this thesis lays

the groundwork for many avenues to contribute to the use and understanding

of recurrent networks in CRL. The future of recurrent networks CRL will likely

share many similarities with those found in SL, but will likely have radically

different approaches to construction, learning, and analysis which cannot be

developed in the SL setting alone.
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Appendix A

Details and Extended Ideas for

Incorporating Actions in Recurrent

Networks

A.1 Online Setting

In this section, we test to see if our conclusions from the previous sections

generalize to the fully online setting. For both environments, all applicable

settings are the same as in the replay counter parts. The only difference is in

how the network is updated. Instead of sampling from an experience replay,

we store a history of the truncation length and update the network on every

step using the same semi-gradient updates.

We present the results for the online setting in figure A.1. Compared to

the replay setting, we can see all the variants performed worse across the

board. For DirectionalTMaze the AAGRU and MAGRU have a reasonable

median performance. The MARNN and FacGRU are the only other cells

which have runs reaching good performance, but overall perform poorly. We

expect initialization plays a large role in the networks performance and should

be investigated. We also see similar trends in Ring World, except the RNN

variants outperform the GRUs. Another interesting consequence in the online

setting, is the need to increase the truncation value and hidden state size to

perform reasonably for both DirectionalTMaze and Ring World.
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Figure A.1: Online: (left + middle) Directional TMaze percent success in
reaching the goal over the final 10% of episodes with 100 independent runs
for CELL (hidden size): RNN (46), AARNN (46), MARNN (27), FacRNN
(46) M = 24, GRU (26), AAGRU (26), MAGRU (15), FacGRU (26) M = 21.
(right) Ring World learning curves over RMSVE with 100 independent runs for:
RNN (20), AARNN (20), MARNN (15), GRU (12), AAGRU (12), MAGRU
(9). Ribbons show standard error and a window averaging over 10k steps was
used. Factored variants were excluded for clarity, due to high variance results.
All agents were trained over 300k steps.

A.2 Masked Grid World

While the TMaze and DirTMaze give some insight into when different encodings

might be preferable, the DirTMaze and Ring World share similar dynamics in

how the actions effect the unobserved state of the MDP. Specifically, there are

two actions which effect a state component symmetrically. This prompts the

question on whether this property is driving the benefits of the multiplicative

update’s success, or whether there are other scenarios where the multiplicative

does better. We propose a new environment which is a simple grid world with

border wrapping. The agent can take a step in all the cardinal directions, and

observes when it enters a random subset of the states (all aliased together).

The goal state is also randomly selected at the beginning of an agent’s life.

This creates random action observation patterns the agent must notice and act

on to get to the goal. The border wrapping prevents the agent from moving to

a corner of the environment and then going to the goal.

In figure A.2, we confirm the hypothesis that the improvement with multi-

plicative update can be meaningful even when the state-action sequences are
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Figure A.2: Average number of steps to goal over truncation for Masked Grid
World left over the entire learning process right from a set of representative
states after training. Cell (state size) top RNN (24), AARNN (20), MARNN
(10) bottom GRU (24), AAGRU (20), MAGRU (10).

randomly placed in the environment. While the improvement is much less

drastic than the Ring World and DirTMaze, the improvement is still significant

with standard error bars. Another interesting observation is the difference

matters much more for the simple recurrent update than the GRU.

A.3 Further Results for the Deep Additive and
Deep Multiplicative Architectures

We provide two more experiments with results reported in figure A.3. First we

provide results over various action encoding sizes for the Directional TMaze

environment using the Deep Additive network from the main paper. Overall,

we found the size of the encoding network to not make a large difference in the

final performance. In effect, this result suggests there is still a core limitation

with the deep additive operation that can’t be overcome by larger encoding

networks. We also provide an experiment in the Directional TMaze for a deep

multiplicative update. The deep multiplicative update uses the multiplicative

update as a base cell but first passes the action through a feed forward network
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Figure A.3: (left) Resulting average success over the last 10% of episodes for
various number of hidden units in the action encoding network for the deep
additive networks with standard error intervals. Each layer (denoted by the
title of the plot) contains the number of hidden denoted by the x-axis. (right)
Comparing the deep multiplicative operation with the base cells used in the
main text.

like the deep additive network. The results of this network were quite poor

overall, likely as a result of having to learn the action encoding rather than

being given it as prior information. From these results we decided to abandon

the deep multiplicative extension of Zhu et al. 2018. Future work should

consider how to better learn action encodings for such a network.

A.4 Further Empirical Details

In this section we discuss the experiments from the paper in greater detail.

In the following tables the common programming notation (x : y : z) is used

to denote an array of elements starting from x increasing by y until z. For

example (1 : 2 : 5) = [1, 3, 5]. When an operation is performed on an array

it is done element wise. For example 2(1:2:5) = [2, 4, 32]. All hyperparameters

are reported in agent steps (which are the same as environment steps for all

domains).

A.4.1 Ring World

Table A.1 gives the hyperparameters used in the ringworld experiments. We

also provide full sensitivity curves over truncation for all cell types and hidden

state sizes tested in Figure A.4.
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Parameter Value
Steps 300,000 steps
Optimizer RMSprop
RMSProp ⌘ 0.1⇥ 1.6(�16:3:�2)

RMSprop ⇢ 0.9
Buffer Size 1000
Buffer Warmup 1000
Batch Size 4
Update freq 4 steps
Target Network Freq 1000 steps
Independent Runs 50

Table A.1: Ring World Hyperparameters

Figure A.4: Truncation sensitivity curves for the Experience Replay setting in
ring world. Results are RMSVE and error bars are 95% confidence, as in the
main paper.)
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Figure A.5: Extended TMaze Experience Replay experiments.

A.4.2 TMaze

In Figure A.2 we provide details of the experience replay of the Bakker’s TMaze

experiments.

A.4.3 DirectionalTMaze

The experiments presented in the paper used an experience replay buffer size of

10000 for all the cells. We also ran experiments using an experience replay size

of 20000 with similar conclusions. These results (and the associated parameters)

can be found in Figure A.6

A.4.4 Image Directional TMaze

We detail all hyperparameter settings, and give results for different network

sizes and truncation values in Figure A.7.

A.4.5 Lunar Lander

We provide all hyperparameter settings (Figure A.8) and further results (Figure

A.9).
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Parameter Value
Steps 300,000 steps
Optimizer RMSprop
RMSProp RNN: ⌘ 0.01⇥ (2.0(�11:2:�2))
RMSProp GRU: ⌘ 0.01⇥ (2.0(�11:2:�6))
RMSprop ⇢ 0.99
Discount � 0.99
Truncation ⌧ 12
Buffer Size 10000
Batch Size 8
Update freq 4 steps
Target Network Freq 1000 steps
Independent Runs 50

(a) Shared Hyperparameters.

Cell RMSprop Learning Rate Hidden State Size Model Parameters
GRU 0.005 6 214
AAGRU 0.0003125 6 286
MAGRU 0.0003125 6 754
FacGRU 0.0003125 6, M = 21 757
DAGRU 0.00125 6, a = 4 306
RNN 7.8125e-5 20 584
AARNN 7.8125e-5 20 664
MARNN 7.8125e-5 20 2024
FacRNN 0.0003125 20, M = 40 2064
DARNN 7.8125e-5 20, a = 4 684

(b) Architecture specific hyperparameters.

Table A.2: Hyperparameters used in the TMaze Experience Replay experiments.
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Figure A.6: Directional TMaze Experience Replay results: (left) Percent
success over the final 10% of episodes for buffer size of 10000 (right) for buffer
size of 20000. Learning rates chosen from best final performance on the final
10% of episodes for 20 runs. Results for buffer size of 10000 are over 100
independent runs, with buffer size of 20000 in appendix only over the 20 seeds
used for the sweep.
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Parameter Value
Steps 300,000 steps
Optimizer RMSprop
RMSprop ⌘ 0.01⇥ 2.0(�11:2:�2)

RMSprop ⇢ 0.99
Discount � 0.99
Truncation ⌧ 12
Buffer Size [10000, 20000]
Batch Size 8
Update freq 4 steps
Target update freq 1000 steps
Independent Runs 100

(a) Shared hyperparameteters.

Cell ⌘ Hidden State Size Num Weights
GRU 0.00125 17 1142
AAGRU 0.0003125 17 1295
MAGRU 0.0003125 10 1303
FacGRU 0.0003125 15, M = 17 1320
DAGRU 0.0003125 15, a = 8 1310
RNN 0.00125 30 1143
AARNN 0.0003125 30 1233
MARNN 7.8125e-5 18 1263
FacRNN 0.0003125 25, M = 15 1018
DARNN 0.0003125 25, a = 15 1263

(b) Architecture specific hyperparameters.

Table A.3: Hyperparameters used in the Direction TMaze experience replay
experiments.
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Figure A.7: Image Directional TMaze: Percent success over final 10% of
episodes for the image tmaze for ⌧ = 12 and ⌧ = 20 (labeled). See labels for
size of hidden state with left being small networks, and right being larger.
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Parameter Value
Steps 400,000
Optimizer RMSprop
ADAM ⌘ 2.0(�20:2:0)

ADAM � 0.9, 0.999
Discount � 0.99
Truncation ⌧ 12 (20)
Warm up 1000 steps
Replay Size 50,000
Batch size 16
Target update freq 10000
Update freq 4
Runs 20

(a) Shared hyperparameteters.

Cell ⌘ ⌧ = 12(20) |s| + M |W|
MAGRU 9.76e-4 (9.76e-4) 32 154247
MAGRU 9.76e-4 (9.76e-4) 64 223175
AAGRU 2.44e-4 (0.0625) 70 155201
AAGRU 9.76e-4 (0.0156) 132 225323
FacGRU 0.0625 (2.44e-4) 32, M=259 154224
FacGRU 9.76e-4 (2.44e-4) 64, M=350 223009
FacGRU 9.76e-4 (2.44e-4) 70, M=164 155041
FacGRU 9.76e-4 (2.44e-4) 132, M=208 225515
DAGRU 9.76e-4 (9.76e-4) 45, a=128 150838
DAGRU 9.76e-4 (9.76e-4) 55, a=64 152022
DAGRU 9.76e-4 (9.76e-4) 60, a=32 151399
DAGRU 9.76e-4 (9.76e-4) 100, a=128 224263
DAGRU 9.76e-4 (9.76e-4) 112, a=64 220935
DAGRU 9.76e-4 (9.76e-4) 122, a=32 223195

(b) Architecture specific hyperparameters.

Table A.4: Hyperparameters used in the Image Directional TMaze experiments.
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Figure A.8: Lunar lander results including the factored architecture.

Parameter Value
Steps 4,000,000 steps
Steps before learning 1000 steps
Optimizer RMSprop
RMSprop ⌘ 0.1⇥ 1.6(�20:2:�6)

RMSprop ⇢ 0.99
Discount � 0.99
Truncation ⌧ 16
Replay Size 100,000
Batch size 32
Target update freq 1000 steps
Update frequency 8 steps
Hidden state learnable True
Independent Runs 20

(a) Shared hyperparameters

Cell RMSprop Learning Rate s Size (M/|a|) Num Weights
GRU 0.0003553 154 156,414
AAGRU 0.0001387 152 155,004
MAGRU 0.0003553 64 153,732
FacGRU 0.0001387 152 (M=170) 152,668
FacGRU 0.0003553 100 (M=265) 153,808
FacGRU 0.0003553 64 (M=380) 153,716
DAAGRU 0.000138778 152 (a=64) 182,684

(b) Architecture specific hyperparameters

Table A.5: Hyperparameters used for Lunar Lander Experiments.
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Figure A.9: Lunar Lander further results: (top left) Average final reward over
the final 10% of episodes for 20 runs (top middle) Total steps per episode for
non-factored cells for 20 runs (top right) Total steps per episode for factored
cells for 20 runs (bottom left) learning rate sensitivity curves for 10 runs
(bottom middle) Learning curves per episode for non-factored cells over total
reward for 20 runs (bottom right) Learning curves per episode for factored
cells over total reward for 20 runs
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Appendix B

Further Details and Supporting

Proofs for Importance Resampling

B.1 Variance of Updates

It might seem that resampling avoids high-variance in updates, because it does

not reweight with large magnitude IS ratios. The notion of effective sample size

from statistics, however, provides some intuition about why large magnitude

IS ratios can also negatively affect IR, not just IS. %For data with several high

magnitude ratios, and many small ratios, the IS estimator will likely suffer from

high-variance updates. IR, however, may not perform well in this setting either:

it will prevent high magnitude updates, but will be sampling from an effectively

smaller dataset. Effective sample size is between 1 and n, with one estimator

(
P

n

i=1 ⇢i)
2 /
P

n

i=1 ⇢
2
i

(Kong et al. 1994; Martino et al. 2017). When the effective

sample size is low, this indicates that most of the probability is concentrated

on a few samples. For high magnitude ratios, IR will repeatedly sample the

same transitions, and potentially never sample some of the transitions with

small IS ratios.

Fortunately, we find that, despite this dependence on effective sample size,

IR can significantly reduce variance over IS. In this section, we characterize

the variance of the BC-IR estimator. We choose this variant of IR, because it

is unbiased and so characterizing its variance is a more fair comparison to IS.

We define the mini-batch IS estimator XIS
def
= 1

k

P
k

j=1 ⇢zj�zj , where indices zj

are sampled uniformly from {1, . . . , n}. This contrasts the indices i1, . . . , ik for
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XBC that are sampled proportionally to ⇢i.

We begin by characterizing the variance, under a fixed dataset B. For

convenience, let µB = E⇡[�|B]. We characterize the sum of the variances of

each component in the update estimator, which equivalently corresponds to

normed deviation of the update from its mean,

V(� | B)
def
= trCov(� | B) =

P
d

m=1 Var(�m | B) = E[k�� µBk22 | B]

for an unbiased stochastic update � 2 Rd. We show two theorems that BC-IR

has lower variance than IS, with two different conditions on the norm of the

update. We first start with more general conditions, and then provide a theorem

for conditions that are likely only true in early learning.

Theorem B.1.1. Assume that, for a given buffer B, k�jk22 > c

⇢j
for samples

where ⇢j � ⇢̄, and that k�jk22 < c

⇢j
for samples where ⇢j < ⇢̄, for some

c > 0. Then the BC-IR estimator has lower variance than the IS estimator:

V(XBC | B) < V(XIS | B).

The conditions in Theorem B.1.1 preclude having update norms for samples

with small ⇢ be quite large—larger than a number / 1
⇢
—and a small norm

for samples with large ⇢. These conditions can be relaxed to a statement on

average, where the cumulative weighted magnitude of the update norm for

samples with ⇢ below the median needs to be smaller than for samples with ⇢

above the mean.

We next consider a setting where the magnitude of the update is independent

of the given state and action. We expect this condition to hold in early learning,

where the weights are randomly initialized, and thus randomly incorrect across

the state-action space. As learning progresses, and value estimates become

more accurate in some states, it is unlikely for this condition to hold.

Theorem B.1.2. Assume ⇢ and the magnitude of the update k�k22 are inde-

pendent

E[⇢jk�jk22 | B] = E[⇢j | B] E[k�jk22 | B]

Then the BC-IR estimator will have equal or lower variance than the IS esti-

mator: V(XBC | B)  V(XIS | B).
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These results have focused on variance of each estimator, for a fixed buffer,

which provided insight into variance of updates when executing the algorithms.

We would, however, also like to characterize variability across buffers, especially

for smaller buffers. Fortunately, such a characterization is a simple extension

on the above results, because variability for a given buffer already demonstrates

variability due to different samples. It is easy to check that E[E[µIR | B]] =

E[µIS | B] = E⇡[�]. The variances can be written using the law of total

variance

V(XBC) = E[V(XBC | B)] + V(E[XBC | B]) = E[V(XBC | B)] + V(µB)

V(XIS) = E[V(XIS | B)] + V(µB)

=) V(XBC)� V(XIS) = E[V(XBC | B)� V(XIS | B)]

with expectation across buffers. Therefore, the analysis of V(XBC | B) directly

applies.

B.2 Additional Theoretical Results and Proofs

Lemma B.2.1. Let Bt = {Xt+1, ..., Xt+n} be the buffer of the most recent n

transitions sampled by time t + n, which are generated sequentially from an

irreducible, finite MDP with a fixed policy µ. We define X(t)
BC be the BCIR

estimator for buffer Bt. If E⇡[|�|] <1, then E[X(t)
BC] = E⇡[�].

Proof. Let Xt = (St, At, Rt+1, St+1) be a transition and {Bt}t2N be the sequence

of buffers that are observed, each containing n consecutive transitions.

Using the law of iterated expectations,

E
h
X(t)

BC

i
= E

h
E[X(t)

BC|Bt]
i

where the outer expectation is over the stationary distribution of Bt and the

inner expectation is over the sampling distribution of IR from the buffer Bt.

Using the definition of X(t)
BC|Bt, we have that

E[X(t)
BC|Bt] = ⇢̄

nX

i=1

�i

⇢iP
n

i=1 ⇢i

=
1

n

nX

i=1

⇢i�i
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Next, the stationary distribution of Bt is given by d(Bt) = Pr(Bt =

(xt+1, ..., xt+n)) =

dX(xt)p(xt+1|xt)...p(xt+n|xt+n�1), where dX is the stationary distribution of Xt.

We can verify directly by checking that for all B0 = (x2, ..., xn+1)

X

B

d(B)p(B0|B) = d(B0)

where B = (x1, ..., xn)

To see this, first note that p(B0|B) = p(xn+1|xn)1(B,B0) where 1(B,B0)

is equal to 1 if the states (x2, ..., xn) in B match the states (x2, .., xn) in B0.

In other words, the first n � 1 transitions in B0 must match the last n � 1

transitions in B for p(B0|B) to be positive. Next, fixing B0,

X

B

d(B)p(B0|B)

=
X

x1,...,xn

dµ(x1)p(x2|x1)...p(xn|xn�1)p(xn+1|xn)1(B,B0)

=
X

x1

dµ(x1)p(x2|x1)...p(xn|xn�1)p(xn+1|xn) since (x2, ..., xn) have to match

= dµ(x2)p(x3|x2)...p(xn|xn�1)p(xn+1|xn)

= d(B0)

which verifies the expression for the stationary distribution of Bt.

Continuing from before, we expand the expectation as:

E
"
1

n

nX

t=1

⇢t�t

#

=
X

x1,...xn

dX(x1)p(x2|x1)...p(xn|xn�1)

 
1

n

nX

t=1

⇢t�t

!

=
X

s1,a1,r2,s2,...,
sn,an,rn+1,sn+1

dµ(s1)

 
nY

i=1

µ(ai|si)p(si+1, ri+1|si, ai)
! 

1

n

nX

t=1

⇢t�t

!

=
1

n

nX

t=1

X

s1,a1,r2,s2,...,
sn,an,rn+1,sn+1

dµ(s1)

 
nY

i=1

µ(ai|si)p(si+1, ri+1|si, ai)
!
(⇢t�t) .
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Next, by taking the sums over (s1, a1, ...rn+1, sn+1) within the products to make

the summands depend only on the variables being summed over, we get

=
1

n

nX

t=1

X

s1

dµ(s1)
X

a1,r2,s2

µ(a1|s1)p(s2, r2|s1, a1)
X

a2,r3,s3

µ(a2|s2)p(s3, r3|s2, a2)...

X

at,rt+1,st+1

µ(at|st)p(st+1, rt+1|st, at) (⇢t�t)

X

at+1,rt+2,st+2,...,
sn,an,rn+1,sn+1

nY

i=t+1

µ(ai|si)p(si+1, ri+1|si, ai)

=
1

n

nX

t=1

X

s1

dµ(s1)
X

a1,r2,s2

µ(a1|s1)p(s2, r2|s1, a1)
X

a2,r3,s3

µ(a2|s2)p(s3, r3|s2, a2)...

X

at,rt+1,st+1

µ(at|st)p(st+1, rt+1|st, at) (⇢t�t) .

This followed since the third line is summing over the probability of all trajec-

tories starting from st+1 and thus is equal to 1. Next, we note that, if C is a con-

stant that does not depend on s1, a1, r2, then
P

s1,a1,r2
dµ(s1)µ(a1|s1)p(s2, r2|s1, a1)C =

dµ(s2)C since dµ(s2) is the stationary distribution (if we additionally assume

p(s2, r2|s1, a1) = p(s2|s1, a1)p(r2|s1, a1) or equivalently that rewards depend

only on state and action).

Continuing from before, by reordering the sums we have and repeatedly

using the above note,

=
1

n

nX

t=1

X

s2

X

s1,a1,r2

dµ(s1)µ(a1|s1)p(s2, r2|s1, a1)

| {z }
dµ(s2)

X

a2,r3,s3

µ(a2|s2)p(s3, r3|s2, a2)...

X

at,rt+1,st+1

µ(at|st)p(st+1, rt+1|st, at) (⇢t�t)

=
1

n

nX

t=1

X

s2

dµ(s2)
X

a2,r3,s3

µ(a2|s2)p(s3, r3|s2, a2)...

X

at,rt+1,st+1

µ(at|st)p(st+1, rt+1|st, at) (⇢t�t)

= ... (Repeating the same process)

=
1

n

nX

t=1

X

st,at,rt+1,st+1

dµ(st)µ(at|st)p(st+1, rt+1|st, at) (⇢t�t) .
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Recall that �t = �(st, at, rt+1, st+1) is a function of the transition so we cannot

simplify further.

Finally,

=
1

n

nX

t=1

X

st,at,rt+1,st+1

dµ(st)µ(at|st)p(st+1, rt+1|st, at)
✓
⇡(at)

µ(at)
�t

◆

=
1

n

nX

t=1

X

st,at,rt+1,st+1

dµ(st)⇡(at|st)p(st+1, rt+1|st, at)�t

=
1

n

nX

t=1

E⇡[�]

= E⇡[�]

Theorem 9.3.2 Let Bt = {Xt+1, ..., Xt+n} be the buffer of the most recent

n transitions sampled by time t + n, which are generated sequentially from

an irreducible, finite MDP with a fixed policy µ. Define the sliding-window

estimator Xt

def
= 1

T

P
T

t=1 X
(t)
BC. Then, if E⇡[|�|] < 1, then XT converges to

E⇡[�] almost surely as T !1.

Proof. Let Xt = (St, At, Rt+1, St+1) be a transition. Then the sequence {Xt}t2N

forms an irreducible Markov chain as there is positive probability of eventually

visiting any X 0 starting from any X since this is true for states S 0 and S in

the original MDP (by irreducibility).

Let {Bt}t2N be the sequence of buffers that are observed. This also forms

an irreducible Markov chain by the same reasoning as above since {Xt}t2N is

irreducible. Additionally, the sequence of pairs {(X(t)
BC, Bt)}t2N is an irreducible

Markov chain.

Using the ergodic theorem (theorem 4.16 in (levin2017markov)) on

{(X(t)
BC, Bt)}t2N with the projection function f(x, y) = x, we have that

lim
T!1

1

T

TX

t=1

X(t)
BC = E

h
X(t)

BC

i

where the expectation is over the joint stationary distribution of (X(t)
BC, Bt).
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Using Lemma B.2.1 we can show that E
h
X(t)

BC

i
= E⇡[�], completing the

proof.

B.3 Expanded Empirical Results

B.3.1 Markov Chain

This section contains the full set of markov chain experiments using several

different policies. Results can be found in figure 9.3 and figure B.2. See figure

captions for more details.
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Figure B.1: Sensitivity curves for Markov Chain experiments with policy
action probabilities [left, right] left µ = [0.5, 0.5], ⇡ = [0.1, 0.9]; center µ =
[0.9, 0.1], ⇡ = [0.1, 0.9]; right µ = [0.99, 0.01], ⇡ = [0.01, 0.99].
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Figure B.2: Learning rate sensitivity plots for V-Trace (with the same settings
as Figure 9.3). Three clipping parameters were chosen, including 1.0, 0.5 ⇢max
and 0.9 ⇢max, where ⇢max is the maximum possible IS ratio. For 1.0 ⇢max,
updates under V-trace become exactly equivalent to IS.

B.3.2 Continuous Four Rooms

The continuous four rooms environment is an 11x11 2d continuous world with

walls setup as the original four rooms environment grid world. The agent is a
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Figure B.3: SGD: Target Policy: Top: persistent down, Bottom favored
down. Behavior Policy: left State Variant center State Weight Variant right
Uniform. Sample efficiency plots.

circle with radius 0.1, and the state consists of a continuous tuple containing

the x and y coordinates of the agent’s center point. The agent takes an action

in one of the 4 cardinal directions moving 0.5 ± U(0.0, 0.1) in that directions

and random drift in the orthogonal direction sampled from N(0.0, 0.01). The

simulation takes 10 intermediary steps to more accurately detect collisions.

We use three behavior policies in our experiments. Uniform: the agent

selects all actions uniformly, State Variant: the agent selects all actions

uniformly except in pre-determined subsections of the environment where the

agent will take down with likelihood 0.1 and the rest distributed evenly over the

other actions, State Weight Variant: the agent selects all actions uniformly

except in pre-determined subsections where the pmf is defined randomly. We

also use two target policies. Persistent Down: where the agent always takes

the down action, Favored Down: where the agent takes the down action

with likelihood 0.9 and uniformly among the other actions with likelihood

0.1. We use a cumulant function which indicates collision with a wall and a

termination function which terminates on collision and is 0.9 otherwise for

all value functions. We present results using SGD and RMSProp over many

algorithms and parameter settings in figures B.3, B.4, B.5, and B.6.
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Figure B.4: RMSProp Target Policy: Top: persistent down, Bottom favored
down. Behavior Policy: left State Variant center State Weight Variant right
Uniform. Sample efficiency plots.
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