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Abstract

The thesis aims at showing some important methods, theories and applications about

non-parametric density estimation via regularization in univariate setting.

It gives a brief introduction to non-parametric density estimation, and discuss sev-

eral well-known methods, for example, histogram and kernel methods. Regularized

methods with penalization and shape constraints are the focus of the thesis. Maxi-

mum entropy density estimation is introduced and the relationship between taut string

and maximum entropy density estimation is explored. Furthermore, the dual and pri-

mal theories are discussed and some theoretical proofs corresponding to quasi-concave

density estimation are presented. Different the numerical methods of non-parametric

density estimation with regularization are classified and compared. Finally, a real data

experiment will also be discussed in the last part of the thesis.
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Introduction

In Chapter One, the thesis introduces various well investigated and studied non-

parametric density estimation methods. We carry out the numerical experiments of all

the methods with the geyser data from R source. Specifically, we show the numerical

results of histogram, kernel methods and regularization methods with penalization on

the same data set.

In Chapter Two, we discuss the maximum entropy density estimation in the univari-

ate setting. Some preliminary functional analysis notions are introduced first. Finally,

we adapt all the notations and definitions in univariate case to derive the taut string

theory. Detailed discussions and example about the taut string are given; Theorems

2.3.1 and 2.3.2 are proved. Moreover, some special important cases of maximum en-

tropy densities are investigated in the univariate framework.

Chapter Three involves most of the theoretical work in this thesis. We apply primal

and dual theories on density estimation and introduce several estimators based on the

Theorems 3.2.1 and 3.2.2. In section 3.3 and 3.4, we give the proofs of existence of the

solution and Fisher consistency independent of that of Koenker and Mizera (2008a).

Finally, we verify the strong dual relationship for a special two data points case by

using the primal and dual theory.

Detailed numerical methods are discussed in Chapter Four. We apply the different

shape constraint methods to Bright Star velocity data. The comparisons of different

methods are shown as well.
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Chapter One: Nonparametric

Density Estimation

1.1 Introduction to Density Estimation

The probability density function is a fundamental concept in statistics. Consider any

random quantity X that has probability density f . Function f gives a natural descrip-

tion of the distribution of X, and allows probabilities associated with X to be found

from the relation

P (a < x < b) =

∫ b

a

f(x)dx for all a < b (1.1)

Typically, we consider a sample X1, X2, . . . , Xn of independent, identically dis-

tributed (iid) random variables with common density f, and density estimation seeks

to estimate f from the data.

To illustrate what we have in mind, let f0 be a univariate probability density func-

tion (pdf), with corresponding cumulative distribution function (cdf) F0. The density

estimation problem aims at estimating f0, where the data, X1, X2, . . . , Xn are inde-

pendent, identically distributed univariate random variables, with common density f0,

and n is the sample size. It is customary to encode the data X1, X2, . . . , Xn in the

empirical distribution function Fn, which is defined as

Fn(x) =
#{Xi : Xi ≤ x}

n
, −∞ < x < ∞, (1.2)

the fraction of the observations not exceeding x. What is lost by doing so is the order

in which the observations occurred, but by assuming iid observations, this is irrelevant,

since Fn is a sufficient statistics for F0.

One approach to density estimation is parametric. Assume that the data are drawn
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from one of the known parametric families of distributions, for example the normal

distribution with mean µ and variance σ2. The density f0 underlying the data could

then be estimated by finding estimates of µ and σ2 from the data and substituting

these estimates into the formula for the normal density.

In this thesis, we shall not consider parametric estimates of this kind. The approach

discussed here is nonparametric, which means that less rigid assumptions will be made

about the distribution of the observed data. Although we will still assume that the

distribution has a probability f0, the data will be allowed to speak for themselves in

determining the estimate of f0 more than would be the case if f0 was constrained to

belong to a given parametric family.

A very natural use of density estimates is in the informal investigation of the prop-

erties of a given set of data. Density estimates can give valuable indication of such

features as skewness and multimodality in the data. An important aspect of statis-

tics, often neglected nowdays, is the presentation of data back to the client in order

to provide explanation and illustration of the conclusions that may possibly have been

obtained by other means. Density estimates are ideal for this purpose, for the simple

reason that they are fairly easily comprehensible to non-mathematicians.

1.2 Histogram

First of all, we review the oldest and most widely used density estimator, histogram.

Given an origin x0 and a bin width h, we define the bins of the histogram to be the

intervals [x0 + mh, x0 + (m + 1)h) for positive and negative integers m. The intervals

have been chosen closed in the left and open on the right for definiteness.

The histogram is then defined by

f̂(x) =
1

nh
(# of Xi in the same bin as x). (1.3)

Note that, to construct the histogram, we have to choose both an origin and a bin
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width. It is the choice of bin width which, primarily, controls the amount of smoothing

in the procedure.

The histogram can be generalized by allowing the bin widths to vary. Formally,

suppose that we have any dissection of the real line into bins; then the estimate will

be defined by

f̂(x) =
1

n

(# of Xi in the same bin as x)

width of bin containing x
. (1.4)

The dissection into bins can either be carried out a priori or else in some ways which

depend on the observations themselves. We show an example of histogram in Figure

1 from R example by using the function ”hist()”; the data set we use in this example

is Old Faithful Geyser Data in R, the data we use represents the number of duration

period for 299 observations.

1.3 Kernel Method

It is worthy to mention that the histogram estimator suffers a extreme drawback: it

is discontinuous. When density estimates are needed as intermediate components of

other methods, the case for using alternatives to histograms is quite strong. Meanwhile,

histogram is quite subjective and depends on the choice of bin width and the origin.

Although the histogram remains an excellent tool for data presentation, it is worth at

least considering the various alternative density estimates.

From the definition of a probability density, if the random variable X has density

f, then

f(X) = lim
h→0

1

2h
P (x− h < X < x + h). (1.5)

For any given h, we can, of course, estimate P (x−h < X < x+h) by the proportion

of the sample falling in the interval (x− h, x + h). Thus a natural estimator f̂ of the
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Figure 1: histogram of geyser data

density is given by choosing a small number h and setting,

f̂(x) =
1

2nh
[# of X1, X2, . . . , Xn falling in (x− h, x + h)], (1.6)

we shall call (1.6) the naive estimator.

To express the estimator more transparently, define the weight function W by,

W (x) =





1
2

if |x| < 1;

0 otherwise.
(1.7)

Then it is easy to see that the naive estimator can be written as,

f̂(x) =
1

n

n∑
i=1

1

h
W (

x−Xi

h
). (1.8)
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It follows from (1.7) that the estimate is constructed by placing a ”box” of width

2h and height (2nh)2 on each observation and then summing to obtain the estimate.

The naive estimator is not wholly satisfactory from the point of view of using density

estimates for presentation. It follows from the definition that f̂ is not continuous

function, has jumps at the points Xi and zero derivative everywhere else. This gives

the estimates a somewhat ragged character which is not only aesthetically undesirable,

but, more seriously, could provide the untrained observer with a misleading impression.

It is easy to generalize the naive estimator to overcome some of the difficulties

discussed above. Replace the weight W by a kernel function K which satisfies the

condition

∫ +∞

−∞
K(x)dx = 1. (1.9)

Usually, but not always, K will be a symmetric probability density function, the

normal density, for instance, or the weight function W used in the definition of the

naive estimator. By analogy with the definition of the naive estimator, the kernel

estimator with kernel K is defined by

f̂(x) =
1

nh

n∑
i=1

K(
x−Xi

h
), (1.10)

where h is window width, also called the smoothing parameter or bandwidth.

Just as the naive estimator can be considered as a sum of ’boxes’ centered at the

observations, the kernel estimator is a sum of ’bumps’ placed at the observations.

The kernel function K determines the shape of the bumps while the window width h

determines their width. Some elementary properties of kernel estimates follow at once

from the definition. Provided the kernel K is everywhere non-negative and satisfies

the condition (1.9), in other words is a probability density function, it will follow at

once from the definition that f̂ will itself be a probability density. Furthermore, f̂

will inherit all the continuity and differentiability properties of the kernel K, so that if,
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for example, K is the normal density function, then f̂ will be a smooth curve having

derivatives of all orders.

Table 1 lists some useful kernel functions from Silverman (1986), the definitions of

efficiency of kernels densities can be found in Silverman. (1986 Chapter 3)

Table 1: some kernels and the efficiency

Kernel K(t) Efficiency(Exact and to 4 d.p)

Epanechnikov
3
4
(1− 1

5
t2)/

√
5 for |t| < √

5
0 otherwise

1

Biweight
15
16

(1− t2)2 for |t| < 1
0 otherwise

(3087
3125

)1/2 ≈ 0.9939

Triangular
1− |t| for |t| < 1
0 otherwise

(243
250

)1/2 ≈ 0.9859

Gaussian 1√
2π

e−(1/2)t2 (36π
125

)1/2 ≈ 0.9512

Rectangular
1
2

for |t| < 1
0 otherwise

(108
125

)1/2 ≈ 0.9295

We also plot the kernel estimates of the geyser data in Figure 2 with Gaussian

kernel. We will illustrate the selection of smoothing parameter in penalized methods

in next section.

There are many consistency results for kernel estimates. Consistency of the estimate

f at a single point x was studied by Parzen (1962). His assumptions on the kernel K

were that K was a bounded Borel function, satisfying,

∫
|K(t)|dt < ∞,

∫
K(t)dt = 1, (1.11)

and,

|tK(t)| → 0 as |t| → 0. (1.12)

Furthermore, the window width was assumed to satisfy

hn → 0 and nhn →∞ as n →∞. (1.13)
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Figure 2: Gaussian kernel estimation of geyser data, with h = 0.12762

Under the conditions (1.11)-(1.13) and provided f is continuous at x, f̂(x) → f(x)

in probability as n →∞.

Uniform consistency was considered by several authors, for example, Parzen (1962),

Nadaraya (1965), Silverman (1978) and Bertrand-Retail (1978).

Suppose the kernel K is bounded, has the variation and satisfies (1.11), and that the

set of discontinuities of K has Lebesgue measure zero. These conditions are satisfied

by virtually any conceivable kernel. Suppose that,

f is uniformly continuous on (−∞, +∞) (1.14)
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and the the window width satisfies,

hn → 0 and nhn(log n)−1 →∞ as n →∞. (1.15)

Bertrand-Retail showed, with probability one,

sup
x
|f̂(x)− f(x)| → 0 as n →∞. (1.16)

And conditions (1.14), (1.15) are necessary as well as sufficient for uniform consistency.

Apart from the histogram, the kernel estimator, which depends on the choice of

kernel function, is probably the most commonly used estimator and is certainly most

studied mathematically. It does, however, suffer from a slight drawback when applied

to data from long-tailed distributions. Because the window is fixed across the entire

sample, there is a tendency for spurious noise to appear in the tails of the estimates.

If the estimates are smoothed sufficiently to deal with this, then essential detail in the

main part of the distribution is masked. In order to deal with this difficulty, various

adaptive methods have been proposed; their survey can be found in Silverman (1986).

Another problem regarding the kernel method is to choose the smoothing parameter

properly. It is crucial for the kernel method. There are many ways to determine how

to choose the smoothing parameter: for example, subjective choice, least-square cross-

validation, discretization errors in cross-validation and likelihood cross-validation. See

Silverman (1986) for details.

1.4 Penalized Approach

We already know that the kernel method depends on the choice of kernel and is sensitive

at the boundary when the density is on a bounded domain like (0, +∞). Regularization

methods with penalization introduced in this section could overcome these difficulties

to some extent.
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1.4.1 Introduction to Maximum Penalized Likelihood Approach

The likelihood of a density f with a set of independent identically distributed observa-

tions X1, X2, . . . , Xn is given by

L(f |X1, X2, . . . , Xn) =
n∏

i=1

f(Xi), (1.17)

provided that f is a continuous pdf.

However, the maximum likelihood problem has no solution. Loosely speaking,

the solution of maximum likelihood problem would be a sum of point masses at the

observations,

fn(x) =
1

n

n∑
i=1

δ(x−Xi), −∞ < x < +∞, (1.18)

where δ(x) is the unit mass at 0; but this is not a density.

So we cannot use the maximum likelihood directly for density estimation. There is

the chance that we could solve this problem by adding restrictions on the density over

which the likelihood is to be maximized.

One method is to add a term into the likelihood which describes the roughness,

in some sense, of the curve under consideration. Assuming R(f) is a function which

quantifies the roughness of f, one choice of R is,

R(f) =

∫ +∞

−∞
[f ′′(t)]2dt. (1.19)

The penalized log likelihood is defined by,

lλ(f) =
n∑

i=1

log f(Xi)− λR(f), (1.20)

where λ is a positive smoothing parameter.

The probability density function f̂ is said to be a maximum penalized likelihood

9



density estimate if it maximizes (1.20) and is subject to the constraints,

∫ +∞

−∞
f = 1, f(x) ≥ 0 for all x, and R(f) < ∞. (1.21)

The penalized log likelihood can be seen as a way of quantifying the conflict between

smoothness and goodness-of-fit to the data, because the log likelihood term measures

how well f fits the data, while the penalized term is to avoid curves which exhibit too

much roughness or rapid variation. The choice of the smoothing parameter controls

the balance between smoothness and goodness-of-fit, while the choice of the roughness

penalty determines exactly what kind of behavior in the density estimate is considered

to be undesirable in excess. For example, the choice R(f(x))=
∫ +∞
−∞ (f(x)′′)2dx will have

a large value if f exhibits a large amount of local curvature, and equals to zero if f is

a straight line.

Unfortunately, the implicit nature of the definition of the estimate f̂ , as the solution

of a maximum problem, is the price to be paid for the explicit statement of the aims

of the estimation.

1.4.2 L2 Penalized Methods

In this section, we discuss several important penalized methods with respect to L2

penalty. The first authors to apply the penalized likelihood approach to density es-

timation were Good and Gaskins (1971). They based their roughness penalty on the

square root, γ =
√

f , of the density. The choice has the added practical advantage that

it permits the optimization to be formulated as a convex problem with the (squared)

L2 penalty,

R(f) =

∫
[γ′(t)]2dt. (1.22)

Another advantage of working with γ rather than f is that the constraint f(x) ≥ 0

will automatically be satisfied if γ is real. Furthermore, the constraint
∫

f = 1 will be

replaced by
∫

γ2=1, an easier constraint under the numerical method used by Good

10



and Gaskins (1971), which was described briefly in their paper.

We apply Good and Gaskin’s method to the geyser data. The estimated density

is plotted in Figure 3. We do automatic λ selection based on Koenker and Mizera

(2006b). The Kolmogorov distance between the empirical distribution function of the

sample, F̂n, and the smoothed empirical, F̃n,λ, corresponding to the density estimate

κ(λ) ≡ K(F̂n, F̃n,λ) = max |F̂n(Xi)− F̃n,λ(Xi)| (1.23)

is computed. Then we find λ which makes κ(λ) approximately equal to the cutoff

cκ/
√

n. In our computation, we used cκ = 1.4801, the 0.975 quantile of the Kolmogorov

distribution. There was no particular reason for this choice. If we chose 0.95 quantile,

some estimates are too rough; on the other hand, if we chose 0.99 quantile, some

estimates are too smooth. The most important point here is that all estimates have

about the same degree of fit by choosing cκ = 1.4801.

From this point of view, we can illustrate the choice of smoothing parameter in

kernel density estimation in the previous section. Since we use the geyser data all

through this chapter, we want to make the kernel density estimation result to be com-

parable with all the penalized estimations. Therefore, we choose the kernel smoothing

parameter according to (1.23), which leads the smoothing parameter equal to 0.12762.

However, we want to mention once again that the λ selection strategy we discussed is

not necessarily the optimal selection procedure; we just want estimates to be compa-

rable with each other.

The penalty (1.22) penalized for slope rather than curvature in the estimates. In

the substantial work of Good and Gaskins, they found the penalty (1.22) somewhat

unsatisfactory, producing estimates that sometimes ”too rough”. This can also be seen

from our example in Figure 3. In order to penalize for curvature, Good and Gaskins

(1971) proposed using the penalty

R(f) =

∫
[γ′′(t)]2dt (1.24)

11
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Figure 3: the estimated density by Good’s method

or even a linear combination of (1.22) and (1.24). This component has a more direct

interpretation as a measure of roughness of the fitted density.

Finally, it should be pointed out that the use of the roughness penalty (1.24) leads

to some technical difficulties concerning the uniqueness and definition of the estimates.

These are discussed by de Montricher, Tapia and Thompson (1975).

There are certain potential advantages in using a roughness penalty based on the

logarithm of the density, as proposed by Silverman (1982). Consider the roughness

penalty,

R(f) =

∫
[(log f(t))(3)]2dt, (1.25)

when expressed in terms of the logarithm of f, the problem of finding the maximum

12



penalized likelihood density estimate becomes, setting g(x) = log f(x),

∑
g(Xi)− λ

∫
(g(3)(t))2dt → max (1.26)

subject to ∫
eg(t)dt = 1. (1.27)

Working with the logarithm of f has the advantage of eliminating the necessity for

a positivity constraint on f and reducing the quantity to be maximized in (1.26) to a

quadratic form. The cost to be paid is the awkward nonlinear nature of the constraint

(1.27).

The rather strange-looking roughness penalty (1.25) has the important property

that it is zero if and only if f is a normal density. Thus normal densities are considered

by the method to be ’infinitely smooth’ because they are not penalized at all in (1.26)

and so cost nothing in terms of roughness. It can be shown, in a sense made clear in

Silverman (1982, Theorem 2.1), that as the smoothing parameter λ tends to infinity,

the limiting estimate will be the normal density with the same mean and variance as

the data. As λ varies, the method will give a range of estimates from the ’infinitely

rough’ sum of delta function at the data points to the ’infinitely smooth’ maximum

likelihood normal fit to the data. Since one of the objects of nonparametric methods

is to investigate the effect of relaxing parametric assumptions, it seems sensible that

the limiting case of a nonparametric density estimate should be a natural parametric

estimate.

We also plot the estimated geyser density by using Silverman’s approach in Figure 4.

Gu (2002) adopted a similar point of view of penalizing the logarithm of the density.

However, he replaced the third derivative by the second derivative of the logarithm of

density. The resulting constrained formulation is

n∑
i=1

log g(Xi)− λ

∫
(g′′(x))2dx → max subject to

∫
eg(x)dx = 1. (1.28)

13
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Figure 4: the estimated density by Silverman’s method

Comparing to Silverman’s method, Gu’s penalized approach give the similar result

for geyser density as we could see in Figure 5.

It is possible to define other roughness penalties according to other perceptions

of ’infinitely smooth’ exponential families of densities. The key property is that R(f)

should be zero if and only if f is in the required family. For example, when working

on the half-line (0,∞) a natural penalty is
∫∞

0
[(log f)

′′
]2, which gives zero roughness

to the exponential densities λe−λx.

Detailed numerical work on the density estimation of this section can be found

in Ramsay and Silverman (2005). It can be shown (see Theorem 3.1 of Silverman,

1982) that the maximum of (1.26) subject to the constraint (1.27) can be found as the
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Figure 5: the estimated density by Gu’s method

unconstrained maximum of the strictly concave functional

1

n

∑
g(Xi)− λ

∫
[g(3)(t)]2dt−

∫
eg(t)dt. (1.29)

The form (1.29) is remarkable in that it contains no unknown Lagrange multipliers

to be determined; its maximum will automatically satisfy the constraint (1.27). The

fact that the estimates can be found as the unconstrained maximum of a concave

function also makes it possible to derive various theoretical properties of the estimates;

see Silverman (1982).
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1.4.3 L1 Penalized Methods

In this section, we discuss L1 penalized methods. In L1 framework, weighted sums

of squared L2 norms are replaced by weighted L1 norms as an alternative penalized

regularization device. Squaring penalty contributions inherently exaggerates the con-

tribution to the penalty of jumps and sharp bends in the density. Indeed, density jumps

and piecewise linear bends are impossible in L2 framework since the penalty evaluates

them as ’infinitely rough’. Total variation penalties are happy to tolerate such jumps

and bends, and they are therefore better suited to identifying discrete jumps in densi-

ties or in their derivatives. This is precisely the property that has made them attractive

in imaging applications.

Specifically, given a random sample, X1, X2, . . . , Xn from a density f0, we consider

estimators that solve,

max
f
{

n∑
i=1

log f(Xi)− λR(f)|
∫

Ω

f = 1}, (1.30)

where R denotes a function intended to penalize for the roughness of candidate esti-

mates, and λ is the tuning parameter controlling the smoothness of the estimate. Here

the domain Ω may depend on a priori considerations as well as on the observed data.

It is proposed in Koenker and Mizera (2006a) to consider roughness penalties based

on total variation of the transformed density and its derivatives. Recall that the total

variation of a real function f on Ω is defined as

∨
Ω

(f) = sup
m∑

i=1

|f(ui)− f(ui−1)|, (1.31)

where the supremum is taken over all partitions, u1, u2, . . . , um of Ω. When f is abso-

lutely continuous, we can write, see e.g. Natanson (1974, P.259),

∨
Ω

(f) =

∫

Ω

|f ′(x)|dx. (1.32)
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Usually, we will focus on penalizing the total variation of the first derivative of the

log density,

J(f) =
∨
Ω

((log f)′) =

∫

Ω

|(log f(t))′′|dt, (1.33)

so letting g = log f we can write (1.30) as,

max
g
{

n∑
i=1

g(Xi)− λ
∨
Ω

(g′)|
∫

Ω

eg = 1}. (1.34)

In Figure 6, we can see the estimated geyser data by penalizing the second derivative

of log f .
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Figure 6: the estimated density by Total variation method penalizing second derivative
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However, this is only one of many choices: one may think about

J(f) =
∨
Ω

(g(k)), (1.35)

where g(0) = g, g(1) = g′, etc, and g may be log f , or
√

f , or f itself, or more generally

gk = f , for k ∈ [1,∞], with the convention that g∞ = eg. Furthermore, linear

combinations of such penalties with positive weights may be considered.

For example, we plot the estimated geyser density by penalizing the second deriva-

tive of log f in Figure 7.
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Figure 7: the estimated density by Total variation method penalizing third derivative

We know that even for L2 formulations the presence of the integrability constraint

prevents the usual reproducing kernel strategy from finding exact solutions; so iterative

algorithm is needed. Koenker and Mizera (2006a) suggested to adopt a finite element
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strategy that enables to exploit the sparse structure of the linear algebra used by

modern interior point algorithms for convex programming.

An advantage of the parameterization of the problem in terms of log f is that it

obviates any worries about the non-negativity of f̂ . However we have still neglected

one crucial constraint. We need to ensure that our density estimates integrate to one.

In the piecewise linear model for log f this involves a awkward nonlinear constraint on

the α′s,
m∑

j=1

hj
eαi − eαi−1

αi − αi−1

= 1. (1.36)

This form of the constraint cannot be incorporated directly in its exact form into

our optimization framework, nevertheless its approximation by a Riemann sum on a

sufficient fine grid provides a numerically satisfactory solution.

1.5 Shape Constraints Approach

Although the penalized approaches successfully overcome some difficulties in density

estimation compared to kernel methods, the approaches indeed depend on the choice

of the smoothing parameter λ.

Once we are quite sure about the shape of the data, especially when it is unimodal,

we can apply the shape constraint methods which do not have to select λ. However,

the price we need to pay is to assume certain shape constraint.

The maximum penalized likelihood approach to nonparametric density estimation

lends itself well to the use of such a side information. Examples of interest include shape

constraints on the unknown density f0, such as monotonicity, convexity, unimodality,

and log-concavity. It seems logical to require that the estimator satisfies the same

constraints as f0. Here, we study monotone and log-concave density estimation.

A univariate density f is monotone on (a,∞) if it is decreasing there, i.e, f(x) ≤
f(y) for all x ≥ y > a. Likewise, a univariate density is monotone on (−∞, a) if it is

increasing there.
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A univariate density is unimodal if there exists an real number (the mode), such

that f is monotone on (−∞,m) and on (m,∞).

Density estimation under shape constraints was first considered by Grenander

(1956), who found that the nonparametric maximum likelihood estimator f̂mon
n of a

non-increasing density function f0 on [0,∞) is given by the left derivative of the least

concave majorant of the empirical cumulative distribution function on [0,∞). This

work was continued by Prakasa Rao (1969) and Groeneboom (1985, 1988), who es-

tablished asymptotic distribution theory for n1/3(f0 − f̂mon
n )(t) at a fixed point t > 0

under certain regularity conditions and analyzed the non-gaussian limit distribution.

Let D denote the set of decreasing densities on (0,∞). Actually, we do not enforce

the pdf constraint, so we define D as the set {f 1(0,∞) : f ≥ 0, f decreasing}.
Suppose X1, X2 . . . Xn be nonnegative iid random variables with common density

f0, which is assumed to be decreasing on (0,∞). The unpenalized maximum likelihood

estimation problem is

minimize Ln(f) = − 1

n

n∑
i=1

log f(Xi) +

∫ ∞

0

f(y)dy, subject to f ∈ D. (1.37)

Without the restriction of the monotonicity, we know that the maximum likelihood

estimator does not exist. We claim that with this monotone shape restriction, the

solution exists and it must be a pdf.

Monotone density estimation can be extended to cover unimodal densities. If the

true mode is known a priori, unimodal density estimation boils down to monotone

estimation in a straightforward way. However, the situation is different if mode is

unknown; in that case the likelihood is unbounded, problem being caused by observa-

tions too close to a hypothetical mode (Dümbgen Hüsler and Rufibach (2007)). Even

if we know the mode, the estimator of the density is not consistent at the mode, the

effect is called ”spiking”. Some methods were proposed to remedy this problem, see

Wegman (1970), Woodroofe and Sun (1993), Meyer and Woodroofe (2004) or Kulikov
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and Lopuhaa (2006). However, all of them require additional constraints on f.

Next, we will discuss a very important type of shape constraint: log-concave. Log-

concave density is defined as: A density f is log-concave if log f is concave. Equiv-

alently, if for all 0 < θ < 1 and for all real number x and y, f(θx + (1 − θ)y) ≥
|f(x)|θ|f(y)|1−θ.

Log-concave density plays a crucial role in a wide variety of economic models, as

well as in multivariate settings. Most of the familiar parameter densities employed in

economics are log-concave, for instance, the Uniform, Normal, Exponential, Logistic,

Weibull, Gamma, all belong to log-concave family. However, the student t family fails

to be log-concave. Moreover, according to the definition of unimodal density, we know

that log-concave densities are unimodal. It turns out that by imposing the log-concave

shape constraint, one could overcome the spiking problem mentioned before; this yields

a new approach to estimate a unimodal, possibly skewed density. Another advantage

to impose log-concave shape constraint is that the density estimation procedure is fully

automatic, which means that there is no need to select any binwidth, kernel function or

other tuning parameters. Thus, all these properties make the new estimator appealing

for its use in statistical applications.

There are many people working on the density estimation with log-concave shape

constraint. For example, Dümbgen and Rufibach (2008), Pal, Woodroofe and Meyer

(2006), and Koenker and Mizera (2008a).

Let X be a random variable with distribution function F and Lebesgue density

f(x) = exp g(x) for some concave function g : R → [−∞,∞). The goal is to estimate

f based on a random sample with size n > 1 from F. Let X(1) < X(2) < · · · < X(n) be

the corresponding order statistics. For any log-concave probability density f on R, the

normalized log-likelihood function at f is given by,

∫
log fdFn =

∫
gdFn, (1.38)

where Fn stands for the empirical distribution function of the sample. In order to relax
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the constraint of f being a probability density and get a criterion function to maximize

over the convex set of all concave functions g, we employ the standard trick of adding

a Lagrange term to (1.38), leading to the functional

Ψn(g) =

∫
gdFn −

∫
exp g(x)dx. (1.39)

The non-parametric maximum likelihood estimator of g = log f is the maximizer

of this functional over all concave functions,

ĝn = arg max Ψn(g), (1.40)

and f̂n=exp ĝn.

In Dümbgen and Rufibach (2008), the authors established the existence, uniqueness

and shape of ĝn. The following theorem was proved independently by Pal et al (2006)

and Rufibach (2006). It follows also from more general considerations in Dümbgen at

al.(2007).

Theorem 1.5.1. The non-parametric maximum likelihood estimator ĝn exists and is

unique. It is linear on all intervals [X(j), X(j+1)], 1 ≤ j < n. Moreover, ĝn = −∞ on

R \ [X(1), X(n)].

Dümbgen and Rufibach also provided two characterizations of the estimators ĝn, f̂n

and the corresponding distribution function F̂n, i.e. F̂n(x) =
∫ x

−∞ f̂n(r)dr.

When applying this density estimation method, Dümbgen, Hüsler and Rufibach(2007)

proposed an active set and EM algorithm for log-concave densities based on complete

and censored data. We note that their method can be applied to censored data, e.g.

right-censored or interval censored data set; thus, it could be very useful in survival

analysis. We will discuss the numerical method and data experiment in Chapter Four.

As mentioned above, we know that unimodality of concave functions implies that

22



log-concave densities are unimodal. However, unimodal densities need not be log-

concave; none of the Student tν densities are log-concave for ν < +∞. Laplace den-

sities, with their exponential tail behavior, are log-concave; but heavier tails−say,

algebraic−are prohibited. This prohibition motivates a relaxation of the log-concavity

requirement.

A natural hierarchy of concave functions can be built on the foundation of the

weighted means of order ρ studied in Hardy, Littlewood, and Polya (1934),

Mρ(a, p) = Mρ(a1, · · · , an; p) = (
n∑

i=1

pia
ρ
i )

1/ρ, (1.41)

for p in the unit simplex, {S = p ∈ Rn|p ≥ 0,
∑

pi = 1)}. The familiar arithmetic,

geometric and harmonic means correspond to ρ = 1, ρ = 0 and ρ = −1 respectively.

Following Avriel (1972), a non-negative, real function f, defined on a convex set C ⊂ Rd

is said to be ρ-concave if for any x0 ∈ C, x1 ∈ C, and p ∈ S, if

f(p0x0 + p1x1) ≥ Mρ(f(x0), f(x1); p); (1.42)

in this terminology log-concave functions are 0-concave, and concave functions are

1-concave.

Since Mρ(a, p) is monotone increasing in ρ for a ≥ 0 and any p ∈ S, it follows that

if f is ρ-concave, then f is also ρ′-concave for any ρ′ < ρ. Thus, concave functions

are log-concave, but not vice-versa. In the limit (−∞)-concave functions satisfy the

condition,

f(p0x0 + p1x1) ≥ min(f(x0), f(x1)), (1.43)

and therefore are quasi-concave, a class that includes all ρ-concave functions.
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Koenker and Mizera (2008a) studied the ρ-concave shape constrained problem

Ψ(g) =
1

n

n∑
i=1

g(Xi) +

∫
ψ(g)dx = min

g∈C(x)
! subject to g ∈ K, (1.44)

where C(X) is the collection of all continuous functions on the convex hull of X, and

K stands for the set of all convex functions on Rd. With some duality and maximum

entropy theorems (we will introduce these definitions in the following chapters), they

derived,

Theorem 1.5.2. The strong (Fenchel) dual of the primal formulation (1.44) is

−
∫

ψ∗(−f)dy = max
f

! subject to f =
d(Pn −G)

dy
, G ∈ K∗. (1.45)

In the sense that all Ψ(g), the values of the primal object for g satisfying the con-

straint of (1.44), dominate those of (1.45), and both problems have optimal solutions,

g and f respectively, for which the respective values of the primal and dual objective

functions coincide. Any function f satisfying the constraint of (1.44) is a probability

density with respect to Lebesgue measure: (f ≥ 0 and
∫

fdx = 1). If ψ is differentiable

on the interior of its domain, then the dual and primal optimal solutions satisfy the

relationship f = −ψ′(g) and K∗ is the cone dual of K.

Corollary 1. Maximum likelihood estimation of a log-concave density has an

equivalent dual formulation,

−
∫

f log fdy = max
f

! subject to f =
d(Pn −G)

dy
, G ∈ K∗, (1.46)

whose solution satisfies the relationship f = e−g, where g is the solution of (1.44) and

ψ(g) = e−g. In particular, the solution of (1.44) satisfies
∫

eg = 1.

We notice the emergence of Shannon entropy in (1.46). It is not surprising in

the view of the well-established connections of maximum likelihood estimation to the

Kullback-Leibler divergence and maximum entropy. To explore the link to potential
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alternatives, we consider the family of entropies originally introduced for α > 0 by

Rényi (1961, 1965),

(1− α)−1 log(

∫
fα(x)dx), α 6= 1, (1.47)

as an extension of the limiting case for α = 1, the Shannon entropy. For α 6= 1,

maximizing (1.47) is equivalent to the maximization of

sgn(1− α)

α

∫
fα = −sgn(α− 1)

∫
fα

α
. (1.48)

The dependence of convexity/concavity properties of the function yα necessitates a

separate treatment of the case with α > 1, when the conjugate pair is,

ψ(x) =





xβ

β
if X ≤ 0;

0 if X > 0.
ψ∗(y) =





yα

α
if y ≤ 0;

0 if y > 0.
(1.49)

And the cases with α < 1, where 1/α + 1/β = 1 is,

ψ(x) =





+∞ if X ≤ 0;

−xβ

β
if X > 0.

ψ∗(y) =




− (−y)α

α
if y ≤ 0;

+∞ if y > 0.
(1.50)

Specifically, some of important cases for different α are considered in Koenker and

Mizera (2008a). For example, they introduce α = 2, corresponding to a more restrictive

form of concavity that log-concave; α = 1/2, which requires the estimated density

to be only (−1/2)-concave, a significant relaxation of the log-concave constraint. In

addition to all log-concave densities, all the student tν densities with ν ≥ 1 satisfy this

requirement; the limiting case α = 0, the estimate is constrained to be (−1)-concave,a

yet still weaker requirement that admits all of the student tν densities for ν > 0.

We could continue to consider α < 0, which corresponds to weaker concavity re-

quirements. The shape constraints corresponding to negative α encompass a wider

and wider class of quasi-concave densities, eventually arriving at the −∞-concave con-

straint.
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Finally, the detailed numerical methods of quasi-concave density estimation will be

discussed in Chapter Four.
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Chapter Two: Maximum Entropy

Density Estimation

In this chapter, we discuss maximum entropy density estimation method, and also the

application of the taut string method to maximum entropy density estimation.

2.1 Definition of Maximum Entropy Estimation

In the univariate case, we recall from the previous chapter that the Shannon entropy

of a density function p is defined as

H(p) = −
∫

p(x) log p(x)dx. (2.1)

More generally, given a probability density p, the α-Rényi entropy is defined for

α 6= 1 to be

Hα(p) =
1

1− α
log (

∫
p(x)αdx). (2.2)

Note that by L’Hopital rule,

lim
α→1

Hα(p) = lim
α→1

− ∫
p(x)α log p(x)dx∫

p(x)αdx
= H(p), (2.3)

since d
dt

at = at loge a. Some properties of the entropy function are: the entropy function

is concave, differentiable on their domain containing (0, +∞), and equals +∞ for any

x < 0.

Before we discuss the maximum entropy estimation, we first need to review some

functional analysis knowledge. In functional analysis, it is said that a Radon measure

µ is representable by a function, if there is a function f, which is locally integrable
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(which means f is integrable on any compact set of its domain of definition), such

that
∫

u(x)dµ =
∫

u(x)f(x)dx for all u (continuous, or merely differentiable, but with

bounded support). Again, such an f is unique up to equality almost everywhere (with

respect to the Lebesgue measure). In statistics, we say that µ is absolutely continuous

with respect to Lebesgue measure, and write f = dµ/dx to denote this.

If D is a continuous linear operator defined on U , then D∗ denotes the adjoint of

D, which is an operator defined on the topological dual U ′
of U , satisfying

〈D∗T, u〉 = 〈T, Du〉. (2.4)

Important instances are the distributional adjoints of standard operators. In such

a case, the adjoint of the operator of differentiation satisfies, for any u ∈ U and

distribution T representable by a function f,

〈D∗f, u〉 = 〈f, Du〉 =

∫
f(x)

du

dx
dx = −

∫
u(x)

df

dx
dx, (2.5)

which makes natural to call the result of the application of −D∗ on any distribution T

the distributional derivative of T. Distributional differentiation is essential for proper

expression of some of the definitions coming below; it is returning the underlying

probability measures when applied to its cumulative distribution function.

If we consider the primal problem as

1

n

n∑
i=1

g(Xi) +

∫
ψ(g)dx + λN(Dg) = min

g
! (2.6)

we define maximum entropy density estimation with penalization as solution of the

following variational problem

∫

Ω

ψ∗(Pn −D∗u) + λN∗(
u

λ
) = min

u∈U
! (2.7)
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where D∗ is the adjoint of D; ψ∗ is the conjugate to ψ; N∗ is the dual to N ; λ > 0 and

Pn is the empirical probability measure supported by the datapoints.

We consider ψ∗ that satisfies the following: they are convex functions, differentiable

on their domain containing (0, +∞), and ψ(t) = +∞ for any t < 0. The reason why

the dual is called maximum entropy density estimation with penalization is that if we

consider ψ(g) = eg, then ψ∗(x) = x log x; this give the Shannon entropy in (2.7). If

we consider ψ(g) = 1
β
gβ, then ψ∗(x) = 1

α
xα; it gives general α Rényi entropy, where

1/α + 1/β = 1. Thus, we can generally consider ψ∗ as the entropy function.

The operator D∗ is a distributional differential operator in typical penalty formula-

tions. We limit our scope to the standard Lp choices for penalized term N∗, for p ≥ 1:

we assume that N∗(u) = ‖u‖p
Lp/p, for p < ∞, or N∗(u) is the indicator in L∞ norm.

To explain things in detail, we say that Pn −D∗u ∈ M(R), where M(R) is finite

signed Radon measure on R. We require D∗u ∈M(R) as well. For convex function ψ∗,

we adapt the convention that
∫

ψ∗(Q)dx = +∞ if Q is not absolutely continuous with

respect to Lebesgue measure; and
∫

ψ∗(Q) =
∫

ψ∗(dQ
dx

)dx if Q is absolutely continuous.

We also need to define what is the set U here. In this univariate case, we denote

U as set of functions with bounded variation on R. And our fitted objects u belongs

to U .

Thus, we use the notation U = BV (R), where BV stands for bounded variation.

By Lebesgue decomposition theorem, we conclude that u can be decomposed as three

parts: u = udisc + uabs + using, the discrete, absolutely continuous and singular parts.

In the thesis, we have a very important assumption that there is no singular part using

in the decomposition. Therefore, we can simplify the decomposition as u = udisc +uabs,

and use SBV (R) to denote sets without the singular part.

Because we employ the entropy function as ψ∗ in (2.7), we indeed seek the minimiza-

tion of the objective function (2.7) instead of maximization. Under this convention, we

still name the problem as maximum entropy density estimation, however, we actually

do the minimization calculation here.
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Given u ∈ SBV (R), we can express D∗(u) = Pn−Q, where Pn = D∗(udisc) and Q =

D∗(uabs). The operation Pn−D∗(u) cancels the discrete part and leaves only absolutely

function Q. In such a case, it indicates that
∫

Ω
ψ∗(Pn − D∗u) =

∫
Ω

ψ∗(d(Pn−D∗(u))
dt

)dt.

Given the assumptions on ψ∗, we express (2.7) as

∫

Ω

ψ∗(f(t))dt + λN∗(
u

λ
) = min

u∈U ,f∈V
!

subject to f =
d(Pn −D∗(u))

dx
and f º 0,

(2.8)

where f ∈ V = L1(R).

In the univariate setting, we can explain the notations and formulas above in sim-

ple and familiar statistical language: first, we use the usual statistical definition of

distribution function, and we denote F as the distribution function of the density we

seek to estimate. We know that F is bounded and nondecreasing on R. Secondly, we

could define the bounded variation set on R as: BV (R) = {x − y : x, y ∈ F}. For all

u ∈ BV (R), D∗(u) belongs to the the set of finite signed Radon measure. Specifically,

for every u ∈ BV (R), we could define a measure du(a, b] = u(b) − u(a). We still use

the definition of empirical distribution function defined in (1.1), we denote Fn as the

empirical distribution function supported by all n datapoints.

For instance, if D∗ = D′, which is the first derivative, then Pn = D
′
(Fn); if D∗ = D

′′
,

the second derivative, then Pn = D
′′
(
∫

Fndt). In general, we denote Pn = D∗(Fn),

therefore Pn − D∗(u) = D∗(Fn − u). And we assume the Lebesgue decomposition of

u has no singular part, in such a case Fn − u cancels the discrete part and leaves only

absolutely continuous part with f(t) = d(D∗(Fn − u))/dt.

2.2 Preservation of Moments

Usually, if the operator D could annihilate functions like g(x) = xk, then we can

conclude the estimate f has the k -th moment equal to k -th empirical moment supported
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by data. This is called the preservation of the k-th moment.

We say that a locally integrable function g is annihilated by the operator D, if

Dg = 0 for the restriction of g to any bounded domain Ω ⊂ R. (In the spirit of how

we understand differential operators, D should be defined in every such case.)

Theorem 2.2.1. If function g is constant and annihilated by the operator D, then the

solution of (2.8) is indeed a density function.

Proof. As following from (2.7) and (2.8), the solution of (2.8) is sought among

f representing positive Radon measure in the form Pn − D∗(u). Suppose that D is

defined for g and g is continuous. Then

∫
Ω

gd(Pn −D∗(u))

= 〈Pn −D∗(u), g〉
= 〈Pn, g〉 − 〈D∗(u), g〉
=

∫
gdPn − 〈u,Dg〉,

(2.9)

where 〈u,Dg〉 =
∫

Ω
u(Dg), that is, u is understood as the distribution it represents. If

g is annihilated by D, then 〈u,Dg〉 vanishes on any bounded subdomain Ω′ of Ω, then

∫

Ω′
gfdx =

∫

Ω′
gdPn, (2.10)

for any f representing a solution of (2.8). Now, let us take g ≡ 1 and suppose that D

annihilates g. If Ω is an open set containing all datapoints (and hence the support of

Pn), then there is a bounded subdomain Ω′ of Ω such that

∫

Ω′
fdx =

∫

Ω′
dPn = 1. (2.11)

From the fact that (2.11) holds for any bounded subdomain Ω′ of Ω containing the

support of Pn, we obtain that f, being nonnegative, integrates to 1; therefore, it is

integrable and belongs to L1(Ω).
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Suppose that ψ∗ and N∗ satisfy all assumptions made, and D∗ is a distributional

adjoint of a differential operator D that annihilates constants. For any λ > 0, we call

any solution f of (2.7) or (2.8) a maximum penalized density estimate.

More generally, if g(x) = xk, then it is possible to show in the analogous fashion

that the estimate f has the k -th moment equal to k -th empirical moment supported

by data. In particular, we remark that when D is the operator of k -th derivative in R,

then any solution of (2.8) automatically satisfies

∫

Ω

tif(t)dt =

∫

Ω

tidPn for i = 0, 1, 2, . . . , k − 1; (2.12)

thus, adding the identities (2.12) does not alter their solutions.

So by adding the moment constraints, we can finally express (2.7) as

∫
Ω

ψ(f(t))dt + λ(u
λ
) = minu∈U ,f∈V !;

subject to f = d(Pn−D
′
(u))

dx
, f º 0;

and
∫

Ω
tif(t)dt =

∫
Ω

tidPn for i = 0, 1, 2, . . . , k − 1.

(2.13)

2.3 Taut String Theory in Maximum Entropy Den-

sity Estimation

The stretched, or taut string methods were firstly considered by Hartigan and Hartigan

(1985), Davies and Kovac (2001, 2004), and Koenker and Mizera (2006b).

To illustrate what is taut string method is, we consider the special case that the

penalty N∗ is the indicator of the unit ball in L∞ norm.

N∗(x) =





+∞ ‖x‖∞ > 1;

0 ‖x‖∞ ≤ 1,
(2.14)
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or equivalently,

λN∗(
u

λ
) =





+∞ ‖u‖∞ > λ;

0 ‖u‖∞ ≤ λ.
(2.15)

If we denote Pn as the derivative of the empirical distribution function Fn, then

D∗(u) = D′(u) = u′, which is the first derivative of u. By using notations above, (2.8)

can be shown as

∫
Ω

ψ∗(f(t))dt = minu∈U ,f∈V !

subject to f = d(Pn−u′)
dx

, f º 0, and ‖u‖L∞ ≤ λ.
(2.16)

If we denote Pn − u′ = q, where q is the derivative of F = Fn − u, then following

the assumption above that F is absolutely continuous with ‖u‖∞ ≤ λ, the estimate

F is within the Kolmogorov distance λ of Fn, and minimizes the objective function
∫

ψ∗(f(t)).

If the function ψ∗ is the Shannon entropy, then minimizing objective function
∫

F ′(t) log F ′(t)dt leads F to be linear between the points where it touches the bound-

ary of the Kolomogorov ”tube”. This follows the theorem below.

Theorem 2.3.1. Minimizing
∫ β

α
F ′(x) log F ′(x)dx under boundary conditions fixing

F ′(α), F ′(β) leads to the solution F linear on [α, β].

Proof : The theorem could be simply proved by using the techniques of calculus of

variations. For example, if we denote (F ′ log F ′)(α) = A, (F ′ log F ′)(β) = B, then for

any ε → 0 and function g, which satisfies g(α) = g(β) = 0, we know ((F ′+εg′) log(F ′+

εg′))(α) = A and ((F ′ + εg′) log(F ′ + εg′))(β) = B.

Consider the derivative of the objective function with respect to ε at the point ε = 0

d

dε
|ε=0(

∫ β

α

(F ′ + εg′) log(F ′ + εg′)) =

∫ β

α

(g′(log F ′ + 1)) (2.17)

By setting (2.17) equal to zero, for any function g,
∫ β

α
(g′(log F ′ + 1)) = 0, with g(α) =

g(β) = 0. It indicates that log F ′ + 1 = const over the interval [α, β]. Thus, we have
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F ′ must be a constant over [α, β]. In another word, it means F is a linear function

between α and β.

We can generalize the proof to Rényi entropy case. The proof of the following

theorem is analogous to that of Therorem 2.3.1.

Theorem 2.3.2. Minimizing 1
q−1

log
∫

(F ′(x))qdx under boundary conditions fixing

F ′(α), F ′(β) leads to the solution F linear on [α, β].

Therefore, if there is no ”tube” (or λ → ∞), the solution is exactly the linear

function between α and β. If there is ”tube” constraint, we have to take the following

three cases into consideration.

First, F is the stretched string in the neighborhood of Fn given λ, which also means

the solution is the piecewise linear function within the ”tube”. A simple instance with

four data points is showed in Figure 8. It shows the solution within the tube(dashed

lines) is the piecewise linear function connecting the points A, B, C, D, E and F, where

the A and F are the end points, like α and β we have mentioned in the Theorem 2.3.1,

and the middle points C, D and E exactly lie on the ”tube”. It is because between

the points C and E, we could not find a straight line connecting C and E due to the

”tube” constraint. The solution between C and E will be a piecewise linear solution,

for example, CD and DE, with D be exactly on the tube. We will illustrate why we

choose point D later. And it is the same for the piecewise linear solution DE and EF.

(the solid points are data points and B is also on the left side of the first tube).

Second, the solution is still the piecewise linear function within the tube, however,

within some interval, when λ is ideally large, the linear solution may be exactly the

linear solution pass through the those intervals according to Theorem 2.3.1 and 2.3.2.

For example, in Figure 8, the linear function AC illustrates this point because we can

directly connect A and C within the tube.

Finally, if λ is too small, there is no linear solution within the tube. For example,

if we shrink λ in Figure 8 into 0.1, then we could not find any piecewise linear or

linear solution within the tube. It means the the problem is not feasible, the maximum
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entropy will be infinity in such a case, and the estimate does not exist.

For the first and second cases, a natural question is: there are infinitely many

piecewise linear functions within the tube, why shall we choose the function like in

Figure 8? The answer is the linear function showed in Figure 8 indeed minimizes the

objective negative entropy function.

To demonstrate this point, first of all, we can not find a straight line between AD,

AE and AF. However, within the tube, we could connect A and C with a straight line.

According to Theorem 2.3.1 and 2.3.2, we conclude that the piecewise linear solution

between A and C is exactly the linear function between A and C.

Next, it is simple to verify that f log f is an increasing function defined on positive

f. If there is no tube constraint (λ is sufficient large), then the solution between C

and F will be a straight line. Once the tube is considered, according to the monotone

property of f log f , we know the piecewise linear function which is most close to the

straight line CF is the solution. Thus, the piecewise linear function CDEF in Figure

8 give us the solution, since D and E are on the tube. That is to say, piecewise linear

function CDEF gives smallest objective function values than any linear function within

the tube. Overall speaking, the solution will be piecewise linear function ABCDEF in

Figure 8.

2.4 Maximum Entropy Density

If we consider the limiting case: λ →∞, then the penalization term tends to contribute

less and less to the minimization problem (2.8), thus we have the limiting situation

∫
Ω

ψ(f(t))dt = minu∈U ,f∈V !

subject to f = d(Pn−D∗(u))
dx

and f º 0.
(2.18)

For example, if we consider N∗ as the indicator of unit ball in L∞ norm, then the

constraint ‖u‖L∞ ≤ λ will relax more and more as λ →∞. Therefore, the goal under
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Figure 8: taut string with λ = 0.15 and the piecewise linear solution within the tube

the limiting case is to find the solution which will minimize the objective negative

entropy function.

It is well known that under a variance constraint, Shannon entropy is maximized by

Gaussian distribution. So the limiting distribution, the maximizer of Shannon entropy,

is normal distribution (under a variance constraint). This is a well known result in

information theory. More generally, given certain restrictions, we have already known

some results for distributions which can maximize Shannon entropy. For example, in

Kagan, Linnik and Rao (1972), they gave the results summarized in Table 2.

Moreover, if we increase our scope to Rényi entropy, then we can obtain some

limiting densities, under variance constraint, based on Johnson and Vignat (2006).

Johnson and Vignat proved the general results for multivariate case; as the scope of

this thesis is only univariate case, we limit out exposition below to the one dimensional
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Table 2: Maximum entropy densities

Set of values of r.v Restrictions Density function

(0,1) -
p(x) = 1

(Uniform)

(0,1)
E log X = g1

E log (1−X) = g2

p(x) = xm−1(1−x)n−1

B(m,n)

(Beta)

(0,∞) EX = g1
p(x) = ae−ax

(Exponential)

(0,∞)
EX = g1

E log X = g2

p(x) = ap

Γ(p)
xp−1e−ax

(Gamma)

(-∞,∞)
EX = g1

EX2 = g2

p(x) = 1
σ
√

2π
e−(x−µ)2/2σ2

(Normal)

(-∞,∞) E|X| = g1
p(x) = 1

2
ae−a|X|

(Laplace)

case.

For 1/3 < q and q 6= 1, define the probability density gq,c as

gq,c = Aq(1− (
q − 1

3q − 1
)
x2

c
)

1
q−1

+ , (2.19)

with the normalization constants

Aq =





(Γ(
1

1− q
)(

1− q

3q − 1
)1/2)/(Γ(

1

q − 1
− 1

2
)(cπ)

1
2 ) if

1

3
< q < 1,

(Γ(
q

q − 1
+

1

2
)(

q − 1

3q − 1
)1/2)/(Γ(

q

q − 1
)(cπ)

1
2 ) if q > 1,

(2.20)

here x+ = max (x, 0) denotes the positive part. And we write Rq,c for a random variable

with density gq,c, which has mean 0 and variance c.

Specially, limq→1 Γ(1/(1 − q))(1 − q)1/2/Γ(1/(1 − q) − 1/2) = 1, and limq→1(1 −
q−1
3q−1

x2

c
) = exp (−x2

2c
), limq→1 gq,c(x) = g1,c(x) = (2πc)−1/2 exp (−x2

2c
), is the Gaussian

density, which corresponds to the maximizer of Shannon entropy.

For q 6= 1, given the probability densities f and g, define the relative q-Rényi
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entropy distance from f to g to be

Dq(f ‖ g) =
1

1− q
log (

∫
gq−1(x)f(x)dx) +

1− q

q
Hq(g)− 1

q
Hq(f). (2.21)

For q = 1, we write D1(f ‖ g) =
∫

f(x) log(f(x)/g(x))dx for the standard relative

entropy. We justify this as an extension by continuity; as q → 1, as in (2.20), Dq(f ‖
g) → − ∫

f(x) log g(x)dx−H1(f) = D1(f ‖ g).

Johnson and Vignat (2006) also established the following important theorems.

Theorem 2.4.1. For any q > 0, and for any probability densities f and g , the relative

entropy Dq(f ‖ g) ≥ 0, with equality if and only if f = g almost everywhere.

Theorem 2.4.2. Given any q > 1/3, and c > 0, among all probability densities f

with mean 0 and variance c, the Renyi-entropy is uniquely maximized by gq,c, that is

Hq(f) ≤ Hq(gq,c), with the equality if and only if f = gq,c almost everywhere.

According to Theorems 2.4.1 and 2.4.2, we have the following conclusions:

First, when 1/3 < q < 1, if we denote m = 1+q
1−q

, then the density which maximizes

the entropy function is:

gq,c =
(Γ(m + 1/2))

Γ(m/2)((m− 2)cπ)1/2
(1 +

x2

(m− 2)c
)−

(m+1)
2 (2.22)

for m > 2, Johnson and Vignat (2006) proposed that Rq,c ∼ Z(m−2)c/U , where Zc

denotes for a N(0, c), U ∼ χm and U is independent of Z.

Especially, if c = m
m−2

, then gq,c is the student t distribution with m degrees of

freedom.

Second, if q > 1, we denote m = 3q−1
q−1

> 3, then the density which maximizes the

entropy function is:

gq,c =
(Γ(m/2))

Γ((m− 1)/2)(mcπ)1/2
(1− x2

mc
)

(m−3)
2 , (2.23)
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where x satisfies {x : x2 ≤ mc}. Johnson and Vignat (2006) proposed that Rq,cU ∼
Zmc, where U ∼ χm is independent of Rq,c.

We want to emphasize a very special case when q = 2(m = 5) and c = 1, gq,1(t) =

3
4
√

5
(1− t2

5
) for |t| < √

5. We notice this distribution is Epanechnikov distribution, which

is well known in the theory of kernel density estimation. If we recall the discussion

in Section 1.2, among all kernel densities, Epanechnikov density kernel has the largest

efficiency; see Silverman (1986).
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Chapter Three: Duality Theorems

and Proofs in Shape-Constrained

Setting

In Chapter Two, we discussed the maximum entropy density estimation with penaliza-

tion in continuous setting. In this chapter, we consider the dual and primal formulation

applied in density estimation in the discrete case. We will show some additional proofs

about the quasi-concave shape constraint density estimation based on Koenker and

Mizera (2008a). Finally, we will present an example where the strong duality holds in

penalized setting.

3.1 Duality Theorem

3.1.1 Lagrange Duality Function

In this section, we first introduce an operation that will play an important role in

the following sections. All the definitions and notations follow the book of Boyd and

Vanderberghe (2004).

Let f : Rn → R. The conjugate function of f is defined as,

f ∗(y) = sup
x∈domf

(yT x− f(x)), (3.1)

the domain of the conjugate function consists of y ∈ Rn for which the difference

yT x− f(x) is bounded above on dom f .

We see immediately f ∗ is a convex function, since it is the pointwise supremum

of a family of convex (indeed, affine) functions of y. This is true whether or not f
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is convex. From the definition of conjugate function, we could obtain the inequality,

f(x) + f ∗(y) ≥ xT y, for all x and y; this is called Fenchel’s inequality (or Young

inequality when f is differentiable). The conjugate of the function λ‖ · ‖p, where ‖ · ‖p

stands for the lp norm, is the indicator of the ball in the dual norm, {x : ‖x‖q ≤ λ},
where q satisfies (1/p) + (1/q) = 1. The indicator of a convex set E is defined to be 0

for all x ∈ E and +∞ otherwise. The conjugate of the indicator of the cone {x : x º 0}
is the indicator of the polar cone {x : x ¹ 0}.

We consider a optimization problem

minimize f0(x), subject to fi(x) ≤ 0, i = 1, . . . m

hi(x) = 0, i = 1, . . . p,
(3.2)

with variable x ∈ Rn. We assume the domain D = ∩m
i=0dom(fi) ∩p

i=1 dom(hi) is not

empty, and further we denote the optimal value of (3.2) as p?. We do not need to

assume problem (3.2) to be convex.

The main idea in Lagrange duality is to take the constraints in (3.2) into consid-

eration by adding the objective function with a weighted sum of constraint functions.

We define the Lagrangian L : Rn ×Rm ×Rp → R associated with problem (3.2) as

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +

p∑
i=1

νihi(x), (3.3)

with domL = D × RL × Rp. The vectors λ and ν are called the dual variables or

Lagrange multiplier vectors associated with the problem (3.2).

We define the Lagrange dual function (or just dual function) g : Rm × Rp → R as

the minimum value of the Lagrangian over {x : for λ ∈ Rm, ν ∈ Rp},

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(f0(x) +
m∑

i=1

λifi(x) +

p∑
i=1

νihi(x)). (3.4)

When the Lagrangian is unbounded below in x, the dual function takes on the value
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−∞. Since the dual function is the pointwise infimum of a family of affine functions

of (λ, ν), it is concave, even when the problem (3.2) is not convex.

Thus, from the definition of the Lagrange dual function, we have immediately

g(λ, ν) ≤ p?. (3.5)

One can easily find some examples for which we can derive an analytical expression

for the Lagrange dual function in Boyd and Vanderberghe (2004, chapter 5).

Finally, we indicate the application of conjugate function in Lagrange dual function.

The conjugate function and Lagrange dual function are closely related, for instance,

we consider an optimization problem with linear inequality and equality constraints,

minimize f0(x), subject to Ax ¹ b, Cx = d. (3.6)

Recalling the definition of the conjugate function in (3.1), we can express the dual

function for the problem (3.6) as

g(λ, ν) = infx(f0(x) + λ(Ax− b) + ν(Cx− d))

= −bT λ− dT ν + infx(f0(x) + (AT λ + CT ν)T x)

= −bT λ− dT ν − f ∗0 (−AT λ− CT ν).

(3.7)

And we will use the relationship between conjugate function and dual function in

the next few sections.

3.1.2 The Lagrange Dual Problem

For each pair (λ, ν) with λ º 0, the Lagrange dual function gives us a lower bound on

the optimal value p? of the optimization problem (3.2). A natural question is: what is

the best lower bound that can be obtained from the Lagrange dual function?
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This leads us to consider the optimization problem

maximize g(λ, ν) subject to λ º 0, (3.8)

this problem is called the Lagrange dual problem associated with the problem (3.2);

the original problem (3.2) is sometimes called the primal problem. We require the pair

of parameters (λ, ν) with λ º 0 and g(λ, ν) > −∞. We refer to (λ?, ν?) as dual optimal

or optimal Lagrange multipliers if they are optimal for the problem (3.8).

Therefore, the optimal value of the Lagrange dual problem, which is denoted as d?,

is, by definition, the best lower bound on p? that can be obtained from the Lagrange

dual function. In particular, we have the simple but important inequality

d? ≤ p?, (3.9)

which holds even if the original problem (3.2) is not convex. This important property

is called weak duality.

It is worth to mention that the weak duality (3.9) also holds when d? and p? are

infinite. For instance, if the primal problem is unbounded below, so that p? = −∞,

we must have d? = −∞. Conversely, if the dual problem is unbounded above, so that

d? = ∞, we must have p? = ∞.

Next, a very natural and interesting problem is under which conditions that we can

achieve d? = p?. So if the equality

d? = p? (3.10)

holds, then we say that strong duality holds. It means that the best bound can be

obtained from the Lagrange dual function.

Generally speaking, the strong duality does not hold. But if the primal problem

(3.2) is of the form

minimize f0(x) subject to fi(x) ≤ 0 i = 1, . . .m, Ax = b, (3.11)
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with f0, . . . , fm convex, we usually(but not always) have strong duality. There are

many results that establish conditions on the problem, beyond convexity, under which

strong duality holds. These conditions are called constraint qualifications. Among all

these constraints, one simple constraint qualification is Slater’s condition: There exists

an x ∈ D such that

fi(x) < 0 i = 1, . . . m, Ax = b, (3.12)

such a point is sometimes called strictly feasible, since the inequality constraints hold

with strict inequalities. Slater’s theorem states that strong duality holds, if Slater’s

condition holds (and the problem is convex).

Slater’s condition can be refined when some of the inequality constraint functions

fi are affine. For example, if the first k constraint functions f1, . . . , fk are affine, then

strong duality holds provided the following weaker condition holds: There exists an

x ∈ D with

fi(x) ≤ 0 i = 1, . . . k, fi(x) < 0, i = k + 1, . . . m, Ax = b. (3.13)

3.2 Primal and Dual Formulation in Density Esti-

mation

In this section, we discuss the application of the dual and primal theory in density

estimation with penalized and shape constraints within the discrete setting.

In the continuous version, the primal formulation can be traced back to Leonard

(1978) and Silverman (1982). As we mentioned in the previous section, the latter

established

−
∫

gdPn +

∫
egdx + λ

∫
(g(k))2dx = min

g
! (3.14)

using the third (k = 3) derivative to estimate the logarithm, g, of a density f, with the

symbol Pn denoting the empirical probability supported by the datapoints; Gu (2002)
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and others championed second (k = 2) derivative instead. The total variation penalty

∫
|g(k)|dx =

∨
g(k−1) (3.15)

was considered by Koenker and Mizera (2006a, 2006b) for k = 1, 2, 3. Dümbgen and

Rufibach (2008) investigated maximum likelihood estimation of a log-concave density,

which in our setting corresponds to k = 2 and the penalty in the form of the non-

positivity constraint on the second derivative (with no tunning parameter λ).

In the discrete setting, we replace the kth derivative with the difference operator

P , and the evaluation operator L and vector of weights w by their typical instances

described below.

Koenker and Mizera (2008b) discussed the primal and dual formulation relevant for

the numerical estimation of a probability via regularization. Under various situations,

we study the problem

−wT Lh + sT Ψ(g) + J(−Ph) = min
g,h

!, subject to h ¹ g, (3.16)

where L and w are evaluation operator and averaging function respectively. The es-

timated density is denoted by the vector f if its values in some collection of points,

which is referred as a grid. The evaluation operator L indicates the position of n dat-

apoints with respect to the grid via interpolation; for example, if the datapoints are

exactly among the gridpoints, then the ith row assigns 1 to a gridpoint equal to the

ith datapoint and zero otherwise. The vector w assigns weights to the datapoints, 1/n

to each.

Ψ(g) denotes a real convex function Ψ applied to the components of g, while J(h)

is a convex function applied to the whole vector −Ph, the negative of the result of a

linear operator P applied on h.

As for the penalization term, P is a discretized version of a differential operator. The

penalty J involves an lp norm and a tuning constant, λ, customary in the context: say,
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J(u) = λ‖u‖1 or J(u) = λ‖u‖2
2. Regularization may be also expressed in a constrained

form, in which J is the indicator of a set {u : ‖u‖p ≤ Λ}.
All these examples are symmetric: J(−u) = J(u). An asymmetric example is:

J equals to the indicator of {u : u ¹ 0}, the style of penalization used in density

estimation under monotonicity or convexity constraints.

We assume that vectors w and s have nonnegative elements. And we use ¹,º
to denote the componentwise inequalities. If Ψ is nondecreasing, i.e, Ψ(g) = eg, the

primal formulation (3.16) can be simplified to the unconstrained problem

−wT LH + sT Ψ(g) + J(−Pg) = min
g

! (3.17)

We assume that all convex functions in (3.16) and (3.17) have the domains with

nonempty interiors. Here, the domain is the set that the convex function is finite, and

the convex function is allowed to attain +∞ as a value.

According to the definition of the conjugate function and dual formulation in Section

3.1, Koenker and Mizera claimed that the dual of (3.16), or equivalent, (3.17) is the

problem

−sT Ψ?(f)− J?(e) = max
f,e

!, subject to Sf = LT w + P T e, and f º 0, (3.18)

where S=diag(s) and Ψ?(f) indicates the componentwise application of Ψ?. The vector

s is composed of the integration weights corresponding to the gridpoints: the identity

sT f = 1 demonstrates that the estimated density should integrate to 1.

The fact that the estimated f is indeed a probability density can be most conve-

niently verified through the dual formulation (3.18).

Koenker and Mizera (2008b) proved theorems regarding to the property of the

solution of (3.18) and the strong duality between (3.16) (3.17)and (3.18).

Theorem 3.2.1. Suppose that W T L1 = 1 and P1 = 0. Then the solution f of (3.18)

satisfies
∑

j sjfj = 1 and fj ≥ 0 for every j.
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Compared to the dual (3.18) the relationship of variables appearing in the primal

formulations (3.16) and (3.17) to the estimated density is not explicit. However, once

a strong duality of (3.16) and (3.18) is demonstrated to be true, the relationship of g

and f for qualified Ψ is given by

f = Ψ
′
(g), (3.19)

where Ψ
′
(g) indicates the componentwise application of Ψ

′
, the derivative of Ψ

Theorem 3.2.2. Problem (3.18) is a strong dual of the problem (3.16). If ψ is differ-

entiable on the interior I of its domain, then the corresponding solutions of (3.18) and

(3.16) satisfies (3.19), whenever g and f are componentwise from I and the image of

I under Ψ
′
, respectively.

Since ψ(x) = ex is nondecreasing, (3.16) is equivalent to the unconstrained formu-

lation (3.17), whose specific form is, for symmetric J(u) = λ‖u‖p
p and p = 1, 2,

−wT Lg + sT eg + λ‖Pg‖p
p = min

g
! (3.20)

where eg is understood componentwise. The additional assumptions of Theorem 3.2.2

are satisfied, so f = eg, and

ψ∗(y) =





y log y − y, for y > 0,

0, for y = 0,

+∞, otherwise.

(3.21)

According to the definition of conjugate function, the feasibility requirement related

to the fact dom ψ∗ = [0, +∞) independently enforces the nonnegativity constraint on

f. In continuous case, Silverman (1982) showed that the result of (3.20) is a probability

density. The same conclusion follows, in the discrete setting, from Theorem 3.2.1 and

3.2.2 for all formulations of type (3.20). If the assumptions of Theorem 3.2.1 regarding
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P, L, and w are satisfied, then the dual objective function is

−
∑

j

sjfj log fj +
∑

j

sjfj = max
f,e

!, (3.22)

which can be further simplified, since the second sum is equal to 1, a constant. The

resulting dual of (3.20), writing in the minimization form, for p = 1, is

∑
j sjfj log fj = minf,e!,

subject to Sf = LT w + P T e, f º 0, and ‖e‖∞ ≤ λ,
(3.23)

and for p = 2, ∑
j sjfj log fj + 1

4λ
‖e‖2

2 = minf,e!,

subject to Sf = LT w + P T e, and f º 0.
(3.24)

The dual of the penalty-constrained version of the primal (3.20),

−wT Lg + sT eg = min
g

!, subject to ‖Pg‖p ≤ Λ, (3.25)

is(when p and q being conjugate)

∑
j sjfj log fj + Λ‖e‖q = minf,e!,

subject to Sf = LT w + P T e, and f º 0.
(3.26)

Finally, the dual of the shape constrained formulation,

−wT Lg + sT Ψ(g) = min
g

!, subject to Pg ≤ 0 (3.27)

(yielding log-concave f when P is a second order difference operator), is

∑
j sjfj log fj = minf,e!,

subject to Sf = LT w + P T e, f º 0and e ¹ 0.
(3.28)
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We notice that the essence of all dual variants is the maximization of the Shannon

entropy of f. We can generalize the dual function of the penalized likelihood problem

by replacing the Shannon entropy term by some of the Rényi entropies we discussed

in the previous section.

Let ψα be a function equal to xα/α for x ≥ 0 and to 0 for x < 0. the conjugate of

ψ, say ψ∗α is equal to yβ/β for y ≥ 0 (α and β are conjugate), and to +∞ otherwise.

Note that ψp is nondecreasing, hence (3.16) is equivalent to (3.17) whenever ψ = ψα.

Example. The special case of the Rényi entropy for α = 2 yields ψ(x) = ψ2 and

ψ∗2 for y ≥ 0. The dual can be easily obtained by replacing the Shannon entropy term
∑

j sjfj log fj in the objective function of (3.23), (3.24), (3.26), and (3.28) by sT f 2,

and eliminating the redundant constants in the objective. Specifically, This leads to

the dual objective function for p = 1,

∑
j sjf

2
j = minf,e!,

subject to Sf = LT w + P T e, f º 0, and ‖e‖∞ ≤ λ,
(3.29)

and for p = 2, ∑
j sjf

2
j log fj + 1

4λ
‖e‖2

2 = minf,e!,

subject to Sf = LT w + P T e, and f º 0.
(3.30)

The dual of penalized-constrained version is

∑
j sjf

2
j + Λ‖e‖q = minf,e!,

subject to Sf = LT w + P T e, and f º 0.
(3.31)

And the dual of shape constrained formulation is

∑
j sjf

2
j log fj = minf,e!,

subject to Sf = LT w + P T e, f º 0and e ¹ 0.
(3.32)

The corresponding primal results from replacing
∑

j sje
gj in (3.20), (3.25), and
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(3.27) by
∑

j sj. This leads the primal formula

−wT Lg + sT 1 + λ‖Pg‖p
p = min

g
! (3.33)

The primal of the penalty-constrained version,

−wT Lg + sT 1 = min
g

!, subject to ‖Pg‖p ≤ Λ. (3.34)

And shape constrained primal,

−wT Lg + sT Ψ(g) = min
g

!, subject to Pg ≤ 0. (3.35)

If instead of ψ2 we consider ψ(x) = (1/2)x2 for all x, we can cast both primal

and dual in a quadratic programming form. However, we need to pay attention that

the correct primal formulation has to be written in the constrained form (3.16) now,

because ψ is no longer monotone. In particular, the correct formulation for the setting

corresponding to (3.17) is

−wT Lh +
1

2
sT g2 + λ‖Ph‖p

p = min
g,h

!, subject to h ¹ g, (3.36)

since ψ′(x) = x, both primal and dual yield directly f = g.

Example. (Hellinger) Another important example from the Rényi system, with

α = 1/2, set ψ(x) = −1/x, for x < 0 and +∞ elsewhere. The conjugate is ψ∗(y) =

−2
√

y, for y ≥ 0. The dual (for p = 1) can be obtained by replacing −sT
√

f in the

objective of (3.23), (3.24), (3.26),(3.28), and eliminating the constants ;
√

f is again

applied componentwise.

On the other hand, since ψ is nondecreasing, the primal can be cast in its uncon-

strained version (3.17), just replacing the
∑

j sje
gj term in (3.20), (3.25), and (3.27)

by −sT g−1; however, the domain restriction for ψ has to be included as a feasibility
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constraint. The resulting primal analog of (3.20) is

−wT Lg − sT g−1 + λ‖Pg‖1 = min
g

!, subject to g ¹ 0. (3.37)

All the dual and primal formulas mentioned above for α = 1/2 can be derived in

the similar manner as (3.29)-(3.32) and (3.33)-(3.35).

For symmetric penalties, it is more convenient to recast the primal in terms of

h = −g:

wT Lh + sT h−1 + λ‖Ph‖1 = min
h

!, subject to h º 0. (3.38)

The estimated density satisfies f = 1/g2 = 1/h2.

Example. (Maximum empirical likelihood). The limiting variant of the Rényi

system for α = 0 is ψ(x) = −1/2 − log (−x) for x < 0, and +∞ otherwise. The dual

puts −sT log f into the objective function of (3.23), (3.24), (3.26), and (3.28), while the

primal (unconstrained, but with a feasibility constraint) puts −sT log(−g) in (3.20),

(3.25), and (3.27). For instance, recasting (3.20) in terms of h = −g gives

wT Lh− sT log h + λ‖Ph‖1 = min
h

!, subject to h Â 0. (3.39)

3.3 The Existence of the Solution

Based on the paper of Koenker and Mizera (2008a), we study the shape constraint

problem

Ψn(g) =
1

n

n∑
i=1

g(Xi) +

∫
ψ(g)dx = min !, (3.40)

subject to g∈ C(X) and g∈ K, where C(X) is the collection of all continuous functions

on the convex hull of X, and K stands for the set of all convex functions on Rd

According to (1.49) and (1.50), α and β are conjugates in the usual sense that

1
β

+ 1
α

= 1. All these ψ functions satisfy the assumptions that they are convex and
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decreasing, their domain contains (0, +∞), and the boundary limit behavior require-

ments is also satisfied. Moreover, they are all strictly convex and differentiable on

their domains. Finally, for α > 0 they are all bounded from below by 0. So there is no

problem with the Lebesgue existence of the integral in the primal formulation, whose

general form for α 6= 1 can be written in a unified way as

1

n

n∑
i=1

g(Xi) +
1

β

∫
|g|βdx = min !, g ∈ C(x), (3.41)

as well as the relation between the dual and primal solutions, say, f = |g|β−1.

Koenker and Mizera (2008a) gave the general proof of the existence of the solution

to (3.40) in multi-dimensional case. Within the scope of this thesis, we give a proof

for the one-dimensional case by using the continuous functions’ properties on bounded

domain, techniques distinct from the multi-dimensional ones.

Theorem 3.3.1. The solution of Ψn exists and is unique on [X(1), X(n)].

Proof. In order to prove the existence of the solution of (3.40), we first prove the

continuity of Ψn(g), and we use two steps to illustrate it.

1) We prove that if a sequence of functions gk(x) → g(x) on x ∈ [X(1), X(n)], then

Ψn(gk) → Ψn(g) for α > 0 as k →∞.

First, we consider the case β > 1. Since 1/β + 1/α = 1, we have α > 1. In such

a case, ψ(g) = gβ/β with g(x) ≤ 0 and g is convex and continuous. We assume that

the ordered observations X(i), i = 1, 2, . . . n are finite in R. Since g is continuous on

[X(1), X(n)], we could assume that there exists gk(x) → g(x) on [X(1), X(n)]. Then,

|Ψn(gk)−Ψn(g)|
≤ | 1

n

∑n
i=1(gk(xi)− g(xi))|+

∫ |(ψ(gk − ψ(g)))|dx
(3.42)

For the first term on the right side of inequality (3.42), provided gk(x) → g(x) on

52



[X(1), X(n)], we conclude

| 1
n

n∑
i=1

(gk(xi)− g(xi))| → 0. (3.43)

For the second term on the right side of inequality (3.42), |ψ(gk) − ψ(g)| = |gβ
k −

gβ|/β. Since the exponential function f(u) = uβ, β > 1 is continuous on [X(1), X(n)],

based on the Mean Value Theorem

|gβ
k − gβ|

β
=
|f(gk)− f(g))|

β
=
|f ′(ε)||gk − g|

β
, (3.44)

where ε ∈ [min (gk(x), g(x)), max (gk(x), g(x))].

Due to fact g is continuous and gk(x) → g(x), we know both g and gk are bounded

on [X(1), X(n)] with |gk−g| → 0. Therefore, ε is also bounded. Especially, f ′(ε) = βεβ−1

is bounded. We conclude that |ψ(gk)− ψ(g)| → 0.

As a consequence, we conclude that |Ψn(gk)−Ψn(g)| → 0. It means that Ψn(gk) →
Ψn(g) for β > 1.

In the same manner, we can prove that for β < 0, 0 < α < 1, if gk(x) → g(x), then

Ψn(gk) → Ψn(g).

In summary, we prove the first step that if gk(x) → g(x) on x ∈ [X(1), X(n)], then

Ψn(gn) → Ψn(g).

2) We will show if ‖gk‖ → +∞, then Ψn(gk) → +∞.

Let (gk)
∞
k=1 be such vectors that ‖gk‖ → +∞, and we denote gk(xi) → ri ∈

[−∞, +∞].

First, we consider the case β > 1, from (1.49), we know that g(x) ≤ 0, so gk(xi) →
ri ∈ [−∞, 0].

Since ‖gk‖ → ∞, we suppose there is at least one i, such that ri = −∞. Then,

Ψn(gk) = 1
n

∑n
1=1 gk(xi) +

∫
ψ(gk)dx

= 1
n

∑n
1=1 gk(xi) +

∫
(|gk(x)|β/β)dx.

(3.45)
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Since β > 1, if we denote u(x) = −g(x), then u(x) is concave and u(x) ≥ 0. And

we can recast (3.45) as

Ψn(gk) = − 1

n

n∑
1=1

uk(xi) +

∫
(uk(x)β/β)dx, (3.46)

and uk(xi) → +∞. For the second term on the right side of (3.46), based on the

concavity property of u(x)

∫
(uk(x)β/β)dx ≥ 1

β

∫ xi

xi−1
uβ

k(x)dx

= 1
β

∫ xi

xi−1
uβ

k(x)[ x−xi−1

xi−xi−1
xi + xi−x

xi−xi−1
xi−1]dx

≥ 1
β

∫ xi

xi−1
[uk(xi)

x−xi−1

xi−xi−1
+ uk(xi−1)

xi−x
xi−xi−1

]βdx.

(3.47)

Lemma 3.3.2. If a, b, α, β ≥ 0 and α + β = 1, then aα + bβ ≥ aα + bβ.

By using the Lemma 3.3.2, and the nonnegative property of u

∫
(uk(x)β/β)dx ≥ 1

β

∫ xi

xi−1
uk(xi)

β
x−xi−1
xi−xi−1 uk(xi−1)

β
xi−x

xi−xi−1 dx

=
uβ

k (xi)−uβ
k (xi−1)

β2 ln uk(xi)/uk(xi−1)
(xi − xi−1),

(3.48)

therefore,

Ψn(gk) ≥ 1
n

∑n
j=1,j 6=i(−)uk(xj)− 1

n
uk(xi)

+
uβ

k (xi)−uβ
k (xi−1)

β2 ln uk(xi)/uk(xi−1)
(xi − xi−1).

(3.49)

We notice the fact that: limx→+∞( xβ

β2 ln x
− x) = +∞, uk(xi) → +∞, and uk(xi−1)

is finite, then
uβ

k(xi)− uβ
k(xi−1)

β2 ln uk(xi)/uk(xi−1)
− 1

n
uk(xi) → +∞. (3.50)

The remaining terms on the right side of (3.49) are finite, so we could conclude that

Ψn(gk) → +∞ for β > 1.

Secondly, we consider the case β < 0 and < α < 1. In such a case, we have

ψ(g) = −gβ/β, g > 0, and g is convex. If gk(xi) → +∞ for at least one i, then we
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know 1
n

∑n
i=1 gk(xi) → +∞ and − 1

β

∫
gβdx → 0 when β < 0, it implies the fact that

Ψn(gk) → +∞.

Finally, we conclude that if ‖gk‖ → +∞, then Ψn(gk) → +∞. In summary,

according to 1) and 2), we know that Ψn(g) is continuous on [X(1), X(n)].

Due to the important property that continuous function has minimum value on the

closed interval, we know that the solution of (3.40) exists.

For the uniqueness of the solution of (3.40), we know that Ψn is a strictly convex

functional in the sense that

Ψn((1− λ)g1 + λg2) < (1− λ)Ψn(g1) + λΨn(g2), (3.51)

for λ ∈ (0, 1) and convex function g1 and g2: R → [−∞, +∞) such that
∫

ψ(gi) < +∞
and Leb(g1 6= g2) > 0.

So if the solution of (3.40) is not unique, for example, we have two different solutions

g1 and g2, then according to (3.51)

Ψn((1− λ)g1 + λg2) < (1− λ)Ψn(g1) + λΨn(g2) ≤ min (Ψn(g1), Ψn(g2)). (3.52)

It indicates (1−λ)g1 +λg2 is the minimizer of Ψn. However, it contradicts the fact

that g1 and g2 are two different solutions of (3.40).

Thus we have illustrated the uniqueness of the solution of (3.33).

3.4 Fisher’s Consistency

Consistency of these estimators in dimension one for selected α has been addressed by

several authors: Pal, Woodroofe, and Meyer (2006) prove consistency in the Hellinger

metric for the log-concave (α = 1) case, Groeneboom, Jongbloed, and Wellner (2001b)

establish consistency and rates of convergence for α ∈ 1, 2 in the uniform metric.

Dümbgen and Rufibach (2008) improved Groeneboom, Jongbloed, and Wellner (2001b)’s
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work and proved the difference between the empirical and log-concave estimated distri-

bution function vanished with the rate op(n
−1/2) under certain regularity assumptions.

Koenker and Mizera (2008a) prove that the Fisher consistency, can be verified by

Geometric Inequality for the special case of α = 1/2 as,

∫
1√
f

dPn +

∫ √
fdx. (3.53)

Replacing dPn by f0dx, where f0 is the unknown target density and Pn is the

empirical density function supported by the datapoints yields,

2

∫ √
f0 ≤

∫
f0√
f

dx +

∫ √
fdx, (3.54)

which follows the inequality,
√

f0f ≤ f0 + f

2
, (3.55)

with the ”=” if and only if f = f0. Thus, for the case α = 1/2, we see that the

unknown target density f0 really minimize the problem (3.40) and will be the solution

we are going to seek for.

We will extend the proof of the Fisher consistency of the problem (3.40) to the

general cases for all α 6= 1. We consider the proof for 0 < α < 1 and α > 1 separately.

First, if α > 1, then β > 1. In such a case, the Primal formulation is

Ψ(g) = − 1

n

n∑
i=1

g(Xi) +
1

β

∫
gβdx, subject to g is concave and g ≥ 0. (3.56)

By applying the same techniques,

Ψ(g) =

∫
−gdPn +

1

β

∫
gβdx. (3.57)
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Replacing dPn by f0dx, where f0 is the unknown target density yields

Ψ(g) =

∫
−gf0dx +

1

β

∫
gβdx. (3.58)

When strong duality holds, we know f = gβ−1. Therefore, the aim is to prove for

all concave and non-negative function g

Ψ(f
1

β−1

0 ) ≤ Ψ(g), (3.59)

this relationship can be verified by taking the difference

Ψ(g)−Ψ(f
1

β−1

0 ) = 1
β

∫
gβdx− ∫

gf0dx +
∫

f
1

β−1

0 f0dx− 1
β

∫
f

β
β−1

0 dx

= 1
β

∫
gβdx + β−1

β

∫
f

1
β−1

0 dx− ∫
gf0dx

= 1
β

∫
gβdx + 1

β′
∫

fβ′
0 dx− ∫

gf0dx.

(3.60)

If we denote (β − 1)/β = β′ > 0, then 1/β + 1/β′ = 1, and both g and f0 are

nonnegative. We apply Young’s inequality

1

β

∫
gβdx +

1

β′

∫
fβ′

0 dx ≥
∫

gf0dx, (3.61)

it indicates Ψn(g)−Ψ(f
1

β−1

0 ) ≥ 0, so g = f
1

β−1

0 minimizes the primal formulation (3.56).

On the other hand, we know f = gβ−1, thus we conclude that f0 = f , it means f0 indeed

minimizes Ψ(g).

Next, we consider the case 0 < α < 1 and β > 0. The primal formulation is

Ψ(g) =
1

n

n∑
i=1

g(Xi)− 1

β

∫
gβdx, subject to g is convex and g > 0. (3.62)

By applying the Fenchel’s inequality, which one can refer to Boyd and Vanderberghe

(2004), for every g,

ψ(g) + ψ∗(−f0) ≥ −gf0, (3.63)
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where ψ(g) = − 1
β
gβ and ψ∗(−f0) = − 1

α
fα

0 = − 1
β′f

β′
0 ,

ψ(g) + ψ∗(−f0) = − 1

β
gβ − 1

β′
fβ′

0 ≥ −gf0, (3.64)

so we conclude that

Ψ(g)−Ψ(f
1

β−1

0 ) = − 1

β
gβ − 1

β′
fβ′

0 + gf0 ≥ 0, (3.65)

this again demonstrates f0 = f , so f0 actually minimizes Ψ(g) for 0 < α < 1.

In summary, we conclude that Fisher consistency holds for all positive α. It is

equivalent to say the population version of (primal) objective function is uniquely

minimized at f0.

3.5 The Dual and Primal Formulation for the Max-

imum Entropy Density Estimation

In Chapter Two, we have discussed the maximum entropy density estimation in the

continuous setting without duality theorem. Since we have discussed the dual and

primal formulation applied in density estimation in Section 3.2, we will show a special

case that the strong duality holds for maximum entropy density estimation with pe-

nalization in this section. However, the general duality theorem for maximum entropy

density estimation has not been fully proved yet.

We consider the following dual problem

−
∫

ψ(Pn − u′) = max
u

, subject to ‖u‖L∞ ≤ λ, (3.66)

where the function ψ is the negative Shannon entropy function. The primal of (3.66)

is

− 1

n

n∑
i=1

log f(xi) + λ
∨

(log f) +

∫
fdx = inf

f
! (3.67)
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where
∨

denotes the total variation of log f in the domain of f.

We consider the very special case that there are only two data points. When only

two data points are considered, if λ < 1/4, from the taut string theory, we know that

there is no linear function within the string, which is to say, the dual problem is not

feasible. So the dual objective is defined to be infinity.

If we consider 1/4 < λ < 1/2, then we could find a solution within the tube. For

different 1/4 < λ < 1/2, the solution could be a straight line between the two end

points, or it could be a piecewise linear function as we mentioned in Chapter Two.

Here, we first consider the case that the solution is piecewise linear function, we could

see this in Figure 3.1.

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4
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0

x1

y1

−a −x x a

Figure 9: taut string with 1/4 < λ < 1/2 and the piecewise linear solution within the
string

In Figure 9, we denote the two data points as −x and x which are the two solid
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points, and the two end points as −a and a. In such a case, the solution can be

treated as three pieces of linear functions. Specifically, the first linear function passes

the points (−a, 0) and (−x, λ), so it is the function y = λ
a−x

t + aλ
a−x

. The second linear

function is from (−x, λ) to (x, 1 − λ), thus the function is y = 1−2λ
2x

t + 1
2
. At last,

the third linear function goes through (x, 1 − λ) and (a, 1), and the linear function is

y = λ
a−x

t + a−x−aλ
a−x

.

The estimated density f is the first derivative the piecewise linear function above.

So f is piecewise constants f1 = λ
a−x

, f2 = 1−2λ
2x

and f3 = λ
a−x

. The width of intervals

corresponding to each constant are d1 = a− x, d2 = 2x and d3 = a− x.

Then we could figure out the dual problem as

− ∫
f log fdx + f

= −∑
i fi log fidi + fi

= −2λ log( λ
a−x

)− (1− 2λ) log(1−2λ
2x

) + 1.

(3.68)

On the other hand, when we calculate the primal problem (3.67), we need to define

the values for f−x and fx because the piecewise constants functions fi are not continuous

at the two data points. We use a continuous function in Figure 3.2 to approach the

piecewise constants function, with e → 0.

Then we could figure out the value of the primal problem by using the continuous

function in Figure 10. The primal problem equals

− 1
n

∑n
i=1 log f(xi) +

∫
fdx + λ

∨
(log f)

= lime→0−1
2
[log(1−2λ

2x
+ log(1−2λ

2x
] + 1 + δ(e) + 2λ[log(1−2λ

2x
− log( λ

a−x
)]

= −2λ log( λ
a−x

)− (1− 2λ) log(1−2λ
2x

) + 1,

(3.69)

where δ(e) → 0 as e → 0.

We find that the dual and primal problem have the same value in this case; the

strong duality holds.

Depending on different values of data points and end points, when 1/4 < λ < 1/2,
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Figure 10: piecewise constants function

the piecewise linear solution could be other situations as described in section 2.3,

however, it is in the same manner to verify that the strong duality holds for all data

points and end points.

Next, we consider the case λ < 1/4, we already know that the dual problem is not

feasible when λ < 1/4, thus the dual optimum is negative infinity. We want to verify

that the primal optimum is also negative infinity, therefore, the strong duality holds

even when the dual problem is not feasible.

In such a case, we could also treat the ”solution” as piecewise linear function.

However, the ”solution” itself is not continuous because the tube constraint. Similarly,

the first linear function passes the points (−a, 0) and (−x, λ), so it is the function

y = λ
a−x

t+ aλ
a−x

. The second linear function is from (−x, 1/2−λ) to (x, 1/2+λ), which

is y = λ
x
t + 1

2
. The last linear function goes through the points (x, 1 − λ) and (a, 1),
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and the linear function is y = λ
a−x

t + a−x−aλ
a−x

.

Then we denote f1 = f3 = λ
a−x

and f2 = λ
x
. Again, we need to use a continuous

function to approach the piecewise linear function fi. We use the function in Figure

11 to approach the piecewise linear function, with cf = gh = d, and d, e → 0.
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Figure 11: piecewise constants function

Then we could figure out the value of the primal problem by using the continuous

function in Figure 11. The primal problem equals

− 1
n

∑n
i=1 log f(xi) +

∫
fdx + λ

∨
(log f)

= limd,e→0− log(d + λ
x
) + 1 + δ(d, e) + 2λ[log(d) + log(d + λ

x
− λ

a−x
)]

= −∞,

(3.70)

where δ(d, e) → 0 as d, e → 0 and λ < 1/4.
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Therefore, the dual and primal optima coincide also in this case. We conclude that

the strong duality holds.

At last, when λ > 1/2, the solution is exactly the linear function between the end

points, or equivalently, the estimate density is uniform within the interval. And the

strong duality could also be verified.

In summary, we conclude the strong duality between (3.66) and (3.67) holds for

all λ for the two data points’ special case. However, for general n data points case,

the proof of strong duality requires more complicated techniques which are beyond the

scope of this thesis, and there is no such proof so far. This is an important problem

for the further research work.
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Chapter Four: Numerical Methods

and Data Experiments

As we have already discussed many theoretical techniques in the previous chapters, in

this part, we will focus on the numerical methods and data experiments of regulariza-

tion methods.

4.1 Existing Numerical Methods

As we discussed in section 1.4.2, the detailed numerical L2 penalized methods could

be found in Ramsay and Silverman (2005).

For L1 penalties, there are also many numerical methods. In Koenker and Miz-

era (2006a), they established the total variation method based on L1 penalty. Their

numerical method will restrict attention to f ′s for which log f is piecewise linear on

a specified partition of Ω. We can write J(f) as an L1 norm of the second weighted

differences of f evaluated at the mesh points of the partition. More explicitly, let Ω

be the closed interval [x0, xm] and consider the partition x0 < x1 < · · · < xm with

spacings hi = xi − xi−1, i = 1, . . . m. If log (f(x)) is piecewise linear, so that

log (f(x)) = αi + βix, x ∈ [xi, xi+1), (4.1)

then

J(f) =
∨
Ω

((log f)′) =
m∑

i=1

|βi − βi−1| =
m∑

i=1

|(αi+1 − αi)/hi+1 − (αi − αi−1)/hi|, (4.2)

where we have imposed continuity of f in the last step. We can therefore parameterize

functions f by the function values αi = log (f(xi)), and this enables us to write our
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problem (1.25) as a linear program,

max {
n∑

i=1

αi − λ

m∑
j=1

(uj) + vj|Dα− u + v, (α, u, v) ∈ Rn ×R2m
+ }, (4.3)

where D denotes a tridiagonal matrix containing the hi factor for the penalty con-

tribution, and u and v represent the positive and negative parte of the vector Dα,

respectively.

It is worthy to mention that all the penalized numerical data experiments with

respect to geyser data in Chapter One are carried out by Matlab.

For the regularization methods with shape constraint, the famous one is established

by Dümbgen, Hüsler, and Rufibach (2007). We have discussed the theoretical part of

their work in section 1.5, concerning the computation of the log-concave nonparametric

maximum likelihood estimation. The authors proposed an active set algorithm based

on EM algorithm, which is similar to the vertex reduction algorithms presented by

Groeneboom et al. (2007) and are available within the R package ”Logcondens”,

accessible via ”CRAN”.

Pal, Woodroofe, and Meyer (2005) also considered the nonparametric maximum

likelihood estimation in the class of densities with a concave logarithm. The estima-

tion is shown to be the solution of a convex programming problem in the Euclidean

space and a numerical algorithm is devised similar to the Iterative Convex Minorant

algorithm by Jongbloed (1999).

Koenker and Mizera (2008a) considered the numerical method for log-concave den-

sity estimation by primal and dual method. The numerical implementation of Koenker

and Mizera’s methods are based on two independent algorithms for solving the con-

vex programming problems posed by : mskscopt from the Mosek software package of

Andersen (2006), and PDCO Matlab procedure of Saunders (2003). Both algorithms

are coded in Matlab and employ similar primal-dual, log-barrier methods. The crux of

both algorithm is a sequence of Newton-type steps that involving solving large, very
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sparse least squares problems, a task that is very efficiently carried out by modern vari-

ants of Cholesky decomposition. And this method can also used in multivariate cases,

while the log-concave density estimation numerical methods we discussed in previous

paragraph are only for the univariate case.

If we consider the primal and dual formulation for density estimation more generally

based on the theories in chapter three, for example, from Koenker and Mizera (2008b).

The authors concluded that the numerical performance from the dual formulations are

always significantly faster and more numerical stable than their primal counterparts.

4.2 Data Experiment

Finally, we discuss the application of shape constraint density estimation to the Bright

Star data as a numerical experiment. The data source is The Bright Star Catalogue,

which contains 9110 objects. The indicators and variables in the data file provides

variety of astronomical information out of which radial and rotational velocity are

the subjects of concern. There are 9092 objects with radial velocity and 3933 with

rotational velocity. The variable rotational velocity is of non-integer type and ra-

dial velocity is integer. The densities of these two data sets are the candidates for

estimation. The data set and descriptions can be found through the following link

http://cdsarc.u-strasbg.fr/viz-bin/Cat?V/50

In Pal, Woodroofe and Meyer (2006), the authors also estimated the Polya den-

sity of radial velocities of 178 stars by using the data from Walker et al. (2006) in

Astrophysical Journal.

Radial velocity is the velocity of an object in the direction of the line of sight (i.e.

its speed straight towards or away from an observer). The light of an object with a

substantial radial velocity will be subject to Doppler effect, so the frequency of the

light decreases for receding objects (redshift) and increases for approaching objects

(blueshift).
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The radial velocity of a star or other luminous but distant objects can be mea-

sured accurately by taking a high-resolution spectrum and comparing the measured

wavelengths of known spectral lines to wavelengths from laboratory measurements.

By convention, a positive radial velocity indicates the object is receding; if the sign is

negative, then the object is approaching.

Rotational speed (sometimes called speed of revolution) indicates how fast a star

is running. Rotational speed is equivalent to angular speed, but with different units.

Rotational speed tells how many complete rotations (i.e. revolutions or cycles) there

are per time unit. It is therefore a cyclic frequency, measured in hertz (revolutions per

second) in the SI System. The units revolutions per minute (rpm or 1/min) are more

common in everyday life. Angular speed, however, tells the change in angle per time

unit, which is measured in radians per second in the SI system.

Before we carry out the numerical experiment, first of all, we draw the histograms

of the two velocities in Figure 12. We can see the histogram of radial velocity looks

symmetric and centered around zero. On the other hand, the histogram of rotational

velocity has a long tail and is obviously skewed.

From the histograms (or one can even plot the kernel estimates) of the two velocities,

we are confident of the unimodality of the two densities. This inspires us to use shape

constraint methods for the numerical density estimation next.

The first numerical method we use is based on Dümbgen, Hüsler, and Rufibach

(2007). The numerical method is available in R, and the density estimation function

is ”activeSetLogCon”. In Figure 13 and 14, we could see the estimated densities of

radial and rotational velocities with solid lines. We notice that the estimated radial

density is quite similar to the radial velocity histogram. However, the estimated ro-

tational density does not show the spiking shape feature around 0 as the histogram

indicated. Thus, Dümbgen, Hüsler, and Rufibach’s approach is not wholly satisfied for

the rotational velocity data. We consider another method from Koenker and Mizera

next.
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Figure 12: the histogram of the radial and rotational velocity

And the second numerical method is based on Koenker and Mizera (2008a, 2008b),

the shape constraint method with the regularization. This numerical method is done

by Matlab. Specifically, for each velocity estimation, the first estimated density is

calculated by setting the values of the density as zero out of the bound. The second

estimated density is calculated by setting the values of the density as 10−6 out of the

bound. Although we find there is almost no difference between the two estimates,

the second one always could give the optimal solution of the maximization problem

by Matlab, while the first one sometimes can not. The third density estimation is

calculated by using the Hellinger estimator mentioned in page 50 (α = 1/2).

In Figure 15, we plot the above three estimations of radial density. Actually, we use

solid and dashed line to denote the first and second estimate respectively. We observe

that these two estimates of radial velocity density almost coincide. While the Hellinger

68



the estimated density of radialvelocity
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Figure 13: the estimated densities of the radial velocity

estimation is denoted by dotted line, we can see the sight difference around the tails

between the Hellinger estimate and the first two estimates.

Overall speaking, the three methods almost give the same estimated densities for

radial velocity.

Next, we apply the same methods to rotational velocity. The result is plotted in

Figure 16.

Again, we can see there is nearly no difference between the first and second esti-

mator. However, the Hellinger estimator gives more spiking shape around the mode,

which is more similar to the histogram.

Finally, we conclude all the shape constraint method we use in this chapter almost

gives the same estimated densities for radial velocity data.
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the estimated density of rotational velocity
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Figure 14: the estimated densities of the rotational velocity

On the other hand, compared with the Dümbgen, Hüsler, and Rufibach’s shape con-

straint method, Koenker and Mizera’s methods generate density fits more similar to

the histogram for rotational velocity data, especially by applying the Hellinger method.

We notice that Koenker and Mizera’s numerical methods not only can do log-concave

density estimation, but also can estimate the more general quasi-concave density. For

example, we recall that the Hellinger estimator corresponds to −1/2 concave. In ad-

dition, the optimal computation methods used in Dümbgen, Hüsler, and Rufibach’s

method and Koenker and Mizera’s approach are based on different numerical packages

in R and Matlab respectively.

It is worth to emphasize that the choice of numerical methods in density estima-

tion depends on the many aspects. In order to make a objective choice of numerical
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Figure 15: the estimated densities of the radial velocity

approaches, it is beneficial to carry out the data analysis first to obtain the prior in-

formation and properties of the data; and then determine the methods according to

one’s special needs, for instance, the usage of different softwares.
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estimated rotational velocity density
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Figure 16: the estimated densities of the radial and rotational velocity
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Conclusion

We have discussed various nonparametric density estimation methods and applications

in the thesis. After reviewing all the methods, we can obtain a clear understanding of

properties and advantages of each method.

In summary, the histogram method is one of the most simple and basic methods

available for nonparametric density estimation. On the other hand, we have to suffer

the pain of selecting the origin and binwidth. The discontinuity feature also makes

histogram approach unsatisfying for the users. The classical kernel method provide

more smooth estimator depending on usage different kernels. However, the performance

of kernel method in the boundary of the domain is not very good. For example, when

the estimated density has a clear spike around 0 when the domain is (0,∞). Another

drawback is that we have to choose the smoothing parameter.

Regularization methods with penalization are useful since the estimators can show

the tail behavior of the density. Especially, for Silverman’s method with penalization

of third derivative of log f , the domain of the support can be unbounded. The total

variation approach by Koenker and Mizera is a good tool to show the spike of the

density with second or third derivative of log f . The investigation of the features of

penalization methods with a higher derivative of log f or f is the promising future

work.

Regularization methods with shape constraints do not depend on any smoothing

parameter. But we need to assume the estimated density has a certain shape, for

instance, monotonicity and unimodality. Once we are confident that the density is

unimodal, we can add the log-concave or even quasi-concave constraint to estimate the

density.

The thesis also discussed some theoretical proofs in chapter two and three, for

example, Theorem 2.3.1, 2.3.2, 3.3.1 and the Fisher consistency. One potential problem



is to prove the general consistency result for quasi-concave estimators. And for the

general n data points case, the proof of strong duality by using taut string theory is

also a complicated but important problem for future research.
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6. Dümbgen, L., Hüsler, A. and Rufibach, K.(2007). Active set and EM algorithms
for log-concave densities based on complete and censored data. Technical report
61, IMSV, University of Bern (arXiv:0707.4643)
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