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Abstract 

The complexity inherent in hydraulic fracturing for oil and gas reservoirs demands sophisticated 

analytical tools for optimal performance and sustainability. The research presented in this study 

adopts a multi-faceted approach that synergistically combines flow-geochemical models for 

fracture characterization.  

In the initial phase of the research, a coupled flow-geochemical model using commercial 

simulation software is developed. This model emphasizes the intricate interactions between key 

components such as oil, original formation water, injected water, and rocks. The model is validated 

through coreflood experimental data. It provides valuable insights into the complex mechanisms 

affecting oil recovery during water injection processes with varying salinity. For instance, the 

model reveals that while ion exchange plays a critical role in high-salinity water flooding, mineral 

dissolution/precipitation reactions are more dominant in low-salinity scenarios. 

Then, the coupled flow-geochemical model is extended to a hydraulically fractured horizontal well 

model. The modelling results are analyzed to explore the temporal changes in the salinity of 

flowback fluid and production time. The simulation results are then used to train a set of regression 

models using Response Surface Modelling (RSM) to predict gas rate and total salinity as a function 

time for a variety of primary and secondary fracture properties and configurations. Validation 

exercises demonstrate its robust predictive capabilities, with R2 values consistently above 0.95, 

confirming the model's reliability and applicability. 

In the next phase, the regression models are integrated into an optimization workflow: Genetic 

Algorithm (RSM-GA) for fracture characterization. Its novelty lies in the integration of salinity in 

the analysis. The methodology's versatility is assessed across different reservoir and well 
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configurations, including both homogeneous and heterogeneous contexts. It examines the 

application in different scenarios such as uniform and non-uniform secondary fracture scenarios, 

heterogeneous fracture patterns, and advanced multi-stage horizontal well frameworks.  

Finally, it is found that incorporating fracture parameters estimated from both salinity and rate data, 

even in the case of multi-stage horizontal wells with non-uniform primary fracture length and 

spacing or heterogeneous secondary fracture distributions, results in a more accurate 

representation of the reservoir's behaviour and production history match. 
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summarizes the conclusions reached in this thesis as well as the recommendations for future 

research. Chapters 1, 2 and 6 have never been published elsewhere. 
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Chapter 1:  Introduction 

This chapter illustrates the background of unconventional reservoir exploration and some prevalent 

knowledge gaps and research motivations. It also presents the problem statement, research 

objectives, and thesis outline. 

 

1.1 Background 

Unconventional oil and gas reservoirs are emerging as critical sources of energy in North America 

as well as all over the world (Bocora, 2012; Hongjun et al., 2016; Law et al., 1993). These low-

permeability reservoirs are commonly developed with multi-fractured horizontal wells. This 

technological breakthrough has significant implications for global energy security, economic 

development, and the optimization of hydrocarbon resources (Zhang, 2019; Zhao et al., 2015; King, 

2014). A large volume of fracturing fluid is injected to create multiple fractures and to increase 

the reservoir contact per well. This fracturing fluid pumped into the formation is flown back before 

placing the well on production, preparing the fractured well for long-term hydrocarbon production 

(Kondash et al., 2017; Lester et al., 2015, Y; Zolfaghari et al., 2016). 

However, many simulations of the hydraulically fractured reservoir do not consider or incorporate 

geochemistry. These practices frequently overlook the influence of geochemical interactions 

among injection fluids, crude oil, connate water, and minerals. This omission could have 

substantial implications for reservoir management, fracturing effectiveness, and, ultimately, 

production yield (Ghorbani et al., 2022; Muniruzzaman and Rolle, 2016; Brookfield et al., 2021; 

Alpers and Nordstrom, 1999). 
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In addition, accurate fracture characterization remains a challenge due to the limited data available 

and the simplification of the analytical model. Typically, rate data, especially in the early stage, is 

not sensitive to secondary fracture and is very useful for characterizing primary fractures. Recent 

literature, however, has indicated a promising alternative: using salinity or geochemical data from 

produced/flowback fluid for fracture characterization (Blauch et al., 2009; Gaudlip et al., 2008; 

Myers, 2008; Zolfaghari et al. 2014 and 2016). Following hydraulic fracturing operations, a large 

quantity of water flows back to the surface along with the gas, known as produced/flowback water. 

This produced/flowback water, which is relatively simple to collect at the wellhead for ion 

concentration analysis, provides a significant yet underutilized source of information. 

In the past, the chemistry of produced/flowback water was usually only reported to the 

government/environmental agencies to prevent environmental pollution. However, within the 

petroleum industry, this data has not been explored to its full potential (Sharak, 2018; Zolfaghari 

et al. 2014 and 2016). Using the potential of this data could bridge current knowledge gaps, 

developing a more comprehensive fracture characterization workflow. This could inevitably lead 

to optimized fracturing techniques and more efficient hydrocarbon production. 

 

1.2 Problem Statement 

This section identifies and elaborates on the core problems within the scope of the research: 

1. There is limited existing work that focused on the construction of a coupled flow-geochemistry 

numerical simulation model suitable for analyzing hydraulically fractured reservoirs using a 

commercial package and validation of such models with experimental data of tight oil/shale gas 

fractured wells in the literature; 
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3. There is no quantitative framework to correlate the salinity data of flowback water with fracture 

properties; 

4. A workflow for fracture characterization that integrates the salinity of flowback water and gas 

rate is needed. 

 

1.3 Research Objective  

Simulation can be used to incorporate geochemical data to infer more information about 

complexity fracture geometry recycling. So, this work will use the simulation to solve the 

foregoing problems, and the corresponding objectives are listed as follow: 

1. Develop a coupled flow and geochemical approach for hydraulically fractured reservoirs using 

commercial simulation packages, validate against other relevant simulation studies in the literature, 

and compare simulation results with field observations qualitatively. 

2. Develop a systematic framework for correlating fracture properties with salinity of flowback 

fluid and gas rate and assess the utility of salinity data in estimating uncertain fracture properties. 

3. Develop a workflow using the salinity of flowback fluid and gas rate to infer fracture properties 

for various fracture distributions. 

 

1.4 Thesis Outline  

This thesis consists of 6 chapters, and it is organized as follows:  
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Chapter 1 presents a general introduction of this thesis, including background information and 

research motivations, problem statement, research objectives and thesis outline. 

Chapter 2 presents the literature review on concepts and developments in unconventional 

reservoirs, hydraulic fracturing, flowback processes, and advanced analytical techniques like 

response surface modelling and genetic algorithms. 

Chapter 3 presents a simulation study where complex mechanisms and interactions are represented, 

including multiple ion exchange, mineral dissolution, wettability alteration, pH variation, and 

electrical double layers. The models are used to examine how the salinity of injected water may 

affect gas recovery. 

Chapter 4 introduces a hydraulically fractured reservoir model incorporating multiple geochemical 

reaction mechanisms. Develop the RSM-Salinity and RSM-Rate prediction regression models. 

The models reveal the complex temporal relationships between the salinity of flowback fluid 

and/or gas rate with production time. 

Chapter 5 presents a comprehensive workflow, synergizing the power of RSM and GA, to utilize 

the salinity profile of flowback fluid and gas rate for fracture characterization. A comprehensive 

range of scenarios was examined, stretching from Single-Stage Wells to Multi-Stage Horizontal 

Wells and from homogeneous to heterogeneous fracture models. 

Chapter 6 presents the conclusions and contributions of this study. Recommendations for future 

work are also discussed. 
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Chapter 2:  Literature Review 

The Literature Review serves as the foundation upon which this study builds. It provides an 

overview of the body of knowledge that has informed this research, highlighting key theories, 

models, and findings in the areas most pertinent to this thesis. This chapter is organized into six 

main sections that discuss unconventional reservoirs, the fracturing process, flowback process, 

fracture network characterization, response surface modelling, and genetic algorithms. 

 

2.1 Unconventional Reservoirs 

Unconventional reservoirs are a class of hydrocarbon deposits distinguished from their 

conventional counterparts by their unique geological characteristics. These typically include low 

permeability and porosity, complex mineralogy, and diverse depositional environments. Common 

types of unconventional reservoirs include gas and oil shales, tight oil and gas formations, coalbed 

methane, oil sands, and gas-hydrate deposits. The exploitation of these resources has gained 

momentum in recent decades, thanks to advancements in extraction technologies. Notably, 

horizontal drilling and multi-stage hydraulic fracturing have emerged as critical innovations that 

enable the commercial viability of these otherwise difficult-to-reach resources. Horizontal drilling 

allows for more extensive contact with the formation, while multi-stage hydraulic fracturing 

creates multiple fractures at different intervals along a horizontal wellbore, thus significantly 

enhancing hydrocarbon recovery rates (Meyer et al., 2010; Soliman et al., 2010; Soliman et al., 

2012). 
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2.2 Fracturing Process 

The hydraulic fracturing technique is a form of reservoir stimulation that involves pumping a 

relatively large amount of fracturing fluid into the wellbore at a high pressure, sufficient to exceed 

the tensile strength of the reservoir rock. The objective is to create new fractures or expand existing 

natural fractures within the hydrocarbon-bearing formation. Once fractures are created, proppants 

such as sand, ceramic, or resin-coated beads are injected into these fractures to hold them open, 

facilitating the flow of hydrocarbons. This technique was first introduced in the petroleum industry 

in 1947, with commercial applications in 1950 (King, 2012). Modern improvements in fluid 

chemistry, proppant technology, and the application of multi-stage fracturing have greatly 

enhanced the efficiency and effectiveness of hydraulic fracturing. 

 

2.3 Fracturing Fluid 

Fracturing fluid is used to initiate and propagate fractures. Commonly used types include water-

based, oil-based, and foam-based fluids (Wanniarachchi et al., 2017; Tang et al., 2022; Xiong et 

al., 1996). Water-based fluids are the most widely used due to their cost-effectiveness. Typically, 

the fluid consists of a mixture of water, proppants, and chemical additives, each selected to 

optimize the fracturing process. The choice of fracturing fluid composition can have far-reaching 

implications, affecting not only the immediate efficacy of the hydraulic fracturing operation but 

also the long-term productivity of the well. Despite its significance, prior numerical modelling 

studies have often overlooked the geochemical interactions between the fracturing fluid and the 

formation rock. These interactions can significantly influence both the short-term effectiveness 
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and long-term behaviour of the reservoir. Understanding these interactions is thus crucial for 

improving reservoir models and optimizing production. 

 

2.4 Flowback Process 

Following hydraulic fracturing, the flowback process entails the recovery of the fracturing fluid 

from the well. The chemistry of flowback fluid can provide insights into the efficiency of the 

fracturing process. While some studies have examined the chemical composition of flowback 

water, they have mostly been limited to environmental impact assessments rather than as a resource 

for improving reservoir understanding and management (Fu et al., 2021; Dong et al., 2022; He et 

al., 2022; Rosenblum et al., 2017). Some existing studies have explored the relationship between 

the chemistry of flowback fluids and the long-term performance of the reservoir. However, these 

have been mainly concentrated on environmental impact assessments rather than serving as a 

resource for improving reservoir understanding and management. 

 

2.5 Flowback Chemical Analysis 

Chemical analysis of flowback water offers a supplementary or alternative methodology for 

fracture characterization. Various researchers have conducted notable studies in this area. 

Woodroof et al. (2003), Sullivan et al. (2004), Willberg et al. (1998) and Asadi et al. (2008) all 

proposed models focusing on the chemical characteristics of flowback water to better understand 

and manage the fracturing process. Gdanski et al. (2007) took it a step further by adding a chemical 

component to their 2D numerical simulator for the history matching of flowback fluid composition. 
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Ghanbari et al. (2013) analyzed specifically salt concentrations in flowback water from 

hydraulically fractured wells in the Horn River Basin. They found that the complexity of the 

fracture network appeared to influence the salt concentration and load-recovery profile. Zolfaghari 

et al. (2014) carried out a set of experiments to trace the source of salts in the flowback water. 

Their findings offered valuable insights into the connection between the barium concentration in 

the flowback water and the complexity of the fracture network. 

 

2.6 Response Surface Modelling 

Response surface methodology (RSM), introduced by Box and Wilson (1951), encompasses a 

series of mathematical/statistical techniques for empirical model building and exploitation of the 

model. Through design and analysis, RSM seeks to relate a response to the input variables or 

factors that influence it, and the objective is to optimize this response. In engineering, RSM has 

been employed to optimize manufacturing processes, design experiments, and model complex 

systems (Myers et al., 2016; Deng and Cai, 2010; Sen and Swaminathan, 2004; Singh et al., 2010; 

Baş and Boyacı, 2007). In chemistry, RSM has facilitated the optimization of reaction conditions, 

formulation development, and prediction of chemical properties (Bezerra et al., 2008; Hanrahan 

and Lu, 2006; Ahn et al., 2010; Amini et al., 2010). Additionally, RSM has found applications in 

economics, marketing, and social sciences, aiding in understanding consumer behaviour, market 

response, and policy analysis (Shang et al., 2004; Januardi et al., 2021; Guo et al., 2021; Anderson 

and Whitcomb, 2016; Venkatesh and Goyal, 2010;). However, traditional RSM is rooted in static 

experimental designs, where relationships are explored at specific points in parameter space. While 

this approach has proven valuable in various applications, it neglects the temporal dimension that 
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characterizes many systems. Consider, for instance, processes in which variables evolve over time, 

such as chemical reactions, biological processes, and even economic phenomena. In such cases, 

relying solely on static experimental data fails to capture the full scope of the system's behaviour. 

To overcome this limitation, Coefficient-Driven Response Surface Modelling is a novel extension 

of RSM tailored to address dynamic behaviours. This approach is designed to unravel the intricate 

relationships that unfold over time by focusing on the coefficients of carefully selected nonlinear 

equations. By integrating temporal dynamics and coefficient analysis, RSM strives to enhance the 

predictive power of RSM, offering a more comprehensive understanding of complex systems. 

 

2.7 Genetic Algorithm (GA) 

The genetic algorithm was put forward by Professor J. Holland at the University of Michigan in 

1975, which is an optimization technique inspired by the process of natural selection and genetics 

(Holland, 1975). It is widely used to solve complex optimization problems by mimicking the 

evolutionary principles observed in biological systems (Goldberg and Holland, 1988; Holland, 

1992; Mitchell, 1998; Sivanandam et al., 2008; Srinivasan and Leung, 2022). The goal is to find 

the optimal values of these variables that minimize the objective function. The GA follows an 

iterative process, which consists of the following steps: 

Initialization: Initialize an initial population of candidate solutions randomly or based on some 

prior knowledge. Each candidate solution represents a potential set of values for the independent 

variables. 
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Evaluation: Evaluate the fitness of each candidate solution by calculating the objective value 

using the defined objective function. The objective value quantifies the quality or performance of 

the solution in terms of fracture characterization. 

Selection: Select the fittest individuals from the population to serve as parents for the next 

generation. The selection process is typically based on a probabilistic mechanism, where 

individuals with higher fitness have a higher chance of being selected. 

Genetic Operators: Apply genetic operators, including crossover and mutation, to the selected 

parents to create new offspring. Crossover involves combining genetic information from two or 

more parents, while mutation introduces random changes to maintain diversity in the population. 

Replacement: Replace a portion of the existing population with the newly created offspring. The 

replacement process ensures the evolution of the population towards better solutions over 

successive generations. 

Termination: Repeat the evaluation, selection, genetic operators, and replacement steps for a 

specified number of generations or until a termination criterion is met. The termination criterion 

can be a predetermined number of iterations or when the improvement in the objective value 

becomes negligible. 
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Chapter 3:  Coupling Flow-Geochemical Model Development in 

Sandstone Reservoir 

3.1 Introduction 

In the past few decades, water flooding and hydraulic fracturing have been applied extensively to 

improve oil recovery in conventional and unconventional reservoirs. The literature generally 

reports that the salinity of the injected fluids plays an important role in the process efficiency 

(Yousef et al., 2010; Zhang and Leung, 2022). 

The potential for injection of engineered water (also known as smart water or low-salinity water 

or LSW) to enhance recovery was first discovered in sandstone reservoirs by Baptist (1954), 

Bernard (1967), and Martin (1959). In the 1990s, Jadhunandan and Morrow (1991) and Yildiz and 

Morrow (1996) reported the effect of brine composition on the recovery factor, which identified 

the possibility of improving waterflood by optimizing injection brine formulations. Numerous 

laboratory experiments (Tang and Morrow, 1997; Morrow et al., 1998; Tang and Morrow, 1999; 

Sharma and Filico, 2000; Morrow and Buckley, 2011; Chaturvedi et al., 2021) demonstrated that 

changing the salinity of the injected water can alter the reservoir recovery. Brady et al. (2012 and 

2016) showed that the increase in salinity could increase the number of cations on the clay basal 

plane, leading to positively charged oil groups adsorbed onto the clay surface.  

Numerical models have been used extensively to simulate flow and geomechanical responses of 

hydraulically fractured reservoirs. However, most previous modelling works did not consider 

geochemistry. For example, Zhong and Leung (2020a and 2020b) investigated the effect of 

fracture distribution on hydraulic-fractured shale-gas production by upscaling the stochastic 3D 
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discrete fracture network (DFN) model into an equivalent continuum dual-porosity dual-

permeability (DPDK) model. Xu and Leung (2022) studied the impact of mesh alignment with 

DFN in a DPDK model. Liu et al. (2020 and 2021) presented a coupled two‐phase 

flow/geomechanics model to investigate the feasibility and efficiency of inter-fracture water 

injection to enhance oil recovery. Wang and Leung (2015 and 2016) constructed a series of 

mechanistic simulation models consisting of both hydraulic fractures and stochastically-

distributed secondary fractures to simulate imbibition, fluid re-distribution, and flow-back during 

shut-in and cleanup. Some authors incorporated geochemical experimental data and findings in 

their modelling work. For instance, Shabani and Zivar (2020) coupled flow with a geochemistry 

model package to simulate geochemical reactions during low-salinity water injection. Esene et al. 

(2018) used the CMG-GEM module to establish a geochemical model to study the wettability 

alteration during low salinity water flooding and proposed the term optimal salinity. However, 

none of these works has examined the impacts of injected fluid salinity and the corresponding 

rock-fluid interactions. At the same time, the mechanism by which geochemistry affects recovery 

is also unclear because the mechanisms that govern the interactions between crude oil, formation 

water, engineered water and rock are complex.  

To consider geochemistry in the numerical simulation, several proposed mechanisms, including 

fines migration, multiple ion exchange, mineral dissolution, wettability alteration, pH variation, 

and electrical double layers, should be modelled. Tang and Morrow (1999) proposed that the 

presence of potentially mobile fines was a necessary condition for an increase in oil recovery 

during low-salinity waterflooding. During the typical waterflooding process, crude oil droplets 

would adhere to the fines on the pore walls as part of the trapped oil. When the salinity of the 

injected water decreases, the attractive force between the fines and the pore wall decreases, 
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enabling the fine particles to be separated from the pore wall. The enhanced oil recovery is 

attributed to partially stripping the mixed wet fines from the pore walls. On the other hand, other 

researchers would argue that the migrated fines would plug some pore throats and reduce the 

relative permeability of water, causing more water to flow to the unswept area and improving the 

displacement efficiency. (Muecke 1979; Fogden et al. 2011; Bedrikovetsky et al. 2012; Bhuvankar 

et al. 2022). Some researchers did not observe any fines migration during low-salinity water 

flooding (Webb et al., 2004; McGuire et al., 2005; Jerauld et al., 2008). Lager et al. (2006) 

indicated fines migration is not ubiquitous during low-salinity water flooding. 

Some studies have shown that during low-salinity water flooding, the pH increases with the oil 

recovery factor (McGuire et al., 2005). At first, it was attributed to the dissolution of carbonate 

rock and the consumption of hydrogen ions. Appelo and Postma (2004) demonstrated that the 

cation exchange process is faster than mineral dissolution. The hydrogen ions present in the liquid 

phase would exchange with the previously adsorbed cations on the mineral surfaces. This 

reduction of hydrogen ions in the liquid phase would lead to an increase in pH value. However, 

other studies have shown no direct relationship between the increase in oil recovery caused by 

low-salinity injected water and pH value (Ehrlich and Wygal, 1977; Lager et al., 2006). 

Lager et al. (2006 and 2008) have proposed that the multiple ion exchange is the key mechanism 

for increasing oil recovery during low-salinity water flooding. A chemical balance exists between 

the ion concentration in the connate water (or initial formation water), the ion concentration 

adsorbed on the clay surface, and the polar compounds in the crude oil. Positively charged ions in 

the connate water, such as Ca2+ and Mg2+, are adsorbed on negatively charged clay surfaces. The 

polar oil compounds, mainly negatively charged, are adsorbed to these multivalent positive charge 

sites on the clay surface, forming an oil film on the clay surface and an Electrical Double Layer 
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(EDL) (Ligthelm et al., 2009). Therefore, macroscopically, the clay surface can be considered oil-

wet. This balance is disturbed upon the injection of engineered fracturing fluids. For example, 

Ca2+  and other multivalent ions would be replaced by monovalent Na+  (AlShalabi and 

Sepehrnoori, 2016; Aminian and ZareNezhad, 2019), and the crude oil adsorbed on the multivalent 

ions could also be desorbed. Therefore, this exchange of ions could cause the formation to change 

from oil-wet to mixed or water-wet (Amirian et al., 2017). 

Since the concentration of each ion in the injected engineered water is very different from that of 

the formation water, it will disturb the existing equilibrium and cause source minerals (e.g., CaCO3, 

MgCO3, CaMg(CO3)2 and CaSO4, etc.) to dissolve or precipitate, thereby establishing a new 

equilibrium. In this process, polar components adsorbed on the rock surface are released with the 

dissolved minerals, thereby increasing water-wetness (Hiorth et al., 2010; Evje and Hiorth, 2010 

and 2011), and it can also lead to changes in pore structure (Yousef et al., 2010 and 2011). 

Moreover, Tang and Morrow (1999) observed a similar oil recovery and imbibition rate from a 

high-salinity engineered water injection and a low-salinity engineered water injection in cores aged 

in crude oil with no initial formation brine. Sharma and Filoco (2000) and Tang and Morrow (1997) 

obtained increased recovery as the salinity of the initial formation water decreased. These authors 

emphasize that the salinity of the initial formation water plays a key role in oil recovery. However, 

the initial salinity of the formation water results from an equilibrium state formed by long-term 

geological activities. It is generally impossible to alter the composition of the formation water 

directly; however, compositions of the injected water can be engineered with the optimal salinity. 

Hence, systematic studies must be carried out to determine the optimum salinity and concentration 

of the engineered water. 
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A geochemical model is established in this chapter based on an experimental core flood data set 

(Fjelde et al., 2012). The simulated effluent ion concentration, pH, and saturation are compared 

and validated with experimental measurements. The intent is to validate the formulation of the 

geochemical model and other physical processes. The reliability of ion-exchange equivalent 

fraction, pore volume evolution, and mineral molarity is demonstrated.  

 

3.2. Mathematical Model 

3.2.1 Component Material Balance Equation 

The simulation is performed using CMG-GEM compositional simulator (CMG, 2022). The 

material balance equation is coupled with Darcy's law governing the flow and the geochemical 

model, which includes intra-aqueous reactions, mineral reactions, ion exchange reactions, and 

phase equilibrium reactions. Consider a system consisting of 𝑛𝑐𝑡 total components: 𝑛𝑔 gaseous 

components, 𝑛𝑎𝑞 aqueous components, and 𝑛𝑚 mineral components. The conservation equations 

for the different species are shown here (Nghiem and Rozon, 1988 and 1989; Nghiem et al., 2011; 

Collins et al., 1992): 

𝜓𝑖 ≡ 𝛥𝑇𝑔
𝑢𝑦𝑖,𝑔

𝑢 (𝛥𝑝𝑛+1 + 𝛥𝑃𝑐,𝑎𝑞−𝑔
𝑢 − 𝜌𝑔

𝑢𝑔𝛥𝑑) + 𝛥𝑇𝑎𝑞
𝑢 𝑦𝑖,𝑎𝑞

𝑢 (𝛥𝑝𝑛+1 − 𝜌𝑎𝑞
𝑢 𝑔𝛥𝑑) + ∑ 𝛥𝐷𝑖,𝑞

𝑢 𝛥𝑦𝑖,𝑞
𝑢

𝑞=𝑔,𝑎𝑞 +

𝑉𝜎𝑖,𝑎𝑞
𝑛+1 + 𝑞𝑖

𝑛+1 −
𝑉

𝛥𝑡
(𝑁𝑖

𝑛+1 − 𝑁𝑖
𝑛) = 0, 𝑖 = 1, … , 𝑛𝑔,

1 

𝜓𝑗 ≡ 𝛥𝑇𝑎𝑞
𝑢 𝑦𝑗,𝑎𝑞

𝑢 (𝛥𝑝𝑛+1 − 𝜌𝑎𝑞
𝑢 𝑔𝛥𝑑) + 𝛥𝐷𝑖,𝑎𝑞

𝑢 𝛥𝑦𝑖,𝑎𝑞
𝑢 + 𝑉𝜎𝑗,𝑎𝑞

𝑛+1 + 𝑉𝜎𝑗,𝑚𝑛
𝑛+1 + 𝑞𝑗

𝑛+1 −
𝑉

𝛥𝑡
[(𝑁𝑗,𝑎𝑞

𝑛+1 + 𝑁𝑗−𝑋
𝑛+1) − (𝑁𝑗,𝑎𝑞

𝑛 + 𝑁𝑗−𝑋
𝑛 )] = 0, 𝑗 = 𝑛𝑔 + 1, … , 𝑛𝑔 + 𝑛𝑎𝑞 ,

2 

𝜓𝑘 ≡ 𝑉𝜎𝑘,𝑚𝑛
𝑛+1 −

𝑉

𝛥𝑡
(𝑁𝑘

𝑛+1 − 𝑁𝑘
𝑛) = 0, 𝑘 = 𝑛𝑔 + 𝑛𝑎𝑞 + 1, … , 𝑛𝑐𝑡. 3 
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𝜓 stands for constitutive equation; the superscript 𝑛 and 𝑛 + 1 denote the old and new time levels, 

respectively; the superscript 𝑢 = 𝑛 or 𝑛 + 1 refers to either explicit and implicit coupling; the 

subscript 𝑔 , 𝑎𝑞  and 𝑚𝑛  stand for gaseous and aqueous and mineral, respectively; 𝑇𝑔  is the 

transmissibility of the gaseous phase, 𝑦 is the mole fraction, 𝑝 is the pressure, 𝑃𝑐 is the capillary 

pressure, 𝜌 is the density (kg/m3), 𝑔 is the acceleration due to gravity (m/s2), 𝑑 is the depth (m), 

𝐷 is the diffusivity in the phase, 𝑉𝜎𝑖,𝑎𝑞 is the intra-aqueous reaction rates, 𝑉𝜎𝑖,𝑚𝑛 is the mineral 

dissolution/precipitation rates, 𝑞 is the injection or production rate, 𝑁 is the number of moles of 

mineral, 𝑋 denotes the clay mineral in the reservoir rock, and the subscript 𝑗 − 𝑋 stands for the 

component 𝑗 adsorbed on the clay surface, and 𝛥𝑡 is the time step. 

 

3.2.2 Gas and Aqueous Phase Properties 

The phase behaviour is modelled using the Peng-Robinson EOS (Peng and Robinson, 1976; Soave, 

1972). The gas viscosity is calculated using the Jossi, Stiel and Thodos correlation (Jossi et al., 

1962). The aqueous phase density and viscosity are computed following the correlations presented 

in Rowe and Chou (1970) and Kestin et al. (1981). However, it's important to note that the effects 

of capillary pressure (Pc) are not incorporated into the phase equilibrium calculations within the 

CMG software but are only considered in the flow equations. This limitation is a notable 

shortcoming of the approach taken. 
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3.2.3 Aqueous Reactions 

Nghiem et al. (2004) proposed a fully-coupled geochemical Equation-of-State model for 

simulating CO2 storage and low-salinity water flooding. The aqueous reactions are modelled with 

chemical equilibrium constants. 

𝑄𝛼 − 𝐾𝑒𝑞,𝛼 = 0, 𝛼 = 1, … , 𝑅𝑎𝑞 , 4 

with 

𝑄𝛼 = ∏ 𝑎𝑘
𝑣𝑘𝛼𝑛𝑎𝑞

𝑘=1 , 5 

𝑄𝛼 is the activity product of the aqueous reaction α (Bethke, 1996; Kharaka et al., 1989). 𝐾𝑒𝑞,𝛼 is 

the chemical equilibrium constant for the aqueous reaction α. 𝑅𝑎𝑞  is the number of aqueous 

reactions. 𝑛𝑎𝑞  is the number of components. 𝑎𝑘  is the activity of component 𝑘 . 𝑣𝑘𝛼  is the 

stoichiometry coefficient of component 𝑘 in reaction α (Nghiem et al., 2004). 

𝑎𝑘 = 𝛾𝑘𝑚𝑘, 𝑘 = 1, … , 𝑛𝑎𝑞 , 6 

where 𝛾𝑘 is the activity coefficient of component 𝑘 and 𝑚𝑘 is the molality (moles per 𝑘𝑔 of H2O). 

For a non-ideal solution, the activity coefficient can be calculated from the B-dot model (Bethke, 

1996). 

 

3.2.4 Mineral Dissolution and Precipitation 

The rate law for the mineral dissolution and precipitation reaction is (Bethke, 1996): 

𝑟𝛽 = 𝐴�̂�𝑘𝛽 (1 −
𝑄𝛽

𝐾𝑒𝑞,𝛽
) , 𝛽 = 1 … , 𝑅𝑚𝑛, 7 
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𝛽 refers to the mineral reaction; 𝑟 is the reaction rate, which is dependent on the surface area (�̂�) 

and the rate constant 𝑘). 𝐾𝑒𝑞 is the chemical equilibrium constant; 𝑄 is the activity product; 𝑅𝑚𝑛 

is the total number of mineral reactions. If 𝑄𝛽 𝐾𝑒𝑞,𝛽⁄ > 1 , mineral precipitation occurs and if 

𝑄𝛽 𝐾𝑒𝑞,𝛽⁄ < 1 , mineral dissolution occurs. Therefore, 𝑟 < 0  for dissolution and 𝑟 > 0  for 

precipitation. The rate is zero when 𝑄𝛽 𝐾𝑒𝑞,𝛽⁄ = 1 . The reaction rate constant 𝑘𝛽  at any 

temperature (T) can be obtained from the following equation  (Bethke, 1996): 

𝑘𝛽 = 𝑘𝛽0𝑒𝑥𝑝 [−
𝐸𝑎𝛽

𝑅
(

1

𝑇
−

1

𝑇0
)] , 8 

𝐸𝑎𝛽 is the activation energy for reaction 𝛽 [J/mol], R is the universal gas constant, and 𝑘𝛽0 is the 

reaction rate constant for reaction 𝛽 at the reference temperature, 𝑇0. The reactive surface area of 

minerals per unit volume of porous media varies with mineral dissolution or precipitation. The 

following equation is used to calculate the reactive surface area (𝐴�̂�) with change in the moles of 

minerals through dissolution or precipitation (Nghiem et al., 2004): 

𝐴�̂� = 𝐴𝛽
0̂ 𝑁𝛽

𝑁𝛽
0 , 9 

where 𝐴𝛽
0̂  is the reactive surface area at time 0, 𝑁𝛽 is the number of moles of mineral 𝛽 per unit 

grid block (bulk) volume at the current time, and 𝑁𝛽
0 is the number of moles of mineral 𝛽 per unit 

grid block (bulk) volume at the initial time. 

 

3.2.5 Ion Exchange 

Two ionic exchange reactions are considered, where 𝑋 denotes the clay mineral in the reservoir 

rock:  
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𝑁𝑎+ +
1

2
(𝐶𝑎 − 𝑋2) ⟷ (𝑁𝑎 − 𝑋) +

1

2
𝐶𝑎2+, 10 

𝑁𝑎+ +
1

2
(𝑀𝑔 − 𝑋2) ⟷ (𝑁𝑎 − 𝑋) +

1

2
𝑀𝑔2+, 11 

The ion-exchange reactions are modelled using the equilibrium constants. However, determining 

these equilibrium constants on the exchanger surfaces is difficult. According to the Gaines-Thomas 

convention (Appelo and Postma, 2005), the following selectivity coefficient formulation is used 

instead of the equilibrium constant (CMG, 2022). 

𝐾𝑁𝑎 𝐶𝑎⁄
, =

𝜍(𝑁𝑎−𝑋)[𝑚(𝐶𝑎2+)]
0.5

[𝜍(𝐶𝑎−𝑋2)]0.5𝑚(𝑁𝑎+)
×

[𝛾(𝐶𝑎2+)]
0.5

𝛾(𝑁𝑎+)
, 12 

𝐾𝑁𝑎 𝑀𝑔⁄
, =

𝜍(𝑁𝑎−𝑋)[𝑚(𝑀𝑔2+)]
0.5

[𝜍(𝑀𝑔−𝑋2)]0.5𝑚(𝑁𝑎+)
×

[𝛾(𝑀𝑔2+)]
0.5

𝛾(𝑁𝑎+)
, 13 

where 𝜍(𝑁𝑎 − 𝑋) , 𝜍(𝐶𝑎 − 𝑋2) and 𝜍(𝑀𝑔 − 𝑋2) are the equivalent fraction of 𝑁𝑎+ 𝐶𝑎2+⁄  and 

𝑁𝑎+ 𝑀𝑔2+⁄  on the exchanger surface, respectively.  

The cation exchange capacity (CEC) is the amount of ions adsorbed on the rock surface. Thus the 

total moles of adsorbed ions of 𝑁𝑎 − 𝑋, 𝐶𝑎 − 𝑋2 and 𝑀𝑔 − 𝑋2 in a grid block are denoted as 

𝑉𝑁𝑁𝑎−𝑋, 𝑉𝑁𝐶𝑎−𝑋2
, and 𝑉𝑁𝑀𝑔−𝑋2

, where V is the grid block bulk volume. The following equation 

must be satisfied for a given value of CEC in the grid block (Esene et al., 2018). 

𝑉𝑁𝑁𝑎−𝑋 + 2𝑉𝑁𝐶𝑎−𝑋2
+ 2𝑉𝑁𝑀𝑔−𝑋2

= 𝑉𝜙(𝐶𝐸𝐶), 14 

or 

𝑁𝑁𝑎−𝑋 + 2𝑁𝐶𝑎−𝑋2
+ 2𝑁𝑀𝑔−𝑋2

= 𝜙(𝐶𝐸𝐶), 15 

where 𝜙 is the porosity, and 𝑁 is the number of moles. Therefore, the equivalent fractions can be 

calculated: 
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𝜍(𝑁𝑎 − 𝑋) =
𝑁𝑁𝑎−𝑋

𝑁𝑁𝑎−𝑋+2𝑁𝐶𝑎−𝑋2+2𝑁𝑀𝑔−𝑋2

, 16 

𝜍(𝐶𝑎 − 𝑋2) =
2𝑁𝐶𝑎−𝑋2

𝑁𝑁𝑎−𝑋+2𝑁𝐶𝑎−𝑋2+2𝑁𝑀𝑔−𝑋2

, 17 

𝜍(𝑀𝑔 − 𝑋2) =
2𝑁𝑀𝑔−𝑋2

𝑁𝑁𝑎−𝑋+2𝑁𝐶𝑎−𝑋2+2𝑁𝑀𝑔−𝑋2

, 18 

 

3.2.6 Flow and Geochemistry Coupling 

As mineral dissolution and precipitation affect the void volume of the porous medium, a two-way 

coupling scheme (as shown in Figure 3-1) is implemented in GEM to couple the geochemical and 

flow calculations (CMG, 2022): the time-stepping in the flow module is performed first to obtain 

the pressure and temperature distribution. The pressure and temperature solutions are then passed 

to the geochemistry module to compute the total moles of minerals, which are used to update the 

porosity and permeability. The solution from the geochemistry module, including the updated 

porosity and permeability values, is transferred back to the flow module. The process is repeated 

within a time step until the convergence criteria are satisfied. 
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Figure 3-1. Schematic view: two-way coupling between the flow module and geochemistry module as implemented 

in GEM (CMG, 2022). 

 

The porosity and permeability are updated within GEM. For example, the porosity is calculated as 

follows (Nghiem et al., 2004): 

𝜙∗̂ = 𝜙∗ − ∑ (
𝑁𝛽

𝜌𝛽
−

𝑁𝛽
0

𝜌𝛽
)

𝑛𝑚
𝛽=1 , 19 

𝜙 = 𝜙∗̂[1 + 𝑐𝜙(𝑝 − 𝑝∗)], 20 

where 𝜙  is the updated porosity at pressure p after mineral precipitation/dissolution and 

compaction, 𝜙∗ is the porosity without mineral precipitation/dissolution at the reference pressure 

𝑝∗, 𝜙∗̂ is the porosity at the reference pressure 𝑝∗after mineral precipitation/dissolution. 𝑁𝛽 is the 

total moles of mineral 𝛽 per bulk volume, 𝑁𝛽
0 is the total moles of mineral 𝛽 per bulk volume prior 
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to mineral precipitation/dissolution at the reference pressure 𝑝∗, 𝜌𝛽 is the mineral molar density, 

and 𝑐𝜙 is the rock compressibility.  

The absolute permeability also changes with mineral dissolution and precipitation. The Kozeny-

Carman equation is used (Kozeny, 1927; Carman, 1937): 

𝑘

𝑘0
= (

𝜙

𝜙0
)

3

∙ (
1−𝜙0

1−𝜙
)

2

, 21 

where 𝑘0 and 𝜙0 are the permeability and porosity at the reference pressure 𝑝∗, respectively.  

 

3.2.7 Solution Method 

The solution method is implemented in CMG (2022) and follows Nghiem et al. (2004)'s approach. 

A brief summary is provided here. The first elimination of chemical-equilibrium reactions reduces 

the number of flow equations. The volume constraint equations, the material balance equation, the 

flow equation, the injector and producer constraint equations, and the phase equilibrium equations 

were solved simultaneously using the Newton-Raphson method for each discretized grid block. 

 

3.3 Model Development of the Core Flooding Experiment 

A simulation model of the coreflood experiment reported by Fjelde et al. (2012) is constructed. A 

core plug extracted from the North Sea Sandstone Reservoir was used in their flooding experiment. 

The clay content in the rock was approximately 13% of the bulk sample by weight, and the cation 

exchange capacity was 2 meq/100g. Injections of synthetic formation water (FW), seawater (SW), 
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and low-salinity water (LSW) were tested at a constant core temperature of 80 ℃ , and 

approximately 10 pore volumes (PV) of brine were injected at each stage, as given in Table 3-1.  

 

Table 3-1 Chemical compositions of formation water, seawater, and low-salinity water (Fjedel et al., 2012) 

Ions 
Formation water 

(mole/L) 

Seawater 

(mole/L) 

Low-salinity water 

(mole/L) 

Ca2+ 0.14794 0.01299 0.00148 

SO4
2− 0.00089 0.02401 0.00001 

Mg2+ 0.01746 0.04451 0.00018 

Na+ 1.32622 0.45011 0.01326 

Cl− 1.67773 0.52513 0.01661 

K+ 0.00562 0.01006 0.00006 

 

A 1D model, as shown in Figure 3-2, is established using CMG-GEM compositional simulator 

(CMG, 2022) to model the coreflood experiments. Other relevant properties are shown in Table 

3-2 and Table 3-3. The two relative permeability sets (one for high salinity and one for low salinity) 

provided by Fjelde et al. (2012) are adopted (as shown in Figure 3-3). The brine used in the 

simulation was slightly adjusted because potassium ions were not included in the model.  
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Figure 3-2 1D model setup; the colour scale represents pH (Inj: Injection well; Pro: Production well). 

 

 

(a)                                                                           (b) 

Figure 3-3 (a) Relative permeability curves and (b) capillary pressure curves (Fjelde et al., 2012). 
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Table 3-2 The properties of the sandstone models 

Property Value 

Model length 0.2625 ft 

Model width and height 0.11066 ft 

Mesh 40 × 1 × 1 

Absolute permeability 164 mD 

Porosity 0.28 

Initial water saturation (Sw) 0.294 

Initial oil saturation (So) 0.706 

Injection velocity 0.002543 ft3/day 

Pore volume (PV) 0.0009 ft3 

Temperature 80 ℃ 

 

As discussed in the previous section, three types of reactions are modelled, and they are all 

reversible: (1) Aqueous phase reactions; (2) minerals are dissolved or precipitated; (3) Ion 

exchange: 

Aqueous phase reactions: 

𝐶𝑂2 + 𝐻2𝑂 = 𝐻+ + 𝐻𝐶𝑂3
−, 22 

𝐻+ + 𝑂𝐻− = 𝐻2𝑂, 23 

𝐻+ + 𝐶𝑂3
2− = 𝐻𝐶𝑂3

−, 24 

Mineral reactions: 

𝐶𝑎𝑙𝑐𝑖𝑡𝑒 + 𝐻+ = 𝐶𝑎2+ + 𝐻𝐶𝑂3
−, 25 

𝑀𝑎𝑔𝑛𝑒𝑠𝑖𝑡𝑒 + 𝐻+ = 𝑀𝑔2+ + 𝐻𝐶𝑂3
−, 26 
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𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑡 = 𝐶𝑎2+ + 𝑆𝑂4
2−, 27 

Ion exchange reactions: 

𝑁𝑎+ + 0.5(𝐶𝑎 − 𝑋2) ⟷ (𝑁𝑎 − 𝑋) + 0.5𝐶𝑎2+, 28 

𝑁𝑎+ + 0.5(𝑀𝑔 − 𝑋2) ⟷ (𝑁𝑎 − 𝑋) + 0.5𝑀𝑔2+, 29 

 

Table 3-3 Geochemical modelling database (Computer Modelling Group 2022) 

Mineral Area (ft2/ft3)  Activation energy (J/mol) Log Keq (mol/ft2∙s) at 77 F 

Calcite 825.99 23500 -0.5398 

Magnesite 917.23 23500 -0.8677 

Anhydrite 903.24 14300 -0.2964 

 

3.4 Validation Model History Match and Analysis 

The model predictions are compared with measured data from the core flooding experiments. 

According to Figure 3-4, the simulated results agree with the experimental data. To illustrate the 

relative impact of each mechanism on the recovery factor and produced fluid compositions, two 

sets of models are created based on the validated model: one where 10 PV of seawater is injected 

and another where 10 PV of low-salinity water is injected. Each set consists of 3 cases: (1) Base 

case with all mechanisms coupled; (2) without mineral dissolution and precipitation; (3) without 

ion exchange. 
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 (a)                                                                          (b) 

 

(c)                                                                          (d) 

Figure 3-4. Historical matching of simulation predictions with experimental results: (a) Effluent Ca++ ion 

concentration, (b) Effluent Mg++ ion concentration, (c) Effluent pH value, and (d) Average oil saturation. 
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(a)                                                                            (b) 

   

(c)                                                                            (d) 

Figure 3-5. Low-salinity water injection: (a) Effluent Ca++ ion concentration, (b) Effluent Mg++ ion concentration, 

(c) Effluent pH value, and (d) Effluent SO4-- ion concentration. 
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(a)                                                                           (b) 

   

(c)                                                                            (d) 

Figure 3-6. Seawater injection: (a) Effluent Ca++ ion concentration, (b) Effluent Mg++ ion concentration, (c) 

Effluent pH value, and (d) Effluent SO4-- ion concentration. 
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(a)                                                                             (b) 

 

(c)                                                                          (d) 

Figure 3-7. Low-salinity water injection: (a) Change in the total number of moles of minerals in the reservoir, (b) 

Pore volume change, (c) Ion exchange equivalent fraction, and (d) Oil recovery factor. 
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 (a)                                                                             (b) 

 

(c)                                                                          (d) 

Figure 3-8. Seawater injection: (a) Change in the total number of moles of mineral in the reservoir, (b) Pore volume 

change, (c) Ion exchange equivalent fraction in grid block (1 1 1), and (d) Oil recovery factor. 

 

The concentration of SO4
2− ions in seawater is significantly higher than that of formation water (as 

shown in Table 3-1). Considering the base case in Figure 3-8a, more anhydrite is formed because 
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SO4
2− ions reacted with Ca2+ ions to precipitate anhydrite. This observation is supported by the 

low concentration of SO4
2− ions in the effluent (Figure 3-6d – SO4

2− base case), compared to its 

concentration in the injected seawater (0.02401 mol/L in Table 3-1). Anhydrite precipitation 

consumes part of Ca2+ ions, and the Ca2+ ion concentration in seawater is lower than that in the 

formation water, so the Ca − X2 adsorbed on the clay surface is rapidly converted into Ca2+ ions, 

resulting in a decrease in the equivalent fraction of Ca − X2 (as shown in Figure 3-8c – Ca − X2 

base case). Since the Mg2+ ion concentration in seawater is greater than that in the formation water, 

the free Mg2+ are adsorbed on the clay and converted into Mg − X2, causing an increase in the 

equivalent fraction of  Mg − X2  (as shown in Figure 3-8c – Mg − X2  base case), while the 

desorption of Na+ would lead to a decrease in the equivalent fraction of Na − X  (as shown in 

Figure 3-8c – Na − X base case). It is worth noting that the ion concentrations in the effluent 

experience a sudden drop and increase at the beginning due to ion exchange. This phenomenon 

will be examined further later. Since both magnetite and anhydrite are precipitated, only calcite is 

dissolved. The dissolution rate of calcite is comparable to that of magnetite precipitation; the pore 

volume would decrease continuously throughout the process, as shown in Figure 3-8b, the base 

case. 

When injecting low-salinity water, as shown in Figure 3-7a base case, the number of moles of 

anhydrite within the reservoir (i.e., simulation model) decreases rapidly, compared to a slight drop 

in the number of moles of magnesite, indicating that a large amount of anhydrite and a very small 

amount of magnesite are dissolved – a trend contrary to the observations for seawater injection 

where both would precipitate (Figure 3-7a the base case). In fact, the dissolution rate of anhydrite 

is significant, causing the SO4
2− ion concentration in the effluent to increase dramatically to a peak, 

as shown in Figure 3-5d SO4
2−  base case. A large amount of Ca2+  produced by dissolution is 
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exchanged with Na − X   for Ca − X2 , as shown in Figure 3-7c, the base case, such that the 

equivalent fraction of Ca − X2 increases, and the equivalent fraction of Na − X decreases. During 

low-salinity water injection, the pore volume increases in the early stage because the dissolution 

rate is greater than that of precipitation. At the later stage, the dissolution rate of anhydrite slows 

down (Figure 3-7a – the base case), and the overall precipitation and dissolution rates are 

comparable, resulting in an essentially constant pore volume (Figure 3-7b – base case). 

When ion exchange mechanisms are omitted, the results behave very differently from the base 

model. The effluent ion concentrations decrease smoothly with time (none of the sudden decreases 

and increases are present), as shown in Figure 3-6a Ca2+ for the base case and the one without ion 

exchange, suggesting that these fluctuations are attributable to ion exchange. In addition, as ion 

exchange could lead to wettability alteration, the recovery factors corresponding to seawater and 

low-salinity water injection would increase if ion exchange is ignored (Figure 3-7d and  Figure 

3-8d). Moreover, neglecting ion exchange would lead to an overestimation of the recovery factor, 

particularly in scenarios involving the injection of high-salinity water. During ion exchange, the 

monovalent and divalent ions adsorbed on the mineral are replaced by the free-state divalent ions 

and monovalent ions (e.g., Na − X exchanges with Ca2+ or Ca − X2 exchanges with Na+), which 

causes an expansion of the double layer on the rock surface. This would mobilize previously 

unproducible oil adsorbed on divalent ions, enhancing oil recovery. 

It is observed in Figure 3-7c and Figure 3-8c (the cases without mineral reactions) that the effluent 

ion concentrations follow a similar trend as the base case, and this similarity is attributed to the 

fact that ion exchanges are modelled. However, any observable differences reflect the important 

role of mineral dissolution. As shown in Figure 3-7a and b, when low-salinity water is injected, 

the dissolution rate of minerals is greater than the precipitation rate, causing the pore volume and 
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recovery to increase. This difference implies that without considering mineral reactions, recovery 

would be underestimated (Figure 3-7d – without mineral reaction). In contrast, Figure 3-8a and b 

show that the pore volume decreases when seawater is injected, as the mineral precipitation rate 

exceeds the dissolution rate. It implies that without considering mineral reactions, recovery would 

be overestimated (Figure 3-8d). 

McGuire (2005) and Pal et al. (2019) suggested that an increased pH would amount to alkaline 

flooding, potentially reducing interfacial tension and improving oil recovery. However, in the 

practical scenarios, the pH is only 1 to 2 units higher than the injected level, with a peak value of 

approximately 8, which is much lower than the pH required for alkaline flooding (11 to 13) 

(Akhlaghi et al., 2020; MehdiBehrang et al., 2021; Awolayo et al., 2018). Figure 3-5c and 6c 

demonstrate that when mineral dissolution is omitted, the pH will fluctuate at the initial stage due 

to ion exchange before stabilizing at a level near 6, comparable to the pH of formation water. When 

ion exchange is omitted, the pH increases due to the consumption of hydrogen ions by mineral 

dissolution. It is worth noting that when seawater is injected, the pH profile for when ion exchange 

is omitted is the same as that of the base case, but the corresponding recovery factor is higher than 

that of the base case. The recovery factor for the injection of low-salinity water is also higher than 

that of the base case, while the pH is lower. Therefore, there is no clear relationship between the 

increased pH and improved recovery factor. Mineral dissolution and ion exchange process are the 

main contributors to increased oil recovery, a conclusion that is consistent with findings reported 

in the literature (Austad et al., 2010, Cissokho et al., 2010, Aksulu et al., 2012; Al-Saedi et al., 

2019; Rezaei Doust et al., 2009).  

 



35 

3.5 Summary 

This chapter presents a simulation study based on the complex interactions between the oil, 

original formation water, injected water, and rocks. The model setup is first verified with 

experimental data. Furthermore, based on the validated model, the impact of complex mechanisms 

and interactions on oil recovery and compositions of effluent fluids is discussed in detail. The key 

conclusions are summarized below: 

1. This chapter proposes a coupled flow-geochemical model with multiple geochemical reaction 

mechanisms for simulating water injection with varying salinity in sandstone reservoirs.  

2. Ion exchange and mineral dissolution/precipitation reactions are the main mechanisms affecting 

oil recovery. For low-salinity water flooding, mineral dissolution/precipitation reaction plays a 

major role in the recovery factor. For high-salinity water flooding, ion exchange is more important, 

while mineral dissolution/precipitation reaction does not significantly impact the recovery factor. 
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Chapter 4:  Modelling of a Hydraulically Fractured Horizontal Well 

using Coupled Flow-Geochemical Model and Regression Modelling 

base on the Fracture Characteristics 

4.1 Introduction 

Hydraulic fracturing is an effective method for stimulating hydrocarbon production from 

unconventional tight/shale reservoirs (Hubbert, M.K. and Willis, 1957; Barati, R. and Liang, 2014; 

Liu et al., 2021). A considerable amount of fracturing fluid (also known as engineered water, smart 

water, or low-salinity water) with some chemical composition is injected during hydraulic 

fracturing; highly conductive complex fracture networks are formed, increasing reservoir contact 

per well (Cheng 2012; King 2012). Meanwhile, fracturing fluids with a chemical composition 

different from connate water would flow into the fracture network system, contributing to various 

complex geochemical interactions between the oil, original formation water, fracturing fluid, and 

rocks (Zhang and Leung, 2022). Following hydraulic fracturing operations, a large quantity of 

produced/flowback water flows back to the surface along with the gas.  

In the 1990s, Jadhunandan and Morrow (1991) and Yildiz and Morrow (1996) reported the effect 

of brine composition on production performance and identified the benefits of optimizing injection 

brine formulations. Numerous laboratory experiments (Tang and Morrow, 1997; Morrow et al., 

1998; Tang and Morrow, 1999; Sharma and Filico, 2000; Morrow and Buckley, 2011; Chaturvedi 

et al., 2021) demonstrated the effect of salinity of the injected water on recovery. Yousef et al. 

(2010) reported that the salinity of the injected fluids plays an important role in the process 

efficiency, a key factor in improving oil recovery. In addition, operators producing gas from 
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Haynesville, Marcellus, and Horn River shale formations have observed that the ion concentrations 

in flowback fluids are very different from the hydraulic fracturing fluid (Blauch et al., 2009; 

Gaudlip et al., 2008; Myers, 2008; Zolfaghari et al. 2014 and 2016). Blauch et al. (2009) conducted 

an analysis on the origin of salts found in Marcellus shale flowback fluids and proposed two 

explanations: (1) the dissolution of shale mineral components due to recaction with the fracturing 

fluid; (2) discharging of high-salinity formation water as a result of continuous compaction by the 

overlying rock layer during the hydrocarbon accumulation process. Bearinger (2013) noted that 

the composition of water recovered from induced hydraulic fractures differs from that of water 

recovered from reactivated secondary fractures. Ghanbari et al. (2013) analyzed the salinity of 

flow back fluids from hydraulically fractured horizontal wells completed in the Horn River Basin 

(HRB). They explained that the complexity of the fracture network can by inferred from certain 

characteristics of the salt-concentration/load-recovery profile. Zolfaghari et al. (2014 and 2016) 

also revealed a similar finding, supporting the use of geochemical or salinity flowback data for 

fracture characterization in hydraulically fractured wells.  

Fracture characterization using production data has been a promising method for evaluating the 

fracturing efficiency and predicting long-term well productivity. A variety of pressure-transient 

analysis (PTA) and rate-transient analysis (RTA) have been developed (Fisher et al. 2005; 

Medeiros et al. 2008 and 2010; Bello 2009; Cheng et al. 2009; Song and Ehlig-Economides 2011; 

Samandarli et al. 2012; Ali et al. 2013). For instance, Fisher et al. (2005) characterized the 

induced-fracture network with fracture-mapping technologies and presented correlations between 

production response and various fracture parameters. Although RTA and PTA are widely used to 

characterize the fracture network, these methods consider several simplifications in the analytical 

solution formulations. For instance, Nwabia and Leung  (2021a and 2021b) pointed out that using 
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traditional RTA to characterize the fracture networks can obtain some fracture parameters, 

including fracture half-length (𝑋𝑓 ), length of the entire producing interval (𝐿𝑤 ), number of 

transverse fractures (𝑁), matrix permeability (𝑘𝑚), formation thickness (ℎ), matrix porosity (𝜙𝑚); 

however, complex heterogeneous fracture parameters cannot be readily obtained. Assisted history-

matching utilizing optimization algorithms can adjust regional and local reservoir properties to 

align the model with observed production data, but these types of approaches can be edious and 

time-consuming (Nwabia and Leung  (2021a, 2021b) as they require repeated runs of the forward 

simulation models. In fact, extracting knowledge from production data and building reliable and 

fast models to characterize fracture properties have always been of great interest to fracturing 

design optimization. More importantly, many of these previous studies focus on history matching 

using rate data alone, the integration of geochemical data of produced fluids is limited, as they 

tend to focus on the qualitative observation of field data, and there is insufficient study,  

particularly numerical simulation analysis, to examine on the relationship between the 

characteristics of hydraulic fracturing and the ion concentration of flowback fluid.  

With the wide application of big data and artificial intelligence (AI), data-driven modelling has 

achieved meaningful results for history matching or characterization of fracturing parameters. The 

genetic algorithm (GA) is a global optimization algorithm for all individuals, which is calculated 

by an iterative algorithm, and the parameter space is searched effectively by random technology. 

Based on the solution, the genetic algorithm can realize intelligent directional search and, based 

on the natural selection and genetic principles of all feasible solution spaces, gradually tend to the 

optimal solution and avoid the whole search of the whole solution space. It does not require the 

search space to be continuous, differentiable, and unimodal and is suitable for solving complex 

nonlinear spatial optimization problems (Amirjanov, 2015; Alvarez et al., 2009; Vesterstrom and 



39 

Thomsen, 2004; Rawlins, 2014). In this thesis, GA is adopted to history match the salinity and rate 

profiles of flowback fluid to estimate uncertain fracture parameters. To further speed up the 

process, Response Surface Modelling (RSM) (Box and Wilson, 1951) is used to create a proxy to 

flow simulations and establish the relationships between fracture parameters and salinity/rate 

responses.  

In engineering, RSM has been employed to optimize manufacturing processes, design experiments, 

and model complex systems (Myers et al., 2016; Deng and Cai, 2010; Sen and Swaminathan, 2004; 

Singh et al., 2010; Baş and Boyacı, 2007). In chemistry, RSM has facilitated the optimization of 

reaction conditions, formulation development, and prediction of chemical properties (Bezerra et 

al., 2008; Hanrahan and Lu, 2006; Ahn et al., 2010; Amini et al., 2010). Additionally, RSM has 

found applications in economics, marketing, and social sciences, aiding in understanding 

consumer behaviour, market response, and policy analysis (Shang et al., 2004; Januardi et al., 2021; 

Guo et al., 2021; Anderson and Whitcomb, 2016; Venkatesh and Goyal, 2010). Here are some 

potential reasons for selecting RSM over other more sophisticated methods for this problem: (1) 

Simplicity and Interpretability (Vladislavleva et al., 2008; Dorie et al., 2016; Silva et al., 2007): 

RSM is relatively straightforward to implement and interpret, especially compared to more 

complex machine learning models. If the goal is to understand the relationship between variables 

and outcomes clearly, RSM offers an interpretable framework. This is particularly important in 

fields where explaining the model's behavior is as crucial as its predictive accuracy; (2) 

Experimental Design Integration (Khoo and Chen, 2001; Cheng et al., 2004; Boning and 

Mozumder, 1994): RSM is particularly useful in scenarios where experimental design plays a 

crucial role. It is adept at handling data from carefully designed experiments, optimizing the 

process by analyzing the effects of several variables simultaneously. This is less straightforward 
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in many machine learning models; (3) Low Data Requirement (Bezerra et al., 2008; Aslan, 2008): 

RSM can be more suitable for situations with limited data. Many advanced machine learning 

models require larger training datasets, while RSM can provide valuable insights even with smaller 

datasets, making it more cost-effective. Although more complicated machine learning models can 

better describe the complex relationships between inputs and outputs, for this particular problem, 

RSM is found to be sufficient since the numbers of input/output parameters and their associated 

ranges are small. The RSM modelling results are satisfactory for a specific set of parameter ranges. 

To train the RSM models, a synthetic dataset is assembled from numerical simulations. The 

simulation responses (e.g., rate and salinity profiles) are treated as outputs, while various fracture 

paramters are considered as inputs. Sensitivity analyses of fracture parameters help identify the 

key factors influencing the system's response and guide the selection of input variables for the 

RSM. Nevertheless, it is worth mentioning that most previous modelling efforts coupling 

geochemical modules and complex fracture systems in hydraulically fractured reservoirs are rare. 

For example, Zhong and Leung (2020a and 2020b) investigated the effect of fracture distribution 

on hydraulic-fractured shale-gas production by upscaling the stochastic 3D discrete fracture 

network (DFN) model into an equivalent continuum dual-porosity dual-permeability (DPDK) 

model. Xu and Leung (2022) studied the impact of mesh alignment with DFN in a DPDK model. 

Liu et al. (2020 and 2021) presented a coupled two‐phase flow/geomechanics model to investigate 

the feasibility and efficiency of inter-fracture water injection to enhance oil recovery. Wang and 

Leung (2015 and 2016) constructed a series of mechanistic simulation models consisting of both 

hydraulic fractures and stochastically-distributed secondary fractures to simulate imbibition, fluid 

re-distribution, and flow-back during shut-in and cleanup.  
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Therefore, the main research gap that this study aims to address is developing an efficient history-

matching workflow to integrate geochemical (salinity) data and rate data from produced fluids 

collected during the flowback period. First, a numerical simulation model calibrated against 

experimental data is used to predict the salinity of produced fluids and the production behaviour 

of a hydraulically fractured well. A detailed sensitivity analysis of fracture parameters and other 

models is explored. The calibrated numerical simulation is used to create a training dataset to train 

a regression (response surface) model, which will used as a proxy of numerical simulation. Next, 

The model is integrated into an optimization workflow to history match both rate and salinity data 

and infer uncertain primary and secondary fracture properties. Using response surface models and 

an automated optimization algorithm facilitates the inference of fracture parameters efficiently.  

The mechanisms that govern the interactions between crude oil, formation water, engineered water 

and rock are complex. The most widely recognized mechanism are multiple ion exchange and 

mineral dissolution/precipitation. Lager et al. (2006 and 2008) have proposed that the multiple ion 

exchange is the key mechanism for increasing oil recovery during low-salinity water flooding. 

There is a chemical balance between the ion concentration in the connate water (or initial formation 

water), the ion concentration adsorbed on the clay surface, and the polar compounds in the crude 

oil. Positively charged ions in the connate water, such as Ca2+  and Mg2+ , are adsorbed on 

negatively charged clay surfaces. The polar oil compounds, which are mainly negatively charged, 

are adsorbed to these multivalent positive charge sites on the clay surface, forming an oil film on 

the clay surface and an Electrical Double Layer (EDL) (Ligthelm et al., 2009). Therefore, 

macroscopically, the clay surface can be considered oil-wet. This balance is disturbed upon the 

injection of engineered fracturing fluids. For example, Ca2+ and other multivalent ions would be 

replaced by monovalent Na+ (AlShalabi and Sepehrnoori, 2016), and the crude oil adsorbed on 



42 

the multivalent ions could also be desorbed. Therefore, this exchange of ions could cause the 

formation to change from oil-wet to mixed or water-wet (Amirian et al., 2017). Since the 

concentration of each ion in the injected engineered water is very different from that of the 

formation water, it will disturb the existing equilibrium and cause source minerals (e.g., CaCO3, 

MgCO3, CaMg(CO3)2 and CaSO4, etc.) to dissolve or precipitate, thereby establishing a new 

equilibrium. In this process, polar components adsorbed on the rock surface are released with the 

dissolved minerals, thereby increasing water-wetness (Hiorth et al., 2010; Evje and Hiorth, 2010 

and 2011), and also it can lead to changes in pore structure (Yousef et al., 2010 and 2011). 

In order to construct the numerical simulation model for hydraulically fractured reservoir,  a model 

framework coupling flow-geochemical established describe in Chapter 3 will be used. This model 

is particularly relevant due to its comprehensive integration of geochemical mechanisms, including 

intra-aqueous reactions, mineral reactions, and ion exchange reactions, tested on conventional 

sandstone reservoirs. The appeal of this model lies in its ability to simulate and validate complex 

interactions between fluids and rocks, which are also pertinent to shale gas reservoirs. The model 

successfully simulated effluent ion concentration, pH, and saturation, aligning closely with 

experimental core flooding measurements. This alignment demonstrated the reliability of ion-

exchange equivalent fraction, pore volume evolution, and mineral molarity. In addition, Mehana 

and Fahes (2016) built a synthetic numerical model based on the Haynesville shale vertical well. 

Their model incorporated the ion exchange and mineral dissolution mechanisms while omitting 

any aqueous reactions. They use the model to assess the impact of formation mineralogy and 

fracturing fluid composition on gas recovery. However, they did not present any analysis regarding 

the flowback fluid composition and the impacts of fracture characteristics. 
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This work aims to develop a systematic framework for correlating fracture properties with salinity 

of flowback fluid and gas rate during the flowback period. Firstly, a numerical simulation model 

validated against experimental data from Chapter 3 is used to predict the salinity of produced fluids 

and the production behaviour of a hydraulically fractured well, which is used to calibrate an 

existing hydraulically fractured shale well model (Mehana and Fahes, 2016). Next, the validated 

geochemical vertical well model is modified to simulate a single stage of hydraulic fracturing in a 

horizontal well - new horizontal well shale model. The calibrated new horizontal well shale model 

is used to create a training dataset to train a regression (response surface) model, correlating 

fracture properties with the salinity of flowback fluid and gas rate. 

 

4.2 Methodology 

4.2.1 Flow and Geochemistry Coupling 

During water injection stimulation, when the driving agent with chemical composition different 

from the original formation water is injected into the formation, it will disrupt the initial 

geochemical balance and cause a series of geochemical reactions between the oil, original 

formation water, fracturing fluid, and rocks. In this process, the material balance equation is 

coupled with Darcy's law governing the flow and the geochemical model, which includes intra-

aqueous reactions, mineral reactions, ion exchange reactions, and phase equilibrium reactions 

(Nghiem and Rozon, 1989; Nghiem et al., 2011; Collins et al., 1992;). In the previous section, we 

introduced that since mineral dissolution and precipitation will affect the void volume of porous 

media, a two-way coupling scheme is used to couple geochemical and flow calculations: the time-

stepping in the flow module is performed first to obtain the pressure and temperature distribution. 
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The pressure and temperature solutions are then passed to the geochemistry module to compute 

the total moles of minerals, which are used to update the porosity and permeability. The solution 

from the geochemistry module, including the updated porosity and permeability values, is 

transferred back to the flow module. The process is repeated within a time step until the 

convergence criteria are satisfied. The solution method of this model follows the approach of 

Nghiem et al. (2004) to solve using the Newton-Raphson method for each discretized grid block. 

 

4.2.2 Validation of a Single Well Model 

The  Mehana and Fahes's (2016) model of a Haynesville shale vertical well is used as a baseline 

for comparison. They presented a simulation model to assess the impact of formation mineralogy 

and fracturing fluid composition on gas recovery. However, they did not present any analysis 

regarding the flowback fluid composition and the impacts of fracture characteristics. A baseline 

model based on the setup in Mehana and Fahes (2016) is constructed. The parameters used in 

Mehana and Fahes (2016) are shown in Table 4-1, Table 4-2 and Table 4-3. To model the reservoir 

state after hydraulic fracturing, their model injected fracturing fluid at a rate of 400 bbl/day into 

the injection well for 1 day. The pressure near the well increases and fluid leaks off into the 

surrounding formation. Finally, the well is shut in for 30 days. In addition, their model incorporated 

the ion exchange and mineral dissolution mechanisms while omitting aqueous reactions. A 

logarithmically spaced, locally refined grid, dual permeability model (LS-LG-DK) was used in 

their study. . The baseline model results closely align with the limited results from Mehana and 

Fahes (2016), including mineral mole changes and gas recovery (as shown in Figure 4-1). At the 
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same time, the ion concentration of flowback fluid is also obtained (as shown by dotted line in 

Figure 4-2). 

 

 

Figure 4-1. Logarithmically spaced, locally refined grid model structure (Inj: Injection well; Pro: Production well): 

Green-shale, Black-Fracture Conduit. 

 

Aqueous phase reactions: 

𝐶𝑂2 + 𝐻2𝑂 = 𝐻+ + 𝐻𝐶𝑂3
−, 30 

𝐻+ + 𝑂𝐻− = 𝐻2𝑂, 31 

𝐻+ + 𝐶𝑂3
2− = 𝐻𝐶𝑂3

−, 32 

Mineral dissolution and precipitation: 

𝐶𝑎𝑙𝑐𝑖𝑡𝑒 + 𝐻+ = 𝐶𝑎2+ + 𝐻𝐶𝑂3
−, 33 

𝐷𝑜𝑙𝑜𝑚𝑖𝑡𝑒 + 2𝐻+ = 𝐶𝑎2+ + 𝑀𝑔2+ + 2𝐻𝐶𝑂3
−, 34 

𝐴𝑛ℎ𝑦𝑑𝑟𝑖𝑡𝑒 = 𝐶𝑎2+ + 𝑆𝑂4
2−, 35 
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Ion exchange reactions: 

𝑁𝑎+ + 0.5(𝐶𝑎 − 𝑋2) ⟷ (𝑁𝑎 − 𝑋) + 0.5𝐶𝑎2+, 36 

𝑁𝑎+ + 0.5(𝑀𝑔 − 𝑋2) ⟷ (𝑁𝑎 − 𝑋) + 0.5𝑀𝑔2+, 37 

 

Table 4-1 Parameters of the shale gas model (Mehana and Fahes, 2016) 

Property Value 

Model dimensions 420 × 420 × 100 ft 

Reservoir pressure 5000 psi 

Matrix porosity 0.07 

Fracture porosity 0.01 

Matrix permeability 0.00015 mD 

Fracture conductivity 4.13 mD∙ft 

Natural fracture spacing 10 ft 

Reservoir temperature 250 F 

Shut-in time 1 month 
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Table 4-2 Chemical compositions of formation water and high-salinity water (Mehana and Fahes, 2016) 

Ions 
Formation water 

(mole/L) 

High-salinity water 

(mole/L) 

Ca2+ 4.8427E-1 1.6465E-2 

SO4
2− 3.6449E-3 2.4202E-2 

Mg2+ 1.0060E+0 4.6356E-2 

Na+ 2.7514E+0 4.5715E-1 

HCO3− 5.8000E-3 1.9967E-4 

 

Table 4-3 Geochemical modelling database (Computer Modelling Group 2021) 

Mineral Area (ft2/ft3)  Activation energy (J/mol) Log Keq (mol/ft2∙s) at 77 F 

Calcite 825.99 23500 -0.5398 

Dolomite 873.24 52200 -0.6995 

Anhydrite 903.24 14300 -0.2964 

 

 

(a)                                                                          (b) 

Figure 4-2. Historical matching of baseline model with results of Mehana and Fahes (2016): (a) Mineral moles 

change, (b) Cumulative gas recovery. 
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Next, aqueous reactions (Equations 30 to 32) omitted in the Mehana and Fahes's (2016) model are 

added, and the LS-LG-DK in the baseline model is replaced with a more accurate single porosity 

model with local grid refinement to create the "new model". The comparisons of ion concentration 

profiles of flowback fluid between the new and baseline models are shown in Figure 4-3, and a 

clear divergence is noted. The baseline model predictions tend to follow an opposite trend as those 

obtained with the new model; for example, the baseline model predicts a declining trend of SO4-- 

ions, while the new model predicts an increasing trend. The discrepancies can be attributed to the 

primary factors that the aqueous phase reactions were not modelled in Mehana and Fahes's model. 

 

 

(a)                                                                          (b) 
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(c)                                                                          (d) 

Figure 4-3. Ion concentration of flowback fluid comparison between new model result and baseline model result: (a) 

Na+ ion concentration, (b) Ca++ ion concentration, (c) Mg++ ion concentration, (d) SO4-- ion concentration. 

 

As documented in several field studies, the observed salinity trends in the updated model match 

real-world measurements. The research conducted by field observations (as shown in Figure 4-4) 

(He et al., 2022a and 2022b; Zolfaghari et al., 2014 and 2016; Blauch et al., 2009) serves as 

empirical validation, highlighting the potential impacts of all relevant geochemical mechanisms in 

simulation models. Such validation is crucial for the predictive models that reflect actual reservoir 

behaviour, demonstrating that geochemical interactions play an important role in hydraulic 

fracturing operations. 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 
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(e) 

Figure 4-4. Salinity profiles from field observation. 

 

4.2.3 Modelling of a Hydraulically Fractured Horizontal Well 

The validated vertical well model is modified to simulate a single stage of hydraulic fracturing in 

a horizontal well. The "new horizontal well shale model" incorporates ion exchange reactions, 

mineral dissolution and precipitation reactions, as well as aqueous reactions. This model is 

constructed as a 2D numerical representation featuring three interactive components: matrix blocks, 

secondary fractures (SF), and hydraulic fractures (HF). 

The model parameters are the same as the new model presented earlier (refer to Table 4-2 and 

Table 4-3, and Equations 30 to 37). The only difference is the fracture network configuration – a 

horizontal well with evenly spaced and symmetrical hydraulic fracture stages is assumed, and a 

single stage with two bi-wing hydraulic fractures (as shown in Figure 4-5) is simulated. The model 

includes a perforation at the intersection of the hydraulic fracture and the horizontal well, flanked 
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by evenly positioned secondary fractures. The basic parameters of the new horizontal well model 

are shown in  

Table 4-4, and they are extracted from several references (Mehana and Fahes, 2018; Rubin, 2010; 

Wang and Leung, 2015; Zhong and Leung, 2020; Zhang and Leung, 2022). 

The model uses two sets of published relative permeability curves (high salinity and low salinity) 

(as shown in Figure 4-6) to simulate the effect of wettability changes (Fakcharoenphol et al., 2014). 

To simulate the fluid injection during hydraulic fracturing, an injection rate of 3000 bbl/day for 3 

hours is imposed, followed by a 3-hour shut-in, and this cycle is repeated three times. Subsequently, 

the well is shut in for 30 days. The model dynamically captures fluid movement, accounting for 

variable geochemical reactions and ensuring pressure and solute transport, and simulates realistic 

reservoir conditions after the hydraulic fracturing process. This study does not consider the fracture 

propagation process, as geomechanical simulation is not coupled. It simulates only the fluid 

movement during the injection, shut-in, and production phases. In other words, geomechanical 

effects and subsequent fracture opening, propagation, and closure are omitted. It aims to estimate 

fluid movement in pre-existing networks of primary and secondary fractures. Similar approaches 

were found in the literature where geomechanical simulation was not considered (Mehana and 

Fahes, 2018; Rubin, 2010; Wang and Leung, 2015; Zhong and Leung, 2020; Zhang and Leung, 

2022). 
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Figure 4-5. New horizontal well shale model: Green-shale, Black-Secondary Fracture Conduit, Red-Primary 

Fracture Conduit, Yellow-Horizontal Well Path. 

  

(a)                                                                          (b) 

Figure 4-6. Relative permeability functions for low (LSW)) and high (HSW) salinity water systems: (a) gas-water 

and (b) water-oil  
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Table 4-4 Parameters of the shale gas model 

Property Value Data Sources 

Model dimensions 380 × 420 × 100 ft Rubin, 2010 

Reservoir pressure 5000 psi Mehana and Fahes, 2018 

Matrix porosity 0.07 Mehana and Fahes, 2018 

Primary fracture porosity 1 Rubin, 2010 

Secondary fracture porosity 0.6 Wang and Leung, 2015 

Matrix permeability 0.00015 mD Mehana and Fahes, 2018 

Primary fracture permeability 10000 mD Zhong and Leung, 2020 

Primary fracture aperture 0.098425 ft Zhong and Leung, 2020 

Secondary fracture permeability 25 mD Zhong and Leung, 2020 

Secondary fracture aperture 0.00098425 ft Zhong and Leung, 2020 

Reservoir temperature 250 F Mehana and Fahes, 2018 

Shut-in time 35 days Mehana and Fahes, 2018 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 

Figure 4-7. Ion concentration of flowback fluids between new horizontal well shale model and comparison model: 

(a) Na+ ion, (b) Ca2+ ion, (c) Mg2+ ion and (d) SO4
2− ion. 

 

The ion concentration profiles of flowback fluids corresponding to the new horizontal well shale 

model are shown in Figure 4-7, where t = 0 is the time when the well re-opens after shut-in. They 

follow similar trends in Figure 4-3 in the previous section and correspond well with reported field 

observations (Figure 4-4) (He et al., 2022a and 2022b; Zolfaghari et al., 2014 and 2016; Blauch et 
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al., 2009). This further validates the accuracy of our developed model for subsequent analysis 

involving proxy/regression modelling. 

 

4.3. Results 

4.3.1 Sensitivity Analysis of Fracture Parameters 

In this section, the simulation models will be used to examine the sensitivity of flowback fluid 

salinity to fracture network properties. Zolfaghari et al. (2014 and 2016) demonstrated using field 

data that the complexity of dendritic fracture systems can be related to the flowback fluid salinity 

(i.e., the concentration of Na+). For instance, for a less complex system, the salt recovery profile 

would increase gradually and then plateau at a certain level, while the salinity would continue 

rising when the fracture system is more complex. Yang and Wu (2017) pointed out that the fracture 

aperture may also affect the ion concentration of flowback water. More specifically, narrower 

fractures tend to produce flowback water with a higher concentration of ions. Given that multiple 

fracture system parameters would affect the salinity profile, the simulation model will be used to 

examine the impacts of individual parameters and capture the interplay between these parameters. 

The set of simulation models will be used to train two response surface models (one for flow rate 

and one for the salinity profiles in the subsequent sections). The selected primary fracture (PF) and 

secondary fracture (SF) parameters are (a) PF Length. (b) PF Permeability, (c) SF Coverage, (d) 

SF P22, (e) SF Aperture, and (f) SF Permeability. SF Coverage refers to the drainage area covered 

by the secondary fractures. The simulation domain is one hydraulic fracture stage, neglecting the 

interference between stages, as shown in Figure 4-8. The corresponding salinity and gas rate 

profiles are shown in Figure 4-9 and Figure 4-10, respectively. 



57 

 

       

(a) case 1                    (b) case 2                       (c) case 3                  (d) case 4 

       

(e) case 5                   (f) case 6                       (g) case 7                    (h) case 8 

Figure 4-8. Case 1-8 Schematic of horizontal well shale model: Green-shale, Black-Secondary Fracture Conduit, 

Red-Primary Fracture Conduit, Yellow-Horizontal Well Path. 
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Table 4-5 Fracture characteristics for the training dataset 

Case 
PF Length 

(ft) 
PF Permeability 

(mD) 

SF Coverage 

(ft2) 

SF P32 

ft2/ft3 

SF Aperture 

(ft) 
SF Permeability 

(mD) 

1 260 10000 46800 0.1000  0.00098425 25 

2 300 10000 54000 0.1000  0.00098425 25 

3 340 10000 61200 0.1000  0.00098425 25 

4 380 10000 68400 0.1000  0.00098425 25 

5 (Base Case) 420 10000 75600 0.1000  0.00098425 25 

6 460 10000 82800 0.1000  0.00098425 25 

7 500 10000 90000 0.1000  0.00098425 25 

8 540 10000 97200 0.1000  0.00098425 25 

9 420 2500 75600 0.1000  0.00098425 25 

10 420 5000 75600 0.1000  0.00098425 25 

11 420 20000 75600 0.1000  0.00098425 25 

12 420 30000 75600 0.1000  0.00098425 25 

13 420 40000 75600 0.1000  0.00098425 25 

14 420 50000 75600 0.1000  0.00098425 25 

15 420 60000 75600 0.1000  0.00098425 25 

16 420 10000 25200 0.1000  0.00098425 25 

17 420 10000 42000 0.1000  0.00098425 25 

18 420 10000 58800 0.1000  0.00098425 25 

19 420 10000 92400 0.1000  0.00098425 25 

20 420 10000 75600 0.0428  0.00098425 25 

21 420 10000 75600 0.0620  0.00098425 25 

22 420 10000 75600 0.0810  0.00098425 25 

23 420 10000 75600 0.1190  0.00098425 25 

24 420 10000 75600 0.1380  0.00098425 25 

25 420 10000 75600 0.1572  0.00098425 25 

26 420 10000 75600 0.1000  0.00019442  25 

27 420 10000 75600 0.1000  0.00029163  25 

28 420 10000 75600 0.1000  0.00043744  25 

29 420 10000 75600 0.1000  0.00065617  25 

30 420 10000 75600 0.1000  0.00147638  25 

31 420 10000 75600 0.1000  0.00221456  25 

32 420 10000 75600 0.1000  0.00332184  25 

33 420 10000 75600 0.1000  0.00498277  25 

34 420 10000 75600 0.1000  0.00098425 5 

35 420 10000 75600 0.1000  0.00098425 10 

36 420 10000 75600 0.1000  0.00098425 15 

37 420 10000 75600 0.1000  0.00098425 20 

38 420 10000 75600 0.1000  0.00098425 30 

39 420 10000 75600 0.1000  0.00098425 35 

40 420 10000 75600 0.1000  0.00098425 40 

41 420 10000 75600 0.1000  0.00098425 45 
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(a)                                                                          (b) 

 

(c)                                                                          (d) 
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(e)                                                                          (f) 

Figure 4-9. Flowback fluids salinity at different fracture characteristics: (a) PF Length. (b) PF Permeability, (c) SF 

Coverage, (d) SF P32, (e) SF Aperture, and (f) SF Permeability. 

 

 

(a)                                                                          (b) 
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(c)                                                                          (d) 

 

(e)                                                                          (f) 

Figure 4-10. Gas rate at different fracture characteristics: (a) PF Length. (b) PF Permeability, (c) SF Coverage, (d) 

SF P32, (e) SF Aperture, and (f) SF Permeability. 

 

The results illustrated in Figure 4-9 confirm the strong relationships between various fracture 

characteristics and the salinity levels in flowback fluid. When the conductivity of the fracture 
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network increases, the flowback fluid salinity and gas rate also increase. As expected, PF length 

has a significant impact, while PF permeability is less impactful, as seen in Figure 4-10. It is 

interesting to note that coverage of SF is less important than other properties of SF examined in 

these cases. 

 

4.3.2 Response Surface Model (RSM) Construction 

Given the lack of field data, the sensitivity analysis findings from section 4.3.1 are employed to 

construct a relationship between fracture characteristics and the salinity of flowback fluid and gas 

rate. The dataset size is small but enough for regression or response surface modelling (RSM). 

RSM is adept at capturing complex interactions through simplified empirical approximations of 

functional relationships. Through comparing multiple curve-fitting functions, including 

exponential, rational, logarithmic, power, and arps decline, two empirical relationships are selected 

to describe salinity and rate as a function of time. For the salinity of flowback fluid versus time 

(Figure 4-9), a logarithmic function (Equation 38) is selected. For the gas production rate, the Arps 

decline equation (Equation 39) was selected (Arps, 1945). An example of the curve-fitting process 

is shown in Figure 4-11. Response variables 𝑑, 𝑒, 𝑓, 𝑞𝑖, 𝐷𝑖 and 𝑏, can be approximated by a low-

degree polynomial described by Equations 38 and 39, as shown in Table 4-6 and Table 4-7. 
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(a)                                                                                (b) 

Figure 4-11. Salinity profile and gas rate curve fitting for base case: (a) Salinity curve fitting. (b) Gas rate curve 

fitting. 

 

𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦̂ (𝑡) = 𝑑 − 𝑒𝑙𝑛(𝑡 + 𝑓), 38 

𝑅𝑎𝑡�̂�(𝑡) =
𝑞𝑖

(1+𝑏𝐷𝑖𝑡)
1
𝑏

, 39 
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Table 4-6 Response variables and R2 of salinity profiles for the training dataset 

Case 𝑑 𝑒 𝑓 R2 

1 0.340010  -0.101050  3.670630  0.9994  

2 0.333440  -0.107550  3.554820  0.9994  

3 0.323940  -0.115970  3.501860  0.9994  

4 0.314880  -0.124400  3.454130  0.9993  

5 0.306680  -0.133720  3.343120  0.9994  

6 0.294040  -0.143660  3.358340  0.9994  

7 0.282090  -0.152380  3.397240  0.9994  

8 0.273970  -0.157670  3.452290  0.9994  

9 0.299880  -0.133800  3.548830  0.9994  

10 0.304470  -0.133370  3.420500  0.9994  

11 0.307580  -0.134720  3.283540  0.9994  

12 0.307850  -0.135570  3.247180  0.9994  

13 0.308000  -0.136300  3.219050  0.9994  

14 0.308130  -0.136920  3.195200  0.9994  

15 0.308260  -0.137470  3.173960  0.9994  

16 0.358320  -0.114990  2.393270  0.9994  

17 0.328810  -0.126460  2.923880  0.9994  

18 0.313920  -0.131450  3.205370  0.9994  

19 0.302590  -0.134910  3.421900  0.9994  

20 0.288490  -0.126670  4.002310  0.9985  

21 0.288170  -0.131230  3.849490  0.9988  

22 0.308340  -0.129010  3.370580  0.9992  

23 0.313840  -0.131910  3.232210  0.9994  

24 0.315640  -0.134200  3.150190  0.9994  

25 0.330610  -0.131170  2.910110  0.9994  

26 0.318100  -0.117850  3.406940  0.9985  

27 0.315530  -0.121600  3.358500  0.9988  

28 0.311190  -0.125930  3.369140  0.9990  

29 0.306950  -0.130320  3.388340  0.9992  

30 0.310850  -0.135850  3.230700  0.9994  

31 0.317480  -0.137210  3.072740  0.9994  

32 0.324090  -0.138640  2.898430  0.9992  

33 0.325750  -0.142150  2.759310  0.9989  

34 0.314020  -0.119120  3.485900  0.9985  

35 0.308430  -0.126030  3.432820  0.9989  

36 0.305490  -0.130020  3.422940  0.9992  

37 0.305130  -0.132400  3.392100  0.9993  

38 0.309130  -0.134420  3.288890  0.9994  

39 0.311880  -0.134790  3.235350  0.9994  

40 0.314680  -0.134940  3.183740  0.9994  

41 0.317430  -0.134950  3.134730  0.9994  



65 

Table 4-7 Response variables and R2 of rate profiles for the training dataset 

Case 𝑞𝑖 𝐷𝑖  b R2 

1 464335.94  0.516424  3.128300  0.9991  

2 516513.39  0.456826  3.065858  0.9993  

3 570148.66  0.420410  3.019564  0.9991  

4 626339.46  0.400008  2.986396  0.9997  

5 685589.13  0.393721  2.967479  0.9992  

6 755350.42  0.414838  2.976416  0.9993  

7 834606.90  0.457872  3.003959  0.9992  

8 922261.50  0.520971  3.043522  0.9999  

9 671927.00  0.376064  2.923196  0.9992  

10 680347.76  0.390400  2.948141  0.9991  

11 691261.63  0.392736  2.986564  0.9993  

12 695209.09  0.390474  2.997172  0.9994  

13 699966.21  0.392061  3.007582  0.9994  

14 701120.57  0.385851  3.008701  0.9995  

15 703910.26  0.384669  3.012821  0.9996  

16 619972.59  0.300431  1.977194  0.9995  

17 665860.57  0.332961  2.490073  0.9990  

18 682070.79  0.373097  2.814847  0.9998  

19 687346.71  0.405062  3.027487  0.9998  

20 507469.41  0.460998  2.642114  0.9993  

21 556193.24  0.444747  2.824865  0.9998  

22 611095.48  0.420508  2.929948  0.9993  

23 701270.80  0.362239  2.978715  0.9990  

24 743124.37  0.317604  2.896118  0.9994  

25 787772.67  0.287803  2.809334  0.9898  

26 530719.20  0.495633  2.351117  0.9998  

27 558723.84  0.477952  2.489391  0.9995  

28 593746.02  0.459548  2.653887  0.9998  

29 641718.81  0.449829  2.836450  0.9994  

30 737324.60  0.330389  3.027248  0.9996  

31 786058.93  0.250771  2.951279  0.9991  

32 826837.65  0.174060  2.716036  0.9994  

33 861638.20  0.119215  2.371960  0.9999  

34 526343.64  0.480149  2.345344  0.9998  

35 578373.40  0.447803  2.591838  0.9991  

36 620078.65  0.428995  2.767728  0.9990  

37 655465.40  0.412110  2.888660  0.9997  

38 711843.59  0.375051  3.016096  0.9996  

39 734882.24  0.356410  3.042404  0.9991  

40 755111.73  0.337952  3.051893  0.9996  

41 773339.01  0.320818  3.049871  0.9992  



66 

The coefficients (𝑑, 𝑒, 𝑓, 𝑞𝑖, 𝐷𝑖, 𝑏) are individually treated as a distinct response variable, and two 

sets of RSM models are constructed as shown below. In each model, the same independent 

variables (𝑥1, 𝑥2, …, 𝑥6) are used. This process was executed using Matlab® R2022a (MathWorks, 

2022a). 

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦(𝑑, 𝑒, 𝑓) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥1
2 + 𝛽3𝑥2 + 𝛽4𝑥2

2 + 𝛽5𝑥3 + 𝛽6𝑥3
2 + 𝛽7𝑥4 +

𝛽8𝑥4
2 + 𝛽9𝑥5 + 𝛽10𝑥5

2 + 𝛽11𝑥6 + 𝛽12𝑥6
2,

40 

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑅𝑎𝑡𝑒(𝑞𝑖, 𝐷𝑖 , 𝑏) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥1
2 + 𝛽3𝑥2 + 𝛽4𝑥2

2 + 𝛽5𝑥3 + 𝛽6𝑥3
2 + 𝛽7𝑥4 +

𝛽8𝑥4
2 + 𝛽9𝑥5 + 𝛽10𝑥5

2 + 𝛽11𝑥6 + 𝛽12𝑥6
2,

41 

𝑥1, 𝑥2, …𝑥6 refer to the six independent variables examined in the previous section: PF length, PF 

permeability, PF aperture, SF coverage, SF P32, SF aperture, and SF permeability, respectively. 

𝛽0, 𝛽1, …, 𝛽12 are the adjustable RSM coefficients; their final values are detailed in Table 4-8 and 

Table 4-9. 
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Table 4-8 Coefficients Beta for RSM-Salinity 

Beta d e f 

𝛽0 3.238323E-01 -1.563993E-02 7.161781E+00 

𝛽1 4.386262E-04 -4.480361E-06 -1.713403E-02 

𝛽2 -7.564449E-07 -2.289949E-07 1.855159E-05 

𝛽3 2.876893E-07 -1.096603E-07 -1.233272E-05 

𝛽4 -4.400383E-12 3.142018E-14 1.358058E-10 

𝛽5 -2.228068E-06 -7.688263E-07 4.282431E-05 

𝛽6 1.262078E-11 4.443315E-12 -2.431814E-10 

𝛽7 3.695601E-01 -2.339818E-01 -1.765518E+01 

𝛽8 -9.591130E-02 9.604481E-01 4.313155E+01 

𝛽9 -2.830638E+00 -1.306492E+01 -1.488103E+02 

𝛽10 1.413668E+03 1.895517E+03 -1.587512E+03 

𝛽11 -7.716417E-04 -9.411953E-04 -2.899635E-03 

𝛽12 1.871083E-05 1.204991E-05 -1.173613E-04 

R2 0.9946 0.9909 0.9910 
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Table 4-9 Coefficients Beta for RSM-Rate 

Beta 𝑞𝑖 𝐷𝑖  b 

𝛽0 -2.566732E+05 1.810090E+00 2.721618E+00 

𝛽1 -1.049860E+03 -5.982627E-03 -1.509276E-02 

𝛽2 3.247988E+00 7.206343E-06 1.653701E-05 

𝛽3 1.173979E+00 6.519562E-07 4.398591E-06 

𝛽4 -8.852903E-06 -1.195750E-11 -3.371741E-11 

𝛽5 2.559904E+00 3.314941E-06 4.042474E-05 

𝛽6 -1.588229E-05 -1.471128E-11 -2.231825E-10 

𝛽7 4.634453E+06 -4.959761E-01 1.207355E+01 

𝛽8 -1.093529E+07 -5.322857E+00 -5.386805E+01 

𝛽9 1.709453E+08 -1.548566E+02 5.335782E+02 

𝛽10 -2.150519E+10 1.449914E+04 -1.174084E+05 

𝛽11 8.880960E+03 -4.822421E-03 4.105786E-02 

𝛽12 -5.734041E+01 1.984139E-05 -4.961534E-04 

R2 0.9969 0.9966 0.9996 

 

4.3.3 RSM Model Validation and Interpretation 

The RSM-Rate and RSM-Salinity models developed in the previous section are validated here 

using a set of testing datasets. Four specific cases are outlined in Table 4-10, and the ranges of 𝑥1, 

𝑥2, …, 𝑥6 are the same as the training dataset. The RSM predictions are shown in Table 4-11, and 

they are then substituted into Equations 38 and 39 to generate a salinity and rate profile for each 

case. The comparisons of these profiles are shown in Figure 4-12 and Figure 4-13. The mismatch 

between these predicted profiles and the actual profiles of the testing dataset is represented by R2 

values in the figures. The high R2 values (> 0.95) demonstrate that the RSM models can accurately 
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capture the underlying relationships between fracture parameters and the salinity of flowback fluid, 

as well as gas rate, for the ranges of fracture characteristics modelled here. A key limitation is that 

the model may not yield reasonable results if the ranges of 𝑥1, 𝑥2, …, 𝑥6 are different than those 

used in the training dataset. 

 

Table 4-10 Fracture characteristics for testing dataset. 

Case 
PF Length 

(ft) 
PF Permeability 

(mD) 

SF Coverage 

(ft2) 

SF P32 

ft2/ft3 

SF Aperture 

(ft) 
SF Permeability 

(mD) 

1 420 16000 75600 0.0452 0.00042563 18 

2 300 18000 54000 0.0767 0.00125862 16 

3 380 8000 68400 0.0395 0.00113284 34 

4 340 20000 61200 0.0529 0.00084517 28 

 

Table 4-11 RSM model predictions for the testing dataset. 

Case d e f 𝑞𝑖 𝐷𝑖  b 

1 0.289518  -0.119260  4.059341  391882.32  0.565532  2.361870  

2 0.326481  -0.105829  3.749960  430508.99  0.494471  2.907142  

3 0.298396  -0.121267  3.996217  490727.63  0.413910  2.797281  

4 0.311389  -0.112510  3.885105  426349.75  0.483952  2.830000  

 

 



70 

 

(a)                                                                           (b) 

 

(c)                                                                           (d) 

Figure 4-12. Comparison between the predicted and true profiles using the RSM-Salinity model. 
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(a)                                                                           (b) 

 

(c)                                                                           (d) 

Figure 4-13. Comparison between the predicted and true profiles using the RSM-Rate model. 
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4.4 Summary 

1. The chapter introduces a hydraulically fractured reservoir model that incorporates multiple 

geochemical reaction mechanisms. This enables a more nuanced and accurate representation of 

complex geochemical behaviours within fractures, filling a significant gap in the existing literature. 

2. This chapter is based on the RSM and uses the sensitivity analysis results of the hydraulically 

fractured horizontal well model to establish the RSM-Salinity and RSM-Rate prediction models. 

The models reveal the complex temporal relationships between the salinity of flowback fluid and 

production time. Validation exercises demonstrate its robust predictive capabilities, with R2 values 

consistently above 0.95, confirming the model's reliability and applicability. 
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Chapter 5:  Fracture Characterization Using RSM-GA Workflow 

5.1 Introduction 

The developed RSM models in Chapter 4 are used as a proxy for detailed flow simulations and 

integrated into a Genetic Algorithm (GA) optimization workflow for history matching of 

production and salinity profiles and for the inference of uncertain fracture parameters; in other 

words, the GA algorithm is used to adjust or perturb the fracture parameters, while the RSM 

proxies are used for the forward model calculations. The methodology is implemented in the 

Genetic Algorithm Optimization Toolbox of Matlab® R2022a (MathWorks, 2022a). The choice 

of GA for this research was driven by specific considerations of the problem rather than the general 

advantages of GAs. Other global optimization techniques, such as particle swarm optimization 

(PSO) or simulated annealing (SA), could potentially serve similar purposes, but GA was selected 

for its unique suitability (Sivanandam et al., 2008; Srinivas and Patnaik, 1994). GAs are 

particularly effective in searching complex, multimodal landscapes where other algorithms might 

get trapped in local optima. This is because GAs work with a population of solutions, enabling 

them to explore multiple regions of the search space simultaneously. Flexibility and Adaptability 

(Horn and Goldberg, 1995; De Jong, 1993; Kinnear, 1994): GAs are highly adaptable to different 

types of optimization problems without needing major modifications to their basic structure. They 

can handle a variety of objective functions and constraints, including non-differentiable, 

discontinuous, and highly non-linear functions. Parallelism (Bertoni and Dorigo, 1993; Alba and 

Troya, 2002; Gorges-Schleuter, 1990): The population-based approach of GAs is inherently 

parallel, making them suitable for parallel computing architectures. This can lead to significant 

reductions in computational time, especially for large and complex problems. Global Search 
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Capability (Smith et al., 1992; El-Mihoub et al., 2006): GAs are designed to perform a global 

search, which makes them suitable for problems where the global optimum is required, and the 

search space is large or poorly understood. Reduced Requirement for Derivative Information 

((Bezerra et al., 2008; Aslan, 2008)): Unlike gradient-based methods, GAs do not require 

derivative information, which makes them applicable to problems where such information is 

difficult or impossible to calculate. Therefore, the problem of using salinity of flowback fluid to 

characterize fracture characteristics can be solved by establishing an intelligent optimization 

system based on genetic algorithm. The objective functions are the mean squared error (MSE) 

between the observed and predicted flowback fluid salinity or gas rate.  

 

5.2 Case #1 – Uniform and Non-Uniform Secondary Fracture Parameters 

The RSM models are trained using simulations with uniform SF parameters. Therefore, this section 

explores the feasibility of using these RSM proxies for predicting the salinity and rate profiles for 

non-uniform secondary fracture scenarios if "average SF parameters" are considered in the RSM 

proxies.  

In this section, a true case with non-uniform SF parameters is constructed (as shown in Figure 5-1). 

The simulation profiles are used as histories or true values (as shown in Figure 5-2), and the RSM-

GA workflow is used to estimate a single set of fracture parameters. In order to avoid the GA being 

stuck at a local minimum, the GA is run multiple times with different initial guesses. If it converges 

to approximately the same solution across multiple runs, this suggests that the result is a global 

optimum rather than a local minimum. The RSM-GA results are shown in Table 5-1. In one case, 

these GA estimates are considered to represent a uniform SF model case (case 1 and case 2); in 
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another case, these GA estimates correspond to averages of a non-uniform SF model case with 

certain standard deviations (SF permeability, aperture, and length). Therefore, for non-uniform 

secondary fracture scenarios, three SF parameters: permeability, aperture, and length are assumed 

to follow Gaussian distributions (Zhong and Leung, 2020a and 2020b; Sun and Schechter, 2015), 

and the standard deviation for each parameter is calculated as 10% of the average value predicted 

by GA; secondary fractures are randomly distributed on both sides of the horizontal well. Three 

realizations from RSM-Salinity and RSM-Rate are sampled and shown in Figure 5-3 (cases 1a, 1b, 

and 1c) and Figure 5-4 (cases 2a, 2b, and 2c). To assess the accuracy of predicted fracture 

properties, the Percentage Error (PE) for each variable was calculated by comparing the predicted 

values to the true values, with the detailed results provided in the Appendix A. This method was 

consistently applied across all examined cases. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑃𝐸) = |
𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒
| × 100%, 42 

 

 

Figure 5-1. True case for non-uniform secondary fracture model. 
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(a)                                                                           (b) 

Figure 5-2. Salinity and rate histories for non-uniform secondary fracture model: (a) Salinity curve fitting, (b) Gas 

rate curve fitting. 

 

Table 5-1 Fracture parameters estimated using RSM-GA workflow for the non-uniform SF case. 

Parameter 

PF 

Length 

(ft) 

PF 

Permeability 

(mD) 

SF 

Coverage 

(ft2) 

SF 

P32 

(ft2/ft3) 

SF 

Aperture 

(Average) 

(ft) 

SF 

Permeability 

(Average) 

(mD) 

RSM-Salinity 417 7233 74495 0.0639 0.00042947 33 

RSM-Rate 425 6797 73886 0.0641 0.00044885 39 

 

       

case 1                      case 1-a                        case 1-b                      case 1-c 

Figure 5-3. Uniform and non-uniform secondary fracture model constructed by RSM-Salinity: Green-shale, Black-

Secondary Fracture Conduit, Red-Primary Fracture Conduit, Yellow-Horizontal Well Path. 
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case 2                      case 2-a                        case 2-b                      case 2-c 

Figure 5-4. Uniform and non-uniform secondary fracture model constructed by RSM-Rate: Green-shale, Black-

Secondary Fracture Conduit, Red-Primary Fracture Conduit, Yellow-Horizontal Well Path. 

 

  

Salinity-case 1                                                       Salinity-case 1a 
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Salinity-case 1b                                                      Salinity-case 1c 

 

Rate-case 1                                                            Rate-case 1a 
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Rate-case 1b                                                           Rate-case 1c 

 Figure 5-5. Salinity and Rate profile between true value and RSM response for cases 1, 1a, 1b, and 1c. 

 

 

Salinity-case 2                                                       Salinity-case 2a 
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Salinity-case 2b                                                      Salinity-case 2c 

 

Rate-case 2                                                            Rate-case 2a 
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Rate-case 2b                                                           Rate-case 2c 

Figure 5-6. Salinity and Rate profile between true value and RSM response for cases 2, 2a, 2b, and 2c. 

 

The models in Figure 5-3 and Figure 5-4 are subjected to detailed flow simulation again, and the 

simulated salinity and rate profiles are presented in Figure 5-5 and Figure 5-6. There is a good 

agreement between the simulated profiles using the fracture parameters estimated using the RSM-

GA workflow and the introduction of variability through Gaussian noise (cases 1-a, 1-b, and 1-c; 

and cases 2a, 2b, and 2c) and the production history of the true cases. The agreement is good even 

for the uniform secondary fracture scenario (using constant secondary fracture parameters), 

demonstrating the utility of the RSM-GA models for estimating average fracture values. 

 

5.3 Case #2 – Heterogeneous Secondary Fracture DFN Model  

This section will apply the RSM models and GA workflow to a true case that is more complex and 

realistic. The Discrete Fracture Network (DFN) method is used to generate a complex network of 



82 

secondary fractures for the true case (as shown in Figure 5-7). The Fisher et al. (2005) 

conceptualization of a complex hydraulic fracture system was adopted to construct the DFN model 

using FRACMAN® (Golder Associates, 2018). PF parameters, SF coverage and P32 are constant 

and taken from Case #1 (section 5.2), while SF aperture and SF permeability follow the same 

Gaussian distributions described in Case #1.  The simulation profiles are used as histories or true 

values (as shown in Figure 5-8), and the RSM-GA workflow described in section 5.1 is used to 

estimate a single set of fracture parameters (as shown in Table 5-2). Meanwhile, using the RSM-

GA estimates and introducing variability through Gaussian noise described in section 5.2, three 

realizations of DFN are randomly generated, respectively (as shown in Figure 5-9 and Figure 5-10). 

 

 

Figure 5-7. True case for heterogeneous secondary fracture DFN model. 

 



83 

  

Figure 5-8. Salinity and rate histories for heterogeneous secondary fracture DFN model. 

 

Table 5-2 Fracture parameters estimated using RSM-GA workflow – DFN realizations are generated using the 

estimated parameters. 

Parameter 

PF 

Length 

(ft) 

PF 

Permeability 

(mD) 

SF 

Coverage 

(ft2) 

SF 

P32 

(ft2/ft3) 

SF 

Aperture 

(Average) 

(ft) 

SF 

Permeability 

(Average) 

(mD) 

RSM-Salinity 414 7336 80034 0.0585 0.00041578 38 

RSM-Rate 429 7346 80131 0.0588 0.00046167 30 

 

 

DFN1                                                 DFN2                                                    DFN3 

Figure 5-9. The secondary fracture permeability distribution of the DFN model constructed by RSM-Salinity. 
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DFN4                                                 DFN5                                                    DFN6 

Figure 5-10. The secondary fracture permeability distribution of the DFN model constructed by RSM-Rate. 

 

 

Salinity-DFN1                                                        Salinity-DFN2 
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Salinity-DFN3                                                             Rate-DFN1 

 

Rate-DFN2                                                             Rate-DFN3 

 Figure 5-11. Salinity and Rate profile between the true value and RSM response for cases DFN 1-3. 
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Salinity-DFN4                                                        Salinity-DFN5 

 

Salinity-DFN6                                                             Rate-DFN4 
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Rate-DFN5                                                             Rate-DFN6 

Figure 5-12. Salinity and Rate profile between the true value and RSM response for cases DFN 4-6. 

 

Compared with matching the non-uniform secondary fracture model in section 5.2, the agreement 

between the simulated profiles from models in Figure 5-9 and Figure 5-10 and the histories will 

produce some sensitivities. This behaviour is reflected in R2 values in Figure 5-11 and Figure 5-12. 

The main reason for this sensitivity may be the assumptions in the RSM model step: all secondary 

fractures are interconnected with the primary fractures. In this application to a realistic DFN model, 

fractures are randomly distributed, and some secondary fractures may not be directly connected to 

the primary fracture, leading to an underestimation of secondary fractures P32. Despite this 

limitation, it is essential to recognize the overarching predictive power of the RSM methodology 

under complex conditions. Figure 5-11 and Figure 5-12 confirm that RSM maintains an impressive 

level of overall accuracy, even when local heterogeneity and random distribution of fractures are 

introduced into the model. 
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5.4 Case #3 – Multi-Stage Horizontal Well Model  

In this section, a horizontal well with five hydraulic fracturing stages is modelled. The goal is to 

explore how interference between the stages may affect the utility of the RSM-GA modelling 

approach trained using a single fracturing stage model with uniform SF properties.   

In addition, in general, only the overall production curve can be obtained from multi-stage 

horizontal wells. For the assumptions of our RSM model, we can only obtain the average value of 

fractures in multi-stage horizontal wells. However, with the development of technology, such as 

the emergence of Distributed Temperature Sensing (DTS) and Distributed Acoustic Sensing (DAS) 

(Carpenter, 2016; Ghahfarokhi et al., 2018 and 2021; Kjetil et al., 2012; Sookprasong et al., 2014), 

we can obtain the gas rate curve of each stage.  

A limitation comes out when considering the salinity of flowback water. Because the salinity of 

flowback water can only be measured from the wellhead, representing the entire horizontal well. 

Typically, measuring the salinity of flowback fluid requires collecting flowback water samples at 

the wellhead and sending them to the laboratory to measure their ion concentration. In the early 

stage of the flowback, the more intensive the collection times, the better. In the later stage, the 

collection time can be appropriately relaxed. For instance, Osselin et al., (2018) collected flowback 

water through 1L plastic bottles. Samples were collected every 20 𝑚3 until 100 𝑚3 of flowback 

and every 100 𝑚3 until 7 days of flowback, a total of 24 times. The samples were analyzed for 

concentrations of major ions, and presented a mathematical model that allows the calculation of 

the amount of fracturing fluid recovered. 

In view of these considerations, the subsequent phase will use three types of production curves, 

the rate curve of each stage from DAS/DTS, the averaged total rate curve from the wellhead 
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(calculated by dividing the overall gas rate by the number of stages), and the salinity of flowback 

water from the wellhead to test the feasibility of the RSM model in multi-stage horizontal wells. 

 

5.4.1 Multi-Stage Horizontal Well with Equal Primary Fracture Length and Even Spacing 

Firstly, explore the efficacy of the RSM methodology in a horizontal well with five hydraulic 

fracturing stages with equal primary fracture length and even primary fracture spacing (as shown 

in Figure 5-13). Based on the previous assumptions, the histories or true values shown in Figure 

5-14 can be obtained: the salinity of flowback fluid from the wellhead, the total rate curve from 

the wellhead, and the rate curve of each stage from DAS/DTS. The RSM-GA workflow is used to 

estimate fracture parameters, and the results are shown in Table 5-3. The DFN method described 

in section 5.3 generates complex networks of secondary fractures, and local grid refinement is used 

to build primary fractures. Three realizations from RSM-Salinity, RSM-Rate (total), and RSM-

Rate (stage) are sampled and shown in Figure 5-15. 

 

 

Figure 5-13. True case for equal primary fracture length and even primary spacing. 
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Salinity                                                                   Rate (total) 

 

Rate (stage 1)                                                         Rate (stage 2) 
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Rate (stage 3)                                                         Rate (stage 4) 

 

Rate (stage 5) 

Figure 5-14. Salinity and rate histories for multi-stage horizontal well with equal primary fracture length and even 

primary fracture spacing. 
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Table 5-3 Fracture parameters predicted by RSM for multi-stage horizontal well with equal primary fracture length 

and even primary fracture spacing. 

Parameter 

PF 

Length 

(ft) 

PF 

Permeability 

(mD) 

SF 

Coverage 

(ft2) 

SF 

P32 

(ft2/ft3) 

SF 

Aperture 

(Average) 

(ft) 

SF 

Permeability 

(Average) 

(mD) 

RSM-Salinity 426 7268 69963 0.0574 0.00047001 31 

RSM-Rate (total) 428 7324 79953 0.0578 0.00040942 30 

RSM-Rate (stage 1) 426 7316 70381 0.0575 0.00045611 33 

RSM-Rate (stage 2) 407 7284 70354 0.0572 0.00041126 39 

RSM-Rate (stage 3) 432 6685 78598 0.0586 0.00046237 32 

RSM-Rate (stage 4) 414 7258 70141 0.0575 0.00047015 30 

RSM-Rate (stage 5) 408 6689 70579 0.0578 0.00040468 39 

 

 

RSM-Salinity                                                                   RSM-Rate (total) 

 

RSM-Rate (stage) 

Stage 1       Stage 2        Stage 3          Stage 4         Stage 5 Stage 1       Stage 2        Stage 3          Stage 4          Stage 5 

Stage 1       Stage 2         Stage 3          Stage 4          Stage 5 
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Figure 5-15. The secondary fracture permeability distribution of the Multi-stage horizontal well model with equal 

primary fracture length and even primary spacing constructed by RSM-Salinity, RSM-Rate (total), RSM (stage); the 

colour scale represents secondary fracture permeability distribution. 

 

  

RSM-Salinity                                                                   RSM-Rate (total) 

  

RSM-Rate (stage) 

Figure 5-16. Multi-stage horizontal well model with equal primary fracture length and even primary spacing; the 

colour scale represents pressure distribution (psi) after 60 days. 

 

Stage 1       Stage 2        Stage 3          Stage 4         Stage 5 Stage 1       Stage 2        Stage 3          Stage 4          Stage 5 

Stage 1       Stage 2         Stage 3          Stage 4          Stage 5 
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(a)                                                                                (b) 

Figure 5-17. The comparison between true production profile and predicted curve for multi-stage horizontal well 

with equal primary fracture length and even primary spacing : (a) Salinity profile, and (b) Gas rate curve. 

 

The models in Figure 5-15 are subjected to detailed flow simulation again, and the pressure 

distribution and the simulated salinity and rate profiles are presented in Figure 5-16 and Figure 

5-17. The pressure distribution in Figure 5-16 indicates the five stages of the multi-stage horizontal 

well are effectively isolated, exhibiting minimal stage-to-stage interference. Given the uniformity 

in the primary fracture spacing, the RSM-Rate (stage) for each stage is a reliable indicator of 

individual fracture parameters. The results affirm that RSM-Salinity, RSM-Rate (total), and RSM-

Rate (stage) offer high predictive accuracy under conditions of equal primary fracture length and 

even primary fracture spacing when there is no interference between stages. 
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5.4.2 Multi-Stage Horizontal Well with Equal Primary Fracture Length and Uneven 

Primary Fracture Spacing 

This section will explore the feasibility of the RSM-GA modelling approach for multi-stage 

horizontal well with equal primary fracture length and uneven primary fracture spacing (as shown 

in Figure 5-18), exploring how interference between the stages may affect the history matching. 

The simulation profiles are used as histories or true values (as shown in Figure 5-19), and the 

RSM-GA results are shown in Table 5-4. Three realizations described in 5.4.1 are sampled and 

shown in Figure 5-20. 

 

Figure 5-18. True case for equal primary fracture length and uneven primary fracture spacing. 

 

   

Salinity                                                                   Rate (total) 
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Rate (stage 1)                                                         Rate (stage 2) 

 

Rate (stage 3)                                                         Rate (stage 4) 
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Rate (stage 5) 

Figure 5-19. Salinity and rate histories for multi-stage horizontal well with equal primary fracture length and uneven 

primary fracture spacing. 

 

Table 5-4 Fracture parameters predicted by RSM for multi-stage horizontal well with equal primary fracture length 

and uneven primary fracture spacing. 

Parameter 

PF 

Length 

(ft) 

PF 

Permeability 

(mD) 

SF 

Coverage 

(ft2) 

SF 

P32 

(ft2/ft3) 

SF 

Aperture 

(Average) 

(ft) 

SF 

Permeability 

(Average) 

(mD) 

RSM-Salinity 426 11547 57841 0.0685 0.00057768 25 

RSM-Rate (total) 413 12519 55135 0.0627 0.00052523 18 

RSM-Rate (stage 1) 424 11461 82218 0.0611 0.00046192 17 

RSM-Rate (stage 2) 432 11590 41590 0.0764 0.00074882 20 

RSM-Rate (stage 3) 415 11444 52906 0.0724 0.00071238 19 

RSM-Rate (stage 4) 417 12544 58268 0.0664 0.00056019 28 

RSM-Rate (stage 5) 413 12312 78462 0.0535 0.00033929 18 
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RSM-Salinity                                                                   RSM-Rate (total) 

 

RSM-Rate (stage) 

Figure 5-20. The secondary fracture permeability distribution of the Multi-stage horizontal well model with equal 

primary fracture length and uneven primary fracture spacing constructed by RSM-Salinity, RSM-Rate (total), RSM 

(stage); the colour scale represents secondary fracture permeability distribution. 

 

 

RSM-Salinity                                                                   RSM-Rate (total) 

Stage 1         Stage 2  Stage 3    Stage 4                 Stage 5 

Stage 1         Stage 2  Stage 3    Stage 4                 Stage 5 

Stage 1         Stage 2  Stage 3    Stage 4                 Stage 5 

Stage 1         Stage 2  Stage 3    Stage 4                 Stage 5 Stage 1         Stage 2  Stage 3    Stage 4                 Stage 5 
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RSM-Rate (stage) 

Figure 5-21. Multi-stage horizontal well model with equal primary fracture length and uneven primary fracture 

spacing; the colour scale represents pressure distribution (psi) after 60 days. 

 

  

Salinity                                                                         Rate 

Figure 5-22. The comparison between true production profile and predicted curve for multi-stage horizontal well 

with equal primary fracture length and uneven primary fracture spacing. 

 

After detailed flow simulation, Figure 5-21 depicts the pressure distribution after 60 days into 

production, clearly showing interdependence between Stages 1-4, especially stages 2-4. 

Stage 1         Stage 2  Stage 3    Stage 4                 Stage 5 
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Conversely, Stage 5 remains largely isolated, exerting minimal influence on Stage 4. Compared 

with Figure 5-17 in section 5.4.1, there is a certain sensitivity in the history matching results 

(Figure 5-22, especially in the reconstructed model by RSM-Rate (stage), which may be 

attributable to inter-stage interference. Through comparison, it was found that the model 

reconstructed with fracture parameters predicted by RSM-Salinity is closer to the historical 

production curve. This shows that in the case of the multi-stage horizontal well with equal primary 

fracture length and uneven primary fracture spacing, the prediction accuracy of RSM-Salinity is 

higher than RSM-Rate (total) and RSM-Rate (stage). 

 

5.5 Multi-Stage Horizontal Well with Unequal Primary Fracture Length and 

Uneven Primary Fracture Spacing 

This section will apply the RSM models and GA workflow to a multi-stage horizontal well with 

unequal primary fracture length and uneven primary fracture spacing (as shown in Figure 5-23), 

also called the completion heterogeneity model (Clarkson 2021), which captures the complexity 

often encountered in field applications. A case with unequal primary fracture length, uneven 

primary fracture spacing, and complex secondary fractures generated by DFN is constructed. The 

simulation profiles are used as histories or true values (as shown in Figure 5-24). The RSM-GA 

results are shown in Table 5-5. Three realizations are sampled and shown in Figure 5-25. 
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Figure 5-23. True case for unequal primary fracture length and uneven primary fracture spacing model. 

 

 

Salinity                                                                   Rate (total) 

 

Rate (stage 1)                                                         Rate (stage 2) 
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Rate (stage 3)                                                         Rate (stage 4) 

 

Rate (stage 5) 

Figure 5-24. Salinity and rate histories for multi-stage horizontal well with 
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Table 5-5 Fracture parameters predicted by RSM for multi-stage horizontal well with unequal primary fracture 

length and uneven primary fracture spacing. 

Parameter 

PF 

Length 

(ft) 

PF 

Permeability 

(mD) 

SF 

Coverage 

(ft2) 

SF 

P32 

(ft2/ft3) 

SF 

Aperture 

(Average) 

(ft) 

SF 

Permeability 

(Average) 

(mD) 

RSM-Salinity 341 10553 54159 0.0545 0.00046864 19 

RSM-Rate (total) 321 10584 58239 0.0512 0.00060025 16 

RSM-Rate (stage 1) 372 12826 76654 0.0655 0.00057107 29 

RSM-Rate (stage 2) 252 6791 24605 0.0397 0.00027957 12 

RSM-Rate (stage 3) 253 6753 34981 0.0381 0.00025862 11 

RSM-Rate (stage 4) 346 7971 62605 0.0403 0.00053458 15 

RSM-Rate (stage 5) 417 17262 77542 0.0812 0.00077258 33 

 

 

RSM-Salinity                                                                   RSM-Rate (total) 

 

RSM-Rate (stage) 

Stage 1         Stage 2  Stage 3    Stage 4                 Stage 5 Stage 1         Stage 2  Stage 3    Stage 4                 Stage 5 

Stage 1         Stage 2  Stage 3    Stage 4                 Stage 5 
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Figure 5-25. The secondary fracture permeability distribution of the Multi-stage horizontal well with unequal 

primary fracture length and uneven primary fracture spacing constructed by RSM-Salinity, RSM-Rate (total), RSM 

(stage); the colour scale represents secondary fracture permeability distribution. 

 

 

RSM-Salinity                                                                   RSM-Rate (total) 

 

RSM-Rate (stage) 

Figure 5-26. Multi-stage horizontal well with unequal primary fracture length and uneven primary fracture spacing; 

the colour scale represents pressure distribution (psi) after 60 days. 

 

Stage 1         Stage 2  Stage 3    Stage 4                 Stage 5 Stage 1         Stage 2  Stage 3    Stage 4                 Stage 5 
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Salinity                                                                         Rate 

Figure 5-27. The comparison between true production profile and predicted curve for multi-stage horizontal well 

with unequal primary fracture length and uneven primary fracture spacing: (a) Salinity profile, and (b) Gas rate 

curve. 

 

When unequal primary fracture lengths are introduced into a multi-stage horizontal well with 

uneven primary fracture spacing, as seen in section 5.4.2, stages in closer proximity (stages 2-4) 

continue to display interdependence, with relatively isolated behaviour in other stages like stage 5 

(as seen in Figure 5-26). Figure 5-27 compares histories and numerically simulated outputs based 

on predicted fracture parameters (RSM-Salinity, RSM-Rate (total), and RSM-Rate (stage)). It is 

found that similar to the conclusion in section 5.4.2, the numerical model from RSM-Salinity is 

closer to the historical production data than RSM-Rate (total) and RSM-Rate (stage). A notable 

observation is the reduced R2 error compared to the previous section, a deviation attributed to the 

equal primary fracture length in section 5.4.2. 
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Due to unequal primary fracture length, the primary fracture parameters, PF length and PF 

permeability, predicted by RSM-Rate (total) and RSM-Salinity, will be the average across all 

primary fractures. In contrast, RSM-Rate (stage) may reflect the characteristics of the primary 

fracture. Furthermore, a hypothesis emerges given that the numerical model from RSM-Salinity is 

closer to the historical production data than RSM-Rate (total) and RSM-Rate (stage). Combining 

the secondary fracture parameters from RSM-Salinity with the primary fracture parameters from 

RSM-Rate (stage) for model construction could enhance the history matching. Fortunately, the 

production curve from this combined approach is closer to the histories, as shown by the orange 

line in Figure 5-27. 

 

Table 5-6 Comparison of the total computing time with and without proxy models. 

Steps Proxy Without Proxy 

Time for training cases (min) 41 individuals * 30 min = 1230 min - 

Time for construction the proxy 

model (min) 
1 day * 1440 min/day = 1440 min - 

Time for proxy model (min) 15 min - 

Time for numerical model (min) - 
14 day * 1440 min/day * 50  

individuals = 1008000 min 

Total time (min) 2685 min 1008000 min 

 

In addition, the significant difference in simulation run-time between a full-scale numerical model 

and the RSM proxy method is a crucial aspect that justifies the latter's use in this research. Table 

5-6 summarizes the computational assessment requirements for fracture characterization with and 

without proxy models. Building the proxy model involved running 41 single-stage well model 

cases, with each case requiring 30 minutes on an i7-8700 CPU @ 3.2 GHz computer. The entire 

process of building the proxy using single-stage well model results takes about one day. Using the 
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proxy (RSM-GA) to estimate fracture properties requires only 15 minutes. In contrast, simulating 

a five-stage horizontal well without the proxy models could take about 14 days for a single 

simulation, potentially extending to 700 days for 50 iterations to achieve optimal fracture 

characterization. This highlights the significant computational efficiency and practicality offered 

by employing proxy models for extensive fracture characterization. 

In summary, a combination of predictive tools seems most effective when addressing multi-stage 

horizontal wells with unequal primary fracture length and uneven primary fracture spacing or 

working with completion heterogeneity models. RSM-Rate (stage) is adept at predicting primary 

fracture parameters for each stage. Meanwhile, RSM-Salinity remains a reliable tool for predicting 

secondary fracture parameters for the entire reservoir. Utilizing fracture parameters from RSM-

Salinity for secondary fractures and from RSM-Rate (stage) for primary fractures provides a more 

accurate representation of the reservoir's behaviour. Combining these parameter sets for model 

initialization yields simulation results that closely match historical production data. 

 

5.6 Summary 

In Chapter 5, an effective workflow has been proposed, synergizing the power of RSM and GA, 

to utilize the salinity profile of flowback fluid and gas rate for fracture characterization. A 

comprehensive range of scenarios was examined, stretching from Single-Stage Wells to Multi-

Stage Horizontal Wells and from homogeneous to heterogeneous fracture models.  

Firstly, start by exploring uniform and non-uniform single-stage wells, observing a good 

agreement between the simulated profiles using the fracture parameters estimated using the RSM-

GA workflow and the introduction of variability through Gaussian noise and the production history 
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of the true cases. However, the agreement will produce some sensitivities as the fracture pattern 

becomes more complex and heterogeneous. The main reason may be the assumptions in the RSM 

model step: all secondary fractures are interconnected with the primary fractures, leading to an 

underestimation of secondary fractures P32. 

Then, the study was extended to multi-stage horizontal wells, focusing on various sub-categories, 

including equal primary fracture length and even primary fracture spacing, uneven primary 

fracture spacing, unequal primary fracture length and uneven primary fracture spacing. Finally, it 

is found that under the condition of multi-stage horizontal wells with unequal primary fracture 

length and variable primary fracture spacing or working with completion heterogeneity models, 

utilizing fracture parameters from RSM-Salinity for secondary fractures and from RSM-Rate 

(stage) for primary fractures provides a more accurate representation of the reservoir's behaviour. 

Combining these parameter sets for model initialization yields simulation results that closely 

match historical production data. 
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Chapter 6:  Conclusions and Future Work 

6.1 Key Conclusions 

This research develops a coupled flow and geochemical model incorporating various geochemical 

mechanisms in commercial GEM software. An experimental core flood data set is used to validate 

the coupled model and other physical processes.  

The primary objective of this coupled model is to simulate the impact of complex mechanisms and 

interactions on oil recovery and the composition of effluent fluids. The study found that ion 

exchange and mineral dissolution/precipitation reactions are the main mechanisms affecting oil 

recovery. For low-salinity water flooding, mineral dissolution/precipitation reaction plays a major 

role in the recovery factor. For high-salinity water flooding, ion exchange is more important, while 

mineral dissolution/precipitation reactions do not significantly impact the recovery factor. 

Results from a sensitivity analysis are used to establish the RSM-Salinity and RSM-Rate 

regression models or proxies for predicting flowback fluid salinity and gas rate profiles for a 

single-stage hydraulically fractured reservoirs with uniform and homogeneous fracture properties. 

The models reveal the complex temporal relationships between the salinity of flowback fluid and 

production time. 

Based on the validated RSM model, synergizing the power GA, and utilizing the salinity profile 

of flowback fluid and gas rate establishes a new fracture characterization workflow. A 

comprehensive range of scenarios was examined, stretching from Single-Stage Wells to Multi-

Stage Horizontal Wells and from homogeneous to heterogeneous fracture models. The results 

indicate that RSM is highly effective in characterizing fracture parameters in single-stage wells, 
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whether uniform and non-uniform, or complexly heterogeneous. Further analysis reveals that in 

multi-stage horizontal wells, especially those with unequal primary fracture length and uneven 

primary fracture spacing or working with completion heterogeneity, combining secondary fracture 

parameters from RSM-Salinity and primary fracture parameters from RSM-Rate (stage) offers a 

comprehensive representation of the reservoir's fracturing characteristics. 

 

6.2 Contributions 

The primary contributions are summarized as follows: 

Develop a framework for correlating fracture properties with the salinity of flowback fluid and gas 

rate and using these correlations and combine genetic algorithms to develop an effective workflow 

integrating the salinity of flowback fluid and gas rate for inferring fracture properties. 

The proposed modelling schemes can be applied to that chemical compositional data that have 

applications in other parts, especially in subsurface fractured porous media. For instance, use the 

same idea to look at carbon storage because carbon dioxide interacts with the rock in the carbon 

storage process, also called mineralization, which is one of the most safety-trapping mechanisms. 

If they interact with the rock, then they will be mineralized. 

 

6.3 Limitations and Recommendations for Future Work 

The limitations of this research stem from its specific focus on a narrow set of cases and 

assumptions, which may not apply to a larger range or different reservoir properties. Although the 

current workflow has proven effective for the case studied, its application to other areas would 
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require repeating the entire process: selecting some new operational parameters for new reservoir 

modelling, and developing new RSM models to optimize fracture properties using GA. While 

potentially scalable, this approach would necessitate tailored adjustments to suit the unique 

characteristics of each new field or reservoir under study. 

Based on the limitations of this work, I provide recommendations for future work from two 

perspectives: (1) scale-up; (2) coupling with Geomechanics: 

(1) The current model incorporates specific geochemical reactions sourced from literature and lab 

studies for targeting areas. There exists an opportunity to expand upon this by including a wider 

range of reactions. This can offer a more comprehensive picture of the dynamics and implications 

of these reactions in reservoir environments. For example, collecting as much geochemical data 

on shale reservoirs as possible and developing a set of analytical models that can represent shale 

reservoirs to characterize fractures. Expanding the application of the model to various reservoir 

types, such as carbonates or tight formations, can provide insights into how these geochemical 

reactions manifest differently across varied geologies. 

(2) The current numerical model ignores the dynamic behaviour of fracture closure, fracture 

properties are generally treated as static parameters. In fact, this will be one of the most important 

factors affecting the geochemical reaction. Because the opening and growth of fractures will 

increase reservoir contact per well, favoring geochemical reactions; conversely, the closure of 

fractures will hinder or inhibit geochemical reactions. This simplistic approach therefore often 

renders the modelling of interactions and/or interferences between geomechanics and 

geochemistry incomplete. Therefore, try to couple flow and geochemistry and geomechanics 

models to investigate the impact of geomechanics on geochemistry, and the impact on the RSM 
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prediction model. For instance, coupling the Bardon Bandies model, one of the most population 

geomechanics models, captures the fracture closure to provide a more realistic simulation result. 
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Appendix A 

Table A-1 Fracture parameters estimated using RSM-GA workflow and its percentage error for the non-uniform secondary fracture model. 

Parameter 

PF 

Length 

(ft) 

PE 

(%) 

PF 

Permeability 

(mD) 

PE 

(%) 

SF 

Coverage 

(ft2) 

PE 

(%) 

SF 

P32 

(ft2/ft3) 

PE 

(%) 

SF 

Aperture 
(Average) 

(ft) 

PE 

(%) 

SF 

Permeability 
(Average) 

(mD) 

PE 

(%) 

True value 420 - 7000 - 75600 - 0.0619 - 0.00043744 - 35 - 

RSM-

Salinity 
417 0.71  7233 3.33  74495 1.46  0.0639 3.23  0.00042947 1.82  33 5.71  

RSM-Rate 425 1.19  6797 2.90  73886 2.27  0.0641 3.55  0.00044885 2.61  39 11.43  

 

Table A-2 Fracture parameters estimated using RSM-GA workflow and its percentage error for heterogeneous secondary fracture DFN model. 

Parameter 

PF 
Length 

(ft) 

PE 

(%) 

PF 
Permeability 

(mD) 

PE 

(%) 

SF 
Coverage 

(ft2) 

PE 

(%) 

SF 
P32 

(ft2/ft3) 

PE 

(%) 

SF 

Aperture 

(Average) 

(ft) 

PE 

(%) 

SF 

Permeability 

(Average) 

(mD) 

PE 

(%) 

True value 420 - 7000 - 75600 - 0.0619 - 0.00043744 - 35 - 

RSM-

Salinity 
414 1.43  7336 4.80 80034 5.87  0.0585 5.49  0.00041578 4.95  38 8.57  

RSM-Rate 429 2.14  7346 4.94 80131 5.99  0.0588 5.01  0.00046167 5.54  30 14.29 

 

Table A-3 Fracture parameters estimated using RSM-GA workflow and its percentage error for multi-stage horizontal well with equal primary 
fracture length and even primary fracture spacing. 

Parameter 

PF 

Length 

 (ft) 

PE 

(%) 

PF 

Permeability 

 (mD) 

PE 

(%) 

SF 

Coverage 

(ft2) 

PE 

(%) 

SF 

P32 

(ft2/ft3) 

PE 

(%) 

SF 
Aperture 

(Average) 

(ft) 

PE 

(%) 

SF 
Permeability 

(Average) 

(mD) 

PE 

(%) 

True Value 420 - 7000 - 75600 - 0.0619 - 0.00043744 - 35 - 

RSM-
Salinity 

426 1.43  7268 3.83  69963 7.46  0.0574 7.27  0.00047001 7.45  31 11.43  

RSM-Rate 428 1.90  7324 4.63  79953 5.76  0.0578 6.62  0.00040942 6.41  30 14.29  

RSM-Rate 

Stage 1 
426 1.43  7316 4.51  70381 6.90  0.0575 7.11  0.00045611 4.27  33 5.71  

RSM-Rate 
Stage 2 

407 3.10  7284 4.06  70354 6.94  0.0572 7.59  0.00041126 5.98  39 11.43  

RSM-Rate 

Stage 3 
432 2.86  6685 4.50  78598 3.97  0.0586 5.33  0.00046237 5.70  32 8.57  

RSM-Rate 
Stage 4 

414 1.43  7258 3.69  70141 7.22  0.0575 7.11  0.00047015 7.48  30 14.29  

RSM-Rate 

Stage 5 
408 2.86  6689 4.44  70579 6.64  0.0578 6.62  0.00040468 7.49  39 11.43  
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Table A-4 Fracture parameters estimated using RSM-GA workflow and its percentage error for multi-stage horizontal well with equal primary 
fracture length and uneven primary fracture spacing 

Parameter 

PF 

Length 

(ft) 

PE 

(%) 

PF 

Permeability 

(mD) 

PE 

(%) 

SF 
Coverage 

(Average) 

(ft2) 

PE 

(%) 

SF 
P32 

(Average) 

(ft2/ft3) 

PE 

(%) 

SF 
Aperture 

(Average) 

(ft) 

PE 

(%) 

SF 
Permeability 

(Average) 

(mD) 

PE 

(%) 

True Value 420 - 12000 - 62160 - 0.0743 - 0.00063231 - 23 - 

RSM-Salinity 426 1.43  11547 3.78  57841 6.95  0.0685 7.81  0.00057768 8.64  25 8.70 

RSM-Rate 413 1.67  12519 4.33  55135 11.30  0.0627 15.61  0.00052523 16.93  18 21.74  

Stage 

1 

True 

Value 
420 - 12000 - 75600 - 0.0667 - 0.00051237 - 21 - 

RSM-
Rate 

424 0.95  11461 4.49  82218 8.75  0.0611 8.40  0.00046192 9.85  17 19.05  

Stage 

2 

True 

Value 
420 - 12000 - 46200 - 0.0857 - 0.00084268 - 26 - 

RSM-
Rate 

432 2.86  11590 3.42  41590 9.98  0.0764 10.85  0.00074882 11.14  20 23.08  

Stage 
3 

True 

Value 
420 - 12000 - 46200 - 0.0857 - 0.00084268 - 26 - 

RSM-
Rate 

415 1.19  11444 4.63  52906 14.52  0.0724 15.52  0.00071238 15.46  19 26.92  

Stage 
4 

True 

Value 
420 - 12000 - 67200 - 0.0762 - 0.00064891 - 24 - 

RSM-

Rate 
417 0.71  12544 4.53  58268 13.29  0.0664 12.86  0.00056019 13.67  28 16.67  

Stage 

5 

True 
Value 

420 - 12000 - 75600 - 0.0571 - 0.00031492 - 16 - 

RSM-

Rate 
413 1.67  12312 2.60  78462 3.79  0.0535 6.30  0.00033929 7.74  18 12.50  
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Table A-5 Fracture parameters estimated using RSM-GA workflow and its percentage error for multi-stage horizontal well with unequal primary 
fracture length and uneven primary fracture spacing 

Parameter 

PF 
Length 

(Average) 

(ft) 

PE 

(%) 

PF 
Permeability 

(Average) 

(mD) 

PE 

(%) 

SF 
Coverage 

(Average) 

(ft2) 

PE 

(%) 

SF 
P32 

(Average) 

(ft2/ft3) 

PE 

(%) 

SF 
Aperture 

(Average) 

(ft) 

PE 

(%) 

SF 
Permeability 

(Average) 

(mD) 

PE 

(%) 

True Value 

(Average) 
332 - 10100 - 51120 - 0.0598 - 0.00051446 - 21 - 

RSM-Salinity 
(Average) 

341 2.71  10553 4.49  54159 5.94 0.0545 8.86  0.00046864 8.91  19 9.52  

RSM-Rate 

(Average) 
321 3.31  10584 4.79  58239 13.93 0.0512 14.38  0.00060025 16.68  16 23.81  

Stage 

1 

True 

Value 
380 - 12500 - 68400 - 0.0737 - 0.00063486 - 25 - 

RSM-
Rate 

372 2.11  12826 2.61  76654 12.07 0.0655 11.13  0.00057107 10.05  29 16.00  

Stage 

2 

True 

Value 
260 - 6500 - 28600 - 0.0462 - 0.00032781 - 15 - 

RSM-
Rate 

252 3.08  6791 4.48  24605 13.97 0.03979 13.87  0.00027957 14.72  12 20.00  

Stage 
3 

True 

Value 
260 - 6500 - 28600 - 0.0462 - 0.00032781 - 15 - 

RSM-
Rate 

253 2.69  6753 3.89  34981 22.31 0.0381 17.53  0.00025862 21.11  11 26.67  

Stage 
4 

True 

Value 
340 - 8200 - 54400 - 0.0471 - 0.00045813 - 18 - 

RSM-

Rate 
346 1.76  7971 2.79  62605 15.08 0.0403 14.44  0.00053458 16.69  15 16.67  

Stage 

5 

True 
Value 

420 - 16800 - 75600 - 0.0857 - 0.00082367 - 30 - 

RSM-

Rate 
417 0.71  17262 2.75  77542 2.57 0.0812 5.25  0.00077258 6.20  33 10.00  

 

 


