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ABSTRACT 7(
Inia series of papers, D. H Gottlleb studled the evaluatlon

kR

subgroups G (X) of homotopy groups exten51vely Later K. Varadarajan
X // generallzed G (X) to the more general setting G(A 4) and dualla@d

The purpoSe of this work is to carry out ‘a further study of the o ’2;)//) L

o

evaluatlon subgroup and its dual in Varadarajan s settlng In

Chapter I we show that Cycllclty of mapsis closed under product "“

S
and that 1f f is cyclic then “Qf 13 central The relatloishlp

"between cycllclty of maps and maps of flnlte order is- also

LE NS

1nves§1gated Chapter IT is devoted ‘to the study. of - G(A Xg

» ° -
--,zf CEL

’ © . omg 'results of - Gottlleb ([9] and [12]) are generallzed e
B © oo . s »
.‘;/~//(’/conven1ent subset 'C(A,X) of [A X] (when PA AlS a co-H- sﬂace) S L

.1s 1nﬁroduced and some of its basic propertles derlved It is ) .f \
also shown that G(A, X) and C(A %) are contravarlant functors

'of A from the full Subcategory of H cogroups and maps 1nto the

, a . . -

category of abellan groups and homomorphisms We deduce from

"this that G(X X) and C(X X) ~are ings if "X 4is an H- cogroup.

Chapter IIT deals w1th the dual concept chcycllc1ty of ‘maps.

-The dual notlon of centrallty is also 1ntroduced and some basic
results establlshed.. In Chapter IV we settle a<péoblem of
Varadarajan by show1ng that DG(X A)  is a subgroup contalned:inb

the center of (X, A] 1f -A 'isﬂan H-group. Most of the results

¢ of Chapte- II are duallzed by u51ng some facts of Chapter III.
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PRELIMINARIES

| . : T

a ontinuation of the study of the evaluation

ipoAn i ¥ :: Jiang and D.H? Gottlieb. It was
Joo 22] who st irre. _igated the suhgroup w#(ﬁ (XX k)); of
.thc T nt y a che study of the Vlelsen—Wecken theory
f fi Lo Later, Gottlieb, in a series of‘papers'
Sl T, (18] and [14]), studied the evaluation

subgroups G(!, (which is w#(ﬂl(XX,lX))) and qn(x) (which is
™ =)
m#(nn(XX,lX))) extensively. -More‘precisely,”he studied the *

‘connections among the evaluation‘map and H—spaces Whitehead -

products the Euler characterlstlc ‘covering spaces fibrations,

and homology Subsequent to the work of Gottlleb, contrlbutlons
have been made in this area by W.J. Barnler 147, T. Ganea [8],

H.B. Haslam [15] and [16], C.S.,Hoo [20], G;E.‘Lang, Jr. [23],

J.'Siegel [29], and K. Varadarajan [51] Barnler studled the

-

1

_Jlang subgroup in great detail and generallzed some results of . '
. Gottlieb [9]. Ganea provxded an example of a space hk in

.which‘ P(X) # 7 G(X) ‘ Haslam consldered H- spaces mod F,

G-spaces mod F and the dual of G (X) in Gottliebls’settinga
Hoo‘gave a crite:ion'f;r cyclic maps fror -spensions to>suspensions{
ln his.dissettation » Lang obtained a‘lonc exe ot sequehce’yhich
generallzes thé EHP sequence of G.W. Whitehead. Technlques wete
_ developed for determlnlng G(X) and calculat1ons of G (X) for
certain spaces X were also given., Siegel p&gduced a finite

dimensional G-space (that is, a’space X  in which ,Gn(X) = nn(x)

-1 =



for all n) which is not rﬁ.H—space. 1t was Varadarajan who
d, 5. espace.

wfirst‘genuralizedf'Gn(X) to; G(A,¥) and dualized. Some

7 N . .
parallel results of and‘others dual to Gn(X); were obtained

1n thlS general settlng L :,l,f,;,., Pl

-It{is»o?& purpose in thls work to make a further study

0

of the evaluatlon subgroups and their duals in Varadarajan's /

general setting. In Chapter I we, con51der cyclic, maps and eﬁplore

- some of their properties Tt is shown that cyc11c1ty of maps is

‘closed under product and that 1f f' is cycllc then, Qf is central.

The'relatlonship,between cyclicity.of maps and.maps'of finite

order is also investigated. Chapter II is devoted to the study .

: 9 -,
of G(A,)) whlch consists of all homotopy classes of cycllc maps

B

from A to X. _Its 1ntr1nslc structures are further examlned

Some reSults of Gottlieb (I9] and [12]) are generalized. A Larger-
’ o

subSet C(A X) of .[A X] (when A “is a*co-H—space) is. introduced»

N

;and some . of its ba51t %ropertles derived It is also ‘shown that

G(A X) and C(A X) are QLntravarlant functors of A from the '

o 5

full subcategory of H- COgroups and maps 1nto ‘the category of abélian

- groups and homomorphl)ms From this we deduce that yG(X,X), and

hC(X,X) are ‘rings if X is an H- éogroup ' Chapter IIT deals with"

.by using some of the results of’ Chapter ITI. 'h o -

the dual concept co \pllc1ty of ‘maps. . The dual notion of centrality

is also introducy Some basic results establlshed Iq, i}
Chapter_lv we-se.‘ A problem of Varadarajan by show1ng that
DG(X,A) is a subgroup contalned 1n the centet of [x A] if A

is anAH-group. Most . of the results of Chapter II are dualized:

.0
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We shall’now establlsh the. notatld/‘ nd termlnology that
will be used_throughout this»thesis. Unlz=ss otherwi§e stated. we

A

shall work in the category of spaces{w1th base points and hav1ng
the homotopy type of locally flnlte Cw—complexes (whlch will be
o

deflned later) All maps shall mean continuous functlons . All D

homotopieé and maps are tovrespect base points. The base point

as well as the constant map will be denoted py x] (sometimeé
. T : : : . ) v \ '

' with decoration) wﬁll denote the'identity functiof (fespL map) Qf

L/

a set or a group (resp. space) when it is clear frOm the*context

e . P

For 51mp11c1ty, we' shall use the same symEE} for a map and 1ts o

‘homotopy class.

,/

e

camd SRR

In'whatffollows let A, By X, Y and ‘Z‘ be any'spaoes.
The set of homotopy classes ?f maps from X imto Y w1ll be

denoted by S [x,Y]. For each map f: X >'Y, -the_induced functio?ﬁ

T

f

g 12X > (2,v]

- | - B A R A I o IR

. are respectlvely glven by f,(g) = gv for each g ¢ [{Z2,X] add
N R :

)
¢ (n) = hf for each he [¥,2]. = . [/

-

W, Xx‘é,X is defined to bey’m(f) = £(*)  for.each f ¢ X .

All function spaces will be endowed with' the COmpact¥open'
.-topology and,'qdless otherwise stated, the‘conétant map will be

- taken to be-the'base poiht. XX shall denote the: space. of free

|

" maps from=-X to. X witP lx as base point: The evaluation mép )

X

S
e

a



The wedy' product of X and Y is giyen by- iy vj ‘”

XVY =X x {*} U {*} x Y, .the smash product by

. b
X AAY = ils g ‘, ‘_and‘thexflatcproduct - SRR -

by X by = E(X X Y:X VY ﬁ) which is the space of paths in X x Y h
I

. @ ) . : . L,

which begln 1n Xvy and end 1n *) _ . '

7)

The diagonal map « A: X + X x Xb is g’ven by A(x) = (x x)

for each' x € X, the foldlng map V X VX > X b? v{x, *) = W(*,x) x

forfegch VX,' and the sw1tch1ng map T: X x Y + Y x X by . | ;f;;
» x)" . .
T(x,y5I= (v, x) for each X € X,y eV, ‘t“f ‘ '“ ’ T S ,//
L Frequently (not always)y— i endiiﬁ Hwillmhe,reserved for. .
,the 1nclu51on maps\of the form ilz X - X x'Y"orb iéle -+ X’x Y B ‘
“and- j: xvv Y_» X x Y rejpectively.' The prOJectlon is dehoted by - -

. o ' . ¥ ¥
Kl " . -~ . . . .
P  with decorationm . ‘ ,
- : . v i N 3 A
\ . ) i ,\ . )

An H—sgace X is a topologlcal space together w1ﬁh a map
2

’

The map m is ciiiéﬁ_an-ﬂ—structure (or multiplication) o X;_

X x X > X gg?h\fhat mJ =V ‘ ‘where &% denotes "homotop&c"

/’

A co-H—space X is a topologlcal space together wifh a .

¢ X > X v X such that jo = A # Thegmap \$\\ls\cailed a ; WA

-co-H- structure (or ttuultlpllt’tion) on - X. ’hi

An H—gro 4p X is a tqpological space.together'with an H-

b

\ structorg m :-X“X T X and a,maﬁ‘ U EQX >+ X ‘Such that‘the_followi>

are satlsfled

1) m(mxl) > m(ixm) (homotopy assoc1at1vity) K
. .(2) m(lﬁ*)d = (*Xl)A = 1' (ex1stence of 1dentit1), and ‘ '"}Z?
. o
% . - S



@ vaves

‘ R e
: to the group &X QY] will be denoted by = T. The symbols e

:and e shall denote (1

,j « . For each .f € [ZA XJ and g € [LB X] i there is

5y L ) : u 4“ 5
PR ; » S : R Lo
(3) vm(lxp)A =.m(uxi)A‘:h* .(existence5bf.homotopy-inverse).
o y' ' ' ( : “ :

An H—cOgrou X is a topologlcal space together Wlth a co—K

~

,H—structure ¢.. X > X V X and a map Vo X > X such that the follow—

M ' T - T ) s :" R 'If . R Ar'\.. P
ing are satisfled ,‘“ - S R : _
:(1) (1v¢)¢ (¢vl)¢ (hbmotdpy‘associatévitﬁﬂ,‘ P
: ' ‘ N U S R
‘ T(1vk)6 = T(W1)g < 1 (existent {dentity), ..
.(21, (1 )¢ 5 ﬁ )¢“ ﬁ(exlsAence of %dent;ty),. and

N .
v .

T(ul)g = * (existence'of homotopy inverse).

IR.

» N - ! .. Lo -

o € v A Co S ‘
Let I be“the closed unit interval. The: reducéd suspension

a7

Cof X s defimedtobe . . s R o

g

R
,em & xx{o 10 T*TXI

e

and thHe ioop'space of’ X— to be ‘QX E {Zye x* {i(O).;.Z(11,= *}.OLf

< . . » - o W ' .
f: X > Y is a map, .then the maps If: IX » LY and Qf:-QX - QY °

. . L : L B ’ .

are reépectively'given by If(x,t) = (f{x);ty for each. x ¢ X, .
. o FEE - - i o

te 1 and‘ Qf(l&(t) f(i(t)) for each ™ % E‘QX,f t €:I. The T

adjOlnt functor (or natutal'iSOmorphismy'from the -group [IX,Y] ¢

v - ! A
; - qa) - and f(I' ) respecthely»'the 15

., .

hISUbscrlpt will be dropged if there is nb danger of confu51on.‘ p

et : EERREES S

Tl . ;
associated a unique hOmotopy class in [E(ANB),X]“‘which is .
calledlthe generaliZed Whitehead product of f and g and is .
. . N . N . s B \ ‘ B " 7
denoted By [f,g] (see [l]) Du lly, for each f ¢ [ «J ¢ and

g ¢ [X,0B], there 1€<assoc1ated a, unique homotopy class in - 7

- - . T}j' S | '- - o ,' ‘ ‘ | . ‘

° ~
a



Y . o ) ) 6

ool o - ! r&"ﬂr

o

[X,Q(AbB)] ~which is called the dual of the GWP of f and g ‘and'

[

i
©

¢ 1is denoted by [f,g]" (see [1] also)

e 4
@

. Let n > 1 be an integer. A space X is said to be

(n-1)-connected iff ﬂk(X).= o for alﬂﬁ k < n-1,

Let Q be fhe field of ratignals. A space X ié said

M

. B
‘to be a rational homology n-+sphere iff

o
Hh
o
0
el
i
=

~
[}
Hh
@]
[ SRR
faj
RN
3

‘The Euler characteristic of a space X is defined to be

N

&

-~ where
o« = din(H"(X;0Q))

Let E" and el denote-respectively the closed and
. ‘e . s : . . o
the open n-cells (n->0). a CW-complex X 1s- a Hausdorff space,

together with an indexing set An“ for each integer n >0, and

e

maps ¢2: ET > x (all 'n 30, a é'Ah), such that the following
. ' . B . . . ‘y)} : )
&n propertics are satisfied (see [26]): W

(L) X =tJ¢n(en), for all =m > 0 and. g ¢ A (we
' . o : - ‘ n by
ahq E°  as a_singlé poin;).. ' : .

, o o
iinterpret e*:

(@ 94" 0 4™ 15 empty waless o= mand = g

. and ¢Zfen 'is one-to-one for all n » 0 and « ¢ An.
: : ' i . .



v

-t

(3) Let X" =y ¢$(em),. for a1l 0 <m<n ahd all
' n-1 n-1 v

“€ A Then ¢ (577) < XM for each n > 1 ang - €A L
m oo ' . ,— »n

‘ (4) A subset Y of" X {is closed iff (<W)_1(Y) is
. © : “ ’ . ¢ .
, , N . ‘ S
closed gh) E°, for each n >0 and . ¢ A .
] //" : - . n

(5) For each n >0 and o ¢ An, ) (E ) -is«contained

in the union of a finite number of sets of the form ¢8(em).

-+ i : .
A CW-complex X 1is locally finiteniff eath point x ¢ X has a

2ighborhood meeting only a finite humher af cells "ﬂ - 4
Amap f: X »Y 1s called a flbratlon iff for any Space -

Z, any map g: 2 >~ X and any homotopy H Z xI=>Y such that

H(z,o0)

1]

fg(z), there exists a homotopy G: Z xI +Xx ‘with
G(z,0) = g(z) ano fG = H.

" A ‘map f:fX +Y is called a cofibration iff for any’
“space. Z, any map g: Y » Z _and any homotopy H: X x I~ Z such
that H(x o) = g%(x) there exists a homotopy G: Y x I - 7 with
G(y,o) —‘g(y)‘ and .G(f(x),t) = H(k t) for all xe X, telI.

For the notation and termlnology not mentioned above

the  reader is referred ﬂo [26] or [30] unless otherw1se specified. 4
.The following- facts are frequenE%y used:
2
. (1) If A is a co-H-space; then'w&‘can'find a map
) . i . oo ..
S: A > QA such that es = lA. « _
\:\w‘

(2) fIf B is an H-spdce, then we can find a map

s': QB > B such that s'e{ n

‘B’ ’ s




“t A and B be an H-cogroup and an H-group

respec: ~ [A,X] and [X,B] are groupsi*for any
A - o
sSpace 4 .
g )
.
T ' 7
i VY '
t
A
i . )
® K
{ \yw ‘ . ‘A
. N
1
v‘
. y ‘ .




CHAPTER I

. CYCLIC MAPS

1.1 .Introduction.

In this chapter we make a furtherAstudy of cyclic maps

Section 1.2 is devoted to the deflnltlon and ex1stence of cycllc maps
In Section 1. 3 we show that cycllc1ty of maps is closed under product
and that 1f f is CyCllL then- Qf is central. Some results of
Gottlieb on homology together with a result'io Section 2.2 df

Chapter 11, namely w}([A:kX]) ; G(A, X), -are applied in Sectlon 1. 4

to 1nvest1gate the relationship, between cyc11c1ty of maps and maps

of finite order.:

1.2 Definition and Existence of Cyclic Maps

)

“Definition 1.2.1. Amap f: A > X 1is said to'be'czclic if- -

. there exists a map F X x A > X 'such *hat the followingjdiagram is

X% A X _homotopy commutative: thatiasé
Fj = V(1VE), sincé § is &’

;
- . . . /{ .
v(1vf) ‘ cofibration, this is equivalent to

.

saylng that we can flnd a map G

.G: X x A+ X such that Gj = V(lVf) We call such a map G an

. associated map of f. ‘The set of all homotopy classes of cyclic maps

from A to 'X 1is denoted by G(A X) and is dalled ;;;\53214 eb .

subset of [A Xi. - ‘ \ ‘ o 'f o

R . . - . . . ’ i R4

' "“‘*f——:r“Remark—i:-~Noee~{hat amap f: A~ X is cyclic iff there

eﬁists amap F: X x A > X such that Fil3= 1,5 and Fi, = f, where-

x ey

£T



. } 10 -

KN

.il: X - X x A- and izz"A + X x A are inclUéions, that’is,; F is of

type (1,f). Clearly the constant function *: A =+ X 1is cyclic.

. , | .
Remark 2. If A = g0 (n > 1 is an integer), then G(A,X)

reduces to G(X) (T and Gn(X) m(IlZ]) whlch'is calleq‘the nth

ewaluation subgroup of X. - : ’ : e

Lemma 1.2.2 ([31]). Let f: A+ X be a cyclic map and

6: B ~"A an arbitra;y map. Then fe B+X is a cyclic mapl
The existence of cycllc maps is ea31ly seen from the prev1ous

‘remark and the following prop031tlon

Propositionil;2.3. Let X be a space. 'Then the,followingv

are equivalent:

(a) X is aﬁ H-space. =~ _ .f'=_x S

(b) 1, 1is cyclie. T . ‘l’“» 'xv//~* .

() -G(A,X) = [A,X] for any space A, - ' ‘ C ',-‘

 “Proof. “(a) => (b). Let m be the H-stricture on X. * Then

mj. = V a.v(lxylx), :so taat_ lX. ls cyclic.

. ’ » ‘ N .
(b) =>'(¢). Let A be any space and let. f € [A,X]. Then
f =_lX°f is Cycllc .by Lemma l 2.2,
(c) —> «(a) .. Take A= X. Then. lX_<is'cyclic; so that we'canJ“L

: ;flnd a map m: X x X -+ X\\suph that mj * V..
‘ / ’ - o .
, Thusuwe have "the following result of Varadarajan and a” o s
converse: )

. .
‘Corollary 1.2.4 (I31°, If X dis an H-space, then any

-map f: A +vx 'is cyclic. _ o :
‘ - < ' S -
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Another way in. which CYLllC maps arise naturally is by

flbratlons Suppose F + E - B is a flbratlon. : Then we have an

operatiOn‘ p: F x QB » F of the loop space of the base on’ the flbre

The flbratlon glves rlse to a Puppe sequence _,.t + QF - QB,+ F'+’E -+ B. 34-
We can take 9 = QB, 'that,ls, p is a map of=type (1, a)' or 3
is ‘cyclic. It follows that for all spacesy A) 8 [A QB] < G(A F). If

G(A,F) = o, then we ‘can obtain ‘some information on" the flbration

More precisely, we have the following result; -

Theoremjl\2:§. Let F »eE?R-ZAf be a finratinn.x If
o N ~ - :
C(A,F) = o, tnen ‘p nazJafcross-section:
Proof. If. G(A,Fj = é;‘ then a#LA,QZA] = o. Hence. from tne
'4exact sequencenof the'fibration, we see that ’(np)#; IA QE]A+'[A QIA)
.is nntq. In partieular,'We can find a ﬁap f:éA ¥WQE such that
- (ap) £ = e' 'whefe 'eL;?A > QEA‘ is the adJOlnt of the 1dent1ty map

LA - ZA; Taking adiEints_we obtain pT (f) > 1 "where T_l(f) ‘

R LA .
is the adjointof f. Thus we obtain a. cross—section.
13 . ) - B v
; : e L 2Etl
.Example. Any flbration_ E ~ s°® 1 with fibre" 2 ‘(n > l)

'1 admits a cross-section. In fact, Gzn(Sz?)“= 0, by Theorem 5. 4

cof [12]. - L
/ ' -

A thlrd way of gettlng cyclle maps is as follgy% et G
~ S

: ne;g;tppoiéglcal group. ‘and 1et H be a closed”subgroup \Eet vG/H‘
denote the space of left cosets and let p: G~ G/H be the natural

: map. 'Then'. | 1s‘cycltc Since ue haue.a natural map G/H X G > G/H

: given by (gl ,g2) > g2g1>, of type _(l,p). For"fut;her detail aboutt

‘this see [23] and aISO‘Propositinn 2.3.9,

1
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o 4 " 1.3 Some Basic~Proﬁerties of_Cyciic Mapsi‘. AR

Let 6: B> A and 'g: X > Y be maps such that gv‘has a
- _ e 5

i

right homotopy inverse.. Then if* f: A - X, is cyclic, so are f£8.

“and _ gf.

——

-Example 1. Let A be a co-H-space and f: A?*—X——a~map.
Then f s cyclic iff fe: ZQA ~ X is cyclic. In fact, there exists

amap s: A~ LQA such that es = IA, so that ' f ébfes.

Example 2. Let o € n26+1(X) be such that any representative

g of o has a right homotopy inverse, then 20 € G2n+l(X). For if.
., R . i3 B - . o - v
2n+1 - 2n+l

+ S

y -

f: 5 . is)é map of degree 2, then 2[g] = [gf] and f

is ‘cyclic, by Theorem 5.4 of [12]. Thus gf is cyclic. ™

PcLiﬁition 1.3.1 ([21]), A space X 1is said to be gi

q

‘cocoﬁnecter (. >1 1is an integer) if H (X;G) = o for each d > m

and for each coefficient group G.

L4

Lemma 1.3.2 t[Zl],'p. 213). Let X .and Y be two

o (2m-1)-coconnetted spaces. If f: X»>Y is'évmap, then

f#: ﬂm(Y)‘+ ﬁm(X is a homomérphism, where nm(X)b and ﬂm(Y) 'are'
the th cohomotopy groups of X .and Y. tespectively.
CE 8 Propoéition 1.3.3. Let B be ,(4n+l)—cocdnnetted. If -
, 2n+ . - : o o
s g: B~ Svali is any map,.then 2g is cyclic.
’\ . . - |
/ , ' o 3 SRS, T 1,
..~ Proof. If n = o, then [B,S7] = G(B,S”) since §S is
an:H—sﬁace." Thﬂs the proposition is true for n = o. - .

L R 2o+l * | c . ‘ .
Assume n ‘> o. Then S is. (4n+1¥-coconrected. Let

2
&
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il - :

£: 82n+l'+ 82n+l bea méb of.degree 2ﬂw§nd_ 1. a generator of
+ +1, + L S -

Wzn 1(82n l) = 1_121_14_1(82n l) = 2. According % Lemma 1.3.2, _ —
. +1,.2 + ‘ e 2n¥ ’

g#: n2n l(S n+1) -> UZn l@B)~ is a homomorphism since "B and 82n 1 s

1

érq.(4n+l)—COconnected: ﬁence g#(f) = g#(le g#(1+1) = g#(l).+ g#(l)_
_¥ gtg = 2g,l 80 thatf fg = 2g. Now since f is cyclie, it follows
VtHat 2g - is also Cyclic. |
Thé next result says that cyclicity og maps is closed under

v e

-prodﬁct.’

Proposition 1.3.4.  If the maps f: A > X and g: B > Y

are cyclic, then so is f x g: A x B - X x Y. .

&

e B

"Proof. Let F and G be two associated maps off‘f‘ and

»

g respectively. Let H = (FXG)(lXTXl): (XXY) x (AxB) » X x Y. Then
H 1is an assocliated map of f x g.

It might be suppused that if - f: A > X anc .B > 7 are
° . , . L ’ A'/ . -
cyeclic then so is £ v g: A Vv B + X v.Y. That thiss nol true can////
be illustrated by the following example.

Example. . Let A =B =X =Y =S . Then fl_l " i% cyclic.

<

" But 1 v-1 =1 is ﬁot cyclic by Proposition 1.2.3, for
s© s sTvsT .
8TV S°  is not an H-space.

L=y

Lemma 1.3.5.  If thelmépSaif:‘A~f X and 'g: B> X are.”

cyelic, tgen so is V(fvg):'A V,B -+ X. i
. AJ : . . .‘, -.’I

Proof.. Let F and G be two associated maps of f and

‘ » ‘ | : .

g respectively. Let h: X x* (AxB) » (XxA) »B be the homeomorphis.
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Let 'K = G(Fxl)h: X x (AxB) » X and H = K|X x (AVB) » X. Then H

\

1s an associated map of V(fvg).

The next corollary is an immediate consequence of Lemmas 1.2.2
G

-~ and 1.'3.5.‘ | 1/ ‘ R ‘ L ' »

11 . o .
Corollary 1.3.6. If -A 1is a co-H-space, then G(A,X) c [A,X]

is élosed under the natural operation induced by the co-H-structure
on -A.
We record the following definition and results which will

be needed in the next chapter.

‘Definition 1.3.7 ([3]). Let (G,m,u) be an H-group and
A any space. We say that a map f: A - G..is'central if c(le)”z'f
where c: G x G + G- is the basic commutator. map (that is,

c = m(mxm)(lilexu)A).

o . . ) : .
'/ip o Lemma 1.3.8 ([3]).. (a) Let 'pl: G x A-G and -

Pyt G xA->A be the projections. Then £ is central iff the

commutator (Pi,fpz) = Py + sz _'p

- :v‘:"
1 fp'2 in [G%A,G].

(b) 'Any central mab'~f; A= G  lies in‘the center of
[A,G] . . ) ‘ J ‘ . >
(¢) Let f: A +'G be central and 9: B> A an

arbitrary wap. Then f8: B - G is central.

 Let g?ié;+ X bé»é map. It is evident from thé preceding

-

A lemmavthat if Qf ‘is central; then (Qf)#{ [Z,04] - [2,0X] has

imagé containe. in the center -of [Z,02X] for all spaces .

The folloﬁing lemma is due o Ganea: R -
S R



‘Preceding lemma.

essentially due to Gottlieb [14],

15

Leﬁma 1.3.9 6[7]). Let XbA'l3 .V A-X X A be a fibration..

“Then V(IVE)L = * iff Qf is central. - '

Lemma 1.3.10. If f is cyclic, then Of is central.’

v

-

v ! )
Proof, Since f. is eyclic, V(1VE) - extends to a map

£

X x A“% X, so that V(1Vf)L = * ‘and the assertion follows from the

‘Remark. 'In certain situations, the converse of the above

lemmd “is. also true (see, for example, Theorem 2.3.2).

1.4 Cyclicity of Maps and Maps of Finite Order

In this sectlon we ‘make some further observatlons on cycllc
maps u51ng some results of Gottlleb [14] on homology Follow1ng [14]
we observe that comp081tron of maps makes XX an H-space w1th lX

as base p01nt,.where XX is the space of free .maps from X to X.

If p is the composition map, then we can deflne a multlpllcatlon

on - H (XX Q) by Xy = p(xoey) for all.- ih H (X\;Q), where

Q 1is the field of rationals.” W1th the dlagonal map -A; XX - XX x XX

: 1nduc1ng a co—algebra structure on . H*(X‘;Q)_ it follows that
'~H*(X :Q) is a'Hopf algebra'[l4]. We say that‘an element * A ¢ Hn(XX;Q)

- is primitive if A, (A) = 1@ A+) @ 1. The following result is .

bemma 1.%. l Let w: XX - X be the evaluatlon map.

Suppose that H*(X) is flnitely generated Let ") e Hﬁ(X’;Q) be

primitiyegand suppose that - w, (A) # o. Then' if the Euler chéracteristic

.
o
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x(X) # o, we have w*(kk) # o .for all k > o.

“

Now suppose that f: A~ X is a map satiéfying\ cat’ f < 2

3

_Ehat‘is, we can find a map ¢: A - X v X such that j¢ = Af. It is’

‘ then_éasily“checked that for all a in H*(A;Q);

A*f*(a) ¥if%(a)yg‘l +1 ® f*(a). ‘In particular,'this msans that if
f :is-actqélly a map A ; XX,_ we have thét} f*(d) is.;;imitive.:

éucﬁ would;be the situation if A Qere»g éo—Hfspace,bfor“we miéhf

let - ¢ = Yf Where. Y 1is the co-H~structure on A.

. Theorem 1.4.2. Suppose f: .. > X is Eyclic_where A is
a co—H—spaée; Suppoée A is a finite'dimensional CW—compléx aﬁd
X LT N .
CHL (X)), m,(X) are finitely generated. If x(X) # o, then If is

an element of finite order in [ZA,ZX].

=

Proof. Since f is éyciic, we can find a map g: A > XX

such ;haﬁ wg = f (see Theoréﬁ 2.2.2 in the next‘chéptef). Now
'since\ A ‘is a’co—HQSPace, it follows thét cat g < é,l‘and henée
g*(aj € H*(XX;Q) liélpfimitive‘fof all'lq “inc H*(A;Q).' We‘cl;im
. thét f*v=.0: E*(A;Q) > ﬁ*(X;Q). féf if ?ot, ;Hgn we gan‘fiqd Jp
elément%-a.e Hﬁ(A;Q)‘ for some n > 0 ‘s;ch thgt f*(@) # o. Since
—g*(a)iiis pri@itive andi w%(g*<a)) = f*(a) # o, ?t féllows»from

_ ;emma 1;4.1 thét w*(g*(a)k)‘#’o for all k> o. . According to
Theore; l.of [14]; we have H*(X;Q) :'w*[g¥(a)]w ® M_ = das vector-
Séacesvover Q; Qherg [g;(a)];: ig the subs;;cé of ,H*(XX;Q)

generated'by 1, g, (), g*(a)?,'...v if the dimension of o 1is

‘eéven, an< generatedbby 1, gu(o) if the dimension of o is odd;

and M_ = denotes-the elementsvof H*(XjQ) - of deﬁth zero (see [14]
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A

"

for details and definitions). If the dimension of o is even, this
% ' 4 . , _

would contradict the fact that H*(X)_,is finitely generated, and if

\ T

-

the dimension of o is odd it would contradlct the fact that x(X) # o.

—_—

Hence f, =-o. By dug i’ we have -that f = o: H (X,Q) > H (A Q)

"Now conéider-theimﬁw‘ﬁ : A~ X > QLX where . e': X » QIX is

—

—_— . . Tk % * S~k L ~k . i
the usual map. Then h = f e'™ = o: H (QLX;Q) +.H (A;Q) . According

to [2], it now follows that h = e'f 1is an element of finite order
in  [A,QIX]. 'Hence-its adjoint Lf .is an element of finite -order
nl [LA,IX]. S

il

Corollary 1.4.3. -Let A ‘be a co-H-space which is a Cw—éomplek

of dimension v<2n;l,7 and suppose that" X .is,‘(n—l)—connected;f

Suppose that H;(X) i's finitely generated and X(X) # o. If
f: A> X is c&élic; then f is an ‘element ofwfinite order in [A,X].

Corollary 1.4.4. Snppose that X 1in (n~1)~connected v

anq ’ H (X) is finitely generated and X(X)‘# o. If f is an (——4~s
element of G (X),f we have that "Zf is an element of finiteﬁorder
. in nm+l(ZX).v In‘particular, if .m;<-2n+l,“then £ ls an element

of finite'order.

_The rollow1ng result is essentlally due to Gottlieb (see

Theorem 5‘9ﬁ [14]) ~We state it here for co-H-spaces in genefal
instead of for suspensioné.

Lemma l 4 5. Suppose X - is a co- H—Space If
w*' H (XX 5Q) by H (Y Q) is non-zero, then X ik a~rational homology

n—sphere for some odd 1nteger . m.
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. éo;ollary 1.4.6. Lety X be a co-H-space whioh ig not a
, , R _ \ .

rational homologgﬁ

n~sphere, where n " is odd, and let A be a finite

dimensional CW-complex. If f£: A - X is cyclic, then If is an

~eléement ofhfinite

f;.‘ Proog.

" f is cyclic, we

\,

Simildr

. N .
order. S : o

v o : S B
Under. the hypotheses, we hawve, w, = 0. Hence since

o~

havév f, = o.A The rest of the proof goes along the

same lines as the arguments zn the proof of Theorem 1.4.2.

ly, we have the following result,

Theorem 1.4.?,f¥Let ‘A be a finite dimensional,CW—complex

ang let X be a

‘n-sphere, n odéu

space such that IX "is not a rational homology

Let f A > X be a map, ‘If If is cyclic,

- then it is of flnlte order,-

“

> . ’

a

homotopy ‘associat

plex. If If is
- "//‘ ‘

Prbof.

is not a ratlonal

by Theorem 1.4.7,
”Taking adjoints,
’ exiéts avpositive

is a homotopy ass

QZX -+ X- Sugh

o s
and hence = f

we see that e'f is of finiﬁe order. . Thus there

Corollary 1.4.8. Let f: A - X vHe a map where, X is a

ive li-space and A is a-finite\dimensional CW-com—
cyclic then f is an’element?%f flnite order.

Acco ding to the hypotheses, it follows that X

homoloL* r—sphere nu'odd.‘ Since vZf-,lS cyclic,

e

it follows that Zf. is an element of finite order.

o

'integer k Such that k(e'f) = o. But_since' X.

oc1at1ve H—space there exists an H-map

i
o

i : . / ' . 3 .
that sve-‘= lX.L Thus 0 = s'k(e'f) = kd'e'f = kf-

i.of finite order. : 2
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CHAPTER II

EVALUATION SUBGROUPS OF GENERALIZED HOMOTOPY GROUPS

2.1 1Introduction
.ﬁeéall-that G(A,X) consists of all homotopy . :ses of.
cyclic maps from -A to X.. In generai, it is not a gro.n but is

. N ‘ _
known to be ‘a subgroup of [A,X] if A is.an H-cogroup. A result

of basic importance, that‘is #([A XX 1) = G(A,X), is established

e

© in Section 2.2, 1t is also*shown that G(A,X) pfeserves products in
the second variable. 1n Section 2. 3, a convenient Subset C(A,X) of
'[A,X]‘ (whén’ A is a co-H-space) is introduced and some of its

‘baéiéﬁﬁfbperties developed. As is well known, G(A,X) 1is not a

functor of X but is a contravariant functor of A from the sub~-

category of H-cogroups‘and”co-H—maps into the category of groups and

homomorbhisms. We show in'Seption 2.4 that both G(X,X) and X,X)

are rings if" X 'is.an H~cogroup. In the course of doing so,
. s . o . . .

also prove;that G(A,X). 1is a contravariant functor of A from the”

full subcategory of H—cogroups ‘and ma ps (not necessarlly co- H-maps)

g

into the category of abelian groups :=nd hom‘J;*y isms.

o

2.2 Certain Basic Properties of G(A,X)

The purposeiof-tBiS section“is to record two- basic results,

-

an application of the first was already demonstrated}ig/gg:gion 1.4

of;thé previous‘chapter,' First we recall the following well known

lemma:

a0 -
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Lemma 2.2.1 ([21]);_ Let oe a locally coﬁpact Hausdorff

ﬁspace,, Z a Hausdorff_space and Y .ny space. Then the function

X x ’ . .
spaces - (Y )Z and YX z are homeomorphic and a homeomorphism

X

X, Z Xx7,
>

'H: am Y givenﬁby H(g)(x;z) = ng)(xj for each

"8t 2> Y7, xeX, zeZ' Furthermore, f'= g iff H(f) = H(g).
. : . . %;
Theorem 2 0.2, Let Xi'be a space having,the homotopy . type
of a locally finite CW-complex and A any Hausdorff space. Suppose’
' . ﬁ& . .X ‘ . -
w: X > X is the evaluation map where X is the space of free maps -
'from X to X with lx as base point. Then w#([A,XX]) = G(A,X)

by ' ‘ .o
’ as sets, ‘where Wy is the induced function of w.

~ Proof. Let [g] ¢ [A,XX]. Let H be the homeomorphism -given
in Lemma 2.2.1. We claim that H(g)j = V(1vwg) where j: X v A > X x A

- 1s the inclusion. Indeed, for éach x ¢ X3 and a ¢ A, we have

It

H(g)3(x,%) = H(g) (x,%) = g(*)(x) = 1, (x) = x, W(Ivug) (x,*) =

x (g (*,2) =

V{1vuwg) (*,a) = V(*,w(g(a)))

n
]

V(e wg (%)) H(g) (*,2) = g(2) (%) = u(g(a)) and -

w(g(a). Thus H(g)i = V(lvug), so

that wylg] = [ug] € G(4,%). Henie 0, ([4,X5]) < 6(a,%).

Conversely, let f e G(A,X). -Then there exists a map

. F: X x.A > X such that, Fj = V(1Vf). By Lemma 2.2.1, we can find

amap f': A > XX -such\that 'F ;7H(f'); Then

Wf'(a) = 0(£'()) = £'(a)(%).= H(E') (*,a) = F(*,3) = £(a). Thus

i

w#[f']' [wf'] = [£], so that G(a,X) < w#([A,xX]); Hence = = <

Cw, ([4,X71) = 6(a,%).

Y 4

Under the same hypotheses as the above theorem; if, in

addition, A is an H—cogroup;7then.vm#([A;XX]) =.Q(A,X) 'és'groups.

a .

(i S

;
~\//."
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This justifies the term evaluation §ﬁlgroup.
| ~ - X
‘Remark .1. If A = 87, then we have G(X) = w#(nl(X ))

which i% Theorem III.1 of [9]. ' S . S
) n - o X 7
~Remark 2. If ‘A =S, then we have Gn(X) = w#(w%(x ))
which is'Proposition 1.1 of [12]. '

¢
Next we shall prove a product theorem whlch ylelds several
} \
)
: corollarles including another result of [12].

S . . -

Theoren 2.2.3. ZLet '{Xd}aeA be a collectlon of spaces’

- which have the homotopy type of Cw—complexes and’ A any space.’-Then

G(A,nX ) and HG(A X ) are 1somorph1c as sets, where 7 . denotés the -

-bopologlcal product or set product as the _case may be

|
Préof. Let -f\e G(A,nXa). Then there exists a map

P nXa x A > WXa such that  Fj = V(lvf)_ where j is &he obvioué
v inclusion. For each 8 € A, let fs:,A - XB be ‘the map glven

" by ‘fg = p,f whére p8 ﬂX -~ X s the obv1ous progectlon We

B8 B

claim that: fé‘e G(A X ) To see-thls, let ~FB = pBF(inl); XB x A > XBA

where. iB: XB‘#.nXa is -the inclurion. ,If jB denotes the inclusion -

- XB v A»+ XB X A, ;Fhen FBJB = pBF(lsxl)JB‘='pBFj(lsvl{k= pBV(lvf)(til?
BV?Bf) = 7(1Vf ) . Hence : fB € G(A X )

W may therefore deflnela function ¢ G(A, X ) - nG\A X ) as follOwsﬁ

= V(pBVp (1 Vf) = V(pBl

for each f ¢ G(A,7X ), let '¢(f) = <f > vwhere f =p f for
. ‘ a 0. 3 ) « « E) ‘ .
each a. o . B _ o | |
- Conversely, for each g <-4, 10 ;fB e'G(A,XB): Then we i
L | . S , S
- can find‘a'map EB; xs x A +.3B‘)such ¢ FRjB =.V(1Yfe) where va

e
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~

is® the obvious inclusfon. Define g/;ap f: A~ nXa by f.= (<fa>)A'

We claim that  f ¢ G(A, X ) In'fact, let *F: WXQ X A - nXa be the

map given by F(<x >,a) = <F (x »a)> for each <xa>‘€ nXa and a e A,
3 *) = *":{ T o= \/ .*'

Then FIlsx > %) = <F (x_,%)5 Xo” T VYD) (sx >, %) and

Fi(*,a),= <F_(*,a)> = £ (a)> = £(a) = V(IVE) (*,a). Thys

Fj = 9(1vf) and henc§~ £ E'G(A,nxd). We may therefoue dqfiné a
fuqétiop Y nC(A,Xq)zf_G(A,nX Y. as follows: i - each
<fa> e_nG(A,X ), let Y(<f >) (<f >)A 'Moreover, it can be
eas1ly verified that £he functlons ® and Y are 1n§erse to each
other and thls establlshes a one-to-one correspondence ‘between the
_sgts G(A, ﬂXa) and ﬁC(A;Xa). The pro?f of the'theorem is-thus
complete.

| | An immediate consequence of the above “theorem is the'

follow1ng result , R
Corollary 2.2.4. Let {Xd}aeap be a collection of spaces

which habe the‘homotopy type'ovaW-ébmplexéé and A an H- cogr0up

'Then G(A X ) noe G(A X ) as groupé,'where e denotes the dlrect.
product

» Ezggﬁ.' In v1ew-of the precedlng theorEm, it sufflces to
bshow that the functlon ¢ deflned in the proof is a homomérphlsm
of groups;.~To.do-thisJ let £ g € G(A nX ) and ¢  the glVED
co-H—ét?ucture‘on'.Af Us1ng the Same symbol +° for the dlfferent‘.

' group operations, we have-
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F(V(fvg)e)

L]

~~

[ I

+ . .
- 09

~

]

= <VPOL\7(ng)<t>‘>
.= <V(puvpd)(fvg)¢> o B
= <V(papr.alg) ¢‘>
= -
<paf P 8>

°

= @(f) + o(g)

Hence ¢ provides the indicated isomorphism. o : ﬁﬁk

In:pa;ticular; we ‘have the following-Corollary,which‘includes

Theorem 2.1 of [12] as a special case.

7.

¢

Corollary 2.2.5. Let X and Y be spaces which have. .

‘the hoﬁétopy’type of CW—compléxes énd‘ A an H—cégroup. ‘Thén
‘G(A,XXY) va(A,X) ® G(A,Y) as groups, whgre.lﬁ‘ denotes the"direcg
o brodut£; o QE | | |
| IWe ena this séction with én observation on G(A,X).: Let

T: [ZA,X] » [A,0X] be the natural isomorphism. Then oﬂe‘might4
' ' o o AN o i
conjecture that 1 indupes an isomorphism between G(ZA,X) and G(A,QX),
" But this is not the case? To see this,“leé A =,S1 and X = SZ.
: : : ‘ 2 2 . g 2
Then we have G(LA,X) = G(S7,87) = o and G(A,2X) = G(S™,087)

= (st as?y =z, .

v .

“2.3 ‘Some Basic Propertiés of ,C(A,X)
4  'in”£his ééctién we shall’defineva.kuger subset 'C(A,X)“of.
[A,X] thgh‘includes .G(A,X) and shali s£ud§ some of its_baFic
pfopefties; “As it wili be seen.from thé ﬁe%t section that the

intrpductioﬁ of" C(A,X) will provide a new insight into-. G(A,X), it
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deserves our attention here.

Definition 2.5.1." Let, A ke a co- H—space (thus the

- function f: [A,X] +"[SlA,QX], glveh by frof, is injective)J We

1 _ . ) .
define C(A,X) = @ l[QA,QX]CQ’ where '[QA,QX]CQ denotes the set of all

“homotopy classes of maps Qf which are central.

Theorem 2.3.2. If A is a co-H-space, then GAX) < c(a,x),

and  G(A,IX) = C(A,IX) for all spaces X.

Proof. We need only show that C(A,IX) © G(A,7X) since by
- Lemma-cl. 3'10 we have G(A, X) c C(A X) for all spaces X;’ We first
'eon51der the case where A 1s a suspen51on, eayﬁbA LB. fﬁus
suppose f:FXB’+ X Mis;in' C(Z;,EX), ‘that‘is,. inHQzB »anX is
-eentral.v By Lemma'l.3.%§ we'havea.v(lvf)L S *e;where |
L: IX b IB > X v és- is the'fib;e'of :ﬁe iaeiasion X v'zB > X x 7B,

Let 4, : ZX‘4 IX v ZB and _ i,: IB - EX v ZB be the ob%lous 1nclu51ons

,?‘l iiiii 2
Then we can form the generallzed Whltehead pro. ot
}%11,12j: Z(XAB) > IX'V IB. Since [il,ié] coclassifies IX x 1B,

it'followé that [il,iz] factors through L, that is, we can

- find a map g: E(XAB) - IX b B _such that Lg = [i Thus

l’iZJ'
V(lyf)[il,izj = V(lVf)Lg'e *,band hence we'ean fiad a map
h:/ZX X IB -*'X 'whieh exfends | \7(1Vf). Thus f ¢ G(ZB,EX) .. . In
the’geherai caae'where A. 48’ a co-H—space let e IRA ~ A be
the adgolnt of the 1dent1ty map 4 QA ~ QA Con31der the map
e fea ZQA -> ZX Slnce Qf is. cﬁntral; so ié Q(fe) (Qf)(Qe) by

Lemma l 3 8 Slnce the ‘domain. of fe ' is aVSUspen31on, by the first

part of the proof it foilows that fé is cyclic. Siﬁde A is a

iy . - . . . .
- a ,.
& . -
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co-H~space, we can find a map S: A'%'ZQA such’that es, * 1. Hence

fes * £ is cyclic..

Remark. In the case that A is a suspension, this theorem

-has been proved by Hoo in the following form.

Corollary 2.3.3 '([20]). ‘Let f£: ZB +~ LX be a map:’ Tﬁen

e s
the’following are equivaient:

(a) £ is cyclic.

(b) £ maps QIB int, the center of QIX.

() [1

gx>f] = 0, whe:s- [ denotes. the generalized
. - : & . K ' B
whitehead‘product. ) .

Remark. Note that condition (b) simply means that Qf

is central.
“We shall show in the ‘next sectidn~§hat C(A,X) is a sub-
group contained in the centér of [A,X] if A is a co~H-space with

‘a right homotopy inverse and X is any space.

Definition 2.3.4.

W(ZA,X)

I

{de[ZA,X]I[a,B] o ‘for ali.ﬂﬁ € [ZB,X] '?nd for'éll‘B}

o for all B e[ZgA;X] and

ﬁ(zA,x)‘s‘{ae[ZA;x]l[a,B]
o for all 4 >'1). BT

Here [a,Bl, nas usual, deno#es tﬁé generaiized Whitehééd pfoduét of
a  apd B;f ) »
. ‘Clearly vW(ZA,Xj.C P(£4,X).. Tt is shown in [31] that’
P(EA,X) ié a‘sqbgréuﬁ"qf"[ZA;X].; We noQ relate C(ZA,X) and

T
.
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W(ZA,X) for any spaces A .and X.
) . \

: Proposition‘2.3.57 Let A, B and X ;Bé“sggges, If

f e C(ZA,X) then [f,g] = o for all g € [iB,X];

..Proof. Let q: A x B + A A B be the quotient map, and

let Py A x B+ A, pé: A xB -+ B ‘be the usual projections. Théh‘

accbrding go'[l]; we have

- , - R
) P\/r'('\
l“-’(. Lmeln v‘“’__":“-_ﬁ M ) .
[f,glZq = prl +‘g2p2 - prl - gZp2 .
Taking adjoints, we obtain the equation
.. v A ) ¢
= ' + ' . 1 - '
©([f,gl)q = (2f)ejp, (Qg)esp, (Qf)elpl (g)e,p,

-’Jv

where_.ei: A > QLA, eé: B ~ QIB  are,the adjoip;s,qf the db;ious o
identity maps. Singe- Q@f . is central, it followS'tHat

j([f,g])q = §Ll Nowv\q# is a monbmorphiém; and- f, ﬁhe»operatiop d
of taking'adjoints;‘is an isomorphism. Hence [f,g] = o.

- Corollary 2.3.6. For all spaces - A and X, we have
. : : . o ©

G(IAX) © C(TAX) © W(IMX) © P(ZA,X) < [IA,X]

Theorem 2.3.7. For all\spéces A and X, we have

G(ZA,IX) =.C(ZA,IX) = W(ZA,IX)

Proof. We need only show that W(EA,§X)YC G(ZA,ZX), Let

f ¢ W(ZA,2X)-. Then- [f,1,.] = o by Definition 2.3.4, so that

[lZX,f],:,O. Accordiqg to Corollary 2.3.3, f e G(ZA,IX).

W



o o 28

Theorem‘2.3.8. For any space X, we have

G(IX,IX) = C(IX,IX) = W(IX,LX) = P(ZX,IX),

o

(see the example following Theorem 2.4.7). ' . -
+ Proof.. It is obvious that W(IX,:X) = P(IX,ZX).

N

I

As an appllcatlon of Prop031tlon 2 3.5, we ﬁav; tnp

follow1ng result.

v

. . s
Proposition 2.3.9. Let ¢ be a tOpologiCal group~and
H a closed subgroup. Let p: G - G/H be the natural’ map onto .

the space of left cosets. If A is such that p#: [ZA,G])j;[ﬁA,C/ﬁ}“ ;

is-onto, then for all o« in [I4,G/H] and all & in - [2B,6/H]

where B is any épace, we have {a,B] =
- Proof. Since Py ~is onto, we can find @ map 7YE’EA.JZGF

-

’

such that py = a. Then o is cyclic, and the éssertidn?fclidﬁs:?l.‘

from Proposition 2.3.5. : ) A sl
t ’ . ~ - " . .
: . P P

" Remark. The above proposition says that

W(zA,Q/H) = [24,G/H]

2.4 G(X,X)  and CQX,X) 'as Rings
We have now come to the central part of the chapter.’M

main obJect here is to show that both G(X, X) and C(X X)

o ®° NS

rlngs if X 4is an H- cogroup In the course of achievingtour'aim; 8 e

B . v ’ .
we show that for a fixed space X  both G(-,X) and C(—,X) turn

out to be Lontravarldnt fuucLors from tbe full subcategor of



) -
H-cogroups and maps (not necessarlly co-H-maps) into the tcat

abelian groups and homomorphlSms

We shall first prove the following theorem.

Theorem 214.i. Lét A be a co-H-space with a right'
homotopy ihvefse v, and let X be‘a space.. fhen -C(AX) 'aﬁd
[QA,QX]CQ are subgroups éontained in ﬁhe centérs‘of fA?X] and
[&A,0X] respectively, and Q:_C(A,X) f [QA;QXJCQ‘,iS an -
iSomorphisﬁ of abelian groups. . v

To show this, we have to-appeal to a result of Hoo [19].

Coﬁélder a co- H -space A with co-H-structure b: A +AA V A. Applying

i ‘ [ >
. the coﬂopf construction to . ¢, we obtain a map H(¢): QA - Q(AbA)

A . 1

Let f g A > ~ X be maps. _Let L:AbA+AVA bé the fibre of '

AV A > A x A, Then we can form UV(Eve)LIH($) : 0A ~ 0X.

- Lemma 2.4.2. ([19]). Let A be a co-H-space with
co-H-structure ¢: A~ A V' A. Let f,g: & + X be maps. Then'

',Q(f+g) = Q{V(£fvg)LIH(¢) + f + Qg.

Proof of Theorem. . According tQ’Lemma 1‘3 9, 1f £ or.

'

h is in® C(A,X) then V(fVh)L = * and hence (f+h) = Of + oh.

Let Qf,Qg ¢ [QA, X] .- Then Q(f+g) = Qf + Qg. By partS'(b) and

CcQ
(c) of Lemma 1.3. 8 both (Qf)p2 .and (Qg)p2 lie in the center of

2

[(20:04,0X], 50 that <p1,<9.f_+ng>p2>--=‘ (py»(26)p, + (sg)p,) =

: Accordihg to‘part (a) of Lemma 113.8, Qf + Qg is_centfai. Let

U Q§?~79X be. the loop 1nverse jwé shall show that. -Qf = uQf
15 LLA{}«V. In fact, since o = Q(f+fv) = Qf + R(£v),

e . | e
—Qf = (Qf)(Qv) is central. ' Thus [QA,QX]CQ is a.subgroup of

.
o
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[QA,0X]. Thét it is coﬁtained in the center is clear. To seé thﬁt
C(A,X) is ﬁbntained iﬁ the center of " [AX], let h e [A,X].. Then
Qf + Oh = Qh+ 2f. since Of ‘e [QA,QX]CQ.V Thus  Q(f+h) = Q(h-f) |
ang'hence .ft+h = h+f since @: [A,X] + [QA,0X] is inﬁecti&e;
Heﬁce’ C(A,X)> and [QA,QX]CQ are Subgroups contaihed in the centefs
vof‘ [A,X_.] and [QA,0X] fespectively_nd VQ:‘C(‘A,X) - [QA,QX]CQ is
an isomorphism_qf ;belian grdups: Thés completes the proof of the
theorem.

Remark. It follows that»if‘rA is a co—H~sbaée with a:v,
right homotopy inverse, théanor'evefy space X, G(A,X) C'Q(A,X) <.
center of [A,X] >as subgrpupé. This generalizes Gottlieb'é resﬁlt

' *[9] that G(X) lies in the;cgntef of nl(X); %%@‘ ;-

" We shall now proce~d to'eétablish_the>right distribu;ive
‘law. Suppose’ that f: Av+ B ié a map from a homdﬁopy'aSsociative
co-H-space A ‘tgbquo—H—space B.,fTﬁen.Qe‘éan find a co—H—maﬁ
s: A~ ZQA vsuch‘that es = 1 ﬁﬁere e: IQA ~ Av isnthe usﬁal map."
'Letv gl;géz B+~ Y. be maps where Y is-;ny'space. Wé'caﬁ form
(gifgz)fﬁ>A -y, in genéral_ (gl+g2)f # glf +.g2£i, A suitable
diétributive'l¢thould édmpensate for this by proViding-é correction
term. \For oﬁr purposes, the corréc;ion ﬁérmjwoﬁld have to be
}Suéh that‘it vénishés in éase g . 6; ‘éZ i§ in C(B,Y)

Consideplﬁhe map ¢f: A > B V B WHere ¢ is‘the
'COLH-structufe on B. Applying Fhe’co—Hopf conétructioh to this

map, we obtain a map H(¢f): QA -+ Q(BbB). Taking adjoint, we o
. ’ . . . . . K'iiw.r'
obtain T {H($£)}: Z0A > B b B. Let L: B b B o B VB be the

1_'1
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fibre of B VB - B X B. Then we can form LTfl{H(Qf)}si A+ BV B..

Thé sultable distributive law pay now Be.stated. . o A - QL

Lemma 2.4.3 ([19]). Let f: A +~ B be a. map from a ' o

homotopy assc ~tive co-H-space A to a?co—H—spaceﬂ B, and let

R

’ . ‘ J S
S: A > IQA be . co-H-map. such that -bs 1: A> A, Let

$: B> B Vv B be the.co—H—stqti?Lre on ‘B. Let -gllgz: B>Y bg

maps, where Y is any spagce. Then ' ' , R — :
f ' . . ' ~ ) . : . .

o (81+32)f = ?(glvgé)nfvl{H(¢f)}s g f gt

- . . . . .
-~ - . O e

 Theorem 2.4,  Let f: A > B be\é=map from-a homo topy
. . ' - : v ; T -~ . _ ' . ,;-.: .
assoclative co-H-space A ‘to a co-H-space B. Let _gi,gzz B ~Y

™S

~ be maps such that either'/gl_ or 2, is in C(ﬁ,?), where Y is

~

any. space. Then. (gl+g2)f f glf + ng. y ». ‘ o T
Proof. ‘According to Lémma;l.3;§;V V(élYgz)L = % and -
_ " . o
heﬁce the relatiohAin_Lemma'2.4.3,reduces't& (gl+82)f'=.g1f,+ ng- '
. as asserted. . ‘ : &
Remark. If f is é.co—HQmap,'thn'th aboye theorenm is v'}  A. &

triv;al.
Theorem 2.4.4. yields. the following corollaries.

[

Corollary 2.4.5. Let f: A+ B be a map from a-homotopy
R - . , R N :
as:bciative co-H-space A to a co-H-space ‘B. Then o
f#:'C(B,X)‘».C(A,X), and  f#:|G(B,i) -+ G(A,X) ‘are homomorphisms P R
» , . oo . I
for any space X.
L J
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Proof The flrst part follows dlrectly from Theorem 2. 4.4,

Restrlctlon to C(B X) gives the other result

If £: 1A - B is a map where B is 4

Tt

co—H—space,

s o, x) T OEAD and € 65,0 o+ aga,x)

are homomorphisms for any space Xf

Example 1. ‘L £ ZA > ZB be any map. ThHen

. A
C(ZB X) - C(ZA X) , f#:'G(ZB,X) > G(ZA,X) are group -

homomorphlsms forany space - X.

7
0

¢ Example 2. Let £: s" + gt be any map. Then
f#--c(sr,X)'+ c(s™,X) and ¢, G.(X). 6 (0 are group

homomorphlsms for any space X; BN y'

In view of Theorems 2 4.1 and 2. 4 4, we conclude that

°

both G( X) and C(—‘X) vare‘eontravariant functors from the(

|
‘full subcategory of H-cogroups and maps~1nto the category of
———=>category ! g P

B bellan OupS and homomorphlsms
. S Jlomomorphisms .

-

.Remarﬁ. Without Theorems 2.4.1 and 2 4.4 the above -

v .-
observatlon would be by no means tr1v1al although it is evident

', I

from the remark follow1ng Theorem 2. 4.4 that G(— X) a'

contravarlant functor from the Subcategor of H—cogroups and
3 'oﬁH—maps 1nto the‘categofy of rou and homomor hlSmS. C 3
2 Tmaps E__JL. _____elL____

/ o
The follow1ng theorem 1s now.: clear .

Theorem 2:4.7. For any-H—cogroub X, G(X,X) and. -
— : £ . . §

n

fﬂC(X,X)' are rings- . 9,
4

¢



Example. For any space X,

,(';(zx,zx') =_'Q(xxzzx) = W(IZX,IX) = P(:£X,zX)

as rings (see Thgorg@ 2.3.8).



CHAPTER IIL

COCYCLIC MAPS -

3.1 Introduction

. l .
The results contained in the present chapter can be regarded

as dual .to those of Chapter I. As in Section 1.2 of Chapter I,
Section 3.2 of this chaéte; deals with the definition and the éxistenéé

of Cchtlic maps. In Section 3.3, we show that'éocyclicity of maps

is closédrapder the wedgé&product. The dual notion‘bf'centraliCY"

R

of maps is alSo considered' and some of its basic properties derived.

s,

~ . o
3.2 Definition an. Ex . .. -e of Cocyclic Maps

In this sec .iom, we dualize the notion of cycliéif& of maps.
This dual notion was . -st .c.ined and studied in considerable detail

in f3l]. We now recall the definition.

 Definition 3.2.1 ([31]).. Amap f: X > A is said to be

- R _ ] 8 - ‘ .

cocyclic if we can find a2 map ¢: X + X vV A such that the fol.owing
diagram is homotopy commutative: that is i :.(le)A. We‘call

such a map - ¢ a coassociated

-

'map.of- f. - The set of.afiihomotopy

~ classes of cocyclic maps from

o]

X to A is denoted by DG(X,A).

Remark 1.. Ingeneral, DG(X,A) is only a set, but it
turns.Out to be an abelian-group-if A is an“H—gfoup (see the

next chapter).

_434 B
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N

Remark 2. If A= K(ﬂ n),° an Ellenbcrg—MacLane complex

.of type (w,n), then DG(X, A) reduces to G (X ﬂ) ([1512 which

is called the_-nth coevaluation subgrogp of X (with respect to ).

fal

Lemma 3.2.2. ([31]). If f: X » A is a cocyclic map and

A + B 1is an arbltrary map, then the map 8f: X - B " is cocyclic.

.

The exlstence of cocycllc maps. is ea81ly seen from the

next propos1t10n.

2

Proposition 3.2.3. T - X be a space. Then -the following

are equivalent:

»

(a) X is 4 co~H-space.

(b) - lX isjcoéyclic.

q‘. ‘ -> - .
(c) DG(X,A) = [X,A] for any space ‘A, ¢

Proof. Therproof is exactly dual to that of Proposition 1.2.3.

Cofollarf 3;2.4 ([31])._ ’ k ﬂis ac ~H—épace; then any
- map fr X > A is cocyclic. : '

Dual to cyclicimaps,\we can obtain cccyciic maps ffom
cofibrations. Suﬁbosg\thﬁt. X-;£+ y 45 C is a cofibration. Then
ip‘gives'risén50”a;Puppe sequéﬁégﬁ'

3— Lf.

x Ly -9, —> ¢~ IX 55 Iy —

We have a cooperatibﬁ\ ¢: €+ C Vv IX such thét\ j¢ = (lxa)A‘ Thus

9 15 cocyclic and hence: 3#([ZX,A]).C DG(C?A} for all spaces A. o

} C
As an application of this fact, we have the following

. result.

a2l
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¢

a

f> Y —> C be a.cofibration. If

v

Theorem 3.2.5. Let QA

DG(C,A) = o, .then there exists a map p: Y - QA such that

nf = %QA'

Proof. Since DG(C,A) = o, 'Qé have, 3#([ZQA;A]) = 0,. so
that (Zf)# is onto.‘ Thus for e: IQA »~ A, we can find a map
g: LY -+ A Suéh that (Ef)#[g] = [é],',tbat is':g(Ef) x e, Taking

‘adjod f =~ .
39 nts, wgvget T(g)f 1QA

3.3 Some Basic Properties of Cocyclic Maps

Let f: X+ A be a cocyclic mép.' Then if the map
h: Y - X hasba left homotopy inverse, fh: Y + A is also cocyclic.h
We have -also seen that 6f: X + B islcocytlic for any map

6: A - B.

_Example. Let .A' be an‘H—space‘and o X *.A a.map;__
Then £ iS‘cocyciip iff e'f: X > QZA is céci Lic ﬁhefe e;: A > QZA
-is the usua. D
The following lemma shows that coéyclicity of maps is.

' closed'under‘the wedge product. \

" . - Lemma 3.3.1.:'If the maps f: X > A and g: Y + B. are

“cocyclic, then so is fvg: X Vv Y » A v B.

' ?fobf. Let ¢ -and . ¥ be two coassociated maps .of - f
and . g respectively. 'Let-
V2 VIV (V) XV Y > (RVY) (AVB) .

< .
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* 1

Then A is a coassociated map of fvg.

Definition 3.3.2. Let (G,¢,v) -be a H-cogroup and A

any space’ls We say that a map £: G > A 1is” cocentral if

(lVf)c = % vwhere' c :G>GV G is the basic cocommutator map
(that is, ¢ = V(lVleV\’\(¢V¢)¢)-
The following lemmas are immediate consequences of the

definition.
S e
Lemma 3.3.3. Tf f£:G > A is a cocentral map and.

5 B AR is ‘an’arbitrary map, *hen the map 9f: % > B “is cocentral.

, \' \

Prgof;" Sinc: . © o ~ent: l,fwefhaye' (in)c‘ﬁ-#J_ Thusi
(1v8f)e'= (1V8)(IVE)e - %  d icace -7 s cocentral.
Lemma 3.3.4. Ler T GVA and it A% GV A_be

)
_inclusiods. Then f ¢ [G,A] is cocentral iff (i],1,6) =0 ¢, [6,6vAl."

Proof. Let ji,jzé G+ GV G be the obvious inclusions.

s 1,Theﬁ U

(1vf)c =‘(1vf){¢+(9vv)¢} _ -
= (Ve + (WEW G
= (IVE) (343,) + (WEW) (3,+3,)
= ‘ii+%2f) +a(fil-12f)
= (i,,1,f)
Hence thé‘assertion.féllows. '., .

Lemma 3.3.5. Any cocentral map f: G+~ A . lies in.the

" center of [G,A].



Proof. We first note that  (1lvf)c = * 1ff

(Ivi)¢ = T(fvl)¢ where T is the switching mép, Let g e [G,A].

Then .

V(£vg) o = V(1Vg) (£v1)

[t}

V(gv1)T(£v1)

9(gvl) (1vE) ¢

'ﬂ

V(gvE) ¢.
Thus f+g = g+f for all g ¢ [G,A] and the assertion follows.

B

Lemma-3.3.6 ([7]). Let f: X~ A be a map. Then Lf

4

is cocentral iff e'q(lXE)A‘= * where e': X A‘A > QL(XAA) is

the usual map and: q: X x A> X A A is the quotient map.

Corollary 3.3.7. If f: X~ A is a_cdéyclic.mép; then

the map Lf 1is cocentral.

 Proof. This follows from the’abo?e lemma ‘and the existence
of a‘map ¢: X +'X V. A such that -jé.= (1xf)a . In fact, we have
e'q(le)A_zie'qj¢_: * from the followigg homotbp&ﬂcommutative diagram.

B i
Xox A3, X A Ae—S—f_QZ(XAA)_

We conclude’ this chapter with a remark. While we were

pyable to investigate the relationship betWeen_cyclicity'of maps and
”.mapé‘of finite order in Section 1.4 of Chapter I, we do not know .
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N

whether those results can be dualized. The main obstacle for

e '

obtéiniﬁg the dual results is our lack of knowledge about ‘the

3 »

dual of G(A,X) = wy([A,X7])  and those of the results of

Gottdiel on homology ([14])f

2
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CHAPTER 1V

COEVALUATIONlSUBGROUPS

4.1 Introduction -~

Basically the results contained in this chapter are dual
to those of ‘Chapter II. However the proofs of some of these

results, for instance that of Theorem 4.2,1, are quite different

€

(/fiom those of Chpater II. Furthermore, there Still remain many

open questions (see the remarks after Definitions 4.2.6 and 4.2.9)

in the'dual case. In Section 4.2, we show that DG(X,A) is'a

"SUbgroup (1n fact abelian} of [X Al when A is an H-group,

thus - settllng a problem of Varadarajan [31] We also dualize a

vresult of Chapter'II.’ U31ng the notion and propertles of cocentrallty

lntroduced and developed in Chapter III we show in Sectlon 4, 3 that

°

DC(X A) and DG(X A) are covarlant functors of A from the full

: subcategor rof H- groups and maps into the category of abelian groups

,and homomorphlsms From thlS we deduce that both DC(X, X) and

DG(X,X) are rlngs for any H grOup X.

4.2 Some Basic Properties of DG(X,A) 'and DC(X,A) ' ' I

In ‘this:section, we shall derive some basic propertles of
DG(X,A) and‘-DC(X,A) whlch are. the duals of G(A X) and C(A, X)
respectively., Some other propertles will also be dlscussed in the

next section. Among other things, we settle a'problem of

Varadarajen [31] by showing that DG(X A) is a subgroup of [X,A]’

@ ) ‘ y
when A 1is an H-group. Thus we can naturally call DG(X A) the

- 30 -
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coevaluation subgroup of X with respect to A when it is a

subgroup:

Theorem 4.2.1. If A is an H-group, then- DG(X,A) 1is a

sﬁbgrqup (in fact, it is abelian, seé Theorem 4.3.2) of [X,A] for

any space -X.

] : .
.Proof. - Let m and  u be the H-structure and the inverse

G

on A ‘respectively. Then the inverse of f in the group [X,A]
is the homotopy class of wuf: X + A. - According to Lemma 3.2.2;

Wf e DG(X,A)  if. f ¢ DG(X,A). Hence DG(X,A) is closed under

ﬁinversionQ To see that it is cdlosed under the'opefatiqn +

in [X,A]; -let f,g e.DG(X;AQ. Then we can find maps

(1xg)A. Let

n

$,¥: X > X V A such that j¢ = (1xf)A and 3
‘i (XVA) VA > XV (AA) and  i': (XXA) V. A'> X x (AxA) be the
'obvi0u§ inclusions. Then we have the following homo topy

commutative diagram:

) “ (XVA)VA — XV(AXA) — X Vv A
. . i . T 4 Ivm ’

i @ i, ©

(SN

©

. (XXA)VA — Xx(AXA) — X % A |
(1xf)avl ' i! 7 |

5 ® | 5, @

XV A

"

X — X x A

(1xg)h (1x£)Ax1

(Xx) &

Here all vertical arrows are inclusions. Let A = (1vm)i(¢v1l)y.

Then we have
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L
o>
14

(Ixm) {(1x£)ax1}{ (1xg)a}

(lxm){(\le)AXg}A | ' ' I

i

{lxm(fxg)A}A

. {1x(f+g) }A

- Thus f+g € DG(X A) so that DG(X,A) is closed under +. Hence
DG(X,A) 1is a subgroup of [X,A].

- Our next result is not quite as trivial as it might L
first appear.. v - c @

Proposition 4.2.2. Let X ‘and . Y be spaces having the

'ehomotopyitype of CW-complexes and A any space. Then the sets
© D6(XVY,A) and DG(X,A) x DG(Y,A) are isomorphic where x denotes

the cartesian product.
Proof. Let f E.DGfXVY,A). Then we can find a“map

Y: X vy +v(XVY) V' A such thet 3y (lXE)A where :

#

3 (XVY) vV A > (XVY) X A is the 1nclu51on and A: X VY > (XVY) x (XvY)

is the dlagonal map. Let: fl = fil: X > A and f2 = fiZ: Y > A

where -ii: X>X VY and iZ: Y>> XVY are inelusions. We cléim-

that fl € DG(X A)" and jb e DG(Y, A). To see‘this, let

a = piBYl and - B = p23y12 where (XVY) x A - X x A -is

P13’
'the prOJectlon onto the first and the thlrd coordlnates and
Pysy' (XVY) x A > Y x A is the projection onto the second.and the
" third coo;‘dinatesT Cleafly'va‘ and B are maps into- X v A .and

Y VoA respectively.' CbnSLder the follow1ng-homotopy commutative

diagram:f
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X o ‘ ‘ o

! ' P13 - -
XvyYy — (Xvy)va —=2 X v A'
, A J VCD j [ - C) jl l
(XY (XVY) —— (XVY) XA ——y ¢ x4 ' , : (V\
- 1t P13 s N b

'{Here jl is the obvious inclusion. Note that we also write p13

for pl3 [(XVY) v A. Let A"t X > X x X be the dlagonal map

LA L
(IXfl )A p13(l Xfl )A

fl

Theh“we have (le )A'

P13 -
P oo A
can show that ,f7 DG(Y,A). We may therefore. @

arﬂ%f we

: %%&ction S

®: DG(XVY,A) - DG(X,A) x DG(Y,A) as follows: for each

(le)Ail = le13y11 = NPT Hence Ly

fe DG(XVY,A), lee @(g) = (fl’fé)’ where f = f§ k=1 2.
Convepsely,'let fl EIDG(;,A)--and fé € DG(Y,A) bé»given.

Then we cah find maps - a: X. > X v A" and B: Y » Y v oA isueh that

jla = (lel)Af and jZB =_(1xf2)A”r where j's and‘.A's- are the

obvious>inclusions and diagonal3maps respectively. Let

f = V(flva) X vy f A Theh Lemma 3.3.1 could be applied to .

show that f ¢ DG(XVY A) As the proof of Lemma 3 3.1 was only
» sketched we would rather prov1de a dlrect proof of f € DG(XVY A)
here To do this, con31der the following homotopy commutatlve

'diagram:



s \ i
v 3 ~
o - : I (RAX) x (ZAX) )
) , R (Caali)xT
: ®
L axT 5 Hxaxﬂ : _ ¢ 1
. . . . ("FxT) 3
. VX (AAX) +—— (VAV)x (2AX) e (VxZ) A (VxX) D thixxé
, . o R - S v
. ] Q ot ®  fnale | O © L UA, Y
. . . . 1Y} 1
| VA(AAX) «—— (VAV)A(AAX) ﬁivifﬁ —_— .,
) . AAT ) TALAT H - . g A D r A
«
¢ - - r

4 7

~

Y

O

TR
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Let v = (1VV)(1VIV1)(avB): X V Y > (XVY) V A.  Then

(1xv) {1 X (£,vE,) 18

0
y

It

3,Y

| {1 x v(’flVfZ) }.A

(1x£)a .
Hence f ¢ DG(XYY,A){' We may therefore definejé%funétioq

. e _ T S
¥ : DG(X,A) x DG(Y,A) - DG(XVY,A)

as follows: for 'fl € DG(X,A) and _lee‘DC(Y,AY,- let
i
' 5) = V(fIVEZ)Q Finally, it can be easily verified that ¢

el

i

'Y are inverse to each other and hence they‘provide the
' indicated isomorphism. This cbmpletes the proof of the proposition.

_We are now in a position to establish the following
’ ? . ’ ‘ v
theorem. - - L

NS

Theorem 4.2.3;)»Lé; X 'andv Y be‘spaceshhaving'the
homotbpy'type of éﬁ%comﬁiekes anu A' an‘H-grdup. Then |
DG(XVY;A) o bG(X,A).®‘DC(Y,A) as gréuﬁs, where ® denotes

fhe’direct.pfqdu;t. S S .   'v h ‘ B _ f .

Proof. Iﬁ-view,of Theoféﬁ 4.2.1_and the preceding

‘ - : -t .. &) ’

-ptoposition,.it'sufficeS'to shbwﬁthag the function ' &  defined ih.
the proof of the latter is a hbmombrphism of groups: - To do this,
let f,g,é DC(XVY,A) and m the giﬁen H—structurebbn A. Then

we ‘have

-



>
b4
- AF

Il

. (f+g) = olm(exg)a) ST

f

: : ;'v*.h = (m(fXg)Ail,m(ffg)Aié)

= (m(filxgil)A,m(fizxgiz)A)

[t}

(£i)+gi,,fi tgi )

]

»(fiyiflz) +"Cgll,g12)

g

¥(E) + a(g) .

.y
[

‘,.Henqg v is a homomorphism‘of groups.
When A = K(m,n), the above tbeofem reduces to the

fe

following result of Héslam.

& | : Corollary 4.2.4 ([15]).

Gh(xvYsm) = ¢ (x;m) &G (Y;m
for all integers n > o , and abelian groups .
- Example 1. Let :T be the torus. 'Thep )

s

o B ‘ v>DG(SZVSl;TJ v DGCSZ)T)_X DG(Sl,T)_

ox(zez) =287 .

. Example 2. Let X be the figure eight space. Then

e peeshy v oaest,sh e nogst sl Sz e g
oo S :

and ° o

H
)

06(x,25Y) = v (ast), e n (ash)

b : -

46
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Let {Xé} he a collection of spaces having the homotopy

type of CW-complexes. Let an be the subspace of]the:preduct

space mX, defined as follows:

VXa'E {<x&>l all coordinates X , except possibly
% one, are base points}.

Then the preceding theorem (1esp prop051tion) can be

extended to the follow1ng prop031t10n

Proposition 4.2.5.~

DG(VX ,A) v @ DG(xa,A');. . RE

.. - - . L. - ) .
< .+~ .as group ‘vesp  as sets), where ® denotes the direct product

(resp. the caftesian product).

“We shall now 1ntroduce the Subset DC(X,A) of [X,A] ‘which

. -

s the dual of C(A X) If A is an H—space, then the fnnction

- I: [X, A] - [ZX IA], ’ glven by f e Zf ' is 1nJect1ve vLet »
‘ [ZX ZA] denote the subset of [ZX ZA] eonsisting oftthosebv
homotopy clasSes. of maps Zf_-whlch are cocentral. - ':‘ _HJ:;

‘Definition 4.2:6." Let A° be an H-space. We define

¢

: o . L SN - | .;
. o L DCEL,A) = ITIK Al

,'0. ) . . -

t

v

) Remafk.- Clearly DG(X A) < DC(X A) if "A . is an Hfspace;'

The appearance of the factor e'., in Lemma 3.3.6'changes some”duali\

/results. In particu}hr, it is not.k in to''us whether Theotem 2.3.2
dualizes. Hawever, the-distrthtive laws and Proposition 2.3.%

1 . o e ' ) Y ~
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dualize without aﬁyééhange{ S ‘ ' ' R

o

Proposition 4.2.7. Let A, B ‘and -X be spaces. D;;“ﬂ:

. ¢ : , A
f € DC(X,RA), then [B,gl"= o for all g e [X,0B] where [%]' #

.1s the dual of the generaliéed Whitehead product.

To éhowrthis, we need a lemmaf\\\g_ o

s

L 44

/

. Lemma 4.2.8. let i: Ab B > A Y B be thét digllusion of
—_— . o &7 i

1,

N, ’ . . - . N /5 .
the flat product into the wedge .product of A and %J?%Xf X
v v g o

is a co-H-space, then ?i#: [X,ADB] + [X,AVB] s a/ﬁé morphism{

?%ft
: A > AV B and

Proof‘of Pfoposition. Let il.

i2: B > AV B be the usual inclusions. According to [1], ve rLave
- .y v - . ‘ . "_ .i _ - o
(Ql)[f’glf'- (Qll)f + (le)g (Qll)f (le)g
. -1 ' -
Taking 1 7, we obtain

SR = 4 (e D) + 4,le, ()} - 1 (e, (20))

- where .elf'ZQA + A and e,: QB > B . are thé usual maps. Since

If is cécentra1,~so_is ;il{el(Zf)} .by Lemma 3.3.3. Accdrding‘to o
Lemma 3.3.5, we have ‘iT_li[f,g]') = 0. Hence 7, "= o as

i

i# is mono'and T - is- an isomorphism. A;
' N

Example. Let X be a co-H-space, A -and B any spaces.
Then [f,g]' = o. for all f ¢ [X,PA] and g e [X,0B].

Dua1 to'Definition«2.4.3, we have the following

definition.



Definition 4.2.9. , : . N

,//

{a ¢ [X,94) | [o,8]"

nt

o  DW(X,04) o for all

B ev[X,0B] and for all B}.

o) fo; all'

!
]

DP(X,a) = {a e [X,0A] | [o;B]"
‘ 2 R ' “\ R

Be [X,27A] and for all & > 1}

Remarks. Clearly we have the following inéluSiOns

- DG(X,0A) © DC(X,Q4) < DW(X,04) < DP(X,Q4) < [X,0A].

It will be intéresting to have exémples which show that.some of the
inclusions are proper.“ It is also not known whether DP(X,QA)
is a subgroup of [X,QA] or DG(RX,0X) = DC(0X,0X) = DW(RX,0X) =

DP(0X,0X) for any spacé‘.x.

4.3 DC(X,X) and DG(X,X) as Rincs
We'first shqﬁ that DC(X,A) and DG(X,A) vére cbvariant
functors ‘of A _from thé full subcategory of H groups and maps

into the category of abellan groups and homomorphlsms “The fact

1

~that DC(X X) and DG(X X) ~are rlngs w1ll then follow 1mmed1ately

We begln with a lemma

Lemma 4.3.1 ([19]); Lét A be ah'H—sﬁace with !

H{strucfure m, .and let. X .be a spacé., Let f g X > A be
maps. Then z(f+g) = J(m)E{q(fXg)A} + Zf + Ig. where
J(m): Z(AMA) » TA. is.:he Hopf construction-bn m and

(4

q: A X A>AANA is the quotient map.
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Theorem 4.3}2. Let A be an H-space with a right homotopy .

inverse 'Q,‘ and let X- be a space. Then -DC(X,A) and [EX,ZA]CZﬂ
‘are subgroups ‘contained in the centers of [X,A] and [ZIX,IA]
‘respectively, dnd .Z: DC(X A) > [ZX, ZA] is an isomorphism of

“abelian g 1ps. In.par{;cular, DG(X,A) is contained in the

center of [X,A]. . . S .

_Proof. We first show that - (f+g) Lf + Zg ‘if £ dr
g -is in DC(X,A). To do this, con51der the map J(m)Z{Q(fXg)A}

Taking adjoint, we obtain
T(J(ﬁ)){q(fxg)A} = Q(J(m))e'q(ffg)A ~ %

Thus I(nDZ{q(fwg)A} - and hence I(f+g) = %f + Ig., With the
aid of Lemma 3.3.4, it can be easily verlfled that Lf + Ig 1is

cocentral for all f,g ¢ DC(X,A); ' . REE TR
Next, we élai% that -If is cocentral if f € DC(X,A).
JiIn fact,

s

»

o = L(ftuf) = Lf+I(pb)

‘\ Q‘.
o AL P ’
i . N e PR
impiies that %Zf (Zu)(Zf) Whlch’ls cocentral by Lemma 3 3.3.

: Hence "[iX,ZA] iéra SUbgroup of [ZX,ZA].t That [ZX EA] lies -

CI
" in the center of '[ZX,EA]F follows from Lemma'3.3.5.» The facts that

;(f+g)’= If + Zg if f or g fis in DC(X A) and that- z is,f

an injection also impiy thaE"DC(X;A) lies in- the center of [X,A].

Consequently, DC(X, A) [ZX ZA] are‘subgroups contained'i@

o

CZ

k the centecs of [X,A]_-éﬁ [ZX ZA] respectively, and

4



4
I3 DC(XA) > [zg,zA]szv “
. . | ‘ e |
is'-an isombrphism ofvabelian groups. The prqof qﬁ,&ﬁé thgqrem‘is
thus cogpiéte. ‘ “ ”fb |
Let f: X - A:.be a.mar where X is an H;space with:
H-structure = m, " and A. is a’ﬁomotppf aésocia;ive H—;pace.¢ Then
we can find a retréctioni Y:‘QZA.+-A ,thch is an H—mgp.  éuppase
»gl,gZ:Y + X are ma?s whéfg Y.‘is;agy gpage. -fhen we‘canifoFﬁ_
f(gl+g2): Y > A, Let ;ffm): Z{(XAX) ;H be Ehé’Hopf-COnSFfuctiopt

on fm. Then we hav: followiﬁg lenma.

o -

" Lemma 4.3. « 191).
f(g te. YT{J(fm)}q(g1Xg2)A + fg, *+ fg,

where 1 .is the adjoint functor and q: X x X > X“K X/‘iS_the
: . ' . . ' / v L . B
quotient map.

1

Proposition 4.3.4, If f: X +'A is a ﬁap from an
AHéspaqe into a homotopy associative H-space A, then.

‘
N [

£y

£ DC(Y,X) + BE(Y,A)
and | . -
£yt DE(Y,X) > DG(Y,A)

o

are homomorphisms for any space Y.

I3

Proof. It sufficeslto show ' that .f(gi+g£)'='fgl fjfgz_

vfo; all 'gl,gz € DC(Y,X).i-In”fact,'wefhave
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¥ (em) ba(g, xg,)0 = YR(I(£m))e'q(s xg,)0

-~ and hence the assertion follows from Lemma 3;3.6 and the prece&ing.

lemma. S : '
‘,/ . L. - ! .
Combinixg Theorem 4.3.2 with Proposition 4.3.4, we have -

the next result.

'Thedrém 4.3.5. If f:'X> A is a map of H-groups, then

&
. ,1*», : o .
£, DC(Y,X) + DC(Y,A)
and - B ¥

t

,f#: De(Y,xX) - DG(Y,A)

i
t

are homombfphisms 6f abelian groups for any space Y.

C R _ S
= In view of the above theorem, we see that for an \space
X ' ' , . ) 1 ,
Y, DC(7, =) 'aqd FDG(Y;—) are covariant functors from the f&ll

e

" DG(X,X)

, . - , \ .
subcategory 6f,H—groups and maps into the category of abeliax groups
and hpmomorphisms;

{A{ ) ] R : L . :
“i Example. If f£: R(w,n) » K(m,r) is a map, then . \

Eyr GT(Ysm) > GT(Ysm)

ié'a‘grodp‘hpmgmorphism for any.space Y.

We are now in a position to state our main theorem.

. Theorem 4.3.6. For any H-group X, DC(X,X) and
T , ST ‘_ S »
are rings. '

: ot : : ] . 5



Example 1. For any space X, DC(OX,%X) and

DG(QX,2X) are rings.

- Example 2. For any Eilenberg-MacLane complex K = K(m,n),

DC(K,K) and DG(K,K) are rings.

e LN

e
LS
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APPENDIX

5.1 , Introduction

In th}s appendix w;vshall provido\the reader with some
disoussion andvexamptos.for'SOme'of the términology used ahd resolts‘
"established. Host ofA .iese examoles were not mentioned exolicitly in
‘the pretious ohapters; \
A5.2 H—grougs

| All topological groups are H-groups, sirice the- deflnltloh
of a topological group is- stronger than that of an H-group in the

s

sense that the homotopy relation is Teplaced by equality.

Ex: ple 5;2.[. Te 1505 space (X 1is an H-group for each

1°72 _
maps m: QX»X QX » QX aqd- p: QX > QX by

space X . In fact, for % .,2, ¢ X and t e I, welma& define two

[

Ll(Zt),‘

- g -
(R 2(e) =
. - ,\_} \lﬂ,z(zt-l) > if b h

“and  u(R)(t) = 2(1<t) . Then (QX,m;U) beoomes ag H-group. -

5.3 H-spaces

All H-groups are H-spaces, .since an H-group is énﬁﬁ{épacé
which Satisfies some additional conditions (see PA);
) N - - | e
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" Example 5.3.1. Sl, S3 and S7 are H-spaces. If we

. Ca
regard Sl, 83 and S7 as the sets of complex numbers, quaternions

and Cayley numbers respactively of norm one, then they become H-spaces
with the map m given respectively by the complex-multiplicatipn, the
quaternion multiplication and the Cayley multiplicatiod.wfln fact, S;

and S3 are‘topological.groups (Sl' is commutative).

Example 5.3.2. Let XX be the space of free maps from X -

into X with the cdmpact—opén topology. Let lX be the base point
. A < .

r

: X i . ’ .
of XX . Let m: X" x X* ~» XX be the composition of maps in Xh

Then (Xx,m) ‘is an H-space. In fact, m(f,lX)'= f°lx = f  and
m(lx,g) = 1Xog = g for all f,g € XX .. However, (XX;m) need not

be an H-group. T~ exémple, let X = 82 s, Since 82 is not contractigfé,

the constant‘map % 52 -> 82 is not homotopic to the identity map of .
2 . . ' - X ] .
S . Let g: S2 %>S? be any map and f = *:”SZ > 82 . Then-
m(f,g) = fog =% £ 1 9 This impliss-that f has no homotopy inverse'
. ' S - » . '

SZ

with respect to m . Hence (321 ,m) 1is not an H—grodp;

‘

5.4 . H-cogroups and co-H-spaces i - ' ‘ v

Example 5.4.1. .S2 is .an H-cogroup. To sée this, let-
be the map of s? onto Sz V S2 given by .collapsing the equator of
2y 52 and sending the ¥ofthern

«

s? . into the base point of §
V] - B . .

v ) . . 2 . B
hemisphere and the southern hgglsphere of S onto the first copy

. - : co 2
and: the second copy of. 82 v 52 respectively. Let wv: SZIV S be

the map given by - v(x,y,z) = (x,y,-z) . Then (S§7,¢,v) becomes an .

H-cogroup. Similarly, any -sphere Sn‘(n'z_l)' is an H-cogroup. -



~

In general, we have

Example 5.4.2. Aﬁf suspension X 1s an H—co%;oup.

. _ e
Indeed, for all x ¢ X, tel . wemay let
: . _ _

[(6526,9, i 0 < <7

¢(X,t‘) = \I . . .
" Ul Gn2e-1)), df T <1,
“and  v(x,t) = (x,1-t) . Then (ZX,¢,v) is an H-cogroup.
‘ . > Remark. The suspeﬁsion is the only H—cogroup ([17]1, P4)
-that I hgve been able to f1nd . ’?\h

All H—oogr0ups-are co—H—spaces, since an H-cogroup is a
‘co— H-space Wthh sati: fies some addltlonal condltlons (see PS) Thus

o all spheres are co- H—spaces

&

-5.5 gyclic mags '

Nl
i

We shall now recall how the term "cyclic map" originated.

[

“Let: X be a,;opologipallspace. A cyclic homotopy ([9] "840 and [8])

CH: X x I -+X is a- homotopy such that  H(x,0) = H(x,1) = x for all

S x eX . If H ~1is & cyclic homotopy,'then thespath g: I - X'.gi§én by
o(t) = H(*,t) for all te I, is called the trace of - H . Gottlieb

‘([9], P840) introduced. the’ Subgroup G(X) (of the fundamental group)

Wthh consists of all t1> homotopy classes of those loops which aro
. the'trace of some cyolﬁo homotopy Later, VaradaraJan ([311,: Pl&l)

generalized GX) to G(A,X) and called the maps f: A+ X which

are repres ted by'elements of G(A,X)' "cyelic". This is how the
SEnt cyeliic



term cycllc map' ' first appeared and we, stick to it by following

Varadaraj an's conven:ion. )

It was seen in Chapter I that.a necessary and sufficient
X condition for a topological ‘space to be an H-space is that the identity
’ map of X be cyclic. ‘Wevalso saw that if the Gottlieb set _G(A,X)
vanishes then certain fibrations admit a cross section. Apatt fromi
these, ‘some relationships‘also,exist hetweén.maps‘of finite order and
cyclic maps and G(A -) presérves.products innthe‘second variable

Thus the theory of cycllc maps and evafhatlon subgroups could be very

1nteresting and is worth studying.’

o)

3 ;' o Although the following eﬁample is vell known we still give

it as an illustration. o » (>“

_-Exa@ple}SLS.l.\ Let '(X,m) bg an H-space and A any space.

Then any nap‘f: A'—.> X is eyclic. In fact, let F = m(1Xf);
j: X v A+XxA and j§': XV X - X x X ‘be the usual 1nclusions
Fj = m(lxf)j = aj'(lvf) = V(lyf) : Hence‘ £ ois cyclic. <;‘/§
o . 2 _‘ R R
jé EXamplé'S.S.Z. (see Proposition l;3.3) ‘Let g: S8 - S
T ' = o

be any map.‘“Then 2g is cyclié. In faot g8 is 9-cogdnnected and

the assertion follows by Prop051t10n 1.3.34
. . 4
it example of-cyclic.maps is derived from an'example

\) - : . . : .\ _’ ' /

o% a topolog .1 group which is .not a’Lie group taken from the book:

Introduction to topologicalvgrOUpsb(PSZ) written by T. Husain.

I =-8-.

Ri , the direct:product of

Example 5.5.3.. Let G =

S i=1
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"'countably inflnlte number of copies of the real line endowed with

the produc topology (we add’ elements of G- componentw1se). Then

isﬂaltopological group which is not a Lie group. Let
H =R, x {0} x {0} x ... be the first copy in the product

Then H is-a closed subgroup of G .. Form the coset spac
t

Then G/H = {<gi>+Hi <gi>eG} {R X{gz} {g3}x . <gi>€G}

{R x H {g ¢}: <gi>eG}-; Let p: G ~ G/H be the natural ma
j=2 -~
claim that p is cyelic. S i
To see. thls, let F: G/H x G » G/H be the map g
F(g+H g') = (g+g") + H for all® g,g" € G . Then F(i,g')
=g' +H= p(g') and. F(g+H,Q) ='g + H . Hence P is cy

.

5.6 Evaluation subgroups

~

G

T R, .
i=1 T
e" G/H .
P. We
I
iven by
= (0+g') + H

clic.

\

The theory of evaluatlon subgroups is relatlvely very new as

-compared w1th that of homotopy groups Although we are able to show

make no claim that it be always computable at this time.

However,

_that G(A,X) forms a group or even a ring under certain conditions,

we

we

hope to 1nvest1gate the problem further in future ‘This problem is

. : 3
s1milar to the following 31tuat10n As is wellfknown (X,

always a group if elthe% X 1s an H—cOgroup or Y ?}S an

‘([17], PPl 4), but in elther case the group [X Y] is not

easyoto compute. In fact,L[X is an H—space iff G(A X)
any space A .

In what'follows; we shall prov1de a few examples

pevaantion'subgroupe For more details of the tOplC the r

Y] -‘is

H-group

always

[A,X]

of

eader is-

for

.referred'to [9], [12] and [23] (the.evaluation subgroups of various
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i)

4 ,'G (X) =f Z(Tr (}c))“'(

Stiefel manifolde were caloul;ted:

5 1231) :

@

o

Example 5.6.1. Let K. be the Klein bottle. , Then .

-~

-

'GL(K) = Z(Fl(K)) s fheﬁoenter of nl(K) wbere,:n“(K) 7ievthe _group

,_-,

on tworgeﬁerators‘ a.and b with a relation 1 : <£Ect

: '};u81ng the notion of Z—extenslbillty, Gottlleb showei ([9] P848) “that

)

fif X is aspherlcal ‘i.e. w (X) 0 for n>1.,

spherical the assertlon follows

,,.‘ l) kf’

£

proof is due to’ Varadarajan s C e

- E

Example 5.6.2.. TFor any integer n i'la,»f‘

R ’

.

. . \ .
! 0, if n . is .even

a

G(Sn,Sn) = 27 c 2 =-ﬂn(S ) if ' n (is;odd o d n %.1;3;7

Proof. First obseryejhat ~f:'S§'+ s Tis a cyellc map .

i f there exists a map- FE‘S? XfS '+,Sn' of bidegree (l deg f) é
. AR e i

Case 1. n_is even ° If F: S X S s is-of bidegreg

3,

.'(l deg f) Oapplylng the Hopf-constructlon to F we gét a map

2n+l 6+l ! ' ’

J(F) S > S whose Hopf—lnvariant 1is equal to deg £ HoWever;_

it is known - that when n,+. 1 is odd the Hopf- 1nvar1ant of any map
2n+l 'f’sﬁ+1 o '

S is zero. Hence the only cyclic maps 'Sﬁ + gt are'those;-

~ of degree zero. Thus G(s",s )‘5'0

:.Case 2.- n " is odd Let. nie Nn(Sn) ‘denote

a.generator. It is. knbwn»thaﬁ there exists a map
F: Snv.>; Sn > s of bidegree:(l,2) - It follows ‘that theveiementsj
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2n is in G(Sn,Sn) - It is also known that there exizi. a map

Fi 8" 5" 5 sT of bidegree ' (1,1) iff .- 1, 3 or 7. Thur ‘e

element n .itself lies in G(s",s™) iff n=1,3 - 7 . since
non, ... .7 - n . )

.G(s,s7) is a subgroup of ﬂn(S ) = Z , the assertio- tlovs. In

fact, if n=1, 3. or -7 then,wsn is an H-space i G(Sn

nn(Sn) = 2 , from another point of ‘view. _fing

"

Using a result of Gottlieb;, we can obtain the following

interesting example. o 63'

‘ - 2 , o . .
Example 5.6.3. G3(S ) ~Z . To see this,. let G be the
~ A 2 2
C - . : S
group of homeomorphisms of S2, ﬂptg‘its L ad  w: S? - 82_ be the
evaluation map. _Then 'd#ﬁn(G) = nh(SZ), n> 2 ([9],-P856).~ Thus -

2
S .
G (sz) =

3

G3(Sz) - T3(S ) ~ 2

(S

- — v 2 3 ; ' )
# 3 > wyn_ (G) = ﬂ3(S.)|, s0 that

)
S2 #°3

5
e

The notlon of central maps was first introduced by

5.7 Central maps

M. Arkow1tz and C R Curjel in their paper [3]. 1In Chapter II, we
applled this idea by introduc1ng a set. C(A,X)A te obtain one of our
‘main results, namely, G(X X) forms a ring for any H cogrouo X ...

Thus central maps should also be looked at in the study of cycllc maps.

N a

Exémple'5.7.l. Any mab f:.Sl_+ Sl is. central. 1In fact -
- - s ‘ i : .
let p, and P, Dbe projections of st o« Sl ontd‘the‘fikst_ahd

.second cOordinate spaees“respee}iﬁely.' Then p1 +.p2 =p, + Py »

l .
since § 1s a commutatlve topoloylcal group. - Thus
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(,*p.) = p, = p. =0 . Let m and ' be the multiplication and
172 1 2 ., - - o -y
inversion of S1 respectively. Then m\% ﬁl'+ p2 and

m(uxp) = ~p S folIoWs that mn + m(J*u) =0, i.e.

1 Py

Cm(mxm (uxu) ) A 1 =.0 . "Hence m(mxﬁ)(lXIxu?u)A 1 ‘= 0., or

stust slvgt
) ot

c =,O, and hence ‘c(1xf) =0 for all ‘f: § +‘Sl . Thus f - is .

central.

. . Ex:mnple.5.7.2. Let A be any space and f: A+~ RP (real

projective space) a map. Ther Qf is central. In fact,. RP  is a

N 17 . . . .
‘topological grour < hence an H-space. By Example 5.5.1, there
exists a map ' F: N <?A +RP - such that ¥j = V(lvf) where 1§ is '
the obvious inclﬁsi7gf Thus * V(1Vf)L = FiL = * where. . '
L: RP b A >RP. V'#, is the ugual inclusion.. I- follows that Wf
l - { - c . ' . .
is central by Lemm4:1f3[%u. '
| | :
5.8 Cocyclic map$ and concentral maps . o o
- N s Sy
’ o . o . ) , ‘;I§§;§ !
The foﬂgowing are two elementary exampl 3 cI cocyclic maps. - @fﬁ'
" Example 5.8.1. Every -constant map #*: X > A is cocyclic. . -
‘In fact, we may/ take the inciﬁsion map‘ il: X >X VA tobea
- ( ' . N - . -~ .
coassociated map of *-. - :
. B ‘ - . “ o !\‘
~Example 5:8.2. If’ X is a co-H-space, then every map .

o

Lfr X > A is cdcycljé. To see this, let y: X » X v'X " be the
oo—H¥stfucture‘on, X . Then we may take' (LvEYYy to be'a coassodiated‘ .
‘map of £ B "fif

i

The next examplc ié,not quite ﬁrivial and'réfereﬁce'of«[l7]

is required.

LNy -



Example 5.8;3. Consider the cofibraéion

A X B
AV B

o rs

where A and. B are spaces of the

IR

LR
AV BYAXB>ARNB:
‘homotopy”tyﬁg_of CW complexes. Then_pﬁéﬂcoboundary map 3 1in the

Puppe‘seduehce og?the cofibration is;%b@yclic.. To see this, we first

) fdescribe how 9 1is obtained. For the sake of simplfcity, let
) o . . L[ TN ’ )
» . 3=AVE, Y=AxB and ZrAAB. Let WzY uCX be the

S . ‘ , , ] -
n :7'}'mapﬁing cone of 3+ X > Y . It is well-known that the map q: W ~ Y/X

. “ﬂﬁ"Jkiwhich cqllapses‘ CX to theibése-pqint is 'a homotopy equivalénce.’

@

'3i;fq,;\'f‘;V.Lgt,,h‘ be a homotopy inverse of g . ‘If we collapse Y

\

‘to the base

. W co , . L ’ . o o ) ~ .
TR > point in- W, we get :IX i Lét 1i: W~ IX be the identification
o " map. Let "9 = ihp¥/X » IX . Then. 3 1is the coboundary map in the
- o , L , 7y ’y o : . e . - )
J ; A ) AR .
- ;Vl'following ngpé %@guénce of the given cofibration: -
: X > ¥ >2 5 IX >0y » ..,

wa shall now show that 8 is cocyclic. According tpi[lZ] (P171),
f*:phere exists a cooperation $: Z ~.Z v EX with §1¢ = 1Z fwhgref

o . . : /N T .
'pi:“z vV IX > Z is projection, and 3" = s# ({171, P176) " where

%f‘sf= P, and p.: ZV ZX'+‘ZX is_projéction. Thus 9@[1
. L2 2 ' e : IX
R Con s oe ‘ . o K
gteel- lZX 3 - lZX s},qr ] hg . Cla}m.‘ s 1is gocyc%lc. In
C N o : . .
have o ©
W \ ‘ / (Ixs)a = (Ixpyd)h = (py9xp,d)a

o B G ULENCHURI

¢

Note that Example 5.8.1 is aiso"an example of cocentral | -

; . A. o R

o

wherej j is the obvious “inclusion. Thus s and hence - h - is coeyelic.
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maps: ‘Another example is the followiﬁg.

Example 5.8.4. If G is a homotopy commutative H-cogroup

(e.g. ZZX for any space X) then any map f: G - G 1is cocentral

"(compare Example 5.7.1).-

5.9 Examples on some results

The following eiample shows that the hypothesis on‘ X in
Corollary 1.4.6 is ﬂecéssafy.
Examble 5.9.1. Let X = A S7 in the C@rollary.- Since

G(S 7) = nT(S7) = Z , every map f: S7 +.SZV is cyclic Hdﬁever,

Tf: 38'; 58 is not of finite order unless If = g-,‘sinée

If € n8(88)'£ Z .. Observe that X'= S7 .does not satisfy the hypothesis

of Cofqlléry 1.4.6.

" Example 5.9.2 (Corollary 2.2.5) Let X = the torus,

Y = 52 and” A = 53 . Then we have

.A‘;.. ' . ) . . L\.
. 3:-_ \;?'2 : ’ . o » :
CG(A,XXY) = G(S 3xxs ) .
Qéwx .
A
;:c(s ,X) @ é(s3 2)_§hv i
~ G(S ,SlXS ) @ Z , by Example 5.6.3
b~ c(s3,sl)f@ cs>,sh @ z
~ Z, since C(SB;Sl) =0 .
Lo 2 _ R
3 . 2

Example 5.9.3 (Theorem 2.3.2) Let A =8S" and X =8

then G(s’,5%) /= c(s3 IS') = C(s”,58") , by Theorem 2.3.2. ‘Thus
st ) = c(s ;s ) = G(s3 sy = Z , by Example 5.6.3. : Also

-



o

‘3 9
c(s”,25%) = a(sd,s% - 2 | and . ¢(s°,15%) = g(s3,5s2) by Theorem

2.3.2. Hence C(SB,SB) = G(S3,S3)‘; zZ .

Remark. It is not “nowvn to us whether there exist spaces

A and X for which G(A,X) 5 C(A,X)
: ' §

Example‘5.9.4 (Theorem 2.3.8) -Sinée all spheres st

(n > 1) are suspensions, we have- G(Sn,Sn) = C(Sn,Sn) = w(Sg,Sn)i=
P(Sn,Sn) by Theorem 2.3.8. By Example 5;%.2,_thi3»¢6mﬁon value is
vgivén by

0‘, if n ié even

G(8,87) =4 22, if n isodd and n # 1,3,7

Lz, if n =1, 3 or. 7.

LN
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