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Abstract

Ideal agent behaviour in multiagent environments depends on the behaviour of other agents.

Consequently, acting to maximize utility is challenging since an agent must gather and ex-

ploit knowledge about how the other (potentially adaptive) agents behave. In this thesis, we

investigate how an agent can efficiently tailor its behaviour to other agents during interaction

in order to maximize its performance. This thesis presents three main contributions.

First and foremost, the thesis characterizes and contrasts the traditional agent mod-

elling approach — where practitioners explicitly estimate and subsequently respond to a

generative model of an agent’s behaviour — with an alternative approach called implicit

modelling. Using traditional explicit modelling in complex human-scale domains is difficult

since an agent must efficiently estimate sophisticated behaviours from observations that may

be stochastic and partially observable. Even after estimating a generative model, it may be

impractical to compute a response that is robust to modelling error during interaction. The

implicit modelling framework avoids many of these challenges by estimating the utilities of a

portfolio of strategies. Furthermore, implicit modelling naturally affords the opportunity to

generate the portfolio offline, which provides practitioners with the time necessary for com-

putationally expensive robust response techniques. We introduce an end-to-end approach

for building an implicit modelling agent and empirically validate it in several poker domains.

Second, the thesis contributes the first empirical analysis of how the granularity of an

agent’s representation of a multiagent environment — including its beliefs about the other

agents — impacts two common objectives: performance against suboptimal agents and ro-

bustness against worst-case agents. We show that using asymmetric representations allows

for practitioners to trade off these objectives whereas commonplace symmetric representa-

tions optimize neither.

Third, we contribute a novel decision-theoretic clustering algorithm. While many ex-

isting clustering techniques optimize for spatial similarity between objects, we demonstrate

that such spatial clustering can fail to capture similarity in how an agent should respond

to the clusters to maximize utility. Our algorithm exploits structure in the utility function

to allow for an efficient greedy approximation to this computationally hard optimization.

We prove worst-case approximation bounds for our algorithm and empirically validate the
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approach by clustering agent behaviours in extensive-form games.

These three contributions provide practitioners with a foundation of practical techniques

for constructing an effective portfolio of strategies and using the portfolio to adapt an agent’s

behaviour. Our empirical evaluation of implicit modelling agents in a variety of poker games

demonstrates that implicit modelling is an effective agent modelling approach for online real-

time adaptation in complex human-scale domains.
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To ask may be but a moment’s shame,
not to ask and remain ignorant is a lifelong shame.
Kanō Jigorō

It is not important to be better than someone else,
but to be better than yesterday.

Kanō Jigorō
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son, Nick Abou Risk, Josh Davidson, John Hawkin, Dave Schnizlein, Darse Billings, Trevor
Davis, Dustin Morrill, Parisa Mazrooei, and Bryce Paradis. I also want to particularly
thank Michael Johanson, who played a significant role throughout my studies; whether it

was collaborating on a paper, research discussions over beer, partaking in (or organizing)
social events, or keeping me sane during writing, he was there.

To the many faculty, staff, and students in the Department of Computing Science, thank
you for building an inclusive community where everyone is encouraged to collaborate and

socialize. My time in the department afforded numerous CSGSA and UACS events, games
parties, defence beers, ski trips, and Turkey Trots. This cordial environment gave me the
opportunity to build friendships with some amazing people: Andrew Butcher, Jag Grewal,
Vanessa Burke, William Thorne, Jeff Ryan, Curtis Onuczko, Alona Fyshe, Dan Lizotte, Brad
Joyce, Jess Enright, Richard Valenzano, Jacqueline Smith, Paul Berube, Marc Bellemare,
Jeff Siegel, Anna Koop, Leah Hackman, Shayna Bowling, Kit Chen, Barry Gergel, Sheehan

Khan, Marc Lanctot, John Arnold, Brian Tanner, David Thue, Adam White, Martha White,
Joel Veness, Dave Churchill, Levi Lelis, and Marlos Machado. Furthermore, I would like
to thank my longtime friends Mark Lee and the late Dirk Henkemans, whose infectious
enthusiasm about computing science helped lead me into the discipline so many years ago.

Many of the friends that I met through the department also played pivotal roles in
drawing me into physical activities that have become central to my life. In particular,
Ryan Warden and Steven Roehr graciously introduced me to weight training when I was
an undergrad, and Chris Rayner encouraged me to start judo near the start of my Ph.D.
program. Training has enhanced my time as a graduate student, helped keep me sane,
and led me to meet other remarkable friends and mentors. The sensei at the University of
Alberta’s judo club – Gord Okamura, Kelly Palmer, and formerly Ron Senda – have been
inspiring and encouraging, despite my overreliance on sumi gaeshi. It has also been my

v



pleasure to throw and be thrown by fellow judoka Joe Parrell, Jason Woo, Amin Moazeni,
Behzad Vafaeian, Nathan Deisman, David Moulds, and Tobias Weingartner, amongst others.
My time at the gym also introduced me to friends and fellow aficionados of lifting heavy
things up and putting them back down: Brendan Woychuk, Matt Radkie, Adam Butson,
Emily Butson, Dion Pasichnyk, and Minkyu Kang.

Most of all, I want to thank my parents, Jeanne Byron and Forrest Bard, my brother,
Ryan Bard, and all of my extended family for their love and support. All of you have been
part of my journey from the beginning and have supported me, regardless of my quirks. I
could not have chosen a better family.

vi



Contents

1 Introduction 1
1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Agent Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Extensive-form games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Poker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Kuhn Poker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Leduc Hold’em . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Texas Hold’em . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Nash Equilibrium Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Sequence Form and Linear Programming . . . . . . . . . . . . . . . . 10
2.3.2 Counterfactual Regret Minimization . . . . . . . . . . . . . . . . . . . 11

2.4 Robust Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 ε-safe Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Restricted Nash Responses . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Data Biased Responses . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Card Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2 Betting Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Multi-armed Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Stochastic Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.2 Adversarial (Non-Stochastic) Bandits . . . . . . . . . . . . . . . . . . 22

2.7 Variance Reduction for Strategy Evaluation . . . . . . . . . . . . . . . . . . . 23
2.7.1 Duplicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7.3 Imaginary Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Submodular Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8.1 Maximum Coverage Problems . . . . . . . . . . . . . . . . . . . . . . . 26

3 Agent Modelling 28
3.1 Explicit Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Learning an Explicit Model . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Using an Explicit Model . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Implicit Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Using a Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Building a Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



4 Asymmetric Abstractions 41
4.1 Nash Equilibrium Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Robust Counter-Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Decision-Theoretic Clustering 53
5.1 Segmentation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Exploiting Structured Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Response Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 A Greedy Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Strategy Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Human-scale Implicit Modelling 66
6.1 Case Study: Heads-up Limit Texas Hold’em . . . . . . . . . . . . . . . . . . . 67

6.1.1 Agent Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.2 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Annual Computer Poker Competition Results . . . . . . . . . . . . . . . . . . 73

6.2.1 Heads-up Limit Texas Hold’em . . . . . . . . . . . . . . . . . . . . . . 74
6.2.2 3-player Limit Texas Hold’em . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.3 Heads-up No-limit Texas Hold’em . . . . . . . . . . . . . . . . . . . . 82
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Conclusions and Future Work 91
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.1 Moving Beyond Poker . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.2 Efficient Strategy Evaluation . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.3 Online Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2.4 Robust Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2.5 Evaluating Adaptive Agents . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 97

A Annual Computer Poker Competition Results 104

B Annual Computer Poker Competition Agents 126

B.1 Heads-up Limit Texas Hold’em . . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.1.1 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.1.2 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.1.3 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.2 3-player Limit Texas Hold’em . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.2.1 2013 & 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.3 Heads-up No-limit Texas Hold’em . . . . . . . . . . . . . . . . . . . . . . . . 132
B.3.1 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
B.3.2 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

viii



List of Tables

4.1 Sizes of percentile abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Comparison of Nash equilibria strategies using asymmetric abstractions . . . 45

6.1 Case study results versus 2011 ACPC heads-up limit hold’em TBR agents . . 72
6.2 2012 ACPC heads-up limit hold’em TBR: average winnings . . . . . . . . . . 75
6.3 2013 ACPC heads-up limit hold’em TBR: average winnings . . . . . . . . . . 76
6.4 2013 ACPC heads-up limit hold’em: Hyperborean agents . . . . . . . . . . . 77
6.5 2014 ACPC heads-up limit hold’em TBR: average winnings . . . . . . . . . . 78
6.6 2013 ACPC 3-player limit hold’em TBR: average winnings . . . . . . . . . . . 80

6.7 2013 ACPC 3-player limit hold’em: Hyperborean agents . . . . . . . . . . . . 80
6.8 2014 ACPC 3-player limit hold’em TBR: average winnings . . . . . . . . . . . 81
6.9 2014 ACPC 3-player limit hold’em: Hyperborean agents . . . . . . . . . . . . 81

6.10 2013 ACPC heads-up no-limit hold’em TBR: average winnings . . . . . . . . 84
6.11 2013 ACPC heads-up no-limit hold’em: Hyperborean agents . . . . . . . . . . 86
6.12 2014 ACPC heads-up no-limit hold’em TBR: average winnings . . . . . . . . 88

6.13 2014 ACPC heads-up no-limit hold’em: Hyperborean agents . . . . . . . . . . 89

A.1 2012 ACPC heads-up limit hold’em TBR: uncapped winnings . . . . . . . . . 105
A.2 2013 ACPC heads-up limit hold’em TBR: capped winnings . . . . . . . . . . 106
A.3 2013 ACPC heads-up limit hold’em TBR: statistical significance . . . . . . . 107

A.4 2013 ACPC heads-up limit hold’em TBR: uncapped winnings . . . . . . . . . 108
A.5 2013 ACPC heads-up limit hold’em TBR: uncapped statistical significance . . 109
A.6 2014 ACPC heads-up limit hold’em TBR: capped winnings . . . . . . . . . . 110
A.7 2014 ACPC heads-up limit hold’em TBR: statistical significance . . . . . . . 111

A.8 2014 ACPC heads-up limit hold’em TBR: uncapped winnings . . . . . . . . . 112
A.9 2014 ACPC heads-up limit hold’em TBR: uncapped statistical significance . . 113
A.10 2013 ACPC 3-player limit hold’em TBR: capped winnings . . . . . . . . . . . 114
A.11 2013 ACPC 3-player limit hold’em TBR: statistical significance . . . . . . . . 115
A.12 2014 ACPC 3-player limit hold’em TBR: capped winnings . . . . . . . . . . . 116
A.13 2014 ACPC 3-player limit hold’em TBR: statistical significance . . . . . . . . 117
A.14 2013 ACPC heads-up no-limit hold’em TBR: capped winnings . . . . . . . . 118
A.15 2013 ACPC heads-up no-limit hold’em TBR: statistical significance . . . . . . 119
A.16 2013 ACPC heads-up no-limit hold’em TBR: uncapped winnings . . . . . . . 120

A.17 2013 ACPC heads-up no-limit hold’em TBR: uncapped statistical significance 121
A.18 2014 ACPC heads-up no-limit hold’em TBR: capped winnings . . . . . . . . 122
A.19 2014 ACPC heads-up no-limit hold’em TBR: statistical significance . . . . . . 123
A.20 2014 ACPC heads-up no-limit hold’em TBR: uncapped winnings . . . . . . . 124
A.21 2014 ACPC heads-up no-limit hold’em TBR: uncapped statistical significance 125

ix



List of Figures

2.1 Extensive-form game example: the “Mystery Box” game . . . . . . . . . . . . 6
2.2 Counterfactual value terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Solving games via abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Explicit modelling workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Strategies with Pareto optimal trade-off between model exploitation and

worst-case performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Implicit modelling workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Abstraction of the first round of Texas hold’em poker, dividing 1326 hands
into 5 percentile E[HS2] buckets. . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Impact of quantity of observations and model abstraction on exploitation of
tilted 8-bucket equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Impact of counter-strategy and opponent response abstraction size on RNR

one-on-one and worst-case performance in the unabstracted game . . . . . . . 50
4.4 Impact of opponent response abstraction size and quantity of observations on

DBR one-on-one and worst-case performance in the unabstracted game . . . 51

4.5 Impact of opponent model abstraction size on one-on-one and worst-case
performance in the unabstracted game with 100,000 observations . . . . . . . 51

5.1 Rock-paper-scissors strategy simplex partitioned into best response regions . 54
5.2 Matrix view of a segmentation problem . . . . . . . . . . . . . . . . . . . . . 56
5.3 Clusterings of player two Kuhn poker agents . . . . . . . . . . . . . . . . . . . 63

5.4 Performance of different clustering techniques in toy poker domains . . . . . . 64

6.1 Illustration of the implicit modelling process . . . . . . . . . . . . . . . . . . . 70
6.2 Case study results versus mimics with responses in the small portfolio . . . . 71
6.3 Case study results versus mimics with responses in the large portfolio . . . . 72
6.4 Impact of the expected winnings cap on the average bankroll of top agents

from the 2013 heads-up no-limit ACPC . . . . . . . . . . . . . . . . . . . . . 85
6.5 Impact of the expected winnings cap on the average bankroll of top agents

from the 2014 heads-up no-limit ACPC . . . . . . . . . . . . . . . . . . . . . 89

x



Chapter 1

Introduction

The world is replete with problems involving interactions between multiple agents. While
humans have historically been the primary actors in these multiagent domains, the rise of
artificial intelligence has been driving computer agents to the forefront of many multiagent
problems. Even now, computer agents have been deployed for everything from relatively

innocuous tasks, like automated phone systems and elevator control, to potentially life
altering roles, such as autonomous vehicles and stock trading agents. This ubiquity makes
computer agents central actors with a very real impact on the day-to-day lives of people

around the world. Moreover, the growing reach of autonomous computer agents has made
coping with the presence of other decision makers a key challenge for artificial intelligence.

An agent1 is any autonomous decision maker — human or computer. In multiagent

environments, agents must interact with other agents that may have unknown goals and
capabilities. As such, an agent’s ideal behaviour depends on how the other agents act. One
common approach to designing agents in a multiagent system is to have an agent behave in

a way that maximizes their performance assuming worst-case behaviour by the other agents.
Though this approach is useful in many settings, the resulting agent behaviour is not ideal
when the other agents do not conform to such pessimistic assumptions. An ideal agent
must behave to maximize its performance with respect to the other agents at hand.

Learning about other agents and adapting to their behaviour is essential for such an ideal
agent and is the central task of agent modelling2. This dissertation focuses on the problem
of modelling agents during interaction in complex human-scale domains. Although agent

modelling has been studied previously, practitioners face numerous practical challenges in
using traditional agent modelling approaches in this context.

1.1 Objective

In this dissertation, we address a fundamental question in the field of agent modelling.

In complex multiagent domains, how can an agent efficiently tailor its behaviour
to other agents during interaction in order to maximize its performance?

An ideal agent must learn and exploit knowledge of how other agents in the environ-
ment act. We are interested in multiagent domains with other agents that are external (i.e.,
agents that are outside our control). As such, an agent designer cannot (safely) make any
assumptions about the behaviour of these agents.

1Since this work focusses on multiagent domains in the context of extensive-form games, we will also
refer to agents as players and opponents.

2Substantial agent modelling research has also fallen under the banner of opponent modelling. Although
this thesis investigates agent modelling in an adversarial setting, the contributions of this work are general
enough that they could be employed in the broader context of arbitrary agents.
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We seek to adapt to the other agents during interaction (i.e., online). In this online
learning setting, agents must learn and adapt while they accumulate reward throughout the
interaction. Consequently, agents face a familiar exploration-exploitation trade-off where
they must balance learning about the other agents with acting effectively themselves.

We examine this online learning problem in complex domains. These domains have
an enormous number of distinct states. As a result, it is typically impractical for an agent to
distinguish between every possible state and they must employ some form of approximation
to act effectively. We focus on human-scale domains that offer sufficient complexity for
humans to actively engage and compete in them.

In addition to a domain’s size, other properties present additional challenges for agent
modelling practitioners. We introduce five characteristics of our domains and the challenges
they present.

• Limited observations

Typically we need to model agents quickly: learning and adapting within a small
number of observations. This is especially true when interacting with human agents
as it is often impractical to observe an individual for a prolonged time.

• Stochastic observations

Stochastic observations occur due to an agent or the environment acting according to
some probability distribution over the possible actions. This tends to make it more
difficult to discover the signal (e.g., agent behaviour) within the noise of stochastic

sampling.

• Imperfect information

With imperfect information, the environment is only partially observable. That is,
part of the state of the environment is hidden to our agent. If other agents condition
their behaviour on information that our agent never gets to observe, then our agent
may conflate otherwise distinct behaviours.

• Maximizing versus satisficing

An agent’s objective may only require them to sufficiently satisfy a given criterion

in order to be “successful”. For example, in the context of stock trading, an agent
could be considered successful if they secure a desired number of shares for no more
than some specified cost. However, agents face a much more nuanced decision making
problem when outcomes have a range of quality, such at the cost of purchasing the
shares.

• Dynamic behaviour

Other agents may change their behaviour over time, potentially diminishing the value
of prior observations. Examples of this include customers changing their purchasing
habits over time or a game player changing their behaviour over the course of one or
more matches.

These characteristics pose challenges for practitioners not only individually, but also through
their combined effect. For example, a perceived change in an agent’s behaviour could be
attributed to any of stochastic observations, imperfect information, or dynamic behaviour.
Modelling agents in domains with combinations of these features is a difficult task: a chal-
lenge only aggravated further when learning and adaptation must occur within a limited
number of observations.

2



1.2 Agent Modelling

The traditional approach to agent modelling is to learn a generative model of the agent’s
action selection policy though observing its behaviour. This could involve directly estimating
the agent’s probability of selecting an action at every decision point, or estimating some
parameters of a model that describes how the agent generates its behaviour. We call such
a model an explicit agent model.

Explicit models provide a straightforward way to represent a rich space of agent be-
haviour. Although explicit models may be effective for small domains or when the space
of reasonable agent behaviour is small and easily measurable, in complex systems they can
present several practical challenges. First, rich explicit models for complex domains have
a high-dimensional parameterization. Without substantial prior knowledge, building an ac-
curate model can require a prohibitively large number of observations. Furthermore, in
domains with imperfect information, inferring the parameters may be intractable. Finally,
even given an accurate model, it is not obvious how to use this knowledge when respond-
ing. One possible approach would be to compute a response that maximizes the agent’s
utility given the model parameters. Johanson and colleagues (Johanson, Zinkevich, and
Bowling 2008) showed that these best responses can be brittle and vulnerable to model er-

ror. Instead, they proposed a technique to generate robust responses that maximize utility
given the model parameters, but subject to a measure of resilience against errors in the
model. Unfortunately, robust responses are currently impractical to compute quickly online

for complex systems.
Through learning and exploiting a generative model, explicit models provide one route

towards achieving ideal agent behaviour. When agent performance is truly the goal — as

opposed to producing the generative model itself — learning such an explicit model online
is unnecessary.

1.3 Contributions

The main contributions of this thesis are divided into the following three parts.

Implicit agent modelling. We investigate a largely overlooked paradigm for agent mod-

elling called implicit modelling. Instead of using online observations to estimate a gener-
ative model of the other agents’ behaviour, implicit modelling summarizes their behaviour
through the utilities of a portfolio of responses. Implicit models confer two key benefits:
they remove the need to estimate a generative model online in order to produce a response,
and they provide a natural representation for using responses that have been generated
offline. These benefits are vital in complex domains where efficiently estimating a gener-
ative model online is challenging and the cost of computing responses, especially robust
responses, can vastly exceed the time available to act. We present a novel characterization
of agent modelling techniques that contrasts the explicit and implicit modelling approaches,
highlighting the benefits and challenges of each. Furthermore, we address several practical
challenges in using implicit models and empirically validate our approach relative to baseline
approaches through a detailed case study. Finally, we empirically demonstrate the efficacy
of this paradigm in human-scale domains by evaluating implicit modelling agents against
competitors from several prior Annual Computer Poker Competitions — the premier venue
for computer poker research. Part of this work was published as “Online Implicit Agent
Modelling” (Bard et al. 2013).

The main question raised by using an implicit model is how one should generate a portfo-
lio. Our remaining two contributions introduce general techniques for constructing responses
that improve upon existing techniques and, in turn, result in more effective portfolios.
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Asymmetric abstractions. Agents typically require some form of approximation or ab-
straction to act effectively in complex domains. In multiagent domains, these abstraction
choices affect an agent’s beliefs about the capabilities and behaviours of other agents. The
standard approach when abstracting is to use symmetric abstraction: where all agents are
assumed to distinguish states in the same way. We empirically evaluate the impact that ab-
straction choices have on agent performance, demonstrating both the benefits and potential
pitfalls of using asymmetric abstractions instead of standard symmetric abstractions. Fur-
thermore, we show that combining asymmetric abstractions with robust response techniques
can produce responses which dominate their symmetric abstraction counterparts in terms
of both exploitative power and worst-case utility. This work was published as “Asymmetric
Abstractions for Adversarial Settings” (Bard, Johanson, and Bowling 2014).

Decision-theoretic clustering. Given prior knowledge of some agents (e.g., observations
from past interactions), one could construct a portfolio by generating a response to each
agent. However, when the number of agents is large, such individual personalization becomes
problematic. A large portfolio not only makes the online utility estimation of implicit

modelling more difficult, but many of the responses could be very similar. To mitigate
these problems while preserving a useful diversity of responses, we turn to clustering to
identify groups of similar agents that we can focus on for response construction. Traditional
clustering techniques would typically aim to group the agents together based on a distance

metric, where a desirable clustering is one where the agents in a cluster are spatially close
together. Instead, we desire to cluster based on actionability : the capacity for the clusters to
suggest how we should construct responses that maximize utility with respect to the agents.

Segmentation problems examine this decision-theoretic clustering task. Although finding
optimal solutions to these problems is computationally hard, greedy-based approximation
algorithms exist. However, in settings like poker where the agent has a combinatorially large

number of candidate responses whose utilities must be considered, these algorithms are often
intractable. We show that in many cases the utility function can be factored to allow for
an efficient greedy algorithm even when there are exponentially large response spaces. This

work was published as “Decision-theoretic Clustering of Strategies” (Bard et al. 2015).

1.4 Thesis Outline

We present the contributions of this thesis as follows. Chapter 2 introduces background ma-
terial including extensive-form games, which provide a general model for sequential decision
making in multiagent interactions; the specific poker domains used for our experimentation,
including Texas hold’em poker; and other prior work essential to the contributions of the

thesis. Chapter 3 compares the explicit and implicit modelling approaches, including prior
explicit modelling efforts in poker and challenges facing the implicit modelling approach.
Chapter 4 presents our analysis of asymmetric abstractions and how they can be used to
improve the quality of responses. Chapter 5 introduces the decision-theoretic clustering
problem, our greedy algorithm, and both theoretical and empirical results validating our
approach. Chapter 6 provides an end-to-end description of how we apply implicit modelling
to construct an adaptive poker agent: from building robust responses, selecting responses for
the portfolio, and using online learning algorithms to identify the portfolio’s ideal response
during online interaction. Furthermore, it provides empirical evaluation validating the ap-

proach using agents from several prior years of the Annual Computer Poker Competition’s
total bankroll events. Finally, Chapter 7 concludes the thesis with several open challenges
and possible avenues for future work on the implicit modelling framework, followed by some
closing remarks.
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Chapter 2

Background

In this chapter, we introduce central concepts and prior work used throughout this thesis.
While the principles underpinning our agent modelling contributions can be applied quite
broadly, we focus our investigation on extensive-form games and poker games in particular.
Section 2.1 introduces the extensive-form game model and Section 2.2 describes the family

of poker games used for our experimental domains. Sections 2.3 and 2.4 present prior work
on techniques for creating strategies in extensive-form games, some of which we will build
on. Human-scale games are often so large that they require some form of abstraction for

these techniques to be feasible. In Section 2.5, we present some common poker abstraction
techniques. Finally, the remainder of the chapter discusses background work that we build
upon in our implicit modelling contributions: multi-armed bandit algorithms (Section 2.6),

variance reduction for strategy evaluation (Section 2.7), and submodular optimization (Sec-
tion 2.8).

2.1 Extensive-form games

Extensive-form games provide a general model for interactions between multiple agents
making a sequence of decisions. An intuitive view of an extensive-form game is that of a
rooted tree. To help illustrate this model, we introduce and describe a simple toy game

in Figure 2.1 that we dub the “Mystery Box”. The tree’s nodes represent histories (i.e.,
sequences) of actions, h ∈ H. Leaves of the tree are terminal histories Z ⊆ H that
represent the end of the game. Each terminal history z ∈ Z has an associated utility (i.e.,
reward or payoff) ui(z), for each player i ∈ N = {1, . . . , n}. At each non-terminal history,
h, an edge represents an action a ∈ A(h) available to the acting player P (h) ∈ N ∪ {c},
where c denotes chance. When P (h) = c it is chance’s turn to act, and chance selects

action a according to a known fixed probability σc(a|h). If history h begins with h′, we call
h′ a prefix of h and denote it with h′ v h.

The histories where player i is acting (i.e., when P (h) = i) are partitioned into infor-
mation sets I ∈ Ii representing sets of histories that player i cannot differentiate. In
perfect information games, players can observe past actions taken by all other players
(including chance) and the information set partition consists of singletons. However when
this is not the case, the game has imperfect information and at least some information
sets will contain multiple histories. For example, in the “Mystery Box” game, players are
unable to observe chance’s action, which decides the contents of the box; Figure 2.1 depicts
the resulting information sets as a dashed line around the blocks of the partition. For any

two histories h, h′ ∈ I, A(h) must equal A(h′) and therefore we simply denote the actions
available at an information set as A(I). For a given history h, we denote the information
set containing h as Ih. If for each player i, and each information set I ∈ Ii, all histories
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Figure 2.1: The extensive-form game tree for the “Mystery Box” game. The game begins
with chance creating a “mystery box” that is either empty (worth $0) or filled with prizes
worth $5. Player one then chooses either to keep the box or offer it for sale. After player
one acts, player two can either pass, or pay player one to acquire the box. If player one
opted to sell the box, player two can buy it for $1, otherwise they must pay player one $2
to“bribe” them for the box. Tiers of the game are labelled with the acting player.

h ∈ I share a unique sequence of past player i information set and action pairs (i.e., players
never forget anything), the game is said to have perfect recall.

During the course of a game, each player selects actions according to their strategy (i.e.,
policy). Formally, a behavioural strategy (henceforth a strategy) for player i, σi, is
a function that maps each information set I ∈ Ii to a probability distribution over the
legal actions A(I). Note that this means players must act based solely on their current
information set, thereby acting the same at all the indistinguishable game states within the
information set. The set of all strategies for player i is denoted as Σi. A strategy profile,
σ = (σ1, . . . , σ|N |), is a vector of strategies (one for each player) that describes how the
entire set of players jointly act. We denote the strategies in σ excluding σi as σ−i.

Given a strategy profile, we can define several useful concepts used throughout our
own work and related research in computational game theory. The sequence probability,
πσ(h), of a given history h is the probability of reaching h if all of the players acted according
to σ. Formally, πσ(h) =

∏
h′a�h σP (h′)(a|h′), where σi(a|h′) = σi(a|Ih′) for i ∈ N . This can

be decomposed into each player’s and chance’s probability of playing to reach h. Specifically,
observe that πσ(h) =

∏
i∈N∪{c} π

σ
i (h) where πσ

i (h) denotes player i’s realization weight
(i.e., probability) of taking actions to reach h under σi. We let πσ

−i(h) be the probability
of everyone except player i (including chance) playing to reach h. Furthermore, let πσ(h, z)
be the probability of reaching z under σ given that h � z has already occurred. Formally,

πσ(h, z) =
∏

h′a�z
h�h′a

σP (h′)(a|h′).

The expected utility for player i under strategy profile σ is simply ui(σ) = ui(σi, σ−i) =∑
z∈Z ui(z)π

σ(z). This can be calculated exactly by traversing the game tree, or approxi-
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mated through Monte Carlo sampling (i.e., playing a large number of games).
Game theory describes several types of strategies that an agent may want to calculate or

approximate. First, a best response for player i is any strategy that maximizes i’s expected
utility with respect to the strategies of the other agents, σ−i. Player i’s best response
value for such a strategy is defined as bi(σ−i) = maxσ′i∈Σi

ui(σ
′
i, σ−i). When each player’s

strategy is a best response to the others, this is called a Nash equilibrium. The strategy
profile σ is an ε-Nash equilibrium if ui(σi, σ−i) + ε ≥ maxσ′i∈Σi

ui(σ
′
i, σ−i) = bi(σ−i) for

all i ∈ N . In other words, no player can deviate unilaterally and gain more than ε.
When N = {1, 2} and u1(z) = −u2(z) for all z ∈ Z, the game is called two-player

zero-sum. We will often refer to the other agents in a zero-sum game as opponents. In
a repeated game, players repeat the game multiple times over the course of a match,
typically alternating positions (i.e., being a different player). In this context, when we refer
to an agent’s strategy σ we mean the strategy profile (σ1, . . . , σ|N |) which specifies the agent’s
strategy in each position. In a repeated two-player zero-sum game the exploitability of a
strategy σ, εσ = (b1(σ2)+b2(σ1))/2, is the amount σ would lose playing against a worst case
(i.e., best responding) opponent averaged over all positions. In such games, Nash equilibria

have an exploitability of 0 (or ε for an ε-Nash equilibrium) and computing or approximating
such a strategy is called solving the game.

Although frequently viewed as simple entertainment, games provide human players with

low-risk environments for developing knowledge and skills. Similarly, games can be a valu-
able proving ground for computer agents as we pursue the development of artificial intel-
ligence. Many games have complex properties: like imperfect information and stochastic

observations. This makes them an interesting microcosm of much more complex and ill-
defined “real-world” environments. Since games usually have well defined rules and scoring
functions, they provide “sanitized” domains for investigating such real-world challenges.

Extensive-form games can model a wide range of sequential decision making problems in-
cluding classical games like chess, checkers, backgammon, Go, and poker. In the next
section, we introduce the poker games (played as repeated games) used throughout this

work for experimental domains.

2.2 Poker

In many classical games, players have perfect information about the game – allowing them

to fully observe the state of the game. Though interesting, perfect information games like
chess lack many challenging aspects of real-world problems. John von Neumann, the founder
of modern game theory, is famously recounted as observing this:

“Real life is not like that. Real life consists of bluffing, of little tactics of decep-
tion, of asking yourself what is the other man going to think I mean to do. And
that is what games are about in my theory” (Bronowski 1973).

Poker, on the other hand, is a game of imperfect information. For over seventy years, the
fields of game theory and artificial intelligence have used poker to investigate how agents
should make decisions under such uncertainty. For example, von Neumann and Morgen-
stern (1944) examine poker in their seminal book on game theory. While poker played an
important role during the inception of game theory, efforts to build computer poker agents
using artificial intelligence techniques were fairly limited until Billings (1995) advocated for

investigating poker further.
In general, poker refers to a family of stochastic imperfect information games where

players play a series of games against each other with the aim of winning as much as possible
from their opponents. While there are numerous poker variants, their rules share similar
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structure1. A game begins with chance dealing (typically) private cards to each player from
a set of cards called the deck. Typically, one or more players must then make forced bets.
In the poker games used in this work, these forced bets take one of two forms: either antes
(equal bets by all players) or blinds (variable bets which depend on a player’s position).
All bets contribute to the pot that is paid to the winner.

The game proceeds through a number of betting rounds where players take turns wa-
gering that their set of cards will be strongest at the end of the game. Players can fold
(forfeiting the game), call (matching the last bet), or raise (bet in excess of the previous
bet). In limit poker variants, bets and raises are of a fixed size and the maximum number
of raises within a betting round is limited. This is in contrast to no-limit variants where
players have a stack of available money and are allowed to make an unlimited number of
arbitrary (integer) bets up to their stack size.

A betting round ends if every player except the last player to raise has called the out-
standing bet or folded. Between betting rounds, players’ hands change in some way due
to chance events. One common way this happens is that chance deals some number of
community cards which are visible and usable by all players.

Players progress through betting rounds until the game ends in one of two ways: either
all but one player has folded, in which case the remaining player wins the pot, or multiple
players reach the end of the final betting round and have a showdown. In a showdown, all

remaining players reveal their cards and form the best combination, or hand, of cards from
their private cards and any community cards. The pot is then awarded to the player with
the strongest hand (or split amongst tied players). The strength of hands are determined
by preset poker hand types (Wikipedia 2015b) (e.g., a pair of identical rank cards loses to

a flush where all 5 cards are of the same suit).
Typically poker is played as a repeated game with players changing positions after each

game. Position in poker is determined relative to the dealer button, which is given to an

arbitrary player at the start of the first game. The order of play begins with player one –
the first player to the left of the dealer – moving clockwise around the table. This gives the
dealer a favourable position since they observe the actions of other players prior to taking

their own actions. After each game, the dealer button moves clockwise by one seat.
This work uses several variants of poker in our empirical evaluation. We begin by

introducing two smaller toy poker games — Kuhn poker and Leduc hold’em — before

introducing our main domain of Texas hold’em.

2.2.1 Kuhn Poker

Kuhn poker is a toy variant of poker that is small enough that a game theoretic analysis
can be done by hand (Kuhn 1950). It is a two-player zero-sum poker game with a deck of
three cards: jack, queen, and king. In Kuhn poker, both players initially ante $1 and are
dealt a single private card. Betting occurs in a single betting round with betting limited to
at most a single bet of $1.

In Kuhn’s analysis, he showed that strategies playing certain actions from certain infor-
mation sets were dominated. For example, when holding the king (the strongest hand) a

player should never fold. If all such actions are eliminated, then strategies in the resulting
undominated version of Kuhn poker can be parameterized with three parameters (α, β, γ)
for player one, and two parameters (η, ξ) for player two. We use this undominated Kuhn
poker game in some of our experiments.

1For the sake of simplicity and brevity, we omit many subtle details about betting in general poker
games. For readers who are interested in a more exhaustive description, there are numerous books and
online resources (Wikipedia 2015a).
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2.2.2 Leduc Hold’em

Leduc hold’em (Southey et al. 2005) is another two-player zero-sum variant of poker which,
though larger than Kuhn poker, is still small relative to common poker games played by
humans. The game begins the same way as Kuhn poker: players ante $1 and are dealt a
single private card. The deck in Leduc hold’em consists of six cards with three ranks (jack,
queen, and king) and two suits. Leduc has two betting rounds with betting limited to a
maximum of two fixed-size bets (of $2 and $4 in the first and second round, respectively) per
round. After the first betting round, chance deals a public community card. In a showdown,
a pair of cards is the strongest hand.

2.2.3 Texas Hold’em

Texas hold’em is a popular style of poker that is often played by humans at top-level
poker tournaments like the World Series of Poker. Billings (1995) advocated in particular
for Texas hold’em as a research domain due to the game’s simple structure and strategic
complexity. Furthermore, the Annual Computer Poker Competition (ACPC) – the premier
venue for computer poker research – has used variants of Texas hold’em since it began in
2006 (ACPC 2015). The availability of diverse human and computer agents makes Texas

hold’em a particularly compelling domain for agent modelling research.
Texas hold’em consists of four betting rounds. At the start of the first betting round,

called the preflop, players are forced to bet blinds (described further below) and each player
is dealt two private cards. Texas hold’em uses a standard 52 card deck with thirteen ranks

and four suits. Before each subsequent betting round, chance deals some public community
cards: three cards at the flop, then one on the turn, and one final card on the river. In
the event of a showdown, players form the best five card hand from the seven (two private

and five public) available cards.
Two-player (also known as heads-up) limit Texas hold’em is our primary experimental do-

main. With 1018 states and 3.19×1014 information sets, heads-up limit Texas hold’em is one

of the smallest poker games that humans play competitively. It is also the longest-running
event in the Annual Computer Poker Competition (ACPC 2015). We also present compe-
tition results from events at the Annual Computer Poker Competition including heads-up

no-limit Texas hold’em and three player limit Texas hold’em. The blind structure for each
of these games varies slightly, but each game uses the same structure as the games currently
used by the ACPC.

In each variant, players that face blinds must bet either a small blind or a big blind

depending on their position. Typically, in poker games with more than two players, the first
player (to the left of the dealer) pays the small blind, the second player pays the big blind,
and subsequent players do not face blinds. In the first round, the player following the big
blind acts first. In subsequent rounds, the first player following the dealer acts first. When
the game is heads-up with only two players, “reverse blinds” are commonly used. In this
case, the first player pays the big blind and the dealer pays the small blind. Note that this
means the dealer acts first in the first round. Our limit games use $5/$10 blinds. Within
each betting round, no more than four fixed-sized bets – of $10 in the first two rounds and
$20 in the last two rounds – are allowed (with the big blind counting as one of the four

allowed preflop bets). The no-limit game we use has $50/$100 blinds with 200 big blind
(i.e., $20,000) stacks. We use a no-limit variant called Doyle’s game where at the start of
each game, players’ stacks are reset to the original 200 big blinds.

Generally, our empirical results show performance in terms of expected utility in these
games. To remove the impact of the magnitude of blinds and bets in these games, values
are shown in milli big blinds per game (mbb/g), i.e. one-thousandth of a big blind per
game. When playing games with antes, we overload this notation slightly to mean milli

antes per game (as this can be viewed as all players facing equal big blinds).
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In two-player zero-sum domains, the Nash equilibrium solution concept can provide some
useful guarantees. Using techniques for approximating a Nash equilibrium in an extensive-
form game has become a common approach to create agents in computer poker research.
These techniques, which we describe next, have improved substantially in recent years in
large part due to research efforts in computer poker. However, as we illustrate in this work,
Nash equilibria do not produce ideal agent behaviour as they play defensively and do not
attempt to maximize utility by identifying and exploiting opponent weaknesses over the
series of games. Section 2.4 describes existing techniques that extend some of these Nash
equilibrium approximation algorithms to compute responses that attempt to exploit other
agents while retaining some of the safety afforded by a Nash equilibrium. All of these
techniques provide the core of how we will construct strategies throughout this work.

2.3 Nash Equilibrium Approximation

For two-player zero-sum games, playing according to a Nash equilibrium provides a guar-
antee about your expected utility against a worst case (i.e., best responding) opponent. An
agent playing according to a Nash equilibrium strategy in a two-player zero-sum repeated

game would never lose (on expectation). In this sense, a Nash equilibrium is optimal and
computing a Nash equilibrium is typically referred to as solving2 the game. Next, we intro-
duce some techniques for computing a Nash equilibrium in two-player zero-sum games with

perfect recall.

2.3.1 Sequence Form and Linear Programming

Prior work by Koller, Megiddo, and von Stengel (1994) showed that two-player zero-sum
perfect recall extensive-form games could be solved in polynomial time with linear pro-
gramming using a sequence-form representation of the game. In sequence-form, player i’s
strategy, σi, is encoded using a realization plan, βi ∈ Bi ⊆ R

∑
I∈Ii

|A(I)|, that stores the

strategy’s realization weights. Specifically, for each information set action pair (I, a) where
I ∈ Ii and a ∈ A(I),

βi(I, a) = πσi (ha).

Note that this is for any h ∈ I since, due to the perfect recall assumption, πσi (h) = πσi (h′)

for all I ∈ Ii and h, h′ ∈ I.
To encode a valid strategy, realization plans must also satisfy some constraints. To

describe the constraints, we first define player i’s parent of a history h, ρi(h), as the
information set action pair of player i’s last decision in h. Formally, ρi(h) = (I, a) such that
∃h′ ∈ I where h′a is the largest prefix of h where P (h′) = i. If player i has not yet acted in h,
then we let ρi(h) = ∅. Observe that under perfect recall, ρi(h) = ρi(h

′) for I ∈ Ii, h, h′ ∈ I.
For simplicity, we define ρi(I) as ρi(h ∈ I) for all I ∈ Ii. Then a realization plan βi must
satisfy three constraints to encode a valid strategy:

βi(I, a) ≥ 0, (non-negative probabilities)∑
a∈A(I)

βi(I, a) = βi(ρi(I)) for I ∈ Ii, and (children sum to the parent)

βi(∅) = 1. (root has probability 1)

Note that all of these constraints are linear in the variables of the realization plan. If βi
satisfies these constraints, then a strategy σi can be recovered from the realization plan by

2Although solution concepts aside from a Nash equilibrium exist, we do not examine them in this work.
Furthermore, technically, a Nash equilibrium only weakly solves a game. A strong solution would require
perfect play even after a player makes a mistake.
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normalizing the realization weight for a given (I, a) pair by the realization weight of the
parent of I. That is, we let

σi(a|I) =
βi(I, a)

βi(ρi(I))
=

βi(I, a)∑
a′∈A(I) βi(I, a

′)
.

For a two-player zero-sum game, the Nash equilibrium profile (β1, β2) must be a solution
to

max
β1∈B1

min
β2∈B2

u1(β1, β2)

while satisfying the linear constraints on βi. Representing β1 and β2 as vectors we can
rewrite this as

max
β1∈B1

min
β2∈B2

β>1 U1β2

where
Ui((I1, a1), (I2, a2)) =

∑
z∈Z

ρ1(z)=(I1,a1)
ρ2(z)=(I2,a2)

ui(z)πc(z)

is the payoff matrix for player i. A payoff matrix has
∑
I∈I1 |A(I)| rows,

∑
I∈I2 |A(I)|

columns, and at most |Z| non-zero entries. By taking the dual of the inner minimization we

create a linear program whose solution is a Nash equilibrium to the game.
Using sparse matrix representations (for both the constraints and the payoff matrix),

the size of this linear program is only linear in the size of the game tree — an exponential

reduction from the previous conversion to a normal-form representation. Despite this size
reduction, the memory required to solve such LPs makes them impractical for large games.
For example, with 3.19 × 1014 information sets, heads-up limit Texas hold’em is currently

infeasible to solve using LPs. However, LPs can be used to solve smaller games (e.g.,
Kuhn poker, Leduc hold’em, and Rhode Island hold’em (Gilpin and Sandholm 2007)), or
abstractions of larger games.

Billings and colleagues’ (2003) initial application of LPs to solve abstractions of heads-up

limit Texas hold’em showed promise for Nash equilibrium techniques in the domain. Al-
though the size of games feasible with LPs has improved (e.g., Pays’ (2014) LP approach to
heads-up limit Texas hold’em), alternative techniques for solving large two-player zero-sum

extensive-form games were also developed in an effort to overcome the memory require-
ments for solving games using LPs. New techniques including Hoda and colleagues’ (2010)
Excessive Gap Technique, and Zinkevich and colleagues’ Counterfactual Regret Minimiza-

tion, presented next, are capable of computing Nash equilibrium approximations for games
several orders of magnitude larger than LP techniques.

2.3.2 Counterfactual Regret Minimization

Zinkevich and colleagues’ (2008) Counterfactual Regret Minimization, or CFR, is a
state-of-the-art algorithm for approximating Nash equilibria in large two-player zero-sum
perfect recall extensive-form games. It resembles an iterative self-play algorithm that sim-
ulates repeated games between the players. On each iteration t, the players evaluate their
current strategy σti by computing regrets from simulated play that quantify how well the
player could have done if it had played differently. Players then update their current strategy
based on the regrets accumulated up to the current iteration. The counterfactual reasoning

used in computing these regrets gives rise to the algorithm’s name.
More precisely, on the first iteration of the algorithm, each player i knows nothing about

the game and their strategy for the current iteration σti is initialized to an arbitrary strategy.
On each iteration t, players evaluate σti relative to σt−i. At each information set, I ∈ Ii,
player i computes its expected value under σt assuming that they play to reach information
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Figure 2.2: An illustration of the terms used in computing counterfactual values. In this
example, we consider player two’s information set where player one chose to keep the mystery
box.

set I. Hence, this expected value is defined as the counterfactual value vi(σ, I) for player
i. We introduce two terms prior to defining this formally. First, let z[I] be the prefix of
terminal history z that is contained in I. Second, let ZI be the subset of terminal histories
that pass through information set I. Figure 2.2 illustrates these terms using the Mystery
box game (fully shown in Figure 2.1). Then the counterfactual value is defined as

vi(σ, I) =
∑
z∈ZI

Opponents
reach z[I]︷ ︸︸ ︷
πσ
−i(z[I]) π

σ(z[I], z)︸ ︷︷ ︸
Players reach
z from z[I]

ui(z).

CFR computes counterfactual values using a recursive walk of the game tree. As the
recursive walk returns these values up the tree, CFR uses them to compute counterfactual
regrets. The counterfactual regret, rti(I, a), represents how much player i wishes they
had played – or how much they regret not playing – action a as opposed to σt, assuming
they played to reach I. Formally,

rti(I, a) = vi(σ
t
(I→a), I)− vi(σ

t, I),

where σ(I→a) is the profile σ except at I action a is always taken. On each iteration,
counterfactual regrets are accumulated for each information set action pair and players
update σt to take actions proportionally to the actions’ positive regret. It is important to
note that, in practice, the current strategy σt does not need to be stored explicitly since the
accumulated counterfactual regrets implicitly define it.

Updating in this fashion is referred to as regret matching (Hart and Mas-Colell 2000;
Zinkevich et al. 2008). As a regret minimizer, regret matching ensures that the average
counterfactual regret at each information set approaches zero over time. As shown by
Zinkevich and colleagues (2008, Theorem 3), minimizing the counterfactual regrets at each
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information set in turn minimizes the average overall regret:

RTi = max
σ′∈Σi

1

T

T∑
t=1

(
ui(σ

′, σt−i)− ui(σti , σt−i)
)
.

Finally, a well-known folk theorem states that, in a two-player zero-sum perfect recall game,
if both players’ average overall regret is bounded by ε then the (sequence-form) average σ̄T of
the current strategy profiles σt is a 2ε-Nash equilibrium (Zinkevich et al. 2008, Theorem 2).
Therefore, CFR will converge to a Nash equilibrium as the number of iterations increases.
Although this convergence is only guaranteed in the two-player, zero-sum, perfect recall
setting, CFR has also been successfully applied to multiplayer games (Abou Risk and Szafron
2010), non-zero-sum games (Johanson et al. 2011), and imperfect recall games (Johanson
et al. 2013).

Computing exact counterfactual values requires a potentially expensive full traversal of
the game tree. Many CFR variants mitigate this problem by estimating the counterfactual
values using some form of Monte Carlo sampling (Zinkevich et al. 2008; Lanctot et al. 2009;
Johanson et al. 2012a).

CFR is memory efficient, requiring memory only linear in the game’s information sets.

This has enabled CFR variants to produce approximate Nash equilibria in considerably
larger games than previous LP approaches. However, human-scale games like heads-up limit
Texas hold’em have historically been too large to solve without a lossy abstraction of the

game. Recently though, a new CFR variant called CFR+ (Tammelin et al. 2015) has been
able to produce an approximate Nash equilibrium for heads-up limit Texas hold’em that
(essentially) solves the game (Bowling et al. 2015). This groundbreaking result means that

approximating a Nash equilibrium in heads-up limit Texas hold’em is now feasible without
abstraction. That said, abstraction, which we discuss in Section 2.5, remains important
both in this work and whenever available computational resources are inadequate for the

domain at hand.
Although Nash equilibrium solutions provide a valuable worst-case performance guaran-

tee, the assumption that our opponent is a worst-case adversary is not ideal when the other

agents do not conform to this pessimistic assumption. While using abstraction may mean
the opponent is only the worst case opponent within an abstracted version of the game,
a Nash equilibrium still acts defensively: guarding itself against an adversary it may not
actually be faced with. In the next section, we introduce techniques for constructing strate-

gies that attempt to exploit some knowledge of the other agents’ behaviour while remaining
robust to some degree against worst-case adversaries.

2.4 Robust Responses

In two-player games Nash equilibria provide a useful worst-case performance guarantee.
However, agents rarely behave in such a worst-case manner and Nash equilibria do not
attempt to capitalize on opportunities, such as opponent errors, to improve their perfor-
mance. An ideal agent should maximize its performance with respect to the actual agents
it interacts with.

In an effort to achieve this ideal, one may wish to construct a response strategy that
makes less pessimistic assumptions about how the other agents act. For example, we could
assume a variety of models for how other agents act including: worst-case in some abstraction
of the game, a model of bounded rationality, or according to some knowledge gained from

prior interactions (e.g., observations). Although making less pessimistic assumptions can
improve our agent’s performance, responding to such beliefs is risky as our agent may need
to deviate from “safer” strategies, like a Nash equilibrium, to do so. In adversarial settings,
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this deviation exposes the agent to potential counter-exploitation by a savvy opponent who
is itself modelling the agent’s behaviour.

Consider the situation where we are playing against an agent who is exploitable and
we know their strategy (e.g., always play rock in rock-paper-scissors). Employing a best
response strategy to this known opponent (always play paper) would, by definition, maxi-
mally exploit them. However, this is only the case if this opponent model is accurate. If the
model is not accurate for the opponent at hand, then the best response strategy can perform
poorly and be vulnerable to counter-exploitation (always play scissors) (Johanson, Zinke-
vich, and Bowling 2008). Model error may be caused by several factors including incorrectly
modelling the parameters of the opponent’s strategy, or estimating model parameters from
noisy observations rather than knowing the opponent’s exact strategy. In complex domains
– where model error is particularly likely due to the challenge of estimating the parame-
ters of a high dimensional strategy – robustness to such counter-exploitation is especially
important.

Robust responses offer a compromise between the brittle optimism of best responses
and the pessimism of Nash equilibria: trading off maximally exploiting an agent model with

minimizing one’s own exploitability. Next, we introduce several robust response techniques
used throughout this work as we strive to produce ideal agent behaviour.

2.4.1 ε-safe Responses

McCracken and Bowling (2004) pointed out a potentially false assumption made in agent
modelling literature: that an agent can, in fact, be modelled by the modelling agent. Failing
to model an agent correctly due to making false assumptions about how they will act – for

instance, that they are static, or that they use a particular abstraction – can cause many
techniques for exploiting that model to catastrophically fail (e.g., best responses). To address
this issue, they introduce the concept of ε-safe strategies: the strategies that risk no more

than ε compared to the value guaranteed by a safety strategy such as a Nash equilibrium.
ε-safety confers exploitive strategies with a degree of robustness by bounding the maximum
loss that they can suffer in cases where agent modelling has failed.

McCracken and Bowling’s Safe Policy Selection (SPS) algorithm uses ε-safe strategies
to exploit agents in repeated games. Specifically, SPS acts according to an ε-safe best
response: any ε-safe strategy that maximizes utility under the current agent model. On

each iteration of the game, SPS computes its strategy, acts, updates the model from obser-
vations, and then adjusts ε (increasing it over time, and increasing or decreasing it based
on received utilities). This allows an SPS agent to dynamically adjust its “aggressiveness“

in an attempt to maximally exploit while providing a guarantee on average rewards in the
worst case.

ε-safe best responses can be computed online in small games using linear programming.
Unfortunately, this approach is not feasible for larger games like Texas hold’em due to both
memory constraints and the need to act online in real time. However, the restricted Nash
response technique provides an alternative approach for computing ε-safe best responses
that can be scaled to such complex domains.

2.4.2 Restricted Nash Responses

Johanson and colleagues’ (2008) Restricted Nash Response (RNR) technique provides
an efficient way to compute ε-safe best responses to a known adversary strategy σfix in
large two-player zero-sum extensive-form games. The RNR technique computes a Nash
equilibrium for a modified game using any game solving algorithm, such as an LP, or more

scalable techniques like CFR.
In the modified game, the opponent is “restricted” by chance (privately) forcing them
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at the start of each game to play according to σfix with probability p, and with probability
(1−p) they are free to choose their actions. We call these two parts of the restricted player’s
strategy their model and response, respectively. The other “unrestricted” player is always
free to choose their actions. In the Nash equilibrium of this modified game, the unrestricted
player’s strategy is an ε-safe best response to σfix, where ε is controlled by the choice of
p. Note that solving this game only provides a strategy for one position in the game, and
producing a restricted Nash response strategy for all positions requires solving a modified
game from each player’s point of view.

By changing p, a spectrum of Pareto-optimal ε-safe responses can be generated that
trade off the response’s own exploitability and its exploitation of σfix. Increasing p results
in responses that are both more exploitive and more exploitable: with p = 0 producing an
unexploitable Nash equilibrium and p = 1 yielding a best response. Note that although best
responses are technically ε-safe for sufficiently high values of ε, we are typically interested
in ε-safe best responses that risk losing an acceptably small amount.

Empirical results demonstrated that RNRs could sacrifice only a small amount of utility
relative to a true best response when playing against σfix while vastly reducing the response’s

own exploitability (Johanson, Zinkevich, and Bowling 2008, Figure 1). Although RNRs
provide substantially more robust responses than best responses, Johanson and Bowling
(2009) showed that RNRs (and by extension best responses) can behave poorly when σfix

is estimated from observations of the opponent rather than the opponent’s true strategy.
While RNRs are well suited for building responses to known strategies, data biased responses
were created to address the more practical problem of building robust responses to agent

models constructed from observations.

2.4.3 Data Biased Responses

In practice, it is atypical to have an agent’s full strategy available and practitioners will want

to build responses to some model of the agent constructed from observations of the agent’s
actions. For instance, one could construct a frequentist model of the agent by counting
the number of times the agent took each action in each (potentially abstract) information

set. A frequentist model could be turned into a strategy for the agent by normalizing
the frequency counts at each information set and imputing some behaviour at unobserved
information sets.

RNRs could be used to build a robust response to such a strategy. However, frequentist
models estimate the agent’s strategy with varying accuracy depending on how frequently
each information set is observed. For example, in poker the information set for the first

player to act is always observed (provided cards are revealed in a showdown), whereas
players and chance must take specific actions to reach later information sets. Since RNRs
only use a single parameter to control how much weight is put on the opponent acting like
the model, they lack the capacity to represent variable confidence in the model. As a result,
RNRs tend to put too much faith in the model at information sets computed from limited
observations, or in the imputed behaviour.

Johanson and Bowling (2009) examined RNR’s “overfitting” problem and introduced

data biased response (DBR) strategies as an alternative way to produce robust re-
sponses. As with the RNR algorithm, DBRs solve a modified game in which a player is
restricted to play according to an agent model. In DBRs however, the agent is forced at
each information set I to act according to a frequentist model with probability Pconf(I), and
is free to best respond with probability (1− Pconf(I)), where the confidence level Pconf is a
function of the number of times nI that I was observed. Since the confidence is information
set dependent, DBRs avoid trusting the model in situations with sparse or non-existent
data and instead fall back to assuming a best responding adversary (as opposed to some
behaviour imputed a priori). Although this modified game does not admit a linear program-
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ming formulation, it can be solved with CFR techniques. Solving this modified game not
only produces a robust response to the data, it also yields mimic strategies for the restricted
players that attempt to imitate the data while also being robust to the other players.

Practitioners can control the trade-off between exploitation and our agent’s exploitability
by tuning Pconf . Johanson and Bowling’s empirical results suggested that varying Pmax with
their “0-10 linear” function, Pconf(I) = Pmax min(1, nI/10), worked well. By varying Pmax,
the maximum probability of following the agent model, a range of robust responses can be
produced. Note that for Pmax of 0, the model is ignored and we get a Nash equilibrium.
Empirical results have shown that DBRs behave well under a range of Pmax values, improving
considerably over RNRs in terms of both exploitation and the response’s exploitability when
using observations of an agent’s play.

In complex domains like Texas hold’em, some form of generalization is typically required
not only to make the aforementioned strategy generation algorithms feasible on available
hardware, but also to effectively capitalize on available observations when building robust
responses.

2.5 Abstraction

Human-scale problems are typically too complex for modern computing hardware to solve.
For those human-scale problems that are feasible, the computational resources necessary

to do so are often in excess of what is available to many practitioners. For instance, es-
sentially solving heads-up limit Texas hold’em required approximately 900 CPU-years of
processing (Bowling et al. 2015). In problems of such complexity, agents may only be able
to learn about a limited subset of the problem’s state space. Generalization attempts to

answer how to generalize from such limited knowledge to inform us about other, potentially
unobserved, parts of the state space.

Generalization is related to the task of abstraction. Where generalization relates knowl-

edge about a subset of a problem to the larger whole, abstraction examines how to simplify
a problem by removing or altering details of the original problem. Both areas allow for prac-
titioners to simplify complex problems such that they will be tractable on available hardware.

Of course, simplifying the problem may yield a poor surrogate for the original problem if
important information is discarded. Despite the risk of less than ideal agent behaviour,
generalization and abstraction are typically necessary for such human-scale problems and

are ubiquitous in both human and computer agents.
In the context of extensive-form games (or other models of games), the standard approach

to make a problem tractable is to derive a simpler abstract game by applying state-space
abstraction. Strategies can then be produced for the abstract game using standard strategy
generation techniques. For instance, applying a game solving algorithm such as CFR to
the abstract game approximates an abstract game Nash equilibrium. To act in the
real game, we generalize from the abstract strategies by mapping sequences of observed

real game actions into the abstract game and translating the abstract strategy’s actions
back into the real game. This process is illustrated in Figure 2.3. Note that state-space
abstraction is typically used to produce an abstract game prior to computing a strategy.
Although techniques like Waugh and colleagues’ (2015) recent CFR variant, regression CFR,
avoid this a priori abstraction by learning a regressor during strategy generation to provide
generalization, we limit our attention to abstractions applied prior to learning.

The reduction in size necessary to produce a tractable abstract game from a human-
scale game typically requires at least some loss of information. The impact this loss will
have on the effectiveness of the resulting strategies depends on the size of the abstract

game and the abstraction technique used to produce it. Increasing the size of the abstract
game increases the time and memory required to produce a strategy for the game, but
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Figure 2.3: Process for simplifying and solving a game using abstraction.

also allows for less loss of information. While intuition may suggest that larger, higher
fidelity, abstract games will result in abstract game Nash equilibria that are less exploitable
in the real game, there is no theoretical guarantee of this property. In fact, Waugh and
colleagues (2009b) provided examples of abstraction pathologies in Leduc hold’em where
even strict refinements of an abstraction resulted in increased exploitability. In human-
scale games, however, this intuition typically holds with larger abstract games yielding less
exploitable strategies (Johanson et al. 2011; Johanson et al. 2013).

Prior poker research has introduced abstraction techniques that largely focus on one of
two primary objectives: abstracting the cards dealt by chance’s actions using card ab-
stractions, and abstracting the actions of actual players through betting abstraction.
We briefly introduce some commonly used abstraction techniques for each of these areas in
the next sections.

2.5.1 Card Abstraction

In poker, chance’s actions are commonly abstracted by grouping information sets with dif-
ferent public and private cards together into abstract buckets. This particular form of
abstraction can be represented as a many-to-one mapping from the information sets of the
real game to information sets in the abstract game. Creating a card abstraction typically
involves two tasks: extracting distinguishing features to represent the cards as points in
a (typically low-dimensional) feature space, and partitioning the resulting points based on
some notion of similarity between them. We review several approaches used in prior poker
research for each of these choices.

Card Features

As cards lack an intrinsic sense of similarity, practitioners must choose a feature space to
represent the cards: ideally one that characterizes the relevant properties of a set of cards for
the game at hand. In poker, these features need to help answer two fundamental questions
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about the cards. How “strong” is my hand given any currently revealed information? How
can my strength change over the course of the game?

Although the strength of a hand can be measured in many ways, our work uses Billings
and colleagues’ (2002) commonly used notion of hand strength. After all the public cards
have been revealed (e.g., in the final round of Texas hold’em), hand strength (HS) is
the probability of a given hand winning against an opponent’s hand, where ties are counted
as half a win. Alternatively, one can view this as the proportion of the pot a given hand
is expected to win. Given the public cards and a distribution over the opponent’s available
private cards, hand strength can be computed by evaluating our hand against each hand the
opponent could hold. Since we do not know the true distribution over the opponent’s private
cards, a distribution for the opponent – usually uniform random – is typically assumed.
Although some prior work refers to hand strength using such a uniform random assumption
as hand rank (Billings 2006; Johanson 2007), this work follows the more recent trend
of simply calling this hand strength. Prior to the river, while public cards have yet to
be dealt, hand strength is myopic: answering how strong a hand is currently, oblivious
to any future cards left to be dealt by chance. Instead, many early abstractions of Texas

hold’em poker (Billings et al. 2003; Zinkevich, Bowling, and Burch 2007) used expected
hand strength (E[HS]): the expectation of hand strength over all possible rollouts of
any public cards yet to be revealed3. This has also been called 7-card hand rank (Billings

2006; Johanson 2007).
Summarizing a hand solely by expected hand strength fails to answer the question of

its hand potential: the tendency for a player’s hand to change in strength due to future
chance events. For example, a hand of 5♠6♠ may have low E[HS] preflop, but future

community cards may turn the hand into a flush or a straight with high E[HS]. Without
differentiating hands based on their potential, an agent may conflate such high potential
hands with hands that have little potential to improve. The PsOpti agents attempted to

differentiate these high potential hands by reserving one bucket of their card abstraction
specifically for hands with a high potential to improve (Billings et al. 2003). More recent
Texas hold’em abstractions (Johanson, Zinkevich, and Bowling 2008; Zinkevich et al. 2008)

capture some notion of hand potential using expected hand strength squared (E[HS2])
to bucket hands. Since Var[X] = E[X2]− E[X]2, the E[HS2] feature provides information
about both the mean and variance of a hand’s distribution over hand strengths. This feature

makes high potential hands appear similar to stronger “made hands” by giving extra credit
to “drawing hands” that require chance to reveal further public cards before their strength
is more certain. However, summary statistics alone may fail to accurately represent hand

potential by discarding important information about the hand strength distribution and how
it changes throughout the course of a game. Instead, modern poker abstractions typically
bucket based on histograms of the distribution (Gilpin, Sandholm, and Sørensen 2007;
Johanson et al. 2013).

These hand strength features ignore the reality that the distribution of private cards a
player will take to a showdown may be non-uniform and dependent on the public actions
by players and chance (such as community cards). Though convenient, assuming a uniform
distribution may discard information that is potentially valuable for differentiating cards.
Features such as Johanson and colleagues’ (2013) opponent cluster hand strength,
mitigate this limitation by using multiple distributions to compute hand strength features.

For an agent to act optimally in the original game, they typically require knowledge about
the public information in addition to their own private information. The hand strength
features discussed so far attempt to characterize the quality of a player’s private cards

conditioned on any known public cards. Although some information about the public cards
may be indirectly captured by these features – since the known public cards affect hand

3Technically this distribution is not known exactly due to the private cards dealt to other players. These
card removal effects are typically ignored.
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strength – more specific knowledge about the public cards may be needed for an agent
to distinguish important situations. To illustrate, consider the situation in Texas hold’em
where players are on the river and the public community cards form the strongest possible
hand. In this case, an agent should never fold with any pair of private cards since they will
always tie against the opponent. However, with a hand strength of only 0.5, hands in this
case may be grouped with other situations where a player should at least occasionally fold,
thereby discarding valuable information about the public cards. Instead of relying solely on
hand strength features, practitioners can add features of the public cards to their feature
space, or directly characterize the public cards through separate public buckets (Waugh
et al. 2009a).

Bucketing

Ideally, the chosen representation will map strategically similar cards to points (i.e., feature
vectors) that are in some sense similar in the feature space. Then, all that remains to create
an abstraction is to choose how to partition the points such that the resulting groups (i.e.,
buckets) are, in fact, strategically similar.

One way to partition the points is to only group together points that are exactly identical.
In many poker games, Texas hold’em included, this approach can be used to exploit the fact

that permuting the suits of cards does not change the relative rank of a hand. Specifically, in
a standard deck of cards there are four suits: diamonds ♦, hearts ♥, clubs ♣, and spades ♠.
When evaluating a hand at a showdown, hands that only differ by a permutation of the suits

are ranked the same and will tie. For example, if the public cards are 2♣3♣4♣7♦9♦ then
a player with A♥K♠ for private cards would tie with another player with A♠K♥. Using
these card isomorphisms, we can map all suit permutations of a set of cards to a canonical

representative. Although this provides a lossless abstraction of the game (assuming best
responding adversaries), the reduction in game size is fairly modest.

To reduce the size of the game further, the canonical representatives are typically parti-

tioned using lossy abstraction techniques that relax the requirement for points to be iden-
tical. One early approach was to group points by partitioning the feature space into user
defined regions (Billings et al. 2003). While this approach attempts to enforce some notion
of spatial similarity between points in the feature space, it does not account for how the

points are distributed in the space: possibly resulting in wasted empty regions for gran-
ular abstractions. To avoid such empty regions, percentile buckets specified by regions
that cover an (approximately) equal quantity of points have been used (Shi and Littman

2000; Johanson, Zinkevich, and Bowling 2008; Zinkevich et al. 2008). Abstractions based
on percentile buckets have been sufficient for expert-human calibre agents (Johanson 2007,
Section 7.3) and are used regularly in computer poker research. However, one drawback to
percentile buckets is that they do not directly optimize for – and thus need not respect – the
spatial similarity between the points. To illustrate, consider a heavy-tailed distribution of
points that is concentrated around one value in the feature space. In this setting, percentile
bucketing may separate very similar points while grouping disparate points. Most modern
poker abstractions attempt to address both of these issues by using a clustering algorithm to
partition the cards directly according to some sense of spatial similarity (Gilpin, Sandholm,
and Sørensen 2007; Johanson et al. 2013).

In multidimensional feature spaces, it may be necessary or valuable to bucket hands con-
ditionally rather than from the entire (joint) feature space. This type of bucketing – called
nested bucketing – partitions only the hands consistent with the given information. To
illustrate, this could be used to partition hands in a two-dimensional feature space by split-
ting hands into M buckets based on one dimension, then splitting the hands within each of
the M buckets into N buckets based on the second dimension, for a total of M ×N buckets.

For example, one could bucket based on E[HS2] and E[HS] (Johanson 2007) or on features
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of both public information and hand strength (Waugh et al. 2009a). This approach is also
commonly used to create a perfect recall abstraction by conditioning on all previously
revealed information (i.e., the sequence of buckets from previous rounds). Although using
perfect recall abstractions provides some theoretical advantages, imperfect recall abstrac-
tions can “forget”, conserving resources needed to represent past information (Waugh et al.
2009a).

With memory efficient algorithms like CFR, card abstraction alone provides sufficient
reduction in size so that generating strategies for heads-up limit Texas hold’em (and even
three player limit Texas hold’em) is feasible on current consumer-level hardware. However,
in games like heads-up no-limit Texas hold’em where players have much larger action spaces,
abstraction of the players’ actions is typically necessary.

2.5.2 Betting Abstraction

Since the actions of both chance and the players contribute to the number of information
sets in a game, practitioners may need to alter any of the actions – by any player or chance
– to sufficiently simplify the game. The choice of exactly how to abstract the game will

depend on the nature of the game, and how much of a reduction in size is needed. In
games like heads-up limit Texas hold’em where the players’ actions only contribute slightly
to the size of the game relative to chance, betting abstraction has limited potential to reduce

the game size. However, no-limit poker variants may be dramatically larger, with players’
variable sized bets contributing substantially, if not primarily, to the size of the game. To
illustrate, heads-up limit Texas hold’em has 3.19×1014 information sets whereas the variant

of heads-up no-limit Texas hold’em used in the Annual Computer Poker Competition since
2010 has 6.38×10161 despite chance’s action space being the same in both games (Johanson
2013). Constructing a feasible abstraction of such games typically requires some kind of
betting abstraction.

In contrast to typical card abstraction techniques, which bucket information sets to-
gether, current betting abstraction techniques examine ways to simplify the game by re-
moving player actions entirely. Early heads-up limit Texas hold’em poker abstractions

reduced the maximum number of bets a player could make within a betting round from
four to three (Billings et al. 2003; Zinkevich, Bowling, and Burch 2007; Gilpin, Sandholm,
and Sørensen 2007). Betting in no-limit poker games differs in that bets are not of a fixed

size and the only limit on the number of bets that players can make is their available stack
of chips. To abstract larger no-limit betting spaces, both the number and size of players’
bets are typically constrained. Specifically, it is common to restrict bets to particular sizes

that are a fraction of the current pot. These fractions are often chosen by hand (Gilpin,
Sandholm, and Sørensen 2008; Schnizlein 2009), but techniques to automatically learn good
bet sizes have also been explored (Hawkin 2014). Despite restricting the size of bets there
may be a combinatorially large number of possible betting sequences – especially when small
fractions of the pot are allowed. As in early limit Texas hold-em abstractions, this is often
addressed by limiting the number of bets a player can make. However, in no-limit games,
abstractions may place restrictions on each available bet size.

Translation

For an agent to act in the real game using an abstract strategy, it requires some form of
mapping to translate between information sets in the real game and information sets in
its abstract game. With card abstractions, the many-to-one mapping of information sets
provides a natural translation. However, unlike card abstractions which coarsen the par-
tition of information sets, betting abstractions remove information sets entirely. As such,
a betting abstraction may not have an intrinsic representative for every sequence of bets
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possible in the real game, forcing practitioners to design a translation scheme. Typically,
a similarity measure between betting sequences is used to translate betting sequences into
the abstract game (Gilpin, Sandholm, and Sørensen 2008; Schnizlein 2009). Hard trans-
lation partitions the real game information sets by mapping a real game betting sequence
deterministically to the most similar abstract betting sequence. The deterministic nature
of hard translation makes it relatively easy to predict and exploit. To counter this, soft
translation maps a real game betting sequence to a weighted set of abstract game betting
sequences.

All of the aforementioned abstraction techniques examine the practical problem of how
to simplify a problem so that a solution can be computed. Despite the diversity of techniques
described, our focus was to introduce the techniques used in this work. Other approaches,
like decomposing the game into smaller pieces (Burch, Johanson, and Bowling 2014), could
be used to compute strategies but are not used in this work. Furthermore, the prior discus-
sion largely ignores the important question of how to choose the size of an agent’s abstraction
and how that choice impacts the agent’s performance. One of the contributions of this work
is an exploration of that question, so we defer further discussion of it until Chapter 4. The

remaining sections of this chapter introduce some of the tools that will be used in the rest
of the thesis.

2.6 Multi-armed Bandits

In a multi-armed bandit problem an agent, the “gambler”, is faced with K “one-armed
bandits” (i.e., slot machines) that have different unknown distributions of payouts. Ideally,
the gambler is aiming to maximize their total reward over a sequence of plays. Because

the bandits generate payoffs stochastically and (typically) only the chosen bandit’s payoff is
observed, the gambler faces a common trade-off between exploiting their model of the bandits
and building a better model by exploring. There is a wide literature on multi-armed bandit

problems that explores a variety of different assumptions about the bandits (for a survey see
Bubeck and Cesa-Bianchi 2012). We briefly introduce some well known algorithms for two
general bandit settings: stochastic and adversarial (non-stochastic) bandits. Multi-armed

bandit algorithms are typically evaluated based on their ability to minimize some notion of
regret: capturing how suboptimal the algorithm is relative to an alternative strategy. For
their respective bandit problems, the algorithms we discuss provide finite time guarantees (as

opposed to guarantees in the limit) on the expected regret the agent would suffer relative
to the best single action in expectation. That is, the expected utility of the algorithm’s
selected actions will perform nearly as well as the best single action in hindsight.

2.6.1 Stochastic Bandits

In a stochastic multi-armed bandit setting, the bandits’ reward distributions are assumed
to be independent and identically distributed (i.i.d.), that is, that the probability of a

given reward is identical on each time step and independent from the past. In multiagent
settings, where the observed rewards are dependent on the behaviour of other agents that
may be learning themselves, it is unlikely that this i.i.d. assumption holds. However, in
poker it is currently relatively common for computer agents to use fixed strategies: typically
approximations of abstract game Nash equilibria. When all players act according to fixed
strategies, the reward distribution is i.i.d. and stochastic bandit algorithms would apply.
We introduce upper confidence bound algorithms as they are examined both in prior poker
research and later in this work.
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Upper Confidence Bound (UCB)

Upper confidence bound (UCB) algorithms are based on the general heuristic of optimism
in the face of uncertainty. At a high level, this heuristic assumes that any uncertainty about
the utility of an action will work in the agent’s favour: yielding higher than expected reward.
UCB-based algorithms capture this optimism by effectively assuming that the bandits will
payout according to an upper confidence bound on their expected utility, as opposed to the
sample mean of the observed rewards. For example, on each time step UCB1 (Auer, Cesa-
Bianchi, and Fischer 2002) selects the bandit whose upper confidence bound – computed
based on the sample mean of the bandit’s observed rewards and the quantity of times the
bandit was selected – is greatest.

In multiagent settings, the reward distributions are unlikely to satisfy the i.i.d. assump-
tion made in the stochastic bandit setting since agents may adapt their behaviour over time.
This is especially true in zero-sum games like poker where the other players are, in fact,
adversaries that are directly incentivized to exploit us. This makes the stochastic bandit
model risky, since algorithms like UCB can suffer linear regret (i.e., UCB’s regret for its
decisions does not improve over time) in this adversarial setting. As such, we shift our focus

to the adversarial multi-armed bandit problem where the reward distributions on each time
step can be chosen by an adversary.

2.6.2 Adversarial (Non-Stochastic) Bandits

At the opposite extreme from stochastic bandits is the adversarial, or non-stochastic, multi-
armed bandit problem. In this problem, no i.i.d. assumption about the bandit’s sequence of

reward distributions is made. Instead, an adversary gets to choose the sequence of reward
distributions and the agent’s goal is to minimize regret for any possible adversary choice.
This adversarial model captures the task we face when playing against savvy adversaries,

like humans, that may well adapt to our agent’s behaviour.

Hedge

Hedge (Auer et al. 1995) is a well known algorithm for addressing the full information
variant of the adversarial multi-armed bandit problem (i.e., where rewards for all bandits

are observed). On each time step t of a K-armed bandit problem, Hedge selects an action i
to play, receives a vector of rewards for all of the actions, and updates the total rewards so far
Gi(t). The probability pi(t) of choosing each action is specified by a normalized exponential

(i.e., softmax) function of the total rewards (shown in Equation (2.1)). Although we are
not directly concerned with the full information problem in this work, Hedge serves as a
building block for the partial information adversarial bandit algorithms we introduce next.

pi(t) =
eηGi(t−1)∑K
j=1 e

ηGj(t−1)
(2.1)

Exp3

Exp3, the exponential-weight algorithm for exploration and exploitation (Auer et al. 1995;
Auer et al. 2002), selects actions according to a weighted mixture of a uniform random
distribution and Hedge’s normalized exponential function of the total rewards. Since we only

observe the reward for the chosen action in a partial information bandit problem, a vector
of rewards for all actions must be “simulated”. By simulating rewards using importance
sampling corrections to reweight the observed reward, Exp3 constructs unbiased estimators
of each action’s total reward. Many variants of Exp3, including Exp4, also rely on such
unbiased estimators when simulating rewards.
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Exp4

Auer and colleagues’ (1995; 2002) Exp4 algorithm is a slightly modified version of Exp3
designed for combining the advice of “expert” strategies. One can view Exp4 as selecting
experts each of whom recommends a strategy for choosing the underlying actions. Instead
of choosing actions in proportion to Hedge’s probability distribution, Exp4 acts according
to the average of the expert strategies weighted by Hedge’s distribution (plus some uniform
probability to mix across all actions). After selecting an action, Exp4 observes a reward
for the single action, and unbiased estimates of each expert’s total reward are updated by
simulating rewards through off-policy importance sampling corrections. Note that unlike
Exp3, each expert that recommended the selected action with non-zero probability will
receive feedback from the observed reward. While the aforementioned bandit algorithms
provide a regret bound relative to the best action in expectation, Exp4’s guarantees are
relative to the best expert in expectation.

Exp3G

Kocsis and Szepesvári’s (2005) generalized Exp3 algorithm (Exp3G) applies Exp3 to a set
of experts, similarly to Exp4 but without uniform mixing over the actions, while assuming

that an unspecified reward simulation procedure produces an unbiased estimate of the total
reward. By leaving the reward simulation procedure unspecified, Exp3G allows for different
approaches to producing an unbiased estimate and a characterization of the algorithm’s

regret in terms of the variance of the unbiased estimator.

Oblivious versus Adaptive Adversaries

It should be noted that the quality of guarantees provided by these algorithms depend on if
the adversary we consider is adaptive, choosing the current reward distribution based on

the agent’s past behaviour, or oblivious. In particular, these algorithms bound the regret
against any adversary with respect to the single action (or expert) with highest expected
total reward. Against adaptive adversaries, this notion of regret is somewhat strange since
the adversary may have played differently had we actually chosen a different action even

on the first iteration. Although these regret bounds hold for an adaptive adversary, even
a fairly benign adversary can make the bound relatively weak and uninformative (for an
example, see Auer et al. 1995, Section 5).

The approach we take in poker is most similar to Exp3G with unbiased estimators of the
expert strategies in our portfolio generated by off-policy importance sampling combined with
the “imaginary observation” variance reduction technique introduced in the next section.
We defer discussion of the potential drawbacks of this approach, both for poker and other
domains, to Chapter 3.

2.7 Variance Reduction for Strategy Evaluation

In statistics, the parameters of a population are exact answers regarding the properties of the
entire population of objects. In practice, such parameters are typically infeasible to compute
as they require practitioners to examine each member of a potentially large population.
Instead, an estimator – a statistic of a sample of data drawn from the population – can be
used to produce estimates of an unknown population parameter. In general, these estimates
and their error relative to the population parameter will depend on the given sample of

data. As such, it is useful to characterize the quality of an estimator in terms of an error
measure (e.g., mean squared error). By reducing an estimator’s variance and improving
the quality of such estimators, variance reduction techniques enable estimators to be more
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sample efficient: generally requiring fewer samples of the population to produce a similar
quality estimate.

When evaluating an agent’s performance for a chosen domain, we are concerned with
the space of possible outcomes of the interactions between the environment (i.e., chance)
and all of the agents acting within it. In general, the actions of each of the actors will
affect the utility and likelihood of an outcome. Due to the potentially stochastic nature
of these actions, an agent is commonly evaluated according to their expected utility over
these outcomes. Like other statistical parameters, this can be difficult to compute exactly
as it requires us to consider every possible outcome. Moreover, it requires knowledge of
the actions’ probabilities including the strategies of other agents. Often such information is
not publicly available and an estimator for the expected value must be computed through
samples. In human-scale problems, accurately estimating an agent’s expected utility can
be a difficult problem in its own right since it may require a prohibitively large number of
samples. Furthermore, in many settings our ability to sample is limited: such as problems
involving human agents, or in algorithms like the multi-armed bandit problems where we
need to evaluate the agent online. We briefly introduce some variance reduction techniques

used in this work to help alleviate this sampling burden. Although not used in this work,
Davidson (2014) introduces a “baseline” method for efficient agent evaluation along with a
more detailed survey of the topic.

2.7.1 Duplicate

Duplicate can be viewed as a specific instance of an antithetic variates technique. This
approach reduces variance by computing an estimator using samples of outcomes that are

negatively correlated with each other. It has regularly been used in several domains including
poker, bridge, and scrabble. In Texas hold’em poker, a set of duplicate sample hands can be
produced by first having chance deal a set of private cards to each of the n players, and the

five public cards. Then each of the set of n! duplicate hands corresponds to a permutation
of the player positions. For example, in a two-player game, consider the hand where chance
dealt the first player A♥A♦, the second player 2♣7♠, and dealt A♣3♠4♠5♠6♠ for public

cards. Then in the duplicate hand player one would be dealt 2♣7♠ and player two would
receive A♥A♦, while keeping the public cards the same. By forcing the players to play each
position of a deal of cards, variance is reduced since chance’s ability to deal “lucky” cards

to a single player is mitigated.
Some notable limitations of duplicate are that it must be employed by the dealer (since

the players cannot manipulate the cards), and players must forget the hands they observed

prior to playing another side of the cards. Although these limitations are not a hindrance
when performing an empirical evaluation of computer agents, duplicate is not viable for
other settings of interest like estimating the expected utility for our portfolio of strategies
online during a match or in head-to-head human play. We introduce variance reduction
techniques applicable in these online settings next.

2.7.2 Importance Sampling

One common challenge when constructing an estimator is that samples may be drawn ac-
cording to a distribution g(X), called the sampling distribution (or proposal distri-
bution), that is different from the underlying population’s distribution f(X). Importance

sampling corrects for this by reweighting the samples by a factor of f(X)/g(X), yielding
an unbiased estimator of the population parameter. Furthermore, by choosing the sampling
distribution g carefully, importance sampling can also be used for variance reduction. To
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minimize variance, we should sample according to

g(X) =
|X|f(X)∫
|x|f(x)dx

.

However it is impractical to sample from this distribution since it depends on the unknown
expected value we are interested in. In practice, variance can still be reduced by biasing the
sampling distribution towards outcomes which contribute more to the estimator’s expected
value.

In the context of evaluating agents, importance sampling allows us to evaluate off-
policy: acting and observing outcomes based on one policy while evaluating another. For
example, adversarial multi-armed bandit algorithms, like the Exp3 variants described in Sec-
tion 2.6.2, reweight the samples drawn according to the normalized exponential distribution
(plus some exploration) over the arms while computing unbiased estimates of each arm’s
utility. Using off-policy importance sampling has a caveat: any outcome in the support of
the target distribution f must also be in the support of the sampling distribution g, that is
f(x) > 0 ⇒ g(x) > 0. If not, the estimator can be biased due to this off-policy strategy
incompatibility. In Exp3 and its variants, this condition is typically satisfied by adding

non-zero exploration across the different actions or experts.

2.7.3 Imaginary Observations

In addition to showing how basic importance sampling can be used for off-policy strategy
evaluation in extensive-form games, Bowling and colleagues (2008) also illustrate how to

reduce variance in such games through synthetic “imaginary observations”. Specifically,
for an outcome (i.e., terminal history) z, we can imagine all of the alternative outcomes
that are consistent with the actions of other players that led to z. For example, an agent

could imagine an alternate outcome where it acted to end the game or had different private
information. In poker, this corresponds to an agent folding or making a game ending call
earlier in the game, or holding different private cards.

In the full information case, where the private information of other players is known

after reaching z, these imaginary observations can be used without biasing the estimator4.
However, with partial information this guarantee does not hold in general. For instance,
when using such an estimator online during a poker match, we do not observe an opponent’s

cards if they fold. In this case, we cannot imagine ourselves holding arbitrary private cards
since the observed outcome depended on the hidden information. There is a bias-variance
trade-off in using such biased estimators, but in poker Bowling and colleagues found the

bias from such card removal effects was small while yielding substantial variance reduction.
Note that the potential for off-policy strategy incompatibility also extends to estimators

using imaginary observations. Specifically, if we want an unbiased estimator for the target
strategy σi when behaving according to sampling strategy σ̂i, then any terminal node that
can be reached under σi must have a non-zero probability of being included by the estimator
under σ̂i. Under the basic importance sampling scheme, this means that σ̂i must play

to reach any terminal node that σi would5 . Formally, for all terminal histories z ∈ Z,
πσi (z) > 0 ⇒ πσ̂i (z) > 0. Under imaginary observations, this inclusion constraint is not
as tight since we may imagine a terminal history while actually observing other outcomes.

For instance, with estimators that imagine terminal histories where i has different private
information, any sequence of actions that can be realized by σi with non-zero probability
(for some private information) must be taken by σ̂i with non-zero probability (with some
other, not necessarily the same, private information).

4The estimator is unbiased provided the strategies of other agents are fixed.
5Technically, σ̂i need not reach terminal histories that contribute a value of zero to player i’s expected

utility under σ. For example, terminal histories with a utility of 0 for player i, or terminal histories that
other players will not take us to.
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2.8 Submodular Optimization

Submodular optimization problems examine combinatorial optimizations where the set func-
tion being optimized exhibits a diminishing returns property. Consider a set function
f : 2V → R that assigns a value to each subset S ⊆ V of the (finite) ground set V .
For S ⊆ V and e ∈ V , let ∆f (e|S) ≡ f(S ∪ {e})− f(S) be the marginal gain or discrete
derivative of f . Then f is submodular if for every A ⊆ B ⊆ V and e ∈ V \B,

∆f (e|A) ≥ ∆f (e|B). (2.2)

Although there are other equivalent definitions for submodularity, we focus on this definition
for simplicity and because it clearly formalizes the diminishing returns.

Submodular functions occur naturally for many optimization problems. There are
also many connections between submodular functions and both convex and concave func-
tions (Lovász 1983). This makes submodularity an interesting and useful property to inves-
tigate for a wide range of optimization problems. For instance, similar to convex functions,
minimization of unconstrained submodular functions can be done efficiently in polynomial
time. However, general unconstrained maximization of submodular functions is NP-hard.
In this work, we limit our attention to maximizing submodular functions that are mono-

tone (i.e., for A ⊆ B ⊆ V, f(A) ≤ f(B)) and subject to a constraint k on the cardinality of
the solution. That is, we seek a solution to

max
S⊆V
|S|=k

f(S). (2.3)

For an unstructured f , this optimization could require searching for the proverbial “nee-
dle in a haystack”. However, when f is nonnegative monotone submodular, Nemhauser and

colleagues (1978) show that good approximate solutions can be efficiently computed using
a simple greedy heuristic. Specifically, they show that the greedy heuristic in Algorithm 1
will obtain (1− 1/e) of the optimal solution’s value in the worst case.

Algorithm 1 Greedy heuristic for submodular set functions

Require: Ground set V , a submodular set function f : 2V → R, cardinality constraint k
Initialization: S ← ∅
for i← 1 to k do
e∗ ← argmaxe∈V \S ∆f (e|S)

if ∆f (e∗|S) ≤ 0 then

return S
else
S ← S ∪ {e∗}

end if
end for
return S

Maximum coverage and facility location problems are quintessential examples of such
submodular optimizations. Before introducing those problems, it should be noted that there
is considerable research on other submodular optimization problems. For readers seeking
further depth on submodular maximization, Krause and Golovin (2014) provide a useful
survey of the area.

2.8.1 Maximum Coverage Problems

In the basic maximum coverage problem, we are given a set of elements E, a collection of
sets R = {r1, . . . , rn} where rj ⊆ E, and a positive integer k. The objective of the problem
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is to find R′ ⊆ R such that it “covers” as many elements of E as possible, i.e. maximizes
|⋃r∈R′ r|, subject to the constraint that |R′| ≤ k. A simple generalization of this basic
maximum coverage problem is the weighted maximum coverage problem, where elements
contribute a utility of u(e) to the objective when covered by any set r ∈ R′. Many facility
location problems examine further generalizations of this objective. In these problems,
instead of R being subsets of E that cover elements in a binary fashion, R can be viewed as
a set of responses they could choose from (e.g., the locations where a company holds bank
accounts) and the utility obtained for a given element u(e, r) also varies with the choice of
response. In this framework, we seek to optimize the following objective:

argmax
R′⊆R
|R′|=k

∑
e∈E

max
r∈R′

u(e, r). (2.4)

Unfortunately, all of these maximum coverage problems are known to be computationally
hard to solve exactly. For instance, Cornuejols, Fisher, and Nemhauser (1977) highlight that
when u is a nonnegative utility function, the optimization in Equation (2.4) is NP-complete
through a reduction from the vertex cover problem. However, Nemhauser, Wolsey, and

Fisher (1978) show that when u is constrained to nonnegative values, this objective function
is monotone submodular and therefore their greedy heuristic in Algorithm 1 provides an
efficient (1− 1/e)-approximation to the optimal solution.

In Chapter 3, we introduce the implicit modelling framework and explain how one can use

the techniques described in this chapter to build dynamic agents capable of modelling other
agents despite complex domains. Furthermore, we contrast this implicit modelling approach
with the typical explicit modelling approach, highlighting the benefits and drawbacks of each

approach.
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Chapter 3

Agent Modelling

In the most general view, agent modelling investigates techniques for learning and leveraging
information about the behaviour of agents. The exact nature of information one seeks to
learn for an agent model can vary substantially: ranging from low level details, like their
probability of taking certain actions (i.e., their strategy), to higher level knowledge, such as

an agent’s beliefs or goals. Practitioners may desire a model specifically for prediction or
mimicry of an agent’s behaviour. In this setting, optimizing the model’s accuracy in terms
of an error measure (e.g., mean squared error on prediction accuracy) would be the primary

objective. Often though, practitioners use agent modelling with the goal of finding behaviour
for another agent that maximizes its utility. This is the case in multiagent domains since an
agent’s performance – and therefore their ideal behaviour – is contingent on the behaviour of

other agents. Hence, a key capability for agents in such domains is not only to learn about
other agents, but ultimately how that information can be used to respond in a way that
maximizes utility. In this chapter, we present a novel characterization of agent modelling

approaches that identifies two distinct approaches, discusses some of their strengths and
weaknesses, and highlights examples where these approaches have been previously employed.

3.1 Explicit Modelling

Traditional agent modelling approaches observe an agent’s actions and construct a generative
model of their behaviour. This may involve directly estimating probabilities of actions
(e.g., estimating the parameters of an agent’s strategy), or estimating some parameters in a
more sophisticated model that indirectly describes how the agent’s behaviour is generated.
The high-level workflow for this approach, which we call explicit modelling, is shown in
Figure 3.1.

Although explicit modelling can provide a direct and rich representation of other agents’
behaviour, there are significant practical challenges with using this approach in complex
human-scale domains. First, in complex systems, agent behaviour is likely to be complex as
well, and involve a very high-dimensional parameterization. Learning such an explicit model
either requires significant prior knowledge about important parameters, or a prohibitively

Sample Data/ 
Observations

Agent
Strategy

Generative
Model

Response
Strategy

Figure 3.1: Explicit modelling workflow
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large number of observations of their behaviour. In settings where we care about the utility
of our agent’s response to the model, we face a second challenge: how should we use the
estimated model to adapt our agent’s behaviour? We examine these challenges and review
how prior research using explicit modelling techniques have attempted to address these
issues.

3.1.1 Learning an Explicit Model

Sample Data/ 
Observations

Agent
Strategy

Generative
Model

Response
Strategy

Learning a model of an agent’s behaviour is itself a challenging problem. We discuss
three core questions that practitioners face in learning an explicit model: How should the
generative model be represented so it can be estimated efficiently? What should be assumed
about an agent’s behaviour when it has not been observed? If the domain has imperfect
information, how should hidden information be handled?

Representation Complexity

Selecting a representation for the generative model amounts to choosing the set of parame-
ters that will be estimated from observations and how the model space maps onto the space
of agent behaviours. In order to discriminate between arbitrary stationary1 agents in an
extensive-form game, practitioners will require a generative model capable of encoding any
strategy. Such expressive models are relatively easy to use in domains where the parame-
terization of a strategy (i.e., the number of information set action pairs) is small, such as
Kuhn poker (Hoehn et al. 2005; Bard and Bowling 2007) and Leduc hold’em (Southey et al.
2005). However, this approach can become problematic for complex domains like Texas
hold’em due to the costs for such models in terms of memory and sample complexity.

To mitigate these costs, practitioners usually seek a parameterization for the generative
model that is sufficiently compact for it to be learned and stored efficiently. Such low-
dimensional parameterizations are typically based on prior knowledge of important parame-
ters, potentially from domain experts (Southey et al. 2005), or generalization techniques. In
extensive-form games, generalization allows for an observation to provide information about
the agent’s behaviour in information sets that are not actually observed. One intuitive way
to provide generalization is to map observations from the real game into an abstract game
produced with techniques like those introduced in Section 2.5. For example, Johanson and
colleagues (2008; 2009) built robust responses to frequentist models that used a card ab-
straction of heads-up limit Texas hold’em. Similarly, Ganzfried and Sandholm (2011) used
a card abstraction that discarded all private card information, but could otherwise distin-
guish every public state (consisting of public cards and betting). This approach provides
generalization across all of the real game information sets contained within an abstract game
information set. Of course, generalization can also be done in ways that do not obey the
constraints of an abstract game. Vexbot (Billings et al. 2004) and BRPlayer (Schauenberg
2006) generalize across information sets using multiple schemes of varying granularity, po-
tentially sharing information across information sets that disagree on the set of valid actions.
Rubin and Watson (2012b) model an agent’s “type”, using only the frequency of actions in
each round regardless of additional context, and indirectly map the model to an existing
strategy with the most similar type.

1One might also wish to model dynamic agents (Bard 2008), requiring additional parameters that model
how an agent’s behaviour changes over time, but for simplicity we limit our exposition to choosing repre-
sentations for stationary agents.
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Just as abstract strategies are only able to represent a subset of the real-game strategy
space, representations that discard strategy parameters sacrifice the model’s discriminatory
power: forcing distinct agent behaviours to be mapped to identical beliefs about the agent’s
strategy. In complex human-scale domains like Texas hold’em where agent behaviour may
be quite sophisticated, practitioners face a trade-off between a model’s discriminatory power
and its sample complexity. While increasingly compact models may be easier to estimate,
they also sacrifice the capacity to accurately represent the behaviour of agents we care
to model. Conversely, richer models may be able to represent complex agent behaviour,
but accurately estimating the model may require more observations than what is normally
afforded by online interactions (especially with humans).

Unobserved Behaviour

When building a model from observations, practitioners need to handle the eventuality of
having no (or limited) observations of an agent’s behaviour informing the model’s param-
eter estimates. Typically this is addressed by assuming the agent acts in some predefined
way. This could consist of imputing predefined behaviour in unobserved situations (Billings
et al. 2004; Schauenberg 2006; Johanson, Zinkevich, and Bowling 2008), or assuming initial
parameters for the entire model. In Bayesian models, assuming initial parameters is nec-

essary and encoded through the prior distribution. Ideally, informed priors that accurately
reflect the agents being modelled would be used to improve the model’s efficacy. In poker,
practitioners have attempted to elicit informed priors from experts (Southey et al. 2005)

and previous data (Ganzfried and Sandholm 2011). However, poorly chosen priors, like any
inaccurate assumption about the agents, can have deleterious effects. For example, assum-
ing that an agent will never act in a particular fashion may prevent the learning algorithm

from discovering valuable information about the agent. As good informed priors can be
hard to obtain, uninformed priors are also regularly used (Hoehn et al. 2005; Southey et al.
2005; Bard and Bowling 2007).

Practitioners have tried to mitigate their reliance on such assumptions by using an
initial exploration phase to construct their model before exploiting its information (Hoehn
et al. 2005; Ganzfried and Sandholm 2011; Rubin and Watson 2012b). However, using
an exploration phase also raises questions of how long to perform exploration and how to

act during the exploration. While Hoehn (2006) explored both of these questions in Kuhn
poker, they have received little attention in human-scale domains like Texas hold’em and
exploration is often done in a relatively ad hoc fashion. Note that even with an arbitrarily

long initial exploration phase, a poor choice of exploration strategy can leave parts of the
agent’s behaviour unexplored, forcing the model to rely on some initial assumptions. For
instance, Ganzfried and Sandholm (2011) found that using an (abstract) equilibrium during
their initial exploration could lead to poor performance because it would not act to fully
explore the other agent’s behaviour.

Imperfect Information

When selecting a representation for a generative model in imperfect information domains,
practitioners must be careful when addressing any hidden information, such as poker’s
hidden private cards. Although this problem can be avoided when full information happens
to be available – as in the case of hindsight logs (Johanson, Zinkevich, and Bowling 2008;
Johanson and Bowling 2009; Rubin and Watson 2012a) – agents often need to adapt without
such information.

Another way to avoid hidden information is to choose a representation for the model

that ignores any information that may be hidden (e.g., private cards in poker) and imputes
a strategy that is consistent in some way with the modelled public information. For in-
stance, Rubin and Watson (2012b) model only the frequency of an agent’s public actions
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and map the model to an existing strategy with similar frequencies (which they construct
offline using full information logs). Ganzfried and Sandholm (2011) frame the imputation
as an optimization problem: solving for a strategy that is both consistent with the model’s
observed action probabilities and closest to a given (Nash equilibrium) strategy according to
some notions of spatial distance in the strategy space. While this approach removes the need
for full information, avoiding private information entirely sacrifices the model’s capacity to
discriminate between strategies that act distinctly based on their private information.

Ideally, an agent should capitalize on whatever information is available. One could try
to gather more information by also modelling the private information in situations where it
becomes public (e.g., when private cards are revealed at a showdown in poker), but this can
lead to other problems. For example, the observation models used in Vexbot and BRPlayer
attempt to do this, however Schauenberg (2006, Chapter 4) notes that these models could
represent behaviour that would not be realizable by any legal strategy. Untempered by
exploration or a prior, an agent’s response to such an illegal model might keep it from ever
remedying the impossible beliefs.

One model that correctly accounts for the hidden information in hold’em poker games is
the Bayesian model introduced by Southey and colleagues (2005). Unfortunately, the cost
of exactly computing the posterior distribution over the possible strategies the agent could
be using is expensive, except in small games with relatively few observations. For human-
scale domains like Texas hold’em, Southey and colleagues instead sample strategies from
the prior and compute a posterior over the samples. Although this approach demonstrated
fast learning (Southey, Hoehn, and Holte 2009, Section 9.3), it depends heavily on the prior
distribution’s quality and effective dimensionality (which determines the number of samples
needed to cover the prior distribution).

3.1.2 Using an Explicit Model
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Learning an explicit model is only part of the agent modelling task in settings where
improving an agent’s utility is the practitioner’s primary objective. In these settings, there
is also the question of how an agent should act to exploit the agent model. We discuss
several existing approaches to answering this question: imitation, best responses, robust
responses, and model matching.

Imitation

One approach, which has the benefit of avoiding the need to compute a separate response
to the model, is to assume that the model itself produces desirable behaviour and mimic the
agent. This approach of learning from demonstration has been applied in a variety of set-
tings (Argall et al. 2009). In poker, Rubin and Watson (2012a) used case based reasoning to
construct models of strong agents from past Annual Computer Poker Competitions and then
played according to these expert imitators. Another ACPC competitor, Marv Anderson2,
took a similar approach by imitating the play of previous ACPC winners using an artificial
neural net (ACPC 2015). Though this imitation approach has proven useful, it should be
noted that in poker these imitation agents were constructed offline using full information
logs from prior ACPC events. This mitigates two challenges that would otherwise be faced
by practitioners performing explicit agent modelling online: obtaining a large number of
observations, and handling the unknown private information of other agents.

2Marv entered under the names of “Calamari” in 2011, “Marv” in 2013, and “Escabeche” in 2014
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The fundamental drawback of imitation is the assumption that the other agent’s be-
haviour is desirable to emulate. To highlight the distinction between being able to model
an agent’s strategy and being able respond effectively to it, consider the agent that always
plays rock in rock-paper-scissors. Although explicitly modelling this agent would be simple
to do, imitating the always-play-rock strategy will fail to produce ideal agent behaviour.
To avoid this fundamental limitation of imitation, we consider other techniques that use an
explicit model to produce a separate response to the observed behaviour.

Best Responses

In general, the ideal response would be one which maximizes the sum of all future expected
utility given our beliefs about the other agents. However, this computation is typically
intractable. A natural approach that is practical to compute is to construct a best response
to the estimated model for the next iteration of the game: greedily maximizing the agent’s
expected utility given its current beliefs. Online agent modelling techniques that compute a
best response to an explicit model have been explored several times in prior poker research.
For example, Bayesian models that compute and respond to the posterior over opponent
strategies have been applied in several poker games including Kuhn poker (Hoehn et al. 2005;
Bard and Bowling 2007; Southey, Hoehn, and Holte 2009), Leduc hold’em (Southey et al.

2005), and Texas hold’em (Southey et al. 2005; Ganzfried and Sandholm 2011). Similarly,
Vexbot (Billings et al. 2004) and BRPlayer (Schauenberg 2006), early adaptive agents for
Texas hold’em, used the miximax game-tree search algorithm for computing a best response

to a frequentist model.
Despite the fact that these best response based explicit modelling techniques enjoyed

some success, there are several things to consider when reviewing their prior results. First,

results for Vexbot and BRPlayer generally used longer matches (at least 40000 games) to
learn and adapt to their opponents than typical humans could be expected to play. Second,
many of the positive results were obtained against opponents that are bad (e.g., always

call or always raise), weak by modern standards (e.g., PsOpti and Poki (Davidson 2002)),
or drawn from the learning agent’s own prior (Southey et al. 2005). Finally, most of the
(statistically significant) analysis was done empirically with regards to opponents that were
static or oblivious. Since these opponents do not directly attempt to counter-exploit the

learning agent, the results provide little support for the robustness of this approach when
faced with more sophisticated adaptive adversaries.

Even assuming the aforementioned challenges of learning an explicit model can be

resolved, unless we are completely certain of the model’s accuracy, Johanson and col-
leagues’ (2008) results suggest that a robust response would be preferable to a best response.
Figure 3.2 illustrates an example of their results and how, relative to robust responses, best
responses can sacrifice considerable worst-case performance for very marginal improvements
in utility against the particular agent being modelled. One might argue that such theoretical
worse-case performance is unlikely to be realized since, in practice, other agents may not act
in such a worst-case manner. However, even when other agents are not directly incentivized
to achieve worst-case behaviour, best responses optimistically assume an accurate model
of other agents’ behaviour when making potentially marginal decisions. Contrary to com-
mon beliefs, this makes best responses a potentially risky approach even in non-adversarial

domains such as the ad hoc teamwork problem explored by Barrett and Stone (2015). Fur-
thermore, note that the simplest approach to compute a best response to a given model is
to deterministically choose the utility maximizing action at each information set. By acting
deterministically, these pure strategies remove one source of stochasticity that other agents
would need to contend with in order to adapt to our response. In adversarial settings, this
predictability makes the theoretical worst-case performance of best responses a much more

credible threat since savvy adversaries can more easily learn and counter-exploit the best
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Figure 3.2: Strategies with Pareto optimal trade-off between model exploitation and worst-
case performance (in an abstraction of heads-up limit Texas hold’em). Strategies were
produced using Johanson and colleagues’ (2008) restricted Nash response algorithm.

responder. In addition to the potential for poor worst-case performance, Johanson and col-
leagues’ results also suggest that best responses to frequentist models generalize badly in
practice compared to their robust restricted Nash responses: potentially performing poorly
even against highly related opponents.

Unfortunately, having total certainty in the model’s accuracy is generally impossible to
guarantee. Provided that an explicit model’s chosen parameterization is capable of rep-
resenting the agent’s behaviour, the model may be difficult to estimate for many possible
reasons including: stochastic observations, imperfect information, dynamic behaviour from
other agents, or having a limited time to observe the other agents. Even if the agent was
given the current strategies of the other agents, dynamic agents (e.g., humans) may adapt
their behaviour over time and invalidate our existing models. Practitioners often face at
least one of these challenges; in poker games we face all of them.

Robust Responses

Ultimately, if we seek to create ideal computer agents that are able to exceed human capa-
bilities at learning and adapting to other agents in human-scale online learning problems,
then those agents will necessarily need to respond despite having an inaccurate model. This
suggests that it will be critical for such an agent to employ some alternative to best responses
that is robust to model error.

Prior work introduced other approaches for responding to a model that do not rely on
a strict best response. In early poker research, the predictability of deterministic miximax
strategies was sufficiently concerning to motivate using the miximix game-tree search algo-
rithm to produce stochastic strategies with ad hoc (Davidson 2002) or softmax (Schauenberg
2006) exploration. Rubin and Watson (2012b) respond to a model by stochastically choos-
ing a response from the N highest utility adaptations of an existing strategy, as specified by
a parameterized adaptation scheme. One can view this approach as mixing between the N
best responses within a strategy space constrained by the initial strategy and chosen adap-
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tation scheme. While these approaches may avoid true best responses – potentially making
the agent’s response harder to model and exploit – this does not necessarily improve the
agent’s worst-case performance and it is unclear how vulnerable these approaches are to
adaptive adversaries.

In contrast, robust response techniques directly address an agent’s trade-off between
exploiting a model and worst-case performance. As Figure 3.2 illustrates, best responses and
Nash equilibria (in two-player games) are at opposite extremes of this trade-off. Ganzfried
and Sandholm (2012) provide another alternative in games with gift strategies. They present
three algorithms for adaptive agents that can safely exploit an agent model: guaranteeing the
agent’s total expected utility over a match is at least as great as the worst-case total expected
utility of an optimal safety strategy (i.e., Nash equilibrium). In essence, their approach relies
on accruing gifts over the match to offset the potential worst-case performance of a response
to the agent model. Two of their algorithms achieve this despite using arbitrarily exploitable
best responses to an agent model. Their third “risk what you’ve won in expectation”
(RWYWE) algorithm is based on ε-safe responses and is effectively subsumed by McCracken
and Bowling’s (2004) more general SPS algorithm.

This approach seems appealing for human-scale domains not only due to the safety guar-
antee, but also because it can be achieved without needing computationally expensive ε-safe
responses. However, several observations about this approach suggest it is still an unsatis-

factory solution for agent modelling. First, Ganzfried and Sandholm’s empirical results in
Kuhn poker suggest that RWYWE fares better than their best response based algorithms.
Although the authors suggest several possible explanations for this result, one overlooked
explanation is the brittle nature of best responses. Even in the best case where their agent

model is accurate, relative to an ε-safe response, best responses may require their algorithms
to accrue considerably more gifts in exchange for marginal improvements in exploitation of
the agent model. However, in the likely case that the agent model is inaccurate, the gifts

may simply be squandered for no benefit. Furthermore, their experiments unconventionally
assume that players’ private information is revealed at the end of each game. Removing this
assumption may widen the gap between techniques using ε-safe responses and best responses

since this would increase model uncertainty.
More fundamentally, requiring such a strong safety guarantee potentially restricts ex-

ploitation. For example, Ganzfried and Sandholm note that safe exploitation is not possible

in rock-paper-scissors, leaving the game’s Nash equilibrium as the only strategy that sat-
isfies this safety guarantee. However, rock-paper-scissors is also a common example where
exploitation is vital and Nash equilibrium strategies tend to fare poorly (McCracken and

Bowling 2004). Exploitation may also be further restricted when handling imperfect infor-
mation as Ganzfried and Sandholm state that this would require additional pessimism in
order to provide such a safety guarantee.

Alternatively, less restrictive robust responses mitigate the potentially punitive pes-
simism required to provide such strong safety guarantees while also avoiding the brittle
nature of best responses. McCracken and Bowling’s (2004) SPS algorithm is one example
of such an approach. SPS provides a more relaxed notion of safety that only bounds the
total expected utility it can lose relative to the safety strategy. As their empirical results in
rock-paper-scissors demonstrate, this additional flexibility allows SPS to improve the per-
formance of agents despite a lack of gift strategies. Similarly, as Figure 3.2 demonstrates,
ε-safe strategies can dramatically improve exploitation even for relatively small values of ε.

While computing ε-safe responses using linear programming is feasible in small domains,
linear programming approaches are typically impractical for the human-scale domains we

are interested in, even when computed offline. In these large domains, Johanson and col-
leagues’ (2008) restricted Nash response technique can be used to compute ε-safe responses
to a given strategy, or Johanson and Bowling’s (2009) data biased response technique can
be used to compute robust responses to a frequentist model constructed from observations.
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Unfortunately, both RNRs and DBRs are currently computationally infeasible to use online
in real time for these domains. Therefore, if robust responses are to be used in human-scale
domains, they currently need to be computed offline, prior to interaction and before an
explicit model can be estimated for the agents at hand.

Model Matching

Although practitioners using an explicit model often generate a response to their model
online, explicit models do not preclude using offline computation. One could precompute
responses to a set of agent strategies offline, and act online according to the responses whose
strategies “match” the behaviour being observed. Since this approach generates a portfolio
of responses offline, one can view it as a hybrid between the more conventional explicit
modelling approach of computing a response tailored specifically to the agents at hand and
the implicit modelling approach, which we introduce in the next section.

While model matching has the benefit of enabling practitioners to use more computa-
tionally intensive techniques to produce their responses, it does not resolve the challenge of
learning an explicit model. Furthermore, it also introduces two challenges similar to those
faced when using implicit models. First, how should practitioners design their portfolio of
responses to maximize their agent’s performance? Although we examine several ways to

produce a portfolio in our subsequent exposition of implicit models, we briefly introduce
some approaches taken by existing model matching work. One common approach to this
problem is to build responses to an explicit model based on prior knowledge, such as obser-

vations of agents interacting. This could use any of the approaches discussed earlier in this
section. For instance, Barrett and Stone’s (2015) ad hoc teamwork research in the RoboCup
2D soccer simulation league uses fitted Q-iteration on observations to approximate a best

response for their Markov decision process model. In Bayesian frameworks the prior dis-
tribution could be used as a source of knowledge, and the portfolio could be generated by
responding to models sampled from it, as in the Thompson’s response technique used by

Southey and colleagues (2005).
Second, how does the agent’s behaviour adapt given an estimate of the generative model?

In particular, it is unclear how practitioners should identify which responses in their port-
folio are based on strategies that correspond to the behaviour being observed. A natural

way to identify corresponding models is to compute the posterior distribution over the mod-
els (Southey et al. 2005). Unfortunately, using a model’s probability of reproducing some
observed behaviour to measure correspondence can be problematic. For example, if a given

agent model would never produce the observed behaviour, the model will be assigned a prob-
ability of zero despite potentially being accurate otherwise. While technically correct, this
is undesirable. Barrett and Stone (2015) avoid this problem by using a multi-armed bandit
technique to produce a distribution over the agent models from feedbacks that depend on
the probability of each arm’s model reproducing an observation. Finally, spatial distances
like Manhattan distance (Rubin and Watson 2012b), have also been used as measures of
similarity. Implicit modelling is strongly related to model matching and can be viewed as
a utilitarian matching scheme that identifies desirable responses without using a model of
agent behaviour to evaluate similarity.

3.2 Implicit Modelling

In this thesis we propose implicit modelling of agents as a practical approach to adapting
agent behaviour for complex human-scale domains. Rather than using observations to esti-

mate a generative model of the other agents’ behaviour, implicit modelling summarizes
their behaviour through the (expected) utilities of a portfolio of expert strategies. This is
a subtle yet key distinction between explicit and implicit models. When agent modelling
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Figure 3.3: Implicit modelling workflow

practitioners take an explicit modelling approach to the problem, they use an intermediary
step of estimating the other agents’ behaviour in order to produce a response. In the implicit
modelling approach, practitioners directly evaluate the quality of the portfolio’s available

responses. The portfolio’s utility estimates can then be used to inform an agent on how
they should combine the expert strategies to respond to the agents at hand. This process
is illustrated in Figure 3.3. In the same sense as Auer and colleagues’ (1995) “experts”, the

portfolio’s strategies are unrestricted and may be stationary or dynamic, possibly changing
based on prior observations. This makes the implicit modelling framework very inclusive,
allowing arbitrary combinations of stationary strategies generated offline prior to interaction

and dynamic strategies that change their behaviour online (e.g., explicit agent models).
By avoiding the production of a generative model, implicit modelling confers several

advantages over explicit modelling. First, the implicit model’s representation greatly sim-

plifies many of the challenges inherent in learning and using an explicit model. In particular,
implicit models can avoid the typical “curse of dimensionality” faced in explicit modelling.
For explicit models, the number of parameters generally grows with the complexity of the
domain (e.g., the number of information sets). In contrast, the parameterization of an im-

plicit model is unchanged and remains the utilities for the portfolio of responses, regardless
of the complexity of the domain or agent behaviour3. Implicit models also do not require
practitioners to impute behaviour for the other agents when their behaviour is unobserved.

In imperfect information domains, implicit models also avoid challenges due to hidden infor-
mation since only the utility of an outcome needs to be observed. Finally, implicit models
provide practitioners with a natural representation for using strategies that have been gen-
erated offline without the constraints imposed by real-time interaction. This is vital in
complex human-scale domains where the computational cost of generating strategies, and
particularly robust responses, can vastly exceed the time available to act. By affording for

offline strategy generation, implicit modelling can be used in human-scale domains with rel-
atively limited computing resources during online interaction. Of course, using an implicit
modelling approach comes with its own challenges, namely, how to build an effective port-
folio and how to use the portfolio online. We examine these challenges next, first answering
how to dynamically adapt our strategy online using a portfolio of responses as this choice
impacts the portfolio’s construction.

3.2.1 Using a Portfolio

If an oracle provided the expected utility for each of the portfolio’s responses, we would
simply act according to the response with highest expected utility to maximize our utility in

3Formally, in extensive-form games, one can view the implicit model as a set of linear projections of the
sequence-form representation of the other agents’ joint strategy. And so one can view the implicit model as
a particular low-dimensional representation of the agent’s strategy.
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the long term. However, this information is typically unknown at the start of interaction and
must be estimated online from observations. In domains where observations are stochastic,
any outcomes we observe only provide noisy information about the expected utility of any
particular expert. In such cases, there is a trade-off between exploiting the current utility
estimates and taking suboptimal exploratory actions to refine the model’s estimates. Thus,
given a portfolio of expert strategies, how do we estimate the utilities of the portfolio from
online interaction, and how does the agent’s behaviour adapt given these estimates?

Strategy Adaptation

Sample Data/ 
Observations

Response
Strategy

Portfolio
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Estimates

Portfolio

...

Expert
Strategy

Expert
Strategy

This general question has been investigated in a wide range of settings in reinforcement
learning and multi-armed bandit literature. By using this utilitarian approach, we can
leverage a variety of techniques from existing multi-armed bandit literature for this problem.
For example, practitioners could view the portfolio of expert strategies as “low-level” actions
in a multi-armed bandit and apply techniques like UCB1 or Exp3 to choose amongst the
strategies. However, techniques that treat the experts as “meta-actions” that propose a
strategy over the low-level actions, like Exp3G and Exp4, can exploit opportunities to share
information from observations across multiple experts.

Unfortunately, the ideal solution depends on many factors including if the observations
are generated by a stationary stochastic process, an oblivious adversary, or an adaptive
adversary that conditions their behaviour on past observations. Therefore, practitioners
seeking to use implicit modelling should tailor their approach to the nature of their domain,
their portfolio of experts, and type of online interactions they expect.

Utility Estimation
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In the implicit modelling approach, the quality (i.e., error) of the estimators for the
portfolio’s utilities directly impacts our ability to learn and adapt. For example, as Kocsis
and Szepesvári (2005) show, the regret bound of Exp3G directly depends on the variance
of the chosen utility estimators. For complex human-scale domains, stochastic actions, such
as those of chance, can induce noise that dramatically increases the number of observations
necessary to accurately estimate an agent’s expected utility. Existing variance reduction
techniques, like those presented in Section 2.7 or by Kocsis and Szepesvári (2005), can
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substantially improve the quality of such estimators and reduce the number of observations
needed to respond correctly.

For our application of implicit modelling to poker, detailed in Chapter 6, we employ
Bowling and colleagues’ (2008) general technique for evaluating strategies in extensive-form
games. Their approach combines importance sampling for off-policy estimation, akin to
Exp4 or the likelihood ratio based estimates discussed by Kocsis and Szepesvári (2005), with
their imaginary observations technique. This enables practitioners to use each observation of
the opponents’ choices and the outcome to produce low variance estimates of each response’s
utility simultaneously.

3.2.2 Building a Portfolio
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Even with an effective algorithm for estimating a portfolio’s utilities and adapting an
agent’s behaviour, the performance of an implicit model depends substantially on the port-
folio’s expert strategies. How then should practitioners design their portfolio of expert
strategies to maximize their agent’s performance? As multi-armed bandit algorithms may
cause an agent to act according to any strategy in the portfolio – either due to noisy utility
estimates or through deliberate exploratory actions – the general quality of all the strate-
gies in the portfolio is important. As such, practitioners may seek to mitigate the potential
worst-case performance of any given expert by making each of them safe to some degree.
Unfortunately, current approaches for providing such worst-case guarantees in extensive-
form games require a robust response or Nash equilibrium, both of which are infeasible to
compute online in human-scale domains. Therefore, in such domains, practitioners must
choose between a portfolio of safe experts that are all computed offline prior to interaction,
or including riskier adaptive experts.

In this work we explore how to construct a portfolio of strategies offline. Not only does
this allow us to produce relatively safe experts, but it also entirely removes the need to
explicitly model other agents online. However, this approach comes with a challenge. Since
the experts must be generated prior to interaction, the portfolio may not have an expert
that is well suited to respond to the behaviour of the agents at hand σ−i.

Conceptually, one could avoid this by covering the entire strategy space Σ−i. Since
there is a pure (i.e., deterministic) strategy best response to any given agent strategy σ−i,
a portfolio consisting of every pure strategy would cover the space. However, this approach
has two drawbacks. First, as with other best responses, these pure strategies are likely to be
far more brittle than than a robust response. Second, this reintroduces the curse of dimen-
sionality problem faced with explicit modelling since the number of pure strategies grows
exponentially with the number of information sets. Although some of the pure strategies
may be unnecessary, as they may not be a best response to any agent behaviour, it is unclear
how to efficiently identify and remove such redundant responses. In practice, practitioners
create a relatively small variety of experts with the hope of adequately covering the space
of agent behaviours.

For practitioners who lack any prior knowledge about the agents they may encounter,
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equilibrium-based strategies are a convenient approach. For example, a variety of Nash
equilibria could be used since the expected utility of any particular Nash equilibrium depends
on the behaviour of the other agents4. For abstract game Nash equilibria, the practitioner’s
choice of abstraction impacts the equilibrium’s performance due to the assumptions the
abstraction makes about how players discriminate between information sets. We explore
how the size of an abstraction impacts different performance measures of an agent’s strategy
in Chapter 4. Game payoffs can also be tilted (Johanson et al. 2011) to produce different
styles of play, as in the 2008 Man-vs-Machine poker competition. While these equilibrium-
based strategies do not require specific knowledge about the other agents’ behaviour, they
tend to make overly pessimistic assumptions about the behaviour of the other agents (e.g.,
that they are worst-case adversaries in two-player zero-sum games).

Practitioners that have some prior knowledge about the other agents from past interac-
tions could exploit this information by including responses to explicit models of the agents
in the portfolio. Interaction, in this case, is very loosely defined. There might be data
from other agents playing the game, or even complete agent strategies available. Both of
these might be publicly available (e.g. logs from an open competition), from the designer

(e.g. a previously available non-modelling agent), or from the agents’ own past matches.
While responses to explicit models could be constructed with techniques like imitation and
best responses, generating a portfolio offline affords us the time necessary to build more so-

phisticated responses in human-scale domains. In this setting, the restricted Nash response
and data biased response techniques introduced in Section 2.4 are ideal tools for generating
our portfolio of responses. The choice of algorithm rests on the type of available data: the
RNR algorithm works best with a complete strategy, while the DBR technique is specifically

designed to handle a collection of observed games. For practitioners with knowledge about
numerous agents, it may be desirable to respond to clusters of agents to limit the size of the
portfolio. We introduce a decision-theoretic approach for clustering strategies in Chapter 5.

Implicit agent models have been explored several times in prior work. In robotic soc-
cer, Bowling and colleagues (2004) used a sleeping experts bandit algorithm to select from
a portfolio (or “playbook”) of handmade plays to adapt their team’s joint behaviour to

their adversaries in the RoboCup Small-Size League. Barrett and Stone (2015) evaluate
both an explicit model matching approach and an implicit modelling approach for select-
ing policies to cooperate with unknown teammates in the RoboCup 2D soccer simulation

league. In Kuhn poker, Hoehn (2006) (from whom we adopted the explicit and implicit
modelling terms) evaluated various agent modelling techniques, including implicit mod-
elling approaches using various adversarial multi-armed bandit techniques to mix between

a portfolio of pure strategy experts. In heads-up limit Texas hold’em, Johanson and col-
leagues (2008) evaluated an approximate Nash equilibrium and two implicit models that
used UCB1 to select amongst portfolios of experts constructed using either best responses
or restricted Nash responses to frequentist models. While the portfolio of RNRs outper-
formed the equilibrium approach against both a training and holdout set of opponents, the
portfolio of best responses only fared better than the equilibrium against the previously
observed training opponents and performed dismally against the holdout opponents. Rubin
and Watson (2011) investigated techniques for combining strategies including an implicit
modelling approach using UCB1, a portfolio of their imitation-based strategies, and the
(showdown) DIVAT variance reduction technique (Billings and Kan 2006).

In this work, we build on this prior research and contribute some novel solutions to
the challenges that agent modelling practitioners face when using implicit modelling. In
Chapter 4 we examine how the size of abstractions used to model players impacts the

performance of an agent’s strategy both in practice and in the worst case. Chapter 5 explores
how agent strategies should be clustered to ensure that the responses to the clusters provide

4Although Nash equilibria are interchangeable in two-player zero-sum games – yielding the same expected
utility against optimal opponents – the utility of different equilibria may vary due to suboptimal agents.
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high utility over the given strategies. Both of these contributions provide practitioners with
techniques for constructing a diversity of strategies for a portfolio. Chapter 6 describes how
we combine the techniques from Chapter 2 for strategy generation, multi-armed bandits,
variance reduction, and submodular optimization to develop an end-to-end approach for
applying implicit modelling in human-scale extensive-form games. Finally, in Chapter 6,
we empirically demonstrate the efficacy of our implicit modelling approach in two ways:
relative to other common alternatives in a detailed case study, and through results from
several years of the Annual Computer Poker Competition.
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Chapter 4

Asymmetric Abstractions

In large decision-making scenarios it is common to use abstraction techniques to simplify the
space of solutions (i.e., strategies) and to make it tractable for our reasoning algorithms.
This presents agent designers with the difficult task of choosing the abstractions which
encode the players’ knowledge of the real game. Practitioners typically face two problems in

choosing an abstraction. First, as in many domains, practitioners face a feature extraction
problem where they must obtain features which provide discriminatory power between states
where an agent should act differently. Prior research on abstraction in poker has focussed

on this problem and we discussed several of the approaches in Section 2.5. Second, the
granularity of an abstraction presents practitioners with a trade-off between computational
requirements and the fidelity of the abstraction. In single-agent settings, one typically uses

the finest granularity possible that is tractable given the available computation.
In multiagent settings, the situation is considerably more complicated. First, it is not

only necessary to choose an abstraction for the agent of interest, but it is also necessary to

choose an abstraction for the other agents in the environment. Such an abstraction choice is
representing one’s belief about the other agents’ capabilities, knowledge, and computational
capacity. In this sense, a fine-grained abstraction is not always the obvious choice. Further,
given fixed computational resources, it is not obvious how to trade off using those resources

to have a finer-grained agent abstraction or a finer-grained abstraction for the other agents.
In particular, these abstraction choices may affect two common performance measures: one-
on-one performance against other agents, and worst-case performance in the unabstracted

game.
The situation in multiagent scenarios is complicated by Waugh and colleagues’ (2009b)

abstraction pathologies, which show that in multiagent domains there is no guarantee that
refining an abstraction will result in improved worst-case performance. Despite the lack
of theoretical guarantees, there is considerable evidence that finer-grained abstractions do
actually improve agent decision-making. For example, in Texas hold’em poker, finer-grained

abstractions have been shown to perform better in head-to-head competitions (Zinkevich
et al. 2008; Johanson 2007) as well as resulting in less exploitable behaviour in the worst
case (Johanson et al. 2011; Johanson et al. 2013).

However, all of this empirical evidence has been based on symmetric abstraction choices,
where the same abstraction is used for all of the agents. There has been little empirical
analysis on the effect of asymmetric abstractions – i.e. different abstractions for the
agents – on the quality of the resulting behaviour. The historical use of symmetric abstrac-
tions is both a default assumption and a matter of convenience, as a symmetric abstraction
only requires a game to be solved once to compute all players’ strategies, while an asym-
metric abstraction requires us to solve the game once for each arrangement of the players’
abstractions.

As a result, there is limited guidance to a practitioner for how they should trade off
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abstraction granularity between the agents, especially in human-scale domains. In terms of
real game exploitability, Waugh and colleagues’ (2009b) abstraction pathology results exam-
ined both symmetric and asymmetric abstractions in Leduc hold’em poker and showed that
nothing can be guaranteed about worst-case performance in the real game if the opponent
is abstracted. Further, the recent development of a variant of the CFR algorithm called
CFR-BR has made it possible to solve asymmetric abstract games where the opponent uses
no abstraction (Johanson et al. 2012b). This provably converges to an abstract strategy
with the lowest possible real game exploitability. While these results provide valuable in-
sight, they do not investigate the impact of abstraction size on asymmetric abstractions
when both players are abstracted.

Although real game exploitability is an important objective measure of a strategy’s
quality, agents typically do not face their worst-case opponent and one-on-one performance
against other agents may be more relevant in practice. Johanson and colleagues’ CFR-BR
work highlighted this by noting that despite being optimal in terms of real game exploitabil-
ity, CFR-BR strategies tended to perform worse one-on-one compared to strategies solved
with CFR using a symmetric abstraction. This result suggests that there may be a trade-off

between real game exploitability and one-on-one performance, but this trade-off has only
been investigated in the extreme case where the opponent uses no abstraction. More inter-
esting trade-offs may occur in other asymmetric abstractions when either our agent or the

opponent’s abstraction is relatively stronger. Without further investigation, agent designers
seeking to use abstraction techniques are left with unanswered questions about the practical
uses of asymmetric abstractions.

Agent designers face even more unanswered questions when generating robust counter-

strategies to agent models constructed from limited observations (as opposed to an agent’s
explicit strategy). In this case, even smaller domains which could otherwise be represented
exactly may require designers to assume some form of generalization to prevent model

sparsity (i.e., insufficient sampling of agent behaviour across the model’s possible decision
points). This situation arises when using the DBR algorithm described in Section 2.4.3 as it
uses state-space abstraction to provide this generalization. This further encumbers designers

with selecting an abstraction for the model of the opponent in addition to abstractions for
the robust counter-strategy being created and the opponent’s unrestricted response strategy.
The prior work on robust counter-strategies (Johanson, Zinkevich, and Bowling 2008; Jo-

hanson and Bowling 2009) explored only the default case of symmetric abstractions, and the
possible advantages of using asymmetric abstractions have not yet been explored. Without
this investigation, designers are left with a gap in guidance on how to select abstractions

that will yield the best robust counter-strategies.
We contribute the first thorough empirical exploration of asymmetric abstractions. We

do this in the domain of two-player limit Texas hold’em, where others have shown the value
of symmetric abstractions. We examine how the abstraction trade-off affects an agent’s
performance in both head-to-head competition and in terms of worst-case exploitability in
the real game, which is often used as a measurement of Nash equilibrium approximation
quality. Our results give the first guidance for practitioners on the abstraction trade-off and
show that symmetric abstractions, while being the most common choice, may not be ideal.
In addition, we explore the effect of abstraction choice when building counter-strategies from
observations of other agents. In this case, there is an additional trade-off of representation
capacity and sample efficiency. The impact of these abstraction choices are particularly
relevant to our proposed implicit modelling framework, as practitioners using the approach
must build a diverse portfolio of strategies that balance exactly these trade-offs. We begin

our analysis with an examination of asymmetric abstractions in the context of computing
Nash equilibrium approximations and then provide further results regarding robust counter-
strategy generation.
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Figure 4.1: Abstraction of the first round of Texas hold’em poker, dividing 1326 hands into
5 percentile E[HS2] buckets.

4.1 Nash Equilibrium Approximation

A common approach to generating strategies in two-player zero-sum extensive-form games is
to approximate a Nash equilibrium using techniques like those introduced in Section 2.3. In
this setting, designers typically must choose how to distribute their limited memory between

the size of the abstraction for the strategy being created and the size of abstraction for
the opponent’s response strategy. As discussed previously, the question of how asymmetric
abstractions impact an agent’s one-on-one performance and real game exploitability remains

largely unaddressed. Our first experiment directly investigates this question for approximate
Nash equilibria strategies.

4.1.1 Experimental Design

Throughout our asymmetric abstraction experiments, we use abstraction techniques from
prior research in two-player limit Texas hold’em poker. Abstraction is applied only to the
chance events in the game, and not to the players’ actions. The abstraction task is thus

simplified to finding similar sets of cards which are mapped together to form buckets, as
introduced in Section 2.5.1. In our experiments, we use percentile buckets over the expected
hand strength (E[HS]) and expected hand strength squared (E[HS2]) card features. On
the first round of the game, for example, a 5-bucket percentile E[HS2] abstraction groups
the 1326 possible hands of cards into the buckets shown in Figure 4.1. The abstractions we
investigate have the perfect recall property, in which hands that are mapped together on one
betting round must also be mapped together on all earlier betting rounds. By convention,
the same branching factor n is used on each round. We consider three standard sizes of
abstractions from prior research, with branching factors of 5, 8 and 12 buckets on each

round. The 5 and 8 bucket abstractions are partitioned according to percentile divisions of
E[HS2]. The 12-bucket abstraction uses a nested bucketing that first divides the hands into
six E[HS2] sets, which are further split into two E[HS] sets. The sizes of these abstract
games and the amount of memory required by CFR to solve them is shown in Table 4.1.
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Abstraction Information Sets CFR Memory
5-Bucket 3624290 140 MB
8-Bucket 23551424 934 MB
12-Bucket 118671936 4708 MB

Table 4.1: Sizes of percentile abstractions.

Nine approximate Nash equilibrium strategies were constructed using different pairs of
abstractions for the strategy being created and the opponent’s response strategy. Each
player’s strategy uses one of a 5, 8, or 12-bucket perfect recall percentile E[HS2] abstrac-
tion. The CFR algorithm described in Section 2.3 was used to generate a strategy for each
pair of abstractions (3 symmetric and 6 asymmetric). For each of the three abstractions
we also produced a strategy using the CFR-BR algorithm (Johanson et al. 2012b) which
solves an asymmetric game in which the opponent uses no abstraction. Each strategy’s real
game exploitability was computed using the Accelerated Best Response algorithm (Johan-
son et al. 2011), and the one-on-one expected value, measured in milli-big-blinds per game,

between each pair of strategies was measured by playing 100 million duplicate games of
poker (200 million games total). The size of each abstract game is listed, with asymmetric
games requiring half of each abstraction’s size from Table 4.1, and CFR-BR requiring 1096

megabytes of memory for the unabstracted opponent (Johanson et al. 2012b).

4.1.2 Empirical Results

Table 4.2 presents the results for these 12 strategies. Each strategy has a label “U-R” which
indicates which abstraction was used for us and for the opponent’s response. For example,
“12-5” is a strategy using an asymmetric abstraction where our strategy uses the 12-bucket
abstraction and assumes the opponent is using a 5-bucket abstraction. Strategies labelled

“U-FULL” are solved using the CFR-BR algorithm in which the opponent plays the full
(i.e., unabstracted) game.

These results provide insight about several trends that arise when increasing abstraction

sizes. First, examining the symmetric abstraction case (5-5, 8-8, 12-12), we see that as
we increase abstraction size both mean utility against the field and exploitability improve.
While Waugh and colleagues’ abstraction pathology results showed that this is not guar-

anteed by any theory, these results help explain why competitors in the Annual Computer
Poker Competition (ACPC) (ACPC 2015) endeavoured to produce progressively larger ab-
stractions (Sandholm 2010). To explore the effects of increasing each player’s abstraction
independently, we must move to asymmetric abstractions.

Our first significant result in asymmetric abstractions is the discovery of the first abstrac-
tion pathologies outside of Waugh and colleagues’ (2009b) experiments in Leduc hold’em.
Note that abstract game Nash equilibria in the 5-12 and 8-12 abstractions are both less
exploitable than in the 12-12 abstraction: if our goal is to minimize our exploitability, we
would do better by using a smaller abstraction for our own agent. Further, the 5-8 strategy
which reduces the abstraction size for both players is also slightly less exploitable than 12-
12. This counter-intuitive finding shows that abstraction pathologies are not just a problem
in toy domains.

Examining the asymmetric abstractions where the opponent’s abstraction is larger than

our agent’s, such as 5-8 or 8-FULL, we observe a trade-off between one-on-one performance
and exploitability. In all cases, as the size of our opponent’s abstraction increases (i.e.,
we become more pessimistic about our adversarial opponent’s abilities), our exploitabil-
ity improves while our one-on-one mean utility decreases. The CFR-BR strategies (U-
FULL) are the extreme case of this form of asymmetry and, as observed by Johanson and
colleagues (2012b), pay a substantial cost in one-on-one utility in order to minimize ex-
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ploitability. This result suggests that agent designers whose goal is to minimize worst-case
performance should assume a pessimistic (i.e., fine-grained) abstraction for other agents.

Finally, we investigate the asymmetric abstractions where our agent’s abstraction is
larger than the opponent’s, such as 8-5 or 12-8. Here we see the opposite trend in the
trade-off between one-one-one performance and exploitability: as we improve our agent’s
abstraction, our exploitability gets worse while our one-on-one performance improves not
only in the mean utility, but also in the one-on-one utility against each individual strategy.
This suggests that agent designers focused on the more practical one-on-one performance
goal may want to increase the size of their agent’s abstraction.

This investigation of Nash equilibrium approximations using asymmetric abstractions
isolates two independent but related trends in how abstraction size affects agent perfor-
mance. Although historically the standard approach has been to use symmetric abstrac-
tions, we have shown that this choice may be balanced but not optimal for either minimizing
exploitability or maximizing one-on-one performance. In fact, these goals are at odds: the
exploitability-minimizing 12-FULL strategy would lose in one-on-one play against the small-
est 5-5 symmetric abstraction, while the performance-maximizing 12-5 strategy is also the

most exploitable.
A designer’s prior domain knowledge and their beliefs about the other agents in the

environment will impact their priorities over these goals. For example, if worst-case outcomes

corresponded to people being injured or killed, improving worst-case performance may be a
designer’s only goal. In this case, using a more pessimistic fine-grained opponent abstraction
may improve worst-case performance by yielding strategies that guard against an opponent
which better approximates the worst case (although abstraction pathologies prevent any

guarantees). On the other hand, if a designer believes the other agents are unable or merely
unlikely to act so as to produce worst-case performance, then choosing abstractions which
optimize one-on-one performance, such as a fine-grained abstraction for the agent’s strategy,

may produce better results in practice. As we will demonstrate in the next section, these
abstraction choices continue to be relevant when we create robust counter-strategies that
strike a balance between these goals.

4.2 Robust Counter-Strategies

Robust counter-strategies provide another approach to constructing agent strategies. In-

stead of trying to optimize performance assuming a best responding opponent, as with
the previous approximate Nash equilibria approach, robust counter-strategy algorithms at-
tempt to compromise between worst-case performance and exploiting knowledge of how
other agents act. When this knowledge comes from observations of an agent rather than
explicit knowledge of their strategy, designers usually need to transform the observations
into a generative model of the agent’s behaviour. In many domains, the number of infor-
mation sets may make it infeasible for the model to represent each distinct information
set. Furthermore, even if every information set can be represented, a limited quantity of
observations can result in insufficient sampling to build an accurate model. This model
sparsity is typically combated by agent designers generalizing about their observations in

some form. DBRs address both the model representation and observation generalization
problems by using state-space abstraction.

The prior work on robust counter-strategies only examined the techniques using the
small symmetric 5-bucket abstraction introduced earlier (Johanson and Bowling 2009; Jo-
hanson, Zinkevich, and Bowling 2008) and does not tease apart the distinct roles of the
opponent abstractions. While the abstraction for the opponent’s response acts to prevent
the resulting counter-strategy from becoming exploitable by overfitting to the opponent
model, the abstraction for the opponent model provides generalization across a limited set
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of agent observations. Without exploring asymmetric abstractions, we cannot answer how
designers should select abstractions to produce the best robust counter-strategies from a
given quantity of observations when using techniques based on state-space abstraction, like
DBR.

Though not previously explored, note that both RNR and DBR can be used with asym-
metric abstractions. In particular, recall that DBR generates robust counter-strategies using
an opponent whose strategy is mixed at each information set between an unrestricted regret
minimizing strategy and an opponent model (Johanson and Bowling 2009, Equation 1).
These abstractions for the opponent’s response and model do not need to be the same, and
DBR can use a small abstraction for the model to ensure data density while using a large
abstraction for the response to reduce the counter-strategy’s exploitability. Likewise, the
abstraction for our counter-strategy agent can be distinct from either of the opponent’s two
abstractions.

We will now directly investigate this aspect of creating robust counter-strategies with
both symmetric and asymmetric abstractions. Though our results from Section 4.1 provide
evidence for how designers should choose the abstractions for the agent’s strategy and the

opponent’s response, an abstraction for the opponent model must also be chosen. Our
experiments will directly examine how the quantity of observations and abstraction size
used to build the opponent model impact DBR performance. Furthermore, we present

results for RNRs and DBRs using both symmetric and asymmetric abstractions evaluated
according to their true worst-case performance in the real game for the first time.

4.2.1 Experimental Design

To explore the impact of the abstraction size, we used a variety of different configuration
parameters to generate several RNRs and DBRs based on knowledge of an exploitable
opponent. RNRs trained using an agent’s explicit strategy optimally trade between one-

on-one and worst-case performance in their abstract game. In practice, it is uncommon to
know an agent’s strategy exactly and it must be inferred from observations. When building
responses from observations, RNR is prone to an overfitting effect that DBR avoids, and so

we compute DBR counter-strategies in such cases.
The opponent was created using CFR to solve a modified 8-bucket abstract game where

payoffs were tilted, as in the original presentation of DBR (Johanson and Bowling 2009).

Specifically, the tilted opponent (falsely) believes that it will receive 25% additional utility
when it wins the pot either through a showdown or the other player folding. When building
DBRs, models of the opponent were created using 104, 105, 106, or 107 full information hands

of play (i.e., private cards were revealed). Observations of the tilted opponent were gathered
using the same “probe” agent as in (Johanson and Bowling 2009) which never folds and calls
or raises with equal probability.

Throughout these experiments we examine RNRs and DBRs generated using different
combinations of the aforementioned 5, 8, and 12-bucket perfect recall percentile E[HS2]
abstractions. Trend lines labelled “DBR-U-R-M” indicate that the corresponding strategies
are DBRs generated using abstractions U, R, and M for the agent’s robust counter-strategy,

opponent’s response, and opponent model, respectively. RNRs are only labelled “RNR-U-R”
as their opponent model is the tilted opponent’s actual 8-bucket strategy.

Finally, as described in Section 2.4 both RNR and DBR have parameters which control
the counter-strategy’s trade-off between one-on-one and worst-case performance. RNR uses
the parameter p to specify the probability the opponent plays according to their model.
DBR combines a parameter Pmax with a function that maps a quantity of observations
to a probability the opponent must play according to the opponent model. The original
presentation of DBR found that the 0-10 linear function (yielding Pmax with 10 or more
observations and a linear interpolation between 0 and Pmax from 0 to 10 observations)
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Figure 4.2: Impact of quantity of observations and model abstraction on exploitation of tilted
8-bucket equilibria. Exploitation values against the tilted opponent are in milli-big-blinds
per game (mbb/g). Values were computed through sampling 100 million duplicate hands
(200 million hands total) and have 95% confidence intervals of at most 0.585. Strategies for
each data point are exploitable for 100 mbb/g in the 12-bucket abstract game.

performed best in practice (Johanson and Bowling 2009). We used this 0-10 linear function

and varied the value of Pmax or p to create a range of strategies.
As with our earlier Nash equilibrium results, strategies were evaluated in terms of ex-

ploitability and one-on-one expected utility against the tilted opponent. One-on-one ex-

pected utility was evaluated through sampling 100 million duplicate hands (200 million
hands total). Values for one-on-one performance are in milli-big-blinds per game (mbb/g)
and have 95% confidence intervals no larger than 0.585 mbb/g.

4.2.2 Empirical Results

Because DBRs are constructed from observations, the choice of abstraction for the opponent
model directly impacts on our beliefs about the opponent. To isolate the interplay between

the opponent model’s abstraction and the quantity of observations, in our first experiment
we fix the abstraction for the DBR strategy and the opponent’s response strategy to the
12-bucket abstraction while varying the opponent model’s abstraction size. Furthermore, we
control each DBR’s worst-case performance by computing DBRs that are exploitable for 100
milli-big-blinds per game in the 12-bucket abstract game. Figure 4.2 shows the one-on-one
performance trends for DBRs using each of the three abstractions sizes for the opponent
model as we vary the quantity of observations used to create the model.

These results demonstrate that using asymmetric abstractions for the opponent model
and the opponent’s response can produce strictly better robust counter-strategies. With

fewer observations (104 and 105) we would improve our one-on-one performance against
the tilted opponent while keeping the robust counter-strategy’s worst-case performance in
the abstract game the same. As the number of observations increases the DBRs using the
8-bucket opponent model eventually catch up to (106) and then surpass (107) the DBRs
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using the 5-bucket opponent model. This crossover point is likely due to the small num-
ber of observations being too sparsely spread across the 8-bucket opponent model. Despite
incorrectly representing the tilted opponent’s true abstraction (8-buckets), the coarser 5-
bucket abstraction yields better generalization and a more functional opponent model than
the 8-bucket abstraction with very few observations. With a larger number of observations,
the 8-bucket opponent model can better populate and capitalize on its correctly chosen
model whereas the 5-bucket abstraction remains an incorrect model of the tilted opponent.
We also observe that the 12-bucket abstraction does poorly throughout. This is unsur-
prising as it would needlessly separate observations from the tilted opponent’s underlying
8-bucket strategy into the larger 12-bucket opponent model, resulting in both greater model
sparsity and an incorrect representation of the opponent’s abstraction. This suggests that
designers should aim to select opponent model abstractions that are not only similar to
their opponent’s true abstraction, but can also be estimated accurately from their limited
observations.

Prior work on robust counter-strategies evaluated the RNR and DBR techniques in terms
of worst-case performance in the abstract game. Computing the real game exploitability of

strategies has only recently become feasible (Johanson et al. 2011), and as a result we can
now revisit these techniques and evaluate their counter-strategies’ true exploitability for the
first time.

Our results in Section 4.1 suggested that increasing the size of our agent’s and the op-
ponent’s response abstraction both traded between one-on-one and worst-case performance
in contrary ways. Using RNRs and DBRs in different abstractions, we investigate if these
trends also hold for robust counter-strategies. Performance curves were generated by com-

puting a counter-strategy for each of the following p and Pmax parameters: 0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1.0. We begin by examining the performance of RNRs
in Figure 4.3 as this eliminates the impact of limited observations.

Examining the best values for one-on-one and worst-case performance, we see similar
trends to those observed with approximate Nash equilibria. Comparing RNRs using a 12-
bucket instead of an 8-bucket abstraction for the agent (RNR-U8-R8 to RNR-U12-R8, and

RNR-U8-R12 to RNR-U12-R12), we see that the curves move up and to the right corre-
sponding to improved one-on-one and poorer worst-case performance. Interestingly though,
the RNRs using the larger 12-bucket opponent abstractions not only improve in worst-case

performance relative to the RNRs using the smaller 8-bucket opponent abstractions (RNR-
U8-R8 to RNR-U8-R12, and RNR-U12-R8 to RNR-U12-R12), but their performance curves
also dominate them.

Note that since RNRs use the opponent’s exact strategy, at p of 1 they become a best
response to the opponent model and are oblivious to the abstraction chosen for the oppo-
nent’s response. On the other hand, DBRs with a Pmax of 1 only approach a best response
in the limit of observations. Therefore, the opponent’s response abstraction will always have
some, though diminishing, impact on DBRs even with Pmax set to 1. Figure 4.4 illustrates
this difference, showing that DBRs, depending on the quantity of observations used, behave
between the RNR domination and the more direct trade-off between one-on-one and worst-
case performance observed with Nash equilibrium approximation. Comparing the DBRs
using 107 observations (DBR-U12-R8-M8-10m and DBR-U12-R12-M8-10m), we see tends
similar to the RNRs in Figure 4.3: using a larger opponent response abstraction produces
nearly dominant performance curves. Unlike RNRs though, we can observe that using the
larger 12-bucket opponent response abstraction results in a slight loss in the best one-on-
one performance possible. For DBRs using only 104 observations (DBR-U12-R8-M8-10k
and DBR-U12-R12-M8-10k) a more distinct trade-off between one-on-one and worst-case
performance is apparent. With fewer observations, the DBRs using the larger 12-bucket
opponent response abstraction have performance curves which shift distinctly down and
to the left, corresponding to improved exploitability and poorer one-on-one performance.
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Figure 4.3: Impact of counter-strategy and opponent response abstraction size on RNR one-
on-one and worst-case performance in the unabstracted game. Values are in milli-big-blinds
per game (mbb/g). Exploitation values against the tilted opponent were computed through
sampling 100 million duplicate hands (200 million hands total) and have 95% confidence
intervals of at most 0.585.

Both the RNR and DBR results echo the findings of Section 4.1: larger abstractions for

our agent’s abstraction should be used for greatest possible one-on-one performance, while
larger opponent abstractions can produce better worst-case exploitability.

Finally, Figure 4.5 shows how varying the opponent model’s abstraction affects one-

on-one and worst-case performance in the real game. We use the same abstractions as
in Figure 4.2, but create DBRs trained with 105 observations. RNRs using the 12-bucket
abstraction for the robust counter-strategy and the opponent’s response are also shown.

Performance curves were generated by computing a counter-strategy for each of the following
p and Pmax parameters: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1.0.

Surprisingly, we observe that the robust counter-strategies with positive weight on the
opponent model can be less exploitable than abstract game Nash equilibria (i.e., RNR

or DBR with p or Pmax of 0) using the same abstraction. Figure 4.3 demonstrates this
improved exploitability with RNRs while Figures 4.4 and 4.5 show this improvement is even
more dramatic for DBRs. This may allow us to construct robust counter-strategies at no
cost to worst-case performance relative to an abstract game Nash equilibrium. That said,
these results may be specific to the particular tilted opponent we used. Furthermore, these
robust counter-strategies still do not, and could not, have better exploitability than the
12-FULL CFR-BR strategy from Table 4.2. Although the cause of this effect is currently
unknown, it appears similar to an effect discovered by Johanson and colleagues (2011, Table
3) in their investigation of tiled equilibria, in which over-aggressive abstract strategies were

found to be less exploitable than Nash equilibria within the same abstraction.
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Figure 4.4: Impact of opponent response abstraction size and quantity of observations on
DBR one-on-one and worst-case performance in the unabstracted game. Values are in
milli-big-blinds per game (mbb/g). Exploitation values against the tilted opponent were
computed through sampling 100 million duplicate hands (200 million hands total) and have
95% confidence intervals of at most 0.585.
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Figure 4.5: Impact of opponent model abstraction size on one-on-one and worst-case perfor-
mance in the unabstracted game with 100,000 observations. Values are in milli-big-blinds
per game (mbb/g). Exploitation values against the tilted opponent were computed through
sampling 100 million duplicate hands (200 million hands total) and have 95% confidence
intervals of at most 0.585.
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4.3 Summary

In large multiagent domains where some form of state-space abstraction is necessary to
make the problem tractable, agent designers are often faced with the difficult task of di-
viding limited computational resources for representing each agent’s behaviour between the
agents in the environment. While the standard approach in the poker domain is to use
a symmetric abstraction that divides the resources evenly between the players, we have
shown that this choice does not optimize for either worst-case performance or performance
against suboptimal opponents. Our experiments performed the first empirical analysis of
asymmetric abstractions in the human-scale game of two-player limit Texas hold’em, and
addressed both Nash equilibria and counter-strategies. Our results demonstrate that the
trade-off between between real game exploitability and one-on-one performance, which Jo-
hanson and colleagues’ (2012b) first observed in their CFR-BR experiments, also exists
when both players are abstracted. In the equilibrium approximation setting, we discovered
the first abstraction pathologies outside of a toy domain. In the counter-strategy setting,
we found that in addition to choosing abstractions for both players, the size of the abstrac-
tion used to model the opponent should be chosen to match the quantity of data. Finally,
we performed the first experiments with robust counter-strategies that measured real game

exploitability, and found that robust counter-strategies can occasionally be less exploitable
than abstract game Nash equilibrium strategies.

These results provide valuable insights about the impact of abstraction choices which

practitioners can use to guide their portfolio construction. When creating abstract game
Nash equilibria, choosing asymmetric abstractions provides the portfolio with a diversity
of responses that may better model the behaviour of agents with relatively superior or

inferior knowledge. For practitioners seeking to generate a portfolio with responses based
on prior knowledge of other agents, asymmetric abstractions may play a critical role in
avoiding model sparsity when constructing those models from observations. Unfortunately,
practitioners still face the question of which prior knowledge should be used to build such

responses.
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Chapter 5

Decision-Theoretic Clustering

In domains where maximizing an agent’s utility is the primary goal, agents may need to
model other agents or entities in their environment to improve their utility. Although an
agent could tailor a response to each individual agent or entity it has prior knowledge of,
such individual personalization is often impractical. Clustering techniques can be beneficial

in these settings by allowing the agent to partition the set of entities into similar groups
called clusters. In this setting, a clustering’s actionability — its capacity to suggest responses
with high utility to the agent — is the fundamental clustering objective. Contrast this with

many traditional clustering problems, such as k-means and k-medians, where similarity is
measured by some notion of spatial distance between the entities within the same cluster. For
instance, the k-means objective is to minimize the within-cluster sum of squared Euclidean

distances between each of the entities and their cluster’s centroid. Despite an abundance
of spatial clustering techniques, these techniques may fail to capture similarity in how the
agent should respond to the entities.

To illustrate, we briefly examine the game of rock-paper-scissors. In this game, a static
agent’s behaviour can be specified by their probability distribution over choosing rock, paper,
and scissors. Figure 5.1 depicts a simplex representing the space of possible probability
distributions over these three actions. The point E is the game’s Nash equilibrium of 1/3

for each action. Consider the points labelled 1, 2, and 3. Although 1 and 2 are spatially
close, an agent’s response for how to act with respect to them should be different as their
strategies do not share the same best response. In contrast, 1 and 3 share the same best

response (always play paper) despite being spatially distant.
Although this type of decision-theoretic clustering may appear to be a niche problem

at first glance, it is actually related to a range of optimization problems. Kleinberg and
colleagues (1998) introduced and formalized this style of clustering problem in the data
mining community as segmentation problems. Their work showed that optimal solutions to
this type of clustering induce optimal solutions to a form of maximum coverage optimization,

and vice versa. Lu and Boutilier (2011) highlighted several parallels between their budgeted
social choice model and segmentation problems. Carlin and Zilberstein (2008) also use a
similar type of utility-based clustering to group observations in Dec-POMDPs, reducing
the size of agent policies. Their algorithm, though, was presented with no approximation
bounds.1

Due to the computational complexity of segmentation problems (and many other sim-
ilar maximum coverage based problems) one typically forgoes exact solutions for efficient
approximate solutions to these problems. In particular, Nemhauser and colleagues’ (1978)
greedy algorithm for maximizing monotone submodular functions is often used to attack

1The theoretical results from this chapter can also be applied to their problem, giving an algorithm with
approximation guarantees for the single-agent case. Whether the same principles can give an algorithm with
approximation bounds for the multi-agent case is open.
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Figure 5.1: Rock-paper-scissors strategy simplex partitioned into best response regions.
Despite their spatial proximity, 1 and 2 fall into distinct best response regions (P and S).

a segmentation problem’s maximum coverage formulation. This approach, which we in-
troduced in Algorithm 1 of Section 2.8, iteratively constructs a solution by evaluating the
marginal gain of each feasible response, adding the greedy-best response. Unfortunately, as
Kleinberg and colleagues (2004) noted, such greedy algorithms may not be efficient as even
a single step can be an NP-complete problem.

In this chapter, we examine segmentation problems where the response space is either
exponential or infinite and the standard greedy approximation is computationally infeasible.
This scenario arises naturally when designing an implicit modelling agent’s portfolio, since
practitioners would seek responses that efficiently cover the space of behaviours that they
expect other agents to employ. We show that despite the complexity of the response space,
in certain cases where the utility function can be factored, an efficient response oracle can
be constructed. We then use such a response oracle to operate directly on the partitioning
formulation of a segmentation problem by greedily merging clusters together in an agglom-
erative (i.e., “bottom up”) clustering algorithm. Finally, we evaluate our technique both
theoretically and empirically. Our theoretical results provide a guarantee on the worst-case
performance of our greedy algorithm relative to the optimal clustering into k sets. This
approximation bound is shown to be tight within a factor of 2. We empirically evaluate
our technique using extensive-form games by clustering agent strategies in two toy games
of poker: Kuhn poker and Leduc hold’em. Our results highlight the benefit of clustering
strategies based on their actionability rather than their spatial similarity by contrasting our
greedy method with a traditional k-means clustering approach. We begin our exposition by
reviewing segmentation problems and introducing related notation.

5.1 Segmentation Problems

Segmentation problems (Kleinberg, Papadimitriou, and Raghavan 1998) examine the chal-
lenge of determining how an agent should respond to maximize utility given information
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about different entities2. For example, a commercial enterprise with information about
their customers could act homogeneously across the customers, but the enterprise may be
able to increase its utility by tailoring their response (e.g., marketing strategy, product
line) to each customer’s preferences. While such individual personalization is often imprac-
tical, a more limited form of personalization where the market of customers is segmented
(i.e., clustered) into k groups may still be beneficial.

One way to view segmentation problems is as clustering problems where the desired
clustering depends on a utility function u(e, r) that specifies the utility of response r ∈ R
with respect to an entity e ∈ E being clustered. Unlike traditional clustering approaches,
this approach directly optimizes for the actionability of the clustering.

More formally, let E and R be sets (E finite), and u : E×R→ R be a utility function.
For convenience, we let Part(E) denote the set of partitions of E:

Part(E) =
{
P ∈ 22E

: ∪P = E;A,B ∈ P ⇒ A ∩B = ∅
}
.

For k ∈ N, we shall also use Partk(E) to denote the set of k-element partitions of E:

Partk(E) = {P ∈ Part(E) : |P | = k} .

We abuse notation slightly to define several recurring terms for utility over subsets and
partitions of E. For P ∈ Part(E), C ⊂ E, r ∈ R, let

u(C, r) =
∑
e∈C

u(e, r),

u(C) = max
r∈R

u(C, r), and

u(P ) =
∑
C∈P

u(C).

In words, u(C, r) is the total utility of a “cluster” of entities C ⊂ E when the response is r,
u(C) is the utility of C and u(P ) is the utility of partition P .

The partitioning form of a segmentation problem considers the problem of finding a

partition of E that gives the highest utility amongst all k-element partitions:

P ∗k ∈ argmax
P∈Partk(E)

u(P ) = argmax
P∈Partk(E)

∑
C∈P

max
r∈R

∑
e∈C

u(e, r). (5.1)

For clarity, note that this assumes clustering E is our ground truth objective: other potential
entities are ignored. Finally, we let u∗k denote the utility of an optimal k-element
partition: u∗k = maxP∈Partk(E) u(P ).

To provide more visual intuition of this problem, we can view the problem as an opti-
mization on a matrix. Let U be an |E|×|R| matrix where the (i, j)-th entry Ui,j = u(ei, rj).
Then, given k < |E|, the goal of the optimization is to find a partition P = {C1, . . . , Ck}
of the rows of U that maximizes the sum of the utilities over the rows when all rows in the
same cluster must share the same response column rj . Figure 5.2 depicts an example of this
matrix form.

Kleinberg and colleagues (1998) observe that this partitioning view of a segmentation
problem is also equivalent to the following weighted maximum coverage optimization which
we introduced earlier,

argmax
R′⊆R
|R′|=k

∑
e∈E

max
r∈R′

u(e, r). (5.2)

In our matrix view of this problem, one can think of Equation (5.2) as choosing the set of
k columns of the matrix U that maximally cover the rows of the matrix.

2Kleinberg and colleagues referred to the entities and responses as customers and decisions, respectively.
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Figure 5.2: Matrix view of a segmentation problem with an objective value of 30.

The utility of optimal solutions to these two views of a segmentation problem not only
have equal value, u∗k, but one can construct an optimal solution to Equation (5.2) given a
solution to Equation (5.1), and vice versa. Though straightforward, we show these construc-
tions and their computational cost in Lemmas 1 and 2. Furthermore, we provide a proof of
their equivalence in Lemma 3, showing that optimal solutions to one view of a segmentation
problem induce optimal solutions to the alternate view.

Lemma 1. Partitions induce covers.
Given P ∈ Partk(E) where v = u(P ), one can construct R′ ⊆ R with |R′| ≤ k such that∑
e∈E maxr∈R′ u(e, r) ≥ v in O(|E||R|) evaluations of u.

Proof. We prove this by constructing R′ ⊆ R. Begin with R′ = ∅. Then for each C ∈ P ,

add rC ∈ argmaxr∈R u(C, r) to R′. This adds at most k unique elements to R′. Finally,
observe that R′ has a maximum coverage value of at least v.

v =
∑
C∈P

max
r∈R

∑
e∈C

u(e, r) =
∑
C∈P

max
r∈R′

∑
e∈C

u(e, r) ≤
∑
C∈P

∑
e∈C

max
r∈R′

u(e, r) =
∑
e∈E

max
r∈R′

u(e, r)

Lemma 2. Covers induce partitions.
Given R′ = {r1, . . . , rk}, R′ ⊆ R such that v =

∑
e∈E maxr∈R′ u(e, r), one can construct

P ∈ Part(E) where |P | ≤ k and u(P ) ≥ v in O(k|E|) evaluations of u.

Proof. We prove this by constructing such a partition as follows. Initialize P = {C1, . . . , Ck}
where Ci = ∅. For each e ∈ E, add e to Ci where i ∈ argmaxj∈{1,...,k} u(e, rj). Finally,
remove Ci if it remained empty. P is clearly a partition of E of size at most k where
u(P ) ≥ v since for each Ci ∈ P , u(Ci) ≥ u(Ci, ri).

Lemma 3. Mutual optimality.

max
P=Part(E)
|P |≤k

∑
C∈P

max
r∈R

∑
e∈C

u(e, r) = max
R′⊆R
|R′|≤k

∑
e∈E

max
r∈R′

u(e, r)

Proof. Suppose that P is an optimal partition of E with value v, and R′ ⊆ R is an optimal
maximum coverage set with value v′ > v, where |P | and |R′| are both at most k. Then, by
Lemma 2, we can construct a partition P ′ of E no larger than k with value at least v′ from
R′. This contradicts the original optimality of P . An equivalent argument can be made for
the reverse direction using Lemma 1.

The equivalence of these two problems means that techniques for solving the maximum
coverage based problem in Equation (5.2) can also be used to solve the partitioning prob-
lem in Equation (5.1). Unfortunately, as discussed in Section 2.8.1, this type of weighted
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maximum coverage problem is known to be computationally hard. When u is a nonneg-
ative utility function, the weighted maximum coverage optimization in Equation (5.2) is
NP-complete (Cornuejols, Fisher, and Nemhauser 1977). Additionally, Kleinberg and col-
leagues (1998) show that even for several constrained response spaces (with u a general linear
function), the segmentation problems are still NP-complete, or more specifically MAXSNP-
complete (Kleinberg, Papadimitriou, and Raghavan 2004).

Due to these negative complexity results, approximate solutions to segmentation prob-
lems are typically sought in lieu of exact solutions. Nemhauser and colleagues (1978) showed
that when u is constrained to nonnegative values, the weighted maximum coverage prob-
lem is submodular and a (1− 1/e)-approximation to the optimal solution can be computed
using a greedy approximation algorithm. Their greedy algorithm, shown previously in Al-
gorithm 1, iteratively constructs R′ ⊆ R by adding r ∈ R \ R′ that maximally increases
the objective given the previously selected elements in R′. In many natural settings the
response space R is either exponential or infinite and solving even a single step of such a
greedy algorithm may be NP-complete. Kleinberg and colleagues (2004) introduce several
approximation algorithms for segmentation problems. In addition to some greedy approxi-

mations, which greedily add the response that maximizes the marginal gain like Nemhauser
and colleagues’ algorithm, they also introduce efficient approximation algorithms that avoid
enumerating the response space by exploiting domain-specific assumptions about the utility

function’s structure.
In many problems, including our domain of extensive-form games, the utility function

does not conform to the assumptions required by Kleinberg and colleagues’ algorithms. In
this chapter, we develop an efficient approximation algorithm by assuming that the utility

function’s structure admits a specific type of efficient oracle. In the next section, we describe
the details of our oracle and demonstrate that extensive-form games admit such oracles.

5.2 Exploiting Structured Utility

In settings where the response space is too large to practically enumerate, algorithms that
avoid enumerating the candidate responses are necessary. We examine problems where
structure in the utility function u allows the best response for a given set of entities to
be efficiently computed despite a prohibitively large response space. Next, we formalize

this response oracle, provide examples of problems where such an oracle exists, and show
how one can incorporate a response oracle into an efficient greedy agglomerative clustering
algorithm.

5.2.1 Response Oracles

In some settings the utility function u can be factored to enable the efficient computation
of the response (i.e., column of U) that maximally covers a given set of entities. Formally,
given C ⊆ E a response oracle f : 2E → R is defined as

f(C) ∈ argmax
r∈R

u(C, r).

By definition, this means u(C, f(C)), the utility obtained by the response oracle on C, is
u(C).

We provide some domains where such a response oracle can be computed efficiently,
taking time logarithmic in the size of the response space, and then present a greedy algorithm
that capitalizes on this oracle.

Example: Extensive-form Games.
Let the entities E consist of observed opponent strategies and let the response space R

be the possible strategies that our agent could employ. Even if our agent only considers pure
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strategies (where a player acts deterministically at each of the game’s information sets) the
size of the response space is exponential in the number of the game’s information sets. The
response oracle f(C) in this setting is a best response to the average of the sequence-form
representations of the strategies in C. Due to an extensive-form game’s tree structure, this
can be computed in time linear in the size of the game tree, which is typically polynomial
in the number of information sets.

Example: Budgeted Social Choice.
In the case of maximizing social welfare, Lu and Boutilier’s (2011) limited choice model

of budgeted social choice is equivalent to the segmentation problem optimization in Equa-
tion (5.2) (with entities and responses instead called agents and alternatives, respectively).
In their formulation, they assume that the responses can be enumerated and use Nemhauser
and colleagues’ greedy algorithm. Suppose the responses consist of products represented by
feature vectors r = (r1, . . . , rn) ∈ R1 × . . . × Rn and that the utility function is separable
such that it can be factored into u(e, r) =

∑n
i=1 ui(e, ri) where ui : E×Ri → R. Then the re-

sponse oracle f(C) can compute each ri of the optimal response as argmaxri∈Ri

∑
e∈C ui(e, ri).

Instead of enumerating the
∏n
i=1 |Ri| possible responses in R, the response oracle can be

computed efficiently in time O(|C|∑n
i=1 |Ri|).

5.2.2 A Greedy Heuristic

Since both exact solutions and algorithms similar to Nemhauser and colleagues’ greedy

algorithm are infeasible on segmentation problems with a large response space, we propose
an alternative greedy approximation algorithm. Like others, our approach acts greedily
based on the marginal change in utility, but it does so when considering how to merge

clusters in an agglomerative hierarchical clustering algorithm (Ward 1963). Our algorithm
is efficient, requiring a polynomial number of oracle queries, provided an efficient response
oracle.

In an agglomerative clustering algorithm, one starts with a partition of singletons and

builds a solution in a “bottom up” manner by iteratively coarsening the partition. Unlike
Nemhauser and colleagues’ greedy algorithm, which acted greedily according to the maxi-
mum marginal gain, we greedily merge clusters that incur the minimal marginal loss. This

is because the objective value of Equation (5.1) is vacuously maximized by the initial par-
tition of singletons (when the size of the partition is unconstrained). One can view this as
a greedy heuristic for the following optimization.

min
P∈Partk(E)

[∑
e∈E

max
r∗∈R

u(e, r∗)− u(P )

]
(5.3)

Conceptually, this objective function represents the utility lost by responding to the enti-
ties in clusters rather than individually. Note that a partition that optimizes our original

objective in Equation (5.1) also optimizes Equation (5.3), and vice versa.
Our algorithm starts with the trivial partition P0 = {{e} : e ∈ E} where every entity is

in its own set. On each iteration we coarsen the partition by greedily merging together the
two sets in the current partition that incur the minimal marginal loss in the objective value
of Equation (5.3). This is repeated until we have a partition that satisfies the cardinality
constraint k.

More formally, let Coarse(P ) be all the 1-step coarsenings of partition P = {C1, . . . , Ck}:

Coarse(P ) = {Merge(P,Ci, Cj) : 1 ≤ i < j ≤ k} ,

where

Merge(P,Ci, Cj) = P \ {Ci, Cj} ∪ {Ci ∪ Cj}
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is the partition that results from P by merging Ci and Cj . Then, the greedy algorithm can
be written as in Algorithm 2. Note that the combination of sets Ci, Cj ∈ P that produce the
optimal coarsening are exactly those for which the marginal loss u(Ci) +u(Cj)−u(Ci ∪Cj)
is minimal.

Algorithm 2 Greedy response oracle clustering

Require: Set E of entities, a response oracle f , utility function u, k
Initialization: G = P0 = {{e} : e ∈ E}
while |G| > k do
G← argmaxP∈Coarse(G) u(P )

end while
return G

A naive implementation of this algorithm must compute the marginal loss for all com-
binations Ci, Cj ∈ P on each of the |E| − k iterations. This implementation would require
O(|E|3) calls to the oracle. By noticing some structure in the computation, we can use mem-
oization to improve this. After computing the marginal loss for all combinations Ci, Cj ∈ P
of candidate merges on the first iteration, the marginal losses for all candidates can be up-
dated after each merge with at most O(|E|) calls to the response oracle. If Ci and Cj are
merged, we need only compute the marginal losses for all pairs of clusters that involve the

new cluster Ci∪Cj . This memoization implementation only needs a total of O(|E|2) calls to
the oracle. Additionally, since we know that the marginal loss is always nonnegative, we can
lazily update the marginal losses (only evaluating them while no zero loss candidate exists)

to further reduce computation. Finally, each marginal loss computation is independent from
the others and therefore amenable to parallelization.

Unlike clustering algorithms where the desired number of clusters k needs to be speci-
fied in advance (e.g., Lloyd’s algorithm for k-means), our greedy algorithm’s iterative and

deterministic nature means that it could be run a single time for |E| iterations, reporting
the partitions and objective value on each iteration. This enables users to directly evaluate
the trade-off between the objective and the number of clusters.

In the remainder of this chapter, we evaluate our greedy algorithm both theoretically,
proving approximation bounds on the solution quality, and empirically by clustering agent
strategies in toy poker games. We begin with our theoretical analysis.

5.3 Theoretical Results

Our theoretical analysis examines the worst-case behaviour of our greedy clustering algo-
rithm. Theorem 1 establishes a lower bound on the utility of a clustering produced by our
greedy algorithm, relative to the optimal clustering into k sets. Theorem 2 then shows
that this lower bound is tight (within a factor of 2) and cannot be improved substantially.
Although we provide proof sketches of these results, we refer readers to the full proofs
in “Decision-theoretic Clustering of Strategies” as they were provided by coauthors Deon
Nicholas and Csaba Szepesvári.

In this section we fix E and we denote its cardinality by m. We begin with the following
result bounding the worst-case performance of our greedy algorithm:

Theorem 1. Let u be a nonnegative valued utility function, 1 ≤ k ≤ m. Then

u(Gk) ≥ max

(
1

k
,
k

m

)
u∗k ≥

1√
m
u∗k,

where Gk is a k-element partition of E returned by the greedy algorithm.
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Proof sketch. Note that the second inequality follows trivially from

max

(
1

k
,
k

m

)
≥ min

s>0
max

(
1

s
,
s

m

)
=

1√
m
.

Hence, it remains to prove the first inequality. We prove this by separately showing that
u(Gk) ≥ k

mu
∗
k and that u(G) ≥ 1

ku
∗
k.

To establish u(Gk) ≥ k
mu
∗
k, we first prove a lower bound on the utility of a single

coarsening step involving C = argminC∈G u(C), the lowest utility element of the partition
G. Since the greedy algorithm uses the best possible coarsening on each step, this also
provides a lower bound on the utility for any single coarsening step of the greedy algorithm.
Finally, we apply this result (m− k) times to provide a lower bound on the utility of Gk.

Next we establish the bound u(G) ≥ 1
ku
∗
k on the utility for any partition G ∈ Part(E).

Observe that for C ⊆ E, u(G) ≥ u(C) since u is nonnegative and the best response for C
could be used for each C ′ ∈ G. Furthermore, for any optimal k-element partition, P ∗k , the
element C ∈ P ∗k with highest utility must contribute at least 1

ku(P ∗k ).

The next result establishes that the bound in Theorem 1 cannot be substantially im-

proved:

Theorem 2. Let k be a positive integer. For each ε > 0, there exists a nonnegative utility
function on a set of entities E of m = k2 elements and on a set R of k2 + k responses such

that if Gk is the k-element partition returned by the greedy algorithm when fed with k and
u then u(Gk)− ε ≤ 2√

m
u∗k.

Proof sketch. We will construct a matrix of size k2×(k2 +k) holding the values of the utility
function. Let E = {1, . . . , k2}, I denote the k × k identity matrix, ε > 0 and define the
k × k matrix Qε by

Qε =


2 + ε ε . . . ε
ε 2 + ε . . . ε
...

...
. . .

...
ε ε . . . 2 + ε

 .

Finally, as in Section 5.1, the k2×(k2 +k) matrix representing the utility function u is given

by

U =


I Qε 0 . . . 0
I 0 Qε . . . 0
...

...
...

. . .
...

I 0 0 . . . Qε

 .

Let C1 = {1, . . . , k}, C2 = {k + 1, . . . , 2k}, . . ., Ck = {k2 − k + 1, . . . , k2}. Note that
{C1, . . . , Ck} ∈ Partk(E). We claim that the greedy algorithm returns the k-element par-
tition Gk = {C1, . . . , Ck} while the optimal k-element partition is P ∗k = {{1, k + 1, 2k +
1, . . . , k2−k+1}, {2, k+2, 2k+2, . . . , k2−k+2}, . . . , {2k, 3k, . . . , k2}} when ε is sufficiently
small.

While these theoretical results provide guarantees about our greedy algorithm’s worst-
case performance, it can perform much better in practice. In the next section, we empirically
evaluate our greedy algorithm’s practical performance by clustering agent strategies in two
toy poker games.

60



5.4 Strategy Clustering

We demonstrate the performance of our greedy heuristic algorithm by clustering agent
strategies for extensive-form games. This experiment not only provides a valuable evalua-
tion of our algorithm, but it also highlights the potential value of such decision-theoretic
clustering techniques in generating a compact set of responses for a portfolio. We begin our
empirical analysis by describing the design of our empirical evaluation, including how we
cast this problem as a segmentation problem.

5.4.1 Experimental Design

To evaluate our greedy decision-theoretic clustering algorithm, we contrast its performance
with a k-means clustering algorithm in the two toy poker games discussed in Section 2.2:
Kuhn poker and Leduc hold’em. We start by describing how clustering agents in an
extensive-form game can be cast as a segmentation problem, and then detail our bench-
mark k-means algorithm before moving on to our empirical data.

In this setting, we seek a partition of a set E of static agent strategies that optimizes

Equation (5.1). In our experiments, we generate the agents in E by sampling 200 static
strategies uniformly at random from the strategy space. Though not constructed explicitly,
the utility matrix U can be viewed as having a column for each possible strategy and entries

u(e, r) corresponding to the expected utility of playing strategy r against static agent e. As
mentioned previously, the response oracle f(C) for a set of strategies C is the best response
to the average of the sequence-form representations of the strategies in C.

Each of our experiments contrasts our greedy algorithm with the standard k-means
clustering algorithm, i.e. Lloyd’s algorithm (Lloyd 1982), using the sequence-form represen-
tation (Koller, Megiddo, and von Stengel 1994) of an agent’s strategy as its feature vector.
We initialize the cluster centroids using the k-means++ algorithm (Arthur and Vassilvit-

skii 2007). Note that while the locally optimal clustering found by Lloyd’s algorithm may
be arbitrarily bad in terms of the k-means objective, initializing with k-means++ provides
an approximation guarantee on the solution quality. Despite this, the stochasticity of the

k-means initialization impacts which local optimum is found. In our experiments, k-means
is restarted 50 times and the clustering with the best k-means objective (i.e., minimal
within-cluster sum of squared Euclidean distances) is reported.

Note that we use the sequence-form representation as opposed to a behavioural strat-
egy representation because behavioural strategies allow for some unintuitive behaviour. To
illustrate, consider a strategy with an information set where one action is never chosen. In
sequence-form, the realization weights for the entire subtree under that action are zero, but
a behavioural strategy may have arbitrary distributions there. This could allow two strate-
gies that are identical in sequence-form to be arbitrarily spatially distant in a behavioural
strategy representation. Similarly, two behavioural strategies that differ only at a single

information set would be very spatially similar while having very distant sequence-form rep-
resentations. Although Euclidean distance between behavioural strategies has been used to
measure similarity between strategies previously in poker games (Ganzfried and Sandholm
2011), we opted for sequence-form representations because of this unintuitive behaviour.
That said, note that in undominated Kuhn poker, all action sequences use at most one of
the aforementioned parameters. Thus, in this particular case, the sequence-form represen-
tation of a strategy happens to coincide with the behavioural strategy representation.

5.4.2 Empirical Results

We begin the analysis of our greedy clustering algorithm by examining both its qualitative
and quantitative performance when clustering player two’s strategies in undominated Kuhn

poker.

61



Kuhn Poker

Figure 5.3 contrasts clusterings produced by k-means and our greedy algorithm to demon-
strate the qualitative differences in these clustering approaches. These figures visualize each
of the 200 agent strategies according to their two parameters, η and ξ. The marker shape
and colour correspond to which cluster each strategy is assigned to. As with the rock-paper-
scissors example, the boundary lines between each of the best response regions are plotted.
This partitions the strategy space into six regions each with a distinct best response. The
k-means and greedy algorithms were run with k = 6 clusters as this is sufficient to optimally
partition the strategies. Figure 5.3a illustrates how k-means tends to produce relatively
spherical clusters of similar size. Unsurprisingly, k-means’ optimization of spatial distances
results in clusters that fail to respect these boundaries. In contrast, our greedy algorithm
(Figure 5.3b) is able to exactly partition the agents according to the best response regions.

Next, we examine the quantitative performance of these algorithms in terms of the utility
lost due to responding to agents in clusters rather than as individuals (as in Equation (5.3)).
Figure 5.4a shows the loss incurred by k-means and our greedy algorithm as we vary the
number of clusters for undominated Kuhn poker. In this domain we also compute the opti-

mal clustering through enumerating all possible combinations of k of the six best responses
and then inducing the corresponding partition as per Lemma 2. Results have been averaged
over 50 trials each sampling a new set of 200 agents. The trend lines show the mean value

for the loss and the surrounding shaded region indicates the 95% confidence interval (which
is occasionally difficult to see as it is smaller than the line width). Values are in milli big
blinds per game (i.e., thousandths of the initial ante). While the greedy algorithm manages

to achieve zero loss once allowed the six clusters required to guarantee the points can be
properly partitioned, k-means is unable to reach zero loss even after being given twice as
many clusters. This result also highlights how our greedy algorithm can obtain considerably

more of the optimal clustering’s utility than is guaranteed by our worst-case approximation
bound.

Leduc Hold’em

Though Kuhn poker provides a convenient domain for visualizing strategies and best re-

sponse regions, clustering agents in such small domains can be done through direct analysis
of the game or brute force enumeration of a player’s pure strategies. Leduc hold’em bet-
ter demonstrates the value of a response oracle as the game is sufficiently large that such

enumeration is infeasible. Figure 5.4b shows similar quantitative performance results for
the domain of Leduc hold’em where strategies for player one are being clustered. Note that
the results in Figure 5.4 exploit the fact that the greedy algorithm’s performance can be
computed for each k with little additional computation (though Figure 5.4b omits values

over 64). It is clear in these results that our greedy clustering algorithm substantially out-
performs k-means. In particular, the greedy algorithm achieves approximately the same
performance with 7 clusters as k-means does with 64.

Finally, it is interesting to note the rate of improvement as we allow for more clusters.
Observe that while the greedy algorithm initially improves rapidly as we increase the number
of clusters, the rate of improvement quickly levels off and leaves a very long tail compared
to Kuhn poker. This is likely due both to the increased complexity of the game and also
the uniform random sampling of the strategy space. Unlike Kuhn poker where we would
expect each best response region to contain multiple of the 200 sampled strategies, the more

complex strategy space of Leduc hold’em likely means any given best response region is (at
best) sparsely sampled. If the agents being clustered were covered by relatively few of a
game’s best response regions, then this long tail may not be present.
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Figure 5.3: Clusters of player two Kuhn poker agents found using k-means clustering over
the sequence-form representations and our greedy heuristic algorithm (k = 6). Marker shape
and colour indicate cluster membership.
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Figure 5.4: Performance of different clustering techniques in toy poker domains.
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5.5 Summary

Agents seeking to maximize their utility may be able to improve their performance by ex-
ploiting models of other agents or entities in their environment. In these settings, clustering
techniques can be beneficial for extracting similar groups of entities. Despite the ubiquity of
spatial clustering techniques, spatial similarity may be insufficient for capturing similarity
in how an agent should respond to these groups. Instead, practitioners with utilitarian clus-
tering objectives, such as optimizing an implicit modelling agent’s portfolio, may prefer to
explicitly optimize the utility of an agent’s responses to the clusters. Although work related
to segmentation problems provide techniques to optimize for such actionable clusters, these
techniques may be computationally infeasible for domains with large response spaces.

We introduced an efficient greedy algorithm for this type of decision-theoretic clustering
that can exploit the structure of certain domains. We sketched proofs for worst-case approx-
imation bounds on the quality of solutions produced by our greedy algorithm. Finally, we
showed how to apply this technique to extensive-form games, and empirically demonstrated
the value of this approach by comparing it to k-means for clustering agent behaviours in two
toy games of poker. In the next section, we present our final contribution: an end-to-end
application of the implicit modelling approach for producing adaptive agents in human-scale

extensive-form games.
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Chapter 6

Human-scale Implicit Modelling

In Chapter 3, we presented a novel characterization of agent modelling techniques that
contrasted the explicit and implicit modelling approaches, highlighting the challenges of
each. We argued that it was unclear how agent modelling practitioners could adequately
address many of the challenges inherent in using explicit models online for human-scale

domains. Furthermore, we provided some general ideas for how agent modelling practitioners
could build and use a portfolio to produce an implicit modelling agent for such domains.
However, we deferred specific details and empirical validation of our implicit modelling agent

so we could use concepts from our earlier contributions in building our portfolio.
In this chapter, we detail how we address the challenges of using an implicit model in

human-scale extensive-form games and empirically validate the approach. Poker provides

a natural domain for experimental validation of these techniques. Since human experts
are known for quickly adapting to other players, this sets a high bar for agent modelling
techniques to strive for. We empirically validate our approach using variants of Texas

hold’em poker, a complex domain where explicit modelling has generally been unsuccessful
against sophisticated agents.

With a focus on statistical significance, yearly competitions since 2006, and numerous
competitors worldwide, the Annual Computer Poker Competition (ACPC) is the premier

venue for computer poker research. In addition to running the yearly competition, the
ACPC provides public access to the results, logs, and participant descriptions from past
events on its website (ACPC 2015). Furthermore, following each competition, the ACPC

hosts a benchmark server that participants can use to evaluate against agents from that
year’s competition. The ACPC organizers have our gratitude for continuing to provide
these services to the community, as all of them were central in the construction and evalu-
ation of our implicit modelling agents. We present results against agents from several prior
years of ACPC events in each of the three Texas hold’em poker variants used in the compe-
tition (described in Section 2.2). Specifically, we evaluate implicit modelling agents in the

competition’s total bankroll events, which highlight agents’ abilities to model and adapt.
We begin our empirical validation by using the domain of heads-up limit Texas hold’em

for a case study of implicit modelling in human-scale settings. This case study presents
both controlled experiments, where we evaluate implicit modelling agents relative to sev-
eral baseline approaches, and experiments against agents from the 2011 ACPC benchmark
server. Prior to our first set of results, we detail our implicit modelling agent end-to-end:
from building response strategies, to selecting responses for the portfolio, and finally using
online learning algorithms to combine the portfolio’s strategies during online interaction.
Subsequent evaluation provides more anecdotal validation by examining the performance
of agents that were actually submitted to prior competitions using the ACPC’s published
results. We present results from each variant, separated by the competition year, beginning
with heads-up limit Texas hold’em, followed by three player limit, and finally heads-up no-
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limit. Though details of our implicit modelling agent’s portfolio varies between the domains
and competition years, most high-level algorithm choices remain the same as our case study
agent. Prior to each result, we provide details specific to that particular agent’s portfolio.

6.1 Case Study: Heads-up Limit Texas Hold’em

Our first empirical results provide a detailed analysis of our implicit modelling framework
in the domain of heads-up limit Texas hold’em poker. At the inception of the Annual
Computer Poker Competition in 2006, heads-up limit Texas hold’em was the sole event.
Growing from its start of five competitors in 2006, this long-standing ACPC event drew
numerous competitors from around the world. This made the competition an ideal setting
for our agent modelling task, as it provided a long history of competitions that could furnish
us with data for diverse and increasingly sophisticated agents.

We show that our implicit modelling approach outperforms several other baseline ap-
proaches and that an agent using the framework would have won the 2011 Annual Computer
Poker Competition’s total bankroll competition. The winner of this event is the agent with
the highest expected winnings against all other competitors in the event1. The implicit

modelling agent design and empirical results presented here were originally published as
“Online Implicit Agent Modelling” (Bard et al. 2013).

6.1.1 Agent Design

As discussed in Chapter 3, there are several key questions that must be addressed in con-

structing an implicit modelling agent. Specifically, how should practitioners build an ef-
fective portfolio and subsequently use the portfolio online? We discuss each part of this
question in turn, providing the techniques used in this case study and for parts of our
subsequent ACPC submissions.

Building a Portfolio

With performance in the Annual Computer Poker Competition as our goal for these ex-
periments, we chose to use data from past competitors to generate our responses. To keep

training data and testing opponents separated, we used logs from the 2010 ACPC for gener-
ating our response strategies. This provided data for 13 different agents, each with a total of
at least 8.4 million full information hands (i.e., no missing card information) against other

competitors from that year.

Robust Responses. The data for each individual agent was used with Johanson and
Bowling’s (2009) DBR technique to compute a robust response. As we are dealing with
a human-scale game, DBR requires an abstraction choice for both the opponent and the
response strategy. As we showed in Section 4.2, choosing these abstractions asymmetri-
cally can yield substantially better DBR strategies. To mitigate sparsity in the opponents’
frequentist models, we use the coarse 5-bucket perfect recall percentile E[HS2] card ab-
straction introduced in Section 4.1.1. Abstractions for both the robust response and the
opponent’s response used a card abstraction somewhat smaller than the strongest entries
in the actual 2011 competition. The abstraction clusters cards into 9,000 buckets using
k-means for each round after the preflop, forgetting earlier buckets. On the flop and turn,
clusters are formed based on the earth mover’s distance between hand strength distribu-
tions, while opponent cluster hand strength features are used for clustering on the river.

Johanson and colleagues’ (2013) provide further details and evaluation of this imperfect

1Following the 2012 ACPC, the evaluation of the total bankroll event changed. We defer discussion about
that change and its ramifications until Section 6.2.1
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recall abstraction under the name “IR KE-KO 169-9000-9000-9000”. DBR also requires
the specification of the Pmax parameter to control the trade-off between the response’s ex-
ploitation and exploitability. We tuned this parameter to generate responses that were
exploitable for approximately 100 mbb/g (milli big blinds per game) by a best responding
agent trained in the “IR KE-KO 169-9000-9000-9000” abstract game. This threshold was
kept relatively low to ensure that any of the responses could be used without substantial risk.

Pruning Responses. While we can generate a robust response from every past inter-
action, it may not be wise to include all such responses in the portfolio. An overly large
portfolio has two drawbacks. First, it adds computational burden in order to estimate the
utilities of every strategy in the portfolio after every hand. Second, and more importantly,
both theoretical bounds and empirical practice of bandit-style algorithms (such as Exp3G)
show regret growing with the number of available bandit arms. Too many arms simply
requires too much exploration before exploitation can reliably occur. Furthermore, each
additional response may not be adding much to the overall exploitive power of the portfolio
if other similar responses are already included. Finding a manageably-sized portfolio that
still achieves broad exploitation possibilities is the final step in our portfolio construction.

Generating a portfolio that efficiently covers the space of other agents’ behaviours can

be posed as the same weighted maximum coverage optimization that we discussed in Chap-
ter 5. Specifically, we would like to find some small subset R′ of our entire set of generated
responses R that retains as much of the exploitive power as possible. However, unlike the
previous segmentation problems, we lack a “ground truth” objective. This is not only due

to uncertainty about which agents we will eventually encounter, but also because we cannot
compute a given portfolio’s exploitive power without using our dynamic agent to interact
with the other agents. As such, we will need a proxy objective for the portfolio’s exploitive

power.
We define this proxy objective function on portfolios to be the total expected utility the

portfolio would obtain if the implicit modelling agent acted according to the best response

in the portfolio when playing each of a given field of agents (i.e., the response with the
maximum expected utility for the agent at hand). Yet, we still need a field of agents
to formally define our objective. This is where we can use the mimic strategies that are

generated as a by-product of DBR. Our objective is then the total expected utility achieved
against all of the generated mimic strategies if we can optimally choose the portfolio’s
utility-maximizing response for each mimic.

This is similar to the maximum coverage view of our earlier strategy clustering problem,

shown in Equation (5.2), except the space of responses is restricted to the DBR strategies.
As in that problem, when the number of responses is sufficiently small we can optimally
solve the optimization through brute force enumeration. When such an optimal solution is
infeasible, Nemhauser and colleagues’ (1978) greedy heuristic in Algorithm 1 can also be
used to provide good approximate solutions.

Alternatively, one could attempt to use the decision-theoretic clustering technique we
introduced in Chapter 5 to reduce the size of the portfolio. Similar to our proxy objective, we
could cluster the agents’ mimics and subsequently build DBRs to each cluster. This would
allow us to cluster the strategies according to the full space of responses rather than merely

the DBR strategies. However, as this approach requires a quadratic number of best response
computations, it rapidly becomes infeasible for human-scale problems. Unfortunately, since
we did not realize the connection between the partitioning and maximum coverage views
of segmentation problems until after the 2011 benchmark server was retired, our results do
not employ our decision-theoretic clustering technique.

If computational resources limit the number of responses then this can serve as our car-
dinality constraint and stopping condition. Alternatively, the marginal increase in value

for including each additional response can provide a guide: stopping once the diminishing
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returns becomes too small. Our experimental results show the performance of our implicit
modelling approach using two different portfolios: a portfolio of all of the responses (ex-
cept the responses to our own 2010 submission to the ACPC), and a smaller four-response
portfolio generated by this greedy approximation to the maximum coverage problem. With
portfolio construction completed, we move on to addressing how our implicit modelling
agents use their portfolio during online interaction.

Using a Portfolio

We apply Exp3G (Kocsis and Szepesvári 2005) directly to our task of combining the re-
sponses in our portfolio based on each response’s expected total reward2. In our experiments,
we make two small changes to Exp3G. First, rather than acting according to a single ex-
pert sampled from Exp3G’s distribution, we act according to the weighted mixture of the
experts. Note that since our expert responses are extensive-form strategies instead of a dis-
tribution over single actions, we must average the strategies’ action sequence probabilities
when mixing the experts. Second, instead of uniform exploration over the experts, we force
the weight of each expert to be at least some minimum value, bounding each expert’s weight
in the mixture away from zero. Both approaches guarantee the acting strategy has non-zero
probability on every action sequence played by any response in the portfolio.

We chose Exp3G parameter settings by performing experiments against our generated
mimic strategies using the small portfolio. One of the best settings used a temperature
parameter of η = 0.025 and a minimum probability of 2%, although the performance was

largely insensitive to these parameter choices, with broad ranges of parameters giving similar
results. After a smaller experiment verifying this choice of parameters using the large
portfolio, we used these parameter settings in all subsequent experiments.

Since Exp3G leaves the utility estimation mechanism unspecified, we must still choose
an estimation procedure. Our agents’ estimators use Bowling and colleagues’ (2008) combi-
nation of off-policy importance sampling and imaginary observations. Their work explored

the effects of various types of imaginary observations and value functions for strategy eval-
uation. For our experiments we create observations for all possible private cards and early
folding opportunities. Early folds are provably unbiased, and although the all-cards tech-
nique can create bias under partial information (due to card-replacement effects and not

knowing which cards the other agent holds) prior results in heads-up limit Texas hold’em
suggest this bias is small while providing substantial variance reduction (viz., Bowling et al.
2008, Table 3). Furthermore, we use the basic value function (i.e., the “money” exchanged

at the end of a game), as opposed to the DIVAT or bet-call DIVAT techniques examined
by Bowling and colleagues (2008), to avoid introducing additional bias in our partial in-
formation setting3. Finally, note that our choice of exploration parameters ensures Exp3G
will sample according to a strategy that mixes between all of the strategies in the portfolio,
thereby avoiding potential bias from off-policy importance sampling. We depict the entire
process of our implicit modelling agent in Figure 6.1.

6.1.2 Empirical Results

While the ultimate validation is comparing the approach in the context of the 2011 ACPC

entrants, we begin our experimental validation in a number of simpler settings. The first is a

2Throughout our original exposition in “Online Implicit Agent Modelling” (Bard et al. 2013), we related
our approach to a slightly modified version of Exp4. Though still accurate, Exp3G is more closely related
to our approach and so we use it here.

3Note that the DIVAT-based estimators are only unbiased when full information is available, such as
evaluating a match post hoc using complete logs. When evaluating a portfolio online, full information
would not be available. Applying additional variance reduction techniques that would be unbiased for an
online setting is a direction for future work, which we discuss in Section 7.2.2
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Figure 6.1: Implicit modelling process. The portfolio is constructed offline from robust
responses to agent models and pruned with a (submodular) maximum coverage optimization.
It is then used online by a bandit algorithm in tandem with variance reduction techniques.

comparison against the four mimics for which the small portfolio’s responses were designed.
This experiment gives us an idealized case where we avoid any concerns about being unable
to respond to one of the opponents. Furthermore, because the opponents include two of

the most exploitable agents from the 2010 ACPC, this experiment is an ideal scenario for
exploitation. In all of the following stacked bar charts, the total bar height indicates the
expected winnings against the field of opponents while the bar’s composition specifies the

proportion of the mean won by playing against each specified mimic. Note that the vertical
order of the bar’s components is the same as the order in the legend. Expected winnings
are in milli big blinds per game (mbb/g). The match length for all experiments was 3,000
hands: the same length as the 2011 ACPC event. 95% confidence intervals on all of the

expected winnings values are ±7mbb/g or smaller, except where noted. Essentially, visible
differences in the graphs are statistically significant.

Versus Small-Portfolio Mimics

The results for this simple setting are in Figure 6.2. Our implicit modelling agent using the
small portfolio (labelled Small-Portfolio) outperforms our range of other baselines. First,
note that its winning rate is nearly double that of a fixed Nash equilibrium strategy using a
considerably larger abstraction. Furthermore, the Small-Portfolio agent improves upon any
individual response from the portfolio (ASVP, GS6 iro, LittleRock, longhorn) by at least
19.9%, demonstrating that it is able to tailor its strategy online to the opponent at hand. It
also outperforms the Small-Static agent: a baseline also built using a DBR, but responding
to a single aggregate model built with the same data used for the small portfolio’s models.
This suggests that the mimics are exploitable in at least partially independent ways and
that modelling them as a single aggregate player harms the response’s exploitive power.

Small-Portfolio also improves on an implicit modelling agent that uses upper confidence
bounds (UCB) instead of our modified Exp3G algorithm to select from the small portfolio.
This is despite the fact that stochastic bandit algorithms like UCB are, in one sense, bet-

ter tailored to this particular experiment as they correctly model the reward distributions
produced by the static mimics. However, since UCB selects and acts according to a single
strategy from the portfolio rather than a mixture, we cannot ensure that the support of the
strategy being played is a superset of the supports for the portfolio’s individual responses.
Therefore we cannot estimate the utilities of the off-policy strategies in the portfolio without
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Figure 6.2: Performance versus mimics corresponding to the four responses in the small
portfolio. Bar components are in the same order as the legend.

potentially introducing bias. Note that this UCB based agent exhibited higher variance in
its results, and a 95% confidence interval on its results are approximately ±13 mbb/g.

Finally, the smaller portfolio also outperformed the larger portfolio (Big-Portfolio). This
demonstrates that even though Big-Portfolio contains a superset of the responses, there is
a potential learning cost associated with including extraneous strategies in the portfolio.

Versus Big-Portfolio Mimics

Next, we evaluate the agents against the entire field of 2010 ACPC mimics. In contrast to
the last experiment, the Small-Portfolio agent no longer has a response associated with every
opponent, while the Big-Portfolio agent still does. The results are in Figure 6.3. Once again,
the small portfolio agent outperforms the equilibrium, now by approximately 65%. Against
this field, both Exp3G-based implicit modelling agents outperform the aggregated Small-
Static baseline agent and the UCB based implicit modelling agent. Despite the reduced
number of responses, the Small-Portfolio agent’s performance is within noise of the Big-
Portfolio agent. These empirical results support our intuition for the benefits of pruning
back the portfolio to a manageable size.

Versus 2011 ACPC Agents

Finally, we validated the implicit modelling approach using the 2011 ACPC benchmark
server. The benchmark server allows previous competitors to run matches against submis-
sions from that year. Except for one agent that failed to run on the server, all other competi-
tors were available. Table 6.1 shows the performance of the Big-Portfolio and Small-Portfolio
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Figure 6.3: Performance versus mimics corresponding to the responses in the large portfolio.
Bar components are in the same order as the legend.

AVG
Calamari 276± 4

Sartre 270± 6
Hyperborean 224± 6

Slumbot 214± 6
Feste 213± 5
ZBot 205± 6

Patience 204± 6
2Bot 187± 6

LittleRock 183± 6
GGValuta 147± 6

AAIMontybot −31± 12
RobotBot −36± 9

GBR −54± 13
player.zeta −189± 16

Calvin −246± 12
Tiltnet −287± 10

POMPEIA −541± 6
TellBot −738± 16

(a) versus 2011 ACPC

AVG
Big-Portfolio 290± 11

Calamari 275± 5
Sartre 268± 8
Feste 211± 6

Slumbot 209± 7
Patience 207± 7

ZBot 205± 8
2Bot 188± 8

LittleRock 182± 9
GGValuta 142± 7

AAIMontybot −28± 17
RobotBot −42± 14

GBR −58± 16
player.zeta −205± 21

Calvin −243± 13
Tiltnet −295± 13

POMPEIA −548± 9
TellBot −757± 17

(b) versus Big-Portfolio

AVG
Small-Portfolio 317± 5

Calamari 277± 4
Sartre 272± 6

Slumbot 216± 6
Feste 215± 5
ZBot 207± 6

Patience 205± 6
2Bot 187± 6

LittleRock 185± 6
GGValuta 147± 6

AAIMontybot −33± 12
RobotBot −41± 10

GBR −61± 13
player.zeta −203± 15

Calvin −252± 12
Tiltnet −300± 9

POMPEIA −553± 6
TellBot −783± 15

(c) versus Small-Portfolio

Table 6.1: 2011 ACPC total bankroll results for heads-up limit Texas hold’em. Results
include those from original ACPC matches and matches played on the benchmark server
against the Big-Portfolio and Small-Portfolio implicit modelling agents. 95% confidence
intervals are shown and values are in milli big blinds per hand.
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agents from the previous two experiments contrasted with the competition’s original results.
Our original submission to the competition in 2011 placed third with a total bankroll of

224 mbb/g with a 95% confidence interval of 6 mbb/g. Note that these results for the original
competitors have been recomputed to exclude the agent that failed to run on the benchmark,
although it did not change the outcome of the competition. To compute the results for
our implicit modelling agents, data from our original agent “Hyperborean” (Hyperborean-
2011-2p-limit-tbr) was excluded and new data was substituted for Hyperborean by playing
matches on the benchmark server with our implicit modelling agents, Big-Portfolio and
Small-Portfolio. The values for each agent’s total bankroll in the modified competitions
were recomputed using the data from these new matches combined with the remaining
original data.

In this experiment both Big-Portfolio and Small-Portfolio do not have any responses
tailored for the specific opponents since all responses were trained on data from 2010 ACPC
agents. First, observe that both implicit modelling agents would have won the competi-
tion. Although the Big-Portfolio agent did not win by a statistically significant margin,
Small-Portfolio wins the event by greater than the 95% confidence margin. These results

demonstrate that the implicit modelling framework enables modelling and improved utility
even against an unknown field of agents. Moreover, while the technique still outperforms
other agents with a larger portfolio, pruning the portfolio of redundant or low value re-

sponses can improve performance further still. We continue our evaluation by examining
the performance of implicit modelling agents that we submitted to subsequent ACPC events.

6.2 Annual Computer Poker Competition Results

The remainder of the chapter examines results from past ACPC total bankroll events. Un-
like the previous results, which examined a variety of baselines and implicit modelling ap-
proaches, each of these ACPC results examine the performance of a single deployed agent

that used techniques from this work. In the ACPC’s total bankroll events (occasionally ab-
breviated as TBR), the winner is the agent with the highest expected winnings against all
other competitors in the event. However, the results of the 2012 ACPC motivated changes

in the total bankroll winner determination mechanism, which we discuss following our pre-
sentation of the 2012 results. In contrast, the ACPC’s bankroll instant runoff (or IRO)
events rank competitors by iteratively computing total bankroll scores for the field of agents

and removing the agent with the worst score from the field. This winner determination
mechanism attempts to elicit strong equilibrium agents. In addition to examining the per-
formance of our implicit modelling agents in the total bankroll events, we also compare the
performance of our implicit modelling agent with the instant runoff Hyperborean entries
submitted by the University of Alberta’s Computer Poker Research Group.

Agents submitted to the ACPC must abide several technical restrictions designed to
provide as level a playing field as possible. Agents must run on machines provided by the

ACPC and are restricted in how much time they can spend computing. Although this
does not prevent competitors from exploiting superior resources prior to the competition,
all competitors have access to the same quality of hardware and disk space during the
competition itself. For each match, agents are allowed no more than 10 minutes during
startup, and no more than an average of 7 seconds per hand during play (e.g., 21,000
seconds over a 3,000 hand match). This time can be spent at the agent’s discretion over
the span of the match provided they take no longer than 10 minutes to make any single
action. In addition to making the competition practical to evaluate, these time restrictions
also ensure agents – including our implicit modelling agents – act at a pace appropriate for

play with humans.
To evaluate the agents, duplicate matches between each combination of agents were
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played, with each agent’s memory being wiped prior to each match. Matches consisted
of 3,000 hands, as in our case study, except for the 2013 3-player limit Texas hold’em
competition where matches were 1,000 hands. Common random number seeds for the cards
were also used to reduce variance. To streamline our exposition, we highlight specific data
from past competitions as necessary and reference the appropriate full competition results
included in Appendix A. Furthermore, we only provide high-level details of the strategies
used in our agents’ portfolios, with specific details (e.g., abstraction choices) presented in
Appendix B. Our first implicit modelling agent submitted to the ACPC continues where
our heads-up limit Texas hold’em case study ended.

6.2.1 Heads-up Limit Texas Hold’em

Our ACPC results for heads-up limit Texas hold’em examine the performance of our implicit
modelling agents against competitors spanning from 2012 to 2014, which is the last year
the event was held. We discuss the competitions chronologically: presenting our agent and
salient results along with some discussion about changes to the competition’s format.

2012

Agent Design. The Hyperborean agent submitted to the 2012 total bankroll competition
consisted of seven abstract strategies:

1–2. Counter-strategies to opponents that always raise or always call

3. An abstract Nash equilibrium approximation

4–7. Data biased responses using coarse asymmetric models of particular opponents seen
in the 2010 (ASVP) or 2011 ACPC (RobotBot, TellBot, Tiltnet)

While it may seem naive to expect opponents to use an always raise or always call strategy,
prior competitions had agents that appeared to act this way (potentially due to bugs in
the agent’s code). The responses to these strategies were only used when the opponent

was detected to be always raise or always call. Otherwise, the agent employed an implicit
modelling approach, combining a portfolio of the remaining five strategies in the same way
as our case study. Further information about the strategies, such as abstraction details, are
available in Appendix B.1.1.

Empirical Results. Similar to the results shown in our case study from the 2011 bench-
mark server, Table 6.2 shows the average bankroll of each of the 2012 competitors. Though
our agent’s ranking was a disappointing fourth, the results from this competition were inter-
esting because the magnitude of every agent’s bankroll was effectively an order of magnitude
smaller than in past competitions. Moreover, as the full cross table of results in Table A.1
shows, this occurred across all pairs of agents and was not merely an artifact of computing
an average bankroll.

There are a couple reasonable explanations for this outcome. First, the field of agents
may have been exploitable, but no agent was able to tailor an exploitive response to its op-
ponent during the competition. Alternatively, due to progressively better Nash equilibrium

approximations, the field of agents may have been largely unexploitable. This possibility is
supported by the participants’ descriptions of their agents: many of whom indicated they
used CFR or LP techniques to solve the game, or imitated prior strong agents. In fact,
the top three agents all used CFR variants to solve the game. Whether it was due to the
prevalence of Nash equilibrium approximation techniques, or insufficient incentives for com-
petitors to deviate from equilibrium strategies, the total bankroll competition was showing

symptoms that it was no longer eliciting agents capable of being modelled and exploited.
In an attempt to address this, the total bankroll events were modified in subsequent years.
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AVG
slumbot 29± 3

little.rock 14± 3
zbot 13± 3

hyperborean.tbr 7± 2
patience 7± 3

neo.poker.lab 5± 3
entropy 4± 3

sartre 2± 3
huhuers −8± 2
feste.tbr −34± 4
little.ace −38± 3

Table 6.2: Average winning rates from the 2012 ACPC heads-up limit Texas hold’em total
bankroll competition. Results are in mbb/g with 95% confidence intervals shown.

Competition Changes. Following the 2012 ACPC, the total bankroll events were changed

in two ways. First, to promote more exploitive agents, the total bankroll event in the heads-
up limit Texas hold’em competition was seeded with exploitable “chump” agents similar to
what was done in the RoShamBo Programming Competitions (Billings 1999). Including

these chumps provides competitors with some incentive to deviate from an equilibrium
strategy. However, unlike the RoShamBo competition, generating a variety of chumps that
require distinct responses to exploit them is not trivial. Although each of the ACPC’s total

bankroll events may have benefited from chump agents, they were only incorporated into
the heads-up limit competition due to the difficulty in constructing such agents.

Second, a limit was imposed on the possible winnings from any given agent. That is, for

a given limit X, if in a match between agents A and B, A wins at a rate of Y > X, then
A’s winnings are capped at X and B’s losses are capped at −X when computing the total
bankroll. The rationale for such a cap was to mitigate the impact of “kingmakers” on the
competition’s outcome and encourage agents that were capable of exploiting a wider range

of opponents. Buggy agents (e.g., POMPEIA in the 2011 heads-up no-limit competition)
were a common source of such kingmakers in prior competitions and effectively decided the
outcome of several total bankroll events. With the introduction of chumps, the cap also

serves to reduce the risk of having a single chump decide a competition’s outcome. The
cap was chosen to be the value against an always fold strategy (i.e., 750 mbb/g) because
it provides a reference strategy that is simply described, trivial to employ, and generally
regarded as being terrible. With more than two players, it is less obvious how to cap and
redistribute winnings across multiple players. Although a cap of 750 mbb/g was used in
the 3-player limit game, despite not being the value of an always fold strategy, it had no

actual impact on the results. For other events, we will examine how this cap impacted the
outcome of the competition. Our next results examine the first ACPC event including both
capped winnings and chumps.

2013

Agent Design. The Hyperborean implicit modelling agent submitted in 2013 was similar
to our agent from the 2012 competition. The portfolio consisted of four DBRs to the same
agents as in the 2012 portfolio (i.e., ASVP, RobotBot, TellBot, Tiltnet), except with a more
aggressive value for each DBR’s Pmax parameter and different asymmetric abstractions. For

further details about these DBR strategies, see Appendix B.1.2. This year’s agent removed
the Nash equilibrium approximation from the portfolio as the new portfolio performed sim-
ilarly to the 2012 portfolio against a strong equilibrium-based agent (i.e., the 2012 ACPC
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AVG
marv 200

feste tbr 179
hyperborean tbr 175

zbot 151
littlerock 144

propokertools 143
neo poker lab 143
HITSZ CS 13 90

chump12 24
unamur tbr −60

liacc −229
chump1 −391

slugathorus −569

(a) Capped

AVG
feste tbr 210

marv 200
hyperborean tbr 175

zbot 151
littlerock 144

propokertools 143
neo poker lab 143
HITSZ CS 13 114

chump12 24
unamur tbr −60

liacc −166
chump1 −391

slugathorus −687

(b) Uncapped

Table 6.3: Average winning rates from the 2013 ACPC heads-up limit Texas hold’em total
bankroll competition. Results are in mbb/g.

heads-up limit instant runoff Hyperborean agent). Furthermore, the special handling for

always call and always raise opponents was removed as experiments found that our agent
performed near or above the new winnings cap against such opponents regardless.

Empirical Results. We begin our discussion of the results by examining the general
condition of the competition after the changes announced in 2012. Table 6.3a shows that the

average bankrolls from the official results (now using the aforementioned cap of 750 mbb/g)
returned to a similar magnitude as heads-up limit competitions prior to 2012. The full cross
table of results, shown in Table A.2, suggests this is due both to the newly introduced chump

agents along with more exploitable competitor agents (i.e., HITSZ CS 13, unamur tbr, liacc,
and slugathorus).

While these agents provided a more rewarding environment for exploitive agents, it is
interesting to note that the weaker agents generally lost badly against equilibrium-based

agents (e.g., zbot and littlerock) even though a Nash equilibrium does not directly attempt
to exploit such suboptimality. For example, the most unamur tbr lost against any agent
was 213 mbb/g. Against zbot, a CFR-based agent that tied for third place in the bankroll

instant runoff event, it lost at a rate of 187. We can observe similar, though less extreme,
results for the other exploitable agents. Slugathorus, for instance, lost to zbot at a rate
of 449 while the most it lost by was 1,564 (which appears in the uncapped results shown
in Table A.4). However, the competition’s cap limits this to 750, leaving a much smaller
margin of benefit for exploitive agents.

Unamur tbr and slugathorus highlight challenges for both competitors and competition

organizers alike in agent modelling tasks like the total bankroll events. For competition
organizers aiming to elicit ideal agents that adapt to the other agents at hand, designing an
evaluation mechanism is nontrivial. The evaluation should provide sufficient discriminatory
power to distinguish between adaptive agents and stationary strategies. While seeding the
competition with chump agents sought to provide this power, the incentives for adaptive
agents relative to an equilibrium strategy often appeared relatively minimal in this competi-
tion. Admittedly, since each agent’s true exploitability is unknown4, competitors may have
simply failed to discover and exploit vulnerabilities. However, even when vulnerabilities
were exploited, as in slugathorus’ case, the benefit of such exploitation was muted by the

4Although computing a fixed strategy’s real game exploitability is feasible due to Johanson and col-
leagues (2011), the agents’ strategies may not be fixed and are not publically available for evaluation.
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marv zbot neo poker lab littlerock
hyperborean tbr −37± 8 −26± 9 −32± 10 −11± 9
hyperborean iro 15± 6 10± 4 −11± 6 22± 7

propokertools HITSZ CS 13 liacc slugathorus AVG
hyperborean tbr −8± 9 159± 9 527± 21 617± 20 149
hyperborean iro 27± 8 157± 11 390± 15 441± 15 131

Table 6.4: Comparison of Hyperborean agents submitted to the instant runoff and total
bankroll competitions of the 2013 ACPC heads-up limit Texas hold’em event. Results are
in mbb/g with 95% confidence intervals shown.

competition’s winnings cap. Designing an evaluation mechanism that strikes an appropriate
balance between the disparate goals of eliciting agents that maximize utility – even if that
utility comes from a single kingmaker – or agents that perform well against a broad range
of opponents, such as equilibrium-based agents, is an ongoing challenge for the ACPC.

Competitors are also forced to proverbially thread this needle. As in the design of robust
response strategies, being excessively exploitive may expose an agent to unnecessary risk
against strong agents for little or no benefit. This is particularly relevant with the winnings
cap, which artificially changes this exploitation-exploitability trade-off. The performance

of feste tbr illustrates this challenge. A less aggressive agent may have still hit the cap
against both liacc and slugathorus, while potentially suffering smaller losses against the
competition’s stronger agents. Though the robust response techniques used to generate our

portfolio have parameters to tune this aggression, uncertainty about the behaviour of other
agents prior to the competition typically means such tuning is only done heuristically.

Next, we examine the performance of our implicit modelling agent, hyperborean tbr. Ta-

ble 6.3a shows that with the winnings cap, our agent had the third highest average bankroll
behind marv (whose name was intended to be Bacalhau) and feste tbr. To evaluate statis-
tical significance, a bootstrap technique was used in place of the prior confidence interval

based evaluation. The bootstrap technique resamples multiple sets of matches from the
actual matches that were run. By evaluating the outcome (in this case, each agent’s average
bankroll) for each resampled “competition”, we get a sense of the stability of the results.

Specifically, one can answer how frequently agent A’s average bankroll exceeds agent B’s.
The ACPC declares A’s win statistically significant if this frequency is at least 95%. Sta-
tistical significance is evaluated in this manner for the remainder of our ACPC results. For
example, Table A.3 shows the proportion of 1,000 resampled competition outcomes that the

row player beat the column player. While marv beats feste tbr with statistical significance,
feste tbr and hyperborean tbr could not be separated with statistical significance.

Table 6.3b shows the competition’s results if there was no winnings cap. Though four

agents average bankrolls were impacted by the cap, it only affected the relative ranking of
feste tbr. Without the cap, feste tbr would have placed first, followed by marv, and hyper-
borean tbr, with each result being statistically significant (see Table A.5 for the bootstrap

analysis). Examining the full uncapped results (Table A.4) highlights some shortcomings
of our implicit modelling agent. Most notably, liacc and slugathorus were exploitable for
considerably more than our agent managed. While this could be caused by slow adaptation
or an overly passive portfolio of strategies, it may also be symptom that the portfolio is
providing insufficient coverage over the space of opponent strategies.

Finally, we can also gain some insight about our agent by comparing it to hyper-
borean iro, which took second place in the bankroll instant runoff event. Table 6.4 shows
the performance of both agents against their mutual opponents. Note that the IRO and
TBR agents from Feste and Unamur have been omitted since they did not participate in
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AVG
Escabeche 173

SmooCT 152
Hyperborean 143

Feste 141
Cleverpiggy 133

ProPokerTools 129
652 125

Slugathorus 123
Lucifer 8

TerribleTerrance 4
PokerStar −89

HITSZ CS 14 −201
chump9 −324
chump4 −515

(a) Capped

AVG
Escabeche 174

Feste 168
Slugathorus 164

SmooCT 157
Hyperborean 153
Cleverpiggy 133

ProPokerTools 129
652 125

Lucifer 8
TerribleTerrance 4

PokerStar −89
HITSZ CS 14 −201

chump9 −342
chump4 −581

(b) Uncapped

Table 6.5: Average winning rates from the 2014 ACPC heads-up limit Texas hold’em total
bankroll competition. Results are in mbb/g.

both events. Unsurprisingly, hyperborean iro’s Nash equilibrium approximation, which used
the much larger abstract game described in Appendix B.1.2, performed marginally better

against stronger agents. Despite this, our implicit modelling agent yields a 13.3% greater
average bankroll by considerably outperforming hyperborean iro against liacc and slugath-
orus. One potential solution for such vulnerability to stronger equilibrium-based agents is
to increase the size of the abstraction used for the opponent’s response in the portfolio’s

DBRs. However, as we showed in Figure 4.4, while this tends to improve a DBR’s worst-case
performance, it can lead to worse exploitation if our frequentist model is sparsely populated.

2014

Agent Design. Our 2014 implicit modelling agent, simply called Hyperborean (as no

bankroll instant runoff event occurred this year), used a portfolio consisting of four strategies
using asymmetric abstractions:

1–2. The data biased responses to Tiltnet and ASVP from the 2013 portfolio

3. A data biased response to data from Feste agents since 2011

4. An asymmetric abstract Nash equilibrium approximation designed to exploit mistakes

made by equilibrium-based agents using smaller abstractions of the game.

Additional implementation details about these strategies are available in Appendix B.1.3.

Empirical Results. As before, Table 6.5 shows the capped and uncapped results from
the 2014 competition. In the official capped evaluation, Hyperborean placed third be-
hind Escabeche, the seafood-named successor to marv (Bacalhau) that took first place, and
SmooCT. The ordering of these three agents was statistically significant, but Hyperborean’s
win over the fourth place Feste was not (beating it in only 89.4% of the bootstrap sam-
ples). Full cross tables of results are shown in Table A.6 along with bootstrapped statistical
significance in Table A.7.

Unlike the 2013 results, the cap played a much larger role on the agent rankings. Without

the cap, Feste moves from fourth to second, Slugathorus moves from seventh to third, while
SmooCT and Hyperborean get pushed down into fourth and fifth, respectively. Though
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Escabeche and Feste beat most agents beneath them with statistical significance, neither
beat Slugathorus with significance (though Escabeche was very close, winning 93.3% of the
time). SmooCT’s win over Hyperborean also failed to reach the 95% threshold for statistical
significance, winning in 82.3% of the bootstrap samples. For the complete bootstrap anal-
ysis, see Table A.9. The uncapped cross table of winnings in Table A.8 shows that all five
of the above agents reached the cap against chump4, while Slugathorus was the only agent
to exploit chump9 for more than the cap. Moreover, it shows that Hyperborean failed to
exploit chump9 effectively: winning only 272 mbb/g on expectation compared to Slugatho-
rus’ 984 mbb/g. As in the 2013 competition, where we failed to exploit liacc or slugathorus
as well as other agents, this may indicate that our portfolio provides insufficient coverage
over the space of opponent strategies.

Marv Andersen’s agents (including Calamari in the 2011 ACPC) have consistently man-
aged to be successful in the total bankroll events by striking an effective balance between
performance against strong agents and capitalizing on exploitable agents. Interestingly, his
agents manage this despite being stationary strategies generated by training a neural net
to imitate the play of previous ACPC winners (ACPC 2015, participants listings). Unfor-

tunately, further details about his approach have not been published, making it is difficult
to ascertain why this approach provides broad efficacy. In particular, if the neural nets
have been trained on prior winners of the bankroll instant runoff events, which tend to be

equilibrium-based strategies, then it is unclear why the resulting strategies tend to exploit
opponents more effectively than the strategies they are based on.

While Marv’s agents are certainly exploitive and can be viewed as using agent modelling
since they aim to imitate prior agents, they also seem unsatisfying since they are not adap-

tive. If the scientific goal of the ACPC’s total bankroll events is to elicit adaptive agent
modelling techniques, then it is unclear how the competition can be designed to better
promote such techniques. Although the lack of a clear direction on how to redesign the

heads-up limit total bankroll event led to its indefinite discontinuation, the game remains
an interesting domain for agent modelling research.

6.2.2 3-player Limit Texas Hold’em

The ACPC’s 3-player limit Texas hold’em events offer competitors an interesting challenge:
even if competitors could approximate a Nash equilibrium strategy, it is unclear how useful

this solution concept would be since it only guarantees that no player can unilaterally deviate
to improve their utility. In the ACPC’s two-player poker variants, this provides a powerful
worst-case performance guarantee. However, when multiple agents can collude together, a

Nash equilibrium may not guard against, nor take advantage of, the possibility of collusion.
While explicit collusion is typically prohibited in games like poker, agents may tacitly collude
to their mutual benefit. For example, in the 3-player variant of Kuhn poker, Szafron and
colleagues (2013) showed how one player, acting according to their part of an equilibrium
profile, could transfer utility between the other two players. Through repeated games, two
players could learn to cooperate with each other at the expense of the third.

Our ACPC results for 3-player limit Texas hold’em examine the performance of a static

agent created using a DBR with asymmetric abstractions in the 2013 and 2014 total bankroll
events. Part of the rationale for using a static agent was that the shorter 1,000 hand matches
in the 2013 competition would provide even less time for an adaptive agent to learn. Though
this means our results do not demonstrate an adaptive implicit modelling agent, as in our
other ACPC results, it does highlight the potential value of using robust responses and
asymmetric abstractions (investigated in Chapter 4) to create strategies in domains where
collusion is possible. Note that although both of these years applied a winnings cap of 750
mbb/g to the results, it did not impact any of the results. As such, we only present the
official capped results.
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AVG
hyperborean tbr 296

littlerock 161
neo poker lab 117
HITSZ CS 13 −95

kempfer −177
liacc −302

Capped/Uncapped

Table 6.6: Average winning rates from the 2013 ACPC 3-player limit Texas hold’em total
bankroll competition. Results are in mbb/g.

littlerock
neo poker lab HITSZ CS 13 kempfer liacc

hyperborean tbr 49± 19 282± 21 157± 26 338± 43
hyperborean iro 49± 14 218± 28 143± 17 218± 37

neo poker lab
HITSZ CS 13 kempfer liacc

hyperborean tbr 278± 27 176± 31 391± 41
hyperborean iro 234± 25 150± 19 260± 37

HITSZ CS 13 kempfer
kempfer liacc liacc AVG

hyperborean tbr 385± 35 452± 47 455± 35 296
hyperborean iro 316± 30 302± 59 323± 53 221

Table 6.7: Comparison of Hyperborean agents submitted to the instant runoff and total
bankroll competitions of the 2013 ACPC 3-player limit Texas hold’em event. Results are in
mbb/g with 95% confidence intervals shown.

2013

Agent Design. The agent for the 2013 and 2014 total bankroll events used a data biased
response to aggregate data of all ACPC competitors from the 2011 and 2012 3-player limit
competitions. Asymmetric abstractions were used for the regret minimizing part of each
player’s strategy and the frequentist model used by data biased response. When constructing
a DBR, recall that one must produce a strategy for each of the position in the game. In
domains with more than two players, if we have different beliefs about the other players’
behaviours then their relative order will impact the resulting response strategy. When
training this DBR, we used the same abstractions and frequentist models for both opponents.
For additional details about how this strategy was generated, see Appendix B.2.1.

Empirical Results. We begin our analysis of the 2013 ACPC results by examining the
performance of our agent, hyperborean tbr, in the total bankroll competition. Table 6.6
shows the average winnings of each agent. Our agent is a clear winner in this competition,
achieving an expected winnings rate 84.3% greater than the second place finisher. The
full results in Table A.10 show that these winnings come from across the field of agents,

with hyperborean tbr being the most profitable (on expectation) for any combination of
agents. The entire ranking was statistically significant, with every agent beating all the
agents ranked lower than them in 100% of the bootstrap samples (Table A.11).

Comparing the Hyperborean agents submitted in the total bankroll and bankroll instant
runoff events reveals an interesting result about our DBR strategy. Richard Gibson (2014,
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AVG
Hyperborean tbr 194

SmooCT 138
KEmpfer 92

HITSZ CS 14 −150
Lucifer −274

Capped/Uncapped

Table 6.8: Average winning rates from the 2014 ACPC 3-player limit Texas hold’em total
bankroll competition. Results are in mbb/g.

SmooCT
KEmpfer HITSZ CS 14 Lucifer

Hyperborean tbr 76± 11 151± 8 214± 11
Hyperborean iro 59± 6 134± 7 138± 11

KEmpfer HITSZ CS 14
HITSZ CS 14 Lucifer Lucifer AVG

Hyperborean tbr 176± 9 240± 14 305± 10 194
Hyperborean iro 143± 8 157± 10 229± 9 143

Table 6.9: Comparison of Hyperborean agents submitted to the instant runoff and total
bankroll competitions of the 2014 ACPC 3-player limit Texas hold’em event. Results are in
mbb/g with 95% confidence intervals shown.

Section 8.4) designed the “dynamic expert strategy” (Gibson and Szafron 2011; Gibson
2014, Section 7.2) used for the hyperborean iro agent in both the 2013 and 2014 bankroll
instant runoff events. His agent’s strategy was generated using CFR-based techniques on an

abstract game generated using two different granularities of card abstraction, both of which
are considerably larger than the abstractions used by our DBR. Despite our agent’s compar-
atively small size, Table 6.7 shows that it performs on par or better than hyperborean iro

against this field of opponents: yielding a 33.8% greater average bankroll. Most notably, our
agent makes substantial gains in utility in any of the matches involving either HITSZ CS 13
or liacc, almost all of which are statistically significant based on the 95% confidence intervals.

This is likely due to the aggregate data of prior ACPC competitors providing more accurate
beliefs about the behaviour of these agents, despite neither agent playing in past compe-
titions. Note that although hyperborean tbr performs at least as well as hyperborean iro
against this field, internal experiments pitting it against hyperborean iro and the previous

2012 Hyperborean IRO agent showed hyperborean iro winning and hyperborean tbr losing
at a small but statistically significant rate (10± 2 mbb/g).

2014

Although the increase in match length from 1,000 to 3,000 hands for the 2014 competition
gave adaptive agents more time to learn, the 2013 Hyperborean agents were simply resub-
mitted for the 2014 competition. As such, we move directly to our analysis of the ACPC
results.

Empirical Results. The results from the 2014 competition in Table 6.8 echo those of 2013.
Hyperborean tbr won the total bankroll competition in 2014 with an expected winnings rate
40.1% higher than the second place finisher. Table A.12 shows that these winnings come
from the entire field again, with hyperborean tbr having the greatest winning rate of the
three players for any combination of agents. The rankings were statistically significant, with
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agents beating lower ranked opponents in 100% of the bootstrap samples (Table A.13). Fi-
nally, Table 6.9 shows us that hyperborean tbr outperforms the much larger hyperborean iro
against the entire 2014 field, and particularly in matches with Lucifer (liacc’s successor).
For each pair of opponents, except SmooCT and KEmpfer, this improvement is statisti-
cally significant, with the 95% confidence intervals on the agents’ expected winnings being
disjoint. Overall, using hyperborean tbr increased the average bankroll 35.2%.

6.2.3 Heads-up No-limit Texas Hold’em

Our final set of ACPC results showcases implicit modelling agents in the domain of heads-
up no-limit Texas hold’em poker. As we return to a two-player zero-sum domain, recall
that not only is CFR guaranteed to converge to a (abstract game) Nash equilibrium in this
setting, but the worst-case performance guarantee provided by such a solution is also more
meaningful since our opponent has no other agents to collude with. However, in contrast
to the heads-up limit variant, the large range of bet sizes available to agents in no-limit
makes the domain enormous and presents practitioners with new challenges. To combat the
game’s size, practitioners will abstract both the cards and the betting sequences: typically
abstracting the raise action to a number of bets relative to the pot size. To generate high-

quality heads-up no-limit strategies, practitioners commonly employ larger abstract games
and, in turn, more computational resources than for heads-up limit.

Since practitioners may want to evaluate several candidate strategies when designing

their portfolio, as in our heads-up limit case study, this makes building a portfolio of strate-
gies a substantial computational burden. To illustrate, practitioners may generate candi-
dates using robust responses to different agent models or by simply varying a confidence

parameter like the Pmax parameter for DBRs. Furthermore, building a full strategy profile
for each of these robust responses requires practitioners to generate a strategy from each
player’s asymmetric point of view. Therefore, even attempting to tune the Pmax parameter

for a single agent model requires at least four abstract strategies to be generated. For the
larger abstractions commonly used in heads-up no-limit, evaluating numerous candidates
rapidly becomes impractical. As such, our no-limit portfolios were created without the
same broad exploratory approach used in our heads-up limit case study.

Our ACPC results for heads-up no-limit Texas hold’em examine the performance of our
implicit modelling agents against competitors from the 2013 and 2014 ACPC. Observe that
although an agent’s exploitability could be as bad as 200,000 mbb/g in the ACPC’s heads-up

no-limit domain, as opposed to 24,000 mbb/g in the limit variants, a strategy that always
folds will still lose at a rate of 750 mbb/g. In our comparison of the capped and uncapped
results, we note that the cap of 750 mbb/g had a substantial impact on most agents’ average
bankrolls and final ranking.

2013

Agent Design. Our implicit modelling agent for the 2013 ACPC total bankroll event uses
a portfolio (detailed in Appendix B.3.1) of two abstract strategies:

1. A dynamic expert abstract Nash equilibrium approximation. This strategy was also
used as part of the 2013 heads-up no-limit bankroll instant runoff Hyperborean agent.

2. A data biased response to aggregate data from all of the agents in the 2011 and 2012
heads-up no-limit ACPC events.

The portfolio’s final design was motivated by several challenges that arise in the heads-up no-
limit domain. As we alluded to earlier, the immense size of the heads-up no-limit domain
amplifies many existing challenges in building a portfolio. To guard our DBRs against
strong equilibrium-based strategies, such as those employed by at least three top agents in

82



the 2012 ACPC, we chose to use a large abstraction that fully utilized the memory available
on our computational resources. However, in addition to memory, CFR also tends to need
more computational time to converge in a larger abstraction. With our available time and
resources, it was impractical to generate fully converged strategies, never mind a variety of
DBRs. Under these constraints, we chose to construct DBRs based on a single model: opting
for an aggregate model of past agents as a similar approach yielded an effective DBR in our
heads-up limit case study (i.e., the Small-Static agent). Unfortunately, resource constraints
also forced us to choose a limited selection of Pmax values. Without prior results in no-limit
to inform us on how this would impact the trade-off between worst-case and one-on-one
performance, we chose values of 0.25 and 0.5.

To further guard against equilibrium-based opponents, we also prepared to use a large
abstract equilibrium in the portfolio. While this may appear to be inconsequential to the
design of the rest of the portfolio, the betting abstractions common in no-limit, which remove
an agent’s available actions, introduce a subtle challenge when constructing a portfolio.
Namely, using different betting abstractions within the portfolio could impede information
sharing during our off-policy importance sampling since strategies may take actions the

other strategies are incapable of producing. Because of this, our DBRs were constructed
using the same betting abstraction as the equilibrium approximation that was included in
the final portfolio.

To construct our frequentist model, real game betting actions made by past ACPC
agents were mapped into this common betting abstraction using hard (i.e., deterministic)
translation based on geometric similarity (Schnizlein 2009). Unfortunately, having mul-
tiple magnitudes of raise actions disperses our available observations throughout a much

larger betting space, potentially causing much sparser frequentist models. To mitigate this
concern, the DBR’s frequentist model uses an asymmetric abstraction that ignores card
information (i.e., an abstraction with 1 bucket on each round) and only models agents on

their abstract betting. One benefit of this approach is that it does not require any private
information. However, as with prior explicit modelling techniques that discarded private
card information (Rubin and Watson 2012b; Ganzfried and Sandholm 2011), this approach

almost certainly conflates behaviours that would be valuable to differentiate.
Our final portfolio included only the DBR with a Pmax parameter of 0.25. Although

the more aggressive Pmax of 0.5 yielded a substantially higher uncapped average bankroll

in experiments on the 2012 ACPC benchmark server, it also performed poorly against
equilibrium-based opponents. By comparison, the more passive DBR lost less against such
opponents while still exploiting weaker opponents for more than the competition’s winnings

cap of 750 mbb/g.
For practitioners that are similarly limited in computational resources, an alternative

approach to portfolio design, akin to the one taken in our heads-up limit case study, could
allow a broader exploration of DBR candidates. Specifically, practitioners could generate
and evaluate highly abstracted candidate DBRs against the DBR mimic strategies and
identify high-value models through a submodular optimization. Information gathered during
this initial phase could then be used to construct DBRs using finer granularity abstractions
to guard against stronger opponents. However, this approach comes with caveats. First,
increasing the granularity of the frequentist model’s abstraction – either in an effort to better
model the opponent or simply to share a common betting abstraction – would increase
model sparsity. Moreover, as we observed in our asymmetric abstraction results, increasing
the size of the opponent’s abstraction tends to both improve worst-case performance and
decrease one-on-one performance: with more substantial decreases for sparser models. While

bootstrapping a portfolio in this manner may be beneficial, we do not explore it further.

Empirical Results. We begin our analysis of the 2013 heads-up no-limit total bankroll
competition by examining the official capped results. Table 6.10 shows both the capped and

uncapped average bankrolls. In the official capped results, our implicit modelling agent,
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AVG
slumbot 312

hyperborean tbr 297
tartanian6 281

nyx 247
koypetition 237

neo poker lab 165
littlerock 150

entropy 45
Sartre 42
hugh −58

kempfer −449
liacc −625

HITSZ CS 13 −645

(a) Capped

AVG
hyperborean tbr 1474

neo poker lab 750
koypetition 528
tartanian6 476

slumbot 475
nyx 412

entropy 324
Sartre 315
hugh 259

littlerock 229
kempfer −454

liacc −1302
HITSZ CS 13 −3486

(b) Uncapped

Table 6.10: Average winning rates from the 2013 ACPC heads-up no-limit Texas hold’em
total bankroll competition. Results are in mbb/g.

hyperborean tbr, has the second highest bankroll. However, the ranking of hyperborean tbr

was not statistically significant with respect to its neighbours: losing to slumbot (first place)
in 85% of samples, and winning against tartanian6 (third place) 65% of the time. Complete
bootstrapped statistical significance results are shown in Table A.15.

Examining the full cross table of results in Table A.14, we see that our implicit modelling

agent suffered statistically significant losses against slumbot, tartanian6, nyx, koypetition,
and littlerock. Similar to the heads-up limit results, these five agents all performed well
in the bankroll instant runoff event, taking second through sixth place, respectively (with

hyperborean iro placing first). Of these five agents, four used a CFR-based technique to ap-
proximate an abstract equilibrium. However, hyperborean tbr performs well against weaker
agents: reaching the cap against five of the seven remaining total bankroll agents.

The uncapped average bankrolls show us that the cap had a dramatic effect on both the
average bankrolls and the final rankings. Without the cap, hyperborean tbr becomes the
clear winner, with an average bankroll 96.6% greater than the runner-up, neo poker lab, who

was promoted from sixth. Table A.16 reveals that this shift in results is largely due to several
agents exceeding the cap when playing against kempfer, liacc, or HITSZ CS 13. Moreover,
hyperborean tbr was also the only agent to exceed the cap against entropy or Sartre, winning
at 1,157 and 974 mbb/g, respectively. At best, the other agents only managed expected
winnings of 307 and 340 mbb/g. One possible explanation for this result against Sartre is
that their agent has historically imitated agents from past competitions: producing the very

behaviour our portfolio’s DBR was designed to exploit.
Of all the agents, liacc is an exemplar of both the benefits and drawbacks of using

a capped total bankroll. Every agent except HITSZ CS 13 beat liacc by considerably
more than the cap. Expected winning rates ranged from 1,689 to 6,111 mbb/g and hyper-
borean tbr won at 5,709. Despite its otherwise poor performance, liacc is also the strongest
agent against HITSZ CS 13 with an expected winnings rate of 19,784 mbb/g. Without the
cap, if liacc lost less substantially against other agents, HITSZ CS 13 could have acted as
a kingmaker for liacc. On the other hand, by capping the winnings at 750 mbb/g, liacc
provides virtually no discriminatory power for identifying adaptive agents. Furthermore,
the cap causes the counterproductive side effect of disincentivizing agents from maximizing
utility. For instance, when designing hyperborean tbr, we avoided our more aggressive DBR
despite empirical evidence that it was the better choice for truly maximizing utility.
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Figure 6.4: Impact of the expected winnings cap on the average bankroll of top agents from
the 2013 heads-up no-limit ACPC. Solid versus dashed lines indicate an adaptive or static
agent, respectively.

Even in less exceptional cases, the competition’s capped evaluation regularly downplays

or outright disregards substantive differences in performance against weaker agents. For ex-
ample, against HITSZ CS 13, slumbot and tartanian6 win at rates of 656 and 1,030 mbb/g,
respectively, while hyperborean tbr wins at 8,927 mbb/g. After the cap, hyperborean tbr

reaps little benefit over the stationary Nash equilibrium approximations, gaining a pal-
try 94 mbb/g over slumbot. In contrast, hyperborean tbr’s (capped) marginal gains over
slumbot and tartanian6 are much greater when playing against Sartre or entropy, despite
a dramatically smaller difference in true expected winnings. For instance, against Sartre,
hyperborean tbr gains 439 and 410 mbb/g over slumbot and tartanian6, respectively. Ide-
ally, the competition’s total bankroll evaluation mechanism would guard against kingmakers

while consistently motivating agents to maximize utility.
We expand our analysis of how the cap impacts the ACPC’s total bankroll evaluation

by juxtaposing hyperborean tbr with several close competitors under different values for
the cap. Specifically, Figure 6.4 presents how the average bankrolls of hyperborean tbr,
slumbot, and neo poker lab vary depending on our choice of winnings cap. Each agent’s
performance curve is marked using a solid or dashed line based on if their description (ACPC
2015) specifies an adaptive or static agent, respectively. Each point on a curve corresponds
to an expected winnings rate that the agent achieved against some opponent. An agent’s
average bankroll changes as a piecewise linear function of the cap that changes at each of
these points. After the rightmost point on a curve, the cap exceeds the maximum expected
winnings the agent achieved against the field of opponents; therefore, the agent’s average
bankroll will remain constant. For example, slumbot’s average bankroll flattens at a cap of
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neo poker lab koypetition slumbot tartanian6
hyperborean tbr 62± 99 −123± 90 −179± 95 −105± 91
hyperborean iro 210± 57 100± 62 20± 18 38± 77

nyx entropy Sartre hugh littlerock
hyperborean tbr −184± 81 1157± 132 974± 179 452± 57 −111± 84
hyperborean iro 67± 43 196± 58 177± 46 461± 52 133± 52

kempfer liacc HITSZ CS 13 CAP AVG AVG
hyperborean tbr 1112± 165 5709± 384 8927± 565 297 1474
hyperborean iro 519± 57 3204± 197 542± 58 268 472

Table 6.11: Comparison of Hyperborean agents submitted to the instant runoff and total
bankroll competitions of the 2013 ACPC heads-up no-limit Texas hold’em event. Results
are in mbb/g with 95% confidence intervals shown.

2,701, which is the expected winnings it achieved against liacc. The total bankroll event’s
official results use a cap of 750 mbb/g, which is marked by the vertical dotted line, while

uncapped results are specified by bankrolls at the figure’s right edge.
Because hyperborean tbr exploited more opponents to a greater degree, its average

bankroll grows both more rapidly and for longer than either of the other agent’s. Though
hyperborean tbr initially trails slumbot, the two agents are tied in average bankroll once the

cap reaches 796 mbb/g. Once the cap reaches approximately 900 mbb/g, hyperborean tbr
would have a statistically significant victory over slumbot (based on 1,000 bootstrapped
samples). Although hyperborean tbr’s average bankroll dominates neo poker lab’s across

the range of cap values, neo poker lab outperforms slumbot across a wide range of possible
values. While the cap was intended to prevent a single kingmaker from deciding the to-
tal bankroll event, these results highlight how it can skew the outcome in favour of strong

equilibrium-based agents like slumbot (which placed second in the instant runoff event).
Since these agents obtain most of their utility by beating a wide range of opponents for
comparatively small quantities, the cap has a relatively small impact on their performance.

Comparing the Hyperborean agents from the 2013 total bankroll and instant runoff
events is interesting because hyperborean iro also uses a portfolio of two strategies: the
abstract equilibrium approximation used in hyperborean tbr’s portfolio, and an alternative

strategy that both makes and better understands minimum-sized bets. However, hyper-
borean iro plays the common equilibrium until the opponent is observed making a minimum-
sized bet on at least 1% of the hands played so far. For further details about this agent,
see Appendix B.3.1. Table 6.11 presents both Hyperborean agents’ performance against
the field of ACPC agents, including their average bankroll both with and without the cap.
Much like other agents that fared well in the instant runoff event, such as slumbot or tar-
tanian6, hyperborean iro outperforms hyperborean tbr against stronger equilibrium-based
strategies while exploiting weaker opponents less. Overall, even though hyperborean tbr
suffered five statistically significant loses, whereas hyperborean iro always won, our implicit
modelling agent outperformed hyperborean iro in terms of maximizing utility across the
field of opponents: yielding a 10.8% and 312.2% increase in capped and uncapped aver-
age bankrolls, respectively. While each approach has its merits, these results highlight the
dramatic improvements in utility that agent modelling approaches can provide.

Observe that these notably different results occur even with both Hyperborean agents
incorporating a common equilibrium strategy. Unfortunately, since agent output was not
captured during the ACPC, it is unclear how much each agent’s strategies were played in

these matches. Though this makes it difficult to attribute the differences in performance to
particular strategies, internal experiments showed that hyperborean tbr’s DBR lost by more

86



than 500 mbb/g against several abstract equilibrium strategies, including the Hyperborean
entry from the 2011 ACPC bankroll instant runoff event. Since hyperborean tbr acts accord-
ing to a combination of every strategy in its portfolio, this DBR presents a likely cause of
the stark contrast between the two agents. Note that in spite of the DBR’s apparently poor
performance against equilibria, the implicit modelling agent’s losses were still less than 200
mbb/g on expectation, suggesting that the agent was able to adapt and use the portfolio’s
equilibrium strategy to guard itself against more substantial losses. The DBR’s worst-case
performance would likely be improved by lowering the Pmax parameter further or poten-
tially through using larger abstractions. While this could lead to improved performance in
the capped average bankroll, our earlier evaluation on the 2012 ACPC benchmark server
found that reducing the DBR’s Pmax to 0.25 from 0.5 resulted in substantial decreases in
the uncapped average bankroll. In fact, if our goal was truly to maximize winnings across
the field of ACPC agents, it would likely be better to increase Pmax.

2014

Agent Design. Our implicit modelling agent for the 2014 ACPC total bankroll event
introduces a third strategy to the previous portfolio:

1. The Nash equilibrium strategy from the 2013 portfolio.

2. The DBR from the 2013 portfolio, run for additional iterations of CFR.

3. A data biased response based on data from agents that were not beaten by the 2013
Hyperborean TBR entry for at least 750 mbb/g (using the same asymmetric abstrac-

tions and a Pmax parameter of 0.25).

Our intent behind this new DBR was to provide better coverage against strategies that our

previous portfolio failed to fully exploit to the value of the cap. As with our previous DBR,
we limited the Pmax parameter to 0.25 to mitigate our risk against the competition’s many
equilibrium-based agents.

Empirical Results. Table 6.12 shows the average bankrolls for our final ACPC results from

the 2014 total bankroll event. Unfortunately, Hyperborean tbr placed poorly according to
the capped bankrolls, ending up in seventh place with statistical significance (see Table A.19
for full bootstrap details).

All of the six agents ranked above Hyperborean tbr in the (capped) total bankroll used
a stationary strategy based on their descriptions (ACPC 2015). With the exception of
Feste tbr, each of these agents used a CFR-based algorithm to approximate an abstract
equilibrium and were ranked in the top six places of the instant runoff event (with Hyper-
borean iro placing third). Both Feste tbr and Feste iro, which placed seventh in the in-
stant runoff event, used linear programming techniques to generate their strategies. While
Feste iro approximated an abstract game equilibrium, Feste tbr used a “slightly more ag-
gressive” strategy that was constructed by solving for a restricted Nash response against
a uniform random opponent (based on their 2013 heads-up limit agent description). How-
ever, unlike the heads-up limit Feste agents, these agents used a single strategy and did not

attempt to adapt online.
Dissecting the full results in Table A.18, we observe outcomes consistent with the 2013

ACPC heads-up no-limit results. First, our implicit modelling agent suffers moderate losses
against these highly ranked instant runoff agents while performing very well against the four
lowest ranked agents (Rembrant3, KEmpfer, HITSZ CS 14, and Lucifer). Hyperborean tbr
was one of only two agents that capped all four agents, which were the only agents beaten
by more than the cap. However, of the top six agents, even the agent that fared the
worst against the bottom four (HibiscusBiscuit) still won 90.8% of the possible capped
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AVG
Tartanian7 342

Nyx 309
Prelude 306

Slumbot 304
HibiscusBiscuit 241

Feste tbr 198
Hyperborean tbr 162

LittleRock 143
SartreNLExp 130

PijaiBot 7
Rembrant3 −424

KEmpfer −454
HITSZ CS 14 −629

Lucifer −635

(a) Capped

AVG
Hyperborean tbr 944

SartreNLExp 693
Nyx 597

Tartanian7 498
Slumbot 470
Prelude 470

HibiscusBiscuit 365
Feste tbr 359
PijaiBot 326

LittleRock 202
KEmpfer −252

Rembrant3 −416
HITSZ CS 14 −1801

Lucifer −2455

(b) Uncapped

Table 6.12: Average winning rates from the 2014 ACPC heads-up no-limit Texas hold’em
total bankroll competition. Results are in mbb/g.

utility; Tartanian7, who won both the IRO and TBR events, managed 92.2%. This leaves a
slim margin for adaptive agents to improve over equilibrium-based strategies when playing

against such highly exploitable opponents.
Without the cap, we again see a dramatic shift in both the average bankrolls and the

final rankings. Hyperborean tbr moves from seventh place to a statistically significant first
place finish. SartreNLExp, which is also an adaptive agent, makes a similarly large jump

from ninth to second place. In turn, this demotes the six top (stationary) agents, with the
former winner, Tartanian7, dropping from first to fourth. Full significance results for the un-
capped bankroll are presented in Table A.21. Against this field of agents, Hyperborean tbr’s

uncapped average bankroll is 36.2% and 89.5% greater than those of SartreNLExp and Tar-
tanian7, respectively. The cross table of uncapped winnings in Table A.20 shows that
Hyperborean tbr’s improvement is largely due to consistently outperforming other agents

in matches against the four capped agents: securing the highest expected winnings versus
KEmpfer and HITSZ CS 14, and the second highest winnings versus Rembrant3 and Lu-
cifer (though these rankings were not always statistically significant). Interestingly, this

is despite the fact that Hyperborean tbr did not use the data from the predecessors of
KEmpfer, HITSZ CS 14, and Lucifer (previously liacc) since Hyperborean tbr also capped
them in the 2013 heads-up no-limit competition. The fact that Hyperborean tbr largely
outperforms other agents against these capped agents may suggest, disappointingly, that
competitors are not capitalizing on past data to tailor their agents to opponents even on a
year-to-year basis.

The magnitude of the cap has a slightly more nuanced impact on the outcome of the
2014 competition as multiple agents were in close contention for first place at different cap
values. Figure 6.5 shows the effect of the cap’s magnitude on the average bankrolls of four
top agents: Hyperborean tbr, Tartanian7, SartreNLExp, and Nyx, who ranked second in
total bankroll and and third in uncapped total bankroll. The results echo those of 2013, with
static equilibrium-based strategies securing most of their potential utility at comparatively
small cap values and levelling off relatively quickly. Although Hyperborean tbr outperforms
SartreNLExp prior to the official cap of 750 mbb/g, it takes until a cap of 2,035 mbb/g to
match Tartanian7, 2,180 mbb/g to tie with Nyx, and approximately 2,500 mbb/g to win
the competition with statistical significance.
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Figure 6.5: Impact of the expected winnings cap on the average bankroll of top agents from
the 2014 heads-up no-limit ACPC. Solid versus dashed lines indicate an adaptive or static
agent, respectively.

SartreNLExp Nyx Tartanian7
Hyperborean tbr −117± 106 −194± 136 −212± 113
Hyperborean iro 110± 41 54± 44 −21± 16

Prelude Slumbot HibiscusBiscuit
Hyperborean tbr −229± 117 −199± 75 −112± 100
Hyperborean iro −10± 15 16± 14 40± 55

PijaiBot LittleRock KEmpfer
Hyperborean tbr 181± 93 61± 67 2142± 257
Hyperborean iro 544± 86 297± 57 661± 71

Rembrant3 HITSZ CS 14 Lucifer CAP AVG AVG
Hyperborean tbr 1268± 123 4883± 986 4877± 696 181.56 1029.09
Hyperborean iro 926± 60 1293± 171 2311± 123 328.46 518.54

Table 6.13: Comparison of Hyperborean agents submitted to the instant runoff and total
bankroll competitions of the 2014 ACPC heads-up no-limit Texas hold’em event. Results
are in mbb/g with 95% confidence intervals shown.
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Our final evaluation compares the Hyperborean tbr and Hyperborean iro agents. Sim-
ilar to prior instant runoff agents, Hyperborean iro approximates a Nash equilibrium in a
large abstract game. However, in this case, the abstract game used an asymmetric betting
abstraction, which provided more betting options for our opponent than our own agent (de-
tails available in Appendix B.3.2). This choice was motivated by our asymmetric abstraction
finding that using a finer granularity abstraction for your opponent tends to yield strategies
that are less exploitable in the worst case. Table 6.13 presents the agents’ performance
against their mutual opponents. Note that Feste tbr is not included in the comparison, as
Hyperborean iro did not play agents exclusively in the total bankroll event. Unsurprisingly,
Hyperborean iro fares better than Hyperborean tbr against the top (capped) total bankroll
agents, as these agents all employ abstract equilibrium approximations. Interestingly, Hy-
perborean iro and many top equilibrium-based agents managed to exploit PijaiBot and
LittleRock. This opportunity for exploitation was missed by Hyperborean tbr, and could
be a symptom of insufficiently covering the space of opponent strategies. Unfortunately,
though Hyperborean tbr substantially outperforms Hyperborean iro against the four lowest
ranked agents, it provides very little benefit when utilities are capped. In fact, we would have

been better off submitting Hyperborean iro to the total bankroll event, as Hyperborean tbr
yields a 44.7% decrease in capped average bankroll. This margin would likely be even worse
if results against Feste tbr were included. However, when considering uncapped bankrolls,

Hyperborean tbr is clearly better: winning 98.5% more on average.

6.3 Summary

We presented a step-by-step approach of how to build adaptive implicit modelling agents for
complex human-scale problems using a synthesis of techniques from several areas including
robust responses in extensive-form games, submodular optimization, variance reduction,
multi-armed bandits, and new contributions from this dissertation. Using several variants of

Texas hold’em poker, we validate our implicit modelling approach through implementations
of implicit modelling agents built using public data from past Annual Computer Poker
Competitions. In our heads-up limit Texas hold’em case study, we show that implicit

modelling agents can not only outperform other baseline response techniques, but also would
have won the 2011 Annual Computer Poker Competition’s total bankroll event.

We also implemented seven agents using techniques from this dissertation that were

submitted to the ACPC’s total bankroll events between 2012 and 2014. In 3-player limit
Texas hold’em, our agents combined data biased responses with the asymmetric abstractions
we investigated earlier in this dissertation. These agents not only won the competitions,

but also substantially outperformed more sophisticated CFR-based agents against the entire
field of opponents. Of the five implicit modelling agents that we implemented for the heads-
up limit and heads-up no-limit Texas hold’em competitions, three agents achieved a top-
three ranking. Furthermore, in terms of raw utility maximization in heads-up no-limit, our
implicit modelling agents dramatically outperformed every other agent.

Combined with the ACPC’s focus on real-time interaction and short matches that de-
mand quick adaptation, these poker games present a sophisticated human-scale agent mod-

elling task that embodies the gamut of challenges facing agent modelling practitioners. While
traditional explicit modelling approaches struggle with the practical challenges of such com-
plex human-scale domains, our results demonstrate that implicit modelling is a viable and
promising alternative for agent modelling in these domains. Moreover, our implementations
provide agent modelling practitioners with a foundation for developing their own adaptive
implicit modelling agents. However, there remains several potential avenues to continue
refining the implicit modelling framework, which we discuss in the next and final chapter
before concluding the dissertation.
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Chapter 7

Conclusions and Future Work

In this dissertation, we addressed a fundamental question in the field of agent modelling.

In complex multiagent domains, how can an agent efficiently tailor its behaviour
to other agents during interaction in order to maximize its performance?

We examined this question using a variety of poker domains that embody the spectrum of
challenges facing agent modelling practitioners, including: very large state spaces, a limited
quantity of stochastic observations, imperfect information, potentially dynamic behaviour

from other agents, and an innate objective to maximize performance. This final chapter
concludes the dissertation by reviewing the contributions we have made to the field of
agent modelling through our exploration of this question. Furthermore, we discuss several

potential avenues for future research on this topic.

7.1 Contributions

This dissertation consisted of three main contributions, each of which aimed to address dis-

tinct aspects of this essential agent modelling task.

Implicit agent models. In Chapter 3, we characterized and contrasted two approaches

to agent modelling: the traditional approach, in which an agent responds to a generative
model of agent behaviour learned during interaction, and an alternative approach that
we call implicit modelling. In the implicit modelling framework, practitioners use online
observations to estimate the utility of a portfolio of strategies. By modelling other agents
solely through their impact on the portfolio’s utility, implicit modelling alleviates many
challenges that explicit models face in complex domains like poker. However, this approach
also raises questions of how a practitioner should build and subsequently use the portfolio.
We explored how to construct a portfolio prior to interaction. This approach both affords
practitioners superior computational resources that can be exploited to build robust response
strategies and helps ensure the agent can act in real-time during interaction.

We demonstrated the viability of this approach in complex human-scale domains through
detailed implementations of implicit modelling agents in the variants of Texas hold’em poker
played in the Annual Computer Poker Competition. We evaluated our implicit modelling
agents in Chapter 6 by means of a thorough case study and analysis of results from prior
ACPC events involving our agents. Our case study demonstrated that these agents out-
perform several baseline approaches in terms of maximizing utility. Our examination of
the ACPC events presented a novel analysis of the ACPC’s total bankroll agent evaluation
mechanism. Furthermore, our agents performed particularly well in past heads-up no-limit
Texas hold’em ACPC events, where they obtained substantially greater raw utility than
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other agents. In both cases, our agents were more profitable than conventional strategies
based on Nash equilibrium approximations.

Asymmetric abstractions. In multiagent domains, an agent’s beliefs about how other
agents will or could act plays a significant role in their own behaviour and, in turn, their
performance. For complex domains, some form of state-space abstraction is typically nec-
essary to make the problem tractable, forcing practitioners to divide limited computational
resources between the representation of each agent’s behaviour. Although it is common to
assume symmetric representations – where all agents distinguish states in the same way –
we showed in Chapter 4 that this default belief does not optimize an agent’s worst-case
performance or its performance against suboptimal agents.

Our experiments provided the first empirical analysis of asymmetric abstractions in a
complex human-scale domain, addressing both abstract Nash equilibria and robust responses
in heads-up limit Texas hold’em. Our results reinforced prior observations of a trade-off be-
tween worst-case and one-on-one performance (Johanson et al. 2012b), extending the trend
to cases where both players are abstracted, and discovered the first abstraction pathologies
outside of a toy domain. In the robust response setting, we presented the first evalua-

tion of restricted Nash responses (Johanson, Zinkevich, and Bowling 2008) and data biased
responses (Johanson and Bowling 2009) in terms of their worst-case performance in the
unabstracted game. We showed that not only does a similar performance trade-off exist

for robust responses, but the quantity of one-on-one performance sacrificed depends on the
accuracy of the agent model: with robust responses to accurate models, such as RNRs, pro-
ducing responses that dominate their symmetric abstraction counterparts in terms of both

performance measures. Furthermore, we demonstrated that robust responses, and partic-
ularly DBRs, can be less exploitable than Nash equilibrium approximations using similar
abstractions. Finally, we found that for robust responses based on observations, such as

DBRs, tailoring the abstraction used for the agent model to the quantity of available data
can yield higher one-on-one performance. These asymmetric abstraction findings guided the
portfolio design for all of our aforementioned implicit modelling agents.

Decision-theoretic clustering. To maximize utility in multiagent domains, agents gener-
ally need to condition their behaviour on how other agents in the environment act. Although
customizing a response to each situation would be ideal, this is often impractical and agents

are limited in their ability to personalize responses. Faced with such limitations, which
responses should an agent employ to best maximize utility? Practitioners must confront
this question when constructing an implicit modelling agent’s portfolio prior to interac-
tion: maximizing coverage over the space of potential agent behaviours while limiting the

portfolio’s size to avoid hampering its use online.
Our final contribution, presented in Chapter 5, addressed this problem by investigating

how to elicit groups of similar agent behaviours. Traditional spatial clustering techniques,
such as k-means, could be used to group agents together based on a distance metric. How-
ever, we illustrated that these techniques can fail to capture similarity in how an agent should
respond to the resulting clusters to maximize utility. Segmentation problems previously
introduced and formalized this decision-theoretic clustering task. Unfortunately, existing
techniques for segmentation problems are either inapplicable or infeasible for extensive-form
games with large response spaces, like our poker domains. We demonstrated that certain

domains have structure that can be exploited to allow for an efficient greedy approximation
algorithm for this problem. We proved worst-case approximation bounds on the quality
of solutions produced by our algorithm. Finally, we demonstrated how to apply this algo-
rithm to extensive-form games, and empirically demonstrated the value of this approach by
comparing it to k-means for clustering agent behaviours in two toy games of poker.
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7.2 Directions for Future Work

This dissertation opens up new avenues for further research in agent modelling and, more
broadly, the range of complementary fields involved in our implicit modelling framework.
Our effective demonstration of the implicit modelling framework in complex human-scale
domains extends the reach of agent modelling techniques to sophisticated applications. In
addition to such potential applications, we pose unresolved questions that arose throughout
this research. We examine five general directions for potential research.

7.2.1 Moving Beyond Poker

Our validation of the implicit modelling framework largely focussed on empirical results
in two-player zero-sum poker domains. However, since the techniques we employed do
not require domains with these characteristics, they should be broadly applicable. This
claim is supported by the successful application of similar approaches to domains outside
of poker, such as the cooperative ad hoc teamwork task examined by Barrett and Stone
(2015). Regardless, demonstrating these techniques in non-poker domains would provide
valuable verification that they are, in fact, portable. For example, the results from our
investigation of asymmetric abstractions suggested that being more pessimistic about the

opponent’s abstraction (i.e., giving them a finer granularity abstraction) resulted in better
worst-case performance. Does this finding translate into a cooperative domain, where being
pessimistic would mean assuming a coarse abstraction for an ally? Furthermore, what

general properties of implicit modelling be proven theoretically? Is there a useful theoretical
relationship between implicit and explicit modelling?

7.2.2 Efficient Strategy Evaluation

Evaluating an agent’s performance from a limited quantity of observations is a perennial
challenge for designers of autonomous agents. Though variance reduction techniques for
agent evaluation have been previously explored (Kocsis and Szepesvári 2005; Zinkevich et

al. 2006; Billings and Kan 2006; Bowling et al. 2008; White 2010; Davidson 2014), they
continue to be an important research topic for high variance domains like poker.

Online Variance Reduction. For the implicit modelling framework, efficiently estimating
the utility of a portfolio’s strategies during online interaction is vital for rapid adaptation.
Although our implementations of implicit modelling agents used utility estimators aug-
mented by importance sampling and imaginary observations, further exploration of existing
and alternative variance reduction techniques could produce more effective implicit mod-
elling agents. However, note that some existing techniques are focussed on post hoc variance
reduction and rely on perfect information observations: making them unsuitable for evalu-
ating agents online in an imperfect information domain like poker. Aside from imaginary
observations, existing techniques capable of producing unbiased estimators in such settings
– e.g., LExp (Kocsis and Szepesvári 2005), MIVAT (White 2010, Section 5.3.5), and data
baseline (Davidson 2014) – have yet to be applied to implicit modelling agents. Further-
more, any potential synergy between these techniques has not been investigated.

Off-policy Variance Reduction. Another desiderata for a portfolio’s utility estimators is
that they are efficient despite off-policy observations. When using importance sampling to
update an estimator from off-policy observations, the estimator’s variance can become large
when rare outcomes are observed. While techniques like LExp and imaginary observations

can help mitigate the impact of rare events, they assume existing strategies. Instead, can
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practitioners exploit knowledge of how they will estimate utility online during portfolio con-
struction to produce “compatible strategies” that reduce estimator variance? Furthermore,
can exploration strategies be designed to actively gather salient information that improves
estimator efficiency?

7.2.3 Online Adaptation

The task of balancing between exploration and exploitation is a recurring challenge in ma-
chine learning. In our implicit modelling framework, we focused on multi-armed bandit
techniques for combining the agent’s portfolio and addressing this trade-off. While these
techniques can provide theoretical guarantees on an agent’s regret, the guarantees vary in
several notable characteristics. For instance, Exp3G bounds the expected regret relative to
the best strategy in hindsight assuming an oblivious adversary. However, alternative tech-
niques can provide guarantees that assume different dynamics in the reward process (e.g.,
adversaries that are stationary, oblivious, or themselves adaptive), evaluate regret relative
to a changing strategy (e.g., shifting/tracking regret), or bound regret with high probability
instead of only in expectation.

Ideally, an agent should seek to maximize its performance regardless of the type of agents
it is interacting with. In this sense, our choice of Exp3G may not be ideal since stationary
strategies are commonplace for computer agents (e.g., equilibrium strategies) and humans

are likely to adapt their behaviour based on past observations. Furthermore, since Exp3G
only bounds the expected regret, it may fail to consistently perform well. Such inconsistent
performance may be particularly undesirable when an agent will have a small number of
interactions, which is often the case when interacting with humans. Practitioners attempting

to tailor an agent to the disparate natures of human and computer behaviour would benefit
from additional guidance on the practical consequences of different online learning techniques
in these settings. Several existing alternatives to Exp3G warrant particular consideration

for our implicit modelling framework, including: Abernethy and Rakhlin’s (2009) work on
adaptive bandits, McMahan and Streeter’s (2009) technique for improving the bounds of
bandit problems with a small number of experts, and several of the refinements discussed

by Bubeck and Cesa-Bianchi (2012, Section 3.4).
Another avenue to consider for adapting an agent’s behaviour is to explicitly model the

dynamics of the other agents. For instance, in prior work we examined how to use Bayesian

state estimation techniques to explicitly model dynamic agents in Kuhn poker (Bard and
Bowling 2007; Bard 2008). Like other explicit modelling techniques, scaling this approach
to human-scale domains presented considerable practical challenges. However, it may be

feasible to apply state estimation techniques in the implicit modelling framework’s low-
dimensional space of the portfolio’s utilities.

7.2.4 Robust Responses

Responding to beliefs about the behaviour of other agents is a fundamental task for agent
modelling practitioners. While responding in a manner that maximizes utility has been a de
facto approach to this problem, Johanson and colleagues’ (2008) showed that this can pro-
duce brittle responses that generalize poorly and perform badly in the worst case. Robust
response techniques that accommodate for uncertain models of agent behaviour have been
essential to constructing effective responses for our portfolios. As such, improving these
techniques is a clear path to stronger implicit modelling agents and more effective agent
modelling.

Real Game Robustness. When generating robust responses in an abstract game, which
is the standard approach to make human-scale domains practical, the responses may not be
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robust in the original game. This problem is analogous to how abstract equilibrium strate-
gies only guarantee optimality within their abstract game. Johanson and colleagues (2012b)
addressed this problem for abstract equilibria with their CFR-BR algorithm by training
against an unabstracted best response. Combining this approach with a restricted Nash
response would yield a technique for generating robust responses that optimally trade off
worst-case performance in the real game and one-on-one performance against a model. Fur-
thermore, this may provide a mechanism to address CFR-BR’s tendency to perform poorly
one-on-one. Evaluating how this approach would impact other robust response techniques,
such as data biased responses, is an open question. However, our earlier examination of
using asymmetric abstractions for robust responses (Section 4.2.2) provides preliminary ev-
idence supporting this approach, particularly with relatively accurate agent models.

Generative Model Efficiency. To build responses, practitioners typically must estimate
a generative model of an agent’s behaviour from limited observations. In complex domains,
efficiently estimating an agent’s behaviour in each unique situation is impractical and many
situations will be poorly sampled. Furthermore, when modelling humans, their limited
interaction speed typically exacerbates such estimator efficiency problems. How can genera-

tive models be estimated efficiently using less data? Can generalization techniques mitigate
model sparsity while preserving model accuracy? Although the abstraction techniques used
in our frequentist models for generalization produced competitive responses, our current

approach has two notable limitations.
First, each observation contributed to only a single information set in the frequentist

model’s abstract game. This hard mapping limits generalization by artificially separating

observations that could contribute information about other abstract information sets. For
instance, since our frequentist models of heads-up and 3-player limit agents only used card
abstraction, observations were not generalized across different player betting sequences.

Prior work on generalization in poker has approached this problem by defining a softer
notion of similarity between information sets (Schnizlein, Bowling, and Szafron 2009; Ru-
bin and Watson 2012a; Schauenberg 2006, Section 4.3). However, we are unaware of any
investigation into the impact that different generalization techniques have on not only the

efficiency and accuracy of a generative model, but also the quality of its robust response.
Second, common poker abstraction techniques have focussed on producing strong ab-

stract equilibria strategies rather than distinguishing behaviours of suboptimal agents. One

illustration of this is the common assumption of card isomorphisms: where situations that
differ only by a permutation of the cards’ suits are not distinguished since an equilibrium
strategy would treat them identically. However, generative models based on this assumption

may discard valuable information for responding to suboptimal agents. The distinction be-
tween these objectives raises questions regarding how to estimate a generative model. Can
the relevant information for maximizing a response’s performance be compactly represented
and efficiently estimated? Can an agent estimate relevant information more efficiently by
prioritizing and actively learning about the most valuable information?

Extending Decision-theoretic Clustering. The decision-theoretic clustering technique
we introduced in Chapter 5 can be used to inform practitioners about which responses are
valuable to include in a portfolio. However, to apply the technique in practice, two challenges
will likely need to be addressed. First, practitioners are typically limited to observations
of an agent’s strategy as opposed to knowing their complete strategy. While observations
could be used to estimate a generative model for the strategy, we have not investigated
how this impacts clustering quality. Second, in human-scale domains the cost of computing
(a quadratic number of) best responses is prohibitive. Though recent accelerated best
response techniques (Johanson et al. 2011; Johanson et al. 2012b) and parallelization of
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our algorithm can help overcome this problem, it may be preferable to sacrifice clustering
quality for improved efficiency. How can practitioners adapt our technique to address these
limitations?

One potential solution for both of these problems may stem from the portfolio pruning
we performed in Section 6.1.1. Instead of approaching the segmentation problem as a par-
titioning optimization, our pruning technique employed a proxy for the maximum coverage
optimization. Observations of each agent were used to generate a DBR and its correspond-
ing mimic of the agent. Formulating the maximum coverage optimization in terms of these
strategies both allows for the use of observations and only requires a linear number of
response computations. In addition to the positive results we obtained from pruning in
our case study, preliminary experiments that clustered Leduc hold’em strategies through a
similar maximum coverage optimization yielded comparable performance to our algorithm.
This suggests that such an approach may avoid the aforementioned limitations and allow
for practical clustering in human-scale domains. The performance of such alternative ap-
proaches and the impact of aggregating observations within the resulting clusters remains
unexplored.

7.2.5 Evaluating Adaptive Agents

Our final direction for further research is how to design mechanisms for evaluating adaptive

agents. Unlike Nash equilibrium approximations, which have an invariant and clear (albeit
potentially difficult to measure) objective, there is no general way to evaluate how well an
adaptive agent approximates ideal behaviour. Furthermore, an agent’s performance with
respect to a small sample of agents, such as a competition’s participants, may not be indica-

tive of their performance against the broader agent population. This presents competition
organizers and agent designers with the task of choosing an evaluation mechanism. As our
earlier analysis of past Annual Computer Poker Competitions demonstrates, this choice can

have a substantial impact on the outcome. What are the desiderata of a mechanism seek-
ing to elicit effective adaptive agents? How can the mechanism account for outliers in the
sampled agents while adhering to the objective of maximizing utility? Investigating these

questions and potential mechanisms for evaluation would provide valuable guidance for this
problem.

7.3 Summary

This dissertation contributes several techniques for tailoring an agent to the behaviour of
other agents. The foundation of these techniques is the implicit modelling framework for
agent modelling. We characterize this framework and demonstrate its efficacy and efficiency
in complex human-scale poker domains where traditional agent modelling approaches have
generally been unsuccessful. We focus on poker domains not only because they better reflect
real-world challenges, as von Neumann famously observed, but also because poker presents
an ideal problem for exploring the gamut of challenges facing agent modelling practitioners.
Despite this focus, the versatility of our techniques and observations suggests that our
contributions can be broadly applied: providing a practical approach for real-time online
agent modelling in complex multiagent domains.
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Appendix A

Annual Computer Poker
Competition Results

This appendix presents full cross tables of results from the ACPC total bankroll events dis-

cussed in Section 6.2. Each table shows summary statistics of the row player’s performance
in matches against the column’s opponents. For tables displaying winnings, entries specify
the row player’s expected utility and 95% confidence interval rounded to the nearest milli

big blind. Cells are shaded green or red to indicate a positive or negative expected value,
respectively, with darker shading indicating that this distinction is statistically significant.
The 2012 ACPC computed 95% confidence intervals on each player’s total bankroll to eval-

uate statistical significance, which are included in the winnings table. From 2013 onwards,
the ACPC used bootstrapping to compute statistical significance. Confidence tables for
these events show the proportion of (1000) bootstrapped samples that the row player had a

greater total bankroll than the column player (with empty cells indicating a value of 0). An
overview of the tables is below, with results divided by poker variant, competition year, and
whether the table presents winnings or confidence results. We present capped and uncapped
results when the ACPC’s winnings cap of 750 mbb/g impacted an event’s results.

Game Year Type Table Page

Heads-up limit

2012 Winnings with confidence Table A.1 Page 105

2013

Capped winnings Table A.2 Page 106
Capped confidence Table A.3 Page 107

Uncapped winnings Table A.4 Page 108
Uncapped confidence Table A.5 Page 109

2014

Capped winnings Table A.6 Page 110
Capped confidence Table A.7 Page 111

Uncapped winnings Table A.8 Page 112
Uncapped confidence Table A.9 Page 113

3-player limit
2013

Winnings Table A.10 Page 114
Confidence Table A.11 Page 115

2014
Winnings Table A.12 Page 116

Confidence Table A.13 Page 117

Heads-up no-limit

2013

Capped winnings Table A.14 Page 118
Capped confidence Table A.15 Page 119

Uncapped winnings Table A.16 Page 120
Uncapped confidence Table A.17 Page 121

2014

Capped winnings Table A.18 Page 122
Capped confidence Table A.19 Page 123

Uncapped winnings Table A.20 Page 124
Uncapped confidence Table A.21 Page 125
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Appendix B

Annual Computer Poker
Competition Agents

This appendix provides implementation details of the Hyperborean agents discussed in Sec-

tion 6.2 for our analysis of prior Annual Computer Poker Competition results. Agents are
divided by poker variant, competition year, and event. Our implicit modelling agents were
submitted to the total bankroll event, while agents submitted to the bankroll instant runoff

events were prepared by other members of the University of Alberta’s Computer Poker Re-
search Group. We detail each agent with a brief description and a listing of any strategies
used by the agent. For each strategy, we provide a high-level description and summarize

notable implementation details in several categories. Additional details specifying how we
use an implicit modelling agent’s portfolio online are presented in Section 6.1.1. We describe
the categories of implementation details next, however, note that some may not apply to

every strategy.

Abstraction. This category describes the abstract games used to generate the strategy. A
symmetric abstraction represents every player’s view of the game using a single abstract

game. In contrast, asymmetric abstractions (introduced in Chapter 4) use multiple ab-
stract games to represent the agent’s strategy, an opponent’s regret minimizing response, or
an opponent’s frequentist model in a DBR. In the case of dynamic expert strategies (Gib-

son and Szafron 2011; Gibson 2014, Section 7.2), an abstract game is defined by specifying
a partitioning of the game along with the different abstractions used for each part. Each
abstract game is defined in terms of the abstractions used for the cards and betting, whose
notation we define next.

Card abstraction (Section 2.5.1) is used for each strategy. Most of the card abstrac-
tions used by these strategies are similar to Johanson and colleagues’ (2013) “IR KE-KO
169-9000-9000-9000” abstraction. This imperfect recall (IR) abstraction clusters cards into

9000 buckets using k-means for each round after the preflop, entirely forgetting earlier card
information. On the flop and turn, clusters are formed based on the earth mover’s distance
between hand strength distributions (KE), while opponent cluster hand strength features
(KO) are used for clustering on the river. On the preflop, 169 buckets are used to exactly
distinguish each canonical pair of private cards. We also use abstract games based on other
card abstraction techniques. For instance, “IR KE-PHS 169-900-100-25” substitutes per-
centile hand strength (PHS) buckets for the KO buckets on the river. Finally, we also use
abstract games that independently characterize the texture of the public cards using public
buckets. For example, “IR PUB×KE-KO 169-1348620-51×30000-280×3000” specifies an
imperfect recall abstraction with all the canonical cards on the preflop and flop, 51 public
buckets combined with 30000 KE buckets on the turn, and 280 public buckets combined
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with 3000 KO buckets on the river. Waugh and colleagues (2009a) provide one approach to
producing public buckets, however the specific technique used in these abstractions has not
been published and is outside the scope of this dissertation.

Betting abstraction (Section 2.5.2) is used exclusively in heads-up no-limit. For all poker
variants, the abstract games used have perfect recall of past (potentially abstract) betting.
In heads-up no-limit, we restrict raising actions to a set of magnitudes relative to the pot
size. Aside from these pot fraction raises, the smallest and largest legal raises, a “min raise”
and “all-in” respectively, may be available. Although we list the bet sizes used in the ab-
straction, there may be restrictions on when and how frequently each bet size may be used.
We omit some details regarding these restrictions for simplicity.

CFR technique. This category describes the CFR algorithm used to generate the strategy.
We specify which of the following CFR variants was used to generate each strategy: chance
sampled (Zinkevich et al. 2008), public chance sampled (Johanson et al. 2012a), external
sampled (Lanctot et al. 2009), or Pure CFR (Gibson 2014, Section 5.5). Furthermore, we
list the approximate number of iterations the CFR variant was run, and whether the aver-
age or current strategy profile was used. Note that although the current strategy profile

typically lacks convergence guarantees, Gibson (2014, Section 4.4.3) demonstrated that its
one-on-one performance can improve much more quickly than the average strategy profile.

Miscellaneous categories. Finally, there are several categories that do not appear for

every strategy. For data biased responses, we list the Pmax parameter value that the DBR
uses with the 0-10 linear function (see Section 2.4.3). For heads-up no-limit strategies, we
specify the translation scheme used to map real-game betting sequences into the abstract

game. We use either hard or soft (i.e., deterministic or probabilistic) translation with
a geometric similarity function (Schnizlein, Bowling, and Szafron 2009; Schnizlein 2009).
Lastly, we list any uncategorized strategy notes.
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B.1 Heads-up Limit Texas Hold’em

B.1.1 2012

Total Bankroll

The implicit modelling agent submitted to the 2012 total bankroll competition used a port-
folio consisting of seven abstract strategies. The responses to always raise and always call
were only used when the opponent was detected to be always raise or always call. Otherwise,
the agent employed an implicit modelling approach: combining a portfolio of the remaining
five strategies.

1–2. Counter-strategies to opponents that always raise or always call

Abstraction: symmetric

Cards: IR KE-KO 169-9000-9000-9000

CFR technique: chance sampled

Iterations: 1 billion

Strategy profile: average

3. An abstract Nash equilibrium approximation

Abstraction: symmetric

Cards: IR PUB×KE-KO 169-1348620-60×9000-60×1308, with partial recall of

public card texture

CFR technique: chance sampled

Iterations: 43 billion

Strategy profile: average

4–7. Data biased responses to asymmetric models of particular opponents seen in the 2010
(ASVP) or 2011 ACPC (RobotBot, TellBot, Tiltnet)

DBR Pmax: 0.2 (RobotBot), 0.4 (TellBot), 0.5 (Tiltnet), 0.6 (ASVP)

Abstraction: asymmetric

Cards: IR KE-KO 169-9000-9000-9000

Frequentist model cards: 5-bucket, perfect recall, percentile E[HS2] (described
in Section 4.1.1).

CFR technique: chance sampled

Iterations: 2 billion

Strategy profile: average
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B.1.2 2013

Total Bankroll

The implicit modelling agent submitted to the 2013 total bankroll competition used a port-
folio consisting of four abstract strategies.

1–4. Data biased responses to asymmetric models of particular opponents seen in the 2010
(ASVP) or 2011 ACPC (RobotBot, TellBot, Tiltnet)

DBR Pmax: 0.4 (RobotBot), 0.5 (TellBot), 0.7 (Tiltnet, ASVP)

Abstraction: asymmetric

Cards: IR KE-KO 169-18630-18630-18630

Frequentist model cards: IR KE-KO 169-3700-3700-3700

CFR technique: chance sampled

Iterations: 4 billion

Strategy profile: average

Bankroll Instant Runoff

1. An abstract Nash equilibrium approximation

Abstraction: symmetric

Cards: IR PUB×KE-KO 169-1348620-51×30000-280×3000

CFR technique: chance sampled

Iterations: 130 billion

Strategy profile: average
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B.1.3 2014

Total Bankroll

The implicit modelling agent submitted to the 2014 total bankroll competition used a port-
folio consisting of four abstract strategies.

1–2. The data biased responses to Tiltnet and ASVP from the 2013 portfolio

DBR Pmax: 0.7 (Tiltnet, ASVP)

Abstraction: asymmetric

Cards: IR KE-KO 169-18630-18630-18630

Frequentist model cards: IR KE-KO 169-3700-3700-3700

CFR technique: chance sampled

Iterations: 4 billion

Strategy profile: average

3. Data biased response to data from Feste agents since 2011

DBR Pmax: 0.75

Abstraction: asymmetric

Cards: IR KE-KO 169-1348620-34470-34470

Frequentist model cards: IR KE-KO 169-3700-3700-3700

CFR technique: public chance sampled

Iterations: 10 million

Strategy profile: average

4. An asymmetric abstract Nash equilibrium approximation (designed to exploit mistakes

made by equilibrium-based agents using smaller abstractions of the game)

Abstraction: asymmetric

Strategy Cards: IR PUB×KE-KO 169-1348620-51×30000-280×3000

Opponent Cards: IR KE-KO 169-9000-9000-9000

CFR technique: public chance sampled

Iterations: 48 million

Strategy profile: average
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B.2 3-player Limit Texas Hold’em

B.2.1 2013 & 2014

Total Bankroll

Our 2013 and 2014 total bankroll agent was not an implicit modelling agent and only used
a single strategy rather than a portfolio of strategies.

1. A data biased response to aggregate data of all ACPC competitors from the 2011 and
2012 3-player limit competitions

DBR Pmax: 0.5

Abstraction: asymmetric

Cards: IR KE-KO 169-10000-5450-500

Frequentist model cards: IR KE-PHS 169-900-100-25

CFR technique: external sampled

Iterations: 20 billion

Strategy profile: current

Strategy notes: Both opponents used the same card abstraction and frequentist
model when training the DBR in each of the three player positions.

Bankroll Instant Runoff

Richard Gibson (2014, Section 8.4) designed the dynamic expert strategy used for the agent
submitted to both the 2013 and 2014 bankroll instant runoff events.

1. Dynamic expert abstract Nash equilibrium approximation

Abstraction: symmetric, dynamic expert

Dynamic experts: two granularities of card abstractions for “important” and

“unimportant” betting sequences. Sequences partitioned based on the pot
size and the frequency that the Hyperborean agents from the 2011 and 2012
ACPCs observed the betting sequence.

Cards: IR PUB×KE-KO 169-9×20000-18630-875 (unimportant),
IR PUB×KE-KO 169-1348620-51×30000-280×10000 (important)

CFR technique: Pure CFR

Iterations: 303.6 billion

Strategy profile: current
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B.3 Heads-up No-limit Texas Hold’em

B.3.1 2013

Total Bankroll

Our implicit modelling agent for the 2013 ACPC total bankroll event uses a portfolio of two
abstract strategies.

1. Dynamic expert abstract Nash equilibrium approximation

Abstraction: symmetric, dynamic expert

Dynamic experts: two granularities of card abstractions for “important” and
“unimportant” betting sequences. Sequences partitioned based on the pot
size and the frequency that an earlier heads-up no-limit agent observed the
betting sequence in self-play.

Cards: IR KE-KO 169-3700-3700-3700 (unimportant),
IR PUB×KE-KO 169-9×20000-51×30000-280×6000 (important)

Betting: 0.5, 0.75, 1, 1.5, 3, 6, 11, 20, or 40 times the pot size, or all-in

CFR technique: Pure CFR

Iterations: 498 billion

Strategy profile: current

Translation: Hard, geometric similarity

2. A data biased response to aggregate data from all of the agents in the 2011 and 2012
heads-up no-limit ACPC events

DBR Pmax: 0.25

Abstraction: asymmetric

Cards: IR KE-KO 169-9000-9000-3700

Frequentist model cards: 1 bucket (ignores cards)

Betting: 0.5, 0.75, 1, 1.5, 3, 6, 11, 20, or 40 times the pot size, or all-in

CFR technique: external sampled

Iterations: 84 billion

Strategy profile: average

Translation: Hard, geometric similarity

Strategy notes: Hard translation based on geometric similarity was also used to
build the frequentist model from the real game observations.
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Bankroll Instant Runoff

This agent is a meta-player that switches between 2 different strategies. A default strategy
is played until we have seen the opponent make a minimum-sized bet on at least 1% of the
hands played so far (a min bet as the first bet of the game is not counted). At this time,
we switch to an alternative strategy that both makes min bets itself and better understands
min bets.

1. Dynamic expert abstract Nash equilibrium approximation

Abstraction: symmetric, dynamic expert

Dynamic experts: two granularities of card abstractions for “important” and
“unimportant” betting sequences. Sequences partitioned based on the pot
size and the frequency that an earlier heads-up no-limit agent observed the
betting sequence in self-play.

Cards: IR KE-KO 169-3700-3700-3700 (unimportant),
IR PUB×KE-KO 169-9×20000-51×30000-280×6000 (important)

Betting: 0.5, 0.75, 1, 1.5, 3, 6, 11, 20, or 40 times the pot size, or all-in

CFR technique: Pure CFR

Iterations: 498 billion

Strategy profile: current

Translation: Soft, geometric similarity

2. An abstract Nash equilibrium approximation that both makes min bets itself and
better understands min bets

Abstraction: symmetric

Cards: IR KE-KO 169-3700-3700-1175

Betting: min, 0.5, 0.75, 1, 2, 3, or 11 times the pot size, or all-in

CFR technique: external sampled

Iterations: 132 billion

Strategy profile: current

Translation: Soft, geometric similarity

Strategy notes: Each player is only allowed one 0.5 and one 0.75 bet in a round,

and not on the preflop. Minimum sized bets must be the first action in a round.
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B.3.2 2014

Total Bankroll

Our implicit modelling agent for the 2014 ACPC total bankroll event uses a portfolio of
three abstract strategies, including two from the 2013 total bankroll portfolio.

1. Dynamic expert abstract Nash equilibrium approximation

Abstraction: symmetric, dynamic expert

Dynamic experts: two granularities of card abstractions for “important” and
“unimportant” betting sequences. Sequences partitioned based on the pot
size and the frequency that an earlier heads-up no-limit agent observed the
betting sequence in self-play.

Cards: IR KE-KO 169-3700-3700-3700 (unimportant),
IR PUB×KE-KO 169-9×20000-51×30000-280×6000 (important)

Betting: 0.5, 0.75, 1, 1.5, 3, 6, 11, 20, or 40 times the pot size, or all-in

CFR technique: Pure CFR

Iterations: 498 billion

Strategy profile: current

Translation: Hard, geometric similarity

2. A data biased response to aggregate data from all of the agents in the 2011 and 2012
heads-up no-limit ACPC events

DBR Pmax: 0.25

Abstraction: asymmetric

Cards: IR KE-KO 169-9000-9000-3700

Frequentist model cards: 1 bucket (ignores cards)

Betting: 0.5, 0.75, 1, 1.5, 3, 6, 11, 20, or 40 times the pot size, or all-in

CFR technique: external sampled

Iterations: 116 billion

Strategy profile: average

Translation: Hard, geometric similarity

Strategy notes: Hard translation based on geometric similarity was also used to

build the frequentist model from the real game observations.

3. A data biased response based on aggregate data from agents that were not beaten by
the 2013 Hyperborean TBR entry for at least 750 mbb/g

DBR Pmax: 0.25

Abstraction: asymmetric

Cards: IR KE-KO 169-9000-9000-3700

Frequentist model cards: 1 bucket (ignores cards)

Betting: 0.5, 0.75, 1, 1.5, 3, 6, 11, 20, or 40 times the pot size, or all-in

CFR technique: external sampled

Iterations: 89 billion

Strategy profile: average

Translation: Hard, geometric similarity

Strategy notes: Hard translation based on geometric similarity was also used to
build the frequentist model from the real game observations.
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Bankroll Instant Runoff

1. An abstract Nash equilibrium approximation using an asymmetric betting abstraction
with more betting options for the opponent

Abstraction: asymmetric

Strategy cards: IR KE-KO 169-18630-3700-1175

Strategy betting: 0.1, 0.25, 0.65, 1, 1.5, 3, 6, 11, or 20 times the pot size, or
all-in

Opponent cards: IR KE-KO 169-18630-3700-1175

Opponent betting: min, 0.1, 0.25, 0.5, 1, 1.5, 3, 6, 11, or 20 times the pot size,
or all-in

CFR technique: Pure CFR

Iterations: 82 billion

Strategy profile: current

Translation: Hard, geometric similarity

Strategy notes: Both players are restricted in the timing and frequency of bets that
are 1.5-pot or less. For bets shared by both positions, the opponent is strictly
less restricted.
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